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Summary
Since the exfoliation of graphene in 2004, 2D materials have offered an intriguing play-
ground for researchers to study new quantum mechanical effects at the quantum scale
in materials. Due to the atomically thin nature of 2D materials these structures exhibit
a very low dielectric screening which leads to strong light-matter interaction and pro-
nounced many-body effects. It has in recent years become possible to not only isolate
single monolayers of 2D sheets, but also to stack the monolayers into so-called van der
Waals heterostructures (vdWHs) which, as the name suggests, are layered monolayers
only weakly interacting through the van der Waals force. The possibility to seamlessly
freely stack and rotate the individual monolayers in vdWHs relative to each other in the
lab, makes accurate ab-initio calculations unable to describe such multilayer systems and
effective models are needed to calculate the electronic and optical properties of vdWHs.

In this thesis, entitled Computational Studies of Two-Dimensional Materials and
Heterostructures, computational methods and models have been applied, developed, and
implemented into the electronic structure code GPAW to overcome the computational
difficulties when performing ab-initio calculations of vdWHs. The Bethe-Salpeter Equa-
tion (BSE) has been implemented with the previously developed Quantum Electrostatic
Heterostructure (QEH) model to efficiently calculate exciton binding energies and ab-
sorption spectra for multilayer vdWHs and is found to accurately calculate the redshift
of intralayer exciton energies in vdWHs. A feature shown not to be accurately described
by the already existing Mott-Wannier equation. An appealing feature of the BSE-QEH
implementation is that the computational requirement scales linearly with the number
of layers in the vdWH. The fact that excitonic states have previously been described
accurately by the Mott-Wannier model shows the hydrogen-like nature of the exciton
state. In this thesis it is shown that this picture is not complete in the presence of a
dielectric substrate, where the system enters a substrate-dominated screening regime.
This new dielectric screening regime of exciton physics is explored, where the exciton
series becomes underbound rather than overbound as in the usual 2D excitonic hydrogen
model. Furtheremore, To help the scientific community in the calculation of electronic
and optical properties of vdWHs, an efficient scheme has been developed to calculate the
interlayer hybridisation and charge transfer in large vdWHs. The method corrects the
(possibly) wrong description of the interlayer hybridisation offered by non-self-consistent
state-of-the-art ab-initio methods such as the G0W0 approximation.

By combining the developed methods with ab-initio calculations we benchmark to
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what accuracy exciton energies can be calculated in comparison to experimental mea-
surements in vdWHs by explicitly calculating the effect of twist-angle and substrate
effects on the exciton energies. Furthermore we show that the inherent non-locality of
the dielectric screening in 2D can be used to accurately control quasi-particle energies
in semiconductors by placing the 2D semiconductor on a gated graphene layer. A direct
example of the potential in using vdWHs for applications such as photodetectors, pn-
junctions, solar cells, or single-photon emission devices is shown by proving the existence
of a vdWH with strong low-energy exciton states as a low-energy infrared photodetector.

In the final chapter is presented a thorough study of the properties of the new class
of 2D Janus monolayers. This class of 2D monolayers exhibit an intrinsic out-of-plane
dipole moment and it is shown how both the electronic and optical properties of vdWHs
can be accurately manipulated and controlled by use of this class of structures. Finally,
a new paradigm of materials science is introduced, by proving the existence of and ex-
amining self-intercalated bilayers: 2D bilayers with self-intercalated single-atoms. It is
shown that the self-intercalation process in fact leads to stable self-intercalated struc-
tures, for a large set of host bilayers and that the self-intercalation significantly alters
the electronic properties and magnetic phase of the bilayer.



Resume
Siden den første isolering af grafen i 2004, har 2D materialer været en ideel platform
for at studere nye kvantemekaniske effekter på kvanteskalaen i materialer. På grund af
deres atomer tynde karakter, har 2D materialer en meget lav dielektrisk afskærmning,
hvilket giver en stærk lys-materiale interaktion og udtalte excitoniske effekter. Det har
i de foregåend år vist sig muligt, ikke bare at isolere enkelte 2D lag, men også at stakke
lagene til såkaldte van der Waals heterostrukture (vdWH), som er lagdelte monolag der
kun interagerer svagt gennem van der Waals kraften. Da det er muligt tilsydenladende
frit at stakke og rotere lagene relativt til hinanden, er det næsten umuligt korrekt at
beskrive og beregne egenskaberne af disse strukture med ab-initio metoder og effektive
modeller som for eksempel den tidligere udviklede Quantum Electrostatic Heterostruc-
ture (QEH) model er nødvendige for at beregne de elektroniske og optiske egenskaber.

I denne afhandling, med titlen Computational Studies of Two-Dimensional Materials
and Heterostructures, er beregningsmetoder og -modeller udviklet og implemeteret i elek-
tronstrukturkoden GPAW, til at overkomme de beregningsmæssige udfordringer når man
udfører ab-initio beregninger for vdWH. I denne afhandling er Bethe-Salpeter Lignin-
gen (BSE) blevet implementeret med den tidligere udviklet QEH model til effektivt at
beregne exciton bindingsenergier, absorption spektra, og viser sig korrekt at beskrive
rødforskydningen af excitonenergi i vdWH. En egenskab som ikke er præcist beskrevet
af den allerede eksisterende Mott-Wannier ligning. En tiltrækkende egenskab af BSE-
QEH implementering er at de beregningsmæssige krav skalerer lineært med antallet af
monolag i vdWH. Siden excitoniske tilstande har vist sig at være velbeskrevet af Mott-
Wannier modellen viser dette den hydrogen-lignende karakter af excitontilstanden. Vi
viser her at det nuværende hydrogenbillede ikke er komplet i nærheden af et skærmende
dielektrisk substrat og undersøger dette nye substratdominerede regime af excitonfysik,
hvor excitonserien bliver underbundet istedet for overbundet som i den sædvanlige exci-
toniske hydrogenmodel. For at hjælpe det videnskabelige miljø med at udføre præcise
beregninger af de elektroniske og optiske egenskaber af vdWH, har vi udviklet en model
til effektivt at beregne interlagshybridiseringen og -ladningsoverførslen i vdWH. Meto-
den korrigerer den (muligvis) forkerte beskrivelse af interlagshybridiseringen ved brug
af ikke-selvkonsistente ab-initio metoder som for eksempel G0W0 approksimationen.

Ved at kombinere de udviklede metoder med ab-initio beregninger benchmarker vi
præcisionen af beregnede excitonenergier der kan opnås når man sammenligner disse med
eksperimentielt målte excitonenergier i vdWH. Vi viser desuden eksplicit afhængigheden
af både rotationsvinklen mellem lagene samt tilstedeværelsen af et dielektrik substrat på
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excitonenergierne. Derudover viser vi hvordan kvasipartikelenergierne i halvledere kan
kontrolleres og manipuleres ved at udnytte den ikke-lokale karakter af den dielektriske
funktion. Dette bliver vist ved eksempel ved at placere en halvleder på et grafen lag. Et
direkte eksempel af potentialet for anvendelse af vdWHs for for eksempel fotodetektore,
pn-overgange, solceller og/eller enkelt-foton-udsendere er vist ved at bevise eksistensen
af en vdWH med stærke lavenergi excitontilstande som en lavenergi infrarød fotodetek-
tor.

I det sidste kapitel præsenteres et grunddigt studie af egenskaberne af en ny klasse af
2D Janus monolag. Denne klasse af 2D monolag har et intrinsisk dipolmoment i retnin-
gen ud af planen og det påvises hvordan både de elektroniske og optiske egenskaber af vd-
WHs kan manipuleres og kontrolleres præcist ved anvendelse af denne klasse af strukture.
Endeligt introduceres et nyt paradigme af materialevidenskab, ved at påvise eksistensen
af og undersøge selv-indskudte bilag: 2D bilag med selv-indskudte enkeltatomer. Det
vises at selv-indskydelsesprocessen leder til stabile selv-indskudte strukture, for et stort
sæt af bilag og at selv-indskydelsesprocessen signifikant kan manipulere de elektroniske
egenskaber og den magnetiske fase af bilagene.
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CHAPTER 1
Introduction

Physics is the study of why things happen. It is the result of people starring into noth-
ing observing a sycamore seed helicoptering its way down to Earth or a glass of beer
falling to the ground in a bar, asking ”why did that happen?” (the latter probably has a
more straightforward answer than the first). While it is rather easy to develop a specific
explanation as to the origin and nature of each observation we make, such a large set of
specific explanations, let us call them theories, will in general contradict each other in
the areas where the individual observations overlap. On the other hand, it is immensely
difficult to develop a complete theory that describes all that has happened and all that
will happen for a larger collection of observations. The fact that physics in many as-
pects has done this over hundreds of years is an astonishing achievement. Physics can
to some extent be viewed as divided into several different ”branches of physics” each
exploring their own set of observations. However, it is intriguing that the theories and
equations used in each branch of physics, let that be the study of fluid mechanics, gen-
eral relativity, electrostatics, or quantum mechanics to mention a few, visually appear
very similar. And not only do they look similar, the more one thinks about it, the more
one realises that they indeed are very similar and merely differ by the length scale of the
observations they are applied to and of the symmetries the mind of the physicists can
find in a certain observation. To study one branch of physics in detail it can therefore
be extremely beneficial to study other branches of physics to gain ideas and to under-
stand specific observations. Because of the very high similarity between the theories and
equations of different branches of physics, it is therefore fascinating how much of the
”physics” is going on inside our head when we apply the equations to very different ob-
servations. Physics use mathematics to write down the physical theories and laws in the
form of equations. Mathematics and physics differ in the way that while mathematics
consists of generalised abstract theories, physics (the physicists) always know what it is
(they are) talking about: the physical theories and laws are centered around objects and
observations, which defines the above mentioned length scales.

In this thesis, the objects we will study are two-dimensional (2D) materials: atom-
ically thin materials that were first discovered in 2004 by Geim and Novoselov [89]; a
discovery that later granted them the Nobel prize in physics. The length scale of the
objects and observations we will be concerned with will therefore be the atomic scale
and the branch of physics we will apply will mainly be quantum mechanics. Quantum
mechanics governs the peculiar effects pronounced at the atomic length scale such as
the Heisenberg’s uncertainty principle and discretisation of allowed energies. We will
study the electronic and optical properties of 2D materials and stacks of 2D materials,
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the so-called van der Waals Heterostructures (vdWHs) [98, 50, 27], which is the study
of what happens when photons interact with matter. The peculiar optical properties of
these structures have been studied extensively in the past years, where the properties
have been shown to be very sensitive to the layer thickness [82, 114], which is one of the
very reasons for the vast interest in vdWHs. Previous state-of-the-art research includes
proving the existence of strongly bound states inside the band gap [101, 99, 127, 87,
81, 120, 18, 17], strong sensibility to the surrounding electrostatic environment [105, 60,
117, 10, 115], for instance electric fields [57] or mechanical strain [23, 14]. It is evident
that 2D materials and vdWHs possess a large potential for (opto-)electronic devices,
for which their application is currently being investigated. An outline of the content of
the research and results obtained in this thesis can be found below. As we will already
see in chapter 2, the quantum mechanical problem of 2D materials (and other fields of
materials science) is an incredible difficult problem to solve both analytically and com-
putationally. The complexity arises from the huge number of particles that are involved
in single observations, the difficulties especially come from the electrons and we will see
that the key to model the properties of materials is all about the electrons. As such effi-
cient computational methods are necessary to even come close to a proper description of
these materials. This thesis sets out to apply and develop such computational methods
to investigate the electronic and optical properties of 2D materials and vdWHs.

Since the combined theory of physical laws necessary to understand and describe the
whole world of quantum mechanics in the light of materials science, itself would take up
several books, I have chosen to only go through the theory necessary to understand the
presented methods and results in this thesis and this will be derived and/or discussed
as it is needed. Furthermore the thesis contains several results, explanations, and ideas
not presented in the included papers. The scientific study results in a considerable time
spend in understanding problems and theory, that are not necessarily used in relation
to any publications and thus not written down anywhere, but the back-head of the
mind. However, the obtained knowledge still comes with a responsibility. These results,
understandings, or ideas might be useful and save time for future students and some of
them are therefore included in the main text when appropriate.

On a personal level I by far do not know nor understand everything in physics,
however studying physics for many years now, allows me to understand, a little better,
some of the phenomena we encounter in our everyday life and that is a gift I will bring
with me for the rest of my life. I find myself privileged to do my doctorate degree in
a field I find so incredibly interesting. While the thesis presents the results obtained
by the author throughout the Ph.D study, the remaining part of the thesis is written
in ”we-form”. This is because modern science is a highly collaborative field and the
results obtained in this thesis, and in general in most scientific papers and reports in
the literature nowadays, are a result of combining the skills and knowledge of several
individuals.
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1.1 Outline
The outline of the thesis is the following:

Chapter 2 starts out by examining the complexity of the quantum mechanical many-
body problem to understand the need of effective methods for the study of the electronic
and optical properties of materials. The theory of density functional theory is presented
as an efficient formalism to overcome this complexity and its implementation flowchart
in GPAW is outlined. Finally, the foundation of this thesis, namely the experimental
realisation of 2D materials and vdWHs, is discussed where we will see that essentially
any combination of 2D monolayers can be stacked together to form vdWHs.

Chapter 3 starts out with describing the theory of the dielectric response of a ma-
terial to an external perturbation. We will study the fundamental difference between
dielectric screening in 2D and 3D and the difficulties with accurately describing excited
state properties of vdWHs are discussed. The many-body ab-initio formalism GW is
introduced and derived as a mean of calculating quasi-particle states in materials. By
combining the previously developed QEH model and the GW approximation we will
compute quasi-particle energies in a vdWHs and show how the non-local nature of the
dielectric screening, presented in the beginning of chapter 3, can be utilised to tune the
electronic properties of a 2D semiconductor without changing the wave function nor hy-
bridisation pattern of the semiconductor (paper I). Excitonic effects are then introduced
and the Mott-Wannier equation and the Bethe-Salpeter equations (BSE) will be derived
and presented as methods to calculate exciton energies. After this, the development and
implementation of the BSE model with the QEH model is presented and shown to accu-
rately calculate exciton binding energies in vdWHs and vdWH absorption spectra to be
used in chapter 4. Finally, we will see that the current understanding of the 2D excitonic
Rydberg series is not complete: we will study how the excitonic Rydberg series in 2D
semiconductors can change qualitatively when placed on a strongly screening substrate
(paper II and III). At the end of the chapter, we will show the existence of an excitonic
type-II semiconducting vdWH as an efficient low-energy infrared photodetector (paper
IV).

Chapter 4 will discuss the effect of interlayer orbital hybridisation on the quasi-
particle and exciton energies in vdWHs, an effect that is in general not well described by
most conventional ab-initio many-body methods. In this chapter we present and imple-
ment a method to correctly calculate the interlayer orbital hybridisation and interlayer
charge transfer in vdWHs and apply it to calculate exciton energies in vdWHs. Further-
more, we will see that it is possible to accurately calculate (and isolate) the contribution
from the interlayer hybridisation in the renormalisation of exciton energies in vdWHs,
and finally show how this renormalisation in general can be disentangled into its three
components: substrate dielectric screening, interlayer dielectric screening, and interlayer
orbital hybridisation and charge transfer effects. This leads us to a benchmarking study
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of how accurately exciton energies can be computed ab-initio relative to experimental
observations (paper V).

