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Abstract

Classical stellarators suffer from strong neoclassical transport. The advanced
stellarator Wendelstein 7-X is the first fully neo-classically optimized device
posing the question about the role of turbulence in optimized stellarators.
While there has been a growing number of theoretical investigations about
turbulence in advanced stellarator geometry over the last two decades, the
experimental investigation is a completely new field. The present thesis deals
with the phase contrast imaging (PCI) diagnostic implementation on Wen-
delstein 7-X as a tool to address the lack of experimental research on the evo-
lution of turbulent fluctuations in optimized stellarator geometry. Numerical
simulations suggest the occurrence of microturbulence in the spatiotemporal
range of ion scales such as the ITG and TEM instabilities. The PCI diagnos-
tic allows for non-invasive measurements of line-of-sight integrated density
fluctuations. It incorporates a flexible design to cover spatiotemporal scales
from the ion down to the electron scale. The PCI uses a CO2 laser emitting
light at 10.6µm. At this wavelength the plasma acts as an optical isotropic
medium in which density fluctuations present phase objects causing a scat-
tering of the laser. Key element of the PCI diagnostic is the phase plate
which allows for a phase shift of the most energetic scattered light compo-
nents in order to convert the phase modulation into a measurable intensity
variation. An excellent alignment onto the phase plate is crucial for the linear
diagnostic response on the density fluctuations. An optical beam path length
of more than 20 m imposes a challenge on this alignment. As a consequence,
remote control capabilities are implemented in order to control and correct
any misalignment during operation. Turbulent density fluctuations in the ion
scale are analysed on the example of a typical electron cyclotron resonance
heated discharge in Wendelstein 7-X for a moderate density and different
heating steps. The spectral analysis reveals broadband fluctuations and a
spectrum showing typical turbulent properties such as indications for self-
similar fluctuations resulting in a power law scaling of energy. The dominant
wave number of kρs ≈ 0.3 lies in the expected range of ion scale turbulence.
A constant phase velocity is observed, which indicates a strong Doppler shift
due to the plasma E×B-rotation. Indeed, measurements of the plasma E×B-
rotation are in general agreement with the observed phase velocities for both
heating steps. In the context of ITG and TEM as paradigmatic instabilities
in the ion scale diamagnetic drift velocities are expected to contribute to the
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fluctuation propagation. The measurement results are indicative that the
observed fluctuation behaviour is predominantly governed by TEM driven
turbulence. This interpretation is supported by the observed reduction of
turbulence with reduced heating power, which correlates with a reduction of
the radial gradient of electron temperature while the density gradient stays
almost unchanged.

Keywords: phase contrast imaging, plasma turbulence, stellarator
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Resumé

Klassiske stellaratorer er domineret af stærk neoklassisk transport. Den avan-
cerede stellarator Wendelstein 7-X er den første fuldt neoklassisk optimere-
de maskine, hvori der undersøges turbulens i en optimeret geometri. Mens
der de seneste årtier har været et stigende antal teoretiske undersøgelser af
turbulens i stellaratorer med avanceret geometri, er dette uudforsket ter-
ritorium for eksperimentelle undersøgelser. I denne afhandling fremlægges
implementeringen af den s̊akaldte ‘phase contrast imaging’ (PCI) diagnostik
p̊a Wendelstein 7-X som et redskab til at udfylde det tomrum som udgøres
af manglen p̊a eksperimentelle undersøgelser af udviklingen af mikroturbu-
lens p̊a ion tids- og længdeskalaer s̊asom ITG og TEM instabiliteter. PCI
diagnostik giver ikke-invasive m̊alinger af line-of-sight integrerede tætheds-
fluktuationer. Designet er fleksibelt og tillader undersøgelser p̊a ion, og ned
til elektron, tids- og længdeskaler. PCI bruger en CO2-laser, som udsender lys
ved 10.6µm. Ved denne bølgelængde agerer plasmaet som et optisk isotropt
medium i hvilket tæthedsfluktuationer virker som faseobjekter og for̊arsager
en spredning af laserlyset. Et nøgleelement i PCI-diagnostikken er fasepladen,
som faseforskyder de mest energirige spredte lyskomponenter, s̊a fasemodu-
lationen kan konverteres til en m̊albar intensitetsvariation. Det er afgørende
at fasepladen er justeret nøjagtigt for at f̊a en lineær diagnostisk respons p̊a
tæthedsfluktuationerne. Med en optisk str̊alevejlængde p̊a mere end 20 m er
dette en udfordring. Som resultat heraf er der implementeret mulighed for
fjernkontrol, s̊a eventuelle fejljusteringer kan rettes under drift. Turbulente
tæthedsfluktuationer p̊a ionskala er analyseret for et typisk elektron cyklotron
resonans opvarmet plasma i Wendelstein 7-X med en moderat plasmatæthed
og forskellige opvarmningstrin. En spektralanalyse viser et bredb̊andet fluk-
tuationsspektrum med typiske turbulente karakteristika s̊asom indikationer
p̊a selvsimilære fluktuationer, som giver en power law skalering for energi-
en. Det dominerende bølgetal p̊a kρs ≈ 0.3 ligger i det forventede interval
for ion-skala turbulens. Der er observeret en konstant fasehastighed, hvilket
indikerer en stærk Dopplerforskydning grundet plasmaets E×B-rotation.
Målinger af plasmaets E×B-rotation stemmer typisk ogs̊a overens med de
observerede fasehastigheder for begge opvarmningstrin. Med ITG og TEM
som paradigmatiske ion-skala instabiliteter forventes den diamagnetiske drift
at bidrage til propagationen af fluktuationer. Måleresultaterne indikerer at
de observerede fluktuationer primært er reguleret af TEM-dreven turbulens.
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Denne fortolkning støttes af den observerede turbulensreduktion ved lavere
opvarmningseffekt, som korrelerer med en reduktion af den radiale elektron
temperaturgradient, mens tæthedsgradienten forbliver uændret.
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Chapter 1

Introduction

1.1 Magnetic Confinement Fusion

Thermonuclear fusion of light nuclei provides roughly ten million times more
energy per mass unit than fossil energy sources like coal, oil, gas etc. which
makes it very attractive as a primary energy source. The basic physical
reason for this difference is the nature of the reaction: chemical processes like
burning fossil fuels, take place in the outer electron shell of atoms in which
typical binding energies are in the order of a few electron volts. In contrast
to this, fusion is a nuclear process invoking the strong nuclear force between
nuclei. Typical energies are in the order of a few mega electron volts, hence
six to seven orders of magnitude above those of chemical reactions. The
most promising nuclear fusion reaction for a thermo nucelar fusion power
plant on earth is the fusion of deuterium an tritium into a helium atom and
one neutron [1]

D + T→4 He (3.5 MeV) + n (14.1 MeV). (1.1)

However, a gas of deuterium and tritium has to be sufficiently hot – it be-
comes a plasma – in order to overcome the repelling coulomb barrier. In
magnetic confinement fusion this hot plasma is confined by a magnetic field.
From (1.1) we see that only 20% of the total energy, which is carried by the
helium atom, can be used to heat the plasma. The remaining energy from
the neutron leaves the confinement volume since it is not affected by the
magnetic field. A plasma has therefore to be sufficiently hot, dense (enough
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1.1. MAGNETIC CONFINEMENT FUSION

reactions have to take place) and well confined in order to yield a positive
energy balance. This limit is quantified by the fusion triple product [1]

nTτE ≥ 3× 1021 keVsm−3 , (1.2)

where n is the plasma density, T the plasma temperature and τE the energy
confinement time – a measure for the energy confinement quality. It be-
comes clear, that a good confinement, and therefore the transport of energy
and particles, plays a crucial role for the feasibility of thermo nuclear fusion
on earth. Two major concepts exist for magnetically confined plasmas: the

Figure 1.1: Principal sketch of the major magnetic confinement
concepts: tokamak (left) and stellarator (right).

tokamak and the stellarator concept (cf. Fig. 1.1). In the tokamak, toroidal
magnetic field coils create a strong (a few Tesla) toroidal magnetic field. A
central solenoid induces a strong toroidal current (MA range) in the plasma
which creates a poloidal magnetic field superimposed on the toroidal field.
The resulting twist of the magnetic field lines is necessary for a good con-
finement [1]. In contrast to a tokamak, the stellarator creates the necessary
magnetic field entirely by external coils and is therefore independent of the
plasma itself [2]. One major drawback of the tokamak concept is the necessity
for the inductive toroidal current drive, thus leading to an intrinsically pulsed
operation. Furthermore, the strong current presents a source of free energy
for plasma instabilities, exacerbating plasma control. In contrast, a stellara-
tor is intrinsically capable of steady state operation without the need of any
net plasma currents. However, the three dimensional geometry and required
precision of the stellarator magnetic field complicates the theoretical treat-
ment and technical design. Thus, although both concepts were developed in
the 1950s, the tokamak by Tamm and Sacharov in the ex-Soviet Union and
the stellarator by Spitzer in the USA, nowadays the leading concept is the

2



1.2. THE WENDELSTEIN 7-X STELLARATOR

Figure 1.2: Sketch of the Wendelstein 7-X Stellarator. Visible is
the plasma, the plasma vessel and the different superconducting
magnetic field coils: in silver the 50 non-planar and in copper
color the 20 planar coils.

tokamak. The International Thermonuclear Experimental Reactor (ITER)
– a tokamak – is the first fusion device aiming to produce net fusion power
and is currently under construction in Cadarache, France [3, 4]. However,
as computing power increased stellarators could be optimized leading to the
advanced stellarators Wendelstein 7-AS (1988 to 2002) [5] and its successor
Wendelstein 7-X.

1.2 The Wendelstein 7-X Stellarator

Wendelstein 7-X, the world’s biggest and most advanced stellarator, is op-
erated by the Max-Planck Institute for Plasma Physics (IPP) in Greifswald,
Germany. Figure 1.2 shows a sketch of the device. Table 1.1 summarizes im-
portant physics and engineering parameters. Wendelstein 7-X is optimized
with respect to a small bootstrap current, the existence of magnetic surfaces,
an magneto-hydrodynamically (MHD) stable plasma, a small shafranov shift,
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1.2. THE WENDELSTEIN 7-X STELLARATOR

a good α-particle confinement and technically feasible coils. Wendelstein 7-
X was first operated in December 2015 and it turned out, that the relative
magnetic field error is less than 10−5 – an unprecedented accuracy for a fu-
sion device [6]. The main coil system of Wendelstein 7-X consists of 70 super
conducting magnetic field coils, whose Nb-Ti superconductor is cooled by
liquid helium down to 3.4 K [7]. The magnetic field has a five fold symmetry.
Five different non-planar and two different planar coils create the magnetic
field. By varying the coil currents different magnetic field configurations
can be realized allowing to change physics relevant parameter such as the
inverse safety factor ι = 1/q, the mirror ratio and the absolute magnetic
field strength. In addition ten control and five trim coils (both are normal
conducting) can impose localized perturbations.

Main heating system is the electron cyclotron resonance heating (ECRH)
with a power of up to 7.5 MW provided by ten gyrotrons. As second heating
scheme, 3.5 MW heating power from neutral beam injection are available.

Parameter Range or Value

Plasma volume 30 m3

Magnetic induction on axis 2.5 T to 3 T
Magnetic field energy 600 MJ
Field periodicity 5
Rotational transform 5/6 to 5/4
ECRH heating power 10 MW (1800 s)
NBI heating power 10 MW (10 s)
ICRH heating power 5 MW (10 s)
Pulse length 1800 s (at 10 MW)
Major radius 5.5 m
Minor radius 0.53 m
Number of non-planar coils 50
Number of planar coils 20
Number of ports 254 of 120 types
Machine height 4.5 m
Outer diameter 16 m
Total mass 750 t
Total cold mass 425 t

Table 1.1: Physics and engineering parameters of the Wendelstein
7-X stellarator [7]. The values for the plasma heating power refer
to the second operation phase.
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1.3. THESIS MOTIVATION AND OUTLINE

1.3 Thesis Motivation and Outline

Particle and energy transport in magnetic confinement fusion devices can
be categorized into three groups: the classical transport describes trans-
port only through binary particle collisions. The neoclassical transport takes
additional drift effects due to magnetic field inhomogeneities into account.
The third group, the turbulent transport considers transport effects origi-
nating from plasma turbulence. Particle and energy transport in modern
tokamaks is mostly limited by turbulent transport effects. This is in contrast
to classical stellarators which suffer from strong neoclassical transport losses.
The discrete coil structure of a stellarator imprints a ripple on the magnetic
field, which has severe consequences on the particle confinement in a classical
stellarator. Particles, subject to a magnetic drift, can be trapped in these
inhomogeneous magnetic field regions and drift outwards leaving the con-
finement region. This strong neoclassical transport gave rise to stellarator
optimization, leading to advanced stellarators such as Wendelstein 7-X. As
the neoclassical contribution is expected to be reduced, the role of turbulent
transport becomes more important. Since Wendelstein 7-X is the first fully
neoclassically optimized stellarator it also presents the first opportunity to
experimentally study the role of turbulence in the regulation of radial power
and particle losses. The phase contrast imaging diagnostic on Wendelstein 7-
X, key part of the present thesis, presents for this purpose a valuable tool, as
it is the only fluctuation diagnostic on Wendelstein 7-X which non-invasively
measures plasma density fluctuations in the spatiotemporal scales of ion to
electron scale in the hot core as well as in the plasma edge.

The present thesis is divided into six parts. Chapter 2, presents a short
introduction into important concepts of turbulence, transport mechanisms
and instabilities in plasmas as well as an overview about the status of theo-
retical turbulence investigations in Wendelstein 7-X. Chapter 3 discusses the
mechanism of the phase contrast imaging diagnostic, its implementation on
Wendelstein 7-X is presented in the following Chapter 4. Chapter 5 discusses
turbulence in Wendelstein 7-X on the example of a wave heated plasma. The
thesis is finally summarized in Chapter 6.
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Chapter 2

Turbulence and Turbulent
Transport

The phenomenon of turbulence occurs in many fields of physics – in neutral
fluids as well as in plasmas. For example, in figure 2.1 the plume of a candle
transits from a well structured, so called laminar flow regime, into a swirled,
seemingly irregular regime – the turbulent regime. Turbulence has presented
and still presents a research challenge or to quote Richard Feynman:

”there is a physical problem that is common to many fields, that
is very old, and that has not been solved. It is not the prob-
lem of finding new fundamental particles, but something left over
from a long time ago—over a hundred years. Nobody in physics
has really been able to analyze it mathematically satisfactorily in
spite of its importance to the sister sciences. It is the analysis of
circulating or turbulent fluids.”
– Richard P. Feynman, The Feynman Lectures on Physics Vol 1.

In magnetic confinement fusion it is generally believed that turbulence
plays an important role in the transport of energy and particles. Especially,
turbulence in tokamaks has been extensively studied over the last decades
and it would be way beyond the scope of this thesis to discuss all findings
in detail. Instead, this chapter aims for developing a basic understanding of
the most relevant concepts and mechanisms. For a more detailed review the
interested reader is referred to the given references in the respective sections.
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2.1. TURBULENCE IN NEUTRAL FLUIDS

Figure 2.1: The rising plume of a candle in still air. Being initially
laminar, the flow develops in a very short transition phase into
turbulence in the upper part of the image [8].

2.1 Turbulence in Neutral Fluids

2.1.1 The Reynolds Number

In 1880 Reynolds investigated experientially the transition from laminar to
turbulent flows by observing the motion of coloured water flowing through a
tube (cf. figure 2.2) [9]. It turned out that the distinction between laminar
and turbulent flow regime can be done by the dimensionless Reynolds number

R =
LU

ν
(2.1)

where L and U are the characteristic length and velocity of the flow field,
respectively and ν is the kinematic viscosity [9]. If the Reynolds number
exceeds a specific threshold R > Rc, the flow becomes turbulent. From the
definition (2.1) it becomes clear that an increased viscosity stabilizes the
flow, whereas an increased velocity destabilizes up to the turbulent regime.
To gain a meaningful interpretation of the Reynolds number we consider the

7



2.1. TURBULENCE IN NEUTRAL FLUIDS

Figure 2.2: Sketch of Reynolds experimental set up for the inves-
tigation of the laminar–turbulent flow transition: coloured water
is observed while it is flowing through a tube. For sufficiently
small Reynolds numbers the flow is laminar (a) whereas it be-
comes turbulent if the Reynolds number exceeds a critical value
(b). Sketches were taken from [9].

Navier-Stokes momentum equation [10]

∂~u

∂t
+ (~u · ∇) ~u = −∇p

ρ
+ ν∆~u (2.2)

which describes the dynamics of turbulence in an incompressible fluid, where

∇ · ~u = 0 . (2.3)

Here, ~u(~r, t) is the velocity field, p(~r, t) the pressure and ρ the mass density.
Expanding (2.1) with UL the Reynolds number can be understood as the ra-
tio between the non-linear term and the dissipative term of the Navier-Stokes
momentum equation (2.2). With this in mind, an increase of R results in a
more dominant role of the non-linear term. An important consequence of this
non-linearity is the observed (in principal deterministic) chaotic behaviour
and the extreme sensitivity on the initial and boundary conditions. In general
fully developed turbulence shows often the following signatures [11]:

• irregularity: the motion of turbulent flows appears to be chaotic, un-
predictable and very sensitive to the initial and boundary conditions
demanding a statistical description.

8



2.1. TURBULENCE IN NEUTRAL FLUIDS

• diffusivity: turbulence leads to transport of energy and particles. An
example for the turbulence induced transport is the mixing of milk and
coffee by stirring. This process is much more efficient than diffusion
(as it would be the case without steering).

• rotationality: turbulent flows show often eddies, whirl like structures
described by the so-called vorticity.

• dissipation: kinetic energy supplied to the system is dissipated i.e. con-
verted to heat. As a consequence, a permanent energy source is required
to drive turbulence.

• scale independence or self similarity: the spatial extent covered by tur-
bulent motion can span several orders of magnitude whereby the char-
acteristic structure of the motion is similar for each length scale. For
example, in a hurricane the largest eddy can be on a scale of kilometres
whereas the smallest one can be less than a millimetre.

The scale coupling character of turbulence exacerbates extremely the numer-
ical investigation, since the smallest scale defines the step width on the one
hand while on the other hand the largest scale sets the global simulation
limits.

2.1.2 Energy and Enstrophy in Three Dimensions

A fundamental question in physics is about the role of energy in a system.
In the context of turbulence one may ask the question about the energy
distribution among the different scales and the energy exchange between
them. As mentioned in the previous section, eddies play a fundamental
role in turbulent fluids since they define the characteristic structure and
hence different scales. In the following section we want to discuss the energy
conservation. We follow the derivation in [12], but similar discussions can
be also found in e.g. [13, 14]. Mathematical we can measure the rotational
character with the vorticity

~Ω = ∇× ~u . (2.4)

We express the non-linear term in equation (2.2) in terms of the vorticity by

using the identity ∇(~a ·~b) = (~a · ∇)~b+ (~b · ∇)~a+~a× (∇×~b) +~b× (∇×~a):

(~u · ∇)~u =
1

2
∇u2 − ~u× (∇× ~u) =

1

2
∇u2 − ~u~Ω . (2.5)

9



2.1. TURBULENCE IN NEUTRAL FLUIDS

We define the kinetic energy density E = u2/2 and the thermal energy density
p̂ = p/ρ. Inserting these definitions into (2.2) yields

∂~u

∂t
= −∇(E + p̂) + ~u× ~Ω + ν∆~u . (2.6)

We get an expression for the time derivative of the kinetic energy density if
we multiply ~u from left with (2.2):

~u · ∂~u
∂t

=
1

2

∂u2

∂t
=
∂E
∂t

(2.7)

and

~u · ∇(E p̂) = ∇(~u(E + p̂)) (2.8)

because

∇(~u(E + p̂)) = (E + p̂) ∇ · ~u︸ ︷︷ ︸
=0 due to (2.3)

+~u · ∇(E + p̂). (2.9)

We can express the viscous term in (2.2) in terms of the vorticity if we use
the identity ∇× (∇× ~a) = ∇(∇ · ~a)−∆~a and (2.3)

∆~u = ∇(∇ · ~u)︸ ︷︷ ︸
=0

−∇× (∇× ~u) = −∇× ~Ω (2.10)

and multiply again with ~u from left:

~u · ν(∆~u) = −ν~u · (∇× ~Ω) (2.11)

= −ν~Ω · (∇× ~u)− ν∇ · (~u× ~Ω) (2.12)

= −νΩ2 − ν∇ · (~Ω× ~u) . (2.13)

In the second step we used ∇ · (~a×~b) = −~a · (∇×~b) +~b · (∇×~a). With the
above given expressions we rewrite (2.2)

∂E
∂t

= −∇ ·
(
~u(E + p̂) + ν~Ω× ~u

)
− νΩ2 (2.14)

= −∇ · T − νΩ2 , (2.15)

where we have defined an energy transfer term

T = ~u(E + p̂) + ν~Ω× ~u . (2.16)
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2.1. TURBULENCE IN NEUTRAL FLUIDS

As we can see from equation (2.15) there is a viscous loss term νΩ2 associated
with the energy stored in the vorticity. Energy can be transferred between
scales, but the total energy is conserved. This becomes clear by considering
the mean energy

E = 〈E〉 =
1

V

∫
V

EdV , (2.17)

where the integral is taken over the whole volume. With Gauss’s theorem
and (2.15) we find

∂E

∂t
=

∮
S

T dS − 2νΩ∗ ≈ −2νΩ∗ , (2.18)

with the enstrophy

Ω∗ =
1

2

〈
Ω2
〉

=
1

2V

∫
V

Ω2dV . (2.19)

The energy transfer term contributes only at the boundary of the volume,
as we can see from the surface integral. If the volume is chosen to be suffi-
ciently large, this contribution can be neglected and the energy loss is due to
viscosity. In order to gain insights into the energy distribution over different
spatial scales we consider the Fourier components

~uk(~r) = ~uke
−~k·~r (2.20)

of the velocity field. With this, the spectral energy density is given by

Ek = 〈Ek〉 =
1

2
〈u2

k〉 . (2.21)

Kolmogorov discussed in his famous K41-theory the properties of Ek in three
dimensional, homogeneous turbulence without mean flow [14–18]. The con-
ceptual basis is the Richardson cascade [19], as shown in Fig. 2.3. Turbulent
eddies of different size are stacked in decreasing order. The largest structures
have size l0. The n-th subsequent generation has a reduced size ln = l0r

−n,
where n = 0, 1, 2, ... and 0 < r < 1. The exact value of r has no specific
meaning, but a common choice is r = 1/2 [14]. Furthermore, the number of
eddies per unit volume increases in the n-th generation at a factor r3n. This
ensures, that the whole space is filled with turbulent structures. Energy is
added to the system at a rate ε at the largest scale – the injection scale.
It cascades then downwards with the same rate ε down to the Kolmogorov
dissipation scale lD where it is removed by dissipation. This is called a direct

11



2.1. TURBULENCE IN NEUTRAL FLUIDS

Figure 2.3: Illustration of the direct Richardson energy cascade
and the energy distribution according to the K41 theory. Note:
depending on the context the spatial scale is given in direct space
(l) or Fourier space (k ∝ 1/l), both are of course equivalent.

energy cascade, whereas in an inverse energy cascade the energy is trans-
ferred in the opposite direction, hence from smaller to larger scales. Two
important assumptions of the K41-theory become clear from this picture:
the turbulent structure is scale-invariant and the interaction is local. Scale
invariance can be broken for instance if the eddies are not space filling. This
leads to a modification of the energy distributions which will be discussed
later 2.1.4. Localeness means that the energy exchange of an eddy of scale l
involves predominantly neighbouring scales at rl (smaller) to r−1l (larger).

