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Abstract

This work is focused on the theoretical and experimental study of the inter-
action between electromagnetic radiation and mechanical micro-resonators.
Through the radiation pressure interaction, it is possible to steer micro-
mechanical oscillators into exotic, non-classical motional states - e.g. a
Schrödinger cat state. The main requirement to observe a non-classical be-
haviour of massive mechanical oscillators is the ability to cool such oscillators
into their motional quantum ground state. In the first part of this work, we
investigate the feedback cooling of a tethered membrane vibration mode by
radiation pressure. The presented experiment paves the way towards quan-
tum control of macroscopic mechanical systems.

Due to the resonant enhancement of both optical and mechanical re-
sponse, the cavity optomechanical devices allow ultra-sensitive measurements
of displacement, forces or masses. The measurement precision is ultimately
limited by the classical noise sources coupled to the system, e.g. thermal
noise from the environment, or probe beam shot noise. In the second part if
this work, we demonstrate that by interfacing the optomechanical sensor with
a squeezed light, we can improve both its sensitivity and bandwidth. Specif-
ically, we are using an on-chip SiO2/Si whispering-gallery-mode resonator
as a room temperature magnetic field sensor. In a proof-of-concept experi-
ment, we show that at the frequencies, where the probe laser shot noise is
the dominating noise source, injection of squeezed state lowers the detection
noise floor thereby improving the peak sensitivity. Furthermore, the squeezed
light broadens the frequency range at which thermal noise dominates, which
increase the overall bandwidth of the sensor.
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Dansk resumé

Nærværende afhandling er et teoretisk og eksperimentelt studie af den op-
tomekaniske vekselvirkning mellem elektromagnetisk str̊aling og mekaniske
mikroresonatorer. I kraft af vekselvirkningen, medieret af det optiske str̊alingstryk,
er det muligt at drive den mekaniske resonator ud i eksotiske ikke-klassiske
kvantetilstande som f.eks. Schrödingers kat-tilstande. En betingelse for at
kunne frembringe og observere s̊adanne ikke-klassiske tilstande for makroskopiske
objekter er, at de indledningsvist kan køles til deres kvantemekaniske grundtil-
stand. Det er en helt central udfordring, som har været omdrejningspunktet
for den første del af afhandlingen. Konkret omhandler denne del et studie
af feedbackkøling af mikromekaniske trampolinresonatorer ved hjælp af det
optiske str̊alingstryk. Det eksperimentelle arbejde der fremlægges demon-
strerer teknikken og dens potentiale som et værktøj til at opn̊a kvantefysisk
kontrol over makroskopiske mekaniske systemer.

Optomekaniske systemer, der integrerer optiske og mekaniske resonatorer,
muliggør ultra-sensitive målinger af fysiske parametre som amplituden af
det mekaniske udsving, eksterne kraftp̊avirkninger samt masse. Det skyldes
den resonante forstærkning som b̊ade det optiske felt og det mekaniske re-
spons oplever i s̊adanne systemer. Målingens præcision er fundamentalt be-
grænset af de klassiske støjkilder der uundg̊aeligt kobles til systemet, f.eks
termisk støj fra omgivelserne og optisk kvantestøj p̊a probelyset. I afhan-
dlingens anden del demonstreres det, hvordan en forbedring af b̊ade sensi-
tiviteten og b̊andbredden af denne type optomekaniske sensorer kan opn̊as
under anvendelse af squeezed probelys, hvor den optiske fasestøj er reduc-
eret under den sædvanlige kvantestøjsgrænse. Eksperimentelt eftervises dette
for integrerede SiO2/Si “whispering-gallery” resonatorer anvendt som mag-
netfeltsensorer ved standard rumtemperatur. Et proof-of-concept eksper-
iment viser, at i frekvensomr̊ader hvor optisk kvantestøj er dominerende,
kan m̊alingens støjgulv reduceres ved at anvende squeezed lys. Herved øges
signal-støj-forholdet og sensorens følsomhed forbedres. Brugen af squeezed
lys bevirker desuden en udvidelse at det frekvensomr̊ade hvor termisk støj er
dominerende, hvilket forøger sensorens samlede b̊andbredde.
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I also want to thank Clemens Schäfermeier who introduced me to the exper-
iments in optomechanics, to Tobias Gehring, Christian S. Jacobsen, Jonas
S. Neergaard-Nielsen and Xueshi Guo who gave me a lot of practical ad-
vice regarding the optical cavities and electronics, to Poul E. Andersen and
Erik Hanses who turned a piece of metal into the optical cavity parts and
manufactured various other components and finally to Tine H. Klitmøller for
knowing answer to any administrative question.

During the work on the magnetometry experiment, I had the pleasure to
collaborate with Warwick P. Bowen and Bei-Bei Li. Together with Bei-Bei
we gathered and processed the data while Warwick’s input was essential
during writing the magnetometry article.

Special thanks belong to Ulrik L. Andersen, Ulrich B. Hoff, Joost van der
Heijden, Iman M. Haghighi and Angelo Manetta for reading parts of this
manuscript in a very short time and giving me a lot of insightful feedback.
Furthermore, Ulrich also provided me with a Danish abstract.

Above all, I am grateful to my family and to Monika. Thank you for your
endless patience, care, and love!

Lyngby, March 2019

Jan

iii



Contents

1 Introduction 1

2 Theoretical minimum 4
2.1 Quantum measurements . . . . . . . . . . . . . . . . . . . . . 5
2.2 Uncertainty relations . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Quantum harmonic oscillator . . . . . . . . . . . . . . . . . . 5
2.4 Quantum states of light . . . . . . . . . . . . . . . . . . . . . 8
2.5 Modulation of light . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Power spectral density . . . . . . . . . . . . . . . . . . 13
2.6.2 Linearised operators . . . . . . . . . . . . . . . . . . . 14
2.6.3 Direct detection . . . . . . . . . . . . . . . . . . . . . . 15
2.6.4 Beam splitter . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.5 Homodyne detection . . . . . . . . . . . . . . . . . . . 16
2.6.6 Optical loss . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Optomechanical interaction 18
3.1 The optomechanical Hamiltonian . . . . . . . . . . . . . . . . 19

3.1.1 Driven Hamiltonian in a rotating frame . . . . . . . . . 20
3.1.2 Radiation pressure force . . . . . . . . . . . . . . . . . 21

3.2 Quantum Langevin equations of motion . . . . . . . . . . . . . 21
3.3 Semi-classical dynamics . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 On resonance driving . . . . . . . . . . . . . . . . . . . 23
3.3.2 Mechanical power spectral density . . . . . . . . . . . . 24

3.4 Input-output relation . . . . . . . . . . . . . . . . . . . . . . . 25

4 Experimental techniques and assemblies 27
4.1 On-chip membrane oscillator . . . . . . . . . . . . . . . . . . . 28

4.1.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Mechanical properties . . . . . . . . . . . . . . . . . . 30

4.2 Optical resonator . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



CONTENTS

4.2.1 Optical cavity design . . . . . . . . . . . . . . . . . . . 40
4.3 Characterization of the optical cavity . . . . . . . . . . . . . . 45

4.3.1 Cavity with the mechanical oscillator . . . . . . . . . . 48
4.4 Vacuum setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Calibration of the EOM . . . . . . . . . . . . . . . . . . . . . 55
4.6 Optomechanical vacuum coupling rate . . . . . . . . . . . . . 58

5 Feedback Cooling 62
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Feedback cooling experimental setup . . . . . . . . . . . . . . 70
5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Quantum-enhanced magnetometry 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

v



List of Figures

2.1 Beam splitter model . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Schematic of a homodyne detection . . . . . . . . . . . . . . . 17

3.1 Optomechanical interaction scheme . . . . . . . . . . . . . . . 19

4.1 Mechanical mode spectrum of a trampoline resonator . . . . . 31
4.2 Ring-down measurement of a trampoline resonator . . . . . . 32
4.3 Trampoline oscillator dimensions . . . . . . . . . . . . . . . . 33
4.4 Mechanical quality factor vs pressure . . . . . . . . . . . . . . 34
4.5 Longitudinal modes of a optical resonator . . . . . . . . . . . 36
4.6 Optical cavity mode matching . . . . . . . . . . . . . . . . . . 40
4.7 Optical cavity schematic . . . . . . . . . . . . . . . . . . . . . 42
4.8 Optical cavity assembly . . . . . . . . . . . . . . . . . . . . . 43
4.9 Picture of the optical cavity . . . . . . . . . . . . . . . . . . . 44
4.10 Optical cavity linewidth measurement . . . . . . . . . . . . . . 46
4.11 optical cavity FSR measurement . . . . . . . . . . . . . . . . . 47
4.12 Linewidth of the optomechanical cavity . . . . . . . . . . . . . 49
4.13 Measurement of a cavity coupling efficiency . . . . . . . . . . . 51
4.14 Schematic of a vacuum setup . . . . . . . . . . . . . . . . . . . 53
4.15 Picture of the vacuum chamber . . . . . . . . . . . . . . . . . 54
4.16 Experimetanl layout for EOM calibration . . . . . . . . . . . . 56
4.17 Phase to amplitude modulation conversion in Mach-Zehnder

interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.18 Interference fringe of a Mach-Zehnder interferometer. . . . . . 57
4.19 EOM modulation depth calibration data . . . . . . . . . . . . 58
4.20 Calibration of the optomechanical vacuum coupling rate . . . 61

5.1 Feed-back cooling experiment setup . . . . . . . . . . . . . . . 71
5.2 Block diagram of the feedback electronic circuit . . . . . . . . 73
5.3 Feedback filter transfer function . . . . . . . . . . . . . . . . . 74
5.4 Cold damping of a membrane . . . . . . . . . . . . . . . . . . 75

vi



LIST OF FIGURES

5.5 In-loop and out-of-loop cooling spectra . . . . . . . . . . . . . 77
5.6 Effective temperature of cold damped membrane . . . . . . . . 78

vii



List of Tables

5.1 Table of the main optical components in a feedback cooling
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Table of the optomechanical system parameters. . . . . . . . . 78

viii



Chapter 1

Introduction

Optomechanics is a rapidly developing field of research that explores the
interaction between light and mechanical motion [1]. The momentum car-
ried by light gives rise to the radiation pressure force which is the underlying
mechanism of the optomechanical interaction. The capabilities of such hybrid
systems have draw the attention of numerous scientist due to the extensive
range of application, both in technology and fundamental science. The radi-
ation pressure force was first postulated in the 17th century by Kepler, who
noticed that the tails of comets always point away from the sun. Later, it
was described by the use of Maxwell theory of electromagnetic radiation and
the first experimental demonstration of radiation pressure force occured in
1885 [2].

The study of radiation pressure coupling to the motion of the mirror was
pioneered by Braginsky in the context of interferometric gravitational wave
detection [3]. It was discovered, that a probe beam coupled to the mirror to
measure its position affects the measurement. This perturbance is caused by
a momentum exchange between light and the mirror and leads to an impre-
cision in the mirror position, which then feeds back to the light. This effect
is known as quantum back-action and sets a lower limit to the measurement
sensitivity. Later, the theory of continuous quantum measurement and con-
sequences of quantum fluctuations of radiation pressure to the measurement
accuracy was formulated by Braginsky and Khalili [4].

Optical interferometric measurements enable the measurement of small
variations of the position of the massive objects. For example, in a reso-
nantly probed Fabry-Pérot interferometer, the motion of the end mirror may
imprint a relatively large changes in the phase of the reflected probe beam.
The uncertainty of the phase of the probe beam gives rise to the impreci-
sion noise, which decreases with increasing laser power. However, increasing
the laser power leads to a larger number of intracavity photons and thus
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increased back-action noise. The limit in readout precision is achieved when
the contribution from both noises is equal. This is known as the standard
quantum limit (SQL).

In a seminal work by Caves [5] it was however realized that the stan-
dard quantum limit could be surpassed in gravitational wave interferometers
using quantum correlated states of light. Those so-called squeezed states
can exhibit phase fluctuations below the level attained by a coherent state
(ideal laser) in the expense of larger amplitude fluctuations or vice versa.
In other words, they lead to decrease in the imprecision noise and conse-
quent increase of the radiation pressure-back action noise. Thus they allow
reaching SQL with lower probe power and even surpassing the SQL when
the quadrature phase of the squeezed state is rotated. Later, this was exper-
imentally demonstrated for Mach-Zehnder [6], Michelson [7] and large-scale
gravitational-wave interferometers [8]. In this work, we study the effect of
using phase-squeezed light on the performance of a cavity optomechanical
magnetometer.

Braginsky also predicted the dynamical effect of the radiation pressure on
a harmonically suspended mirror of a cavity. When the lifetime of a photon
inside the cavity is comparable or longer than a mirror oscillation period,
retarded nature of a radiation pressure force may lead to either amplifica-
tion or damping of the mirror motion. In case of damping, the scheme is
in optomechanics referred to as cavity-assisted cooling or sideband cooling.
Later, it was proposed [9] and demonstrated [10], that the delay in between
radiation pressure force and mechanical oscillator (mirror) can be created
externally using electro-optic systems. This scheme is referred to as feedback
cooling or cold damping.

Cooling of a mechanical system to the motional quantum ground state is
a necessary condition for observing its quantum behavior which is otherwise
masked by the classical thermal noise. Laser cooling have been used to
cool down trapped ions into their motional ground state [11], but ground
state cooling of a larger system containing many atoms remained an elusive
goal. A lot of effort was put in the direction of making cryogenic compatible
optomechanical systems, with the aim of lowering the base temperature of
oscillator’s thermal bath. Eventually, cooling to the motional ground state
by radiation pressure with cryogenic pre-cooling was achieved in microwave-
frequency mechanical resonator [12]. Most recently, feedback cooling of a
cryogenically pre-cooled phononic SiN membrane was demonstrated [13].
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This work describes the development of the first cold damping experiment
of SiN tethered membrane coupled to a Fabry-Pérot optical cavity in our
group. The SiN tethered membranes - trampolines are nanogram-scale high
aspect ratio mechanical resonators [14, 15]. The coupling of the membrane to
its environment is significantly reduced by tethers leading to extremely low
dissipation rate and thus potentially opening the doors for room temperature
quantum experiments [14].
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Chapter 2

Theoretical minimum
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2.1. QUANTUM MEASUREMENTS

2.1 Quantum measurements

Quantum mechanics is based on non-commuting observables which charac-
terize physically measurable quantities (e.g. position, momentum, energy,..).
The act of measurement in quantum mechanics corresponds to the applica-
tion of operator Ô to the state |ψ〉. The outcome of such measurement must
be one of the eigenvalues Oi of the operator Ô. Each operator have a set of
eigenvalues which can be found by solving eigenvalue equation

Ô |ψi〉 = Oi |ψi〉 . (2.1)

Measuring the state which is prepared in the eigenstate of the operator Ô
must give output of the corresponding eigenvalue Oi. If the system is pre-
pared in arbitrary state |ψ〉 we can calculate the probability of obtaining
result Oi by

〈Ô〉 = 〈ψ|Ô|ψ〉 . (2.2)

The first moment (mean value) of 〈Ô〉 is also called expectation value of the
operator Ô. The spread of the results about the expectation value is charac-
terized by variance which corresponds to the uncertainty of the measurement

V ar(Ô) = (∆Ô)2 = 〈Ô2〉 − 〈Ô〉
2
. (2.3)

2.2 Uncertainty relations

We can see whether measuring of one quantum observable will affect the
other by the operators commutator

[Â, B̂] ≡ ÂB̂ − B̂Â = Ĉ. (2.4)

If ÂB̂ = B̂Â we will say that the operators commute. This means that Â
and B̂ shares common set of eigenstates and we can measure their values
with complete accuracy [16]. For the non-commuting operators ÂB̂ 6= B̂Â.
The fact that two measured operators interferes with each other leads to the
famous Haisenberg uncertainty relation [17]

∆Â∆B̂ ≥ 1

2
|C|. (2.5)

2.3 Quantum harmonic oscillator

Quantum harmonic oscillator is essential element of quantum optics and
quantum mechanics in general. The motion of many wave-like systems are
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2.3. QUANTUM HARMONIC OSCILLATOR

well described by simple harmonic oscillator [16]. In this thesis, the formal-
ism of quantum harmonic oscillator will be used to describe a single mode
of a light inside an optical cavity as well as a single mode of mechanical
vibration. The energy quanta of the optical mode is called photon and in
case of the mechanical vibration phonon. This section will introduce some
of the fundamental features of quantum harmonic oscillator. More details of
the topic can be found in many quantum physics book such as [18].

Harmonic oscillator with mass m and angular frequency ω is described in
quantum mechanics by the Hamiltonian

Ĥ =
mωq̂2

2
+

p̂2

2m
, (2.6)

where q̂ and p̂ are quantum position and momentum operators, respectively,
which obey the commutation relation

[q̂, p̂] = ih̄ (2.7)

The position and momentum operators can be expressed as a combination
of creation â† and annihilation â operators as

q̂ =

√
h̄

2mω
(â† + â), p̂ =

√
h̄mω

2
i(â† − â). (2.8)

The creation and annihilation operators are also called ladder operators be-
cause they act to add or subtract a single quantum of energy from the har-
monic oscillator originally prepared in energy state |n〉

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 . (2.9)

From the relations above we can directly see

â†â |n〉 = n |n〉 , n̂ ≡ â†â, (2.10)

where we defined a number operator n̂. The ground state |0〉 is defined by

â |0〉 = 0. (2.11)

Using the ladder operators, we re-express the Hamiltonian 2.6

Ĥ = h̄ω(â†a+
1

2
) = h̄ω(n̂+

1

2
) (2.12)
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2.3. QUANTUM HARMONIC OSCILLATOR

and we will find the energy spectrum En of the quantum harmonic oscillator
by solving the time-independent Schrödinger equation

Ĥ |n〉 = En |n〉 , (2.13)

h̄ω(n̂+
1

2
) |n〉 = En |n〉 , (2.14)

En = h̄ω(n+
1

2
). (2.15)

From the energy spectrum 2.15 we can see that energy levels are equally
spaced by h̄ω and that the ground state energy is equal to the zero-point
energy of 1

2
h̄ω. As a consequence of the zero-point energy, there are zero-

point motion and zero-point momentum of a quantum harmonic oscillator

qzpf =

√
h̄

2mω
, pzpf =

√
h̄mω

2
. (2.16)

Field quadratures

We saw that the quantum harmonic oscillator is naturally described in terms
of ladder operators. However, the annihilation and creation operator are
non-Hermitian and thus do not represent real measurable observables. Tak-
ing their real and imaginary part we will get Hermitian operators called
amplitude and phase quadratures

X̂q = â†(ω) + â(ω), (2.17)

X̂p = −i(â(ω)− â†(ω). (2.18)

We can also define a general quadrature as a linear superposition of and
amplitude and phase quadratures

X̂θ = â(ω)e−iθ + â†(ω)eiθ = X̂q(ω) cos θ + X̂p(ω) sin θ. (2.19)

The quadrature operators satisfy the commutation relation

[X̂q, X̂p] = 2i (2.20)

leading to the uncertainty relation

∆(X̂q)∆(X̂p) ≥ 1 (2.21)

The states which satisfy the equality in 2.21 are called minimum uncertainty
states.
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2.4. QUANTUM STATES OF LIGHT

2.4 Quantum states of light

In this section we describe quantum states of light essential for this thesis.