Chapter 5 presents the Computational 2D Materials Database (C2DB) and the
main components of the workflow that has been developed to carry out high-throughput
materials discovery and large-scale calculation of materials properties (paper VI). A
recipe of how the calculated properties in the database can be utilised to calculate the
photovoltaic potential of 2D semiconductors is presented.

Chapter 6 studies the peculiar intrinsic properties of the new class of 2D Janus
structures. We will classify the properties of this new class and show how these proper-
ties can be used to manipulate the electronic and optical properties of vdWHs (paper
VII, VIII, and IX). In the last part of this chapter we will consider a new method for
manipulating and achieving new and interesting properties of vdWHs, namely the pro-
cess self-intercalation of single atoms in 2D bilayers which introduces a new paradigm
of low-dimensional materials science. We will prove that the self-intercalation process
leads to a new stable phase for a wide range of bilayers and the self-intercalation process
can lead to the development of ferromagnetic order (paper X).

Chapter 7 discusses and puts the main results in the thesis in an overall perspective
and concludes the thesis with an outlook.

Chapter 8 includes the papers of which the results are presented in the thesis.



CHAPTER 2
It is All About the Electrons

Given the many decades since the development of the theory of quantum mechanics and
the fact that physicists spent years to understand this complex theory, it is intriguing
that only few ideal problems can be solved analytically. The difficulty mainly arises from
the enormous number of particles present in the minimal description of any realistic
quantum system which makes only few many-body problems possible to be solved exact
even numerically. In section 2.1 we will discuss the quantum mechanical many-body
problem in greater detail and in section 2.2 present Density Functional Theory (DFT)
which is a widely used formalism in quantum mechanical materials science to calculate
ground-state properties of materials. It overcomes the complexity of the many-body
problem by working with the electron density as the main parameter of interest instead
of the position of all individual particles. This greatly simplifies the computational cost
for solving many quantum mechanical problems, but also lacks accuracy in terms of
some electronic properties in 2D materials and the need for more advanced methods is
required. These will be presented in chapter 3, however as we will see, such many-body
theories are based on the single-particle description provided by DFT and it is therefore
advantageous to study the theory of DFT first. The implementation flowchart of the
DFT formalism in GPAW [85] is outlined in section 2.3. Finally in the last section of
chapter 2 we will discuss the experimental realisation of 2D materials and vdWHs.

2.1 The Many-Body Problem
To determine the allowed energies of any time-independent quantum mechanical problem,
one starts out by writing down the time-independent Schrödinger’s equation:

ĤΨ(r) = EnΨ(r) (2.1)

where Ψ(r) is the total wave function, En are the allowed energy levels, where n uniquely
defines a quantum state, and Ĥ is the Hamiltonian of the problem containing all possible
interactions and energy contributions to En. We note already here that for the arguments
in this chapter it suffices to consider the time-independent problem. Since Ψ is given
by the particles in the system of consideration the allowed values of En are determined
by the interactions included in the Hamiltonian. If one is interested in for instance the
electronic or thermal properties of a material, let that be a bulk crystal, a 2D material,
a nanorod or -tube, or a molecule, the governing interactions and terms in Ĥ defining
En are the Coulomb interactions between all charged particles and the kinetic energy of



6 2 It is All About the Electrons

all particles. Dividing the Coulomb interaction into electron-electron, electron-nucleus,
and nucleus-nucleus interactions, Ĥ reads:

Ĥ = −
∑

i

∇2
i

2
−
∑

i

∇2
i

2M
+ 1

2
∑
i ̸=j

1
|ri − rj|

+ 1
2
∑
i ̸=j

ZiZj

|Ri − Rj|
−
∑
i,j

Zj
|ri − Rj|

(2.2)

where ∇i is the real-space coordinate derivative in the electron and nuclei kinetic energy
for particle i,M is the nuclei mass, ri (Ri) is the real-space coordinate of electron (nuclei)
i, Zi is the charge of nuclei i, and the factor of a half on the Coulomb terms accounts
for double counting. We note this is true for a non-radioactive material such that strong
force interactions within the nuclei can be neglected.

Analytical solutions for eq. 2.1 with the Hamiltonian in eq. 2.2 exist for single
electron systems (i.e. the hydrogen atoms and ionised heavier atoms) and numerical
solutions can be found for only few configurations containing the very lightest atoms in
the periodic system. However, since materials are not made up of a few single atoms, but
bound collections of many atoms, further approximations are needed to obtain solutions
for eq. 2.1 for realistic interesting systems. The problem comes from the fact that the
Coulomb interaction has to be evaluated between any two charged particles, and that
each particle has its own spatial coordinate dependence. We will already at this point
apply a quite significant approximation known as the Born-Oppenheimer approximation
[11], which is applied in all calculations in this study. The support for already employ-
ing the Born-Oppenheimer approximation at this point in our presentation of electronic
structure theory calculations is that this approximation is widely used in most of compu-
tational materials and molecular science. The approach is to assume that the electronic
properties is mainly governed by the shape and energy of the electronic orbitals and that
the nuclei merely contribute with a constant background potential. To be precise, since
the mass of the nuclei is much larger than the mass of the electrons we assume that the
motion of the nuclei is confined to a much smaller region of space than the motion of the
electrons and move significantly slower. First of all this means that the kinetic energy
of the nuclei is much smaller than that of the electrons: ∑i

∇2
i

2 >>
∑

i
∇2

i
2M

. Second, if we
let r̄k and R̄l be the mean position of electron k and nucleus l and let δrk and δRl be
the standard deviation of their spatial positions the assumption above corresponds to
δrk >> δRl for all k,l. Assuming the real-space coordinate system to be 1 dimensional
for simplicity and writing the real space position as: ri = r̄i + δri the electron-electron
Coulomb interaction can be Taylor expanded about δri−δrj

|r̄i−r̄j| to obtain:

1
|ri − rj|

≈ 1
|r̄i − r̄j|

− δri − δrj

|r̄i − r̄j|2
. (2.3)

Similarly for the electron-nucleus and nucleus-nucleus interactions we get:
1

|ri −Rj|
≈ 1

|r̄i − R̄j|
− δri − δRj

|r̄i − R̄j|2
(2.4)

1
|Ri −Rj|

≈ 1
|R̄i − R̄j|

− δRi − δRj

|R̄i − R̄j|2
(2.5)
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respectively. In all three expressions the first term on the right hand side is constant
by definition. For a chemical bond the mean electron-electron, electron-nucleus, and
nucleus-nucleus distances all attain similarly values (to within the same order of mag-
nitude). However, under the assumption that δri >> δRj we immediately get that:
|δRi − δRj| << |δri − δrj| < |δri − δRj|, and the nucleus-nucleus Coulomb interaction
can consequently be assumed to attain a constant value proportional to 1

|R̄i−R̄j|
for each

nucleus-nucleus pair. This approximation also means that the electronic and nuclei part
of the total wave function can be decoupled and that the total wave function can instead
be written as a product of the electronic wave function (ψelec(r)) and the nuclear wave
function (Φnuc(R)): Ψ(r) = ψelec(r)Φnuc(R). Assuming the nucleus-nucleus interaction
to be constant and neglecting the kinetic energy of the nuclei is the foundation of the
Born-Oppenheimer approximation. In this approximation the Hamiltonian reads:

Ĥ = −
∑

i

∇2
i

2
+ 1

2
∑
i≠j

1
|ri − rj|

−
∑
i,j

Zj

|ri − R̄j|
+ V̂ n−n. (2.6)

In practice, the constant contribution from the nucleus-nucleus Coulomb interaction can
be inserted as an effective field in the electron-nucleus Coulomb interaction or added as
an extra constant term (V̂ n−n). While this is a great simplification of the Hamiltonian in
eq. 2.2 it is still computationally unsolvable for most realistic systems due to the double
sums in the electron-electron and electron-nucleus Coulomb interactions. In the next
section we will present the DFT formalism which effectively overcomes the double sums
by taking the electronic density as the main parameter instead of the position of each
single particle. The Born-Oppenheimer approximation breaks down when there is only
a small energy difference between the total ground-state energy and the total energy of
the second lowest solution to the Schrödinger equation. In this case, the wave function
can undergo a rapid spatial change of shape for only small displacements of the nuclei,
and as such the static picture of the nuclei positions is no longer a good approximation.

2.2 Density Functional Theory
Considering the eigenvalue problem of eq. 2.1 with the Hamiltonian in eq. 2.6, the
expectation value of the total energy is given as:

E = ⟨Ψ(r)|Ĥ|Ψ(r)⟩. (2.7)

As mentioned above, evaluating this expression is difficult (in practice impossible for
most systems) due to three main reasons: 1) the total wave function is a complex pa-
rameter to evaluate and store numerically, 2) evaluating the double sum in the electron-
electron Coulomb interaction, and 3) evaluating the double sum in the electron-nucleus
Coulomb interaction. We will in the following outline how each of these difficulties is
overcome within the DFT approximation.
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Even though we showed in the previous section that the total wave function can
be decoupled into a product of an electronic and a nuclear wave function, and one
therefore only has to evaluate the inner product with the Hamiltonian with the electronic
wave function (including the nuclei contribution effectively through the electron-nucleus
interaction), a further approximation is normally applied. We write the electronic wave
function as a Slater determinant [113] of non-interacting single-particle electron wave
functions:

ψelec(r) = 1√
N !
det{ϕ1(r1), ϕ2(r2), ..., ϕN(rN)} (2.8)

for an N -electron wave function where ϕi(ri) is the non-interacting wave function for
the single electron i. This expression for the electronic wave function is anti-symmetric
by construction and fulfills the Pauli exclusion principle. The simplification of the total
electronic wave function into a sum of products of single-particle electronic states already
makes the evaluation of the kinetic energy term straightforward.

To simplify the electron-nucleus interaction term, instead of evaluating the Coulomb
interaction between each nucleus and each electron, we model the nuclei contribution to
the energy as an external effective background potential, vext(r). This could in principle
be applied to all individual single-particle electron states reducing the term to a single
summation loop, however it turns out that it is convenient to introduce the definition
of the electronic density n(r) defined from the single-particle wave functions:

n(r) = |ψelec(r)|2 =
N∑
i

|ϕi(r)|2, (2.9)

constructed to equal the true many-body electronic density. The usefulness of the elec-
tronic density comes from the existence of the first Hohenberg-Kohn theorem [53], which
states that there exists a unique bijective mapping between the external potential and
the ground-state electron density of the many-body interacting system. We denote the
ground-state electronic density n0(r), and since the single-particle electronic density in
eq. 2.9 is constructed to equal the true many-body electronic density, the Hohenberg-
Kohn theorem applies. The main parameter of interest is thus the electronic ground-state
density, calculated from the Slater determinant of the non-interacting single-particle
ground-state wave functions. With the Hohenberg-Kohn theorem in our hands, to find
the ground-state energy, we can rephrase the original ground-state energy problem:

E = ⟨Ψ(r)|Ĥ|Ψ(r)⟩ = ⟨Ψ(r)|T̂ + v̂e−e + v̂e−n|Ψ(r)⟩ (2.10)

where T̂ , and v̂e−e and v̂e−n are the kinetic energy, electron-electron, and electron-nucleus
Coulomb interaction operators, into an effective problem defined by the non-interacting
ground-state electronic density by letting the external potential act on the ground-state
density:

E → E[n0] = F [n0] +
∫
drn0(r)vext(r) (2.11)

where F [n0] = ⟨Ψ[n0]|T +ve−e|Ψ[n0]⟩ is a universal functional. By the second Hohenberg-
Kohn theorem the energy E[n0] is known to be smaller than the energy obtained from
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any other trial density, n′ ̸= n0: E[n0] < E[n′] and thus it is closer to the true ground-
state energy of the many-body interacting system: Etrue < E[n0] < E[n′].

Before we approximate the electron-electron Coulomb interaction term we take a step
back and discuss the physical characteristics any approximation must satisfy. Since any
approximation to the electron-electron Coulomb interaction should be applied on the
same length scale as the exact electron-electron Coulomb interaction, i.e. the potential
must have a 1/r dependence on the interaction, the Coulomb interaction in the indepen-
dent particle (single-particle) picture can readily be written in terms of the electronic
density:

EHartree = 1
2
∑
i ̸=j

∫ ∫
dr1dr2

ni(r1)nj(r2)
|r1 − r2|

(2.12)

which is known as the Hartree approximation. In principle we can plug this expression
directly into the eigenvalue problem in the single-particle description to solve a wide set
of problems, but this expression does not fulfill the energy contribution associated with
the anti-symmetric nature of the electronic wave function. This effect is not physically
intuitive, however it turns out there is in fact a finite contribution to the energy by what
is commonly refered to as exchanging electrons of parallel spin. This point of concern
can effectively be seen by the following argument (we note originally the exchange term
comes out mathematically from derivation and does not have a physical origin apart
from the fact that it is related to the anti-symmetric nature of the electronic wave
function, but is interpreted as an exchange of electrons of parallel spin. We will still
however here pursue an intuitive argument for its origin). Taking the inner product of
EHartree with the electronic wave function and exchanging the coordinates of the electron
single-particle wave function we also have to exchange the coordinates in the Coulomb
interaction Hamiltonian: n(r1)n(r2) = ∑

i ̸=j ϕ
∗
i (r1)ϕ∗

j (r2)ϕi(r1)ϕj(r2) and n(r2)n(r1) =∑
i ̸=j ϕ

∗
i (r2)ϕ∗

j (r1)ϕi(r2)ϕj(r1) which is not anti-symmetric upon exchange of the real-
space coordinates and thus does not give an energy contribution from anti-symmetry
considerations. This can be corrected by adding an exchange term, which accounts for
the anti-symmetry of the electronic wave function and gives a finite contribution to the
exchange of two electrons with the same spin in two quantum states:

Ex = −
∑
i ̸=j

∫ ∫
dr1dr2

ϕ∗
i (r1)ϕ∗

j (r2)ϕi(r2)ϕj(r1)
|r1 − r2|

, (2.13)

and is anti-symmetric upon exchange of r1 and r2. Approximating the expectation value
of the electron-electron Coulomb interaction by Ehartree + Ex is known as the Hartree-
Fock approximation [34]. This approximation slightly overestimates the energy of the
electronic system. We note that the Hartree approximation for the Coulomb interac-
tion is normally written in terms of the single-particle electron wave functions, since
the Hatree(-Fock) approximation is a framework independent of the DFT framework.
However, writing out the Hartree term as a function of the electronic density, makes
more clear how DFT is combined with and build on Hatree-Fock theory.
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In a simple picture the overestimation of the total energy within the Hartree-Fock
approximation can be understood in the following way: when working within the single-
particle picture, we lose information on the small-scale instantaneous Coulomb inter-
action between nearby electrons, affecting their relative distance and thus interaction
potential. This effect, known as the electronic correlation, is to increase the average
electron-electron interaction distance [92]. This in turn reduces the Coulomb interac-
tion, which decreases the total energy of the system. The electronic correlation can be
seen as the error associated with the total energy of the system, we make by approx-
imating the true wave function by a Slater determinant. While no simple expression
exists for this term, we define the expectation value of vxc to be the exchange energy
(Ex) plus the correlation energy (Ec) in the single-particle description. By defining the
Hartree energy to be the expectation of vHa we can now write down the single-particle
Kohn-Sham eigenvalue problem [65]:−

∑
j

∇2
j

2
+ vHa[n](r) + vxc[n](r) + vext[n](r)