Under the above given assumptions (3D turbulence, no mean flow, ho-
mogeneous, space filling and local interaction) Kolmogorov derived from di-
mensional analysis the energy distribution in k-space:

Ek(k) ∝ ε2/3k−5/3 (2.22)

and for the characteristic time scale

τ ∝ ε−1/3k−2/3 . (2.23)

Hence, most of the energy is located at large spatial scales and these large
scale eddies have also a longer life time. A K41 like spectral scaling has been
observed in neutral fluids in experiments as well as in simulations [20–24].

12



2.1. TURBULENCE IN NEUTRAL FLUIDS

2.1.3 Energy and Enstrophy in Two Dimensions

Magnetized plasmas cannot be considered as being three dimensional isotropic
media. The magnetic field leads to an asymmetry of the dynamics parallel
and perpendicular to the magnetic field. Furthermore, we will see in 2.3
that the E×B-drift plays a fundamental role for plasma instabilities and
imprints an additional two-dimensional character on the turbulence dynam-
ics. Therefore, we want to discuss important properties of two dimensional
turbulence. As done in the previous section, we follow the derivation in [12],
but similar discussions can be also found in e.g. [13, 14, 25]. In purely two
dimensional turbulence with vanishing viscosity the enstrophy is a conserved
quantity. In order to show this we take the curl of (2.6) and use (2.4) as well
as ∇× (∇f) = 0:

∂~Ω

∂t
= ∇× (~u× ~Ω) + ν∇×∆~u . (2.24)

We can simplify this expression with help of the identity ∇ × (~a × ~b) =

~a(∇ ·~b)−~b(∇ ·~a) + (~b · ∇)~a− (a · ∇)~b as well as ∇ · (∇× ~u) = ∇ · ~Ω = 0 and
(2.3)

∇× (~u× ~Ω) = (~Ω · ∇)~u− (~u · ∇)~Ω . (2.25)

Subsequent use of ∇× (∇× ~a) = ∇(∇ · ~a)−∆~a yields

∇×∆~u = ∇(∇(∇ · ~u︸ ︷︷ ︸
=0

))−∇× (∇× (∇× ~u)) (2.26)

= −∇×∇× ~Ω (2.27)

= ∆~Ω (2.28)

With these simplifications we can write the vorticity equation(
∂

∂t
+ ~u · ∇

)
= (~Ω · ∇)~u+ ν∆~Ω . (2.29)

The first term in (2.29) on the right hand side leads to so called vortex
stretching: If the flow has a parallel divergence (c.f. Fig. 2.4) an eddy
is stretched along the flow but, due to ∇~u = 0, also compressed in the
perpendicular plane. Due to angular momentum conservation the rotation is
increased and so the vorticity.
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2.1. TURBULENCE IN NEUTRAL FLUIDS

Figure 2.4: The process of vortex stretching: a parallel divergence
of the flow leads to a stretching. Figure taken from [12].

In the case of a pure two dimensional motion ~u = (ux, uy, 0) the vorticity
equation (2.29) can be further simplified. The vorticity becomes

~Ω = ∇× ~u = (∂xuy − ∂yux)~ez = Ω~ez ⇒ ( ~Ω×∇) · ~u = 0.

Hence, the two dimensional vorticity equation is(
∂

∂t
+ ~u · ∇

)
~Ω = ν∆~Ω (2.30)

⇔ d

dt
~Ω = ν∆~Ω . (2.31)

As a consequence, the enstrophy (2.19) and the energy are conserved quan-
tities in two dimensional turbulence if the viscosity vanishes (ν = 0). The
absence of vortex stretching and the additional conservation of enstrophy is
an important constraint on the turbulent dynamics and changes significantly
its properties compared to the three dimensional case. In fact, the conser-
vation of energy and enstrophy leads to an inverse energy cascade, where
energy is transferred from smaller to larger spatial scales. In k-space the
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2.1. TURBULENCE IN NEUTRAL FLUIDS

Figure 2.5: Dual cascade of energy and enstrophy in the inertial
range of two dimensional turbulence.

conservation of energy and enstrophy reads [25]

KE = 〈1
2
~u2〉 =

∫
E2D(k)dk (2.32)

KΩ∗ = 〈1
2
~Ω2〉 =

∫
EΩ∗

2D(k)dk =

∫
k2E2D(k)dk . (2.33)

Now, assume a portion of energy is transferred from smaller to larger k.
In this case the enstrophy increases, according to (2.33). Since the total
enstrophy is conserved, a larger portion of energy (due to the k2 dependency
of the integrand in (2.33)) has to be transferred to smaller k. Thus, E2D(k) is
moved towards smaller wave numbers! Kraichnan first discussed the inverse
energy cascade with an intermediate injection scale [26]. A review can be
found in e.g. [14,25]. Since the enstrophy contains higher derivatives than the
energy, its k-dependence is stronger than for the energy. Thus, we expect
the enstrophy to play a dominant role in the high-k range of the inertial
range of the energy spectrum – the enstrophy cascade range. From (2.32)
and (2.33) we see that the energy E2D scales with the Fourier component of
the velocity uk like E2D ∝ k−1u2

k and thus the EΩ∗
2D ∝ ku2

k. In the enstrophy
cascade range in k-space the flux of enstrophy kuk(kE

Ω∗
2D(k)) should balance

the enstrophy dissipation rate εΩ∗ : k
3u3

k ∝ εΩ∗ . With the scaling for E2D we
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find for the energy in the enstrophy cascading range:

E2D(k) ∝ ε
2/3
Ω∗ k

−3 . (2.34)

As mentioned above, in the low k-range the energy cascading should be
dominant. In the equilibrium case the energy flux kuku

2
k equals the energy

transfer rate ε2D

ε2D ∝ ku3
k ⇒ E2D(k) ∝ ε

2/3
2D k

−5/3 ,

which is exactly the scaling (2.22) obtained for the three dimensional case.
However, the important difference here is the lack of an energy sink or dissi-
pation range in the two-dimensional case. Energy, which is injected at inter-
mediate scales, cascades in an inverse cascade towards smaller wave numbers
where it accumulates until some saturation mechanism is activated. In this
sense, ε2D is rather an energy transfer rate than an energy dissipation rate
as it is in the three dimensional case.

2.1.4 Experimental Implications

As we have seen in the previous section, the additional conservation of enstro-
phy in two dimensions in the viscous limit leads to the dual cascade of energy
and enstrophy and a modification of the energy spectrum compared to the
three dimensional case. The experimentally accessible energy distribution
laws (2.22), (2.34) and (2.35) are based on some properties of the underlying
physics system, which we had known before. However, in an experiment it
is desirable to deduce from the measured data the underlying physics. Thus,
it is helpful to know how robust the found relationships are with respect to
deviations in the underlying physics model and what kind of requirements
experiments have to fulfil in order to make statements.

In the K41 theory, a fundamental assumption is the space filling property
of the eddies in the Richardson cascade and a violation of this property
leads to a modification of the k-dependence of Ek, which is described by the
β-model [14]. Here, in each hierarchy step of the Richardson cascade the
volume filled with eddies decreases by a factor β ∈ [0, 1]. In this case the
modified energy scaling reads [14]:

E(k) ∝ k
5
3

+ 3−D
3 with D = 3− ln β

ln r
. (2.35)
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For D = 3 the Kolmogorov scaling (2.22) is recovered, for smaller values
of D (e.g. because β is smaller for fixed r) the energy decay is steeper or
equivalently there is relative more energy at smaller k than at larger k. Also
the energy dissipation scale changes, hence where dissipative effects start to
become relevant

lD ≈ l0R
− 3

1+D D > −1 , (2.36)

where R = l0v0/ν is the integral-scale Reynolds number. Thus smaller values
of D, compared to the space filling case, move the dissipation scale to smaller
spatial scales. However, not only the violation of the space filling assumption
modifies the spectrum. In case of shear turbulence where e.g. a background
flow ~u = (ux, 0, 0) breaks the homogeneity the modified spectrum becomes
[25,27]

E(k) ∝ ε2/3k−5/3
(
1− CN sgn(ε̇)(klN)−2/3

)
, (2.37)

where CN is some numerical constant, the length scale lN = ε2/ε̇3/2 charac-
terizes the turbulent energy production and sgn(x) = 1 if x > 0 else -1 and
ε̇ ≡ dε/dt. In the limit k → ∞ the usual Kolmogorov scaling E(k) ∝ k−5/3

is recovered from (2.37). However, for small k → 0 we find E(k) ∝ k−7/3 –
a steepening of the energy distribution similar to the β-model. Here, it is
simple to study mathematically the asymptotic behaviour. However, in a an
experiment it requires to cover a rather large range of spatial scales which
is often not possible. For example, the range of scales microturbulence can
cover in a fusion experiment like Wendelstein 7-X reaches from the system
scale of approximately meters down to the ion larmor radius in the mil-
limetre range, thus covering three orders of magnitude. However, diagnostic
resolution over these scale ranges is mostly not possible.

2.2 Transport

2.2.1 Confinement Time

The importance of turbulent phenomena in the context of magnetic confine-
ment fusion arises from the fact, that they can influence significantly the
the energy and particle transport in a fusion plasma. As already noted in
Sec. 1.1 a good confinement is crucial for the feasibility of a thermo nuclear
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power plant. In order to control and predict the transport, it is desirable to
understand the underlying mechanisms. A global approach to measure all
energy transport mechanisms in a plasma is the energy confinement time τE,
which is defined over the global conservation of energy. The concept of con-
finement times is well established and can be found in many textbooks about
fusion physics (e.g. [12]). The total plasma energy W can only be changed
by plasma heating Pnet or transport mechanisms which lead to losses on a
time scale of τE:

dW

dt
= Pnet −

W

τE
. (2.38)

The total energy content of the plasma has contributions from electrons and
ions

W = We +Wi =

∫
V

3

2
(neTe + niTi)dV (2.39)

and the net heating power Pnet accounts for all heating sources and sinks.
Heating sources can be neutral beam injection (NBI), electron cyclotron
resonance- (ECRH) or ion cyclotron resonance heating (ICRH) and - in a
tokamak - the ohmic heating by the strong toroidal current. Sinks of energy
in the plasma volume are atomic line radiation, bremsstrahlung and, to a
small extent, ionisation of neutral atoms and charge exchange reactions of
ions with neutrals and need to be accounted for in Pnet if the confinement
time is attributed to energy transport processes.

Similarly, the particle transport is characterized by the particle confine-
ment time τp. Particle sources are gas puffing, pellet injection (frozen hydro-
gen pellets) and recycling as well as particles from the NBI heating. Recycling
describes the process of ions which are neutralized at the plasma wall and
reenter the plasma again afterwards.

The determination of the confinement times from first principle is still not
possible due to the complexity of all involved transport processes. However,
the experimental determination is strait forward. In a stationary plasma the
time derivative of W vanishes and it is τE = W/Pnet. The measurement of
confinement times allows for setting up databases with measurements from
different machines and to follow a statistical approach by deriving scaling
laws from fits on this data. These fits can then serve as an engineering help
to inter- or extrapolate to new machines. Such an empirical scaling law is
given by [28]

τ ISS95
E = 0.079 a2.21R0.65 P−0.59 n0.51

l B0.83 ι0.42/3 , (2.40)
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Figure 2.6: Comparison of the measured energy confinement time
with the ISS95 scaling. Taken from [28].

where a is the averaged minor plasma radius, R is the major plasma radius, P
the heating power (in MW), nl the line-averaged density (in 1019 m−3), B the
magnetic field strength and ι2/3 is the rotational transform taken at 2/3 of
the plasma radius. It is remarkable at this point, that the confinement time
decreases with increased heating power. As we will see in Sec. 2.3 turbulence
is driven by gradients. Although the negative correlation between τE and P
has not been fully clarified, it seems as increased heating power leads to
steeper gradients which then increase the turbulent transport.

2.2.2 Diffusion Coefficients

A scaling law like (2.40) parametrizes certain physics and can be a valuable
basis for educated guesses in uncovered areas of parameter space. In addi-
tion, it allows to detect changes of the underlying physics if situations appear
which significantly deviate from the already known correlation. However, it
is very hard to gain any knowledge about the underlying physics mechanisms.
Thus, extrapolation entails always the risk of getting into parameter space
regions where the previous correlations are not valid anymore because e.g.
a threshold is exceeded and non-linear effects become dominant. With this
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in mind, it is desirable to develop a microscopic understanding in general
and for transport mechanisms in particular. The transport of energy and
particles in plasmas has been extensively studied over the last decades. The
existing theories are categorized into three different groups: classical, neo-
classical and anomalous or turbulent transport. Classical transport considers
only binary collisions of particles in homogeneously magnetized plasmas. All
effects due to magnetic field gradient through e.g. curvature are described
by the neoclassical transport theories. Historical, it has turned out that the
observed level of transport could not be satisfactorily described by classical
and neoclassical transport and was thus attributed as anomalous transport.
Today it is believed, that the transport caused by turbulent phenomena –
the turbulent transport – is responsible for this additional contribution.

The fundamental concept is the process of diffusion. We can motivate
this by considering a one dimensional random walk with step length l and
τ being the time needed for single step. The position is denoted by (x, t),
where x is the discrete spatial and t the discrete temporal coordinate. The
probability to step to the left or to the right should be equally 1/2. The state
at position (x, t) depends only on the neighbouring positions but should be
independent of time. We write thus for the probability P to find the walker
at position (x, t+ τ):

P (x, t+ τ) =
1

2
P (x− l, τ) +

1

2
P (x+ l, τ) (2.41)

⇔ τ
P (x, t+ τ)− P (x, τ)

τ
=
l2

2

(P (x− l, τ) + P (x+ l, τ)− 2P (x, t+ τ)

l2
.

(2.42)

In the limit of infinite observation time and vanishing step width the area
covered by the random walker will become more dense, so that the finite
difference equation becomes a differential equation

τ
∂P

∂t
=
l2

2

∂2P

∂x2
⇔ ∂P

∂t
= DRW∂2P

∂x2
, (2.43)

which is a diffusion equation with diffusion coefficient

DRW =
l2

2τ
. (2.44)

Hence, the diffusivity depends quadratic on the step width and is inversely
proportional to the time step. Considering particle transport in plasmas,
particularly the transport or diffusion perpendicular to the magnetic field
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is of interest. The random walker corresponds to a particle whose guiding
center, originally following a field line, leaves this magnetic field due to any
transport process e.g. by collisions. As we can see from (2.44), the discussion
of transport breaks (often) down to the determination of the characteristic
length and time scales for the considered process.

2.2.3 Classical Transport

The classical transport considers only binary collisions between particles.
From momentum conservation it follows, that a nett transport happens only
if particles of different type collide. If we consider the electron-ion collision,
the electron is scattered at the much heavier ion. The characteristic length
scale is here the electron Larmor radius ρLe. The time scale is given by the
electron-ion collision time τei. With this, the diffusion coefficient reads [12]

Dcl =
ρ2
Le

2τei
=

e2ne ln Λ
√
me

8
√

2πε20B
2
√
Te
, (2.45)

where e is the elementary charge, ne the electron density, Λ the Coulomb
logarithm (which is around 18 for a fusion reactor [29]), me the electron
mass, ε0 the vacuum permittivity, B the magnetic field strength and Te the
electron temperature. It turns out, that the classical diffusion coefficient
increases linearly with collision frequency ν ∝ 1/τ . Furthermore, one can
show, that the classical transport is intrinsically ambipolar which means
that (2.45) ist valid for electrons as well as ions [12]. Assuming a fusion
reactor is dominated by classical transport we can estimate its size from
(2.44) to be lcl =

√
2τDcl ∝ τ

√
ne/(BT

1/4
e ). For unfavourable choice of

values ne = 2× 1020 m−3, Te = 10 keV, B = 1 T and a confinement time
τ = 3 s we find lcl ≈ 7 cm. This means if the transport in a fusion reactor
is only dominated by classical transport its minor radius would be in the
order of centimetres! However, in reality fusion devices are much larger.
The International Thermonuclear Experimental Reactor (ITER), which is
the first fusion device aiming to produce net fusion power, has a minor radius
of 2 m [3, 4]. A fundamental reason for this difference is the dominance of
neoclassical and turbulent transport over classical transport which will be
discussed in the following.
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2.2.4 Neoclassical Transport

In toroidal geometry the much more complex particle trajectories lead to a
number of new effects. Particles are subject to a charge dependent magnetic
drift in vertical direction. Without twisted magnetic field lines, the resulting
vertical charge separation would cause an electric field giving rise to an out-
ward directed E×B-drift and unacceptable particle losses. If the magnetic
field lines are twisted by adding a small poloidal field, the vertical drifts can
averages out. However, the drift leads to a deviation from the underlying
flux surface.

Since the magnetic field is stronger on the inboard than on the outboard
side, particles which move along the field lines experience a gradient in the
magnetic field strength, which forms a magnetic mirror. For some of the
particles the parallel velocity is small enough to be trapped – these particles
are referred to as trapped particles or banana particles. The latter name
comes from the fact, that the projection of trapped particle trajectories on
to the poloidal plane has the shape of a banana. In contrast, particles with
sufficiently high parallel velocity leave the magnetic mirror, hence they are
called passing particles.

Pfirsch-Schlüter Regime

Passing particles lead to an additional correction of (2.45). If the collision
time is larger than the transit time (the time a particle needs to complete a
poloidal circulation), τei > τtr the deviation of the guiding center trajectory
from the flux surface is at maximum and the diffusion coefficient is given
by [12]

Dps =
1

ι2
Dkl . (2.46)

For a typical value of ι = 1/3, (2.46) is about a factor 20 larger than the
classical diffusion. If τei < τtr the deviation of the guiding center decreases
with increased collision frequency and the contribution of the Pfirsch-Schlüter
transport scales like 1/ν ∝ τ .
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Banana Regime

Even more transport is caused by banana particles. We consider banana par-
ticles, whose effective collision frequency is much smaller than their bounce
time, thus they can complete a full banana orbit before they collide. The
diffusion coefficient for electrons in this banana regime reads [12]

Dba =
1

ι2ε3/2
Dkl =

1

ε3/2
Dps , (2.47)

with ε = a/R being the inverse aspect Ration, a the minor – and R the major
radius. Trapped particles contribute by a factor 1

ε3/2
> 1 stronger than the

passing particles in Dps. For a typical tokamak the contribution from banana
particles is about a factor 50 larger than the classical diffusion coefficient,
thus requiring larger experiments than expected from classical transport.

Plateau Regime

In this regime, banana particles undergo collisions which prevent them from
circulating a full banana orbit – the effective step length is reduced. If the
collisions time equals the bounce time i.e τei = τtr there are effectively no
banana particles anymore. In this regime, the diffusion coefficient is inde-
pendent of the collision frequency [12]

Dpl =
1

ι2
ρ2
L

2τtr
. (2.48)

In figure 2.7 the neo classical diffusion coefficient is shown as function of the
collision frequency. At low collision frequency the banana particle trajectories
are not perturbed and D scales linearly with ν. With increased collisions,
the particles cannot circulate a full banana orbit, thus the characteristic step
width reduces and the transport coefficient enters the plateau regime. When
banana orbits are completely suppressed, the contribution of passing particles
becomes dominant and define the Pfirsch-Schlüter regime.

Modification in Stellarator Geometry

The discrete nature of the stellarator magnetic field coils leads to an impor-
tant change of the diffusion coefficient for small collision frequencies. The
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Figure 2.7: Qualitative sketch of the neoclassical diffusion coeffi-
cient D for a tokamak as function of the collision frequency for
fixed temperature, hence ν ∝ n. Modified from [30], p. 234.

magnetic field coils imprint a ripple on the magnetic field in which particles
can be trapped if their parallel energy is not sufficiently high. In contrast to
the particles being trapped in banana orbits, the magnetic ripple extends all
the way to the outer wall and, thus, the trapped particles are rapidly lost
from the plasma. The helical trapping causes a localisation of the so called
helical trapped particles on one side of the torus. Due to this localisation the
magnetic drift vD does not average out and the particle is lost. This loss is
only limited, if the created gap in the distribution function is not filled fast
enough by ion-ion or electron-electron collisions. This non diffusive process
happens if the helically trapped particles are collisionless. Collisions stabilize
this process if the effective collision time τeff is less than the loss time. In this
case we can use again the random walk ansatz. Since the particles drift in
between the collisions, the characteristic step width is given by δr = vDτeff

and the diffusion coefficient reads in the absence of an electric field [12]

D1/ν =
√
εh

(vDτeff)2

2τeff

∝ τeff ∝
1

ν
. (2.49)

The characteristic reduction of 1/ν with increased collision frequency is here
eponymous. The quantity εh quantifies the helical ripple. It can be thought
of measuring the difference between maximum and minimum magnetic field
the particle sees, but its specific value is in general complex to obtain due to
the nontrivial stellarator magnetic field geometry. Expressing (2.49) in terms
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Figure 2.8: Qualitative sketch of the neoclassical diffusion coeffi-
cient D for a stellarator as function of the collision frequency for
different strenght of the radial electric field and fixed temperature,
hence ν ∝ n. Taken from [30], p. 239.

of plasma parameter one finds [12]

D1/ν ∝
ε

3/2
h T

7/2
e

B2ne
. (2.50)

The strong temperature dependence is in contrast to tokamaks, where Dtok ∝
1/
√
Te (c.f. (2.45)). This has a dramatic consequence for non-optimized

stellarators, since future stellarator fusion power plants need to operate at
high temperatures. However, it turns out that radial electric fields have a
favourable effect on the transport. These fields are generated by the plasma
itself because the transport of helical trapped particles is not ambipolar,
which means it is different for electrons and ions. If the electrons are primarily
heated, it can happen that electrons are in the 1/ν regime whereas colder ions
are in the plateau regime. The resulting increased loss of electrons relative
to the ions leads to a positive charging of the plasma. This state is called
electron-root confinement. In the ion-root confinement regime, the plasma is
charged negatively because of the higher losses of ions.