Fock state

The Fock states, also called the Number states, |n〉 are eigenstates of the
number operator n̂

n̂ |n〉 = n |n〉 (2.22)

As we saw on the example of the quantum harmonic oscillator, the single
mode of the radiation (vibration) has the eigenvalues h̄ω(n + 1

2
) and the

corresponding eigenstate |n〉. The number of photons (phonons) n is exactly
defined so the variance of n̂ is equal to zero in the Fock state

V ar(n̂) = 〈n|n̂2|n〉 − 〈n|n̂|n〉2 = 0. (2.23)

Looking at the expectation value of the arbitrary quadrature amplitude, we
find that for a Fock state

〈X̂θ〉n = 〈n|X̂θ|n〉 = 0. (2.24)

The vanishing mean value means that the phase is completely undefined.
Properties of the quantum vacuum state |0〉 (number state with zero

photons) plays a major role in quantum optical experiments, as they place a
fundamental limit to precision of any classical field measurement. Evaluating
the mean and variance of the amplitude and phase quadratures we find

〈X̂q〉 = 〈X̂p〉 = 0, V ar(X̂q) = V ar(X̂p) = 1. (2.25)

Fluctuations of the of the quantum vacuum state leads to the standard quan-
tum limit for field quadrature measurements, also known as the the shot noise
limit.

Coherent state

The quantum state which is the closest quantum approximation of the field
generated by a laser is the coherent state. Coherent states are defined as
eigenstates of a lowering (annihilation) operator â [16]:

â |α〉 = α |α〉 , 〈α| â† = α∗ 〈α| , (2.26)

8



2.4. QUANTUM STATES OF LIGHT

with complex eigenvalue α = |α|eiθ. The complex eigenvalue reflects the fact
that the annihilation operator is non-Hermitian. Expanding the coherent
state into the number state basis we get

|α〉 =
∞∑
n=0

|n〉〈n|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (2.27)

The number of photons in a coherent state with amplitude α has Poisson
distribution

P (n) = |α|2 = e|α|
2 (|α|2)n

n!
, (2.28)

with the average photon number 〈n̂〉 = |α|2 and the variance Var(n̂) = |α|2.
The mean value and variance of the quadratures in coherent state are

〈X̂q〉 = α + α∗ = 2Re(α), 〈X̂p〉 = −i(α− α∗) = 2Im(α), (2.29)

V ar(X̂q) = V ar(X̂p) = 1. (2.30)

From 2.30 we see that the coherent states are minimum uncertainty states.
Coherent state can be also obtained by displacing vacuum state [18]

|α〉 = D̂(α) |0〉 , (2.31)

where D̂(α) = exp (αâ† − α∗â) is the displacement operator.

Squeezed state

As we shown above, the coherent and vacuum states have the same amount
of quadrature fluctuations which are evenly distributed to the both quadra-
tures and saturates the uncertainty relations as both states are minimum
uncertainty states. However, it is possible to prepare a state with fluctuation
in one quadrature suppressed below the shot noise. Then, the fluctuations
in the conjugate quadrature will be proportionally increased to satisfy the
Haisenberg uncertainty relations. Such a states are call squeezed states and
are represented by [19]

|α, ξ〉 , ξ = rse
i2θs , (2.32)

where rs is the degree of squeezing and θs is the squeezing phase. Mathe-
matically, we can generate squeezed state from a vacuum state by applying
squeezing operator Ŝ(ξ) and displacement operator D̂(α)

|α, ξ〉 = D̂(α)Ŝ(ξ) |0〉 , (2.33)
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2.4. QUANTUM STATES OF LIGHT

where the squeezing operator is defined as [20]

Ŝ(ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξâ†2

)
. (2.34)

Squeezing of a general quadrature θ = θs and its conjugated quadrature
θ′ = θs + π/2 is represented by action

Ŝ†(ξ)X̂θŜ(ξ) = X̂θ (cosh(r)− sinh(r)) = X̂θe−rs , (2.35)

Ŝ†(ξ)X̂θ+π/2Ŝ(ξ) = X̂θ+π/2 (cosh(r) + sinh(r)) = X̂θ+π/2ers . (2.36)

Looking at variance of squeezed states in both quadratures we get

V ar
(
Ŝ†(ξ)X̂θŜ(ξ)

)
= e−2rsV ar(X̂θ), (2.37)

V ar
(
Ŝ†(ξ)X̂θ+π/2Ŝ(ξ)

)
= e2rsV ar(X̂θ+π/2), (2.38)

which shows that a variance of the state in squeezed quadrature θs is reduced
while the variance of the state in conjugate quadrature is increased.

Thermal state

Thermal states describes harmonic oscillator which is in equilibrium with its
environment. Since both photon and phonons are Bosons, the occupancy
probability p(n) at thermal equilibrium follows the Bose-Einstein statistics

p(n) = exp

(
− h̄ωn
kBT

)[
1− exp

(
− h̄ω

kBT

)]
, (2.39)

where T is the temperature of the environment and kB is Boltzmann’s con-
stant. The mean occupancy of the oscillator and variance are

〈n̂〉 =
∞∑
n=0

np(n) = [exp (h̄ω/kBT )− 1]−1 , V ar(n̂) = 〈n̂2〉 − 〈n̂〉2 . (2.40)

Larger oscillators typically has smaller resonant frequencies. Macroscopic
oscillators at a room temperature satisfies kBT � h̄ω. Within this approxi-
mation know as a classical limit the expression 2.40 simplifies to

〈n〉kBT�h̄ω =
kBT

h̄ω
. (2.41)

On the other side, visible light has a frequency of an order ω/2π ≈ 1014. The
thermal occupancy at a room temperature using equation 2.40 then gives
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2.5. MODULATION OF LIGHT

〈n〉 ≈ 10−35. This means, that optical fields in thermal equilibrium at room
temperature are effectively in a ground state and can act as a cold bath [21].

Thermal state is a mixed state which can be conveniently described by a
density matrix ρ̂, which in a number state representation reads

ρ̂ =
∞∑
n=0

〈n̂〉n

(1 + 〈n̂〉)n+1
|n〉〈n| . (2.42)

The expectation value of an operator Ô in a state represented by density
matrix is 〈Ô〉 = Tr(ρ Ô), where Tr denotes a trace. Now, we can easily
calculate expectation value and variance of the quadrature operator

〈X̂θ〉 = 0, V ar(δX̂θ) = 〈n〉+
1

2
(2.43)

2.5 Modulation of light

By interaction with its environment, light can experience modification of its
amplitude and phase and thus acquire information about the environment.
This can be also used to deliberately encode the information on the light
beam using modulation techniques briefly described in this section.

Phase modulation

We represent laser beam by a monochromatic scalar light field α(t) = α0eiω0t

with amplitude α0 and angular frequency ω0. Amplitude α0 can be considered
to be real as any absolute phase offset cannot be directly measure without
a reference beam. Harmonic phase modulation at the frequency ωm can be
described as

αPM(t) = α(t)eiMcos(ωmt), (2.44)

where M is the modulation index. To expand the term above we will use
following identities

eiM cos θ =
∞∑

j=−∞

ijJj(M)eijθ and Jj(M) =
∞∑
l=1

(−1)l

l!(l + j)

(
M

2

)j+2l

, (2.45)

where Jj(M) are the Bessel functions of the first kind of the order j. For
the small modulation depth (M < 1) we express phase modulated field using
first order sidebands (j = 1) as

αPM(t) ≈ α0eiω0t
[
J0(m) + iJ1(M)eiωmt + iJ1(M)e−iωmt

]
= α0eiω0t

[
1 + i

M

2

(
eiωmt + e−iωmt

)]
. (2.46)
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2.5. MODULATION OF LIGHT

The phase modulated light is represented by a sum of three light fields at
different frequencies. Field with frequency of unmodulated field ω0 is called
carrier. Fields with lower and higher frequency ω0 ∓ ωm are called lower
and upper sidebands, respectively. In general, phase modulation leads to the
creation of infinite amount of sidebands.

Frequency modulation

Frequency modulation has the same effect as a phase modulation considering
small modulation depth. Frequency ν of a wave is defined as a first derivative
of the phase

ν =
ω

2π
=
dθ

dt
. (2.47)

Sinusoidally modulated frequency can be described as

ω = M ′ sin(ωmt), (2.48)

which leads to the phase of frequency modulated light

θ =

∫
M ′ sin(ωmt)dt = −M

′

ωm
cos(ωmt). (2.49)

Formally we obtained the same phase relation as for the phase modulated
light given by Eq. 2.44 with modulation index M = M ′

ωm
. In the practical

cases, modulation index of phase modulated light is typically smaller (M <
10) compared to the frequency modulated light (M > 104). Expansion to
the Bessel functions can be still used, but with taking into account many
more terms.

Amplitude modulation

Light field which its amplitude is sinusoidally modulated can be expressed
as

αAM(t) = α(t)(1 +M cos(ωmt))

= α0eiω0t

[
1 +

M

2

(
eiωmt + e−iωmt

)]
. (2.50)

We can notice that the amplitude of the carrier field is not affected by mod-
ulation. This is the case of active modulation utilized e.g. by modulating

12



2.6. DETECTION

laser pump current. In the case of passive modulation, which is naturally
achieved by the attenuation, we can rewrite Eq. 2.50 as

αAM(t) = α(t)

[
1− M

2
(1− cos(ωmt))

]
= α0e−ω0t

[
1− M

2
+
M

4

(
eiωmt + e−iωmt

)]
. (2.51)

Unlike the phase (frequency) modulation, amplitude modulation leads always
to creation of exactly two sidebands. Furthermore, maximum modulation
index (M = 1) exists.

2.6 Detection

Now, when we established the properties of the most important states of
light, we need describe how they are measured in the experiments. By the
measurement - detection we mean transferring the optical field to the elec-
tronic signal.

2.6.1 Power spectral density

As discussed previously, the information can be imprinted to the phase or
amplitude of the light field in the form of sidebands around the unmodu-
lated carrier. We are often interested in resolving those fluctuations in the
frequency domain in terms of the power spectral density (PSD). The power
spectral density tells us the intensity of the noise at given frequency. For an
operator Ô, the PSD can be related to the operator autocorrelation function
as [22]

SOO(ω) ≡ lim
τ→∞

1

τ

〈
Ô†τ (ω)Ôτ (ω)

〉
, (2.52)

where Oτ (ω) is a windowed Fourier transform of O(t) over an time interval
(−τ/2; τ/2). The Fourier transform F and inverse Fourier transform F−1

are defined as follow

O(ω) = F (O(t)) =

∫ ∞
−∞
O(t)eiωtdt, (2.53)

O(t) = F−1 (O(ω)) =
1

2π

∫ ∞
−∞
O(ω)e−iωtdω, (2.54)

yielding the windowed Fourier transform

Oτ (ω) =

∫ τ/2

−τ/2
O(t)eiωtdt. (2.55)
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2.6. DETECTION

Useful relation is provided by a Wiener-Khinchin theorem linking the time
autocorrelation function with a PSD. For an operators with a stationary
statistics and its conjugate it gives

SOO(ω) =

∫ ∞
−∞

dτeiωτ
〈
Ô†(τ)Ô(0)

〉
(2.56)

SO†O†(ω) =

∫ ∞
−∞

dτeiωτ
〈
Ô(τ)Ô†(0)

〉
, (2.57)

where SOO(ω) and SO†O†(ω) are always real. One must be careful to distin-
guish in between the quantum PSD described here and a PSD of a classical
variable. The latter is always symmetric in frequency i.e. SOO(ω) = SOO(−ω)
which is not true in general for a quantum PSD. The reason behind is that
unlike a classical variable, the quantum operators do not necessarily com-
mute with their value at another time i.e. [Ô(t), Ô(t′)] 6= 0, which leads to
asymmetric PSD: SOO(ω) 6= SOO(−ω). As an example, the position operator
of quantum harmonic oscillator q̂(t) after a quarter of oscillton perion evolves
as q̂(t + τ) = p̂, with τ = π/2Ω, which clearly does not commute with q̂(t)
[21].

2.6.2 Linearised operators

In the case of bright optical fields, it is convenient to split an operator to the
classical part α = 〈â〉 and fluctuating part δâ

â(t) = α + δâ(t) (2.58)

This assumption is valid when the amplitude α is much larger than any op-
erator fluctuation δâ, which is a case for a bright laser beams [20]. Detecting
the laser beam on a photodiode yields an output photocurrent proportional
to

n̂ = â†â

=
(
α + δâ†(t)

)
(α + δâ)

= α2 + αδX̂1(t), (2.59)

where we neglected all higher order terms δâ(t)δâ†(t). From the result above,
we see that a detection on a photodiode - e.g. direct detection, effectively
measures the amplitude quadrature of light X̂q. Measuring an arbitrary
quadrature is possible by introducing another bright reference beam, which
is discussed in a homodyne detection section.
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2.6.3 Direct detection

The most straightforward approach to measure the optical field is a direct
detection on a photodiode. Considering optical coherent field with linearised
operators (approximation of a bright laser beam) the output photocurent is
given as

i(t) = gDn̂(t) = gDâ
†(t)â(t)

= gD(α(t) + δâ†)(α(t) + â) ≈ gD(α2 + αδX̂1(t)) (2.60)

i(Ω) = gD(α2δ(Ω) + αδX̂q(Ω)). (2.61)

We see that the the photocurrent is directly proportional to the number of
photons with proportional constant gD representing the gain of the detector
and detection efficiency.

2.6.4 Beam splitter

Beam-splitter is simple but powerful tool in quantum optics. In practice, the
simplest elements in optical experiments are a mirrors. Dielectric mirrors
are made by stacking thin layers of different optically thick materials on a
substrate. The mirror either transmits or reflects the input beam, thus there
are two output ports for every input beam, hence a beamsplitter. Here, we
consider idealised model of a loss-less beam splitter shown in Fig. 2.1. The
input field operators can be related to the output fields as(

âout
b̂out

)
=

( √
η

√
1− η

−
√

1− η √
η

)(
âin
b̂in

)
, (2.62)

where η is real and corresponds to the intensity transmittance. From relation
2.62 we see that output of a beam-splitter at each port is linear combination
of input operators

âout =
√
ηâin +

√
1− ηb̂in,

b̂out =
√
ηb̂in −

√
1− ηâin. (2.63)
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2.6. DETECTION

Figure 2.1: Simple beam splitter (beamsplitter) model. The input fields are
transformed to the output beam according to the Eq. 2.63.

2.6.5 Homodyne detection

Homodyne detector enables us to measure arbitrary quadrature of the optical
field. As illustrated in the figure 2.2, the input state αsig is combined on a
beamsplitter with local oscillator αLO. Considering linearised operators, the
optical fields at detectors d̂1 and d̂2 reads

d̂1(t) =
1√
2

[(
αLO + δâLO(t)

)
eiθ +

(
αsig(t) + δâsig(t)

)]
, (2.64)

d̂2(t) =
1√
2

[(
αsig + δâsig(t)

)
−
(
αLO(t) + δâLO(t)

)
eiθ
]
, (2.65)

where θ denotes the relative phase between signal and local oscillator fields.
The amplified currents at each diode yield

i1(t) = gDd̂
†
1(t)d̂1(t)

≈ gD
2

[
αsig(t)

2 + αLO(t)2 + 2αLO(t)αsig(t) cos θ+,

αsig(t)
(
δX̂q

sig(t) + δX̂−θLO(t)
)

+ αLO(t)
(
δX̂q

LO(t) + δX̂θ
sig(t)

)]
, (2.66)

i2(t) = gDd̂
†
2(t)d̂2(t)

≈ gD
2

[
αsig(t)

2 + αLO(t)2 − 2αLO(t)αsig(t) cos θ+,

αsig(t)
(
δX̂q

sig(t)− δX̂−θLO(t)
)

+ αLO(t)
(
δX̂q

LO(t)− δX̂θ
sig(t)

)]
, (2.67)

where gD is the electronic gain. Looking at the sum and the difference of
photocurrents while considering αLO � αsig so dropping terms not multiplied
by αLO, we arrive at

i+(t) = i1(t) + i2(t) = gD

(
αsig(t)

2 + α2
LO(t) + αLOδX̂

q
LO(t)

)
, (2.68)

i−(t) = i1(t)− i2(t) = gD

(
2αLO(t)αsig(t) cos θ + αLOδX̂

θ
sig(t)

)
. (2.69)
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Figure 2.2: Schematics of a homodyne detection.

By taking a Fourier transform of the fluctuations terms, we get the cur-
rents sum and difference in frequency domain

i+(ω) = gDα(t)X̂q
LO(ω) V ar(i+(ω)) = g2

Dα
2
LOV ar(X̂

q
LO(ω)), (2.70)

i−(ω) = gDα(t)X̂θ
sig(ω) V ar(i−(ω)) = g2

Dα
2
LOV ar(X̂

θ
sig(ω)). (2.71)

We can see that, by measuring the photocurrents difference, we can probe
arbitrary field quadrature by setting the relative phase θ. Furthermore, the
quadrature is amplified by the local oscillator which is typically 103 times
stronger that a measured signal. On the other hand, the current sum always
measures the amplitude quadrature of the local oscillator independent of the
measurement phase.

2.6.6 Optical loss

Losses can have dramatic impact on fragile quantum states. There are
many channels through which the losses are introduced to the system. A
widespread source of losses in the experiment comes from a Fresnel loss, im-
perfection of the optics coating, imperfection of photodiodes, or non-perfect
modematching. The annihilation operator of the state after the effect of loss
is given as

âout(t) =
√
εâin(t) +

√
1− εâvac(t), (2.72)

which corresponds to the beam splitter transformation with efficiency given
by ε and losses 1− ε. For a negligible losses i.e. ε→ 1, the âout(t)→ âin(t).
From Eq. 2.72 we see the twofold effect of the losses - the original state
is attenuated and admixed with a vacuum state âvac. The variance of the
general quadrature state subject to the losses reads

V ar(X̂θ
out) = εX̂in + (1− ε), (2.73)

recalling that the variance of the vacuum state in any quadrature X̂vac = 1.
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Chapter 3

Optomechanical interaction
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3.1. THE OPTOMECHANICAL HAMILTONIAN

3.1 The optomechanical Hamiltonian

The simple model of an optomechanical system consists of a linear optical
cavity, with one of the mirrors suspended on a spring allowing the mirror
to oscillate in the direction of the cavity optical axis. Such a system can be
describe with the following Hamiltonian

Ĥ =
meffΩ

2
mq̂

2

2
+

p̂2

2meff︸ ︷︷ ︸
Ĥm

+

Ĥo︷ ︸︸ ︷
h̄ωcâ

†â, (3.1)

where Ĥm denotes the Hamiltonian of the mechanical oscillator with effective
mass meff and resonance frequency Ωm and Ĥo corresponds to the optical
energy stored inside the cavity with resonance frequency ωc.