ϕi(r) = ϵiϕi(r), (2.14)

which can be solved self-consistently numerically for a wide range of systems and the
problem is now reduced to apply an appropriate approximation for the exchange-correlation
functional. The DFT description of the interacting many-body system gives an exact
description of the ground-state energy, but as argued above one is usually also interested
in the eigenvalues of the system, however this cannot formally directly be obtained from
DFT. While Ei in the many-body picture are the true eigenvalues of states i, the eigen-
values, ϵi, in the Kohn-Sham equation have physically no exact meaning due to the
single-particle nature of the equation. The only well-defined ϵi is that of the highest
occupied molecular orbital (HOMO) which equals minus the ionisation energy of the
system. It is important to stress that this is not given by Koopman’s theorem [66] from
Hartree-Fock theory, which cannot be applied to DFT due to the non-exact nature of
the exchange-correlation term. Instead, to show the above statement, which is formally
known in the literature as the ”DFT Koopman’s theorem”, the argument can be carried
out by realising that the non-interacting electronic density in DFT equals the interacting
electronic density, and thus the removal energy of one electron must be the same for
the two systems. Despite this, DFT has had some success in describing band gaps of
materials, for instance by invoking the derivative discontinuity between the ionisation
potential and the lowest unoccupied state, however, since the Hohenberg-Kohn theorem
strictly governs the ground state of the system, DFT cannot be applied accurately to ob-
tain excitation energies and more advanced many-body descriptions have to be applied,
as we will see in the next chapter. On the other hand, what is well-defined is the total
ground-state energy, which by the second Hohenberg-Kohn theorem is minimised using
a variational approach with the ground-state electron density of the interacting system
and can be written as:

E = T [n] + Exc[n,∇n] + EHa[n] + Eext[n] (2.15)
where we have combined the exchange and correlation contributions in Exc[n,∇n] which
possibly is also dependent on the gradient of the electronic density, depending on the
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chosen approximation of the exchange-correlation interaction. We here write any generic
density n since the expression is true for any electronic density and minimised by using
the ground-state electronic density. We will not enter a deep discussion of the existing
exchange-correlation functionals in the literature, but mention in passing the two most
widely applied functionals. The Local Density Approximation (LDA) which estimates
the exchange part of vxc[n](r) by the local homogeneous electron gas approximation:
ELDA

x [n] ∼
∫
drn4/3(r) and different schemes for estimating the correlation energy ex-

ist. Another widely applied approximation is the Generalised Gradient Approximation
(GGA) (such as the Perdew-Burke-Ernzerhof (PBE) functional [95]), which also include
the local gradient of the electron density in the description. In practice the GGA func-
tionals are normally built by taking the LDA result for the local density description
for the exchange part and adding a correction to this that is calculated from the local
density gradient [59]: EGGA

x = ELDA
x [n] + ∆E[∇n(r)] and similarly for the correlation

part. These are the two main exchange-correlation functionals applied in this thesis to
solve the Kohn-Sham equations, and it is important to stress that none of the functionals
includes the long range van der Waals interactions between atoms, which is important
especially in the optimisation of the atomic structures of interest in this study. This
effect has been included by applying for instance the BEEF-vdW [80] or D3 [45] function-
als in the optimisation of the structures. Furthermore, both descriptions are inherently
local and as we will see in the next chapter non-local effects play an important part in
the description of the dielectric properties and many-body description of 2D materials.
The application of exchange-functional is stated throughout this thesis and/or in the
included papers when appropriate.

2.3 The Projector Augmented Wave Function
Method: Implementation in GPAW and
Spin-Orbit Interaction

To solve the DFT and many-body problems we are faced with in this thesis, the ab-initio
electronic structure calculation software GPAW [31, 85] has been used. Since we will
need to reference specific parts of the implementation of GPAW in chapter 4, we will
here briefly go through the implementation flowchart of GPAW. GPAW supports three
types of calculation modes for solving the DFT eigenvalue problem presented in the
previous chapter: a finite difference (FD) mode, where the atomic orbitals are resolved
on a real space grid, a mode where the wave functions are represented in a basis of a
linear combinations of atomic orbitals (LCAO), and finally a plane-wave (PW) mode
where the wave functions are expanded as a linear combination of plane-waves. All cal-
culations throughout this thesis are performed in PW mode except in chapter 4 where
we will encounter the LCAO mode.
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As outlined in the previous chapter, when calculating the energy levels of single
atoms, molecule, or periodic solid system we need to solve the generalised eigenvalue
problem:

Hψn = Enψn (2.16)
where n is a combined state index uniquely defining the quantum state (we will omit
the ”hat” notation on the Hamiltonian for simplicity in the following). While the DFT
formalism greatly reduces the complexity and computational requirements of the general
many-body problem, numerical problems arise in describing ψn close to the atomic cores.
The core orbitals, subject to an immensely strong potential, must oscillate rapidly (this
can intuitively be visualised from a simply quantum well picture), and is numerically
difficult to represent in a feasible manner. To overcome this the general approach is
simply to define a setup for each atomic orbitals, where a number of core states are
calculated once and for all, and therefore assumed to be independent of the neighbour-
hood of the atoms. This approximation is in general valid when only properties related
to the valence states are considered and is formally known as the frozen core approxi-
mation. However, since the set ψn have to be internally orthogonal to be the complete
set of eigenfunctions for eq. 2.16, the valence states will also oscillate rapidly in the
core regions, where they have a finite overlap with the core states. This means, that
even within the frozen core approximation, it is numerically infeasible to describe the
electronic properties of the valence states. In the following we will adapt the notation
used in [31] and the discussion below will be focused on obtaining the expression for the
Hamiltonian defining the eigenvalue problem in GPAW.

In PW mode the problem is overcome by assuming that the rapidly oscillating part
of the valence wave function in the core region can be represented by a smooth wave
function, to be denoted ψ̃n, and that a transformation (T̂ ) from the smooth wave function
to the exact wave function exist:

ψn = T̂ ψ̃n = (1 + T̂ a)ψ̃n. (2.17)

The last equal sign stems for the fact that since the rapid oscillations are confined to a
region of space close to the nuclei we define T̂ to be equal to unity outside and equal to
T̂ a inside confinement region, defined by a cutoff radius ra

c . a is an atomic index since
the value of ra

c is atom-dependent. The eigenvalues in eq. 2.16 can be calculated from
the expectation value of the Hamiltonian:

En = ⟨ψn|H|ψn⟩ (2.18)

which upon transformation to the smooth wave function reads:

En = ⟨ψ̃n|T̂ †HT̂ |ψ̃n⟩. (2.19)

This introduces the need of defining the transformed Hamiltonian: H̃ = T̂ †HT̂ and
defines the transformed eigenvalue problem in eq. 2.16 which can be obtained directly
by inserting the smooth wave functions and applying T̂ †:

H̃ψ̃n = EnŜψ̃n, (2.20)
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where the overlap operator have been defined as: Ŝ = T̂ †T̂ . Our aim is now to find an
expression for the transformed Hamiltonian. To continue we state that the smooth wave
function (and similarly the exact wave function) inside the augmentation sphere can be
expanded as a linear combination of partial waves:

ψ̃a
n =

∑
i

⟨p̃a
i |ψ̃n⟩ϕ̃a

i (2.21)

where p̃a
i are coefficients to be determined and we define the projection elements as pro-

jectors: P a
i,n = ⟨p̃a

i ||ψ̃n⟩. Furthermore, since ψ̃n is only defined within the augmentation
sphere we must have p̃a

i = 0 outside the augmentation sphere. From this we can define
the atomic density matrix:

Da
i1,i2 =

∑
n

fn⟨ψ̃n|p̃a
i1⟩⟨p̃a

i2|ψ̃n⟩. (2.22)

where fn are occupation numbers. We are now finally in a position where we can
directly determine the transformed Hamiltonian. As we saw in the previous section, the
total energy (eq. 2.15) is composed of four terms: the kinetic energy, the electrostatic
potential, the exchange-correlation potential, and the external perturbation potentials.
The transformed Hamiltonian is determined by taking the functional derivative of the
total energy with respect to the smooth wave function:

δE

δψ̃∗
n

= fnEnŜψ̃n = fnH̃ψ̃n. (2.23)

The total energy to be inserted is the one defined from the smooth wave functions (and
the derived smooth electronic densities). As a consequence of the transformed eigenvalue
problem, the total energy has an extra non-physical atom-dependent contribution which
is a function of the atomic density matrix: ∆Ea[Da

i1,i2 ]. Setting the external potential
to zero for simplicity, the transformed operator form of the Coulomb and exchange-
correlation potentials attains the following forms:

ṽHa[n] = δEHa[ñ]
δñ

(2.24)

and
ṽxc = δExc[ñ]

δñ
(2.25)

where ñ is the electronic density determined from the smooth wave function. The first
term is uniquely defined by the Poisson equation with the smooth electronic density and
the latter term is defined by the choice of exchange-functional in the DFT Kohn-Sham
description (LDA, GGA, etc.). We here see how this choice enters in the solution of
the eigenvalue problem. The functional derivative of the non-local augmentation sphere
correction is not straightforward since ∆Ea contains atomic corrections to both the
kinetic, the Coulomb, the exchange-correlation, and an extra term not present in the
physical expression for the total energy. For a full derivation of this term we refer to
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[85], and here simply state that it can be written in a neat form as a projection of a
tensor onto the projector expansion coefficients defined above. With these definitions
the transformed Hamiltonian takes the form of:

H̃ = −1
2

∇2 + ṽHa + ṽxc +
a∑

i1,i2

|p̃a
i1⟩∆Ha

i1i2⟨p̃a
i2| (2.26)

where the last term is the non-local atomic correction:

∆Ha
i1i2 = ∂∆Ea

∂Da
i1i2

+
∫
drṽHa

∂ñ

∂Da
i1i2

. (2.27)

Eq. 2.26 defines the Hamiltonian within the transformed eigenvalue problem. At this
point it is important to comment on the orthogonality of the smooth wave functions. By
construction, the exact wave functions are orthogonal: ⟨ψn|ψm⟩ = δnm. Upon transfor-
mation to the smooth wave functions we find that the orthogonality is only maintained
in terms of the overlap operator: ⟨ψ̃n|Ŝ|ψ̃m⟩ = δnm. In practice the completeness is
controlled (and converged) by the number of plane-wave coefficients included in the ex-
pansion. This is important since ψ̃n is defined as a linear combination of plane-waves
which consequently are not internally orthogonal.

While the full derivation of the implementation flowchart can be found elsewhere in
greater detail [85, 31], including the electronic density, atomic forces, total energy etc.
we will mainly be interested in referencing the PAW Hamiltonian, eq. 2.26, in chapter
4. We will therefore truncate our brief overview of the PW mode in GPAW, however
the author could not refrain from giving a short introduction to the evaluation of the
electronic density since this is the driving force in DFT. This discussion can be found
in appendix B.

In chapter 4 we will encounter the use of GPAW in LCAO mode. As we will see,
the main principle behind the LCAO mode is very similar to the PW mode, however
it handles the numerical difficulty of representing the wave function close to the nuclei
differently. Instead of expanding the smooth valence wave functions in eq. 2.17 as a
linear combination of plane-waves, in the LCAO mode the valence states are represented
as a linear combination of atomic orbitals (hence the name). Inspired by the solution
of the standard hydrogen problem, the atomic orbitals, which we will denote by Ψ, are
separated into a product of a radial component of the wave function (R) and spherical
harmonical functions (Y ): Ψ(r) = R(r)Y (θ, ϕ), where since R is only a function of the
radial coordinate, R can be found by solving a usual 1D problem as encountered in
a standard separation of variables problem. This means that in the LCAO mode the
smooth wave function is represented as:

⟨ψ̃n| =
∑

µ

cµn⟨Ψµ| =
∑

µ

cµn⟨RY |, (2.28)

where cµn are coefficients that gives the weight of each atomic-like orbital in the expansion
and again n is a common state index uniquely defining the quantum state. For a detailed
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discussion on how cµn and Rn are determined to define a basis setup for each atom we
refer to [73] since this is not the main topic of this thesis.

Considering the definition of the projectors and the atomic density matrix in PW
mode, their corresponding definitions in the LCAO mode now comes in naturally from
eq. 2.28:

P a
i,µ = ⟨p̃a

i |Ψµ⟩ (2.29)

Da
i1,i2 =

∑
µν

∑
n

fn⟨p̃a
i1|cµn|Ψµ⟩⟨Ψν |c∗

νn|p̃a
i2⟩ =

∑
µν

∑
n

fnP
a
i1,µcµnc

∗
νnP

a∗
i2,ν . (2.30)

Since the smooth wave functions are defined by the expansion coefficients cµn, the trans-
formed eigenvalue problem in this formalism is defined in terms of these coefficients:

∑
ν

H̃µνcνn =
∑

ν

ŜµνcνnEn (2.31)

where the overlap operator defines the overlap between state ν and state µ of the atomic-
like expansion orbitals: Ŝµν = ⟨Ψµ|Ŝ|Ψν⟩ and the expansion orbitals are still only orthog-
onal with respect to the overlap operator: ∑µν c

∗
µnŜµνcνm = δnm, meaning that the LCAO

mode is subject to the same (lack of) completeness issue as the PW mode. Finally the
transformed Hamiltonian in the LCAO mode takes the same form as the Hamiltonian
in PW mode (eq. 2.26) where the LCAO projectors take the place of the PW projectors
and the kinetic, Coulomb, and exchange-correlation terms are evaluated from the basis
functions {Ψ}:

Ĥµν = −1
2

⟨Ψµ|∇2|Ψν⟩ + ⟨Ψµ|ṽHa|Ψν⟩ + ⟨Ψµ|ṽxc|Ψν⟩ +
a∑

i1,i2

P a
i1,µ∆Ha

i1,i2P
a∗
i2,µ. (2.32)

In chapter 4 we will make use of the very neat discretised form of the LCAO eigenvalue
problem in eqs. 2.31 and 2.32.

Finally, we will comment on the effect and calculation of spin-orbit coupling in GPAW.
For heavier metals, such as the transition metals, which will have a special interest in
this study, the spin-moment (s) of the electron couples to the effective magnetic field
(B) present when moving with velocity v relative to the positively charged nuclei setting
up an electric field E, in the reference point of the electron: B = −v×E

c2 . The coupling
interaction is given by

HSO = −s · B (2.33)

with s = e
me

S and B = 1
meec2r

∂v(r)
∂r

L. e is the electron charge, me the electron free space
mass, c the speed of light, v(r) the Kohn-Sham electrostatic potential, and S and L
the spin and angular momentum vectors. We here changed to SI units to highlight the
dependence on the electron mass and charge. Putting this together and accounting for
the Thomas precession correction (a factor of 1

2) results in:

HSO = − 1
2m2

ec
2r

∂v(r)
∂r

S · L. (2.34)
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To get the spin-orbit correction to the eigenvalues, one has to evaluate the inner product
of the electron wave function (now a spinor state) with the spin-orbit Hamiltonian over
all space. However, since the electrostatic potential oscillates most rapidly (i.e. 1

r
∂v(r)

∂r
is

largest) near the core region, one approximates the inner product to only be evaluated
within the augmentation sphere, i.e. the wave functions in the inner product in eq. 2.18
are taken to equal the (spinor) smooth wave functions in eq. 2.21 inside the augmentation
sphere and equal 0 outside.