Radial electric fields bend the trajectory of helical trapped particles in the
poloidal direction. If this electric field Er is sufficiently strong, the diffusion
coefficient becomes again dependent on the spatial deviation from the flux
surface. The time scale for the time they drift is given by the time τE×B they
need for a poloidal circulation due to the Er×B-drift. Hence, the step width
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can be estimated to be δr ≈ vDτE×B and the diffusion coefficient is [12]

Dν ≈
(vDτE×B)2

2τei
∝ ν . (2.51)

The temperature dependence is much weaker

Dν ∝
ne
√
Te

E2
r

(2.52)

and the electric field reduces the diffusion as expected. Figure 2.8) summa-
rizes the above mentioned findings.

2.2.5 Fluctuation Driven Transport

Fluctuations can cause transport. In contrast to classical or neoclassical
diffusion, the transport is convective rather than diffusive since it is induced
by the fluctuating eddy velocity. To see this, it is convenient to decompose
a fluctuating quantity f as follows

f = f0 + f̃ , (2.53)

where f0 describes the constant background value and f̃ the fluctuating part.
Such a quantity could be e.g the density n or pressure p. We are interested
in the time averaged values of f and denote the average over one period
with 〈·〉. We demand 〈f0〉 = f0 since f0 is constant. Furthermore, it should
〈f̃〉 = 0 so that f̃ describes purely fluctuations. This is known as Reynolds
decomposition [31]. We consider the associated flux

F = 〈fu〉 = 〈(f0 + f̃)(u0 + ũ)〉 = f0u0 + 〈f̃ ũ〉 (2.54)

where we decomposed f and velocity u. For f being the density F describes
the particle flux and for f = p the heat flux. The velocity fluctuation is
caused by an E×B-drift due to a potential fluctuation φ̃

ũ = −∇φ̃
B

. (2.55)

We want to consider the flux F̃ = 〈f̃ ũ〉 caused by the fluctuations and write
f̃ and φ̃ as Fourier modes

f̃ = f̄ cos(kx− ωt) (2.56)

φ̃ = φ̄ cos(kx− ωt+ ϕ) , (2.57)
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Figure 2.9: Fluctuation amplitude according to the mixing length
model. Taken from [12].

with amplitudes f̄ and φ̄, wavenumber k, circular frequency ω and phase
shift ϕ between both quantities. The averaged flux from the fluctuations
reads then

F̃ =
kf̄ φ̄

LTB

∫ T

0

∫ L

0

cos(kx− ωt) sin(kx− ωt+ ϕ) dx dt (2.58)

=
kf̄ φ̄

2B
sin(ϕ) , (2.59)

with the temporal T = 2π/ω and spatial L = 2π/k period. It turns out, the
flux is at maximum if the phase difference is ϕ = π/2, whereas for ϕ = 0 there
is no flux. Furthermore, particle and heat flux can be in principal decoupled
if the phase shift is different for density and pressure perturbations. This can
be desirable in situations where particle confinement should be reduced e.g.
to flush out impurities while the energy confinement should remain high.

The amplitude can be estimated via the mixing-length model (c.f. figure
2.9). An eddy convects density over a characteristic length Lcorr ≈ 2π/k on
a background gradient ∇n , which leads to a fluctuation in the density of

ñ = Lcorr|∇n| . (2.60)

Note that the convection process is intrinsically ambiploar, which is in con-
trast to the neoclassical transport. As discussed above, turbulent length
scales are coupled and finding the correct value for Lcorr is a non trivial
task. If one takes the wave number as a measure for the correlation length
Lcorr ∝ 1/k we see immediately that the low wavenumber part in the spec-
trum contributes more strongly to the fluctuation level. An approach to
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estimate the characteristic length is to take the (inverse) wave number from
the fastest growing mode as an estimate for the spatial scale and the (in-
verse) growth rate as estimate for the time scale. However, turbulence may
form coherent structures through so called Reynolds stress which changes the
relevant scales and this approach may give incorrect results (c.f Sec 2.4).

2.3 Drift Waves

2.3.1 The Physical Picture

The topic of drift wave turbulence addresses often a rather wide range of
plasma fluctuations and is not always consistently defined. It appears, that
it describes plasma fluctuations which are

• low frequent: ω � ωci, the fluctuation frequency ω is well below the
ion cyclotron frequency ωci

• gradient driven: gradients in temperature or density result in a pressure
gradient which presents an energy source for the instability

• electrostatic: the ambient magnetic field is not disturbed

• and the perpendicular motion is governed by the E×B-drift due to the
fluctuating electric potential.

Beside this general categorization, two types of linear instability mechanisms
can be identified: the drift wave and the interchange instability. Although
they present conceptionally different mechanisms, in reality they appear often
both at the same time but their contribution might be different so that the
the problem can be simplified by considering only the dominant mechanism.

The drift wave instability is a three dimensional feature of a magnetized
plasma as shown in Fig. 2.10. An initial perpendicular perturbation in den-
sity at a certain position along the magnetic field imposes a force on the
ions and electrons. The much lighter electrons react on a faster time scale
than the ions on the force and move along the magnetic field until the cre-
ated electric field balances the pressure gradient. The ions are subject to a
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Figure 2.10: Scheme of the drift wave mechanism for the linear
stable(a) and linear unstable case (b). Taken from [32], p. 6.

perpendicular polarization drift due to the non-stationary electric field. The
high parallel mobility of the electrons leads to an elongated structure where
k‖ � k⊥ but k‖ 6= 0 ( throughout the thesis the subscript ‖ and ⊥ denotes
the parallel respectively perpendicular component of a quantity with respect
to the ambient magnetic field). This causes the shown charge distribution
and resulting E×B-drifts. If the electrons are adiabatic i.e. they react im-
mediately on the perturbation, the potential and density perturbation are in
phase (Fig. 2.10 (a)). The perturbation is stable and propagates downwards
with electron diamagnetic drift velocity. Non-adiabatic electrons do not re-
act immediately on the perturbation because of finite resistivity, induction or
Landau damping (Fig. 2.10 (b)). As a consequence, there is a non-zero phase
difference between density and potential. The resulting E×B-drift moves
upwards in regions where it enhances the perturbation, hence the drift wave
becomes unstable.

The interchange instability is a two-dimensional mechanisms which occurs
in magnetized plasmas with a perpendicular magnetic field gradient. It can
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be seen as the equivalent of the Rayleigh-Taylor instability in neutral fluids.
Figure 2.11 shows on the high field and the low field side of a toroidal plasma
a pressure perturbation. The pressure gradient causes a diamagnetic current
~jdia = −∇p × ~B/B2 along the isobar of the perturbation. We consider the
situation on the low field/outboard side: Since the magnetic field strength
increases, the diamagnetic drift velocity∝ 1/B decreases, charge accumulates
and ~jdia has a finite divergence (∇ · ~j = −∂ρ/∂t, with ρ being the charge
density). The resulting electric field causes an E×B-drift which destabilizes
the perturbation on the low field side and stabilizes on the high field side.
Regions in which the perturbation is stabilized are regions of good curvature,
whereas destabilization has bad curvature. The type of curvature is defined
via

~κ · ∇p

{
< 0 : good curvature

> 0 : bad curvature
(2.61)

where ~κ is the curvature vector. It points towards the local curvature center
and its magnitude is inversely proportional to the local curvature radius.
Mathematically it is defined as

~κ =
(
~b · ∇

)
~b with ~b =

~B

B
. (2.62)

Depending on whether the ion- or electron temperature dominates the pres-
sure gradient the instability is called ion temperature gradient (ITG) or elec-
tron temperature gradient (ETG) instability.

2.3.2 Two Fluid Equations

In the following we want to derive two simple models for drift wave turbu-
lence in two and three dimensions in order to study their most important
properties. This can be found e.g. in [12]. The plasma dynamic is described
within the two-fluid picture, i.e. the following equations:

The continuity equation

∂ns
∂t

+∇ · (ns~us) = 0 ⇔ dt ns + ns∇ · ~us (2.63)

and the momentum equation

msns dt ~us = −∇ps + qsns( ~E + ~us × ~B) + ~Rs (2.64)
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Figure 2.11: Scheme of the interchange mechanism. Modified
from [12], p. 119

the subscript s = e, i denotes the species, ms is the mass, ns the particle
density, ps the pressure, qs the charge, ~E the electric and ~B the magnetic
field and ~Rs accounts for forces due to electron-ion collisions. The operator
dt denotes the convective derivative

dt =
∂

∂t
+ ~uE×B · ∇ . (2.65)

The quasi neutrality condition ne ≈ ni = n and the continuity equation
(2.63) yields for the total current density ~j = en(~ue − ~ui)

∇ ·~j = 0 . (2.66)

We split the current density into a parallel and perpendicular component
~j = ~j⊥ + ~j‖. The quasi neutrality condition couples thus parallel and per-
pendicular dynamic:

∇⊥~j⊥ = −∇‖~j‖ . (2.67)

Any force in perpendicular direction leads to a drift of the guiding centres,
which can be derived from the momentum equation (2.64). We consider the
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following contributions [12]

E×B-drift: ~u⊥E×B =
~E × ~B

B2
(2.68)

diamagnetic drift: ~u⊥dia =
∇ps ×B
qsnsB2

(2.69)

polarization drift: ~u⊥pol =
ms

qsB2
dt
~E⊥ . (2.70)

In order to find a set of equations we take the continuity equation (2.63) and
the quasi neutrality condition (2.67) and find expressions for ~u, ~j⊥ and ~j‖.

2.3.3 Hasegawa-Wakatani Model

The Hasegawa-Wakatani model is a self consistent description for drift wave
turbulence in a homogeneous magnetic field in three dimensions. It consists
of two non-linear partial differential equations for density and potential. In
the following section we want to derive the model equations. As mentioned in
section 2.3.1 drift waves can occur in arbitrary magnetic field geometry. For
simplicity we consider a homogeneous magnetic field ~B = B~ez, a constant
temperature and cold ions i.e. Ti = 0. Hence, the pressure gradient is caused
by a density gradient with gradient length Ln = |n0/∇n0| = |∇ lnn0|−1. The
derivation is done within the validity of the drift ordering

ω

ωci

≈ ñ

n0

≈ eφ̃

Te
≈ ρs
Ln
≈ δ � 1 , (2.71)

with ω = eB/mi thy ion gyro frequency and ρs =
√
miTe/(eB) the drift

parameter, which is here the characteristic length scale. The first term in
(2.71) is the usual low frequency assumption. The second term ñ/n0 states,
that the density fluctuation is small compared to the unperturbed density.
This leads to the third term via the Boltzman relation [12]

ñ

n0

=
eφ̃

Te
if eφ̃� Te . (2.72)

However, it is important to note that the exact fulfilment of the Boltzman
(2.72) relation is equivalent with adiabatic electrons and presents therefore
a linearly stable situation. The drift ordering requires only density and po-
tential perturbations to be in the same order (≈) rather than equality (=).
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From the mixing length model (2.60) we find with Lcorr = ρs

ñ ≈ ρs∇n0 ⇒ ∇ñ ≈
ñ

ρs
≈ ρs∇n0

ρs
= ∇n0 , (2.73)

hence the perpendicular gradients in background and fluctuating density are
comparable.

Perpendicular Dynamic

Since the ions are cold, the diamagnetic drift (2.69) can be neglected and the
ion dynamic perpendicular is dominated by the E×B(2.68) and polarization
drift (2.70) (without resistivity)

~u⊥,i =
~E × ~B

B2
+

mi

eB2
dt
~E⊥ . (2.74)

The electrons are much lighter than the ions mi/me > 1836 hence the con-
tribution of the polarization drift is very small and we find for the electrons
(without resistivity)

~u⊥,e =
E × ~B

B2
+
∇pe × ~B

enB
. (2.75)

The quasi neutrality condition (2.67) reads with (2.74) and (2.75)

−∇‖ ·~j‖ = ∇ ·~j⊥ = en∇⊥ · (~u⊥,e − ~u⊥,i) (2.76)

= −∇⊥ ·
nmi

B2
dt
~E⊥ , (2.77)

where we used the Boussinesque approximation and that, due to the homo-
geneous magnetic field, the divergence of the electron diamagnetic drift term
vanishes. The Boussinesque approximation allowed us to neglect derivatives
of n and B [12]. With ~E⊥ = −∇φ we find the vorticity equation

min

B2
dt∇2

⊥φ = ∇‖j‖ . (2.78)

The vorticity occurs in the derivative of the electric potential. A potential
perturbation leads to a circular E×B-motion, thus

~Ω = −∇× uE×B = −∇×

(
~E ×

~B

B2

)
= −(∇⊥ · ~E⊥)

~B

B2
= (∇2

⊥φ)
B

B2
.

(2.79)

Note that the vorticity in plasma physics has a different signum than the
definition (2.4) for neutral fluids.
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Parallel Dynamic

In parallel direction we neglect the motion of the ions completely due to their
high inertia. The generalized Ohm’s law in the electrostatic limit yields for
the parallel current density [12]

~j‖ =
e

meν
∇‖(p̃e − en0φ̃) . (2.80)

If we insert the expression for ~j‖ into the vorticity equation (2.78) we have
one equation for the unknown potential and density. In order to close the
system we use the continuity equation (2.63) for electrons. It can be written
as

dt(n̄+ ñ) = ∇‖
j̃‖
e

(2.81)

and we differentiate between the mean profile n̄(x) and n0 = n̄(x0). The
latter is the density at x0 and it is n = n̄ + ñ. Inserting (2.80) into (2.78)
and (2.81) we obtain the system

dt(n̄+ ñ) =
1

meν
∇2
‖(p̃e − en0φ̃) (2.82)

min0

B2
dt∇2

⊥φ̃ =
e

meν
∇2
‖(p̃e − en0φ̃) . (2.83)

The parallel current couples density/pressure and potential perturbations via
(2.80) and (2.81)due to the resistivity. It highlights the role of collisions to
establish a non-adiabatic electron response, which acts on the perpendicular
dynamics of the drift wave. The current is balanced by the polarization drift
of the ions to ensure quasi neutrality (vorticity equation (2.78)).

In order to simplify the system of equations we normalize the quantities
as follows

φ̂ =
eφ̃

Te
; n̂ =

ñ

n0

; p̂ =
p̃

n0Te
; ∇̂ = ρs∇; κn =

ρs
Ln

; t̂ = t
cs
ρs

(2.84)

with cs =
√
Te/mi being the ion speed of sound. After some algebra the set

of equations can be written as [12]

d̂t

(
n̄

n0

+ n̂

)
= ∇̂2

‖(n̂− φ̂)/ν̂ (2.85)

d̂tΩ̂ = ∇̂2
‖(n̂− φ̂)/ν̂ (2.86)
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where we used the collisionality ν̂ = ν/ωce and the normalized vorticity
Ω̂ = ∇̂2

⊥φ̂ (c.f. (2.79)). These equations are known as the Hasegawa-Wakatani
equations. We introduce the Poisson-bracket notation

{φ̂, n̂} := ∂̂xφ̂∂̂yn̂− ∂̂yφ̂∂̂xn̂ (2.87)

which yields a more compact form of the Hasegawa-Wakatani equations

∂̂nn̂+ {φ̂, n̂}+ κn∂̂yφ̂ = ∇̂2
‖

(
n̂− φ̂

)
/ν̂ (2.88)

∂̂tΩ̂ + {φ̂, Ω̂} = ∇̂2
‖

(
n̂− φ̂

)
/ν̂ (2.89)

The Hasegawa-Wakatani equations are a simple model for three dimensional,
linearly unstable drift wave turbulence. The turbulence is caused by the non-
linearities in the Poisson-brackets and is driven by the density gradient in the
term with κn. The strong anisotropy introduced through the magnetic field
motivates to approximate the parallel gradients in (2.88) and (2.89) through
a constant given by

∇̂‖ ≈ (k‖ρs)
2 = k̂‖ (2.90)

which yields with C := k̂‖/ν̂ the two dimensional Hasegawa-Wakatani equa-
tions

∂̂tn̂+ {φ̂, n̂}+ κn∂̂yφ̂ = C
(
n̂− φ̂

)
/ν̂ (2.91)

∂̂tΩ̂ + {φ̂, Ω̂} = C
(
n̂− φ̂

)
/ν̂ (2.92)

In order to find the linear dispersion relation we neglect the non-linearities in
the Poisson brackets in (2.91) and (2.92) and transform in Fourier space [12]

−iω̂n̂+ iκnk̂⊥φ̂ = C
(
φ̂− n̂

)
(2.93)

iω̂k̂2
⊥φ̂ = C

(
φ̂− n̂

)
(2.94)

Solving the second equation for n̂ and inserting in the first yields

ω̂2k̂2
⊥ + iω̂C

(
1 + k̂2

⊥

)
− iCκnk̂⊥ = 0 (2.95)

In the limit C � ω̂, which is the case for low collisonality, we find with
ω̂ = ωre + iγ for the real part

ωre =
ω∗

1 + k̂2
⊥

(2.96)
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and for the growth rate

γ =
ω∗2k̂2

⊥

C(1 + k̂2
⊥)

(2.97)

where ω∗ is the electron diamagnetic drift frequency

ω∗ = κnk⊥ =
Te
eB

ky
Ln

. (2.98)

From (2.97) it becomes clear, that a finite density gradient is necessary to
drive the instability. Furthermore, collisions destabilize. In the collisionless
limit ν → 0 ⇒ C → ∞ or for small frequencies ω̂ the linear term in ω̂ in
(2.95) dominates and we find ω̂ = ωre and γ = 0, hence the wave is stable.
Numerical simulations based on the Hasegawa-Wakatani model show for large
wave numbers a scaling of the energy spectrum like Ek ∝ k−3 as expected
for two dimensional turbulence [33].

In the collisionless limit the equations (2.91) and (2.92) can be further
simplified. In this case it is n̂ = φ̂ and {φ̂, n̂} = 0 and combining (2.91) and
(2.92) yields the Hasegawa-Mima equation [12,34]

∂̂t

(
1− ∇̂2

⊥

)
φ̂+ κn∂̂yφ̂ = {φ̂, ∇̂2

⊥φ̂} . (2.99)

It has a similar structure as Rossby waves in neutral fluids and shares many
properties [35–37]. However, as it is expected for an adiabatic electron re-
sponse, it is linearly stable.

2.3.4 Ion Temperature Gradient Driven Turbulence

In the foregoing section drift wave turbulence driven by a density gradient and
destabilized by finite parallel resistivity was discussed. However, temperature
gradients can cause instabilities too. These type of instabilities belong to the
group of reactive instabilities which are unstable even without dissipative
effects [38]. Their scale is in between the large MHD modes and the smaller
scale of usual drift waves. Fusion devices have to be stable against ideal
MHD modes, which gives the reactive drift modes a certain relevance since
they are the second most dangerous class of modes and possible candidates
for explaining the observed transport [38].
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In the case of ion temperature gradient (ITG) driven turbulence the in-
stability arises from the heat convection of hot ions in the presence of an
ion temperature gradient. In order to illustrate this, we consider a simplified
model of the so called slab-ITG i.e. the magnetic field is homogeneous and
for simplicity it is ~B = B~ez [39]. Now there is an ion temperature gradient
∇Ti = dTi/dx~ex 6= 0 along the x-direction but no background density gra-
dient ∇N0 = 0. We use for the parallel ion dynamics (2.63) and (2.64), but
add the the energy equation for the description of the heat convection in the
E×B-flow

∂

∂t
(niTi) +∇ · (niTi~uE×B) = 0 . (2.100)

We consider electrostatic fluctuations ~E = −∇φ with small amplitude and
ω � ωci. By linearising (2.63), (2.64) and 2.100) a reduced set of equations
can be written as

∂ñi
∂t

+ n0∇‖u‖,i = 0 (2.101)

mi

∂u‖,i
∂t

= −e∇‖φ−∇‖T̃i (2.102)

∂T̃i
∂t

+ ~uE×B · ∇Ti = 0 (2.103)

ñi = ñe = n0
eφ̃

Te
. (2.104)

The last equality comes from the quasi-neutrality condition and the Boltzman
relation (2.72). We Fourier transform in time, solve (2.103) for T̃i, insert the
result into (2.102) which we then solve for ui and insert into (2.101). With
the Boltzman relation we find after some algebra a dispersion relation

1−
(
cskz
ω

)2 (
1− ωTi

ω

)
= 0 with ωTi =

ky
eB

dTi
dx

(2.105)

and cs =
√
Te/mi. In the case 0 < ω � ωTi we find

ω3 + c2
sk

2
zωTi = 0 (2.106)

and with ω = ωre + iγ the solution reads

ωre =
1

2
(ωTic

2
sk

2
z)

1/3 (2.107)

γ =

√
3

2
(ωTic

2
sk

2
z)

1/3 ∝
(

dTi
dx

)1/3

. (2.108)
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Thus we see, that indeed the ion temperature gradient can destabilizes the
mode. A more rigorous treatment allowing for a finite density gradient yields
for the dispersion relation [38]

ω3 + ηiω∗ic
2
sk

2
‖ = 0 (2.109)

where ηi = Ln/LTi , Lx = −(x/∇x) with x = n, Ti and ω∗i = ~k·~udia,i. The slab
ITG mode was discovered in the 1960’s [40]. In general the magnetic drifts
cannot be neglected in magnetically confined fusion plasmas like tokmakas
[38].An advanced fluid model which takes the magentic drift into account can
be found in [38]. With ω = ωre + iγ it can be written as

ωre =
1

2
ω∗e

[
1−

(
1 +

10

3τ

)
εn − k2ρ2

s

(
1 +

1 + ηi
τ
− εn −

5

3τ
εn

)]
(2.110)

and

γ =
ω∗e
√
εn/τ

1 + k2ρ2
s

√
ηi − ηith (2.111)

where ω∗e = ~k · ~udia,e is the diamagnetic drift frequency of the electrons,
τ = Te/Ti the electron to ion temperature ratio and εn = ωD/ω∗ the ra-
tio of the magnetic drift to diamagnetic drift frequency. The ITG mode is
destabilized if ηi > ηith where the threshold is given by [38]

ηith =
2

3
− τ

2
+ εn

(
τ

4
+

10

9τ

)
+

τ

4εn
− k2ρ2

s

2εn

×
[

5

3
− τ

4
+

τ

4εn
−
(

10

3
+
τ

4
− 10

9τ

)
εn +

(
5

3
+
τ

4
− 10

9τ

)
ε2
n

]
. (2.112)

From (2.111) we see, that curvature (ωD ∝ κ) and inhomogeneities of the
magnetic field (ωD ∝ ∇B) increase the growth rate as well as a reduction of
the temperature ratio.