Figure 3.1: Scheme of the optomechanical interaction. The optical field âin
is coupled the optical cavity with resonance frequency ωc and decay rate κ.
Displacement of the mechanical oscillator q̂ with resonance frequency Ωm

and decay rate Γm modifies the cavity resonance frequency and thus the
intracavity field â. The mechanical displacement transduced to the optical
field is read out through the cavity output field âout.

So far, we do not see from the Eq. 3.1 interaction in between the optical
cavity field and mechanical oscillator. It is introduced by considering a me-
chanical oscillator deforming the optical cavity by its motion. This means,
that the mechanical displacement q̂ of the oscillator mode is parametrically
coupled to the optical energy stored inside the optical cavity, so the ωc in
Eq. 3.1 is no longer static, but it is a function of the oscillator displacement
ωc(q̂) instead.
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3.1. THE OPTOMECHANICAL HAMILTONIAN

The optical cavity resonant frequency can be Taylor expanded as ωc(q) ≈
ωc + q∂ωc/∂q + .... For a small mirror displacement compared to the cavity
length L, keeping the terms to the first order provide a good approximation
of the resonant frequency, so

ωc(q̂) ≈ ωc −Gq̂, (3.2)

where we defined an optical frequency shift per displacement asG = −∂ωc/∂x.
In case of a linear cavity G = ωc/L, where L is the cavity length. The whis-
pering gallery mode resonators of radius R yield G = ωc/R. It is evident, that
a cavity with shorter path length yield stronger optomechanical coupling.

The optical Hamiltonian can now be rewritten as

h̄ωcâ
†â ≈ h̄(ωc −Gq̂)â†â

= h̄ωcâ
†â−g0â

†â(b̂+ b̂†),︸ ︷︷ ︸
Ĥint

(3.3)

where we used the definition of position operator q̂ = xzpf (b̂ + b̂†) and we
defined the vacuum optomechanical coupling strength

g0 = Gxzpf , (3.4)

which quantifies the coupling between single photon and single phonon. The
Hamiltonian in Eq. (3.3) consists of a unperturbed optical Hamiltonian and
interaction Hamiltonian Ĥint capturing coupling of the mechanical amplitude
to the optical field.

3.1.1 Driven Hamiltonian in a rotating frame

Typically, the optomechanical coupling rate is much smaller than the cavity
linewidth or mechanical frequency. This is commonly addressed by injecting
a bright coherent field driving the optical cavity. The strongly driven cavity
contains a large number of photons, greatly increasing the radiation pressure
force and leading to an enhanced optomechanical coupling.

While expressing the driven optomechanical Hamiltonian, it is conve-
nient to work in a reference frame rotating at the incident laser frequency
ωL eliminating fast oscillations in the Hamiltonian. It is done by unitary
transformation Ĥ → Û(Ĥ − ih̄ ∂

∂t
)Û †, where Û = eiωctâ†â. The full driven

optomechanical Hamiltonian in the rotating frame reads

Ĥ = h̄Ωmb̂
†b̂+ h̄∆0â

†â− h̄g0â
†â(b̂+ b̂†) + h̄E

(
â† + â

)
, (3.5)
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where we defined the laser drive detuning

∆0 = ωc − ωL, (3.6)

and E is a driving strength, related to the input laser power P as |E| =√
2Pκ/h̄ωL.

3.1.2 Radiation pressure force

The coupling of the cavity radiation field to the mechanical motion lies at
the core of cavity optomechanics. The interaction is provided by a radiation
pressure force imposed on the mechanical element by a momentum transfer
of photons. The radiation pressure force is given as the derivative of the
interaction Hamiltonian with respect to position [23]

F̂ =
dĤint

dq̂
= h̄Gâ†â = h̄

g0

xzpf
â†â. (3.7)

3.2 Quantum Langevin equations of motion

To study the dynamics of the optomechanical system, we introduce the
Langevin equations of motion, which describe the time evolution of an open
cavity optomechanical system [24]. They are stochastic differential equations
containing both damping and random forces. As a consequence of coupling
to the environment, the mechanical oscillator is damped with a rate Γm.
This implies in accordance to the fluctuation-dissipation theorem, that the
oscillator is also driven by a corresponding force - Brownian stochastic force
represented by a noise operator ξ̂. The noise operator ξ̂ has a zero mean
value and obeys the correlation function [25]

〈ξ(t)ξ(t′)〉 =
Γm
Ωm

∫
dΩ

2π
e−iΩ(t−t′)Ω

[
coth

(
h̄Ω

2kBT

)
+ 1

]
, (3.8)

where kB is the Boltzmann constant and T the temperature of environment.
The noise operator ξ̂ is non-Markovian i.e. δ correlated. However, the corre-
lation function can be approximated in the classical limit as [21]

〈ξ(t)ξ(t′)〉 = Γm [(2nth + 1)δ(t− t′)] . (3.9)

Similarly, the optical cavity decays at the rate κ and is driven by the
radiation pressure of the input field represented by an annihilation operator
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âin, whose correlations are given by

〈âin(t)â†in(t′)〉 = (N(ωc) + 1) δ(t− t′) ≈ δ(t− t′), (3.10)

〈â†in(t)âin(t′)〉 = (N(ωc)) δ(t− t′) ≈ 0, (3.11)

where we assumed zero thermal occupancy of the optical field N(ωc) ∼= 0.
This assumption is valid for a high frequency optical fields at a room tem-
perature and is assumed through out this thesis.

The quantum Langevin equation of motion for the optical and mechanical
operators can be derived from the Hamiltonian 3.3 using the Heisenberg
equation of motion ∂

∂t
Ô = − i

h̄
[Ô, Ĥ] + N̂ , where the N̂ represents the noise

operator of the operator Ô. They read

˙̂a = −(κ+ i∆)â+ ig0âq̂ + E +
√

2κâin, (3.12)

˙̂q = Ωmp̂, (3.13)

˙̂p = −Ωmq̂ − Γmp̂+ g0â
†â+ ξ̂. (3.14)

The optical input field is usually coherently populated, so αin = 〈âin〉 6= 0.
In general, the input field can couple to the cavity through several channels.
We can distinguish the loss originating from the cavity driving κex and other
loss channels including the cavity absorption or scattering κ0. This can be
done with substitution [21]

√
2κâin →

√
2κexâin +

√
2κ0âvac, (3.15)

where the field entering from the loss channel âvac is in vacuum state, so
〈âvac〉 = 0.

3.3 Semi-classical dynamics

The Langevin equations can be simplified if we consider large number of intra-
cavity photons. If the coherent driving is sufficiently strong, the system can
be described by a semi-classical steady-state. We can split the optical field
operator into a semi-classical steady state with small zero-mean fluctuations
â→ αs + δâ. To find the steady state we solve the Langevin equations with
time derivatives set to zero, yielding

q =
g0|αs|2

Ωm

, (3.16)

αs =
E

κ+ i∆
. (3.17)
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The effect of the bright optical field inside the cavity is to steer the mechanical
oscillator by radiation pressure to a new equilibrium position. This leads to
definition of a new effective detuning

∆ = ∆0 −
g2

0|αs|2

Ωm

. (3.18)

Now, we will rewrite the Langevin equations for an operators fluctuations
around the steady state we found. Furthermore, we rewrite the cavity field in
terms of Hermitian amplitude X̂ and phase Ŷ quadrature operators yielding

δX̂ ≡ (δâ+ δâ†)/
√

2, δŶ ≡ (δâ− δâ†)/i
√

2, (3.19)

δX̂in ≡ (δâin + δâ†in)/
√

2, δŶin ≡ (δâin − δâ†in)/i
√

2, (3.20)

where the X̂in and Ŷin are corresponding Hermitian input noise operators.
Finally, we arrive at the linearised equations by neglecting non-linear terms,
which is valid assumption in case of a strong optical probe i.e. |α| � 1

δ
˙̂
X = −κδX̂ + ∆δŶ +

√
2κX̂in, (3.21)

δ
˙̂
Y = −κδY −∆δX + gδq̂ +

√
2κŶin, (3.22)

δ ˙̂q = Ωmδp̂, (3.23)

δ ˙̂p = −Ωmδq̂ − Γmδp̂+ gδX̂ + ξ̂. (3.24)

The equations show, that the mechanical mode is coupled to the cavity mode
phase fluctuation quadrature by the effective optomechanical coupling

g = g0

√
2αs =

2ωc
L

√
κPin

meffΩmωc(κ2 + ∆2)
, (3.25)

which is boosted by the intracavity field amplitude αs.

3.3.1 On resonance driving

In this section, we present the solution to the linearised Langevin equation
with on resonance driving, meaning that the detuning ∆ = 0. On resonance
driving is done experimentally by tuning the driving laser frequency ωL or
by tuning the cavity length L. From Eqs. 3.21 and 3.22 we can notice, that
by zero detuning the stochastic equations describing the optical amplitude
and phase are decoupled. This is not the case for equations 3.23 and 3.24
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describing the harmonic oscillator, but they can be combined into a single
second-order differential equation reading

δ ¨̂q + Γmδ ˙̂q + Ω2
mq̂ = Ωmξ̂ − gΩmδX̂. (3.26)

It is straightforward to solve the resulting set of equations in frequency
domain by Fourier transform. From the partial differential equations we get
algebraic equations with solutions:

δX̂(Ω) =

√
2κX̂in(Ω)

κ− iΩ
, (3.27)

δŶ (Ω) =

√
2κŶin(Ω) + 2gδq̂(Ω)

κ− iΩ
, (3.28)

δq̂(Ω) = χm(Ω)

(
ξ̂(Ω) +

2g
√

2κδX̂(Ω)

κ− iΩ

)
, (3.29)

where χm(Ω) is the mechanical susceptibility defined as

χm(Ω) =
Ωm

Ω2
m − Ω2 + iΓmΩ

. (3.30)

Substituting the optical amplitude quadrature from Eq. 3.27 into Eq. 3.29,
we get expression for the mechanical position

δq̂(Ω) = χm(Ω)
(
ξ̂(Ω)−

√
4ΓmCeffX̂in(Ω)

)
, (3.31)

where we defined the effective optomechanical cooperativity

Ceff (Ω) ≡ C

(1− 2iΩ/κ)2
, (3.32)

with C being the optomehanical cooperativity

C ≡ 4g2

κΓm
. (3.33)

3.3.2 Mechanical power spectral density

The power spectral density of the mechanical displacement is derived from
the Eq. 3.31. While assuming that the optical and mechanical baths are
independent, we find

Sqq =

∫ ∞
−∞
〈δq̂(Ω)δq̂(Ω′〉 dΩ′

= |χm|2 (2Γm(nth + 1) + 4Γm|Ceff (Ω)|Sxinxin) , (3.34)
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where we used the following correlations in the frequency domain for the
thermal force operator

〈ξ̂(Ω)ξ̂(Ω′)〉 = 2Γm(nth + 1)δ(Ω + Ω′), (3.35)

〈ξ̂(−Ω)ξ̂(Ω′)〉 = 2Γm(nth + 1)δ(Ω− Ω′). (3.36)

The first term in Eq. 3.34 is due to the thermal bath driving with the
thermal noise spectrum given by

SthFF =

∫ ∞
−∞
〈ξ̂(Ω)ξ̂(Ω′)〉 dΩ′ = 2Γm(nth + 1). (3.37)

The second term in Eq. 3.34 is a contribution from the optical field back-
action, driving the mechanical oscillator by the radiation pressure. The back-
action noise spectral density is given by

SbaFF = 4Γm
C

1− Ω2/κ2
= 4Γm|Ceff (Ω)|. (3.38)

Taking the noise spectra above, we can rewrite the power spectra density of
the mechanical displacement as

Sqq = |χm|2
(
SthFF + SbaFF

)
. (3.39)

3.4 Input-output relation

In the previous sections, we studied the optomechanical interaction from the
intracavity field point of view. While the intracavity field is responsible for
the optomechanical interaction, it is not experimentally accessible. There-
fore, we need to find relations in between experimentally accessible input
and output fields and the studied intracivity field. The linking element is
provided by the input-output formalism. For a single-sided optical cavity it
gives [26]

âout(t) =
√

2κδâ(t)− âin(t), (3.40)

which can be translated to the field amplitude and phase quadratures as

X̂out(Ω) =
√

2κδX̂(Ω)− X̂in(Ω), (3.41)

Ŷout(Ω) =
√

2κδŶ (Ω)− Ŷin(Ω). (3.42)

Using the input-output formalism given be the equations above, we translate
the intracavity amplitude and phase fluctuations given by Eqs. 3.27 and 3.28
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to the output quadratures:

δX̂out(Ω) = −κ+ iΩ

κ− iΩ
X̂in, (3.43)

δŶout(Ω) = −κ+ iΩ

κ− iΩ
Ŷin − 2

√
ΓmCeffδq̂(Ω) (3.44)

= −κ+ iΩ

κ− iΩ
Ŷin − 2

√
ΓmCeffχm

[
ξ̂(Ω) + 2

√
ΓmCeffX̂in(Ω)

]
.

(3.45)

We see, that with on resonance driving (∆ = 0), the information about the
mechanical displacement is fully imprinted to the phase quadrature of the
output field. The magnitude of the optomechanical transduction is deter-
mined by the characteristic measurement rate [21]

µ = Γm|Ceff | = Γm
C

1 + 4(Ω/κ)2
. (3.46)

In the sideband unresolved (”bad cavity”) regime, where Ω � κ, the char-
acteristic rate can be approximated as µ = 4g2/κ. Contrary, in the case of
sideband resolved regime Ω/κ→∞ so µ→ 0 and the information about me-
chanical motion imprinted to the optical field become asymptotically small.
This is important in the feedback cooling chapter, as the feedback cooling re-
lies on the measurement rate being sufficiently large compared to the system
decoherence rate Γth = Γmnth [27].

Information about the mechanical displacement can be extracted from the
optical phase quadrature with homodyne detection. The detected mechanical
position δq̂det obtained by renormalising the output phase quadrature given
by Eq. 3.44 to the mechanical displacement units reads

δq̂det ≡
Ŷout(Ω)

2
√

ΓmCeff
(3.47)

= δq̂0(Ω)︸ ︷︷ ︸
mechanics

− 1

2
√

ΓmCeff

(
κ+ iΩ

κ− iΩ

)
Ŷin(Ω)︸ ︷︷ ︸

measurement noise

− 2
√

ΓmCeffχ(Ω)X̂in(Ω)︸ ︷︷ ︸
back-action noise

.

(3.48)

From the result above we see that the mechanical displacement measurement
is affected by both the measurement noise arising from the input field phase
fluctuations and the back-action noise from fluctuations of the probe beam
amplitude quadrature.
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Experimental techniques and
assemblies
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4.1. ON-CHIP MEMBRANE OSCILLATOR

4.1 On-chip membrane oscillator

The mechanical oscillator utilized in the feedback cooling experiment is an
on-chip, stressed silicon nitride (Si3N4), nanogram-scale tethered membrane.
Through the thin and ultra-stressed membranes design, a low dissipation
rate and thus a large mechanical quality factor Qm ≈ 1 · 107 is achieved for
a fundamental mode with resonance at Ωm ≈ 130 kHz.

Figures of merit of the optomechanical device

• The necessary condition for observing quantum effects is that theQm · fm
product (fm = Ωm/2π) is sufficiently large, thus the quality factor and
resonant frequency are the most important parameters of the mechan-
ical oscillator we are considering [28]. How large the Qm · fm needs to
be depends on the system and the protocol to be implemented. Gen-
erally, it is required, that the oscillator undergoes many cycles before
one thermal phonon joins the system. This condition means that the
decoherence rate Γdec must satisfy [29]

Γdec = Γmnth < Ωm, (4.1)

where the phonon occupancy equals nth ∼ kBT/h̄Ωm in the limit of
high temperature T and Γm = Ωm/Qm. The, same condition can be
rewritten as

Qm · f > kBT/h ≈ 6 · 1012, (4.2)

where we considered T = 300K. Finally, the necessary condition for a
ground state cooling is often expressed as Qm > nth [30, 31].

• The mechanical frequency normalized to the optical cavity linewidth

Ωm =
Ωm

κ
(4.3)

is used to distinguish between the ”good cavity” (sideband resolved)
regime when Ωm > 1 and a ”bad cavity” (sideband unresolved) regime
when Ωm < 1 . The feedback cooling of the mechanical oscillator is
most effective in the sideband-unresolved regime (see sec. 3.4) [32].
Given the linewidth of our optical cavity κ ∼ 3 · 109, this condition is
easily satisfied for a fundamental mode.

• The zero point motion xzpm =
√
h̄/2meffΩm depends on the effective

mass meff and the mode resonance frequency. The xzpm should be
as large as possible to maximize the optomechanical coupling, it is
therefore desirable to work with an oscillator with a small effective
mass.
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4.1. ON-CHIP MEMBRANE OSCILLATOR

Quality factor

The loss of mechanical excitations is quantified by the energy dissipation rate
Γm = Ωm/Qm [23]. The quality factor Qm corresponds to the ratio of stored
energy versus lost energy during one cycle of vibration. The overall quality
factor of the oscillator is given as

1

Qtot

=
∑ 1

Qi

, (4.4)

where Qi corresponds to individual loss channels. This relation shows that
the Qtot will be limited by the predominant loss channel. The main loss
mechanisms are listed bellow.

• Gas damping losses are caused by the interaction with the surrounding
gas atoms. In the high pressure environment surrounding gas acts
like a viscous force damping the oscillator [33]. The air damping is
not a limiting factor to us, as it can be minimized in a low pressure
environment provided by a vacuum chamber, as discussed in section
4.1.2.

• Acoustic radiation losses are caused by the dissipation of the elastic
waves into the substrate and possibly to the oscillator supporting struc-
tures such as a sample holder [34]. The design of the tethered membrane
minimizes the radiation loss by creating a large mismatch between the
membrane and the substrate [14]. Other succesful designs minimiz-
ing the dissipation involve phononic shielding by periodic structures
creating bandgaps in the phonon dispersion [13, 35, 36].

• Intrinsic damping losses relate to the material properties. High stresses
in the material have been shown as an important factor enhancing the
Qm [37]. The intrinsic losses are dominating when the resonator is
perfectly decoupled from the environment. As the air damping is easily
removed in a vacuum chamber and clamping losses are minimized by
optimizing the oscillator geometry, the intrinsic losses are dominating
in the case of tethered membranes.

4.1.1 Fabrication

We adapted the design of the mechanical resonators from the Gröblachers
group. The fabrication of the samples used in this thesis was done at DTU fa-
cilities (DTU Danchip) by the the PhD student Dennis Høj with help of clean-
room engineer Kristian Hagsted Rasmussen following the R. Norte recipe [14].
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Dennis Høj customized the membrane parameters to be the best suitable for
our experiment. The dimensions of the sample used for a feedback cooling
experiment are highlighted in figure 4.3.