δESO
n =

∑
a

⟨ψ̃a
n|HSO|ψ̃a

n⟩ =
∑

a

∑
ij

⟨ψ̃n|p̃a
i ⟩⟨ϕ̃a

i |HSO|ϕ̃a
j ⟩⟨p̃a

j |ψ̃n⟩ (2.35)

where state index i (and j) now also contains the spin state. For efficient computation,
similarly to the LCAO flowchart, the wave function is split into a radial part (R(r)) and
an angular part (Y (θ, ϕ)), such that the evaluation of the spin-orbit Hamiltonian can
be split into a product of the expectation value of the radial part: ⟨R(r)|1

r
∂v(r)

∂r
|R(r)⟩

and angular part: ⟨Y (θ, ϕ)|S · L|Y (θ, ϕ)⟩ evaluated separately. The spin-orbit effects
have a considerable effect on the quasi-particle and exciton energies in 2D materials
and vdWHs containing transition metals, and are fully included throughout this study,
unless otherwise stated.

After this small note on the implementation flowchart of the DFT formalism in
GPAW, we will in the next section discuss the very reason for this study, namely the
experimental realisation of 2-dimensional monolayers, which will conclude the opening
chapter on the basics of electronic structure theory and calculations.

2.4 2D Materials, van der Waals
Heterostructures, and van der Waals
interactions

The general density functional theory presented in the previous sections can readily be
applied to a wide range of materials including bulk crystals, 2D materials, 1D nanotubes
and -rods, and molecules to calculate for instance electronic band gaps, wave function
patterns, and total energies, and also optical absorption spectra in combination with
the Random Phase Approximation (RPA) [9, 96, 8]. The first exfoliation of monolayer
graphene introduced a new paradigm to materials science with the introduction of 2D
materials. While the 2D materials offer a wealth of interesting materials properties for
application in electronic devices they also impose significant computational difficulties
that are different from those found in 0D, 1D, and 3D materials. We will here discuss
the class of 2D materials which will be of main interest in the following chapters and
briefly discuss the specific computational problems that need to be overcome to accu-
rately model the properties of 2D materials and how these differ from for instance 3D
bulk crystals.
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Since the first exfoliation of monolayer graphene in 2004, many more 2D materials
have been experimentally synthesised. Some of the most well-known include monolayer
hBN and the transition metal dichalcogenides (TMDs). The TMDs consist of a sheet
of a transition metal encapsulated between two layers of chalcogenide atoms. MoS2
was the first TMD monolayer to be exfoliated in 2010 [82] and introduced the world
of 2D semiconductors for opto-electronic applications. The exfoliation of MoS2 offered
the opportunity to study how the optical properties in 2D materials differ from those of
bulk crystals. Due to the atomically thin nature of 2D materials, the dielectric screening
of the Coulomb interaction between charged particles in the monolayer is significantly
reduced compared to bulk crystals. The reduced dielectric screening leads to more pro-
nounced quasi-particle effects such as strongly bound excitonic states having optical
transition energies below that of the electronic band gap. We will discuss the origin
of these quasi-particle states in the next chapter. Consequently, advanced many-body
methods, which are computationally significantly heavier than conventional DFT calcu-
lations, are needed to accurately describe the electronic band structure, quasi-particle
states, and the absorption spectra of 2D materials. Furthermore, while the dielectric
screening in semiconducting bulk crystals to a large degree can be considered to be a
constant, a strong dependence on the reciprocal space lattice vector of the dielectric
function is present in 2D materials. This is due to the atomically thin nature of 2D
materials which have the consequence that the dielectric function have to approach one
for arbitrarily small momentum vectors in reciprocal space. This imposes an additional
challenge in the calculation of electronic and optical properties of 2D monolayer, espe-
cially when in close proximity to other materials.

In the years around 2011 it was experimentally demonstrated that 2D monolayers can
be stacked together to form multilayer structures, van der Waals hetrostructures, where
the layers are bonded together by weak van der Waals forces [98, 50, 27]. The potential
energy for the equilibrium distance between the layers is governed by the Lennard-Jones
potential [61]:

U(r) ∼ −
(
rd

r

)6
+
(
rp

r

)12
(2.36)

with rd and rp being constants and where the first term is an attractive dipole-dipole
interaction (between two dipoles residing in neighbouring monolayers) and the last term
is a Pauli repulsion interaction between the monolayers. We will here briefly comment in
greater detail on the nature of these two interactions, since this discussion is significantly
lacking in most descriptions of vdWHs. The first term is commonly known to be the
dipole-dipole interaction between the two layers, however, what is usually not clarified
is that this term in general have 3 contributions. The electronic charge distribution of
a freestanding 2D monolayer will have a net zero dipole moment in the out-of-plane
direction averaged over a long time interval for 2D monolayers with a mirror plane sym-
metry. However, at any instance of time, the charge distribution will be asymmetric,
meaning that two neighbouring monolayers will be attracted by an instantaneous dipole-
dipole interaction. The instantaneous dipole-dipole interaction is formally known as the
London dispersion interaction and the potential energy associated with this interaction
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is proportional to the product of the polarisabilities (α) and ionisation energies (I) of
the two monolayers: U lon(r) ∼ −α1α2I1I2

I1+I2
1
r6 . Secondly, if one of the monolayers lack a

mirror plane symmetry resulting in a time-averaged finite out-of-plane dipole moment,
this permanent dipole moment (p) interacts with the instantaneous dipole in the other
layer known as the Debye interaction: Udeb(r) ∼ −p2

1α
2
2

1
r6 . Finally, if both of the layers

have a finite out-of-plane dipole moment, the attraction between the two layers have an
additional contribution from the interaction between the two permanent dipoles. This
interaction is known as the Keesom interaction and have the interesting feature that it is
dependent on the temperature T : Ukes(r) ∼ −kbTp

2
1p

2
2

1
r6 . The fact that all three terms

are proportional to 1
r6 , means that these are usually put together in the attractive term of

the Lennard-Jones potential. The combined proportionality constant of the three terms
determines rd. For some of the most well-known vdWHs, consisting of TMDs, only the
London dispersion interaction is present. However, for the class of 2D Janus structures,
which we will study in chapter 6, both the Debye and Keesom interactions are present.
In the future, it could be interesting to study the significance of these two interaction
potentials on the distance dependent potential surface of vdWHs with Janus monolayers
and its temperature dependency. The factor of the second term in the Lennard-Jones
potential does not have a similar stringent physical explanation. While the term models
the effect of the repulsive Pauli interaction between the electronic clouds of the neigh-
bouring monolayers, its dependency on r is not known and the power of 12 is arbitrary
with the only restriction to be higher than 6 to have a potential minimum. In practice,
this means the factor rd is determined from fit to experimental values to match the
potential minimum and gradient near the minimum, in DFT functionals including van
der Waals corrections.

While it is not too surprising that identical monolayers can be stacked to form a
layered homostructure it is more surprising that different monolayers can be stacked to
form so-called vdWHs irregardless of the lattice constant of the monolayers and with no
significant strain effects on any of the monolayers. The latter is possible due to the weak
interlayer coupling between the monolayers. The possibility to stack all 2D monolayers
to vdWHs with an in principle arbitrary number of layers has been nicely depicted by
the, by now, very well-known Lego-picture. Given the few hundred synthesisable 2D
monolayer candidates this picture illustrates the close to infinite number of possible
vdWHs that can be formed by forming vdWHs with 5, 10, or even more layers and
offers a fantastic playground to manipulate and design materials with specific properties.
The picture is further enlarged by the possibility to, to a large extend, freely rotate the
individual layers relative to each other. Due to weak interlayer coupling and consequently
rather long interlayer binding distance interlayer orbital hybridisation effects are limited.
Nevertheless, it has recently been shown experimentally that by relative twisting of
the layers it is possible to manipulate the interlayer hybridisation pattern to achieve a
superconducting phase in bilayer graphene [12] and complicated intra- and interlayer
exciton hybridisation effects in bilayer TMDs [3]. This gives yet another knot to turn in
designing vdWHs.

When different 2D monolayers are stacked together they will in most cases have
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Figure 2.1: Supercell of rotated bilayer MoS2/WSe2 shown in red containing 2283
atoms. The supercell is repeated 3 times in both in-plane directions to
illustrate the emerging Moiré pattern.

significantly different lattice constants. To apply computational methods such as DFT
and many-body theories it is necessary to define a common unit cell for the full vdWH.
When incommensurate layers are stacked or homo multilayer structures are rotated
relative to each other it is consequently necessary to either significantly strain one or
more layers (which is usually not desired) or define a supercell containing repeated
unit cells for each layers. Such supercells are characterised by Moiré patterns that
emerge as shown in fig. 2.1 where a supercell for incommensurate bilayer MoS2/WSe2 is
shown. The supercell containing 2283 atoms is highlighted in red and is itself repeated
3x3 times to illustrate the Moiré pattern. The Moiré pattern leads to a small Moiré
effect that have recently been shown to only alter the energy of optical states a few
meV [83] and will not be studied further in this work. On one hand, the combination
of the huge supercells needed to computationally model even few-layer vdWHs and
the need to use advanced many-body methods to accurately describe electronic and
excited states in these structures introduces an obvious obstacle. On the other hand,
because of the tremendously large number of possible synthesisable vdWHs it is clear
that experimentalists need guidance from computational predictions to point to which
combinations of 2D monolayers potentially offer the most interesting materials properties
for application or new physical phenomena to be studied. Vast efforts have been put
and is currently put in the field of 2D monolayers and vdWHs to calculate, determine,
and continuously develop methods and models for calculating the properties of vdWHs
more efficiently. In the following chapters we will introduce the physical concepts, theory,
and many-body formalisms necessary to accurately calculate the electronic and optical
properties of 2D monolayers and vdWHs. The goal of the following chapters is to help



20 2 It is All About the Electrons

advance the theoretical understanding of vdWHs by applying such many-body methods
and developing new theoretical and computational methods to more efficiently calculate
excited state properties of vdWHs and aid the field of materials discovery.



CHAPTER 3
Electronic and Optical

Properties of 2D Materials
and van der Waals

Heterostructures
Since for 2D materials the electronic density is confined to an atomically thin sheet, the
movement of the electrons in the out-of-plane direction is significantly limited, an effect
formally known as quantum confinement. In this regard, 2D materials have introduced
a new paradigm of electronic structure calculations in materials science. Because of this,
the electron density can only to a limited degree screen out external perturbations and
consequently 2D materials are characterised by reduced dielectric screening compared
to 3D bulk crystals. In the opening section we will review the theory of linear response
and explain the peculiar form of the dielectric screening in 2D. The reduced dielectric
screening offer an exciting playground to study the pronounced many-body effects in 2D
materials, for example excitonic effects which we will be specially interested in, in the
following chapters. In section 3.2 we will see that adopting a Green’s function formalism
and going beyond the single-particle description, leads to the introduction of so-called
quasi-particle states: a many-body electronic state and we will derive the GW approx-
imation which is the gold standard of calculating quasi-particle energies in materials.
While advanced many-body methods such as the GW formalism are necessary to accu-
rately describe electronic and optical properties of 2D materials and vdWHs, they come
at a significant computational cost and it is consequently not possible to carry out such
calculations for even few-layer vdWHs. However, the weak interlayer bonding between
the layers in vdWHs opens up the possibility to combine many-body ab-initio calcula-
tions for the freestanding monolayers with analytical or feasible numerical algorithms to
model the interlayer interaction. Such methods have previously been developed in the
literature, and we will here consider the Quantum Electrostatic Heterostructure (QEH)
model [4]. The QEH model has been shown to accurately capture the effect of interlayer
dielectric screening on the quasi-particle energies [74, 75]. However, a major shortcoming
of the QEH model is that it does not account for the effect of interlayer orbital hybridi-
sation and interlayer charge transfer effects. We will return to this delicate subject in
chapter 4 where we will implement these effects into the QEH model and apply it to
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exciton energies in vdWHs. Meanwhile, in section 3.5 we will present the result of paper
I, where we apply the G0W0 method in combination with the QEH model to calculate
quasi-particle energies of 2D monolayer semiconductors on a gated graphene monolayer,
and show how the non-local nature of the dielectric screening can be used to accurately
control the quasi-particle band gap in 2D semiconductors, which concludes the first part
of chapter 3 on quasi-particle energies.

In section 3.6 we will see that by including electron-hole interactions in the many-
body description leads to bound electron-hole pair states, excitons, with an excitation
energy lower than the electronic band gap. While such excitonic effects live on the meV
scale in conventional 3D bulk semiconductors, they are significantly pronounced in 2D
materials due to the low dielectric screening and are thus necessary to include in any
accurate description of the optical properties of 2D materials and vdWHs. The Bethe-
Salpeter Equation (BSE) has been shown to accurately describe excitonic states and we
will derive and discuss this formalism. Due to the two-particle nature of the electron-
hole pair it is maybe not too surprising that exciton energies can to some extent be
modelled by hydrogen-like models, for instance the Mott-Wannier (MW) model, with
much less computational effort than the BSE formalism. The QEH model has previously
been implemented with the Mott-Wannier equation (the MW-QEH model) to calculate
exciton binding energies [75] in vdWHs. This offers an efficient and fast algorithm to
calculate the exciton binding energies in vdWHs including the dielectric screening of the
electron-hole pair interaction. In chapter 3.7 we will expand upon this and implement
the QEH model with the BSE method. This not only gives us the possibility of also cal-
culating the absorption spectrum of many layers vdWHs including excitonic effects, but
it also turns out to give a good description of the observed redshift of exciton energies in
vdWHs. An effect that the MW-QEH does catch for few-layer vdWHs. Given that the
excitonic spectrum can be accurately calculated by a hydrogen-like model, as the MW
model suggests, the exciton shares a great resemblance with the hydrogen model. This is
indeed true, and it has previously been shown that the exciton spectrum contains a full
non-hydrogenic Rydberg series [21, 90]. In chapter 3.8 we will discuss the importance
of the results of papers II and III, where we introduce a new dielectric screening regime
of exciton physics, by studying the excitonic Rydberg series of intralayer excitons in
2D materials located on dielectric bulk substrates. In fact, we find that depending on
the dielectric constant of the bulk substrate we show that an inherent hydrogenic 2D
Rydberg series can be obtained in the 2D material and for high dielectric constants the
2D exciton enters a new unexplored dielectric screening regime in exciton physics. It is
exciting that it is still possible to elaborate on and introduce new physical regimes to
such fundamental models as hydrogen picture based models.

Finally this chapter will discuss how excitonic devices hold a great potential in terms
of applications due to the strong light-matter interaction. This is illustrated by dis-
cussing the result in paper IV, where we study the WS2/HfS2 bilayer. In this system we
locate a low-energy interlayer exciton in the absorption spectrum with a peak energy in
the infrared (IR) spectrum. While such interlayer excitons usually have low oscillator
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strengths, the detected interlayer exciton has a high oscillator strength making it ideal
for application as an IR photodetector. Chapter 3.9 presents the main results of this
work and discusses the peculiar nature of this excitonic state.

3.1 Dielectric Response Theory and Dielectric
Screening in 2D

As we discussed in the introduction, physics is about observing an event and asking
”why did that happen?”. Since something new happened, this suggests that the system
we are observing went from being in an equilibrium state to a non-equilibrium state
upon some kind of external perturbation. In this section we will see that, if the external
perturbation is small, the change (the non-equilibrium response) of the system can easily
be obtained from its equilibrium properties. By pursuing this, we will see that this leads
us to response theory and the response functions of our system quantified by the Kubo
formulas [69].