2.3.5 Electron Temperature Gradient Driven Turbu-
lence

Similar to the ion temperature gradient, an electron temperature gradient
(ETG) can destabilize the plasma too [38]. The typical spatial scale of ETG
turbulence is much smaller ρL,e � λETG � ρL,i compared to ITG turbulence.
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The ions reach thermal equilibrium by perpendicular motion, which relaxes
the upper frequency limit ω � ωce. In this small scale high frequency regime
the ions are unmagnetized and it may be possible to ignore electron parallel
motion. It turns out, that the electrons and ions are switched compared
to the ITG mode. However, whereas the ITG mode propagates in the ion
diagmagnetic drift direction, the ETG mode propagate in the electron diag-
magentic drift direction. Since the spatial scales are much smaller, the direct
transport of ETG turbulence is little. However, through mode coupling larger
modes can be excited which have an increased transport.

2.3.6 Trapped Particle Instability

Beside gradients in temperature and density, also trapped particles can lead
to an instability. We consider again tokamak geometry. As already men-
tioned in (2.2.4) particles which move along the magnetic field lines expe-
rience a gradient in the magnetic field strength because the magnetic field
is stronger on the inboard than on the outboard side and the twist of the
field lines allows the particles to reach both regions. If the parallel velocity
is small enough particles are trapped. To be more precise the condition for
trapping reads [38]

v‖ <
√

2εv⊥ , (2.113)

where v indicates the single particle velocity and ε = r/R < 1.On the one
hand the trapping can impede the parallel electron response on space charges,
on the other hand it changes the effective collision frequency. Normally, the
collision frequency is defined for a rate under which particles are deflected by
90° (in reality they undergo many small angle collision which are more likely
than a large angle deflection). However, already small angle collisions can
lead to a detrapping of particles which yields the effective collision frequency
νeff = ν/ε. Furthermore, the trapping of particles deforms the particle distri-
bution function f(~r,~v) in phase space which measures the probability density
to find a particle at location ~r with velocity ~v, which requires a kinetic de-
scription. In the foregoing sections the plasma was described as fluid, where
the implicit assumption was made, that the particle distributions functions is
a Maxwellian and we considered only the averaged motion over all particles.
We need to relax this restriction and consider particle distribution function
which must not be necessarily a Maxwellian. However, we consider again the
process for which ω � ωci, hence the gyro frequency of the ions and electrons
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is much faster than any time scale and we average over the gyro motion. In
the case in which the bounce frequency of the ions is small i.e. ωbi � ω, a
dispersion relation for the trapped electron instability can be found [38]

ω ≈ ω∗e

(
1−

k2
θρ

2
s − k2

‖c
2
s/ω

2
∗e

1−
√
ε

)
+ i

νeff

√
ε

ω∗e(1−
√
ε)

(ω − ω∗e) (2.114)

and with ω = ωre + iγ in the limit γ � ωre we find for the growth rate

γ =
νeff
√
ε

(1−
√
ε)2

(
k2
θρ

2
s −

k2
‖c

2
s

ω∗e

)
. (2.115)

The effect of trapping manifests thus in the effective collision frequency and
an increase of the growth rate by a factor

√
ε/(1−

√
ε)2 for increased trapped

particle fraction. Similarly, trapped ions can lead to an instability if ωbi > ω
[38]. Furthermore, the presence of an electron temperature gradient can
destabilize trapped electron modes [38,41].

2.4 Turbulence in Tokamaks

Although turbulence in tokamaks has been extensively studied, there is no
comprehensive theoretical description yet. As for the turbulence in neutral
fluids the non-nonlinear property of the underlying physics model, the cou-
pling of multiple scales, several turbulence drives, non-linear self-regulation
and a dependence on the ambient magnetic field and the plasma compo-
sition exacerbates extremely its investigation [42]. This section provides a
short summary of the most important findings of turbulence in tokamaks.
An overview provides e.g. the ITER physics basis about ”Plasma confine-
ment and transport” [42]. Typically, the measured energy transport rates
exceed those predicted by the classical and neoclassical theory. The remain-
ing transport has traditionally been named anomalous transport, but from
theoretical and experimental investigations it become clear that it is caused
by turbulent fluctuations. [42].

Figure 2.12 gives an overview of spatial drift wave turbulence scales, tur-
bulence mechanisms, affected transport channels and stabilization mecha-
nisms. As we have seen in Sec. 2.3.4 ITG turbulence is destabilized if the
ion temperature gradient exceeds a critical value. Above this critical value
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Figure 2.12: Overview of drift wave turbulence scales, turbu-
lence mechanisms, affected transport channels and stabilization
mechanisms. The angle θ indicates the poloidal direction. Taken
from [43].

the ion thermal transport reaches quickly a value of χi ∼ ρ2
i vti/LT i and stays

at this level (with ρi being the ion gyro radius and vti the ion thermal veloc-
ity) [42]. This finding is linked to the effect of profile stiffness : for typical
plasma conditions and moderate ion heating the temperature gradient in-
creases only marginal above the critical value [42]. This observations has
been made in various devices (e.g. ASDEX-Upgrade [44,45] or JT-60U [46]).
If an instability exists its growth is limited by some kind of saturation mech-
anism. Self generated zonal E×B-flows lead to a shearing of turbulent eddies
and present the dominant non-linear saturation mechanism for ITG turbu-
lence (see e.g. [47–54] as denoted in [42]). In some cases it can shift the
critical ion temperature gradient [55]. Another large scale structure stabiliz-
ing turbulence are zonal flows [48,56]. These are non-linearly self generated
by the turbulent fluctuations with vanishing poloidal mode number (kθ ≈ 0)
and can back react on the turbulence presenting a self regulation mechanism
of transport. Large scale simulations of ITG show the formation flows and
a reduction of turbulent ion heat flux [42]. The transport reduction depends
on the turbulent fluctuation amplitude reduction and the randomization of
the coherent structures [42]. Sheared E×B-flows are closely connected to
transport barriers, small radially extended regions in which the turbulent
transport is reduced. The most important transport barrier was observed
when the H-mode regime of plasma operation was discovered at the ASDEX
tokamak [57]. In this regime temperature and density profiles were steep-
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ened at the edge forming a pedestal [58], the energy confinement time was
increased by a factor of two [57] and turbulent fluctuations were reduced [59].
The increased (high) confinement is eponymous for the H-mode, in contrast
to the low-confinement L-mode plasma regime without transport barrier. Al-
though the H-mode was already discovered in 1982 the exact mechanisms still
presents an open research question [60]. The transport barrier accompanying
the H-mode regime is located at the edge and therefore also attributed as
edge transport barrier (ETB) in contrast to internal transport barriers (ITB)
which have been found later on [61]. Trapped electrons can either destabilize
ITG or lead to the intermediate spatial scale TEM turbulence. TEM turbu-
lence is one of the main mechanisms for particle transport [42]. Furthermore
trapped electrons can lead to a high turbulent heat flux if either ITG or TEM
is unstable [42].

While turbulent transport on the ion scale can be reduced down to the
neoclassical limit in ITBs, the electron thermal transport is not much af-
fected. A plausible candidate for the transport below the ion scales is ETG
turbulence [42]. From a simple mixing length ansatz the transport of ETG
turbulence should be small compared to ITG or TEM turbulence due to
its smaller spatial scales. However, simulations have shown the formation of
streamer, radially extended structures (kradial ≈ 0) which can cause transport
more than one order of magnitude above the mixing length estimate [62–64].

2.5 Turbulence in Wendelstein 7-X

The field of turbulence research in stellarator geometry is relatively young
compared to tokamaks. The optimization of neoclassical transport in Wen-
delstein 7-X raises the question about the role of turbulence and how it
compares to tokamaks. Although there are no experimental investigations
so far, there has been an increasing number of theoretical publications over
the last two decades. The full three dimensional geometry of a stellarator
exacerbates the numerical investigation and appropriate simplifications have
to be applied. To give an example, roughly half a million CPU hours are
needed for a well resolved microturbulence simulation in flux-tube geometry
and kinetic electrons [65]. State of the art gyrokinetic simulations codes,
such as the continuous GENE code for non-linear ITG turbulence operates
in flux tube or flux surface geometry limited to a fixed radial position [66].
The particle in cell code EUTERPE provides a global gyrokinetic treatment,
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Figure 2.13: GENE simulation of ITG turbulence in tokamak
(left) and stellarator (right) geometry. Red colors indicate strong
fluctuations, blue colors weak. Courtesy of P. Xanthopoulos.

however it is limited to linear ITG modes [67,68]. The most important elec-
trostatic microinstabilities in tokamaks, the ITG and the TEM mode, are
predicted to occur in stelllarators too. However, their appearance is differ-
ent [69–75]. One of the most obvious differences is the spatial distribution of
turbulent fluctuations. In a tokamak, turbulent fluctuations peak over the
whole outboard side of the torus where the curvature is unfavourable (c.f.
Fig. 2.13). Whereas in a stellarator the unfavourable curvature and, thus,
the fluctuations are much more poloidaly localised in a narrow band along
the magnetic field lines [71, 76, 77]. Furthermore, the range of fluctuation
amplitudes in stellarators seem to be greater [77]. For similar values of the
temperature gradient, the growth rates of ITG modes in Wendelstein 7-X
seem to be comparable to those of a tokamak [77]. The difference can be
even further reduced, if the connection length between regions of good and
bad curvature is chosen to be similar in the tokamak [74,77]. If the local cur-
vature radius is similar, the local curvature driven ITG branch is the same
for tokamaks and stellarators [71]. However, the parallel connection length
between regions with different magnetic properties is significantly shorter in
Wendelstein 7-X than in a typical tokamak, which acts stabilizing on the
toroidal branch [77]. In a tokamak the parallel connection length is in the
order of qR, with q = 1/ι being the safety factor and R the major radius,
whilst in a stellarator it is rather a field period, which is much less [71].
Therefore, ITG modes are expected to be more slab like and less curvature
driven, which is confirmed by numerical and analytical investigations [71,74].
First indications exist, that the corresponding turbulent transport in Wen-
delstein 7-X is lower than in a typical tokamak [77]. However, this need to
be further assessed in studies of saturated turbulence [77].
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A significant difference between stellarators emerges from analytical and
numerical investigations of TEM turbulence [71–73, 77, 78]. These kind of
modes are excited by trapped electrons in regions of bad curvature.In a toka-
mak, trapped particles reside in places where the curvature is unfavourable,
namely on the outboard side of the torus, whereas in a stellarator they can be
located at different places. Perfectly quasi-isodynamic stellarators [79] are so
called maximum-J devices i.e. ∂J/∂ψ < 0, where J is the parallel adiabatic
invariant and ψ the toroidal flux [71]. It has been shown, that in maximum-
J configurations the bounce averaged curvature is favourable [71, 78]. In
these configurations the poloidal direction in which the electrons precess is
opposite to the direction of the drift wave propagation, which prevents a res-
onant interaction. Exact quasi-isodynamicity is impossible to reach [71, 80].
However, Wendelstein 7-X is the first stellarator which approaches quasi-
isodynamicity for high plasma β (β is the normalised plasma pressure) [71].
Plunk et al. found the analytical expression ω = −(Q±

√
Q2 − 4PR)/(2P )

for the angular frequency arising from a trapped particle instabilities in stel-
larator geometry, which propagates in the ion diamagnetic drift direction and
has a wavelength comparable to the ion gyroradius [75]. This instability, aris-
ing from the ions, is named ion-driven trapped electron mode (ITEM) [75].
The important observation is at this point, that a positive R can lead to a
destabilization as it shifts the radicand towards negative values (P is positive
definite). It can be written as [75]

R =
ω∗iTe
Ti

∫ ∞
−∞

ω̂diF (b, ηi)|Φ|2
dl

B︸ ︷︷ ︸
ion contribution

+
3(1 + ηe)ω∗e

4

∫ 1/Bmin

1/Bmax

∑
j

ω̃dejτj|Φ|2dλ︸ ︷︷ ︸
electron contribution

where ω∗s is the diamagnetic drift frequency for ions (s = i) and electrons
(s = e), Ts the temperature, ηs the usual normalized temperature gradient,
ω̂di the magnetic drift frequency of the ions, ω̃dej the magnetic drift frequency
of the electrons in the j-th magnetic well and F (b, ηi) is a positive function
for all b if ηi > 0 (F is the expression in square brackets in (3.5) in [75]). For
a more detailed description the interested reader is referred to [75]. The first
summand represents the ion contribution and is destabilizing if ω∗iω̂di > 0
which is the criterion for bad curvature. The second term, having products of
ω∗eω̃dej describes the bounce averaged electron contribution and is negative
in maximum-J devices. Thus, there is a stabilizing contribution from the
electrons. This holds true for any ηe > 0 as long as the phase velocity of the
instability is between the ion- and electron thermal velocities vT i � ω/k‖ �
vTe (no Landau damping) and the magnetic drift frequencies are smaller
than the diamagnetic frequency (decouples ITG and TEM instability) [75].
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Therefore, an increase of the electron temperature gradient stabilizes since
the electron term is proportional to ηe. Furthermore, the mode does not
necessarily peak in regions of bad curvature [75]. In some cases it might
be even completely stabilized by favourable averaging of the ion magnetic
drift [75].

As discussed above, instabilities on the ion scale are expected to play
an important role in Wendelstein 7-X. Although their appearance is differ-
ent, the fundamental physics mechanisms (gradient driven, destabilization
through curvature, trapped particles and non-adiabatic electrons) are the
same. This is an important aspect as it allows to narrow down the spatiotem-
poral scales required to resolve for turbulence measurements in Wendelstein
7-X to be similar to those expected in tokamaks (c.f. Fig. 2.12).
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Chapter 3

Phase Contrast Imaging

The principle of phase contrast imaging (PCI) is used in a wide field of
applications. In this chapter we summarize the general theoretical description
of the PCI diagnostics. In Sec. 3.2 it is shown that the considered plasmas
act like an optically homogeneous medium with a perturbed refractive index
and the problem reduces to imaging those perturbations. This can be split up
into two parts: the first part, described in Sec. 3.3, explains in more detail
the imaging of the refractive index perturbation and the need for shifting
part of the light by π/2, to obtain a linear response between perturbation
amplitude and signal. The second part, Sec. 3.4, describes how the phase
shift can be obtained by methods of Fourier optics. This chapter is based on
former work presented in [81].

3.1 A Brief History

Creating phase contrast is a long existing problem. The simplest way to
investigate an arbitrary object with the help of light – or in general electro-
magnetic radiation – is to use its property to diminish the amplitude of an
incoming probe beam. After passing through the object, the amplitude of
the wave is modulated depending on the absorption properties of the object.
The amplitude modulation contains information about the object and can
be easily measured since the intensity is proportional to the square of the
amplitude. Objects, that change only the amplitude of a wave are called
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Figure 3.1: Different effects of phase and amplitude objects on
electromagnetic waves. The dotted lines show the wave without
the influence of the objects. The wave travels from the left to the
right hand side.

amplitude objects. In contrast, phase objects change only the phase of the
probe beam (c.f. Fig 3.1). Such objects do not alter the beam’s amplitude
and are invisible for direct amplitude sensitive detection mechanisms like the
human eye or CCD sensors. For example, many biological tissues are phase
objects, which makes them hard to examine with a bright field microscope.

The first attempts to make phase objects visible were made in the 17th
century by Antoni van Leeuwenhoek, Robert Hooke and Christiaan Huygens
and can be referred to the dark field microscopy and schlieren (German for
”streak”) method [82, 83]. The latter is often attributed to August Toepler
who reinvented the schlieren method between 1859 and 1864 [82]. In the
1930s the Dutch Physicist Frits Zernike invented the phase contrast imaging
method when he studied imperfections in diffraction gratings [84]. He applied
this technique to microscopes which became later on important in the field of
biology and medicine [85]. Zernike’s invention was of such great importance
that he was awarded the physics Nobel prize in 1953. Outside microscopy
phase contrast imaging was less frequent. However, in the field of X-ray
imaging and plasma diagnostics the same challenge of making phase objects
visible had to be faced. In 1965 Bonse and Hart developed a method to
measure phase shifts in X-rays [86].

Plasma density fluctuations act as phase objects and in 1967 Presby and
Finkelstein published their results about Plasma Phasography [87], the adap-
tion of Zernikes method to plasmas. They used a ruby-laser for illumination
”to make possible the observation of macroscopic moving tenuous objects,
such as jets, shock waves, and plasmas” [87] and were able to demonstrate
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the superiority to the schlieren method.

For the observation of density fluctuations in magnetically confined plas-
mas, the phase contrast technique was first used by Weisen [88–92]. He used
a 23 cm wide CO2 Laser beam operating at 10.6 µm to study turbulence and
driven Alfén waves in the TCA tokamak. Later on, this technique was ap-
plied to various experimental devices including the DIII-D tokamak [93,94],
the Heliotron-E device [95, 96], the TEXT-U tokamak [97, 98], the CDX-U
tokamak [99], the Alcator C-Mod tokamak [100, 101] and the LHD stellara-
tor [102].

3.2 The Plasma as Phase Object

When electromagnetic waves interact with matter in a classical picture, they
apply a force which accelerates the charged particles and leads to emission
of additional electromagnetic radiation into all directions. This process is
refereed to as scattering. From the analysis of the scattered waves, various
properties of the scattering object can be obtained. Diagnosing plasmas with
electromagnetic waves (of sufficiently small amplitude) has the great advan-
tage of being non invasive: the probe waves causes negligible perturbations
to the plasma but can provide information about its properties, e.g., density,
temperature and magnetic field [103]. We will see that for the PCI probe
beam (wavelength 10.6 µm) the refractive index of the plasma depends ap-
proximately linear on its density. The plasma can be treated as an optical
medium with changes in its refractive index and acts consequently as a phase
object. The subsequent derivation is rather general but highlights some im-
portant aspects of the used infrared probe beam, e.g., the effective isotropy
of the plasma [104].

The plasma is treated as a quasi-neutral, continuous medium described
by Maxwell’s equations

∇× ~B = µ0

(
~j + ε0

∂ ~E

∂t

)
, (3.1)

∇× ~E = −∂
~B

∂t
, (3.2)

where ~B is the magnetic flux density, ~E the electric field strength and ~j
the current density, the latter containing all plasma properties. The plasma
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is assumed to be in an equilibrium state described by zero order quantities
(index 0), constant in space and time. The electromagnetic probe wave is

monochromatic with angular frequency ωb and wave vector ~kb. It causes a
small perturbation of the equilibrium state, described by first order quantities
(index 1), so that the overall quantities are given by the superposition of the

zero and first order quantities e.g. ~E = ~E0 + ~E1 exp[i(~kb · ~r − ωbt)]. Due to
this superposition and the linearity of Maxwell’s equations, equilibrium and
perturbed quantities can be treated separately and we can restrict in the
further analysis to the perturbed quantities. The relationship between ~j1

and ~E1 is given by Ohm’s law

~j1 = σ ~E1 , (3.3)

where σ is the conductivity tensor taking into account the possible anisotropy
of the plasma, e.g. due to a background magnetic field. The magnetic flux
density can be eliminated by taking ∂/∂t of eq. (3.1) and ∇× of eq. (3.2)

∇× (∇× ~E) + µ0
∂

∂t

(
~j + ε0

∂ ~E

∂t

)
= 0 . (3.4)

Using (3.3) and Fourier transform, the first order quantities are given by

~kb × (~kb × ~E1) + iωbµ0(σ ~E1 − iωbε0 ~E1) = 0 (3.5)

⇔ ~N ×
(
~N × ~E1

)
+ ε ~E1 = 0 , (3.6)

where in the last step the definition of the speed of light c = 1/
√
ε0µ0, the

refractive index vector ~N and the dielectric tensor ε were used:

~N =
c

ωb

~kb , (3.7)

ε = 1 +
i

ωbε0
σ . (3.8)

Equation (3.6) gives a relation between the wave properties ~E1, ~kb and ωb

and the plasma properties described by ε respectively σ. To get a detailed
description of ε it is necessary to investigate the response of a plasma to
an incident electromagnetic wave. Treating the plasma as cold and ignoring
collisions the change in the momentum of species s is determined by the
Lorentz force and an expression for the cold plasma dielectric tensor can be
found [104]

ε =

 S −iD 0
iD S 0
0 0 P

 (3.9)
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where the annotation according to Stix was used [104]:

P =1−
∑
s

ω2
ps

ω2
b

, (3.10)

S =
1

2
(R + L) = 1−

∑
s

ω2
ps

ω2
b − ω2

cs

, (3.11)

D =
1

2
(R− L) =

∑
s

sgn(qs)ω
2
psωcs

ωb(ω2
b − ω2

cs)
, (3.12)

R =S +D = 1−
∑
s

ω2
ps

ωb(ωb + sgn(qs)ωcs)
, (3.13)

L =S −D = 1−
∑
s

ω2
ps

ωb(ωb − sgn(qs)ωcs)
, (3.14)

where ωps =
√
nsq2

s/(ε0ms) denotes the plasma frequency of species s, qs
its charge, ms its mass, ns is the density, ωcs = |qs|B0/ms is the cyclotron
frequency and sgn(qs) = qs/|qs| the signum function. The magnetic field
~B0 = B0~ez is set along the z-axis. Without loss of generality we define the
refractive index vector (3.7) as lying in the xz-plane, where γ denotes the

angle between the z-axis and ~N

~N =

N sin(γ)
0

N cos(γ)

 , N = c
kb

ωb

. (3.15)

This definition and the dielectric tensor (3.9) allows one to rewrite (3.6) as S −N2 cos2(γ) −iD N2 sin(γ) cos(γ)
iD S −N2 0

N2 sin(γ) cos(γ) 0 P −N2 sin2(γ)

E1x

E1y

E1z

 = 0 . (3.16)

In order to find non-trivial solutions, the determinant of the coefficient matrix
must be zero which leads to the following expression

AN4 −BN2 + C = 0 ⇒ N2 =
B ± F

2A
(3.17)

where

A = S sin2(γ) + P cos2(γ) , (3.18)

B = RL sin2(γ) + PS(1 + cos2(γ)) , (3.19)

C = PRL , (3.20)

F =
√

(RL− PS)2 sin4(γ) + 4P 2D2 cos2(γ) . (3.21)
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The identity S2 − D2 = RL was used [104]. Equation (3.17) determines
N as a function of the angular frequency ωb, the wave number kb and the
plasma parameter ωps and ωcs. The probe beam for the PCI diagnostic has
a vacuum wavelength of λb = 10.6 µm which corresponds to a frequency of
ωb = 2πc/λb = 2× 1014 s−1. Assuming an extremely high magnetic field
of 10 T leads to an electron cyclotron frequency ωce = 2× 1012 s−1. Due to
the mass ratio of mp ≈ 1836me, where mp denotes the proton mass, the ion
contribution is much smaller: ωci/ωce = zme/mi. With z = |qi|/e denoting
the charge number of the ions. We can find an upper limit for the ion
cyclotron angular frequency as following where np ≤ z denotes the number
of protons, nn the number of neutrons and mn is the neutron mass

ωci

ωce

= z
me

mi

= z
me

npmp + nnmn

<
z

np + nn

me

mp

≤ z

z + nn

me

mp

≤ me

mp

≈ 1

1836
.