4.1.2 Mechanical properties

The mode spectrum of the tethered membrane is shown in figure 4.1. The
effective mass of the modes is inferred from a finite element simulation in
COMSOL. The effective mass of the fundamental mode at Ωm ≈ 134 kHz
yields meff = 3.56 ng.

Ring-down measurement

Due to the narrow linewidth of the resonance modes and limited resolution
of the spectrum analyser we use (RBWmin = 1 Hz) we use a transient mea-
surement to estimate the dissipation rate and consequently the quality factor
of the resonant modes. The trajectory of a damped oscillator with resonant
mode frequency Ωm and initial phase ϕ0 is given as

x(t) = x0 exp(−t/τ) cos(Ωmt+ ϕ0), (4.5)

where x0 is an initial amplitude and τ = 2/Γm is a time constant, with Γm
the damping rate. By substituting the quality factor Q = Ωm/Γm to the
equation above we get

x(t) = x0 exp

(
−Ωmt

2Q

)
cos(Ωmt+ ϕ0), (4.6)

where the exponential term corresponds to the decaying envelope. The me-
chanical motion is transduced to the phase of the laser probe beam reflected
from the membrane through the optomechanical coupling, which allows the
detection of the damped motion.

The optical setup for a ring-down measurement, shown in figure 4.2, is
an optical-fibre based interferometer, with a free-space part for probing the
oscillations of the membrane. The experiment is sourced by a fibre coupled
laser (Pure Photonics PPCL500), which is split on a fibre coupler to the
signal and local oscillator (LO) paths. The signal arm is routed through an
amplitude modulator (Thorlabs LN82S-FC) to a circulator (Thorlabs 6015-
3-APC) and outcoupled to the free-space. The beam is then focused with an
aspheric lens (f=9.9 mm) to the membrane, placed inside the vacuum cham-
ber. The mechanical oscillations are imprinted in the phase of the reflected
probe beam which is collected through the fibre in/out coupling lens and
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separated from the incident beam on the circulator. Afterwards, the signal is
interfered with the LO on a balanced fibre beam-splitter connected to the ho-
modyne detector (HD). The phase between the interfering beams is actively
stabilized with a feedback loop actuating phase shifter (fibre stretcher) main-
taining a π/2 relative phase difference corresponding to the phase quadrature
measurement. The error signal is derivated from a DC part of the HD output
signal, while the AC part containing information of the mechanical signal is
measured via an electronic spectrum analyser (ESA, Agilent N9000A).

Wile the vacuum chamber is pumped down to pressure P ∼ 3 ·10−7 mbar,
we measure the power spectra density of the trampoline Brownian motion.
To measure the ring-down time, we resonantly excite the mechanical mode
by the radiation pressure of the intensity modulated probe beam. Practi-
cally, we send a harmonic signal at a frequency corresponding the resonant
frequency of the mechanical mode Ωm from a function generator to the ampli-
tude modulator and monitor the HD output on the ESA set to the zero-span
mode with RBW filter centred at Ωm. When the amplitude of the membrane
motion reaches its maximum, the driving force (amplitude modulation) is
switched off and the oscillator amplitude decays to the steady-state. The
ring-down data of the fundamental mode is shown in figure 4.2.

Figure 4.1: Mode spectrum of the trampoline oscillator. Plot shows the
power spectral density of the Brownian noise (red trace), detection noise
(yellow trace) and the mode shape obtained from COMSOL.
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Figure 4.2: Ring-down measurement of the fundamental mode. (a) Schematic
of the measurement setup. BS: beamsplitter, AM: amplitude modulator,
Circ.: circulator, out: fibre in/out coupler, FL: focussing lens, FPC: fibre
polarization controller, PI: proportional integral controller (servo), FG: func-
tion generator, ESA: electronic spectrum analyser. (b) Ring-down of the
fundamental vibration mode Ωm = 133 kHz of the tethered membrane. Data
(green trace) measured with ESA in zero-span mode and RBW 5 Hz are
fitted with function 4.6 (black line) yielding the mechanical quality factor Q
of 1.25 · 107.
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Figure 4.3: (top) Dimensions of the tethered-membrane used in a feedback
cooling experiment (middle, bottom) Pictures of the chip with suspended
membrane. The tethered-membrane is also referred as trampoline [15], which
is fairly justified by the pictures. 33
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Using the same setup, we measured dependency of the mechanical quality
factor Qm on the pressure. The results are shown in figure 4.4.
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Figure 4.4: The mechanical quality factor of the fundamental mode as a
function of pressure. The quality factor starts to saturate at pressures lower
than 1 · 10−6 mbar. At pressures below 5 · 10−7 mbar the quality factor is
completely saturated, meaning that that the dissipation rate is dominated
by other loss mechanisms than air damping.

34



4.2. OPTICAL RESONATOR

4.2 Optical resonator

An optical resonator (cavity) can confine and store electromagnetic (EM)
fields at some specific frequencies for a given time. The EM field ”fitting”
to the cavity is referred as a cavity mode and its frequency is referred as
a resonant frequency. The most basic example of the optical resonator -
so called Fabry Pérot (FP) resonator, FP cavity or FP etalon - is formed
by two parallel mirrors facing each other. Other types of resonators exist.
Examples of resonators consisting of more than two mirrors is ring resonators
and bow-tie resonators.

In this thesis, the F.P. type of resonator and microtoroid type of res-
onator are used. The microtoroid resonator is a type of dielectric resonator
which makes use of the total internal reflection at the boundary of two low-
loss mediums with different optical density. The microtoroids are types of
whisper-gallery modes resonators [38].

Resonance condition

In general, the cavity modes are found as a solution of Maxwell equations
with appropriate boundary conditions [39]. Here, we consider a simple F.P.
resonator formed by two mirrors separated by distance L. The monochro-
matic wave with wavelength λ = 2πc/ω and complex amplitude U(r) incident
on one of the mirrors has a form

E(r, t) = U(r) exp(iωt). (4.7)

For loss-less planar mirrors, the boundary conditions dictate that the trans-
verse components of the electric field must be equal to zero at the mirror
surfaces, so U(r) = 0 at z = 0 and z = L, where z is the longitudinal
propagation direction of the wave. The solution of the Maxwell (Helmholtz)
equation satisfying those boundary condition can be found in a form of stand-
ing waves U(r) = A sin(kz), where A is a constant and kL = qπ, where q is an
integer. This condition yields, that only frequencies satisfying νq = q c

2L
are

resonant with the cavity. Frequency separation of two adjacent frequencies
is called free spectral range and for a FP cavity reads

FSRFP =
∆ωFSR

2π
=

c

2L
. (4.8)

Note, that for a toroidal cavity considered in the magnetometry chapter

FSRtor =
c

L
. (4.9)
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Figure 4.5: Longitudinal modes of the optical resonator.

Effect of optical loss

In reality, mirrors are never perfectly reflective (which is essential to couple
the light to the cavity in the first place). We consider mirrors with the
intensity reflection coefficients R1 and R2. Then, the round-trip amplitude
attenuation factor equals to h = |r| exp(−iφ), where r =

√
R1R2. After n

round trips the complex amplitude becomes

U =
∑
n

hnU0 =
U0

1− h
. (4.10)

The intensity of the light in the resonator after substituting for h yields

I = |U |2 =
Imax

1 + (2 ∗ F/π)2 sin2(πν/FSR)
, (4.11)

Imax =
I0

(1− |r|)2
, (4.12)

where I0 = |U0|2 is the incident intensity and F is the cavity finesse

F =
π
√
r

1− |r|
=

π 4
√
R1R2

1−
√
R1R2

. (4.13)

In the usual case of a high finesse cavity F � 1 the spectral width δν of the
individual resonator mode is

δν =
κ

2π
≈ FSR

F
, (4.14)
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where κ is the cavity loss rate. In analogy to the mechanical oscillator we
can define cavity quality factor as

Qcav =
ωcav
κ
. (4.15)

As illustrated in figure 4.5, the losses relax the strict resonant frequency
condition. The cavity with lower quality factor yields broader resonances.

Photon lifetime

We can define the photon lifetime, or photon survival time from a photon
survival probability PS. For cavity mirrors with reflectance R1,2 the photon
survival probability is given by

PS = R1R2. (4.16)

The probability that the photon is lost during one round trip is simply 1−PS.
This treatment can be generalized considering other sources of losses that
occur at discrete locations (”lumped losses”). As the time for a photon
roundtrip is given as τrt = 1/FSR, the lifetime of a photon inside the cavity
τP is a product of the roundtrip time and the average number of round trips
that the photon survives

τP =
1

FSR(1− PS)
. (4.17)

Cavity coupling regimes

The cavity total loss rate can be broken down to the component associ-
ated with the light incoupling (outcoupling) κex and a second component
attributed to the internal losses κ0

κ = κex + κ0. (4.18)

We distinguish three coupling regimes with regard to the losses distribution.
The cavity is said to be:

• Undercoupled : when κ0 � κex. In the undercoupled regime the to-
tal losses are dominated by the cavity intrinsic losses. This regime is
usually undesirable as it leads to en effective loss of information [23].
However, we employed this regime in a squeezing-enhanced magnetom-
etry experiment, as we tried to minimize the overall losses acting on
the squeezed light probe (including the incoupling losses) [40].
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• Overcoupled : when κex ≈ κ� κ0. In this regime the photons emerges
from the cavity without being absorbed or transmitted through the
second mirror.

• Critically coupled : when κex = κ0. In the critically coupled (impedance
matched) regime, all incoupled light is either dissipated inside the res-
onator or transmitted.

Resonator eigenmodes

In the previous section we found longitudinal (axial) modes of the linear
resonator. Now we consider the resonance frequency and spatial intensity
distribution. We drop the assumption that the cavity is formed by plane
mirrors. In that configuration the resonator is marginally stable [38], which
require both mirrors to be perfectly parallel to each other and that the in-
cident beam is perfectly aligned with the optical axis, otherwise the modes
decouple from the cavity after a number of round trips. Instead, we consider
the more relevant case to this work that the cavity is formed by spherical
mirrors with radius of curvature RC1,2 . For a plane mirror RC =∞, concave
a convex mirrors yield RC < 0 and RC > 0 respectively. The stable resonator
is formed when

0 ≤ g1g2 ≤ 1 (4.19)

is satisfied, where, g1,2 = 1 + L/RC1,2 . Saturating this inequality yields
a marginally stable resonator as mentioned above. The solution to the
Helmholtz equation with boundary condition given by a spherical mirrors
can be described by Hermite-Gaussian (H-G) modes [41]

Em,n(r, t) = E0Xm(x, z)Yn(y, z) exp (−ik(z − L/2)) exp (iωt) + c.c., (4.20)

Xm(x, z) =
w0√
w(z)

Hm

(√
2x

w(z)

)
exp

(
−x

2
w2(z)− i kx

2

2R(z)
+ i

2m+ 1

2
Ψ(z)

)
,

(4.21)

Yn(y, z) =
w0√
w(z)

Hn

(√
2y

w(z)

)
exp

(
−y

2
w2(z)− i ky2

2R(z)
+ i

2n+ 1

2
Ψ(z)

)
,

(4.22)
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where

w(z) = w0

√
1 +

(
z

zR

)2

: mode radius

w0 : mode waist

zR =
π

λ
w2

0 : Rayleigh length

R(z) = z

[
1 +

(zR
z

)2
]

: wavefront curvature

Ψ(z) = arctan

(
z

zR

)
: Guoy phase (4.23)

The Hm

(√
2 x
w

)
and Hn

(√
2 y
w

)
are Hermite polynomials of order m and n

and resulting cavity modes are referred as transverse electro magnetic modes
of order m and n, i.e. TEMmn. In order to be resonant with the cavity, the
Hermite-Gaussian beam wavefront curvature R(z) must match the radius of
curvature of the cavity mirrors Rc. From Eq. 4.20 we see that the R(z) does
not depend on a mode numbers, thus a resonator with a given geometry
supports TEMmn modes independent of m and n. The same equations show
that a Guoy phase is dependent on a mode numbers. As a consequence, the
resonant frequency is generally non-degenerate for H-G modes and depends
on a mode numbers as follows [41]

νl,m,n =
c

2L

[
l +

1 +m+ n

π
arccos (±√g1g2)

]
, (4.24)

where l is a longitudinal mode number and m,n are transverse mode num-
bers. We are mostly interested in the fundamental mode TEM00 - Gaussian
mode, as it has the most uniform intensity distribution and because the
higher order modes are associated with losses. Recalling that H0(x) = 1 we
can write the electric field of a Gaussian beam as

EGb(r, z) = E0
w0

w(z)
exp

(
− r2

w2(z)
− i kr2

2R(z)
+ iΨ(z)

)
exp(−ik(z−L/2)+c.c.

(4.25)
where r2 = x2 + y2. We refer to the overlap between the Gaussian beam and
the cavity mode as a cavity mode-matching (MM). To achieve the maximal
possible mode-matching, a set of mode-matching lenses is used to form the
input beam parameters.
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Figure 4.6: (a) Input beam waist as a function of the cavity length obtained
from Eq. 4.26. (b) For a hemispherical cavity, the Gaussian beam waist is
in a position of the plane mirror. The beam wavefront radii of curvature at
a waist position R(zw0)→∞. The spherical mirror is in position where the
beam wavefront curvature match the mirror radius of curvature R(z) = Rc.

4.2.1 Optical cavity design

The optical cavity for a feedback cooling experiment is an approximately 1
mm long, linear, hemispherical cavity. The main requirements on the cavity
geometry are that the cavity needs to be suitable to accommodate the on-
chip oscillator with maximal spatial overlap in between the optical mode and
oscillator vibrational mode. From a construction point of view, the cavity
needs to be stable and able to operate under high (HV) or ultra-high (UHV)

40



4.2. OPTICAL RESONATOR

vacuum conditions.
Design of the prototype cavity - the cavity used in this work - reflects the

following reasoning. The choice of hemispherical geometry is given by the way
we place the on-chip mechanical oscillator inside the cavity. To avoid possible
losses to the oscillator quality factor due to the chip clamping [36], we keep
the possibility of holding the chip inside the cavity by gravity. Therefore, the
cavity is oriented vertically (optical axes of the cavity is perpendicular to the
optical table) and the chip is supported by a bottom - plane cavity mirror
(Rc =∞). The second mirror is a concave spherical mirror (Rc = −10mm)
enhancing the resonator stability. The short cavity length provides a large
frequency pull parameter G ∼ 1/L. When we fix the radius of curvature of
the cavity mirrors, we can calculate the input beam waist as a function of
the cavity length L. Using the relations given in Eq. 4.23, the input waist
w0 must satisfy

w2
0 =

λ

π

√
(Rc − L)L. (4.26)

The minimal cavity length is constrained by the dimensions of the chip and
mirrors and yields Lmin ∼ 0.8 mm. There is an another constrain on the
input beam waist, as it must overlap with the 150µm× 150µm trampoline
oscillator pad. Input beam waist as a function of the cavity length is shown
in a figure 4.6(a). The designed length L = 1mm yields the input beam waist
w0 ≈ 38.5µm and g1g2 = 0.9 which satisfy the stability condition defined in
Eq. 4.19.

Optomechanical cavity assembly

The render of the optomechanical cavity is shown in figure 4.7. Materials
and components used as cavity parts need to be suitable for usage under
a high vacuum. In general, we need to avoid materials with high a rate of
outgassing in vacuum. Common choice of vacuum compatible material is a
stainless steel or aluminium/aluminium alloys. We are using commercially
available components graded for a HV usage and custom made stainless steel
parts.

The cavity incoupling plane mirror is attached to the cavity structural
plate and held on a place by a clamp. The fluorocarbon (Viton) o-ring is
fitted in between the mirror and the clamp. The square cut-out at the top
of the plate allows to align the oscillator chip on the mirror with a precision
of ±0.1 mm. Furthermore, the cavity structural cylinder is attached to this
plate.

For a precise control of the resonator length the spherical mirror is at-
tached to a low voltage piezo actuator (Piezomechanik HPSt). The actuator
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Figure 4.7: Renders of the optomechnical cavity. The main figure shows
a three quarter section view, revealing the main cavity components. The
commercially available components are an XY stage, a piezo actuator and the
mirrors. The remaining support structures are custom made from stainless
steel. The figure insert shows a render of the cavity bottom view. The cavity
assembly is mounted to bottom of a ConFlat flange, providing that the cavity
can be inserted into the vacuum chamber.

maximal stroke is ∆zmax ∼ 16µm and the resonance frequency with no
weight load attached νres = 30 kHz. The plane mirror which is support-
ing the chip with oscillator is not piezo actuated to prevent coupling of the
voltage noise to the oscillator motion.

Degrees of freedom in the transverse directions are provided by a manual
XY stage (OWIS MKT 40B-D15-SH-V6) attached to the piezo actuator.

All components have an aperture in the direction of the cavity optical
axis, providing optical access to the cavity from both sides.
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Figure 4.8: Detailed view of the optomechanical cavity. (top) Exploded view
of the optical cavity and on-chip oscillator (in light-red color). Assembly
goes as follows: firstly, the incoupling plane mirror is clamped to the cavity
structural plate. Then, the on-chip oscillator is placed on top of the plane
mirror. The square cut-out in the structural plate provides the rough align-
ment of chip position (±0.1mm). Eventually, the structural plate is attached
to the steel cylinder which supports the end mirror assembly. Finally, the
spherical mirror is attached to the piezo actuator which is mounted to the
XY stage. The XY stage is used to align the center of the cavity over the
trampoline. (bottom) Final configuration of 1 mm long cavity (The steel
cylinder is omitted in this view). 43
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Figure 4.9: View of the optical cavity inside the vacuum chamber.
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4.3 Characterization of the optical cavity

The most important cavity parameters are cavity finesse, length and incou-
pling efficiency.

Cavity linewidth

The cavity spectrum can be directly measured by scanning the frequency of a
laser coupled to the cavity and measuring the reflected/transmitted intensity.
However, in our experimental setup the laser frequency is fixed, so we scan
the cavity length with the piezo actuator instead. By scanning the cavity
length and detecting the transmitted light on a photodide, we observe on
the oscilloscope the cavity lineshape in a time domain. To obtain the results
in absolute frequency, we generate calibration sidebands which will serve
as frequency markers. The sidebands are created by a fibre EOM (iXBlue
MPZ-LN-10), modulating the phase at frequency νmod = 2 GHz.