If we assume that the system in equilibrium is governed by the Hamiltonian H0 and
the external perturbation is given by Hext(t), i.e. only the external perturbation depends
on time, then the total Hamiltonian of the system is given by: H(t) = H0 + Hext(t).
Before we go into the world of quantum mechanics, it is instructive to first consider the
classical case, since this discussion is lacking in most modern textbooks. Classically, if
the system is described by a thermal distribution function, ρ(t), then the time evolution
of the system is governed by the Liouville equation of motion: ∂ρ(t)

∂t
= Lρ(t), where L is

the Liouville operator which contains the full Hamiltonian of the system. The trick is now
to assume that the time-dependence of the thermal distribution function can be isolated,
such that: ρ(t) = ρ0 + ∆ρ(t). By inserting this in the Liouville equation of motion, we
immediately capture the essence of (linear) response theory and the Kubo formulas: if
one assumes the product of the external perturbation and the time-dependent thermal
ensemble fluctuations to be small (Hext∆ρ ∼ 0), it is then possible to describe the
response of the system to the external perturbation in a linear form, known as the Kubo
formula. What is usually disregarded in the literature, is that the Kubo formalism comes
in two different shapes, and we will present both in the following for completeness. If
we let B be some physical observable of the system and δB the change of the observable
upon the external perturbation Hext, then Kubo showed that these three quantities are
related by:

δB(t) =
∫ t

t0
dt′⟨(B(t− t′; p, q), Hext(t))⟩eq (3.1)

where p and q are the canonical position and momentum variables respectively, the
round parenthesis are the Poisson brackets, and the square brackets denote that the
thermal average is taken in equilibrium. While it is astonishing that the change of the
physical observable in non-equilibrium can be calculated from an equilibrium ensemble
average, the Poisson parenthesis are in practice tedious to evaluate. Instead, one utilise
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a mathematical trick, by factorising the external perturbation into a product of two
conjugate variables: Hext(t) = K(t)A, with only K being dependent on time. Math-
ematically, this eases the evaluation of the Liouville operator since the differentiation
with respect to the canonical real-space coordinate and momentum only acts on A and
in this form δB can now be found from:

δB(t) = 1
kbT

∫ t

t0
dt′K(t′)⟨B(t− t′; p, q)Ȧ⟩eq (3.2)

where the dot denotes the canonical Liouville derivative, kb is the Boltzmann constant,
and T is the temperature.

The Kubo formulas are general and widely used in most branches of physics. While
we, in eqns. 3.1 and 3.2, considered the classical forms of the Kubo formulas, it is
straightforward to derive the corresponding quantum mechanical counterparts starting
from the Heisenberg equation of motion with a quantum mechanical ensemble descrip-
tion. In this study we will be interested in their applications to the calculation of
materials properties. The form of the response functions shows that the change of the
observable will be proportional to the external perturbation and to some proportionality
constant, which we will here denote as the response function. It turns out, that the two
main response functions of interest in materials science come about by asking what is
the change of electronic density and the total potential upon some external perturbation
to the potential. For the change in electronic density to an external perturbation this is
given by:

δn(r, t) =
∫ t

t0
dt′
∫
drχ(rt, r′t′)vext(r′t′) (3.3)

and the total potential is given by:

vtot(r, t) =
∫ t

t0
dt′
∫
drϵ−1(rt, r′t′)vext(r′t′). (3.4)

The proportionality constant, from now to be denoted the response function, for the
density response is known as the density response function, χ, and the response function
for the total potential, ϵ, is known as the dielectric function. As we will see below,
the electronic and optical properties of a material can be determined from these two
functions. It is very interesting and it shows the strength of the Kubo formulas that
the materials properties can be determined by simply asking what is the response of the
material to an undefined external potential. It is useful to rewrite the expression for the
perturbation of the electronic density to define the density response function as:

χ(rt, r′t′) = δn(rt)
δvext(r′t′)

. (3.5)

We note here χ is also known as the reducible polarisability and is formally calculated
from the correlation function of the electronic density operators:

χ(rt, r′t′) = −iΘ(t− t′)⟨[n̂(rt), n̂(r′t′)]⟩. (3.6)
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We will return to the actual calculation of χ below. The fact the χ is labelled the
reducible polarisability heavily suggests the existence of an irreducible polarisability. The
irreducible polarisability is defined as the functional derivative of the electronic density
with respect to the total potential:

P (rt, r′t′) = δn(rt)
δvtot(r′t′)

(3.7)

In the next section it will be obvious how this naming comes about. By simply expanding
the reducible polarisability with the total potential and carrying out the functional
derivative, it is easy to show that χ and P are related through a Dyson equation:

χ(r, r′, ω) = P (r, r′, ω) +
∫
dr1dr2P (r, r1, ω)v(r1, r2)χ(r′, r2, ω) (3.8)

where v is the bare Coulomb interaction. In this step we have also employed a Fourier
transform from time- to frequency-space: in the following we assume the external po-
tential to take the form of a plane-wave (in time) which makes the Fourier transform
straightforward and simply transfers the time integral into a product in frequency-space.
This approximation corresponds to assuming (t, t′) → (t − t′). Since the materials of
consideration in this thesis are (in-plane) periodic, a similar trick can be done for the
real-space coordinate, but we will refrain from doing for now. The introduction of the
irreducible polarisability from the total potential offers a remarkable possibility as can
be seen be examining eq. 3.4 again. Since ϵ, the dielectric function, similarly to P is
defined in terms of the total potential it is in fact possible to relate all three response
functions: the dielectric function and the irreducible polarisability can directly be related
by a Dyson equation:

ϵ(r, r′, ω) = δ(r, r′) −
∫
dr1v(r, r1)P (r1, r′, ω) (3.9)

which again can be related to the reducible polarisability through eq. 3.8. In other
words, not only are the properties of a material defined by the response functions of the
system to an undefined external potential perturbation, but the response functions are
also internally related. The actual evaluation of the response function, starting from
the definition of χ through the density correlation-correlation function is a difficult and
complex exercise, since this involves and describes all interactions in the same manner
as the eigenvalue problem in the many-body picture. To overcome this in practice,
we employ a similar approach as in the previous chapter and define a non-interacting
single-particle density response function:

χ0(r, r′, ω) =
bz∑
k,q

∑
n,n′

(fnk − fn′k+q)ϕnk(r)ϕn′k+q(r)ϕnk(r′)ϕn′k+q(r′)
(ϵnk − ϵn′k+q) − ω + iη

(3.10)

where ϕ(r) is the single-particle Kohn-Sham wave function, similar to the definition
of the single-particle electronic density in the DFT formalism in the previous chapter
and ϵi are the Kohn-Sham eigenvalues. The non-interacting response function fulfills a
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similar response relation as the irreducible polarisability (eq. 3.7), i.e. it relates the total
potential to the fluctuation in the electronic density, however what makes χ0 attractive
to work with is that it can immediately be calculated within the single-particle picture.
Consequently, the reducible polarisability and non-interacting density response function
are also related by a Dyson equation:

χ(r, r′, ω) = χ0(r, r′, ω) +
∫
dr1dr2χ

0(r, r′, ω)v(r1, r2)χ(r2, r′, ω). (3.11)

We note in passing that the Coulomb kernel also contains an exchange-correlation term,
for which the adiabatic LDA is employed in GPAW, but we will not discuss this detail
further. The similarity between χ0 and P can be confusing. One of the most employed
approximations in electronic structure theory calculations is to replace the irreducible
polarisability in eq. 3.4 with χ0 which is known as the Random Phase Approximation
(RPA) and gives a direct flowchart to calculate the dielectric function, which we will see
below is the main object of interest for the optical properties of materials. In the next
sections we will more clearly see how this approximation comes about and the importance
of many-body effects neglected in this approximation. In practice the dielectric function
within the RPA is calculated in reciprocal lattice vectors G (plane-wave components).
In this formalism the expression for evaluating the dielectric function (eq. 3.9) within
the RPA from the non-interacting density response function is in reciprocal space given
as:

ϵGG′(q, ω) = δGG′ − 4π
|q + G|

χ0
GG′(q, ω) 1

|q + G′|
(3.12)

and χ0
GG′ is directly evaluated from the Kohn-Sham system. For a longer introduction

to details of this evaluation the reader can consult [39].

We will comment on the relation between the theoretical framework for calculating
the dielectric properties, quantified by the dielectric function, and the results obtained
from performing an actual measurement. While the calculated dielectric function, con-
tains detailed microscopic quantities and describes the physical variation down to the
atomic length scale, actual experiments probing the optical properties of materials are
working at wave lengths of several hundreds of nanometers. Consequently the result
of optical measurements is an average over a large area of the material. To be able
to compare computed optical properties to experimental measurements it is therefore
necessary to define an averaged dielectric function, defining the macroscopic response
of the system. To do this, one averages the external potential over all (in-plane in 2D)
space, i.e. in a computation this corresponds to averaging over one unit cell. In the
PW description picking out the macroscopic component of the dielectric function corre-
sponds to evaluating the G = G′ = 0 component of ϵ in eq. 3.12. However, since the
microscopic details of the dielectric function are given by the off-diagonal elements of
the dielectric matrix, the macroscopic dielectric function is defined by 1 over the inverse
G = G′ = 0 component of ϵGG′ :

ϵM(q, ω) = 1
ϵ−1

00 (q, ω)
, (3.13)
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where ϵM is the macroscopic dielectric function which is the parameter that makes sense
in relation to an experiment performed on a macroscopic scale. From this definition,
where we effectively include the off-diagonal terms of ϵGG′ in the definition of the macro-
scopic dielectric function is in the literature formally known as including the local-field
effects. The introduction and definition of the macroscopic dielectric function further
enables the theoretical definition of the absorbance. This is of particular interest since,
the experimental optical measurement enables the extraction of the absorption spectrum
of the material. In general, the dielectric function can be decomposed into a real and
an imaginary part: ϵ = ϵ1 + ϵ2, where ϵ1 and ϵ2 denote the real and imaginary part
respectively. From classical electrostatics it is well known that the real part is related
to the reflectance of the material, the imaginary part is related to the absorbance of the
material, and furthermore that the imaginary part is proportional to the polarisability
of the material [56], which in the optical limit in reciprocal space takes the form:

Abs(q → 0, ω) = −4π lim
q→0

[
1
q2 ImP (q, ω)

]
(3.14)

where Abs is the absorption coefficient at frequency ω. The problem of obtaining the
absorption coefficient is thus reduced to finding an expression for the irreducible po-
larisability. The form of eq. 3.14 shows that the irreducible polarisability must be
proportional to q2 for the left hand side to be dimensionless. By taking the imaginary
part of eq. 3.9 in reciprocal space directly gives: ImϵGG′(q, ω) = v(q)ImPGG′(q, ω) in a
PW description. In 3D the Coulomb interaction scales as 1/q2, and thus by comparing
to eq. 3.14 one can immediately define the optical absorbance in 3D from the imaginary
part of the microscopic dielectric function:

Abs3D(q → 0, ω) = lim
q→0

[
ImϵM(q, ω)

]
= lim

q→0

[
Im 1

ϵ−1
00 (q, ω)

]
. (3.15)

In 2D where the Coulomb interaction scales as 1/q a similar definition cannot be carried
out, in fact the macroscopic dielectric function equals unity as q → 0 as can be seen
from examining eq. 3.12 in 2D and thus such a definition does not have any physical
meaning. Instead we consider eq. 3.8 in reciprocal space. If we isolate the irreducible
polarisability we get:

P (q, ω) = χ(q, ω)(1 + v(q)χ(q, ω))−1. (3.16)

In all dimensions the density response function scales as q2 in the optical limit. This
means that v(q||)χ(q||, ω) ∼ q|| (in 2D we here explicitly state that we only consider in-
plane q-vectors), which can be assumed to be much smaller than 1 in the q|| → 0 limit.
The 2D absorption coefficient can therefore instead be defined from the macroscopic
density response function:

Abs2D(q → 0, ω) = −4π lim
q||→0

Im 1
q2

||
χ00(q||, ω)

 . (3.17)
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In principal the 3D absorption coefficient could similarly be defined from this expres-
sion. Due to q-dependence of the 3D Coulomb interaction, only the density response
function in the denominator would carry a q-dependence on the right hand side, and the
q-treatment would then in fact be exact in the 3D case.

At this point we still own the reader a more intuitive explanation of the physical
significance of the response functions in terms of the direct particle-particle interaction.
From electrostatics, it is well known that the dielectric function of a material reduces
the strength of electric field lines passing through the material. If we consider two
charged particles in free space, both of charge c with a separation length r0, the Coulomb
interaction between the two particles is given by: v(r0) = 1

4πϵ0
c2

r0
, where we explicitly

write the interaction potential out in SI units to highlight the presence of the vacuum
permittivity. If the two charged particles instead were located inside a dielectric media,
the interaction potential is reduced (physically due to the presence of all other free
charged particles, which will reduce their interaction) by the dielectric function of the
media. Since this physical dielectric screening is inherently non-local (the interaction
strength at position r depends on electronic density at all other positions), the screened
Coulomb interaction is now given by integrating over all space:

W (r, r′, ω) =
∫
dr1v(r, r1)ϵ−1(r1, r′, ω). (3.18)

This definition can straightforwardly be carried out for the microscopic dielectric function
(as shown here) and for the macroscopic dielectric function as well. We will refer to W
as the screened Coulomb interaction and to v as the bare Coulomb interaction. If one
considers the pair of interacting charged particles the electric field lines penetrate space
in all 3 dimensions, and the strength of these can in a simple picture be seen to be
reduced everywhere in space with the presence of other charge particles. In a 3D bulk
crystal, the interacting charged particle pair are thus everywhere surrounded by other
charged particles, which leads to a significant reduction of their interaction potential.
However, in a 2D monolayer, where all charge is closely confined around the 2D plane,
the majority of the electric field lines penetrate free space. As a consequence of this, the
screened Coulomb interaction between charged particles is much stronger in 2D than in
3D. Another peculiar artefact of the dielectric function in 2D is its dependence on the
reciprocal wave-vector q. In most introductory text books, ϵ is taken to be a constant
without elaborating on its intrinsic dependence on q. As illustrated in fig 3.1, where we
plot the macroscopic dielectric function, this is found to be a good approximation, since
the macroscopic dielectric function in bulk 3D crystals (shown in black) is constant
over a wide range of q and can be taken to equal its values at q = 0. The story
is very different for 2D monolayers, where the macroscopic dielectric function changes
rapidly even for small q (shown in green). This can intuitively be understood from the
following reasoning: at q = 0, corresponding to an infinitely long separation between
the charged interacting particles, varying the distance between the particles only have
little effect in a bulk crystal, since one is effectively averaging over the full crystal.
However, in a 2D monolayer, at an infinite separation distance, all electric field lines
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are located in the vacuum surrounding the monolayer, and the macroscopic dielectric
function must consequently attain the value one. As one reduces the distance in 2D ϵ
takes a complicated form, since the electric field lines are partly located inside the 2D
monolayer and in the vacuum. For large q, the distance between the interacting charged
particles becomes so close, that we are now in the limit where most electric field lines
are located inside the 2D monolayer. Thus, in this limit the 2D macroscopic dielectric
function will attain similar values to the 3D macroscopic dielectric function. Especially,
when the interactiong distance becomes smaller than the characteristic extension of the
electronic density in the out-of-plane direction, it becomes impossible to differentiate
between the 2D and the 3D case explaining the overlap between the two functions in
this limit.