(3.22)

The ordering is finally ωb � ωce � ωci, which can be used to simplify the
parameters (3.10) - (3.14):

P ≈ R ≈ L ≈ S = 1−
∑
s

ω2
ps

ω2
b

, D ≈ 0 (3.23)

⇒A ≈ P , B ≈ 2P 2 , C ≈ P 3 , F ≈ 0 (3.24)

⇒N2 ≈ P = 1−
∑
s

ω2
ps

ω2
b

. (3.25)

Hence, the dispersion relation does not depend anymore on γ and the plasma
is effectively isotropic for the probe beam. The ratio of the ion and electron
plasma frequency is given by ω2

pi/ω
2
pe = z2meni/(mine). For a hydrogen

plasma it is z = 1 and quasi-neutrality gives ne ≈ ni, therefore ω2
pe � ω2

pi

and N can be expressed as

N ≈

√
1−

ω2
pe

ω2
b

. (3.26)

The electron plasma frequency for an upper limit density of ne = 1× 1021 m−3

is ωpe = 2× 1012 s−1 � ωb. The square root can be expanded as
√

1− x2 =
1 − x2/2 + O(x4) and the definition for the plasma frequency can be used
to obtain a linear relationship between the refractive index and the electron
plasma density:

N ≈ 1− e2

2ε0meω2
b

ne . (3.27)

51



3.3. MEASURING PHASE CONTRAST

The square root approximation, which yields N ∝ ne, makes clear that the
lower limit for ωb is determined by the ordering ωb � ωpe.

The above discussion considered the unperturbed plasma as uniform in
space. This is of course an idealized model and in reality there always exist
spatial gradients. However, if the plasma parameters vary sufficiently slow
in space, the plasma can be locally approximated as uniform in space and
waves can be described as plane waves with a slowly varying wave number

E ∝ ei
∫
~kb·d~l−iωt , (3.28)

where the line integral is along the ray path l and ~kb is the local solution
~kb = ~kb(ω) of the dispersion relation [103]. This approximation is called
the WKB (after Wentzel, Kramers and Brillouin) or eikonal approximation
and is a widely used concept. Inter alia it describes the transition from
wave to geometrical optics and is used in the subsequent calculations. The
approximation is sufficiently precise provided that the gradient length of kb

is small [103]

|∇kb|
k2

b

� 1 . (3.29)

From this point of view an increase of kb would lead to more accuracy. How-
ever, in Sec. 3.4 it is shown that a small value of kb increases the separation
between zero and first order scattered beams, which allows one to detect
smaller wavelength of perturbations.

To summarize, the plasma is effectively isotropic for the probe beam due
to its high frequency compared to the cyclotron and plasma frequencies. Fur-
thermore the electron contribution is dominant due to the small electron mass
compared to the ions. This leads to a linear relationship between refractive
index and electron density.

3.3 Measuring Phase Contrast

The light coming from a macroscopic object is basically a superposition of
spherical waves emitted by the atomic scattering centres of the object. The
description of image creation of an object through an optical system (e.g.
lenses) by calculating their wave fields is a complete but time consuming

52



3.3. MEASURING PHASE CONTRAST

procedure. Geometrical optics provide a more abstract and simpler, but also
more incomplete method. It can be applied when the wave character of the
light can be neglected and the typical system dimensions are much greater
than the wavelength of the used light. The link between the two formalisms
is given by plane waves, which carry wave information (e.g. amplitude and
phase) and the information of geometric light rays (directional).

The aim of an optical imaging system is the mapping of an object as
exactly as possible to the image plane. Ideally this means to reconstruct
the wave field at the object plane. Due to Fermat’s principle, every light
path between object and image plane must be equivalent. In other words,
they have the same optical path length or equivalently cause the same phase
change. An ideal phase object alters – by definition – only the phase of an
incoming wave. Thus, the ideal image of a phase object is as well a wave field,
where only the phase is modulated and the amplitude remains unchanged.

Consider the situation in Fig. 3.2: A plane wave with wave vector
~kb = kb~ez encounters a single sinusoidal perturbation with wave number
~k = k~ex in the refractive index N(x′, y′, z) which is extended over a length L
along the z-axis:

N(x′, y′, z) = N0 + h(z)N1 cos(kx′ − ϕ), (3.30)

where N0 is the value of the background refractive index, N1 the amplitude
of the perturbation and ϕ an arbitrary phase shift. The envelope function
h(z) is given by

h(z) =

{
1 , z ∈ [−L, 0]

0 , otherwise
. (3.31)

In general the connection between refractive index and phase velocity ci is
Ni = c/ci. Equation (3.30) is linked to the density perturbation

ne = ne0 − h(z)ne1 cos(kx′ − ϕ) (3.32)

via (3.27) where

N0 = 1− η (3.33)

N1 = η
ne1

ne0

with η :=
ω2

pe

2ω2
b

(3.34)

and ωpe is the plasma frequency of the unperturbed background. A plasma
with ne0 = 1× 1020 m−2 and a laser wavelength of 10.6 µm results in η = 5× 10−6.
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Figure 3.2: Wave field corrugation of an electromagnetic wave at a
single k perturbation of the refractive index N . The perturbation
has an infinite extent along the x′- and y′-axis but is infinitely
small along the z-axis. The grey coloured region indicates the
values of the refractive index. The phase fronts before and after
passing the perturbation are shown in red. For illustration the
corrugation is exaggerated.

Thus, the refractive index perturbations are very small. The minus in (3.32)
occurs because of − cos(x) = cos(x− π) such that density and refractive in-
dex perturbation are shifted by π. In the further analysis, only the refractive
index is considered, which is of course equivalent to taking into account only
the density perturbation.

After passing through the density perturbation, the phase front of the
incoming plane wave is corrugated due to the fact that large values of N
retard and small values of N advance the phase front.

We follow the derivation in Ref. [105] to describe the diffraction of light
by high frequency sound waves. The concept is applied to the PCI diagnostic
in Ref. [106]. In acousto-optics light, waves are scattered at refractive index
perturbations that are caused by sound waves. Assuming homogeneity of the
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medium, the following calculation uses a scalar approach.

The phase φ of an electromagnetic wave with wave number kb travelling
trough a medium can be calculated by performing the line integral

φ = kb

s1∫
s0

N ds (3.35)

along the beam path s. In this calculation the beam path is along the z-axis.
Inserting (3.30) in (3.35) leads to

φ = φ0 + φ1 cos(kx′ − ϕ) , where (3.36)

φ0 = kb

0∫
z0

N0 dz and φ1 = kbLN1 . (3.37)

z0 is an arbitrary reference point and L is the extent of the perturbation.
It is assumed that L is small enough to treat the plasma as thin. This
approximation is discussed in more detail in Sec. 3.5. Moreover the phase
modulation is supposed to be small

|φ1| � 1 . (3.38)

It is now possible to describe the electric field after the perturbation as

Eobj = EAe
iφ = EAe

i[φ0+φ1 cos(kx′−ϕ)] , (3.39)

where EA is the amplitude. Due to the fact that the phase φ1 is small, the
amplitude is approximate constant for every x′. An ideal imaging system
maps Eobj, apart from a phase shift, exactly to the image plane Eimg =
exp(iφsys)Eobj, where for simplicity the magnification was set to one and the
factor exp(iφsys) describes the additional phase shift caused by the imaging
system. Real imaging systems, however, are never able to reproduce the
electric field exactly because it is never possible to manipulate the whole,
infinitely extended electric field. Therefore real systems are always diffraction
limited [107].

The electric field at the object plane can be expanded into Bessel functions
Jn of the first kind of n-th order with the help of the Jacobi-Anger expansion
[108]:

eiα cos(β) =
∞∑

n=−∞

inJn(α)einβ . (3.40)
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This leads to an electric field

Eimg = EAe
iφ̃0

∞∑
n=−∞

inJn(φ1)ein(kx′−ϕ) , where φ̃0 = φ0 + φsys . (3.41)

In the first instance this is just a mathematically equivalent representation
without a deeper physical meaning. However, in Sec. 3.4.1 it will turn out
that every summand for a certain n belongs to a physical light ray. Looking
at the polynomial representation of the Bessel functions [109]

Jp(x) =
∞∑
k=0

(−1)k

k! Γ(p+ k + 1)

(x
2

)2k+p

=
1

p!

(x
2

)p
+O(φ2+p

1 ) (3.42)

where |x| <∞ , x /∈ (−∞, 0] and p ∈ R\Z<0

⇒ J0(φ1) = 1 +O(φ2
1) , J1(φ1) =

φ1

2
+O(φ3

1) , Jn≥2(φ1) = O(φ2
1) ,

(3.43)

it becomes clear, that due to condition (3.38) every summand with n ≥ 2
in (3.41) can be neglected and the approximations in (3.43) can be used.
In reality, the intensity Iimg ∝ |Eimg|2 is measured, which make the higher
orders even more unimportant. Rewriting (3.41) leads to

Eimg = EAe
iφ̃0
(
i−1J−1(φ1)e−i(kx

′−ϕ) + J0(φ1) + iJ1(φ1)ei(kx
′−ϕ)
)

+O(φ2
1) .

(3.44)

Applying the simplifications (3.43) and the relationships [109]

J−n(x) = (−1)nJn(x)∀n ∈ N>0 , |x| <∞ and eix + e−ix = 2 cos(x)
(3.45)

Eimg can finally be written as

Eimg = EAe
iφ̃0 [1 + iφ1 cos(kx′ − ϕ)] +O(φ2

1) . (3.46)

Using i = exp(iπ/2) it turns out the superposition of the n = ±1 terms are
phase shifted by π/2 relative to the n = 0 summand. The detector measures
the intensity Iimg ∝ |Eimg|2

Iimg ∝ 1 +O(φ2
1) . (3.47)

Thus, the resulting response is constant within the order of the approximation
as we expect for a phase object. The response can be improved if the ray
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belonging to n = 0 is phase shifted by π/2, which can be described by an
additional imaginary unit i. In this case, the modified electric field at the
image plane reads

EPCI
img = EAe

iφ̃0 [i+ iφ1 cos(kx′ − ϕ)] +O(φ2
1) (3.48)

and the intensity

IPCI
img ∝ 1 + 2φ1 cos(kx′ − ϕ) +O(φ2

1) (3.49)

is linear in φ1. The phase shift of the n = 0 ray can be achieved by the use
of Fourier optic methods described in sec. 3.4.

3.4 Scattering of Electro Magnetic Waves at

Refractive Index Perturbations

In Sec. 3.3 we discussed the need for a π/2 phase shift of the n = 0 sum-
mand in (3.41). How this can be accomplished and the physical meaning
of the expansion (3.41) is shown in the present section. The basic concept
is Fraunhofer’s and Kirchhoff’s diffraction theory. A detailed description of
the fundamental theoretical framework can be found in Refs. [107] and [110].
Again we follow the acousto-optics approach (Refs. [105] and [106]).

3.4.1 Scattering at a Phase Grating

We consider a similar situation as described in Sec. 3.3 (cf. Fig. 3.3): A

plane wave with wave vector ~kb = kb~ez encounters a single sinusoidal pertur-
bation N(x′, y′, z) with wave number ~k = k~ex in the refractive index, which
is infinitely small extended along the z-axis. The objective of this section is
to determine the value of the electric field at the point P . According to the
Fraunhofer diffraction theory (cf. also remarks in Sec. 3.3) the calculation is
simplified by using a scalar approach.

Knowing the electric field at the exit of the perturbation (3.39) allows
one to calculate the wave field at a chosen point P by using the Fraunhofer
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Figure 3.3: Coordinate system for calculating the scattering of
an electromagnetic wave at a single k perturbation of the refrac-
tive index N . The perturbation has an infinite extent along the
x′- and y′-axis, but is infinitely small along the z-axis. The grey
coloured region indicates the values of the refractive index. In red
colours the phase fronts are shown before and after passing the
perturbation (the corrugation is exaggerated for better illustra-
tion).

diffraction formula. The Fraunhofer diffraction formula for an aperture de-
scribed in Cartesian coordinates reads [107,110]

AII(kx, ky) =

∞∫
−∞

∞∫
−∞

AI(x
′, y′)e−i(kxx

′+kyy′) dx′dy′ , where (3.50)

AI(x
′, y′) = A0(x′, y′)eiχ(x′,y′) , (3.51)

kx = kb
x

r
and ky = kb

y

r
. (3.52)

It is the Fourier transform of the pupil function AI(x
′, y′), where A0(x′, y′)

describes the amplitude over the aperture and χ(x′, y′) the phase of the elec-
tric field with wave number kb. The resulting field AII(kx, ky) is evaluated at
a point (x, y) that is equivalent to the wave numbers kx and ky at distance r
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from the aperture.

It is important to note that this formula is only valid if the distance rs
between source and aperture, the wavelength λb = 2π/kb and the maximum
radius of the aperture rmax meet the following criteria:

rs, r � λb , rmax � rs, r and r � r2
max

λb

. (3.53)

To apply this to the scattering problem at the phase grating, a rectangular
beam with diameter in x-direction of 2a and in y-direction of 2b is assumed
for simplicity. To calculate the integral (3.50) we expand (3.39) again into
Bessel functions as done in Sec. 3.3:

Eobj = EAe
iφ0

∞∑
n=−∞

inJn(φ1)ein(kx′−ϕ) . (3.54)

Inserting (3.54) into (3.50) yields the electric field at point P as

EII = EAe
iφ0

∞∑
n=−∞

ine−inϕJn(φ1)

b∫
−b

a∫
−a

e−i(kx−nk)x′e−ikyy
′
dx′dy′ (3.55)

= 4EAe
iφ0

∞∑
n=−∞

e−in(ϕ−π/2)Jn(φ1)
sin(a[kx − nk])

kx − nk
sin(bky)

ky
. (3.56)

The factor sin(bky)/ky describes the diffraction of the beam along the y-axis
and has its maximum at ky = 0 respectively y = 0, cf. (3.52). The variation
of the density along the x′-axis leads obviously only to an effect along the
x-axis and the electric field variation along the y-axis remains unperturbed.
The factor sin(a[kx − nk])/(kx − nk) covers the effect of the phase grating.
The maxima are given by kx − nk = 0. Using the definition (3.52) of kx
and the relationship sin(θ) = x/r (cf. Fig. 3.3), the condition for the n-th
maximum can be expressed as

sin(θn) = n
k

kb

with n ∈ Z . (3.57)

It becomes clear that every summand in (3.56) leads to a maximum under a
specific angle for a single-k sinusoidal phase grating. The amplitude of the
n-th maximum in x-direction for a certain value of y is

En
II,max := max

x
En
II ∝ lim

kx−nk→0
e−in(ϕ−π/2)Jn(φ1)

sin(a[kx − nk])

kx − nk
(3.58)

= ae−in(ϕ−π/2)Jn(φ1) , (3.59)
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where En
II is the n-th summand in (3.56). It depends, apart from a phase

factor, on the amplitude of the phase shift φ1 and the aperture size 2a. As
discussed in Sec. 3.3, every summand with n ≥ 2 can be neglected due to
condition (3.38).

It is known from the diffraction at an aperture that the width of the
diffraction pattern depends on the ratio of the wavelength and the size of the
aperture. A clear diffraction pattern occurs only if these two quantities are
of the same order of magnitude. If the size of the aperture is much greater
than the wavelength, the incoming wave is almost undisturbed and remains
localized. This becomes clear if the limit a, b → ∞ in (3.55) is performed
in such a way that the conditions (3.53) are still satisfied. In this case, the
resulting electric field is given by

lim
a,b→∞

EII ∝
∞∑

n=−∞

e−in(ϕ−π/2)Jn(φ1)δ(kx − nk)δ(ky) , (3.60)

where δ is the delta distribution. In the case of phase contrast imaging, the
dimensions a and b are usually much greater than the wavelength λb = 2π/kb.
This means the maxima described in (3.56) are highly localized and every
maximum propagating at angle θn describes a light ray. In Sec. 3.3 the need
for phase shifting the n = ±1 component by π/2 relative to the n = 0 com-
ponent became evident. According to (3.57), the scattering angle depends
on the value of n. The unscattered (n = 0) component is independent of
k and kb. This separation in real space allows for a phase retardation or
advancing of the unscattered wave relative to the scattered waves (n 6= 0).
It is achieved by changing the optical path length either by a transmissive or
a reflective phase plate. A transmissive phase plate is made of regions with
different optical thickness. A light ray passing through is partly shifted in
phase. Different from that a reflective phase plate obtains the phase shift
by a groove or a dent which increases for the unscattered wave the travel
distance by λb/4. For phase contrast imaging, a reflective phase plate is
normally used owing to easier manufacturing.

As we have seen above, the scattering process is two dimensional: the
variation of a refractive index perturbation along the x′-axis leads to a scat-
tering in the x′z-plane. Thus, the diffraction pattern of a phase grating ro-
tated around the z-axis is tilted by the same angle as the phase grating itself.
This is an important property as it allows to select for specific fluctuation ori-
entations by masking specific angles. If we assume turbulent fluctuations to
be well aligned with the magnetic field lines and a variation of the magnetic
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field angle along the line of sight, a selection of a specific fluctuation orienta-
tion corresponds to a position along the the line of sight. Thus masking the
fluctuation orientation can present a mean for spatial localisation along the
line of sight.

The above made discussion was done for a simple sinusoidal phase grating.
However, turbulent fluctuations exhibit a broadband wavenumber spectrum.
A general representation of a phase modulation due to broadband fluctua-
tions is given by its Fourier representation

φ(x′) =

∞∫
−∞

φ̂(k)eikx
′
dk where (3.61)

|φ̂(k)|
!
� 1 . (3.62)

In can be shown that the PCI response is in this case given by [81]

IPCI
img ∝ 1 + 2

∞∫
−∞

φ̂(k)eikx
′
dk (3.63)

thus recovering completely the original fluctuation.

3.4.2 Oblique Incidence

In the previous calculations for simplicity the incident beam was taken to be
perpendicular to the fluctuation of the refractive index. In this section the
effect of a non-perpendicular incidence should be discussed. We follow again
Ref. [106] and Ref. [111].

Firstly a qualitative understanding should be developed. Given a single
sinusoidal perturbation in the refractive index, it extends along the beam
direction as shown in Fig. 3.4. We consider the behaviour of an impinging
plane wave. As noted in Ref. [111], the bending of the incoming wave due
to the inhomogeneous refractive index can be ignored unless the length L of
the perturbation is sufficiently small. To understand the mechanism, it is
useful to follow specific points at the phase front of the incident wave, e.g.,
the point indicated by the red arrow. In the perpendicular β = 0 case the
observed phase point experiences along its path (longitudinal direction) a
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Figure 3.4: Change of wave front corrugation due to finite inci-
dence angle β. The black lines illustrate the wave front of the
incoming plane waves that are corrugated by the perturbation in
the refractive index (grey-white colour coded).

constant value of N = Nred. This is valid for every phase point along the
wave front of the probe beam. However a phase point, which is λ/2 shifted
(blue arrow), experiences a constant N = Nblue. The two values are different
Nred 6= Nblue and thus the optical path lengths are different for the two phase
points, which causes the corrugation on the exit of the perturbation.

This changes in the case of an angle 0 < β < βc. Now the values of N
along the two different transversal positions vary also in longitudinal direc-
tion. The red arrow in Fig. 3.4 points on a value of N that is only on the
admittance Nred and during propagation the value for N is always less then
Nred. The same argument can be applied to the path incident by the blue
arrow, apart from the fact that the value of N increases during propagation.
Therefore the difference in the optical path length is reduced compared to
β = 0 case, which leads to a smaller corrugation.

Finally, the corrugation disappears in the case of β = βc. In this case,
the phase point is on exit exactly shifted by λ with respect to the β = 0
position. For the β = βc red path N decreases from Nred to Nblue in the
first half and increases from Nblue to Nred in the second half. This happens
analogously with the blue path. Hence, the optical path lengths are the
same and the corrugation disappears. This behaviour can be easily extended
to the case where the shift at the exit is nλ , n ∈ N. A simple geometrical
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consideration leads to a critical angle of βc,n = arctan(nλ/L). Indeed, a more
precise mathematical treatment confirms this behaviour [111].

We want to treat the above problem in more general. Consider a pertur-
bation in the refractive index

N(~r) = h0(~r)N0 + h1(~r)N1 cos(~k · ~r − ϕ) , (3.64)

where the functions hi : R3 → [0, 1] , i = 1, 2 are envelopes of the constant
(i = 0) and fluctuating (i = 1) part of N(~r). The probe beam is again
along the z-axis and the phase shift caused by N(~r) is given by (3.35) with
s = z. The k-vector of N is not necessarily parallel to the x-axis and φ can
be written as

φ = φ0 + kbN1

∞∫
−∞

h1(z) cos(kxx+ kyy + kzz − ϕ)dz (3.65)

where

φ0 = kbN0

∞∫
−∞

h0(z)dz = const. (3.66)

With the identity cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) Eq. (3.65) can be
written as

φ = φ0 + kbN1 cos(kxx+ kyy − ϕ)

∞∫
−∞

h1(z) cos(kzz)dz

− kbN1 sin(kxx+ kyy − ϕ)

∞∫
−∞

h1(z) sin(kzz)dz . (3.67)

With the definitions for the cosine and sinus transform (note: the lower
integral limit is now zero)

COS[f(x)](y) =

√
2

π

∞∫
0

f(x) cos(xy)dx (3.68)

SIN [f(x)](y) =

√
2

π

∞∫
0

f(x) sin(xy)dx . (3.69)
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and the coefficients

φs :=

√
π

2
kbN1 COS[h1(z) + h1(−z)](kz) (3.70)

φas :=

√
π

2
kbN1 SIN [h1(z)− h1(−z)](kz) (3.71)

we finally obtain

φ = φ0 + φs cos(kxx+ kyy − ϕ)− φas sin(kxx+ kyy − ϕ) . (3.72)

This is a very similar to (3.36). From (3.49) we know that the intensity
depends linearly on the coefficients φs and φas, which are proportional to the
cosine and sine transform and are functions of kz. Without knowing the exact
shape of h1(z), we can expect, due to the properties of the sine and cosine
transform, for a broad envelope a narrow function in kz which approaches
quickly zero for greater kz. In other words: the more the perturbation is
oriented along the beam (greater kz) the smaller is the resulting intensity.
This is demonstrated with the help of a Gaussian envelope along the z-axis

h1(z) = e−
z2

L2 , (3.73)

where L is the effective length. The perturbation is rotated around the y-axis
by an angle β resulting in

N(~r) = N0h0(~r) +N1e
− z2

L2 cos(k cos(β)x+ k sin(β)z − ϕ) , (3.74)

hence kx = k cos(β), ky = 0 and kz = k sin(β). The envelope is symmetric
h1(z) = h1(−z) ⇒ φas = 0 and thus the cosine transform is proportional to
the Fourier transform. With [109]

COS
[
e−

x2

L2

]
(y) =

√
2

2
Le−L

2y2/4 (3.75)

we obtain

φs = φ1e
−k2L2 sin2(β)/4 , (3.76)

where

φ1 =
√
πkbN1L (3.77)

is the value for the β = 0 case. Equation (3.76) has its maximum at β = 0
and approaches zero for β > 0. The width of the peak is determined by

64



3.4. SCATTERING OF ELECTRO MAGNETIC WAVES AT
REFRACTIVE INDEX PERTURBATIONS

0 5 10 15 20 25

β [ ◦ ]

0.0

0.2

0.4

0.6

0.8

1.0
φ

s/
φ

1

kL=2π

kL=10

kL=20

kL=50

kL=200

Figure 3.5: φs/φ1 as function of β for different values of kL. With
greater values of kL the PCI signal drops off very quickly.

the value kL. Its lower limit can be found by assuming a wavelength λ
not longer than the effective length L which results in kL = 2πL/λ ≥ 2π.
The value of φs/φ1 as function of β for different values of kL is shown in
Fig. 3.5. It turns out that the PCI signal is very sensitive to the incident
angle β, at least for great values kL. For these values, the PCI signal results
mainly from perturbations propagating perpendicular to the probe beam.
The exponential decrease for a Gaussian envelope has been experimentally
verified for scattering of a HeNe laser at ultrasonic waves in air [112].