On the measurement record shown in figure 4.10, we see three peaks,
appearing at the times when the probe beam carrier and the first sideband
cross the cavity resonance. When the scan speed is sufficiently slow compared
to the cavity ring down time ∼ 1/κ, the peaks in the photodiode voltage
(neglecting any DC offset) have a Lorentzian lineshape

U(t) =
τ 2Up

τ 2 + 4(t0 − t)2
, (4.27)

where Up is a peak voltage, τ is a FWHM linewidth and t0 corresponds to
the peak position. We fit the data with a sum of three Lorentzian functions
given by Eq. 4.27 and extract t0 of sidebands and carrier from the fit. Re-
lating the modulation frequency ∆ν

SB and time delay in between carrier and
sideband detection time ∆t

SB, we obtain a frequency change per unit time
∆′ = ∆ν

SB/∆
t
SB ≈ 2 [GHz]/30.12 · 10−5 [s] ≈ 6.64 THz · s−1. Then we rescale

the fitted peak linewidth τ ≈ 68.1µs to frequency units as

δν = κ/2π = ∆′τ ≈ 451.8 MHz. (4.28)
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Figure 4.10: Measurement of the TEM00 mode linewidth. Data (blue trace)
are fitted with a triple Lorentzian function given by Eq. 4.10 (black line).
Phase modulation sidebands are created as frequency markers, allowing to
rescale lineshape in time units to frequency units and to extract the mode
linewidth δν.

Cavity length estimation

The length of the optical resonator is designed to be 1 mm. The effective
cavity length is in fact slightly longer than the physical length of a resonator
due to the penetration of the intracavity electromagnetic field into the dielec-
tric layers of the mirror coating. The resulting cavity length is also affected
by the tolerances in the fabrication process and cavity assembly. Therefore,
the real cavity length needs to be estimated by measurement.

The cavity length can be measured in a similar fashion as the cavity
linewidth. A straightforward approach is to scan the cavity length (laser
frequency) across several (at least two) longitudinal resonances and to use
Eq.4.8 yielding L = c/2FSR. In our case the range of the piezo actuated
mirror covers several FSRs. However, in general the piezo actuators tend to
respond in non-linear fashion to the applied voltage over an extended scan-
ning distance. As we do not know the exact response of the actuator to
applied voltage, we can at least minimize the measurement error by mini-
mizing the scanning distance.

In order to calculate the cavity length L, we use the frequency non-
degeneracy of TEMm,n modes. Eq. 4.24 yields the resonant frequency differ-
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ence between the TEM00 and TEM10 modes in a hemispherical resonator is

∆ν = |ν1,1,0 − ν1,0,0| =
1

π

c

2L
arccos

(√
1− L

Rc

)
(4.29)

The first higher order mode is introduced by slightly misaligning the cavity
probe beam. To transform the time domain measurements to absolute fre-
quency, we use the same approach as in the linewidth measurement described
above. The frequency markers are generated using an EOM with modulation
frequency νmod = 3 GHz. The measurement data are in figure 4.11. From a
data fit, we obtain the time delay of TEM00 and TEM10 modes. The side-
band marker is used to convert the time delay to the frequency ∆ν. By
plugging ∆ν and RC = −10 mm to equation 4.29 and solving the equation
numerically for form L, we obtain the estimated cavity length L = 1.02 mm.

Figure 4.11: Measurement of the cavity length. Transmission of the cavity
recorded while sweeping the cavity length (blue trace) is fitted with a sum
of four Lorentzian functions defined by Eq. 4.27 (black line). The difference
of a TEM00 and TEM10 modes resonance frequency ∆ν reflects the cavity
length by Eq. 4.29. The plot inset shows a detail of the modulation sideband
next to the TEM00 mode, used to calibrate time domain measurement to the
frequency units.
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Cavity finesse and FSR

Once we know know the exact cavity length, we can use Eq.4.8 to calculate
the cavity free spectral range

FSR =
c

2L
≈ 147 GHz. (4.30)

Finally, combining the previous result with the cavity linewidth measure-
ment, we can estimate the cavity finesse. Using Eq.4.14 the cavity finesse
yields

F =
FSR

δν
= 326.2. (4.31)

4.3.1 Cavity with the mechanical oscillator

In here, we investigate the optical properties of the cavity when the on-
chip oscillator is placed inside the cavity. In particular, we are interested
in how the total cavity loss rate changes due to the trampoline. The cavity
overall loss rate κ is extracted from a linewidth measurement. We measure
the linewidth in the same way as in the case of an empty cavity. From the
measurement shown in figure 4.12, we extracted

δν = κ/2π ≈ 492.3 MHz, (4.32)

F =
FSR

δν
= 298.8. (4.33)

Comparing the results in Eq. 4.28 and Eq. 4.32 we see that the presence of
the on-chip trampoline inside the cavity results in the overall loss rate increase
by ≈ 9%. Those losses may be attributed to the trampoline absorption,
diffraction on the trampoline structure, loss due to cavity contamination
or due to the modified transmission of the newly formed mirror-trampoline
etalon.
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Figure 4.12: Measurement of the TEM00 mode linewidth with the trampo-
line oscillator inside the cavity. Data (Green trace) are fitted with a sum
of three Lorentzian function given by Eq. 4.10 (black line). Phase modu-
lation sidebands separated by νmod = 3 GHz from the carrier (main peak)
serve as frequency markers, allowing to rescale the lineshape in time units to
frequency units.

Because the simple cavity transmission measurement does not provide
information of the cavity losses distribution, but rather quantifies the overall
losses rate (together with the FSR measurement), we need to take another
measurement to distinguish the intrinsic losses due to the trampoline from
the modified mirror transmission.

We denote the transmission of the incoupling and end mirrors T1 and T2

respectively and the remaining losses δ. The overall losses are related with
the cavity finesse as follows

F = 2π
FSR

κ
=

2π

T1 + T2 + δ
, (4.34)

where the finesse was estimated by measurement as F = 298.8 and the
nominal values of the mirrors transmission are T1 = 19 000 ppm, and T2 =
10 ppm. From Eq. 4.34 we can find that

T1 + δ = 20 693 ppm. (4.35)

We are considering, that by placing the trampoline inside the cavity, trans-
mission of the incoupling mirror T1 and losses δ are modified, so we need
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another relation including T1 and δ to be able to solve the problem. This
relation can be provided by comparing the power transmitted by the cavity
with the reflected power in respect to the incident power. Figure 4.13 shows
the TEM00 lineshape measured in transmission and reflection. It should be
noted, that only the fraction of input power εPin is coupled to the TEM00

mode, where ε denotes the modematching factor while (1− ε)Pin is wasted.
In the further analysis, we use the elegant solution proposed by Kimble [42]
witch rules out the mode matching factor. Following the reference we arrive
at the expression

Pr − Pin
Pt

=

(
(δ + T2 − T1)2

(δ + T2 + T1)2 − 1

)
(δ + T1 + T2)2

4T1T2

, (4.36)

where Pin is the incident power and Pr, Pt are the powers reflected and
transmitted on cavity resonance. The optical power is proportional to the
photodiode output voltage and since the same photodiode was used to mea-
sure transmitted and reflected field we can make a substitution P → Vdet
in the Eq.4.36. The measured values are Vt = 3.5µW, Vin = 1.59 mW and
Vr = 1.46 mW, where the values obtained from the cavity reflection were mul-
tiplied by a factor of 1/0.82 to compensated for losses on mainly originating
from a circulator (overall detection efficiency in reflection is η = 0.82).

Then, we use coupled equations 4.35 and 4.36 to find a solution for T1

and δ

T1 + δ = 20 693 ppm, (4.37)

Vr − Vin
Vt

=

(
(δ + T2 − T1)2

(δ + T2 + T1)2 − 1

)
(δ + T1 + T2)2

4T1T2

, (4.38)

yielding T1 = 20 285 ppm and δ = 353 ppm. We use this result to estimate
the cavity incoupling efficiency ηc. From Eq. 4.34 we see

κ = FSRT1︸ ︷︷ ︸
κex

+FSR(T2 + δ)︸ ︷︷ ︸
κ0

, (4.39)

which yields the cavity coupling efficiency

ηc = κex/κ ≈ 96.5%. (4.40)
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Figure 4.13: Measurement of the TEM00 mode in transmission and reflection.
Data were obtained in two runs by slowly scanning the cavity length across
the resonance. In the first run, the photodiode was placed after the optical
cavity, thus measuring its transmission. In the second run, we used the same
detector to measure the cavity reflection. The detector was placed after the
circulator, separating the probe beam from the beam reflected from a cavity.
The circulator works with efficiency η = 0.82, which needs to be taken into
account while evaluating the cavity reflection data.
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4.4 Vacuum setup

The optomechanical cavity is placed inside a vacuum chamber, which is
essential for removing viscous damping of the trampoline oscillator. The
vacuum setup components and their layout is captured in figure 4.14. All
vacuum components are fitted together with ISO-CF (conflat) flanges. The
CF flanges use a copper gasket and a knife-edge flange to achieve ultra-high
vacuum seals down to 10−13 mbar. While working with the prototype cavity,
we installed a quick-access door to the vacuum chamber, greatly reducing
the time needed to reach inside the chamber. The door is sealed with a
fluorocarbon (Viton) o-ring providing a seal down to 10−9 mbar .

Prior to the experiment, the vacuum chamber is pumped down with a
turbo pump backed with a dry diaphragm pump. The ultimate vacuum
limit of our turbo pump is 5 · 10−8 mbar. Running the turbo pump causes
acoustic noise and vibrations which are translated to the cavity and optical
table through the vacuum hose. While we have not noticed any additional
noise in the measurements due to the acoustic noise (< 56 dB spec. value)
and the mechanical vibrations are greatly reduced by an in-line vibration
damper placed in a pumping line, the turbo pump is switched off during
all measurements to prevent remaining vibrations to couple to the system.
The turbo pump is switched off after reaching a pressure, when the viscous
damping of the trampoline oscillator has no significant effect on its quality
factor (P < 10−7 mbar). Prior to switching off the turbo pump, the ion and
NEG (non evaporable getter) pumps (ultimate pressure < 10−11 mbar) are
engaged. Those pumps with no moving parts then maintain the vacuum
during the experiment. The turbo pump line is sealed off with an all-metal
valve mounted to the vacuum chamber before the pump is switched off.

There are several viewports fitted to the vacuum chamber. The viewports
providing optical access to the cavity are located at the top and the bottom
flange. The cavity is probed from the bottom, so the whole vacuum chamber
is lifted above the optical table to accommodate mode-matching optics as
shown in figure 4.15. The top viewport is used for imaging purposes and for
cavity transmission measurements.
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Figure 4.14: Schematic of the vacuum system components. The vacuum
chamber (Kimball P. MCF600-SphCube-F6C8) is primarily pumped with a
turbo pump station (Edwards T-station 85). When the desired pressure is
reached, the turbo pump is switched off and sealed off with an all-metal
valve (Leybold) and the chamber is pumped by the ion and NEG pumps
(Gamma Vacuum 5S), which are sealed off with a gate valve (LewVac GF-
40CF) while not operating. The pressure is monitored with a pirani/cold
cathode gauge (Pfeiffer PKR 361). The optical cavity is hanged from the top
flange. To easy access the chamber inside, a quick-access door is mounted
on the chamber side (Pfeiffer vac.). Optical access is provided via viewports
(Thorlabs VPCH42-C) mounted on the top and bottom flanges.
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Figure 4.15: Picture of the vacuum chamber on the optical table. On the left
side we see the angle valve connected through vibration damper to the turbo
pump (out of sight). On the front side of the chamber a quick-access door
with viewport is mounted. The whole chamber is lifted, providing optical
access via the bottom flange with optical viewport. The optical cavity is
hanged from a top flange, where another viewport is fitted. The top viewport
is used for imaging purposes or to measure cavity transmission as captured
on the picture. On the back side of the chamber (out of view), ion and
NEG pumps are fitted through a gate valve (visible at center-right side of
the picture). The pressure is monitored with a pirani/cold cathode pressure
gauge (out of view).
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4.5 Calibration of the EOM

The electro-optical modulator (Pockels cell) plays twofold a role in our ex-
periments. Firstly, the laser is phase modulated for the cavity PDH locking
scheme. Secondly, we use the fibre electro-optical modulator to generate a
calibration tone for the optomechanical coupling rate estimation. To have
control over both processes, we need to know how much phase modulation
we get for a given modulation signal amplitude sent to the modulator.

The electro optical modulators utilize the Pockels effect - birefringece
induced by an electric field. The index of refraction n(E) is then a function
of the applied electric field E and can be expressed as

n(E) = n− 1

2
rn3E, (4.41)

where r is the Pockels coefficient. In terms of voltage applied to the mod-
ulator, we can express the electrically induced phase change of a light field
travelling through the Pockels cell as

∆φ ≈ −πVin
Vπ
. (4.42)

The parameter Vπ is the half-wave voltage - i.e. applied voltage needed to
induce phase change by π. The amount of modulation is indicated by a
modulation depth β and is equal to the peak phase deviation

β = ∆φmax. (4.43)

One way of measuring weak phase modulation is through the interference.
We put the EOM to one arm of the Mach-Zehnder interferometer (MZI)
to convert phase modulation to amplitude modulation. The MZI is formed
by two balanced fiber beam-splitters as outlined in figure 4.16. The other
arm of the interferometer contains a fiber-stretcher which allows to change
the relative phase between both arms by several π. The output power of the
MZI, which is detected on photodiode at one of the outputs, can be expressed
as [43]

Pout(Vin) = α
Pin
2

[
1 + cos

(
Vin
Vπ

)]
, (4.44)

where α is the insertion loss, Pin is the input power, Vin is input voltage.
The input voltage has two components

Vin(t) = Vbias + Vmod(t), (4.45)
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Figure 4.16: Layout of the EOM calibration experiment. A fiber coupled laser
is split at a balanced beam-splitter (BS). The phase modulation induced by
an EOM is transduced to an amplitude modulation and measured with a
photodiode. A feedback loop is used to lock a π/2 phase difference in the
interferometers arms and to stabilize slow phase drifts by minimizing a DC
output of a detector. The nearly unity interference visibility is achieved due
to the single mode fibers and polarization controller (PC).

where the Vbias denotes DC voltage applied to the fiber-stretcher and Vmod(t) =
Vmod sin(Ωmodt) is an AC signal driving the EOM with amplitude Vmod and
angular frequency Ωmod. A linear sweep of bias voltage results in an interfer-
ence fringe as shown with a red trace in figure 4.17. To achieve undistorted
amplitude modulation with the highest extinction ration we set Vbias to be
equal to ±Vπ/2. While the bias voltage is maintained by a feedback loop, we
modulate the phase with the EOM around that working point on a transfer
curve resulting in an amplitude modulation proportional to an input modu-
lation signal.

Figure 4.18 shows the measured interference fringe at the output port of
the MZI. Traces of several output signals with different modulation ampli-
tudes Vmod are shown in figure 4.19. We extract the maximal phase deviations
∆φmax of each trace by evaluating the inverse transfer function of MZI with
modulation amplitudes extracted from the fits. Then we use Eq.4.43 to esti-
mate the modulation depth for each modulation amplitude. The frequency
of the modulation signal is chosen to be close to the resonant frequency of
the fundamental mode of the trampoline oscillators Ωmod/2π ≈ 132 kHz.
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Figure 4.17: Schematic of the phase to amplitude modulation conversion
utilizing Mach-Zehnder interferometer.

0 2 4 6

-2

-1

0

1

2

0 π 2π 3π

Time [ms]

V
ou
t
[V
]

Relative phase [rad]

Figure 4.18: Interference fringe at the output of the Mach-Zehnder interfer-
ometer. Data (blue dots) are fitted with a cosine function (black line). Data
are recorded in a time domain, the relative phase is inferred from a fit.
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Figure 4.19: Figure (a): Output of the MZI for different phase modulation
amplitudes. The modulation amplitudes Vmod are from the top trace: 0.8, 0.6,
0.4, 0.2 and 0.1 Vpp. Figure (b): Calculated modulation depth as a function
of the EOM driving voltage. The red line is a linear fit to the measured data
- black circles.

4.6 Optomechanical vacuum coupling rate

To measure the optomechanical coupling rate g0 we follow the straightforward
procedure proposed by [44]. We saw earlier that the mechanical motion of
the oscillator placed inside the cavity is imprinted to the interacting optical
field. The oscillator displacement fluctuations Sxx are transduced to the
cavity resonant frequency fluctuations Sωω via the optomechanical coupling
rate

Sωω(Ω) =
g2

0

x2
zpf

Sxx(Ω). (4.46)

Calculating the variance of the intra-cavity resonance frequency fluctuations,
we get the useful relation

σ2
ω =

∫ ∞
−∞

Sωω(Ω)
dΩ

2π
= 2g2

0

kBT

h̄Ω
= 2 〈nm〉 g2

0, (4.47)

which shows that knowing the cavity frequency fluctuations and mechanical
occupation number is sufficient to estimate the g0. We can estimate the
number of mechanical quanta nm ≈ kBT

h̄Ωm
, valid for a probe beam of small

optical power, thus neglecting a back-action heating. Now we need to relate
the cavity frequency fluctuations to the experimentally available quantities.
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We are performing phase sensitive homodyne measurements, measuring the
detector output fluctuations on a spectrum analyser. From a phase frequency
relation Ω = θ̇ we can rewrite Eq. 4.46 in terms of phase fluctuations

Sθθ(Ω) =
1

Ω2

g2
0

xzpf
Sxx(Ω). (4.48)

The voltage fluctuations SV V measured with the spectrum analyser are re-
lated to the actual mechanical displacement through the transduction func-
tion K(Ω)

SV V (Ω) =
K(Ω)

Ω2

g2
0

x2
zpf

Sxx(Ω). (4.49)

To calibrate the K(Ω) we will use a phase modulated laser probe with
known modulation depth β. Spectral density of the pure phase modulated
monochromatic laser is given as

Sψψ ∝ β2δ(Ω− Ωmod), (4.50)

where Ωmod is the modulation frequency. The spectrum analyser convolves
the input signal with its bandwidth filter function F (Ω). The filter function
lineshape depends on the spectrum analyser and has a Gaussian lineshape
in our case. The filter function is normalised such as F (0)ENBW = 1,
where ENBW stands for the equivalent noise bandwidth, which is also device
dependent and is slightly higher than the SA resolution bandwidth in our
case. The detected voltage spectra density from both modulated laser and
the mechanics yields:

SV V (Ω) = 2F (Ω)K(Ω) (Sθθ(Ω) + Sψψ(Ω)) . (4.51)

Providing that the dominating signal at Ωmod frequency is the signal from
the laser phase modulation we can approximate the equation above as

SV V (Ωmod) ∝
β2K(Ωmod)

2ENBW
, (4.52)

where all parameters except K(Ωmod) are known. Finally, we assume that the
system transfer function is constant over a small frequency band around the
mechanical resonance frequency, so K(Ωm) ≈ K. This assumption is well
justified in our deeply sideband unresolved regime and with a broad-band
detection. To estimate the g0 we start by combining Eq.4.46 and Eq.4.49

SV V (Ω)
Ω2
m

K(Ω)
= Sωω(Ω). (4.53)
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Integrating the left side of the equation we get∫ ∞
−∞

SV V (Ω)
Ω2

K(Ω)

dΩ

2π
≈ Ω2

m

K

∫ ∞
−∞

SV V (Ω)
dΩ

2π
=

Ω2
m

K
σ2
V , (4.54)

where σ2
V is the variance of detected voltage fluctuations. Finally by com-

bining Eq.4.47 and Eq.4.54 we can estimate the g0 as

g2
0 ∝

Ω2
m

K

σ2
V

2 〈nm〉
. (4.55)

Calibration data

In figure 4.20 we see the results of the calibration measurement. The exper-
imental setup is presented in the feedback cooling chapter. The green trace
was recorded on a spectrum analyser using 420 nW of optical probe power
(before coupling to the optical cavity) and 1.2 mW of local oscillator power.
Direct output of the SA yields the power spectral density in dBm units as
shown on the right scale. The left scale is in displacement units inferred
through calibration of the system transduction function K. The central
Lorentzian shaped peak is due to the thermal motion of the trampoline. The
calibration tone on the left corresponds to the phase modulation with mod-
ulation depth β = 0.052. Using the Eq. 4.55 we estimated g0/2π = 0.75 Hz.
This value also reflects the spatial overlap between the optical mode inside
the cavity and the trampoline mechanical mode.
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Figure 4.20: Power spectral density of the mechanical fundamental mode
(data - green line, fit - black line) and calibration tone (data - green line,
fit - red dashed line). The scale on the right shows voltage fluctuations
as measured with the spectrum analyser. The scale on the left shows the
inferred displacement spectrum of the oscillator. Comparing the area under
the mechanical mode to the area under the known phase modulation is used
to deduce the vacuum optomechancal coupling rate.
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Chapter 5

Feedback Cooling
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5.1 Introduction

Thermal noise is limiting factor in many optomechanical system. The ability
to cool down a mechanical system is important in application ranging from
high sensitivity force measurements [45], large-scaled gravitational wave de-
tectors [46, 47] to observing quantum phenomena in macroscopic systems
[48]. A prior requirement to observe quantum behaviour of the oscillator is
to cool it down near to the motional ground state [4, 49, 50]. Depending on
the system parameters, different approaches would lead to the most effective
cooling.