Figure 3.1: Illustration of the macroscopic dielectric function for a freestanding 2D
monolayer (green) and a 3D bulk crystal (black) as a function of the recip-
rocal lattice vector. In grey is shown the vacuum dielectric permittivity.

If one further inspects the 2D macroscopic dielectric function in fig. 3.1 for small q,
one finds that this takes a close to linear form around q = 0. That the 2D dielectric
function can be approximated to be linear in this limit, is now a well-known an widely
used approximation in the 2D monolayer community [24, 117]. To verify the linear
approximation for the dielectric function we consider the N -dimensional version of eq.
3.12 within the RPA:

ϵGG′(q, ω) = δGG′ − v(q)χ0
GG′(q, ω) (3.19)

where q′ is the Coulomb kernel which can take any value q + G. As mentioned above,
in reciprocal space the non-interacting density response function, eq. 3.11, is known to
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be proportional to q2 for q → 0 in all dimensions [24] (i.e. in the optical limit). Since
in 2D the Coulomb kernel is proportional to 1/q while in 3D the Coulomb kernel is
proportional to 1/q2, inserting this in eq. 3.19 one immediately gets for G = G′ = 0:

ϵ2D
00 (q → 0) = δ00 + a2Dq|| (3.20)

ϵ3D
00 (q → 0) = δ00 + a3D (3.21)

where aND is a combined (positive) constant of proportionality from the exact form of χ0.
From this several aspects of fig. 3.1 can be explained. First it shows, that the dielectric
function in 2D attains the value one for q = 0, while it takes some finite value larger
than one in 3D. Second, we see that the 3D bulk dielectric function is constant over a
wide range of small q while the 2D dielectric function increases linearly. In section 3.8 we
will consider the 2D dielectric function in greater detail and show the origin of a new di-
electric screening regime when the 2D monolayer is placed on a bulk dielectric substrate.

3.2 Many-Body Perturbation Theory, the GW
Approximation, and Vertex Correction

In this section we will see how the single-particle description provided by DFT can be
improved upon by introducing the concept of quasi-particle states, which allows us to
more accurately calculate excited-state properties of materials. We will discuss this in
the context of the widely adapted GW approximation, which in recent years has been
used to accurately calculate quasi-particle energies for both solids [55, 29, 36, 97, 104, 88,
111] and molecular systems [13, 110, 68]. It is important to stress that the GW approxi-
mation has its success from predicting quasi-particle energies for transitions close to the
Fermi level, but fails to accurately predict core-level excitations [43], which will not be a
topic of this study. While the full derivation of the GW (and Hedin’s equations [51]) is
lengthy and well documented in many reviews [54, 43, 6], we will here restrict ourselves
to go through the main steps and physical arguments leading to the GW approximation.

In section 2.1 we discussed the complexity of the many-body problem and in section
2.2 we discussed the Kohn-Sham formalism as a simplified approach to obtain single-
particle wave functions, the ionisation potential, and the ground-state energy. We il-
lustrated that the complexity of the many-body problem could be put together in a
term describing the exchange and correlation effects. The most studied approximations
for the exchange and correlation term include only considering the local density as in
LDA or by including the gradient of the density to get a better description of the micro-
scopic variation of the density such as in PBE. Within these approximations an adequate
description of the ionisation potential and electron affinity can be obtained for some sys-
tems (even though the latter still does not owe any physical meaning within the DFT
formalism but can accurately be predicted by invoking the derivative discontinuity) or
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more generally the difference in energy between the occupied and unoccupied states, i.e.
the single-particle transition energies. However, in systems with strongly interacting
electrons the above approximations are not sufficient to obtain accurate single-particle
transition energies (as compared to experimental values) for the full band structure. For
such systems it is necessary to go beyond the homogeneous electron gas and properly
describe the screened electron-electron interaction rather than the bare Coulomb inter-
action. As we saw in the previous section the screened electron-electron interaction is
inherently non-local, suggesting that it is necessary to expand upon the Kohn-Sham
equation and instead adapting a non-local quantity for the exchange correlation term:[

−1
2

∇2 + vHa[n](r) + vext[n](r)
]
ϕi(r) + ⨿(r, r′)ϕi(r) = ϵiϕi(r) (3.22)

where all terms in the Hamiltonian are the same as in the Kohn-Sham equation (2.14)
and we have introduced a non-local parameter ⨿(r, r’), to be determined representing
a non-local exchange-correlation functional. We will comment on the nature of the
eigenstates below. To describe the excitations of strongly correlated systems, it turns
out it is sufficient to introduce the idea of quasi-particles, i.e. the dressed electron-
electron interaction. This is essentially the bare Coulomb interaction screened by a
screening cloud of charged particles, which reduces the interaction strength compared
to the bare Coulomb interaction as explained in the previous section in connection with
the dielectric function. We start by defining the single-particle Green’s function:

G(rt, r’t′) ≡ −i⟨N |T̂{Ψ̂(rt)Ψ̂†(r′t′)}|N⟩ (3.23)

where |N⟩ is the N -particle ground state, T̂ is the time-ordering operator, and Ψ̂(rt)
(Ψ̂†(r’t′)) is the annihilation (creation) operator i.e. the field operators. Two approaches
can now be employed to proceed. One approach is to write down the Heisenberg equation
of motion for the field operators which can be rewritten into an equation of motion for
the single-particle Green’s function. The second approach is to directly insert a complete
set, ∑i |ϕN±1

i ⟩⟨ϕN±1
i |, of the N±1 states of the N -particle many-body space and Fourier

transform to frequency space. From both approaches we arrive at what is known as the
Lehman representation of the single-particle Green’s function:

G(rt, r′t′, ω) =
∑

i

⟨N |Ψ̂|ϕN+1
i ⟩(rt)⟨ϕN−1

i |Ψ̂|N⟩(r′t′)
ω − δξi

. (3.24)

where δξi are the single-particle energies associated with the difference between the N
and N ± 1 states. We now directly define the quasi-particle wave functions and energies
as the electron addition and removal energies, i.e. the cost of adding or removing and
electron from the system:

ϕQP
i (rt) =

⟨N |Ψ̂|ϕN+1
i ⟩(rt), ϵi > EF

⟨ϕN−1
i |Ψ̂|N⟩(rt), ϵi < EF

(3.25)

ϵQP
i =

ξ
N+1
i − ξ0, ϵi > EF

ξ0 − ξN−1
i , ϵi < EF.

(3.26)
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where EF is the Fermi level. With these definitions eq. 3.24 can be rewritten into:

G(rt, r′t′, ω) =
∑

i

ϕQP
i (r)ϕQP∗

i (r′)
ω − ϵQP

i

, (3.27)

from which the quasi-particle energies can now be found as the poles of the denominator
and where the quasi-particle wave functions can be determined from the solutions to the
quasi-particle equation [51]:[

−1
2

∇2 + vHa(r) + vext(r)
]
ϕQP

i (r) +
∫
dr′Σxc(r, r′, ϵQP

i )ϕQP
i (r′) = ϵQP

i ϕQP
i (r). (3.28)

By comparing this to the form of our initial guess, eq. 3.22, we see that the to-be-
determined non-local term takes the form of a non-local self-energy, Σxc(r, r′, ϵQP

i ) and
that the eigenstates are approximated as the quasi-particle wave functions defined above.
Note that the quasi-particle wave functions are not the true eigenstates of the system.
This means that the eigenenergies (the poles) of eq. 3.27 have an imaginary part which
gives the lifetime of the quasi-particle states. To determine the quasi-particle energies,
the problem is now reduced to determining the (interacting) Green’s function and the
self-energy, which, however is itself a function of the quasi-particle energy. The problem
can be further simplified by relating the interacting Green’s function and the self-energy
by a Dyson equation:

G(r, r′, ω) = G0(r, r′, ω) +
∫ ∫

dr1dr1G0(r, r1, ω)Σxc(r, r′, ω)G0(r2, r′, ω). (3.29)

Here G0 is the non-interacting Green’s function, and this now leaves the problem to only
determine the self-energy. To ease the understanding we will for now change the notation
to (riω) → (i). In the previous section we introduced the irreducible polarisability as
the functional derivative of the electron density with respect to the total potential (eq.
3.7) and the inverse dielectric function as the relation between the total potential and
an externally applied potential (eq. 3.4). These are related through eq. 3.9, which can
be inverted and inserted in eq. 3.18 to obtain:

W (1; 2) = v(1, 2) +
∫
d3d4v(1; 3)P (3; 4)W (4; 2). (3.30)

To close the set of equations and determine the self-energy we need to introduce the
so-called vertex, which describes the change in the (inverse) interacting Green’s function
to the change in the total potential:

Γ(1, 2; 3) = −δG−1(1; 2)
δvtot(3)

. (3.31)

Comparing to eqs. 3.5 and 3.7 the vertex can to some extend be understood as a response
function for the Green’s function (with the little physical meaning this definition holds).
It was shown by Hedin [51] that this quantity connects the interacting Green’s function,
the self-energy, the screened Coulomb interaction, and the irreducible polarisability. We
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will here simply state the remaining three of Hedin’s equations which together with eq.
3.29 and eq. 3.30 provide a closed set of equations to determine the self-energy, and
refer to Hedin’s original work for the derivation of the equations involving the vertex:

P (1; 2) = −i
∫
d3d4G(1; 3)G(4; 1)Γ(3, 4; 2) (3.32)

Σxc(1; 2) = i
∫
d3d4G(1; 4)W (1, 3)Γ(4, 2; 3) (3.33)

Γ(1, 2; 3) = δ(1; 3)δ(2; 3) +
∫
d4d5d6d7∂Σxc(1; 2)

∂G(4; 5)
G(4; 6)G(7; 5)Γ(6, 7; 3). (3.34)

While this set of equations in principle can be solved self-consistently to obtain the self-
energy and consequently the quasi-particle energies this is not computationally feasible.
Instead, we will apply one of the physicists strongest methods: we will make an initial
guess for the self-energy, iterate the set of equations once, and see what we obtain for
the self-energy. The simplest guess for the self-energy is simply putting it equal to zero:
Σxc = 0 which directly gives the vertex as:

Γ(1, 2; 3) = δ(1; 3)δ(2; 3). (3.35)

Inserting this in eq. 3.32 we obtain for the irreducible polarisability:

P (1; 2) = −iG(1; 2)G(1; 2). (3.36)

The screened Coulomb interaction becomes:

W (1; 2) = v(1, 2) − i
∫
d3d4v(1; 3)G(1; 4)G(1; 4)W (4; 2)) (3.37)

which can be inverted to give:

W (1; 2) = v(1)
1 − v(1)χ0(1; 2)

(3.38)

where we have inserted the definition of the non-interacting susceptibility: χ0 = −iGG.
The interacting Green’s function now simply becomes the non-interacting Green’s func-
tion:

G(1; 2) = G0(1; 2). (3.39)
Note that this is the closest we get to a formal definition of the difference between the
interacting and non-interacting Green’s function within this framework, namely that the
non-interacting Green’s function satisfies the Green’s function equation of motion when
the self-energy is put to zero. Finally for the self-energy we obtain:

Σxc(1; 2) = iG(1; 2)W (1; 2) = iG(1; 2)v(1)
1 − v(1)χ0(1; 2)

(3.40)

This approximation for the self-energy is formally known as the GW approximation. The
expression obtained for the irreducible polarisability in eq. 3.36 is the formal definition
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of the RPA as we also encountered in the previous section (when putting P = χ0) and
shows that the screened Coulomb interaction in the G0W0 is calculated within the RPA.

It is now tempting to iterate Hedin’s equations again with the new expression for
the self-energy, however it turns out that doing this will lead us to the Bethe-Salpeter
equation as we will see later, which includes electron-hole interactions in the description
of the excitations. Instead we will take inspiration from the fact that in the GW approx-
imation the self-energy can be viewed as a modified bare Coulomb interaction with an
inherent non-locality. Thus we will now iterate Hedin’s equations with a more general
guess for the self-energy: Σ(1; 2) = δ(1, 2)vxc(1), where vxc(1) is the exchange-correlation
functional from the Kohn-Sham formalism, for instance the LDA or a GGA functional.
Inserting this into the Dyson equation for the vertex yields:

Γ(1, 2; 3) = δ(1; 3)δ(2; 3) + iδ(1; 2)
∫
d5d6d7∂vxc(1)

∂G(5)
G(5; 6)G(7; 5)Γ(6, 7; 3). (3.41)

We note here that G(i) by the definition of the single-particle Green’s function (eq. 3.23)
is simply the expectation value of the electronic density: −iρ(i), and the derivative of
the Kohn-Sham exchange correlation function therefore can be regarded as an effective
potential which we will denote by: veff

xc (1, 2) = ∂vxc(1)
∂G(2) . To proceed we have to insert

this in eq. 3.32 and follow the flowchart of the derivation of the GW method. We will
spare the reader these merely mathematical steps, and instead state that despite how
unpleasant the procedure looks, it turns out that the final expression for the screened
interaction, and therefore the self-energy, take a form very close to that of eq. 3.40:

Σxc(1; 2) = iG(1; 2)W (1; 2) = iG(1; 2)v(1)
1 − (v(1) + veff

xc (1))χ0(1; 2)
(3.42)

which can to some extent simply be viewed as a modified screened interaction, with a
correction to the bare Coulomb interaction from the Kohn-Sham exchange correlation
functional, and the GW approximation is restored simply by putting the vertex correc-
tion equal to unity, i.e. putting veff

xc = 0. Using this expression for the self-energy is
formally known as the GWΓ approximation. The interest for this approximation is that
it has proven to give better descriptions of ionisation potentials and electron affinities
[46] of solid state materials.

With an expression for the self-energy in hand it is now possible to directly solve
the quasi-particle equation self-consistently to obtain the quasi-particle energies. This is
however not computationally feasible in practice and further approximations are needed.
The problem arises from the fact that the G in the self-energy has to be calculated from
the quasi-particle energies. If the Kohn-Sham description already offers an adequate
description of the system, the difference between the self-energy and the Kohn-Sham
exchange-correlation contribution can be expected to be small. The trick is to add and
subtract the Kohn-Sham exchange-correlation functional to the quasi-particle equation,
so we get a term in the quasi-particle equation that involves: Σxc(r, r′, ϵQP

i ) − vKS
xc (r),
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where vKS
xc (r) is the Kohn-Sham exchange correlation function. By assumption this term

is small and can thus be expanded around the quasi-particle energies to first order:

Σxc(r, r′, ϵQP
i ) = Σxc(r, r′, ϵKS

i ) + (ϵQP
i − ϵKS

i )∂Σxc(ω)
∂ω

|ω=ϵQP
i
. (3.43)

The main advantage of this simplification is that the self-energy is now evaluated from
Kohn-Sham eigenvalues rather than the quasi-particle energies. This reduces the accu-
racy of the GW method, but also reduces the computational requirements significantly
since the quasi-particle energies now can be evaluated from a one-shot GW calculation,
known as a G0W0 calculation, by taking the expectation value of the quasi-particle equa-
tion (with Kohn-Sham wave functions) in the linearised expression for the self-energy:

ϵQP
i = ϵKS

i + Zi⟨ψKS
i |Σxc(ϵKS

i ) − vKS
xc (r)|ψKS

i ⟩, (3.44)

which can be directly evaluated once the Kohn-Sham wave functions and eigenvalues are
obtained from DFT. The renormalisation factor, Zi = ⟨ψKS

i |1 − ∂Σxc(ω)
∂ω

|ω=ϵQP
i

|ψKS
i ⟩−1, ex-

presses to which degree the Kohn-Sham wave function resembles the quasi-particle state,
i.e. if ∂Σxc(ω)

∂ω
|ω=ϵQP

i
is very large the linearisation of Σxc − vKS

xc is not a good approxima-
tion and the ansatz that the Kohn-Sham formalism offer an adequate description of the
quasi-particle picture breaks down. The renormalisation factor therefore attains values
close to 1, in practice around 0.8-0.9 for well-described systems. The approximation is
known as the non-self-consistent GW approximation or simply the G0W0 approxima-
tion, and is the method from which we will calculate quasi-particle energies in this thesis
based on either the GW or GWΓ expressions for the self-energy.