One final note: The linear response of the PCI system depends highly
on the successful shift of the n = ±1 order beams relative to the n = 0
order beam. This means, if the zero order component does not encounter the
groove in the phase plate, the response is only in the order of φ2 as shown
in Eq. (3.47). From (3.55) we see that the n = 0 term depends only on the
integration area and not on the perturbation. If the integration area does
not change the n = 0 order component is always in the same direction.
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3.5 Limiting Effects

Figure 3.6: Scattering at a phase grating with finite extent. The
extended phase grating can bes seen as many thin phase gratings.
It can be considered as thin as long as the phase difference between
the scattered waves is small (figure inspired by [113], p. 389)

.

In the previous sections, the scattering of the incoming wave was treated as to
occur from a single infinite thin plasma layer. Real plasmas do have a finite
extend but behave under certain circumstances similar as described above.
Following the approach described in Ref. [113], the limits of the thin plasma
approximation are identified by dividing an extended scattering volume in
multiple, sufficiently thin layers, as shown in Fig. 3.6. The phase difference
between two waves scattered at the front and at the backside is given by

∆φ = kbN0L[1− cos(θ′1)] (3.78)

= 2kbN0L sin2

(
θ′1
2

)
(3.79)

where 1 − cos(x) = 2 sin2(x/2) was used and the relationship between the
vacuum wave number kb and its value in the medium given by k′0 = kbN0.
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The modified wave number must also be considered in (3.57) and one obtains

sin(θ′1) ≈ θ′1 =
k

N0kb

for θ′1 � 1 . (3.80)

The refractive index appears now because the superposition after the phase
modulation happens in the medium, whereas in the previous calculations the
diffraction integral was performed in the vacuum after the phase modulating
layer. The phase shift can be written as

∆φ =
1

2

Lk2

N0kb

. (3.81)

If ∆φ � 1 the scattered waves interfere constructively and the scattering
volume appears to be thin. Due to N0 ≈ 1 we can write as a condition for
the interaction length

L� Lmax =
2kb

k2
. (3.82)

For fluctuations in the ion scale (k ≈ 3 cm−1) we find Lmax,i ≈ 13 m and for
the electron scale (k ≈ 30 cm−1) it is Lmax,e ≈ 0.13 m. The plasma diameter
for the PCI diagnostic on Wendelstein 7-X is about 1.4 m. Thus for ion scales
the plasma can be approximated as thin layer whereas fluctuations in the
electron scale must be already very localised. Treating the plasma as a thin
object is a very common approach for the description of the PCI. In general
the thin scattering layer treatment is often referred to as the Raman-Nath
regime and separated by the Klein-Cook parameterQ = Lk2/(N0kb) (Q� 1)
from the Bragg regime Q � 1 [114]. In general the Raman-Nath regime is
characterised by the occurrence of many diffraction orders, whereas in the
Bragg regime only one diffraction order occurs. Although Q is traditionally
used in the field of acousto optics to differentiate between Raman-Nath and
Bragg regime, there exist cases where it is not reliable and alternatives were
proposed e.g. in Ref. [115]. A more detailed approach involves solving the
wave equation in quasi-homogeneous media [116–119].

Another simplification was made by ignoring the finite propagation time
of the laser. This is valid as long as the transit time is smaller than the time
scale of the signal Lplasma/c � 1/fs (fs is the signal frequency and Lplasma

the plasma length). For the PCI position this gives fs � 210 MHz. Drift
wave turbulence is observed up to ≈ 1 Mhz, thus far below the limitation.

In reality non-ideal hardware elements influence the signal. As shown in
Sec. 3.3, the linear response of the PCI system depends on the success of
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shifting the n = 0 component by π/2. In reality the phase shift will never
be exactly π/2. The error can be described by an additional phase δ and the
electric field at the image plane for a single sinusoidal perturbation can be
written as [106]

EPCI
img = EAe

iφ̃0
[
ieiδ + iφ1 cos(kx′ − ϕ)

]
+O(φ2

1) . (3.83)

The resulting intensity becomes

IPCI
img ∝ 1 + 2φ1 cos(δ) cos(kx′ − ϕ) +O(φ2

1) . (3.84)

For small values δ, the cosine can be expanded and it turns out that the error
due to a non perfect phase plate is of the order of δ2.

Although the PCI response is linear in φ1, its contribution to the total
signal (3.49) is still very small as given by Eq. (3.38). To improve the con-
trast, the signal can be either measured by an AC coupled detector, which
measures only the fluctuating part ∝ φ1 or the intensity of the n = 0 compo-
nent is reduced by a fraction ρ < 1 as described in Ref. [119]. The modified
electric field at the image plane transforms to

EPCI
img = EAe

iφ̃0 [i
√
ρ+ iφ1 cos(kx′ − ϕ)] +O(φ2

1) , (3.85)

which leads to the intensity

IPCI
img ∝ ρ+ 2

√
ρφ1 cos(kx′ − ϕ) +O(φ2

1) . (3.86)

Thus the ratio of the AC to the DC part is increased by a factor 1/
√
ρ.

Further information can be found in [101,119]. For a quantitative discussion
of limitations arising from the specific implementation see Sec. 4.5.
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Chapter 4

PCI Implementation on
Wendelstein 7-X

In this chapter we discuss the implementation of the PCI diagnostic on Wen-
delstein 7-X. While the design should be as flexible as possible to cover spa-
tial scales from the ion down to the electron scale and frequency scales up to
several hundred kilohertz, the specific requirements of Wendelstein 7-X com-
plicate the design. Most importantly the long beam path of more than 20 m
and the limited torus hall access during operation requiring remote control
capabilities.

4.1 Main Design Considerations

As discussed in the previous chapter, the most simple PCI system consists
of four elements: a collimated, monochromatic light source, a phase object,
a phase plate and some imaging optics. In this rather theoretical set up the
light is diffracted at the phase grating and mapped on the phase plate which
is placed in infinite distance to the phase object. According to Fraunhofer
diffraction theory, the electric field on the phase plate is the Fourier transform
of the electric field after the phase object. The spatial separation of light
rays due to the scattering allows for shifting the n = ±1 components relative
to the n = 0 component, hence converting the phase modulation into an
intensity modulation in the image plane created by the subsequently placed
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kρs k [cm−1] λ [cm] θ [rad] θ [◦]
ITG 0.2 0.5 11 1× 10−4 0.005
TEM 1 2.7 2.3 5× 10−4 0.03
ETG 10 27 0.23 5× 10−3 0.3

Table 4.1: Expected wave numbers and scattering angles for dif-
ferent instabilities in Wendelstein 7-X. These values were calcu-
lated for the PCI laser with a wave length of λb = 10.6 µm and a
magnetized plasma with B = 2.5 T, Te = 4 keV, mi = mp + mn

resulting in ρs =
√
miTe/(e0B) = 3.7 mm.

imaging optics.

Practical limitations imposes a number of constraints which add complex-
ity to the system. The most obvious limitation might be the requirement of
an infinite distance between phase object and phase plate. This limitation
can be overcome by placing an off axis parabolic mirror (OAP) after the phase
plate creating the Fourier plane at a finite distance. The ultimate goal of the
diagnostic is the measurement of turbulent, spatiotemporal quasi periodic
structures in the range of ion to electron scale turbulence (c.f. Table 4.1).

From this perspective a large beam diameter is desirable as it increases
the k-space resolution ∆k = 2π/db with db being the beam diameter (see
also 4.5 for more details about the limitations). Since the scattering angle
θ = k/kb increases with k, the maximum beam diameter is limited by the
beam enclosure before it can encounter any optical components which limit
the divergence. If the scattering angle is to large for the given geometry of
the beam enclosure, scattered components are lost and lead to a modification
of the intensity response (3.49). Therefore, the design is naturally a balance
between k-resolution and expected k-range. This requirement can be met if
the beam size is adjustable with two telescopes, allowing to set the necessary
beam diameter based on the k-range of interest.

As mentioned before, a CO2 laser is chosen as light source: it provides an
intense, monochromatic and directed infrared light source at a wave length of
λb = 10.6 µm and a frequency of fb = 28 THz. The choice of wave length can
be justified by considering the following aspects: on the one hand a small kb

or a large λb ∝ 1/kb is desirable as it increases the scattering angle θ = k/kb,
allowing to measure also small k-values whose n = ±1 components would
otherwise fall into the phase plate groove preventing phase contrast. On
the other hand, there exists an lower limit for the angular beam frequency
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ωb = ckb by the approximation ωb � ωpe which allowed to linearise the
relation ship (3.27) between refractive index and density. In Sec. 3.2 the
plasma frequency was estimated for a high density of ne = 1 × 1021 m−3 to
be fpe = 0.28 THz, thus two orders of magnitude below fb. The wavelength
dependent scattering angle can impose a limit on the beam diameter which
also limits the spatial Nyquist criterion. These limits depend highly on the
specific implementation and are discussed in Sec. 4.5. Since the infrared
laser radiation is invisible a second HeNe laser is installed which emits in the
visible light range.

The superconducting magnetic field coils of Wendelstein 7-X are enclosed
by a cryostat maintaining thermal insulation. As a result access to the plasma
vessel is given by ports which are approximately two meters away from the
plasma surface. This results in a total path length between the windows of
5.4 m, putting a strong constrain on the required beam position accuracy.
In addition, the beam path length of more than 20 m increases the overall
sensitivity of the system for drifts of the alignment. As torus hall access for
alignment work is not possible during operation remote control capabilities
were implemented (c.f. Sec. 4.4).

4.2 Diagnostic Setup

Figure 4.1 shows the PCI diagnostic in the Cartesian coordinate system of
Wendelstein 7-X and Fig. 4.2 a component overview. The beam passes the
magnetic axis at an toroidal position of 260.6°, which is 8.6° away from
the next triangular shaped plane, hence the poloidal cross section is almost
triangular shaped (the toroidal distance between triangular and bean shaped
plane is 36°). It crosses the plasma at an angle of approximately 18° relative to
the horizontal plane. The vertical plane defined by the beam is approximately
5° off the poloidal plane at this toroidal position. On the laser optics table
(bottom left corner in Fig. 4.2) the laser beam is created, magnified and sent
to a mirror box containing two mirrors which have a diameter of 9 ” ≈ 23 cm.
From the mirror box the beam is redirected into the plasma. After the
plasma a second mirror box, similar to the first one, redirects the beam to
the receiving side optics table where the imaging optics are installed to map
the signals from the plasma on two different detectors.
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Figure 4.1: The PCI diagnostic position in the Cartesian coor-
dinate system of Wendelstein 7-X. The blue line indicates the
position of the magnetic axis. The grey area is the projection of
the last closed flux surface (LCFS) onto the xy-plane. The red
line shows the path of the PCI beam and the (slightly tilted) black
line the projection onto the ϕ = const plane. Due to the five-fold
symmetry all components are grouped in five modules (labelled
M1 – M5). The small figures show the LCFS in the poloidal plane.
Their shape is repeated every period i.e. ∆ϕ = 72 .
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Figure 4.2: Component overview of the PCI diagnostic on Wen-
delstein 7-X. The transmitting side optics table housing the laser
is shown on the bottom left, the receiving side optics table on the
right.

4.2.1 Transmitting Side Optics Table

Central component of the transmitting side optics table is the CO2 laser
(c.f. Fig. 4.3 and Fig. 4.4). Attached to the CO2 laser is a water cooled
shutter which allows a quick switching of the laser without the need to cut
the power. This makes it possible to keep the laser in thermal equilibrium
not only during operation, but also during alignment work. Straight after
the shutter a lens reduces the initial divergence of the beam. It encounters
next the first 50/50 beam splitter. Half of the laser power is dumped on
an air cooled beam dump in order to not overexpose the detectors on the
receiving side table. As mentioned above, it is favourable to substitute most
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Figure 4.3: Sketch of the transmitting side optics table. Dimen-
sions are not to scale. See Table A.1 for a detailed list of all
components.

of the infrared laser beam path with a visible laser system. Therefore the
light of a small laser diode is injected via a flipper mirror mount into the
beam path, allowing for visual checks of the alignment. A second 50/50
beam splitter dumps half of the remaining power on a power meter for direct
observation of the emitted infrared radiation power. The remaining 25% of
the initial power are then sent into the first telescope, consisting of three
lenses (c.f. Fig. 4.5). Two of these lenses are mounted on a rail system for
precise mechanical guidance and can be moved by two remotely controllable
linear stages in order to change the overall magnification of the system. After
the telescope the infrared beam encounters four steerable mirrors in order to
set position and direction of the beam on the 9 ” = 22.86 cm focal length
off-axis parabolic (OAP) mirror further downstream. In the next step the
infrared laser is combined with the visible HeNe laser emitted from a second
branch and mapped, in this order, via a number of plane mirrors on a small
OAP (f=9 ”), a plane and a larger OAP (f=80 ”) mirror and leaves then the
optics table towards the plasma. The two OAP mirros form a telescope with
a fixed magnification of 80 ”/9 ” ≈ 9. Two flippable plane mirrors between
the beam combiner and the plane mirrors in front of the small OAP mirror
allow for redirecting the combined beam with different optical path lengths
on a thermal plate for imaging the IR laser beam.

The HeNe laser (wavelength of 632.8 nm) follows conceptually a similar
beam path as the infrared laser. The power can for safety reasons be reduced
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Figure 4.4: Implementation of the transmitting side optics table.
The size of the table is 2 m× 1 m. For a sketch of the design and
a detailed component list see Fig. 4.3 and Table A.1.

Figure 4.5: Picture of the IR telescope on the transmitting side.
The movable lenses are attached to linear stages and guided by a
rail system.
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Figure 4.6: Remote steerable 2 ” lens holder motorized with piezo-
interial drives. The piezo drives are uncritical in high magnetic
field environments, have no holding currents and are vibration-
free.

by a grey filter. A couple of plane mirrors guide the HeNe laser beam into a
telescope for a flexible change of magnification. The telescope consists again
of three lenses, two of them mounted on a rail system which is moved by two
remotely controllable linear stages. After the telescope again plane mirrors
guide the visible laser to the beam combiner where it is combined with the
infrared laser.

4.2.2 Inter Optics Table Beam Path

Between the transmitting and receiving side optics table, plane mirrors (di-
ameter 9 ” ≈ 23 cm) redirect the laser beams to the mirror boxes, through the
AEZ-50 port window in the plasma vessel and from there in the AET-50 port
in the second mirror box down to the receiving side optics table. Between the
tables and the mirror boxes black iodized aluminium beam ducts (137 mm
inner diameter) encapsulate the laser beams. The mirror boxes are mounted
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Figure 4.7: Image of the AET-50 mirror box showing the 9”
mirrors M4 (remote steerable) and M5 (manually steerable), the
sound speaker for calibration and related electronics. The red line
indicates the optical path.

on a base plate via small, rubber made cylinders in order to reduce vibration
from the attached support structures. The vacuum barrier consists out of
ZnSe window mounted in a CF160 flange, equipped with a vacuum valve and
a pressure sensor. The inner diameter of the AEZ-50 port sets the theoretical
limit of 124 mm for the beam diameter. The outer mirror box at the AET-
50 port contains a FOSTEX FT17H sound speaker as calibration source for
the diagnostic. Sound bursts launched from the speaker imprint a refractive
index perturbation in air which can be measured with the PCI diagnostic.
The measured signal provides a reference for the direction of propagation,
the wave number and intensity allowing in principal for absolute calibration
of the plasma density signal.

4.2.3 Receiving Side Optics Table

On the receiving side optics table (c.f. Fig. 4.8 and Fig. 4.9), two flat 9 ”
mirrors map the beam on a large OAP (9 ” diameter, 80 ” focal length).
The converging beam is sent through a beam rotator consisting of three
plane mirrors (c.f. Fig. 4.10). The beam rotator ensures that the image of
the elongated plasma filaments is aligned with the 1D detector arrays, i.e.
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Figure 4.8: Sketch of the receiving side optics table. Dimensions
are not to scale. See Table B.1 for a detailed list of all components.

the imaging is predominantly perpendicular to the magnetic field. After the
beam rotator a steerable mirror and a subsequent quadrature detector form a
vibration compensation system. The quadrature detector is installed behind
a beam splitter and provides the feedback for the steerable mirror. The
beam splitter has a 1% transmissivity for the IR light and is fully reflective
for visible light. Further downstream of the beam splitter a focal point is
formed on the phase plate which is essentially a 2 ” gold plated mirror with
a 1.1 mm wide groove of depth λb/8 spanning a diameter. The ZnSe optic
substrate has a reflection coefficient of ρ ≈ 0.28, reducing the amplitude of
the n = 0 component. According to (3.86) the reduced reflectivity increases
the signal intensity by a factor 1/

√
ρ ≈ 1.89 over a perfectly reflective phase

plate. The transmitted power is detected in a power meter to check for
alignment degradation. The reflected part from the phase plate is mapped
on a small OAP (6 ” focal length) which form with the previous large one
a telescope with a fixed magnification of 80 ”/6 ” ≈ 13. In order to check
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Figure 4.9: Overview image of the receiving side optics table. The
size of the table is 2 m × 1 m. For a sketch of the design and a
detailed component list see Fig. 4.8 and Table B.1.

Figure 4.10: Image of the beam rotator. The red line indicates
the optical path.
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Figure 4.11: Detailed view on the phase plate and surrounding
components.

co-alignment of visible and infrared laser, a flippable plane mirror behind the
small OAP mirror maps the beam on a thermal plate.

As described in Sec. (3.4.1) the scattering process for a single phase
grating is effectively a 2D process and selecting specific scattering angles
allows for spatial localisation along the beam path. The measurement is line-
of-sight integrated along the entire beam path through the plasma. However,
under the assumption that the turbulent fluctuations are well aligned with
the ambient magnetic field, optical filtering of specific regions of the phase
plate allows to localize the measurement to specific ranges of magnetic field
pitch angle and, thus, yields a radial localization. For each path, lenses
create a Fourier plane at the rotational stage potentially holding a mask.
Plane mirrors in between ensures the correct optical path length and allow
to reduce the required space of the optical setup. After the rotating stages
plane mirrors redirect the beams into a telescope, which maps them on the
horizontally aligned, one dimensional photoconductive detector arrays.
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4.3 Detectors

The infrared light is detected by a MCT-16-32 (detector one) and a MCT-12-
32 (detector two) detector from Infrared Systems Development Corporation.
Central component of each detector is the one dimensional, 32 element mer-
cury cadmium telluride (HgCdTe) detector array. Each element has a size of
1 mm × 0.5 mm. They are stacked along the short side with a gap of 50µm
between, resulting in a total width of 17.55 mm. The detectors are placed in
a dewar cooled with liquid nitrogen (boiling point 77 K=−196 ◦C). The AC-
part of the detector signals is digitized at 2 MHz after being pre-amplified.
The data storage is handled by a MDS+ server.

The detectors were calibrated using an array of 114 OSRAM SFH 4059-
QS LEDs operating at 0.86µm. In order to calibrate the LED array response
a Thorlabs PDA36A detector was used. The frequency response of the system
detector-preamplifier is modelled as band-pass filter

H(f) =
H0√(

1 +
f2high
f2

)(
1 + f2

f2low

) , (4.1)

where fhigh and flow are the high- and low-pass frequencies, respectively.
Figure 4.12 shows the frequency response of detector one and the low and high
pass frequencies for each detector and channel. The low-pass frequency is for
both detectors around 2 kHz, the high pass frequency > 500 kHz. Between
10 kHz and 200 kHz the Amplitude response is essentially flat (c.f. top figure
in Fig. 4.12). Below and above this interval the modified response has to
be taken into account when considering the spectral power of a signal. The
amplitude variation between channels is less important since the sound wave
calibration is applied to each channel individually.

4.4 Remote Alignment

As mentioned in Sec. 4.1 the diagnostic is sensitive to misalignment due to
the long optical beam path of 22 m between the optics tables and the re-
quirement to steer the beam through the 5.4 m distant port windows, which
are only slightly larger than the beam size. Limited torus access during
operation imposes a further constrain requiring remote alignment capabili-
ties. The challenge for the controlling scheme is now to identify the critical
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Figure 4.12: Top figure: frequency response of detector one for
each channel. The dots are the measured values. Bottom fig-
ure: low- and high-pass frequencies for both detectors for for each
channel.
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Figure 4.13: The smallest alignment unit consists of two screens
and two mirrors to correct for positional and angular deviations
of the beam.