Perhaps the most straightforward is a passive cryogenic cooling through
a low temperature thermal bath. However, even in the dilution refrigerator
reaching T ∼ 10 mK cooling to the ground state is not possible unless the
mechanical frequency is in the GHz range [23]. As the oscillation frequency
usually scales with inverse proportionally to the oscillating mass, passive
cryogenic cooling is not feasible on its own for reaching ground state of a
macroscopic systems.

Radiation pressure cooling (sideband cooling), derived from laser cooling
of atoms and ions [51] is based on a resonance enhancement of the upper (anti-
Stokes) motional sidband and its filtering from its lower (Stokes) counterpart.
This dynamical backaction cooling scheme is most effectively done by a high
Q optical cavity with linewidth (κ) narrower than the oscillator mechanical
frequency (Ωm). It has been demonstrated in various optomechanical systems
[52–54] including semiconductor nanomemembranes [55]. Cooling to ground
state employing sideband cooling was experimentally demonstrated using
silicon nanoresonators [12] pre-cooled to T ∼ 10 K in a helium cryostat.

In a Feedback cooling protocol [56], which is the subject of this chapter,
the oscillator position is estimated in a real time measurement and the mea-
surement output is converted to the feedback force steering the oscillator
towards the ground state. Feedback cooling to the ground state was recently
demonstrated with cyogenically pre-cooled SiN membranes with a phononic
shielding[13].
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5.2 Theoretical framework

The feedback cooling (also known as cold damping) protocol relies on a con-
tinuous measurement of oscillator position and applying a negative derivative
force damping its motion without increasing the thermal noise. The oscil-
lator position is transduced to the phase of the probe optical field which is
detected with phase sensitive measurement. The output of a measurement is
used to derive a negative feedback and fed back to the oscillator minimizing
the displacement. In the most conventional schemes, the feedback force is
proportional to the time derivative of a measurement (i.e. oscillator velocity)
leading to a viscose damping of a oscillator motion. The feedback actuation
implementation varies depending on a physical system being cooled and in-
volves dielectric gradient force [40, 57], piezo-driven cantilevers [58] or coil
actuators [59].

In this thesis, we consider cooling of the fundamental vibrational mode of
the nano trampoline by radiation pressure force. The optical cavity provides
a high sensitivity displacement readout and enhances the optomechanical
interaction through a multi-pass interaction with the oscillator.

System dynamics

We start the description of the system by considering a harmonic oscillator,
whose instantaneous position is described by x̂(t). The mechanical displace-
ment x̂(Ω) of the oscillator in frequency domain subjected to the total force
F̂tot is given as

(Ω2
m − Ω− iΩΓm)︸ ︷︷ ︸

≡ χ−1
m

x̂(Ω) = m−1
eff F̂tot(Ω), (5.1)

where χm is mechanical susceptibility, Ωm is angular frequency, Γm intrin-
sic damping and meff is the effective mass of the mechanical mode. When
the mechanical motion is optically probed in absence of feedback, the res-
onator is driven by a thermal force F̂th and by a back-action force F̂ba due to
the probe beam radiation pressure shot noise. The total force then reads

F̂tot = F̂th + F̂ba; (5.2)

The feedback force is proportional to the outcome of the displacement
measurement ŷ(Ω) = x̂(Ω)+ x̂imp(Ω), where x̂imp(Ω) is effective displacement
noise and is given by

F̂fb(Ω) = meffχfb(Ω)ŷ(Ω), (5.3)
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where χfb(Ω) is the feedback controller transfer function, characterizing gain
and phase delay of the feedback loop. By tuning feedback parameters we can
achieve cooling or heating of the oscillator. Closing the feedback loop results
in oscillators dynamics bellow

x̂(Ω) = m−1
effχm(Ω)

(
F̂tot + F̂fb

)
= m−1

effχm(Ω)
(
F̂tot +meffχfb(Ω)ŷ(Ω)

)
= m−1

effχm(Ω)
(
F̂tot +meffχfb(Ω)(x̂(Ω) + x̂imp(Ω))

)
= m−1

effχeff (Ω)
(
F̂tot +meffχfb(Ω)x̂imp

)
, (5.4)

where we introduced the effective susceptibility of the oscillator under the
feedback

χeff (Ω) =
χm

1− χfb(Ω)χm(Ω)
. (5.5)

From Eq. 5.4 we see that the feedback cooling alters the dynamics of the os-
cillator by modifying its susceptibility. Rewriting the effective susceptibility
as

χ−1
eff (Ω) =

[(
Ω2 −< [χfb(Ω)]− Ω2

m

)
− iΩΓm (1 + = [χfb(Ω)] /ΩΓm)

]
, (5.6)

reveals that the real part of feedback susceptibility modifies the resonant
frequency as Ω2

fb = Ω2
m − <[χfb] and the imaginary part modifies the dissi-

pative coupling to the environment. We model the feedback control transfer
function as

χfb(Ω) = GfbΩΓm exp(iΩmτfb), (5.7)

where Gfb is the dimension-less gain and τfb is a feedback loop time delay.
From Eq. 5.6 we see that setting the delay as Ωmτfb = π

2
modulo 2π results

in optimal dissipative cooling with modified effective damping rate

Γeff = Γm(1 +Gfb), (5.8)

with Γfb = ΓmGfb being the damping due to the feedback cooling.

Displacement spectrum

The power spectral density of the oscillator’s actual position under a feedback
loop can be derived from Eq. 5.4. Assuming that the noise sources are
uncorrelated, the PSD reads

Sxx = 〈|x̂(Ω)|2〉 = |χeff (Ω)|2(m−2
effS

tot
FF (Ω) + |χfb(Ω)|2Simpxx (Ω)). (5.9)
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where StotFF is the spectral density of the effective thermal force and Simpxx is
spectral density of the measurement noise x̂imp being fed back to the oscilla-
tor. Using the beforementioned model of feedback controller given by Eq. 5.7
and oscillator effective susceptibility χeff defined in Eq. 5.5 we can expand
the PSD as follows:

Sxx(Ω) =

[
1/m2

eff

(Ω2
m − Ω2)2 + ((1 +Gfb)ΩΩm/Qm)2

]
StotFF (Ω)

+

[
(ΩGfbΓm)2

(Ω2
m − Ω2)2 + ((1 +Gfb)ΩΩm/Qm)2

]
Simpxx (Ω), (5.10)

where Qm = Ωm/Γm is the quality factor of the mechanical oscillator. In the
same way, we express the PSD of the measured displacement ŷ = x̂+ x̂imp

Syy(Ω) =

[
1/m2

eff

(Ω2
m − Ω2)2 + ((1 +Gfb)ΩΩm/Qm)2

]
StotFF (Ω)

+

[
(Ω2

m − Ω2)2 + (ΩΓm)2

(Ω2
m − Ω2)2 + ((1 +Gfb)ΩΩm/Qm)2

]
Simpxx (Ω). (5.11)

Note that with a zero gain, the Sxx(Ω) has a Lorentzian profile with FWHM
corresponding the damping Γm. The temperature T of the mechanical mode
can be extracted from PSD using equipartition theorem

〈x2〉 = kBT/meffΩ
2
m, (5.12)

where the position fluctuations are proportionals to the area under the curve
[60]

〈x2〉 =

∫ ∞
−∞

Sxx(Ω)
dΩ

2π
. (5.13)

With a low feedback gain (Gfb � 1), the physical displacement spectrum
can be obtained by subtracting of the measurement noise floor from the
measured spectrum Sxx(Ω) = Syy(Ω)− Simpxx (Ω). This is still valid for larger
gains, if an imprecision noise is below the measured displacement power
Simpxx �

Qm

Gfb
meffΩ

2
m [58].

By increasing the feedback gain, the oscillator motion become correlated
with the imprecision noise which eventually leads to the intensity squashing
in measurement spectrum [61]. The noise Squashing manifests itself in mea-
sured data as a negative peak below the measurement noise. Considering
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that the temperature is proportional to the integral of PSD, this would lead
to the negative temperature estimation, which is clearly unphysical. There-
fore, it is important to distinguish from an out-of-loop spectrum and in-loop
spectrum given by Eq. 5.10 and Eq. 5.11 respectively, when infering the
oscillator temperature.

Experimentally, the out-of-loop spectrum can be obtained using two inde-
pendent probes for temperature estimation a feedback force derivation, e.g.
by using two detuned laser beams.

Driving forces

The driving terms in eq. 5.9 can be expressed in terms of the thermal noise
equivalent quanta. The ambient bath temperature T with which the oscilla-
tor equilibrates adds nth thermal phonons to the mechanical state

nth =
1

2
coth

(
h̄Ωm

2kBT

)
. (5.14)

The remaining driving terms due to the measurement noise nimp and stochas-
tic probe fluctuation nba are given by [27]

nimp = Simpxx (Ω)/2Szpmxx (Ωm), (5.15)

nba = SbaFF (Ω)/
m2
eff

|χm(Ωm)|2
2Szpmxx , (5.16)

where Szpmxx corresponds to the peak position spectral density of the ground
state and is given by

Szpmxx =
4x2

zpm

Γm
. (5.17)

Now we can rewrite the driving force in Eq. 5.9 as

StotFF = (nth + nba +
1

2
)

m2
eff

|χm(Ωm)|2
2Szpmxx (Ωm), (5.18)

which will be useful in further discussion of the thermal occupancy limit.
In case of shot-noise limited amplitude quadrature, the back-action noise

originating from the probe beam intensity fluctuations is given by

nba = C0ncav, (5.19)

where ncav corresponds to the intra-cavity photon number and C0 is the
single-photon cooperativity,

C0 ≡
4g0

κΓm
. (5.20)
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The imprecision noise transduced from the probe phase noise into a homo-
dyne detector with quantum efficiency (quantum efficiency of photodiodes)
ηd is given by [27]

nimp = (16ηtC0ncav)
−1, (5.21)

where ηt = ηoηcηd is the total optical detection efficiency, ηo corresponds to
efficiency of all optical components and ηc is the cavity outcoupling efficiency.

The intra-cavity photon number in case of on resonance excitation valid
in our experiment and with optical power Pin entering the cavity of linewidth
κ is given by

ncav =
4ηc
κ

Pin
h̄ωc

. (5.22)

Eqs. 5.21 and 5.19 imply that the oscillator position measurement is bound
by the imprecision-back action product

4
√
nimpnba ≥ 1. (5.23)

Thermal occupancy limit

Main goal of a feedback cooling is to minimize mean phonon occupancy of
the harmonic oscillator 〈nm〉 given as [31]

〈nm〉 =

∫
Sxx(Ω)

x2
zp

dΩ

2π
− 1

2
. (5.24)

When 〈nm〉 < 1 is reached, we consider that the oscillator (more precisely the
vibrational mode being cooled) is in a motional ground state. Requirements
to achieve a ground state cooling are discussed more in details in [32].

Calculating the Eq.5.24 using expression for a driving force given by 5.15
yields the phonon occupancy of the cooled oscillator

〈nm〉 =
(nth + nba + 1/2) + nimpG

2
fb

1 +Gfb

− 1

2
. (5.25)

The optimal gain which minimizes the thermal occupancy in Eq.5.25 is

Gopt
fb =

√
nth + nba
nimp

, (5.26)

which yields the minimum thermal occupancy

〈n〉min ≈ 2
√
nimp(nth + nba)−

1

2
. (5.27)
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From the equation above, we can express the condition for a ground state
cooling as

nimp <
9

16

1

nth + nba
. (5.28)

In the case of quantum-limited sensing (i.e. saturating the inequality on
Eq.5.23) we arrive to the ultimate requirements for reaching the quantum
ground state

nimp <
1

16nth

(
9− 1

ηt

)
, (5.29)

ηt >
1

9
. (5.30)

The results above yield the threshold value for the total detection effi-
ciency ηt and measurement noise.

Effective temperature

The effective temperature of the cooled oscillator Tfb can be related to the
temperature of an oscillator being in thermal equilibrium with its environ-
ment at temperature T0. This corresponds to the feedback loop switched
off (Gfb =0). Assuming that the oscillator under feedback retain Lorentzian
profile with effective resonant frequency Ωfb and effective damping Γeff and
using the equipartition theorem as previously, we can express the effective
temperature as [40]

Tfb
T0

=

∫∞
−∞ 〈|x̂(Ω)|2〉 dΩ∫∞

−∞ 〈|x̂(Ω)|2〉GFB=0 dΩ
=

Γeff 〈|x̂(Ωfb)|2〉
Γm 〈|x̂(Ωm)|2〉GFB=0

(5.31)

Using the experimentally accessible parameters we can express the effective
temperature as

Tfb
T0

=

(
1 +

G2
fb

SNR

)
1

1 +Gfb

, (5.32)

where the signal-to-noise-ratio (SNR) can be directly extracted from the
measured PSD as the ratio of on-resonance to off-resonance noise levels

SNR =
〈|x̂(Ωm)|2〉Gfb=0

〈|x̂noise(Ω)|2〉
. (5.33)

From Eq. 5.32 we can find an optimal gain Gopt
fb =

√
1 + SNR which

minimize the effective temperature achievable considering constant SNR over
measurement

Tminfb = 2T0

√
1 + SNR− 1

SNR
. (5.34)
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5.3 Feedback cooling experimental setup

Figure 5.1 shows the schematic of the feedback cooling experiment. The
experiment is sourced by continuous-wave fiber coupled laser (NKT E15)
outputting linearly polarized light at central wavelength λ = 1550 nm. The
laser maximum output power is around 40 mW. Optical power is controlled
at several places in the setup using combination of half-wave plates and
polarization beam splitting cubes. The laser output is split into two arms
on a 90:10 fiber coupler. The larger portion of the light serves as a bright
local oscillator (LO) for homodyne detection, the remaining 10% is used as
a probe/cooling beam (also referred as a signal beam).

Probe beam is sent through a fiber electro-optical modulator (EOM) and
fiber amplitude modulator (AM) and out-coupled to the free space. The
beam is then routed through the circulator to the single-sided optical cav-
ity with linewidth κ/2π = 492.3 MHz. The cavity contains a trampoline
resonator with fundamental mode resonance frequency Ωm/2π = 132.6 kHz.
Signal reflected from the cavity is separated from incident beam on a cir-
culator and routed to the homodyne detector. Circulator consist of a two
polarisers sandwiching a Faraday rotator.

Part of the reflected signal is tapped off to be detected on a avalanche
photodiode (Thorlabs APD130C) and down-mixed with an electronic local
oscillator to generate an error signal for cavity locking. The phase modulation
needed for a Pound-Drever-Hall (PDH) locking scheme [62] employed in our
setup is provided by fiber EOM. The signal for a phase modulation and
signal demodulation is generated with a dual channel function generator.
Both channels are frequency locked at ωPDH/2π = 28 MHz and the relative
phase in between both channels is set to optimize the error signal. The error
signal is sent to a proportional-integral controller and after amplifying to the
piezo actuator inside the cavity.

For a calibration purposes described in a previous section we can send
a second calibration tone to the EOM along with the locking tone. In that
case, the both signals are combined at power combiner.

Feedback loop is used to stabilize the relative phase difference of π/2 in
between LO and signal beam at the homodyne detector. The error signal ob-
tained from a homodyne detector DC output is sent through the PI controller
to the piezo actuated fiber stretcher located in LO arm.

Single mode fibers are utilized in all fiber components in the setup. With
the exception of the fiber stretcher, all fibers are also polarization maintain-
ing.
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Figure 5.1: Schematics of the feed-back cooling experiment layout.
Acronyms: beam splitter (BS), fiber stretcher (FS), electro-optical modu-
lator (EOM), amplitude modulator (AM), outcoupler (out), half-wave plate
(HWP), polarisation beam splitter (PBS), lens (L), proportional integral
controller (PI), function generator (FG), switch (S), delay line (D), amplifier
(Amp), band-pass filter (BPF), electronic spectrum analyser (ESA).
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The fluctuations of the trampoline are transduced to the phase of the
probe beam and detected on a homodyne detector. The AC output of the
HD is used to record oscillator displacement spectrum and as an input signal
to feedback cooling electronic circuit. Band-passed and amplified feedback
signal is sent to the fiber amplitude modulator. By adjusting the signal phase
delay, we can achieve friction cooling of the mechanical mode by cooling beam
radiation pressure.

List of main components

Table 5.1 provides an overview of the main components used in the feedback
cooling experiment. Optical loss of the components contributing to the total
detection efficiency are marked with ∗. Note that due to the single-sided
cavity design, before detection, light goes through some components - e.g.
mode-matching lenses, vacuum chamber viewport or Faraday rotator twice.

Component Product Optical loss
fiber coupler Thorlabs PN1550R2A2 < 7%
EOM iXBlue MPZ-LN-10 44%
AM iXBlue MXAN-LN-10 55%
Outcoupler Thorlabs TC12FC-1550 < 0.5%
Mirror HR Laser Optics HR < 0.01%∗

Mirror Thorlabs BB1-E04 < 1%
Faraday rotator Thorlabs IO-5-1550-HP 8%∗

MM lens1 Thorlabs (c coated) 0.5%∗

MM lens2 Thorlabs (c coated) 0.5%∗

Halfwave plate Thorlabs WPH05M-1550 < 0.5%∗

PBS Thorlabs PBS25-1550 < 5%∗ (trans.), < 0.5%∗ (refl.)
Chamber viewport Thorlabs VPCH42-C < 1%∗

Table 5.1: Main optical components used in a feedback cooling experiment
outlined in figure 5.1. Components contributing to the detection loss are
marked with ∗.