All calculations in this study are performed at 0 K, without including the effect
of zero-point-motion phonon contributions. Finite temperature effects enter through a
coupling between the electronic and the phononic states, which is not present in the
standard GW (and BSE) approximations presented and applied in this thesis. The
electron-phonon coupling has two effects: first, it shifts the excitation energy of the
quasi-particle and exciton states, and second, it introduces an imaginary part to the
eigenvalues corresponding to the lifetime of the quasi-particle states. This is visually
seen as a broadening of the excitation peaks in absorption and photoluminescence spec-
tra. One way to computationally account for the electron-phonon coupling is to add
corrections arising from the electron-phonon interaction to the self-energy in eq. 3.44
in a perturbative manner. In this approach the first two order terms, corresponding to
a first order scattering event: ⟨nk| → ⟨nk − q1| + ⟨λq1| for phonon state λ with ampli-
tude gλq1

nn′k and a second order scattering event: ⟨nk| → ⟨nk − q1 − q2| + ⟨λq1| + ⟨λ′q2|
with amplitude bλq1,λ′q2

nn′k , give rise to the Fan [32] (ΣF) and Debye-Waller [41] (ΣDW)
self-energy corrections respectively:

ΣF
nk(ϵ, T ) =

∑
n′λq1

|gλq1
nn′k|2

Nq

(
Nq(T ) + 1 − fn′k−q1

ϵ− ϵn′k−q1 − ωλq

)(
Nq(T ) + fn′k−q1

ϵ− ϵn′k−q1 + ωλq

)
(3.45)
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ΣDW
nk (ϵ, T ) =

∑
n′λq1λ′q2

|bλq1,λ′q2
nn′k |2

Nq
(2Nq(T ) + 1) (3.46)

where T is the temperature, Nq is the phonon Bose distribution, fn′k is the electron
Fermi distribution, ωλq is the phonon energy, and ϵn′k−q1 the electron eigenvalue en-
ergy. Finite temperature effects enter through the phonon population, however even
at T = 0 K, a non-neglecting contribution comes from the phonon population due to
the zero-point-energy. Furthermore, note that only the Fan self-energy carries a contri-
bution to the imaginary part of the quasi-particle energies, and thus the quasi-particle
lifetime. The Fan and Debye-Waller self-energies are in practice added to the pure GW
self-energy in eq. 3.44, such that: Σxc(ϵKS

i ) → Σxc(ϵKS
i ) + ΣF

nk(ϵKS
i , T ) + ΣDW

nk (ϵKS
i , T ). In

chapter 4 we will consult the literature for how these effects affect quasi-particle energies
in few-layers vdWHs, since these contributions are not implemented in GPAW.

Finally, we will briefly comment on the implementation flowchart in GPAW since this
will be necessary for reference in the next section. The GW formalism is implemented
in the PW formalism, where the self-energy is directly calculated by summing over all
occupied and unoccupied states (index m) and averaging over the Brillouin zone with
area Ω:

Σnk(ϵKS
nk ) = ⟨nk|Σ(ω)nk⟩

= 1
Ω
∑
GG′

BZ∑
q

all∑
m

i

2π

∫ ∞

−∞
dω′WGG′(q, ω′) ×

ρnk
mq−k(G)ρnk

mq−k ∗ (G′)
ϵKS

nk − ϵKS
nk−q − ω′ + iηsgn(ϵmk−q − EF)

,

(3.47)

where |nk⟩ is the Kohn-Sham wave function and ρ is the pair-density: ρnk
mq−k(G) =

⟨nk|ei(q+G)r|nk⟩. It is well known that, in the averaging over the Brillouin zone, the
screened interaction diverges for q → 0. This limit is excluded from the summation in
the self-energy and is instead calculated analytically as explained in [102]. As we saw
above, the irreducible polarisability takes its form within the RPA, and consequently
the screened interaction has to be evaluated from the dielectric function calculated from
the RPA:

WGG′(q, ω) = 4π
|q + G|

(
(ϵRPA

GG′(q, ω))−1 − δGG′

) 1
|q + G′|

. (3.48)

We note that in all G0W0(Γ) calculations in this thesis, the quasi-particle band gap
(and thus the ionisation potential and electron affinity levels) are determined by a 1/E3/2

cut
extrapolation of the band gap to infinite PW cut-off energy, where Ecut is the PW cut-off
energy of the PW expansion.
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3.3 The Quantum Electrostatic
Heterostructure Model

The QEH model presented in this section is originally derived in [4], which can be con-
sulted for further details than presented in this section. The corner stones of the QEH
model will be discussed here, since the QEH model in its original version has been used
to obtain the results for dielectric screening of quasi-particle energies in section 3.5 in
this chapter. Later in chapter 3 and in chapter 4 we will then expand the QEH model
to include interlayer hybridisation effects and allow for accurate excited states proper-
ties, such as exciton energies and absorption spectra in vdWHs to be calculated. While
the GW-formalism has been proven to yield accurate quasi-particle energies for both 2D
monolayers and 3D bulk systems, difficulties arise when ab-initio many-body formalisms,
such as GW, are applied to vdWHs. As outlined in section 2.4, when 2D monolayers
are stacked into vdWHs, large supercells are required to represent the atomic structure
of the (many layers) vdWH if the monolayers are either incommensurate or rotated
relative to each other. This means that G0W0 calculations are only computationally
feasible for specific vdWH such as lattice matched few-layer vdWHs or by straining one
or more layers significantly. While conventional DFT codes can be applied to vdWH
of up to a few thousand atoms, apart from the band gap problem of such methods,
DFT does not capture the long-range dielectric screening in vdWH. A proper descrip-
tion of the long-range dielectric screening in vdWH is important as can be seen from
eq. 3.47, since the screened electron-electron interaction in layer i (W (q, ω)) is affected
by the N − i other layers in the vdWH and consequently have a direct impact on the
quasi-particle energies. This suggests that an alternative method is needed to accurately
calculate quasi-particle energies in vdWHs. This section will present the QEH model,
which allows quasi-particle energies of a general vdWH to be calculated at the G0W0(Γ)
level without straining any of the layers. This is done calculating the in-plane dielectric
properties of each (freestanding) monolayer fully ab-initio and modelling the interlayer
interaction purely electrostatically. The success of this model lies in the weak van der
Waals interaction between neighbouring layers and it is important to stress that this
only provides a proper description of the quasi-particle states, which are only little af-
fected by interlayer hybridisation affects, since this is not included in the original QEH
model - we will return to this point in section 3.4 and chapter 4.

Encouraged by the weak interlayer interaction in vdWHs it is convenient to split the
full Coulomb interaction into an intra- and interlayer component:

v = vintra + vinter. (3.49)

In this, vintra contains the electron-electron interaction present within each monolayer
and vinter defines the weak electrostatic interlayer interaction. Already at this point we
again stress interlayer hybridisation effects are not included in vinter. In a simple picture,
the electrostatic interaction between two charge distributions can effectively be modelled
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with an image charge model, i.e. that an additional charge is induced in each layers due
to the presence of one and another. In this picture, the electrostatic interaction between
layers i and k in a vdWH is given by:

vinter
i,k (q||) =

∫
dzρi(z,q||)Φk(z,q||) (3.50)

where ρi is the induced charge distribution in layer i (from the presence of layer k) and
Φk is the total potential in layer k generated by the induced charge distribution. Once
the induced charge distributions are found the potentials can be determined by solving
the Poisson equation for each layer. This shows that, to effectively model the interlayer
interaction we need to obtain the induced charge distributions in each layer. To do
this, we consider the density response function within the RPA for the full vdWH, i.e.
including both intra- and interlayer components:

χ(r1, r2, ω) = χ0(r1, r2, ω) +
∫
dr3dr4χ

0(r1, r3, ω)v(r3, r4)χ(r1, r2, ω) (3.51)

where χ is the interacting density response function, χ0 is the non-interacting density
response function, and v(r3, r4) is the full Coulomb interaction. Keeping in mind we
seek and expression for the induced density in each layer, it is natural to define a den-
sity response function of each layer. We do this by assuming the external electrostatic
potential in one layer, from the other layers in the vdWH, can be expressed as a multi-
pole expansion, in the out-of-plane direction. We therefore define the intralayer density
response, χ̃, for layer i to pole α of the multipole expansion as:

χ̃iα(q||, ω) =
∫
dzdz1z

αχi(z, z1,q||, ω)zα
1 . (3.52)

where χi is calculated for each freestanding monolayer ab-initio and thus only contains
in-plane interactions and z is the pposition coordinate in the out-of-plane direction. In
practice it is only necessary to consider the monopole and dipole components of χ̃. From
this, it is straightforward to calculate the (normalised) induced densities in each layer:

ρiα(z,q||, ω) = 1
χ̃iα(q||, ω)

∫
dz1χ̃i(z, z1,q||, ω)zα

1 . (3.53)

To obtain macroscopic properties of the vdWH we need to couple eqs. 3.52 and 3.53
to the full density response function, eq. 3.51 for the vdWH. To do this, we insert the
intra- and interlayer components for v, eq. 3.49 into eq. 3.51. It is easy to show that
this defines two Dyson equations: one for the intralayer Coulomb interaction and one
for the interlayer Coulomb. The Dyson equation for the interaction between layer i and
k takes the form:

χiα,jβ(q||, ω) = χ̃iαδiα,jβ + χ̃iα(q||, ω)
∑
ik,γ

vinter
iα,kγ(q||)χkγ,jβ(q||, ω), (3.54)

where k is a layer index, and α, β, and γ are index for the multipole expansion. This
relates the full density response function to the freestanding monolayer density response
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function. Since eq. 3.51 can be solved fully ab-initio for each freestanding monolayer,
eqns. 3.52 and 3.53 define the dielectric building block of layer i in a vdWH. A large
set of dielectric building blocks have been calculated previously and are freely available
[4]. We now find that the interlayer Coulomb interaction, defined in eq. 3.50, takes the
form:

vinter
iα,kγ(q||) =

∫
dzρiα(z,q||)Φkγ(z,q||). (3.55)

Finally following the definition in section 3.1 it is straightforward to obtain the macro-
scopic dielectric function of the vdWH:

ϵ−1
iα,jβ(q||, ω) = δiα,jβ +

∑
k,γ

viα,kγ(q||)χkγ,jβ(q||, ω). (3.56)

This shows that, given a vdWH, by calculating the density response function of each
freestanding monolayer calculated fully ab-initio (at the level of the RPA) and by apply-
ing an electrostatic interlayer coupling, it is possible to obtain the macroscopic dielectric
properties of the vdWH.

In the last part of this section we will see how the QEH model can be used to
calculate corrections to the quasi-particle energies, of each layer in vdWHs, from the
interlayer dielectric screening. We start by generally defining the effective screened
electron-electron interaction for a specific layer in terms of the macroscopic dielectric
function:

W vdWH
i (q||, ω) = ρe

i (q||, ω)(ϵM(q||, ω))−1ϕe
i (q||, ω), (3.57)

where ρe
i and ϕe

i are the induced electronic density and induced potential for the layer
in question. By calculating the screened interaction for the freestanding monolayer, it is
possible to obtain the correction to the screened interaction in layer i originating from
the neighbouring layers as the difference between these two:

∆Wi(q||, ω) = W vdWH
i (q||, ω) −Wi(q||, ω), (3.58)

where Wi(q||, ω) is the screened electron-electron interaction for the freestanding mono-
layer calculated fully ab-initio. The correction to the quasi-particle energies in layer i,
due to the additional dielectric screening from the surrounding layers, is then obtained
by calculating the correction to the GW self-energy in eq. 3.47 from ∆Wi:

∆Σnk,i = 1
Ω

i

2π

∫
BZ
dq
∫ ∞

−∞
dω′∆Wi(q, ω)

all∑
m

ρnk
mq−k(G = 0)ρnk

mq−k ∗ (G′ = 0)
ϵKS

nk − ϵKS
nk−q − ω′ + iηsgn(ϵmk−q − EF)

.

(3.59)
In the PW basis only the macroscopic part of the pair-density matrices are included
(G = G′ = 0). The corresponding change to the quasi-particle energies for layer i is
then immediately obtained through the real part of the correction to the GW self-energy:

∆ϵQP
i = ZiRe(∆Σnk,i) (3.60)

This defines what for the remaining part of this chapter will be denoted as the G0W0(Γ)-
QEH method for obtaining quasi-particle energies in vdWH, and can readily be evaluated
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for each layer in a vdWH. In practice, to obtain the quasi-particle energies for layer i
in a vdWH a G0W0(Γ) calculation for the freestanding monolayer is performed, and
subsequently the correction to the quasi-particle energies are then calculated by first
calculating the macroscopic dielectric function of the vdWH, then calculating the change
in the self-energy from the interlayer dielectric screening, and finally evaluating the
actual quasi-particle energy corrections. By utilising the library of previously calculated
dielectric building blocks the correction to the quasi-particle energies can be calculated
with little computational power compared to a standard monolayer G0W0 calculation.

3.4 Interlayer Orbital Hybridisation
In this section we will take a step back for a brief comment of the effect of interlayer
orbital overlap in vdWHs on the quasi-particle state energies. In general, the (bare)
Coulomb interaction between two electrons will, at a fixed time, be proportional to
the integral of the two electron densities, n1 and n2 divided by the distance between
their charge distributions: v ∼

∫
dr1dr2

n1(r1)n2(r2)
|r1−r2| . Similarly, if the two electrons are

put in two bound states in close proximity their energies will be affected if there is
a finite overlap between their wave functions: u ∼

∫
drn1(r)n2(r), with an unknown

distance dependence. While the Coulomb interaction, v, remains finite if the charge
densities have a zero overlap, the overlap interaction, u, disappears as the overlap goes
to zero. We will regard the latter effect as an orbital hybridisation effect. This effect is
fundamentally different to the dielectric screening effect studied in the previous chapters,
which describes how the mutual interaction between the two electrons is affected by the
presence of other electrons which electronic densities do not necessarily overlap with
electron density of the two electrons considered here. In the previous three sections
we have studied how the nature of the dielectric environment affects the ground-state
energies and especially that the effect of dielectric screening is non-local. This effect
can be accurately calculated in the QEH model and in fact this renormalisation of the
quasi-particle energies is almost constant for all bands and throughout the Brillouin
zone. The success of the QEH model to accurately predict the renormalisation of the
quasi-particle energies for vdWHs relies mainly on the rather big interlayer distances
between the neighbouring layers in the vdWHs. This means that there is a very small
overlap between the electronic orbitals located on the neighbouring layers and following
the argument above, it is therefore expected that the effect on the quasi-particle energies
due to interlayer orbital overlap is small. Opposite to the dielectric screening the orbital
hybridisation effect is highly band and k-point dependent. While the effect on the quasi-
particle energies is in general small for most multilayer structures, it can give rise to a
considerable quasi-particle energy renormalisation in localised parts of the Brillouin zone.
To show this, in fig. 3.2 we show the band structure of bilayer MoS2/WS2 calculated
with the G0W0 approximation (left) and the G0W0-QEH approximation (right). While
both methods describe the effect of dielectric screening, only the full G0W0 includes
the effect of interlayer orbital hybridisation at the level of self-consistent GGA. The
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color indicates the projected weight of each state onto the MoS2 (red) and WS2 (blue)
monolayer respectively. Overall, the effect of interlayer orbital hybridisation does not
alter the qualitative features significantly and both unoccupied and occupied states
around the K-point are unaffected by the orbital hybridisation (but slightly altered
due to interlayer charge transfer effects). Still it is evident that the degenerate valence
states around the Γ-point split due to the interlayer orbital hybridisation introducing
an indirect band gap and the conduction states between K-Γ are significantly lowered in
energy. A purely dielectric screening description of the interlayer interaction in vdWHs
is however still sufficient to describe many properties, for instance the K-K electronic
band gap in multilayer TMDs.