Figure 4.14: Iterative alignment cycle for planar mirrors. In each
cylce the displacement is reduced by a factor 0 < r < 1.

components/positions which need to be observed and implement appropriate
countermeasures to be able to react on deviations from the ideal state while
keeping the complexity of the system as low as possible. Critical are those
objects, where perturbations from the ideal state lead to a significant reduc-
tion of their functionality. For example, the centring of the beam on the
phase plate groove is crucial for a good measurement. In contrast, (small)
positional deviations on plane mirrors do not change the principal function-
ality of the mirror. In terms of alignment the relevant beam properties which
are affected are its position and direction along the optical path, which leaves
2× 2 degrees of freedom at each position. A two axis steerable mirror can
correct for two degrees of freedom which means that the smallest alignment
unit for a full positional and directional error correction consists at least of
two two axis steerable mirrors with two observations screens (c.f. Fig. 4.13).
As shown in Fig. 4.14 for planar mirrors the displacement on both observa-

tion screens can be iteratively reduced. We find for the displacement ∆sn+1
1
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Figure 4.15: Principal scheme of beam position measurement
through alignment posts inserted at positions along the beam.

on S1 in step n+ 1

∆sn+1
1 =

d2

d2 + d3

∆sn2 , (4.2)

where ∆sn2 is the displacement on screen 2 in the iteration step n, d1 the
distance between M1 and M2, d2 the distance between M2 and S1 and d3 the
distance between S1 and S2. Similar, we find for ∆sn+2

2

∆sn+2
2

d1 + d2

d1 + d2 + d3

= ∆sn+1
1 (4.3)

Combining (4.2) and (4.3) yields

∆sn+2
i = r∆sni with i = 1, 2 (4.4)

where

r =
1

1 + d1d3
d2(d1+d2+d3)

< 1 (4.5)

is the factor by which the displacement on each screen is reduced per cy-
cle.This process converges always since 0 < r < 1. The convergence can be
increased by maximizing the distance between the mirrors and the screens
(d1 and d3) or reducing the distance between M2 and S1 ( d2). A second
simplification can be applied if we take into a account, that only a small
stripe of the whole beam diameter is mapped on the linear detector array.
The remaining part can be used for beam diagnosis, as shown in Fig. 4.15: in
principal the shadow of posts partially inserted into the beam can be used to
determine the beam position at the posts. This approach is used to monitor
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the beam position on the port windows. Table 4.2 summarizes the alignment
scheme.

The main diagnostic mean for determining the laser beam position are
nine network cameras and power meter located behind the phase plate. The
stray light of the visible laser beam is too low for a direct observation on the
plane mirrors. To increase temporarily the reflectivity flippable screens are
installed in front of each mirror. The final determination of the laser spot
is done either by comparison with a reference image or by image processing
which detects the laser spot programmatically. Table 4.2 summarizes the
alignment scheme.

The control software is written in Python. A web server provides a graph-
ical user interface and the access to single components. In order to prevent
damage to the system, groups with a limited number of components and
restricted paramter space are defined. To prevent these kind of unwanted
motor movements, groups define a set of motors, devices and associated pa-
rameter limits which are safe to operate. The measured parameter defining
the state of the PCI diagnostic (motor position, camera images, power mea-
surements) are saved for each experimental program together with the actual
measured data. As data acquisition system MDS+ is used.
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# laser loc. control goal Npos Ndir obs. 1 obs. 2 control 1 control 2

1 HeNe T large OAP (T32) 2 2 T33 T29 T27 T48

2 HeNe wdw. port windows 4 0 shadow on
R3 or R6

- T35/M1 M3

3 HeNe R large OAP (R7) 2 2 R3 R6 M4 R1/M6

4 HeNe R phase plate (R14) 2 0 R14 - R1 or R11 -

5 HeNe R spatial filters (R27a/R27b) 2/2 0/0 R27a/R27b - R24a/R24b -

6 IR &
HeNe

T & R co-alignment 2 2 T22 and
R18

- T16 T18

Table 4.2: Remote alignment scheme of the PCI diagnostic. The location prefixes ’T’ and ’R’ stand for the
transmitting (’T’) or receiving (’R’) side optics table. The given numbers are those in Fig. 4.8 with table
A.1 and Fig 4.3 with table B.1. For example ’T33’ is element with number 33 on the transmitting side
optics table. The variables Nx indicate the degrees of freedom for either position (x =pos) or direction
(x=dir). M1 to M6 label the 9 ” mirrors which guide the beam from the transmitting side table through
the vessel to the receiving side. Mirror M1≡T35 is located on the extension of the transmitting side
optics table, M2 and M3 are located in the mirror box of the AEZ-50 port, M4 and M5 are in the mirror
box at the AET-50 port and M6≡R1 sits on the receiving side optics table extension.
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4.5 Limitations

4.5.1 Frequency and Wave Number Limits

Frequency Limits

In this section we want to discuss measurement and interpretation limits
which are particular for the PCI implementation on Wendelstein 7-X. Both
detectors sample at a frequency of fs = 2 MHz which results in a Nyquist
frequency of fny = fs/2 = 1 MHz. Due to vibration of the laser beam and
noise the lower limit can be estimated to be around 1 kHz. Hence, the fre-
quency limit for data measured by the PCI diagnostic can be considered to
be

1 kHz < fPCI < 1 MHz . (4.6)

Note, although the frequency response of the detectors does not impose a
hard limit on the frequency range (4.6) it might need to be taken into at the
edges of the interval (c.f. Sec. 4.3).

Lower Waver Number Limit

As already mentioned the phase plate groove width w has a strong influence
on the system performance. The choice of an ideal width is e.g. quantita-
tively discussed in [101]. Here we summarize the most important aspects.
Diffraction effects lead to a finite spot width d of the beam. If the groove
width is in the range or smaller than the spot size of the unscattered n = 0
component non-linear imaging effects occur: phase shifted parts of the cen-
tral component interfere with non-shifted parts of the n = 0 component
which are outside of the groove. This results in a severe deviation from the
geometrical optic properties and non-linear effects such as image distortion.
Furthermore, the overall response is reduced since only the phase shifted part
of the n = 0 component leads to a phase contrast. For very small k or large λ
the n = ±1 components move (partially) into the groove since the scattering
angle becomes very small (θ = k/kb). It can then happen, that parts of the
n = ±1 components in the groove interfere with unshifted n = 0 components
outside. This inverse phase shift effect leads to a (partial) cancellation of the
signal. Assuming the groove width is sufficiently large (i.e. larger than the
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spot width) in order to avoid these effects it still defines the wave number or
wave length response. For such a large w the spot of the n = 0 component
might fit fully into the groove, but any n = ±1 component with a separation
distance s smaller than the groove width is not phase shifted, hence no phase
contrast occurs. This limitation characterizes the lower wave number limit
kmin. From this perspective a very large groove width is not desirable as it
leads to an unnecessary high low wave number limit. On the other hand
vibrations lead to a movement of the beam on the phase plate and it can
make sense to chose a groove width which is not too tight: for a small w
(but still w > d) a movement of the laser might bring the n = 0 component
out of the groove and the response for all wave numbers drop. In contrast, a
larger value of w requires a higher vibrational amplitude before the central
component leaves the groove. The price to pay is the increased kmin – but all
other wave numbers do not suffer from the intensity reduction of the central
component. For the PCI setup in the OP1.2b campaign a groove width of
w = 1.1 mm was chosen. For a quantitative assessment of kmin we require
that the spot size separation s between scattered and unscattered component
is

s ≥ w

2
. (4.7)

A geometrical consideration yields

s =
k

kb

Feff , (4.8)

where Feff is the effective focal length. Inserting (4.8) into (4.7) yields:

k ≥= kmin =
wkb

2Feff

. (4.9)

For the PCI diagnostics the effective focal length is given by the large OAP
mirror on the transmitting side optics table, Feff = 80 ” = 2.032 m. Together
with w = 1.1 mm and λb = 10.6µm we find kmin = 1.6 cm−1. A possible
second lower limit for the wave number arises from the finite beam width, or
to be more precise, the spatial range d of the plasma which is mapped on the
detector. This finite range leads to a wave number resolution ∆k = 2π/d.
This raises the question if the diffractional limit (4.9) or the the finite wave
number resolution determines the lower k limit. In order to give an answer
we might ask for the critical diameter dc below the wave number resolution
exceeds the diffractional limit:

kmin < ∆kc ⇔ d < dc =
2π

kmin

. (4.10)
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For the above given value of kmin we find dc = 3.9 cm. In all plasma measure-
ments so far d was always above dc, hence the diffractional limit (4.9) defines
the lower wave number limit which reaches in the wave number range of ion
scale turbulence. However, the design of the PCI diagnostic incorporates
also an operation regime with strongly reduced beam size for fluctuation
measurements in the electron scale range. In this large wave number regime
the large scattering angle (compared to ion scale, c.f. Table 4.1) leads to a
loss of the n = ±1 components at the beam enclosure. In order to avoid this
the beam diameter is reduced and the effective sampled beam diameter can
drop below dc.

Upper Wave Number Limit

The loss of scattered components at the beam enclosure, imposes also an
upper limit. If the scattering angle θ it too large, the transversal displacement
rs of the scattered component exceeds the critical beam duct radius rc before
it encounters the large OAP on the receiving side optics table which reduces
the divergence. The condition for preserving the scattered component reads

rc > rb + rs = rb + lp tan(θ) ≈ rb + lp
k

kb

, (4.11)

with rb being the beam radius and lp the distance along the optical axis
between scattering volume and considered position. In the last step we used
the simplification tan θ ≈ sin θ ≈ θ since θ � 1. We solve (4.11) for k and
find

k < kc =
kb
2lp

(dc − db) , (4.12)

where we expressed the radius in terms of the diameter di = 2ri, i = c, b. If
k < kc all scattered components can reach the OAP before they are lost at
the wall. As we can see from (4.12) kc is a function of the beam diameter.
A second limitation arises from the spatial Nyquist limit

kn =
πN

d
, (4.13)

where N is the number of detector elements and d the diameter of the beam
which is mapped on the detector. We make the ansatz kn(db) = kc(db) in
order to find out which limit is more restrictive when considering different
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beam diameters. A short calculations yields

db =
dc
2
±

√
d2
c

4
− 2πNlp

kb
. (4.14)

For the PCI system it is dc = 150 mm, N = 32 and lp = 11.4 m which gives
db+ = 117 mm and db− = 33 mm. We conclude, for all k ∈ [db−, db+] the
Nyquist limit (4.13) imposes the more restrictive upper wave number limit.
The theoretical maximum beam diameter for the PCI system on Wendelstein
7-X is given by the internal pipe of the AEZ-50 port of 124 mm. However, in
practice this limit is hard to reach due to alignment accuracy. For the largest
possible k measurement, the choice of db = db− provides the optimum. In
this case kc = kn = 30 cm−1 which reaches in the range of electron scale
turbulence.

4.5.2 Wave Number Uncertainty

The orientation of the elongated plasma fluctuations depends on the orienta-
tion of the magnetic field lines along the line of sight which varies by about
25 ◦ for the PCI diagnostic (c.f. Fig. 4.16). Since the detector is only one
dimensional a plasma wave with wavelength λp is detected as a wave with
a projected wavelength λm = λp cos(β), where β is the angle between the
axis of the detector element and the plasma magnetic field line direction
from which the plasma wave originates. Due to the line integrated character
the detector measures thus always wave numbers with different orientations
which lead to an uncertainty of the measured wave number. We can estimate
this uncertainty by calculating the wave number error

∆kβ = |kp − km| = km| cos(β)− 1| (4.15)

⇔ ∆kβ
km

= | cos(β)− 1| . (4.16)

In the most unfavourable case β = 25 ◦ which gives ∆kα/km ≈10 %. In the
best case the detector is oriented in the center of the angle interval such that
α = 25°/2, which yields ∆kα/km ≈2.4 %.

A second uncertainty for the wave number measurement can be caused by
a non-perfectly collimated beam. Any real space distance dd on the detector
array translates to the actual distance dp in the plasma via

dp = Mdd (4.17)
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Figure 4.16: Variation α of the magnetic field angle in the
transversal plane of the PCI beam along the beam chord from
the AEZ-50 to the AET-50 port as function of the beam position
u. The different colours represent different magnetic field config-
urations. The magnetic axis is at u = 0 m. The dotted areas are
beyond the last closed flux surface.

with M being the effective magnification of the receiving side optics system.
If the beam is not perfectly collimated its diameter at two different positions
along the beam chord varies and so the effective magnification M1 6= M
and M2 6= M for these two positions (in the case of perfect collimation it is
M = M1 = M2). If the collimation error and the scattering position is not
known the values for the Mi are unknown too. However, we can estimate
theoretically the expected error. As measure for the error we define the
relative length difference

ξ :=
d(l2)− d(l1)

d(l1)
=
d(l2)

d(l1)
− 1 (4.18)

of two different beam diameters at position li along the optical axis e.g. the
extreme case of a scattering volume at the last closed flux surface (LCFS)
on the inboard and outboard side. We can parametrize the beam diameter

91



4.5. LIMITATIONS

# d0 [mm] d3 [mm] ξ [%]
1 40 80 4.3
2 30 90 6.4
3 20 30 2.6
4 20 40 4.3
5 50 60 1.2
6 100 110 0.6

Table 4.3: Values of ξ according to (4.20) as function of d0 and d3.
The value l3 = 22 m is the optical path length between mirrors
M1 and M6. The values of l1 = 10.9 m and l2 = 12.3 m correspond
to a scattering volume at the LCFS on the inboard and outboard
side, respectively.

d(l) of a diverging geometrical beams as

d(l) = d0 +
l

l3
(d3 − d0) (4.19)

for known beam diameter di := d(li) with i = 0, 3. Inserting in (4.18) yields

ξ =
l3d0 + l2(d3 − d0)

l3d0 + l1(d3 − d0)
− 1 (4.20)

In Table 4.3 some values of ξ are shown as function of d0 and d3. The
cases #1 and #2 are somehow extreme where the beam diameter on the
transmitting side optics table is only a half (#1) or even a third (#2) of the
diameter on the receiving side. We note, that for larger beams the absolute
difference in diameter is less relevant (c.f. #2 and #6). This becomes also
clear from (4.20): the terms ∝ (d3−d0) become less important as d0 increases.
We note, that only in the extreme cases ξ exceeds the error ∆kα/km. In any
practical case it should be well below 10%.

In reality a beam is never perfectly collimated due to its Gaussian beam
profile. However, this effect is very small as we can see from the following
considerations. The transversal beam profile of a Gaussian beam reads

d(l) = d0

√
1 +

(
l

lR

)2

with lR =
πd2

o

4λb
(4.21)

where l is the distance from the beam waist where the beam has a diameter of
d0 (1/e amplitude decrease or 1/e2 intensity decrease) and lR is the Rayleigh

92



4.5. LIMITATIONS

length. We find for ξ

ξg =

√
1 +

(
l

lR

)2

. (4.22)

For ξg to be large lR ∝ d2
0 has to be small. If we assume an unfavourable optics

set up where the beam waist is located at one side of the plasma (instead of
the center) the maximum distance to the beam waist for a scattering center is
the plasma length of l = 1.4 m and an unfavourable small beam diameter of
d0 = 20 mm we find ξg = 0.1 %, thus much smaller than the above discussed
effects.
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Chapter 5

Study of Turbulence in the
Wendelstein 7-X Stellarator

As discusses in Sec. 2.5 gradient driven turbulence in the ion scale is expected
to play an important role in Wendelstein 7-X. In this chapter we analyse
turbulence with focus on the PCI diagnostic on the example of a discharge
for two different situations with modified gradients.

5.1 Discharge Overview

We consider the discharge shown in Fig. 5.1. The plasma is fuelled via
gas puffing and heated by electron cyclotron resonance heating (ECRH).
The magnetic field is set to be in standard configuration EJM with 2.52 T
on axis. While the density is kept almost constant the ECRH power is
reduced from approximately 5.0 MW down to approximately 2.5 MW in three
steps. We expect thus to have modified temperature gradients within the
same discharge which simplifies the comparison. For impurity studies a small
amount of impurities is injected by the laser blow off (LBO) system. The
injections can clearly be seen in the radiated power Prad which peaks for
each injection. However, in the following we are interested in the mean
dynamic for the two different heating steps marked in Fig. 5.1. We average
therefore all quantities over a time interval of 1 s. With this in mind, the
perturbations caused by the LBO system takes place on a much shorter
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5.1. DISCHARGE OVERVIEW

Figure 5.1: Overviewplot of the considered ECRH heated dis-
charge. Courtesy A. von Stechow.

time scale and are outside of the considered time interval. Their influence is
therefore considered to be negligible. For diagnostic purposes short blibs from
the neutral beam injection (NBI) are added. These blibs can be recognised
in the line integrated density signal, whereas the temperature is almost not
affected. As for the LBO injections, the effect of the NBI blibs on the plasma
is very limited and therefore negligible. Since the ECRH heats primarily the
electrons we expect a direct correlation between injected heating power and
electron temperature. Indeed we observe, that with reduced heating power
the electron temperature decreases while the ion temperature is not much
affected. Hence the drop in the plasma energy Wdia is mainly due to the
drop in electron temperature. Note, that the temperatures shown in Fig. 5.1
are given only for a few locations and might not reflect possible changes in
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5.2. STATISTICAL ANALYSIS

Figure 5.2: Histogram of one detector channel of the PCI diag-
nostic for the high (t = 3 s) and low (t = 8 s) ECR heating power
step. The doted lines show a normal distribution with the same
standard deviation as the data (solid lines).

the temperature gradients.

5.2 Statistical Analysis

According to the mixing length model in Sec. 2.2.5 turbulent eddies lead
to density fluctuations in the presents of a density gradient. Furthermore,
we have seen that these fluctuations can lead to transport through E×B-
advection. It is therefore from interest to study fluctuation amplitudes in
more detail. Due to their stochastic nature a natural choice is an statistical
approach in which we consider the distribution of the fluctuation amplitudes.
For the two time intervals indicated in Fig. 5.1 at mean time 3 s and 8 s we
center the raw signal of a certain channel to its mean value and normalize
to the standard deviation. Furthermore a bandpass filter for frequencies
between 20 kHz and 600 kHz is applied to mitigate effects from noise. Figure
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5.3. SPECTRAL ANALYSIS

5.2 shows the histogram of the fluctuation amplitudes for the two different
ECR heating power levels. As reference, a normal distribution with zero
mean and the same standard deviation as the data is shown. We observe
a reduction of the standard deviation with reduced heating power. The
distribution is symmetric in both cases which is quantified by the vanishing
skewness S, a measure for the symmetry [120]. Furthermore we observe a
systematic deviation of the distribution from the normal distribution with
increased fluctuation amplitude. This deviation is small, as indicated by the
small values of the excess kurtosis K. The excess kurtosis is a measure how
the tails of a distribution compare to the normal distribution. Although
small, the deviation from the normal distribution is statistical significant.
To convince ourselves we can test on the normal distribution (e.g. with
the Shapiro-Wilk or Jarque-Bera test) and find for the probability to find a
normal distributed sample which is like the observed data or more extreme
is less than 10−25 ≈ 0.

The reduction of the standard deviation with reduced heating power in-
dicates a reduction of the fluctuation level as larger fluctuation amplitudes
become less frequent. This is in agreement from what we expect if we assume
that with reduced heating power the turbulent drive through temperature
gradients becomes smaller which finally results in less fluctuations. Although
small amplitude density fluctuations are nearly normal distributed, a signifi-
cant deviation of large events is observed leading to a more bursty character
of the fluctuations. This is in agreement with numerical simulations of ITG
turbulence [121]. Considering the plasma as nearly incompressible, density
fluctuations are generated by radial advection within a density gradient re-
gion. Due to the observed symmetry, we can conclude that the advection
of higher plasma density and the associated local flattening of the density
resulting in negative fluctuation amplitudes are well balanced.

5.3 Spectral Analysis

Figure 5.3 shows the spectrogram of the PCI signal for a single detector
channel. More precisely, we divide the time series obtained from PCI mea-
surements in chunks of 1 ms length and calculate for each one the spectrum.
The time series of all spectra presents then the shown spectrogram for the
fluctuation power. Generally, the spectrogram shows broadband fluctuations.
The horizontal narrow banded lines are noise as well as the structures around
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5.3. SPECTRAL ANALYSIS

Figure 5.3: Spectrogram of one detector channel of the PCI diag-
nostic. The marked time intervals are analysed in more detail in
Fig. 5.4.

700 kHz (both appear also if there is no plasma for t < 0 s). However, we can
identify a reduction of the density fluctuation level with decreasing power
(at ca. 4.0 s and ca. 6.5 s). For a more detailed analysis we take the time
average of the spectrogram over a length of 1 s at the marked positions in
Fig. 5.3. The first two intervals (in blue and green) mark the two heating
steps whereas the third (red) is chosen to be at a time without plasma in
order to quantify the noise level. The resulting spectrum is shown in Fig. 5.4
where the frequency and spectral power are given in logarithmic scale. The
denoted time is the mean time of the averaged time interval e.g. 3 s indi-
cates an average interval of [2.5 s, 3.5 s]. Above 600 kHz the noise level starts
to become comparable to the signal. Thus, the peaks above 600 kHz can
be attributed to the high noise/low signal level. The spectra for both time
instances show a power-law behaviour S ∝ f−α as expected for turbulent
fluctuations. Variation of the heating power, however, is only reflected in the
higher frequency part (> 200 kHz) of the spectrum, whose spectral index α is
significantly reduced for the low compared to the high heating power phase,
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5.3. SPECTRAL ANALYSIS

Figure 5.4: Spectral power of one detector channel. The respec-
tive time intervals are marked Fig. 5.3. The peaks above ca.
600 kHz cannot be trusted due to high noise level at these fre-
quencies.

whereas the overall shape of the spectrum remains essentially unchanged.
It must be noted that there is some not yet fully clarified variation of the
spectral indices between channels. The given errors result from the linear
fits on the dark coloured values and do not account for the aforementioned
uncertainty. This must be taken into account for a quantitative comparison.
However, the qualitative behaviour remains unchanged.