Feedback cooling circuit

Block diagram of feedback cooling circuit is illustrated in figure 5.2. The feed-
back loop is sourced with an AC output of the homodyne detector. Signal is
firstly low-passed filtered and then split on a BNC T-piece into data acqui-
sition and feedback signals. A low-pass filter with cut-off frequency at 1.9
MHz removes high frequency optical phase noise originating predominantly
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from a PDH phase modulation at 28 MHz. Then, the signal is band-passed
filtered, delayed, amplified and sent to the RF input port of the amplitude
modulator.

Purpose of the band-pass filter is to separate the actuated mechanical
mode from the rest of the measurement spectrum. We use a FPGA-based
digital filter (Red Pitaya 125) to implement a variable band-pass filter with
variable phase delay. The filter is implemented via an integrated IQ module
which is programmed through a python open-source software module [63].
The center frequency of the filter is set to ΩBP

fb /2π = 132.34 kHz with the
bandwidth ΓBPfb /2π = 4.8 kHz. The phase of the filter is adjusted according
to the theory introduction to yield arg(χfb) ≈ π/2, which approximately
corresponds to the oscillator velocity. The phase delay is found experimen-
tally. We set a fixed gain and sweep the phase with step of 1 deg. until the
maximal cooling is achieved.

The band-passed signal is amplified on a low noise pre-amplifier (SRS
SR 560). The gain can be set from 1 to 50 000 and the output saturates at
10 Vpp. Filtered and amplified signal is sent to the fiber amplitude modulator
(iXBlue MXAN-LN-10).

Figure 5.3 shows the S21 transfer function of the variable bandpass filter,
measured with the electronic network analyser (Agilent E5061B).

Mini Circuits
BLP -1.9+
LP: DC-1.9 MHz 

Standford RS
SR 560
BP: 1-300 kHz
Amp: 0-47 dB Red Pitaya STEMLab 125

Controlable
band-pass filter

Controlable
phase delay

HD AC out 

to ESA

to AM

switch

Figure 5.2: Block diagram of the feedback electronic circuit.
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Figure 5.3: Measurement of the variable band-pass filter transfer function,
(a): filter amplitude response, (b): filter phase response with arbitrary phase
offset. The filter phase response is a limiting factor for high effective cooling.
Due to the broadening of the effective mode resonance Γeff = Γm(1 + Gfb)
at very high cooling gains, the tails of the highly cooled mode experience
non-optimal phase shift leading to heating instead of cooling.

5.4 Experimental results

This section provides with the results of the feedback cooling experiment.
Applying the feedback to the trampoline resulted in in-loop displacement
PSD shown in figure 5.4. The effective temperature as a function of the
feedback gain is plotted in figure 5.6. System parameters are summarised in
table 5.2.

Data acquisition

The power spectral densities presented in this chapter were acquired with
electronic spectrum analyser Agilent N9000A with resolution bandwidth set
to RBW = 1 Hz. Each trace was averaged 40 times. The feedback cooling
experiment is conducted as follows.

Firstly, we lock the cavity length to be resonant with the laser probe beam
of input power Pin = 100µW. Secondly, we lock the phase in homodyne
detection, so the measurement outcome corresponds to the phase quadrature
of probe beam (relative phase of π/2 between probe and LO beams). The
LO optical power is PLO = 1.2 mW. At this point we can perform cooling
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and record the displacement spectrum of the oscillator. The feedback cooling
is initialized by switching on the switch in the electronic feedback circuit.

Teff G�

297 K 
940 mK
482 mK
207 mK
118 mK 
76   mK
709 mK

0
277
548
1375
2686
4765
28 253

Figure 5.4: In-loop displacement spectrum of the mechanical oscillator fun-
damental mode under feedback actuation (color traces). The light blue trace
acquired with the cooling gain switched off is used to calibrate the mea-
sured power spectrum to the displacement units as described in the main
text. Calibrated in-loop displacement spectrum is fitted with Eq.5.11 (black
lines). The plot legend shows inferred effective temperature Teff and corre-
sponding feedback gain Gfb for each trace. The bottom orange trace shows
the effect of noise squashing due to the feedback gain being larger than SNR
(Gfb > SNR).

Effective temperature of feedback cooled oscillator

Figure 5.6 shows inferred effective temperature as a function of the feedback
gain Gfb. Parameters Ωm, Gfb, and noise PSD are obtained from fitting mea-
sured (in-loop) spectra Syy(Ω) given by eq. 5.11, where Γm = 2π · 0.13 Hz
obtained from a ring-down measurement is set as a parameter. Fitted param-
eters are then entered into the displacement spectrum Sxx(Ω) given by Eq.
5.10 and the effective temperature is calculated with the relation provided
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by the equipartition theorem

Teff =
meffΩ

2
m

kB2π

∫
Sxx(Ω)dΩ. (5.35)

The maximum cooling was achieved with a feedback gain Gfb = 4765, yield-
ing the effective temperature Tmin = 76 mK. The corresponding thermal
occupancy calculated with Eq.5.24 〈nm〉 ∼ 150 · 103. Cooling to lower tem-
perature was limited by imprecision noise in the measurement, which could
in principle be lowered by higher probe powerpower. Such an improvement
was not possible in this setup, since higher optical powers induce cavity to
undergo instability and jump out of lock. Further analysis needs to be done
to investigate this behaviour, which might likely stem from the inefficiency
of the home-built PI (servo) controller & amplifier employed in the cavity
locking.

Calibration of the displacement spectra

Eq. 5.35 also provides us with calibration of the measured voltage PSD to
the units of mechanical displacement. As discussed in the section 4.6, the
voltage fluctuations measured by the spectrum analyser are related to the
oscillator displacement as

SV V (Ω) ≈ K(Ωm)

Ω2
m

g2
0

x2
zpf︸ ︷︷ ︸

cal

Sxx(Ω), (5.36)

where we used cal = (K(Ωm)g0)/(Ω2
mx

2
zpf ) to denote all constant terms,

that reflect the optomechanical transduction and the detection-amplification
chain. If the temperature is known, combining the Eqs.5.35 and 5.36 directly
relate the area under the measured trace with the oscillator displacement.
The calibration constant cal is obtained from the measured power spectrum
with Gfb = 0 at temperature Teff = T0 = 296.5 K. Then we use the calibra-
tion constant and Eq. 5.36 to rescale all measured traces SV V (Ω) in figures
5.4 and 5.5 to the displacement units.
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Gfb: 0
Teff: 297 K 

Gfb: 277
Teff: 940 mK

Gfb: 2686
Teff: 118 mK

Gfb: 28 253
Teff: 709 mK

Figure 5.5: Power spectral density of the mechanical oscillator under the
feedback actuation with various gains Gfb. Measured in-loop displacement
spectra Syy (blue traces) are fitted by Eq.5.11 (black lines). Fitted parameter
are then used to plot the corresponding out-of-loop spectrum Sxx defined
with Eq.5.10. Suppression of the thermal noise below the measurement noise
- squashing is apparent in the bottom right plot.
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Figure 5.6: The inferred effective temperature of the fundamental mode as
a function of the feedback gain (red diamonds). The purple line shows the
effective theoretical temperature as a function of the feedback gain (Eq.5.32)
corresponding to SNR = 70.9 dB measured in the absence of feedback actu-
ation.

Symbol Expression Value Measurement method
λ 1550 nm Laser controller readout.
Pin 100µW Measured by optical power meter.
κ 2π · 492 MHz Calibration measurement (Sec. 4.3.1).
κex 2π · 475 MHz Calibration measurement (Sec. 4.3.1).
ηc κex/κ 96.5 % Inferred form κ and κex.
T0 296.5K Reading from a thermistor.
Ωm 2π · 132.6 kHz Fit to the Brownian noise peak.
Γm 2π · 0.13 Hz Mechanical ring down measurement.
Qm Ωm/Γm 106 Inferred from Ωm and Γm.
nth(T0) kBT0/h̄Ωm 4.7 · 107 Inferred from T0 and Ωm.
meff 3.56 ng Inferred from COMSOL simulation
g0 2π · 0.75 Hz Calibration measurement (Sec. 4.6).
p 3.6 · 10−6 mbar Readout from a pressure gauge.

Table 5.2: Parameters of the optomechanical system.
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5.5 Conclusion

In this chapter, we presented a theoretical analysis of the feedback cooling
protocol and its implementation to our system consisting of a tethered mem-
brane nano-oscillator inside a Fabry Pérot cavity. With this experiment, we
introduced a new optomechanical platform into our research group, previ-
ously focused on experiments with micro toroid resonators [40, 64, 65].

We achieved cooling of the fundamental mode from the initial phonon
occupancy at room temperature 〈nth〉 = 4.7 · 107 down to 〈nm〉 ∼ 150 · 103

corresponding to the effective mode temperature Teff = 76 mK. Further
cooling was limited by SNR of the in-loop displacement spectrum which
resulted in squashing of the measurement noise instead of mode cooling with
high feedback gain (Gfb > SNR). The SNR can be improved in several ways.
One could simply increase the probe beam optical power, which was in our
case prohibited by cavity instabilities. The reason why such instabilities make
the cavity go out of lock need to be further investigated. Improvements can
be pursed in the cavity mechanical stability and PDH electronics stabilizing
the cavity length, especially the home-built PI (servo) controller & amplifier.
An alternative route to increase the SNR would be represented by moving
to a higher-finesse cavity.

Probing the mechanical motion with phase-squeezed light would result
in higher SNR as well. This method was demonstrated in our group in the
case of feedback cooling of a micro-toroid resonator [40]. Implementing this
method in our scheme would require careful inspection of the losses in the
system. The current cavity design is favorable in this direction, with single-
sided excitation and high coupling efficiency ηc ≈ 98 %. However, some
changes including separation of the probe beam from a cooling beam would
be required to avoid optical losses on the most inefficient component, e.g.
intensity modulator. Finally, a squeezed-light source at 1550 nm is already
available in our group [66].

Significant room for improvement lays in the optimization of the optome-
chanical transduction. Current cavity design allows only limited possibilities
to align the trampoline chip inside the optical cavity.

It is important to note, that cooling to the ground state from room tem-
perature is a major challenge for oscillators with resonance frequency below
1 MHz (it is challenging for oscillators with even much higher frequencies).
An average occupancy of one phonon corresponds to cooling of the mechan-
ical mode to temperature Tgs = ln(2)h̄Ωm/kB ≈ 4.4µK, where we took
into account the resonance frequency of the trampoline fundamental mode
Ωm ≈ 130 kHz. This would require resolving the oscillator motion with SNR
of 162.6 dB and corresponding feedback gain Gfb ≈ 1.3 ·108, which is four or-
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ders of magnitude higher than what we achieved. Under such feedback gain
the effective damping rate Γeff broadens from a room temperature value
Γm/2π ≈ 0.1 Hz to hundreds of megahertz. This would require the feed-
back gain and delay phase to be uniform over a large bandwidth. Therefore,
ground state cooling of membranes similar to ours is a great challenge and
was not demonstrated without cryogenic pre-cooling up to date.
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Chapter 6

Quantum-enhanced
magnetometry
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6.1. INTRODUCTION

6.1 Introduction

In this chapter we present a proof-of-concept demonstration of the squeezed
light enhanced magnetic field sensing with a cavity optomechanical magne-
tometer. The ability to detect a magnetic field with high sensitivity plays an
important role in multiple fields including magnetic resonance imaging [67],
geology, archaeology, material testing and medicine [68].

Cavity optomechanical field sensors serve as effective magnetometers with
high sensitivity under ambient conditions, a spatial resolution in the order
of tens of microns and microwatt optical power requirements [69]. They
are based on a magnetostrictive effect, where the magnetic field induces de-
formation in the material, which is transduced to the resonator structure.
The resulting motion modifying the cavity condition is read out optically.
Compared with other magnetometers based on the magnetostrictive effect
[70, 71], the cavity magnetometer benefits from the resonant enhancement
of the optical and mechanical response. Currently, the cavity optomechani-
cal magnetometers operate at the thermomechanical noise limit, achieveing
a sensitivity up to ∼ 500 pT/

√
Hz with a bandwidth in the kilohertz range,

and a sensitivity comparable to theat of SQUIDS was theoretically predicted
[72]. During work on this thesis, the design of the silicon on-chip toroid
magnetometers improved, allowing a scalable production. Early designs of
cavity magnetometers (the one presented in this work) incorporated grain
of magnetostrictive Terfenol-D manually placed and epoxy-bounded to the
toroidal structure, which significantly reduced the fabrication scalability. Re-
cently, the method of sputter coating of a magnetostrictive film onto high
quality toroidal micro-resonators was demonstrated, allowing reproducable
and scalable fabrication [73].

The magnetometry experiment described here was done in collaboration
with the group of Warwick P. Bowen at University of Queensland. In par-
ticular with Beibei Li who, visited DTU for three months and brought the
chip with magnetometers and tapered fibres used to couple the light into the
micro-resonator. By the time of the magnetometry experiment, the squeezed
light source used in this work was already built on the optical table. Details
about the squeezer can be found in the PhD thesis of Clemens Schäfermeier
[74], alternatively the squeezed light source benchmarking can be found in
[75].

The squeezing enhanced magnetic field sensing is the most recent experi-
ment done in our group in the series of experiments interfacing squeezed light
with micro-resonators. The foundations of the experiments in optomechanics
were placed by the PhD work of Ulrich B. Hoff in 2015 [76]. The first exper-
imental work studied the quantum-enhancement of mechanical transduction
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6.2. PUBLICATION

sensitivity in microcavity optomechanics [64]. The next contribution to the
field was theoretical study determining the theoretical limits to squeezing-
enhanced measurement sensitivity of mechanical motion in a cavity optome-
chanical system [77] followed by the squeezed light enhanced feedback cooling
of the micro-toroid [40].

6.2 Publication

This section was published in Optica with the title of ”Quantum enhanced
optomechanical magnetometry ” as follows [65].
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The resonant enhancement of both mechanical and optical response in microcavity optomechanical devices allows
exquisitely sensitive measurements of stimuli, such as acceleration, mass, and magnetic fields. In this work, we show
that quantum correlated light can improve the performance of such sensors, increasing both their sensitivity and their
bandwidth. Specifically, we develop a silicon-chip-based cavity optomechanical magnetometer that incorporates phase
squeezed light to suppress optical shot noise. At frequencies where shot noise is the dominant noise source, this allows
a 20% improvement in magnetic field sensitivity. Furthermore, squeezed light broadens the range of frequencies
at which thermal noise dominates, which has the effect of increasing the overall sensor bandwidth by 50%.
These proof-of-principle results open the door to apply quantum correlated light more broadly in chip-scale sensors
and devices. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Cavity optomechanics [1–3] has attracted increasing research in-
terest for both fundamental studies and practical applications.
Strong radiation pressure coupling between high quality mechani-
cal and optical resonances has enabled the demonstration of a
range of interesting quantum behaviors, such as ground state cool-
ing of macroscopic mechanical oscillators [4–7], quantum squeez-
ing of mechanical motion [8–11], and the production of squeezed
light [12,13], while the combination of resonance enhanced
mechanical and optical response [14] has enabled precision
sensors [15] ranging from kilometer-sized laser interferometer
gravitational wave detectors [16,17] to micro/nanoscale silicon-
chip-based force [18], mass [19], acceleration [20,21], and mag-
netic field [22–25] sensors.

The precision of cavity optomechanical sensors is generally con-
strained by three fundamental noise sources: thermal noise from
the environment, shot noise from the photon number fluctuations
of the light used to probe the system, and quantum backaction
noise arising from the radiation pressure of the probe light. The
noise floor can be engineered using quantum correlated light.
For instance, squeezed light [26–28] allows the shot noise to be
suppressed [29], thereby improving the sensitivity if the shot noise
is dominant. Squeezed light has been used, for example, to improve
the precision of gravitational wave interferometry in both the Laser
Interferometer Gravitational-Wave Observatory (LIGO) and the
GEO600 [30–32], and it has also been used in nanoscale measure-
ments of biological systems [33], laser beam positioning [34,35],

and magnetic field measurement using atomic magnetometers
[36,37]. In cavity optomechanics, it has been used to enhance mea-
surements of thermal noise [38], improve both feedback [39] and
sideband cooling [40], and study the backaction from the radiation
pressure force [41]. However, it has not previously been used to
improve cavity optomechanical sensors of external stimuli. Here,
we demonstrate the first application of squeezed light in such a
sensor, specifically, in a cavity optomechanical magnetometer
[22,23]. At frequencies where shot noise is dominant, squeezed
light suppresses the noise floor, improving the magnetic field sen-
sitivity. Moreover, by increasing the range of frequencies over which
thermal noise is dominant, the sensor bandwidth is also increased.
A squeezed light enhanced sensor bandwidth [42] is of importance
in applications that need good sensitivity in a broadband range,
e.g., in magnetic resonance imaging.

2. THEORETICAL ANALYSIS

Figure 1(a) shows a conceptual schematic of a cavity optomechan-
ical magnetometer, comprised of an optical cavity, coupled to a
mechanical oscillator. The mechanical oscillator is driven by a
force FB induced by a magnetic field via the magnetostrictive
effect [22] along with thermal and backaction noise forces.
The mechanical motion of the oscillator changes the cavity length
and, thus, the optical resonance. This modulates the phase of an
injected squeezed probe field and can therefore be read out via an
optical phase measurement. In our case, the optical cavity is a
microtoroid, whose circumference is modified by mechanical
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motion, as illustrated in Fig. 1(b). Our experiments operate in the
unresolved sideband regime, where the optical decay rate κ is
much larger than the mechanical resonance frequency Ω. In this
regime, the thermal force noise dominates the backaction noise
when n̄ > V cavity

anti C [3], where n̄ is the thermal phonon occupancy
of the mechanical oscillator, V cavity

anti is the variance of the
anti-squeezed field in the optomechanical cavity, and C is the op-
tomechanical cooperativity, which quantifies the strength of radi-
ation pressure optomechanical coupling relative to the mechanical
and optical dissipation rates and is proportional to the probe laser
power. For the few megahertz frequencies we use, n̄ ∼ 106 at
room temperature; while with the optical and mechanical proper-
ties of our optomechanical microresonator, and for the maximum

optical power, we use C ∼ 1000. Consequently, the mechanical
force noise is dominated by thermal noise, and we neglect back-
action noise henceforth.

The displacement x of the mechanical oscillator in response to
an external force F is quantified in the frequency domain by the
mechanical susceptibility χ�ω�. To illustrate the physics, we con-
sider the simple case of a single mechanical resonance, for which
χ�ω� � 1∕�meff �Ω2 − ω2 − iωΓ��, where meff is the effective
mass of the mechanical oscillator, and Γ is its damping rate,
enhancing the mechanical response to near resonant forces [see
top left and top right of Fig. 1(c)]. Quite generally, in cavity op-
tomechanical sensors, away from resonance, optical shot noise is
dominant, allowing squeezed light enhanced sensitivity; while for

(a)

(b)

(c) (d)

Fig. 1. (a) Conceptual schematic of a cavity optomechanical system probed with squeezed light. Here, FB and F th denote the magnetic field induced
force and the thermal force on the mechanical oscillator. (b) Left: a schematic of a microtoroid magnetometer coupled with a nanofiber. Right: the cross
section of a microtoroid, of which the optical field is distributed along the inner surface. The mechanical motion changes the circumference of the cavity
and, thus, shifts the optical resonance. (c) and (d) Theoretical result for squeezing enhanced performance of the magnetometer. Here, we use a squeezing
factor of 10 dB. In (c), top-left and bottom-left plots correspond to the strong probe power case, where P � 10P0, with P0 defined as the power when the
thermal noise on mechanical resonance equals the shot noise level (SNL), i.e., n̄ � 1∕�16ηC�, while top-right and bottom-right plots correspond to the
weak probe power case, where P � 0.1P0. (c) Top left and top right, the noise power spectrum normalized to the SNL. Black short-dotted curve, thermal
noise; purple short-dashed line, vacuum shot noise for coherent probe; magenta dashed line, squeezed vacuum noise for squeezed probe; red solid curve,
total noise for coherent probe; blue dash-dotted curve, total noise for squeezed probe. Bottom left and bottom right, the sensitivity as a function of
frequency for coherent (red solid curves) and squeezed (blue dash-dotted curves) probe, respectively, normalized to δBpeak

0 , which is the peak sensitivity for
the squeezed probe in the strong probe power case. (d) The peak sensitivity δBpeak (normalized to δBpeak

0 ) as a function of the probe power P for coherent
(red solid curve) and squeezed (blue dash-dotted curve) probes, respectively.
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a single-sided cavity in the unresolved sideband regime, thermal
noise dominates shot noise at resonance if n̄ > 1∕�16ηC�, where
η is the optical detection efficiency.

A magnetic field is resolvable when the signal it induces is
larger than the total noise floor. Neglecting backaction noise, this
leads to a minimum detectable force δF ,

δF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffΓkBT

p �
1� V sqz

16n̄ηC

���� χ�Ω�χ�ω�

����
2
�
1∕2

: (1)

In this equation, kB and T are the Boltzmann constant and the
temperature, respectively. The first term in the bracket on the
right hand side represents the thermal noise, while the second
term represents the optical noise with V sqz as the variance of
the detected squeezed field. Introducing an actuation constant
cact � F∕B, which characterizes how well the magnetic field B
is converted into an applied force F on the mechanical oscillator
[22], the magnetic field sensitivity is δB � δF∕cact.

From Eq. (1), we see that the peak sensitivity occurs on
mechanical resonance. In the case where thermal noise is domi-
nant at mechanical resonance frequency (n̄ > 1∕16C), squeezed
light does not significantly change the peak sensitivity, instead
extending the frequency range over which thermal noise domi-
nates, and, therefore, the sensor bandwidth [bottom left of
Fig. 1(c)]; while in the case where optical noise is dominant
on resonance (n̄ < 1∕16C), both the peak sensitivity and band-
width are improved by squeezed light [bottom right of Fig. 1(c)].
The saturation of sensitivity to the optimal (thermal noise lim-
ited) sensitivity as probe powers increase is shown in Fig. 1(d).
It can be seen that squeezed light reduces the probe power re-
quired to reach the optimal sensitivity. We note that similar sen-
sitivity and bandwidth improvements could also be achieved by
increasing the probe power. However, this strategy cannot be pur-
sued infinitely due to deleterious effects from the probe, such as
detector saturation and absorption heating of the optomechanical
device. Of particular relevance to optomechanics, at high probe
power, dynamic backaction causes parametric instabilities that de-
grade sensitivity [43]. These instabilities are especially problem-
atic for the high quality mechanical resonators desirable for
precision optomechanical sensing.

3. EXPERIMENT AND RESULTS

A. Measurement of the Optomechanical System

In our experiments, the optomechanical magnetometer is a microt-
oroid cavity embedded with a grain of magnetostrictive material
(terfenol-D) [22,23], as sketched in Fig. 1(b). In such magnetom-
eters, the magnetic field deforms the microcavity via the magneto-
strictive expansion and shifts the optical resonance. In the case of an
alternating current (AC) magnetic field, the magnetostrictive
material exerts a periodic force on the mechanical oscillator, which
can drive the mechanical motion of the toroid. When the micro-
cavity is excited on optical resonance, the mechanical motion trans-
lates into a pure phase modulation of the transmitted light at the
mechanical frequency, which is read out with a homodyne detector
and recorded using a spectrum analyzer.

The measurement setup for squeezed light enhanced magne-
tometry is shown in Fig. 2. A neodymium-doped yttrium alumi-
num garnet (Nd:YAG) laser is used to produce squeezed light at a
wavelength of 1064 nm. Phase-squeezed light is generated
through a parametric down conversion process in a 10 mm

periodically poled potassium titanyl phosphate (PPKTP) crystal
enclosed in a linear cavity [39]. As shown in Fig. 2, both the
532 nm light (the pump light) and the 1064 nm light (the seed
light) are injected into the cavity. To generate phase-squeezed
light, the pump phase is locked to the seed beam amplification.
The light is coupled into the microtoroid evanescently through an
optical nanofiber with a diameter of about 700 nm. The optical
resonance of the cavity is thermally tuned to match the wave-
length of the laser. The cavity phase is actively locked using a feed-
back system [44]. A coil is used to produce an AC magnetic field
to test the magnetic field response of the magnetometer. The
mechanical motion of the toroid is measured by performing ho-
modyne detection. The balanced homodyne detector combines
two inputs: a relatively weak probe, which couples with the mi-
crocavity, and a relatively strong local oscillator (LO), which
comes from the same laser but without going through the micro-
cavity. An electronic spectrum analyzer (ESA) is used to record the
noise power spectrum. In order to measure the response of the
magnetometer to magnetic fields at different frequencies, we drive
the coil with the output of an electric network analyzer (ENA)
and measure the magnetic field response at each frequency with
the same ENA.

B. Characterization of the Squeezed Light

To characterize the squeezed state transmitted through the fiber, we
decouple the microtoroid from the nanofiber and measure the ho-
modyne detection signal of the field quadratures by linearly sweep-
ing the LO phase θ. As shown in the dark gray curve in Fig. 3(a),
when θ is swept continuously, the noise power changes periodically,
following the equation V � V sqz cos

2 θ� V anti sin
2 θ, with V anti

being the anti-squeezed quadrature variance. The black solid curve
is the fitted result based on this equation, yielding V sqz � 0.56 and
V anti � 6.3. Ideally, the product V sqzV anti � 1, satisfying the
Heisenberg uncertainty limit, but, in reality, this limit is not
reached, due to loss of the squeezed light during propagation in
the setup. The squeezed light source has a squeezing of about
11 dB (corresponding to a squeezing factor of V sqz � 0.08 ), which

Fig. 2. Measurement setup for squeezed light enhanced cavity opto-
mechanical magnetometry. Squeezed light at a wavelength of 1064 nm is
used to probe the magnetometer. The magnetometer is a microtoroid
with terfenol-D embedded inside, as shown in the scanning electron
microscope picture. The optical Q factor of the toroid mode
is about 1 × 106, corresponding to an optical damping rate of
κ∕2π ∼ 300 MHz. The mechanical motion of the toroid is measured
by performing homodyne detection. LO, local oscillator; BBS, balanced
beam splitter, comprised of two polarization beam splitters and a half
wave plate; ESA, electronic spectrum analyzer; ENA, electronic network
analyzer.
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is degraded by the inefficiencies in the system. These inefficiencies
include: loss on the escape from the squeezing cavity, coupling loss
from free space into fiber, propagation loss in the nanofiber, cou-
pling loss from free space to the fiber, loss in propagation through
optical components, and photodetector inefficiency. Transmission
losses of ∼37% through the nanofiber are the dominant source of
loss. These losses could be straightforwardly addressed in the future
by using a more adiabatic tapered nanofiber, which has been shown
to allow transmission losses under 1% [45]. The overall loss, before
coupling to the optomechanical magnetometer, of 54% degrades
V sqz from 11 to 2.5 dB. The noise power reaches its minimum
when locked at the phase quadrature, and we lock θ to that quad-
rature henceforth. The red and blue curves in Fig. 3(a) show the
noise power for phase quadrature measurement of coherent and
squeezed probes, respectively.

C. Noise Spectra with Coherent and Squeezed Probes

The squeezed field is coupled into the microcavity through the
nanofiber. A trade-off exists when choosing the coupling rate.
Critical coupling, where the coupling rate κ1 equals the intrinsic
loss rate κ0, provides the maximum signal transduction. However,
with this choice of coupling, the probe field is entirely absorbed
within the cavity, completely removing any squeezing, and,

therefore, prohibiting squeezed light enhancement. Here, we
choose a compromise coupling rate κ1 � 0.52κ0, which main-
tains high intracavity power and significant squeezing levels.
This coupling rate corresponds to a transmission of about
90% on optical resonance, and this additional 10% loss causes
a degradation of squeezing from 2.5 to 2.2 dB. The noise power
with both coherent and squeezed probes in the frequency range of
7–11 MHz is measured, as shown in the light gray (for coherent
probe) and gray (for squeezed probe) curves in Fig. 3(b). With a
probe power of 80 μW, three peaks appear in this frequency range
of the noise spectrum, corresponding to three thermally excited
mechanical resonance modes. We use COMSOL Multiphysics
simulations to identify these three modes as the tilting mode, flap-
ping mode, and crown mode with the corresponding mode pro-
files shown in the inset. It can be seen that over the frequency

(a)

(b)

Fig. 3. (a) Characterization of the squeezed state before coupling to
the microtoroid. The dark gray curve shows the noise power when sweep-
ing the LO phase continuously with its theoretically fitted result shown in
the black solid curve. The red and blue solid curves are the noise power
with coherent and squeezed probes when the LO phase is locked at the
phase quadrature. (b) The measured noise power from the microtoroid
with both coherent (light gray curve) and squeezed (dark gray curve)
probes, respectively. The red solid and the blue dashed curves are the
fitted results for the measured ones. The three peaks correspond to three
mechanical resonance modes (from left to right: tilting mode, flapping
mode, and crown mode) with the profiles shown in the inset, obtained
using COMSOL Multiphysics.

(a)

(b)

(c)

Fig. 4. Characterization of the noise power spectra around the crown
mode, under different probe powers: (a) 80 μW, (b) 20 μW, and
(c) 5 μW. The light gray and dark gray curves are the measured noise
power for coherent and squeezed probes, respectively. The other curves
are the theoretically fitted ones: black short-dotted curves, thermal noise;
purple short-dashed lines, vacuum shot noise with coherent probe; ma-
genta dashed lines, squeezed vacuum noise with squeezed probe; red solid
curves, total noise for the coherent probe; and the blue dash-dotted
curves, total noise for the squeezed probe. On the right axes of the figures,
it shows the corresponding displacement amplitude spectral density S1∕2xx .
The mechanical damping rate is extracted from the linewidth of the mode
in the thermal noise spectrum to be Γ∕2π � 42 kHz. The effective mass
of the crown mode is determined to be meff � 6.06 ng obtained from
COMSOL modeling. The displacement amplitude spectral density S1∕2xx

is plotted on the right axes of the figures.
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ranges where the optical noise dominates, the noise floor is sup-
pressed by up to 2.2 dB by squeezed light, while it is left essen-
tially unchanged when thermal noise dominates.

In order to carefully study the effect of the probe power on the
noise spectrum, in the following, we focus on the crownmode with
mechanical resonance frequency of Ω∕2π � 10.035 MHz. This
mode is chosen due to the particularly clean noise power spectrum
in its vicinity. Figure 4(a) shows the noise (normalized to the shot
noise level) in the vicinity of the crown mode with probe power
P � 80 μW. As expected, in this case, the noise level remains un-
changed by squeezing near the resonance frequency, where thermal
noise is dominant and is suppressed away from resonance. As the
probe power gradually decreases, the thermal noise drops relative to
the shot noise. As shown in Figs. 4(b) and 4(c), the shot noise is
dominant in the whole frequency range for probe powers of 20 and
5 μW. At these power levels, squeezing allows the noise floor to be
suppressed over the entire frequency ranges. These results are con-
sistent with the predictions in Fig. 1(c).

D. Squeezed Light Enhanced Magnetic Field Sensing

The magnetic field sensitivity of the magnetometer is then charac-
terized. We first characterize the absolute sensitivity at a single fre-
quency ωref∕2π � 8.615 MHz. The inset of Fig. 5(a) shows the
power spectrum at ωref , when the magnetometer is driven with a
magnetic field with known strength Bref . The sensitivity at this fre-
quency can be derived from the signal-to-noise ratio (SNR) and
Bref , δBref � Bref∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RBW × SNR

p
[22], with RBW being the

measurement resolution bandwidth. Figure 5(a) plots the sensitiv-
ity at this frequency as a function of the probe power. The red
triangles and the blue circles represent the measured result for co-
herent and squeezed probes, respectively, with the error bars ob-
tained by taking into account the fluctuation of about �0.5 dB
in the measured noise spectrum. As expected, the sensitivity is im-
proved by squeezing at low probe power, where the shot noise is
dominant, and reaches the same optimal sensitivity at high probe
power, where the thermal noise is dominant, and in good agree-
ment with theoretical fits. For instance, the sensitivity at 2.5 μW
probe power is improved from 35.9 nT∕

ffiffiffiffiffiffi
Hz

p
to 29.2 nT∕

ffiffiffiffiffiffi
Hz

p
,

and thermal noise limited sensitivity is about 15.7 nT∕
ffiffiffiffiffiffi
Hz

p
for

both coherent and squeezed probes. The sensitivity at ωref can be
used along with the noise spectrum N ω and network response Rω

to calibrate the sensitivity δBω over the whole frequency range,
δBω � δBref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N ωRref �∕�N refRω�

p
. This allows the effect of

squeezing on bandwidth to be analyzed, as discussed in the follow-
ing. For a probe power of 80 μW, the peak sensitivity in the whole
frequency range is found to be about 5 nT∕

ffiffiffiffiffiffi
Hz

p
at ω∕2π ∼

8.543 MHz for both coherent and squeezed probes.
The sensitivity is found to vary significantly over frequency

ranges of around 10 kHz due to resonances in the response of
terfenol-D, as shown in the sensitivity spectrum in the bot-
tom-right inset of Fig. 5(b), and consistent with previous obser-
vations [22]. This precludes comparison of the magnetometer
bandwidth as a function of squeezing to a simple theory.
Instead, here, we analyze the squeezing dependence of the accu-
mulated bandwidth, defined as the total frequency range, over
which the sensitivity is better than a certain threshold value
δBthresh (see bottom-right inset). In Fig. 5(b), we plot the accu-
mulated bandwidth for coherent (red solid curve) and squeezed
(blue dash-dotted curve) probes at a probe power of 80 μW. It can

be seen that, for each δBthresh, the accumulated bandwidth for the
squeezed probe is greater than that for the coherent probe. The
upper-left inset of Fig. 5(b) shows the accumulated bandwidth
over the smaller frequency range of 0–70 kHz. Squeezed light
expands the 3 dB bandwidth (corresponding to δBthresh �
10 nT∕

ffiffiffiffiffiffi
Hz

p
) by 50%, from 30 kHz (for coherent probe) to

45 kHz (for squeezed probe).

4. CONCLUSIONS

In summary, we have demonstrated the first application of quan-
tum light in a microcavity optomechanical sensor. By probing a

(a)

(b)

Fig. 5. Sensitivity and bandwidth improvement. (a) Sensitivity at the
frequency of 8.615 MHz, as a function of the probe power. The red
triangles and blue circles represent the measured results for coherent
and squeezed probes, respectively. The error bars are obtained by taking
into account the fluctuation in the noise power measurement. The red
solid (coherent) and blue dash-dotted (squeezed) curves are the corre-
sponding theoretical fitted result. The inset shows the power spectrum
when the magnetometer is driven at this frequency with the peak denot-
ing the signal induced by the magnetic field. (b) The accumulated band-
width as a function of the threshold sensitivity for the coherent (red solid
curve) and squeezed (blue dashed curve) probes, respectively. Top-left
inset: the zoom-in of the accumulated bandwidth in the frequency range
of 0–0.07 MHz, showing the 3 dB bandwidth of 30 kHz for the coherent
probe and 45 kHz for the squeezed probe. Bottom-right inset: the sen-
sitivity spectrum in the frequency range of 8.537–8.563 MHz, showing
the definition of the accumulated bandwidth. For a threshold sensitivity
of 15 nT∕

ffiffiffiffiffiffi
Hz

p
, the accumulated bandwidth is defined as the sum of the

frequency ranges within the two red arrows.
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cavity optomechanical magnetometer with phase squeezed light,
the noise floor is suppressed by about 40%, allowing improved
sensitivity by about 20% in the shot noise dominated regime,
and a 50% enhancement in accumulated bandwidth from 30
to 45 kHz. Squeezed light further reduces the optical power re-
quired to reach the optimal sensitivity.

Our approach provides a way to improve the sensitivity of the
cavity optomechanical magnetometer over a broad frequency
range and also opens up possibilities for improving other opto-
mechanical sensors, e.g., inertial sensors [20,21]. While a 20%
improvement in sensitivity is relatively modest; recent advances
in squeezing technologies [46–49] hold promise for more sub-
stantial improvements. For instance, with detected squeezing
of 15 dB recently reported [49], a sensitivity improvement of
a factor of 5.6 could potentially be realized. Moreover, squeezed
light could be generated on the same silicon chip as the sensor
itself, using radiation pressure induced optomechanical effects
[12,13], nonlinear effects in optical resonators [50], or nonlinear
waveguides [51]. Further improvements may be possible by
optimizing the magnetometer design itself with sensitivities on
the order of 100 pT∕

ffiffiffiffiffiffi
Hz

p
reported in previous cavity optome-

chanical magnetometers [23]. Sensitivities in this range make
cavity optomechanical magnetometers a promising candidate
for a range of applications, such as on-chip microfluidic nuclear
magnetic resonance for medical diagnosis [52] and magnetoence-
phalography [53], without the requirement for cryogenic systems
that are necessary for other precision magnetometers, such as
superconducting quantum interference device (SQUID)-based
magnetometers [54,55].
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(Springer, Berlin, Heidelberg, 2012), p. 1694 (cited on p. 35).

[40]U. L. Andersen, T. Gehring, J. Bilek, H. Fu, W. P. Bowen, C. Schäfermeier,
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[74]C. Schäfermeier, “Quantum enhanced optical sensing”, PhD thesis (DTU,
2016) (cited on p. 82).
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