Furthermore, the analysis is done in the time domain and changes of the
radial plasma profiles and the associated variation of the fluctuation phase
velocities fold into this analysis. To get further insight into the fluctuation
characteristics, the spatiotemporal capabilities of the diagnostics can reveal
a wavenumber-resolved spectrum. This is shown in Fig. 5.5 for both heating
steps. In addition to the temporal Fourier transform a spatial Fourier trans-
form across all 32 channels was applied to the detector signal. The color in
the main plot of Fig. 5.5 indicates the fluctuation power Pkf as function of
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5.3. SPECTRAL ANALYSIS

Figure 5.5: Wavenumber-frequency spectrum measured by the
PCI diagnostic together with the power integrated over wavenum-
ber and frequency, respectively. The top figure shows data ob-
tained for the high ECR heating, the bottom figure for the low
ECR heating case.
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5.3. SPECTRAL ANALYSIS

the wavenumber k and frequency f in linear scale. Positive wave numbers
indicate a propagation direction parallel to the sound wave calibration source
which is upwards or in positive z-direction (c.f. Fig. 4.1). This corresponds
to a propagation on the low field side parallel to the poloidal direction and
anti-parallel on the high field side. The graph on the right next to the main
plot shows the power integrated over the wavenumbers. Similarly, the plot
below shows the frequency-axis integrated power. The white area in the cen-
ter of the main plot masks the lower k-limit due to the finite phase plate
groove width as discussed in Sec. 4.5.1. Since the PCI signal is line inte-
grated it picks up fluctuations on the inboard as well as on the outboard
side. Thus, a fluctuation travelling around the plasma results in a dispersion
relation with positive and negative phase velocity but the intensity might be
different as e.g. the gradients can be different. From this perspective it might
be fruitful to measure the symmetry of the observed power. This is done by
the blue line drawn above the masked area, which indicates kP defined as

kP (f) :=

∫
kPkf (f, k) dk∫
Pkf (f, k) dk

. (5.1)

We observe for both situations that most of the power is located at small
wavenumbers and frequencies. The maximum wavenumber is symmetric at
around ±2.5 cm−1 resulting in kmaxρs ≈ 0.3, which is in the expected ion
scale turbulence range. Note that the turbulent fluctuations are not of har-
monic nature, thus we expect a broad banded (wavenumber) spectrum. The
power is not symmetrically distributed for all frequencies. For the high power
case a systematic deviation of kP with increasing frequency towards negative
wavenumbers is observed which inverts at about 500 kHz. This manifests
also in the slightly increased frequency integrated power for negative wave
numbers. For the low power case the inverse symmetry deviation is at about
250 kHz. Furthermore kP ≈ 1 cm−1 between roughly 600 kHz and 900 kHz.

For both cases we can identify a correlation between wavenumber and
frequency indicating a dispersion relation. As seen in the spectrum in Fig.
5.4 the fluctuations span over a wide range of power values. In order to reveal
details in Pkf which might be not visible due to the finite colorbar resolution
we normalise the value of Pkf for each frequency to its mean value aver-
aged over all wavenumbers. The resulting normalised wavenumber-frequency
spectrum P̃kf is shown in Fig. 5.6. The wavenumber-frequency correlation
is much more pronounced compared to Fig. 5.5 and we can identify for neg-
ative wavenumbers a constant phase velocity up to approximately 200 kHz
for both the low and high power case. For positive wavenumbers the relation
between wave number and frequency seems linear as well, but the overall
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5.3. SPECTRAL ANALYSIS

Figure 5.6: Normalised wavenumber-frequency spectrum mea-
sured by the PCI diagnostic. The top figure shows data obtained
for the high ECR heating, the bottom figure for the low ECR
heating case.
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5.3. SPECTRAL ANALYSIS

power is less. For frequencies above ca. 300 kHz vertical structures are vis-
ible and the negative k branch of the dispersion relation in the high power
case becomes more curved. These vertical structures are artefacts of the PCI
system. We can estimate the phase velocities of the fluctuations from the
linear part below 300 kHz by fitting a linear dispersion relation

f(k) =
1

2π
vp±k + f0 (5.2)

with vp± being the phase velocity. We have included here the non-physical
constant f0 in order to account for (unknown) systematic shifts which would
otherwise bias the phase velocity estimate. The resulting linear curve as
well as the estimated phase velocities for the negative wave number branches
are show in Fig. 5.6. To compare for symmetry, the fitted branches are
mirrored (dashed lines). The fits were done through the maxima of P̃kf ,
thus the width of the branches were not taken into account. The given
uncertainties are therefore only those obtained from the fit. As discuses
in Sec. 4.5.2 the relative wavenumber error is about 10 % which we can
take as estimate for the phase velocity uncertainty. However, as we can
convince ourselves in Fig. 5.6 the fitted linear functions decently agree with
the observed dispersion relation. The phase velocity roughly halves from the
high (vp− = −4.9 km/s) to the low (vp− = −2.5 km/s) power case. Assuming
an instability propagating around the plasma and contributing to the PCI
signal on the inboard and outboard side we expect a symmetric spectrum.
However, we observe less power (kP < 0) and a slightly reduced phase velocity
(at least in the high power case) in the positive wave number branch. These
features might be related to the details of the magnetic geometry along the
PCI line of sight. The spacing of the surfaces of constant magnetic flux on the
outboard side is smaller when compared to the inboard side (c.f. Fig. 5.7).
Taking the flux surfaces as surfaces of constant plasma pressure, this results
in a larger plasma pressure gradient on the outboard side, thus a larger source
of free energy for the observed fluctuations.

However, from a turbulence point of view a linear relation between wave
number and frequency is not expected, as we have seen in Sec. 2.3 e.g. for
the ITG dispersion relation (2.110). The observed constant phase velocity
is rather a sign for a strong Doppler shift because of the rotating plasma.
As discussed in Sec. 2.2.4 the ambipolarity condition for the neoclassical
transport in a stellarator leads to a radial electric field causing an E×B-
rotation of the plasma. The Doppler shifted angular frequency ωl in the
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5.3. SPECTRAL ANALYSIS

Figure 5.7: |∇reff | as a measure for the flux surface density along
the PCI line of sight for different magnetic field configurations.
The oscillatory character is a numerical artefact.

laboratory frame reads

ωl(k) = ωr

(
1 +

vE×B
v(k)

)
(5.3)

with ωr the angular frequency in the rotating frame, vE×B the E×B-velocity
and v(k) the phase velocity of the instability. The phase velocity is related
to ωl via v(k) = ωr(k)/k hence we can write for ωl

ωl(k) = k (v(k) + vE×B) . (5.4)

Thus, in the case |v(k)| � |vE×B| we find ωl(k) ≈ vE×Bk. We expect therefore
the origin of the signals observed by the PCI to be strongly dominated by
the E×B-velocity. Figure 5.8 shows the radial E×B-velocity profile for the
considered situations. Positive values indicate a rotation counter-clockwise
hence in positive poloidal direction. The dashed lines mark the observed
phase velocities. Note that the sign of the measured phase velocities indi-
cate the upwards/downwards direction whereas the sign of vE×B defines the
poloidal direction. They are note necessarily the same. For example, a fluc-
tuation propagating in negative poloidal direction located on the inboard
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5.3. SPECTRAL ANALYSIS

Figure 5.8: Radial velocity profile for the high ECRH case at 3 s
and the low ECRH case at 8 s. Data: courtesy of [122].

side would appear as positive phase velocity in the PCI measurement. As
we can see, the E×B-velocity at reff/a ≈ 0.2 and reff/a ≈ 0.6 can explain
to a large extent the observed variation, although not completely. However,
the instability itself has a phase velocity v which is superimposed on vE×B,
resulting in the measured signal vp = v + vE×B. Since we observe ω ∝ k
we conclude from the above made considerations that |v| � |vE×B| and the
origin of the fluctuations must be therefore located close to the extrema in
Fig. 5.8. Furthermore it is |vp| > |vE×B| for each power step. As a result v
and vE×B must have equal signs. This can be used to develop an expectation
about the type of instability for each location, since the ion diamagnetic drift
is parallel and the electron diamagnetic drift is anti parallel to the poloidal
direction. Thus, an instability originating from the inner half at reff/a ≈ 0.2
must propagate in the ion diamagnetic and an instability belonging to peaks
in the outer half at reff/a ≈ 0.6 in the electron diamagnetic drift direction.
Considering the paradigmatic instabilities ITG, ITEM and TEM discussed
in Chapter 2 we know that the ITG/ITEM modes propagate in the ion dia-
magnetic, while TEM modes propagate in the electron diamagnetic direction.
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5.3. SPECTRAL ANALYSIS

Figure 5.9: Density profile for the high (t = 3 s) and low (t = 8 s)
power case. The dots represent measured values, the lines are
spline interpolations. Data: courtesy of [123].

Figure 5.10: Ion temperature profile for the high (t = 3 s) and
low (t = 8 s) power case. The dots represent measured values, the
lines are spline interpolations. Data: courtesy of [123].
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5.3. SPECTRAL ANALYSIS

Figure 5.11: Electron temperature profile for the high (t = 3 s)
and low (t = 8 s) power case. The dots represent measured values,
the lines are spline interpolations. Data: courtesy of [123].

Figure 5.12: Inverse electron temperature gradient length for the
high (t = 3 s) and low (t = 8 s) power case. Data: courtesy
of [123].
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5.3. SPECTRAL ANALYSIS

From this we expect ITG/ITEM contributions from the inner half and TEM
activity in the outer half. Further evidence can be found by considering the
temperature and density profiles. The density profile (c.f. Fig. 5.9) shows
only moderate changes between the heating steps, especially given the exper-
imental uncertainty. The ion temperature profile shown in Fig. 5.10 reduces
from about 2.0 keV to 1.6 keV in the core and is steeper in the edge region.
In particular in the inner half where we would expect ITG/ITEM activity,
the temperature gradient is small when compared to the edge. A significant
difference between the heating steps is observed in the electron temperature
profile which is expected since the ECRH heats primarily the electrons. For
the low power case the temperature is reduced from approximately 4 keV
down to approximately 3 keV in the core. The temperature profile exhibits
a local maximum in the gradient at reff/a ≈ 0.6 for the high power case and
at reff/a ≈ 0.5 for the low power case (c.f. Fig.5.12). This observation is in
agreement with the expectation of TEM modes in the outer half, as they are
destabilized by electron temperature gradients. Furthermore, the observed
reduction in the fluctuation level could be attributed to a reduced TEM drive
due to the smaller electron temperature gradient. Following the hypothesis
that TEM modes cause the fluctuations measured by the PCI diagnostic, the
strong signal observed for negative wave numbers originates from the out-
board side. As mentioned above this is in agreement with the expectation
of a stronger turbulent drive at this position due to the smaller flux surface
spacing. A more quantitative discussion of the turbulent instabilities would
involve numerical simulations. However, this is left for future investigations
at this point.

108



Chapter 6

Summary and Conclusion

The advanced stellarator Wendelstein 7-X is the first fully neo-classical op-
timized device posing the question about the role of turbulence in optimized
stellarators. Numerical simulations of turbulence in Wendelstein 7-X sug-
gest the occurrence of microturbulence in the spatiotemporal range of ion
scales such as the ITG and TEM instabilities. The phase contrast imaging
(PCI) diagnostic allows for direct non-invasive measurements of line of sight
integrated density fluctuations – where the plasma density presents the only
plasma parameter determining the diagnostic response. It is the first di-
agnostic providing core density fluctuation measurements in optimized stel-
larator geometry. The specific situation at Wendelstein 7-X, in particular
the cryostat, requires a diagnostic implementation with a more than 20 m
long optical path. In contrast it is a crucial requirement to maintain align-
ment of the probe beam on the phase plate with sub-millimetre accuracy.
Density fluctuations act as phase objects evading amplitude based detection
mechanisms. However, the phase plate allows for conversion of the phase
modulation into measurable amplitude variations. A comprehensive set of
remotely steerable mirrors and cameras for beam diagnosis allow for correc-
tions of alignment deviations during operation. Furthermore, a beam rotator
ensures alignment of the one dimensional detector array with the predomi-
nately perpendicular to the magnetic field oriented fluctuations. The setup
provides information on the poloidal scale length of fluctuations and, thus,
allows for revealing the dispersion. The spatial scale length reference is given
by a sound wave calibration system. The spanned wave number range of
approximately 0.2 < kρs < 1.5 covers the range of the linear ITG and TEM
spatial turbulence scales. In contrast to tokamaks, stellarators can exhibit
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unfavourable curvature on the outboard and inboard side. In fact, most
of the radial positions sampled by the PCI diagnostic, located close to the
triangular plane, expose unfavourable magnetic curvature. Thus, ion scale
turbulence under consideration is expected to be destabilized. However, flux
surface compression on the outboard side when compared to the inboard
side needs to be considered due to its effect on the thermodynamic quanti-
ties such as density and temperature. Here, the line integrated character of
the measurement imposes a limitation on the interpretability of the data.

We discuss a paradigmatic electron cyclotron resonance heated discharge
in Wendelstein 7-X. Due to the moderate density and the resulting weak
electron-ion coupling we observe smaller ion temperatures when compared to
electron temperatures. Radial density and temperature profiles are generally
centrally peaked and role off towards the separatrix, but the shape remains
essentially the same. In contrast, the radial E×B-velocity profile shows
significant differences. The spectral analysis reveals broadband fluctuations
and a spectrum showing typical turbulent properties such as indications for
self similar fluctuations resulting in a power law scaling of energy. The two
found ranges exhibiting a power law scaling might be understood as signa-
tures of a dominant two dimensional system, which we expect from the two
dimensional E×B-advection of the turbulent eddies.

The wavenumber-frequency spectrum reveals a dispersion of the fluctua-
tions with constant phase velocity vp = ω/k, which indicates that the motion
is mostly governed by the scale independent E×B-Doppler shift in contrast
to an expected dispersive contribution from an instability. Considering the
radial E×B-profile this finding suggests that the density fluctuations are re-
stricted to small radial ranges. The deviations between the measured phase
velocities and the E×B-rotation can be attributed to instabilities propagat-
ing in the ion diamagnetic drift in the central core region whereas in the main
gradient region the drift is in the electron diamagnetic direction. The central
core region exhibits very shallow gradients from which a drive of ITG modes
is not expected. In contrast, the outer region displays a significant electron
temperature gradient being consistent with the expectation of TEM modes
at this location. This interpretation is supported by the observed reduction
of turbulent fluctuations with reduced heating power, which correlates with
a reduction of the radial gradient of electron temperature while the density
gradient stays almost unchanged. In summary PCI is indeed a valuable tool
for ion scale turbulence measurements and the radial integration is not a
sever drawback if profiles are taken into account. We cannot exclude that
ITG modes play a role in different discharge scenarios which can be addressed
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in further campaigns.
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Appendix A

Transmitting Side Components
List
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Table A.1: Transmitting side optics component list (c.f. Fig. 4.3).

nr. type description comment

1 laser CO2 laser Main laser.

2 shutter shutter Enables fast switching of IR laser.

3 fixed lens optic: Thorlabs LA7270-G. FL=500 Adjust IR laser beam waist.

4 beam splitter mount: Thorlabs LCP06/M, optic: Laser Research Op-
tics L39200020-L3

Reduce laser power.

5 beam dump Air cooled beam dump. Dumps approx. 50 W.

6 laser Secondary visible helper diode laser (635 nm). Simplifies beam alignment up to
beam combiner (19).

7 flippable mirror flipper: Thorlabs MFF102/M, optic: Thorlabs PF1011-
P01.

Flipper to combine the diode guid-
ing laser (6) and the CO2 laser.

8 beam splitter mount: Thorlabs KM200, optic: Laser Research Optics
L39200020-L3.

Reduce and monitor power.

9 power meter Thorlabs PM100USB with Thorlabs S314C power meter
head.

Power meter receives up to 25 W.

10 fixed mirror mount: Thorlabs KM200, optic: Thorlabs NB2-L01.

11 fixed lens optic: Thorlabs LA7228-G. FL=200 mm.

12 movable lens optic: Thorlabs LC7759-F. FL=-25.4 mm

13 movable lens optic: II-VI Infrared 892020. FL=190.5 mm

14 telescope CO2 telescope

. . .
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Table A.1 continued . . .

nr. type description comment

15 fixed mirror mount: Thorlabs LCP06/M, optic: Thorlabs NB2-L01.

16 steerable mirror mount: Piezo motor mount, optic: Thorlabs NB2-L01 Steer IR beam together with (18)

17 fixed mirror mount: Thorlabs LCP06/M, optic: Thorlabs NB2-L01.

18 steerable mirror mount: Piezo motor mount, optic: Thorlabs NB2-L01. Steer IR beam together with (16)

19 beam combiner mount: Thorlabs LCP06/M, optic: Laser Research Op-
tics L19200020-B0

Beamcombiner, passing for CO2
laser, reflecting for HeNe laser.

20 flippable mirror flipper: Thorlabs MFF101/M, mount: Thorlabs
FMP2/M, optic: Thorlabs PF2011-P01.

Short throw flipper.

21 fixed mirror mount: Thorlabs LCP06/M, optic: Thorlabs PF2011-
P01.

22 thermal plate Thermal plate exposed to UV light. Visualize CO2 laser for co-
alignment.

23 camera IP camera Digitus DN-16039 Observes thermal plate for co-
alignment.

24 flippable mirror flipper: Thorlabs MFF102/M, mount: Thorlabs
FMP2/M, optic: Thorlabs PF2011-P01.

Long throw flipper.

25 fixed mirror mount: Thorlabs LCP06/M, optic: Thorlabs PF2011-
P01.

26 fixed mirror mount: Thorlabs LCP06/M, optic: Thorlabs PF2011-
P01.

. . .

115



Table A.1 continued . . .

nr. type description comment

27 steerable mirror mount: Piezo motor mount, optic: Thorlabs NB2-L01. Steers HeNe beam together with
(47).

28 fixed mirror mount: Thorlabs LCP60/M, optic: Thorlabs NB2-L01.

29 OAP F=9” OAP, mount: Thorlabs KS3, optic: Thorlabs
MPD399-M01.

Make telescope with F=80“ OAP
with magnification 80/9.

30 camera IP camera Digitus DN-16039 Observe beam position on small
OAP (29)

31 fixed mirror 4“ mirror, mount: Thorlabs KS4, optic: Thorlabs PF40-
03-P01

Manually steerable.

32 OAP F=80“ OAP

33 flippable screen flipper: Thorlabs MFF102/M, screen: self-made Increase reflectivity in plane of mir-
ror (32).

34 camera IP camera Digitus DN-16039 Observe beam position on mirror
(32)

35 steerable mirror piezo driven 9“ plane mirror

36 laser HeNe laser, primary visible laser

37 fixed lens optic: Thorlabs LBF254-150-A Make a pre-telescope with (40).

38 grey filter grey filter Reduces output power to < 1 mW.

39 fixed mirror mount: Thorlabs KM200, optic: Thorlabs PF20-03-
G01.

. . .
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Table A.1 continued . . .

nr. type description comment

40 fixed mirror mount: Thorlabs KM200, optic: Thorlabs PF20-03-G01

41 fixed lens optic: Thorlabs LA1908-633 Make a pre-telescope with (36).

42 fixed mirror mount: Thorlabs KM200, optic: Thorlabs PF20-03-G01

43 fixed mirror mount: Thorlabs KM200, optic: Thorlabs PF20-03-G01

44 fixed lens optic: Thorlabs LA1461-A. FL=250 mm

45 movable lens optic: Thorlabs LC1715-A. FL=-50 mm

46 movable lens optic: Thorlabs LA1301-A. FL=250 mm

47 telescope HeNe telescope

48 steerable mirror mount: Piezo motor mount, optic: Thorlabs PF20-03-
G01.

Steers HeNe beam together with
(27).

49 fixed mirror mount: Thorlabs LCP06/M, optic: Thorlabs PF20-03-
G01.

50 flippable mirror flipper: Thorlabs MFF102/M, mount: Thorlabs
FMP2/M, optic: Thorlabs PF2011-P01.

Flipper to block the HeNe laser.

51 fixed mirror mount: Thorlabs LCP06/M, optic: Thorlabs PF20-03-
G01.
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Table B.1: Receiving side optics component list (c.f. Fig. 4.8).

nr. type description comment

1 fixed mirror 9“ plane mirror

2 camera IP camera Digitus DN-16039 Observes sceen (3) in front of mir-
ror (4).

3 flippable screen flipper: Thorlabs MFF102/M, screen: self-made

4 fixed mirror 9“ plane mirror

5 camera IP camera Digitus DN-16039 Observes screen (6) in front of OAP
mirror (7).

6 flippable screen flipper: Thorlabs MFF102/M, screen: self-made

7 OAP mirror FL=80”, 9“ OAP Forms M=80/6 telescope with
small OAP (17).

8 fixed mirror 4“ mirror, mount: Thorlabs KS4, optic: Thorlabs PF40-
03-P01

Manually steerable.

9 camera IP camera Digitus DN-16039 Observes phase plate (14).

10 beam rotator self-made

11 steerable mirror Mount: glued on motor, Optic: Thorlabs PF1011-P01 Steers beam based on signal from
quadrature detector (13).

12 beam splitter Mount: Thorlabs FMP1/M, Optic: custom-made 1” Beamsplitter, specially designed
to have 1% transmissivity for IR
laser but full reflection for visible
light.

13 detector Quadrature detector for vibration compensation.

. . .
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Table A.1 continued . . .

nr. type description comment

14 phase plate 2” Phase plate, groove width 1.1 mm, Mount: Thorlabs
KM200

15 power meter Thorlabs PM100USB with Thorlabs S314C power meter
head.

16 fixed mirror Mount: Thorlabs FMP1/M, Optic: Thorlabs PF1011-
P01

17 OAP mirror FL=6”, small 90 degree gold OAP, Optic: MPD269-M01 Forms M=80/6 telescope with
large OAP (8).

18 thermal plate Thermal plate exposed to UV light.

19 flippable mirror Flipper: Thorlabs MFF102/M, Mount: Thorlabs
FMP2/M, Optic: Thorlabs PF20-03-C01

Flipper to check co-alignment and
beam shape. The location is
roughly the 1st image plane cre-
ated by the two OAPs.

20 camera IP camera Digitus DN-16039 Observes thermal plate (18).

21 beam splitter Mount: Thorlabs KM200, Optic: II-VI INSP 263, S/N
100-321205-1

50% Beamsplitter to separate the
beam path for detector 1 and 2.
Manually steerable.

22 fixed mirror Mount: Thorlabs KM200, Optic: Thorlabs PF2011-P01 Manually steerable.

23x fixed mirror Mount: Thorlabs LCP06/M, Optic: Thorlabs PF2011-
P01

24x steerable mirror Mount: Piezo motor mount, Optic: Thorlabs PF2011-
P01

. . .
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Table A.1 continued . . .

nr. type description comment

25x fixed lens FL=16” Lens to create a 2nd focal plane for
the spatial filter.

26x camera IP camera Digitus DN-16039 Observes spatial filter (27a).

27x spatial filter Rotation Stage: Newport URB100CC with Newport
ESP301 controller, Mask: self-made

Rotating spatial filter.

28x fixed mirror Mount: Thorlabs LCP06/M, Optic: Thorlabs PF2011-
P01

29x fixed mirror Mount: Thorlabs LCP06/M, Optic: Thorlabs PF2011-
P01

30x fixed lens FL=16”

31x fixed mirror Mount: Thorlabs LCP06/M, Optic: Thorlabs PF2011-
P01

32x steerable mirror Mount: Piezo motor mount, Optic: Thorlabs PF2011-
P01

33x fixed lens FL=5”, Diameter 2”, Mount: Thorlabs CXY2

34x movable lens FL=8.75”, Diameter 2”, Mount: Thorlabs CXY2

35x movable lens FL=16”, Diameter 2”, Mount: Thorlabs CXY2

36a detector Infrared Systems Development MCT-16-32 detector detector 1

36b detector Infrared Systems Development MCT-12-32 detector detector 2

37 telescope detector telescope Adjust beam to detector size.
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