Figure 3.2: Quasi-particle energies calculated with the G0W0 approximation (left) and
the G0W0-QEH model (right) for bilayer MoS2/WS2. The red (blue) in-
dicates the orbital weight of the state projected onto the MoS2 (WS2)
monolayer. Faint red or blue color shows interlayer hybridised states. The
black lines are the interpolated quasi-particle energies. The Fermi levels
are shown by the horizontal dashed lines. Note the full G0W0 calculations
contains less conduction bands than the G0W0-QEH calculation.

As explained above, the need for the QEH model is due to the large number of
atoms necessary to represent multilayer vdWHs or even incommensurate twisted bilayer
structures. Since the interlayer orbital hybridisation is highly dependent on the relative
twist-angle between neighbouring layers [3, 42, 72] and possible Moiré pattern effects [83]
large supercells are needed to calculate the interlayer orbital hybridisation. It is therefore
only possible to calculate the interlayer orbital hybridisation for small lattice matched
structures as the one in fig. 3.2 - and even in this case the hybridisation pattern is not
necessarily well described. We will return to this delicate subject later and in chapter 4
we will show how such interlayer orbital hybridisation effects can accurately be accounted
for when calculating quasi-particle energies for vdWHs.
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3.5 Tunable Dielectric Screening in a 2D
Semiconductor

In this section we will see the first example of how the non-locality of the dielectric screen-
ing gives rise to, and can effectively be utilised in a predictable manner, to manipulate
electronic states and electronic structure design of vdWHs. We will restrict ourselves to
a setup where the lowest energy transitions and features are not significantly affected
by interlayer orbital hybridisation effects such that the electronic properties can be ac-
curately calculated by only considering the interlayer dielectric screening. To this end,
we therefore choose to study a system consisting of a monolayer TMD semiconductor
placed on top of a gated graphene layer as sketched in fig. 3.3 (left). In addition to this,
below we will study the effect of a variable number of intercalated hBN monolayers on
the electronic properties of the 2D semiconductor. As we saw in the previous section,
the direct quasi-particle band gap in monolayer TMDs is not affected by the interlayer
orbital hybridisation of bilayer TMD systems and similarly we expect this to be true
at hBN and graphene monolayers interfaces, since the orbital state at the K-point is
strongly localised around the central metal atom in the TMD monolayer. Thus, the
direct band gap in the monolayer semiconductor should give a good description of the
effect of the non-local dielectric screening in such systems. The results presented in this
section are a part of the results that can also be found in paper I, however in this section
we will discuss it in a different light than in the paper.

In section 3.1 and 3.3 we showed that in general, the strength of the screened electron-
electron and electron-hole interaction depends on the dielectric properties of the sur-
rounding dielectric media, making it an inherently non-local interaction. In the system
sketched in fig. 3.3, this means that the strength of the electron-electron interaction
in the monolayer semiconductor is altered by the carrier density in the graphene layer
(and if present, also the dielectric function of the hBN layers). We will here quantify
the carrier concentration in the graphene layer by the position of the Fermi level in the
graphene layer. The change in the quasi-particle energies are calculated by adding the
change in the self-energy, ∆Σ = G∆W induced by the graphene (and hBN) monolayer(s)
evaluated by the QEH model as described in section 3.3, to the linearised quasi-particle
equation via eq. 3.59. In fig. 3.3 (right) we show the G0W0 direct quasi-particle band
gap for four freestanding TMD monolayers (MoS2, WS2, MoSe2, and WSe2) with hori-
zontal dashed lines, and when placed on monolayer graphene (dots). This is shown as
a function of the position of the Fermi level in the graphene monolayer (i.e. the carrier
concentration in the graphene monolayer).

We find that the direct quasi-particle band gap is heavily reduced when placed on
intrinsic graphene and further reduced when the carrier concentration in the graphene
monolayer is increased (within experimentally realisable carrier concentrations in the
graphene monolayer [100]). This shows that the non-local contribution to the dielectric
function significantly influences the quasi-particle energies. We find a reduction of the
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Figure 3.3: Left: setup consisting of a 2D monolayer semiconductor (here depicted by
WSe2) on top of gated graphene with a variable number of hBN monolayers
between the semiconductor and graphene monolayers. Right: direct quasi-
particle band gap for four 2D semiconductors placed in the setup to the
left as a function of the carrier concentration in the graphene monolayer,
quantified by the position of the Fermi level in the graphene monolayer.
The horizontal dashed lines show the G0W0 quasi-particle band gaps of
the freestanding semiconductors. The figure is modified from the included
paper I.

direct quasi-particle band gaps of around 0.3 eV when placed on intrinsic graphene and
a further reduction of about 0.25 eV, when the carrier concentration is further enhanced
in the graphene monolayer. It is interesting that these two effects are of similar size
and introduces the possibility to significantly manipulate the quasi-particle energies by
gating the graphene monolayer. Another interesting and fascinating aspect is that the
significant manipulation of the quasi-particle energies is achieved purely from the dielec-
tric screening, i.e. without affecting the orbital shapes nor the hybridisation patterns
of the 2D semiconductor. The effect of the increased carrier density in the graphene
monolayer on the dielectric properties in the 2D semiconductor can be visualised by
defining the effective dielectric function as the bare Coulomb interaction (V ) over the
screened Coulomb interaction (W ) projected onto the 2D semiconductor:

ϵ(q||, ω) =
V (q||, ω)
W (q||, ω)

, (3.61)

where q|| is the in-plane wave vector and ω the frequency. This is plotted for three
different carrier concentrations in fig. 3.4 in the contour plots for monolayer MoS2 on
a graphene monolayer. The bottom right plot shows the effective dielectric function
as a function of frequency evaluated along q|| = 0.05 Å−1 (black, green, and blue, also
indicated by the vertical line the contour plots). The effective dielectric function of
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freestanding intrinsic monolayer MoS2 is shown in gray in the bottom right corner. From
this, the effect on the screened electron-electron interaction from the presence of the
graphene layer is obvious, by comparing the gray and black line in the bottom right
corner. As the carrier concentration in the graphene layer is increased the graphene
plasmon mode is enhanced, however it is not obvious how this affects the dielectric
screening in the 2D semiconductor. Conversely the higher dielectric screening seem to
stem from an increase in the size of the dielectric function at low frequencies (before the
onset of the plasmon). A similar plot of the effective dielectric function of freestanding
intrinsic monolayer MoS2 would show a close to non-existing dependence on ω for the
frequency range in fig. 3.4 (i.e. below the gap of the semiconductor), while a significant
ω-dependence is found in the presence of a graphene monolayer. This is in general
true comparing 2D semiconductors and (semi-)metals. We will discuss the frequency-
dependence of the dielectric function in further detail and its relation to excitonic states
which will be the topic of the following sections.

Figure 3.4: The contour plots shows the real part of the dielectric function of mono-
layer MoS2 placed on graphene with different carrier concentrations. The
dielectric function is evaluated in the MoS2 monolayer. The bottom right
plots shows the frequency dependence of the real part of the dielectric func-
tion (evaluated along q|| = 0.05 Å−1) for intrinsic monolayer MoS2 (gray)
and for monolayer MoS2 on graphene with the three carrier concentrations
shown in the contour plots (black, green, and blue). The figure is taken
from the included paper I.

Because of the distance dependence to the surrounding dielectric media in the non-
local screened Coulomb interaction, the manipulation of the quasi-particle energies can
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further be controlled by intercalating hBN monolayers between the semiconductor and
the gated graphene monolayer. We demonstrate this by intercalating up to 6 hBN layers
between monolayer MoS2 and graphene, and calculate the direct quasi-particle band gap
for different carrier concentrations in the graphene monolayer. This is illustrated in fig.
3.5 (left). Here the three different carrier concentrations are shown by black, green, and
blue, while the horizontal gray dashed line shows the direct quasi-particle band gap for
monolayer MoS2 on bulk hBN. Since the dielectric screening of the electron-electron
interactions is lower for hBN than for graphene, the effective dielectric screening in
the 2D semiconductor is reduced as more hBN monolayers are intercalated between the
semiconductor and the graphene monolayer, since the high carrier concentration is moved
away from the 2D semiconductor (in the image charge picture, the strength of the image
charge self-interaction is reduced). To elaborate on this effect, we show that the effect is
approximately inversely proportional to the distance between the 2D semiconductor and
the graphene monolayer by fitting a function of the form: a(EF)/(N + b) +E∞

gap, where
N is the number of hBN layers, a(EF) is a free parameter that depends on the carrier
concentration and is a measure of the screening strength, b is a measure of the distance
from the interacting charges in the semiconductor to the image charges in the graphene
monolayer, and E∞

gap is the direct quasi-particle band gap for monolayer MoS2 on bulk
hBN, which is determined by direct calculation. By fitting this function to the ab-initio
calculations we find b to be about two times the MoS2/graphene interlayer and because
of the overall good 1/distance fit, we can conclude that the manipulation of the quasi-
particle energies can be well interpreted in terms of an image charge model. Encouraged
by this we now further explore the image charge picture and calculate the direct quasi-
particle band gap reduction for a wide range of 2D semiconductors when placed on
intrinsic (black) and gated graphene (green) (for the latter corresponding to ∆EF = 0.4
eV). This is plotted in fig. 3.5 (right) against the static in-plane polarisability of the
2D semiconductor. The orange data point is taken from an experimental realisation
of monolayer ReS2 on gated graphene [100]. It is clear that higher reductions of the
quasi-particle band gaps are found for 2D semiconductors with lower static in-plane
polarisability. To understand this we take a step back to take a closer look at the image
charge model. In the case of the bare Coulomb interaction between two particles the
total charge of the interacting particle is simply the sum of the charge of the two particles.
If one considers the screened Coulomb interaction, the reduction of the strength of the
interaction can simply be understood from the presence of a screening cloud around the
two particles reducing the strength of the interaction. The total charge of the quasi-
particle is now given by the combined system of the two particles and the screening
cloud. As the dielectric screening of the environment (i.e. the intrinsic polarisability of
the 2D semiconductors) is increased, so is the effect of the screening cloud. This leads
to a smaller image charge self-interaction and thus a smaller effect on the quasi-particle
energies from external effects such as the presence of the graphene monolayer. This
concludes that the quasi-particle energies, of the 2D semiconductor in the setup in fig.
3.3 (left), can effectively and predicatively be manipulated by tuning the strength of
the image charge self-interaction by means of three different methods: first, through the
carrier concentration in the graphene monolayer (controlled via a gate-voltage), second,
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Figure 3.5: Left: quasi-particle band gap of mono MoS2 in the setup of fig. 3.3 as a
function of the number of hBN layers between the MoS2 monolayer and the
graphene monolayer. The horizontal dashed line shows the quasi-particle
band gap of monolayer MoS2 on bulk hBN and the dashed fitted lines
are fits of the form: a(EF)/(N + b) + E∞

gap as discussed in the main text.
Right: reduction of the quasi-particle band gap of different semiconductors
when placed on intrinsic graphene (black) and doped graphene (green) as
a function of the in-plane static polarisability of the semiconductor. The
orange data point show values from previous experimental work [100]. The
figure is taken from the included paper I.

by the inverse distance dependence on the strength image charge self-interaction, and/or
third, by the intrinsic dielectric properties of the 2D semiconductor.

3.6 Excitons, The Mott-Wannier Equation, and
the Bethe-Salpeter Equation

In the previous sections we defined the quasi-particle valence band maximum as the elec-
tron removal energy and the quasi-particle conduction band minimum as the electron
addition energy. From these the quasi-particle band gap is defined as the difference
between these two. In the forthcoming sections we will move on and study the optical
properties of vdWHs. It is important to note that we consider excitonic states confined
localised in-plane excited by light polarised in the in-plane direction. Out-of-plane exci-
tons, the movement and oscillation of which is strongly confined and consequently has a
fundamentally different behaviour, have in recent years received only little attention in
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2D monolayers [47]. What we refered to as simply the band gap in the previous sections
will now be redefined to be labelled the electronic band gap and we will introduce the
optical band gap as the energy difference associated with exciting an electron from the
valence states to the lowest bound state. The necessity of distinguishing between these
two arises from the low dielectric screening in 2D materials and few-layer vdWHs. As
illustrated in fig. 3.6, when an electron is excited from a valence band state to a con-
duction band state, this conversely moves a hole state from the conduction band state
to the valence band state. In a simple picture the negatively charge excited electron
located in the conduction band, interacts with the positively charged hole located in the
valence band through the screened Coulomb interaction. The effect of this is that the
electron does not jump to the lowest quasi-particle conduction band state, but instead
resides in a bound state energetically located inside the electronic band gap. The bound
state constitutes a full Rydberg series as shown in fig 3.6 in purple and outlined in the
caption. The bound electron-hole state is formally known as an exciton and the band
gap associated with the exciton state (i.e. the position of the emission peak in a photo-
luminescence (PL) spectrum) is known as the optical band gap. The difference between
the electronic band gap and the optical band gap defines the exciton binding energy
(EB). The exciton binding energy is usually found to be a few meV in bulk crystals and
so the electronic and optical band gap essentially coincide in such structures. However,
in 2D materials and few-layer vdWHs, the low dielectric screening means that exciton
binding energies attain values up to several hundreds meV for monolayer TMDs [82, 76]
and a few eV for hBN. The excitonic states show up as narrow peaks below the electronic
band gap in PL measurements and are for many materials easily identified due to their
high oscillator strength. One of the best known examples of this is the A and the B
exciton peak in monolayer MoS2 [82]. Both excitons have their origin of the excitation
from the spin-orbit split states at the VBM to the spin-orbit split states at the CBM.
Since time-reversal-symmetry shifts the ordering of the spin-channels at the VBM at the
K- and the K’-point in the Brillouin zone of the hexagonal unit cell, this gives rise to
two distinct exciton peaks with different energies. It is evident that it is necessary to
accurately calculate the exciton binding energy of excited states to accurately model the
optical properties of 2D materials. Inspired by the hydrogen-like picture of the bound
electron-hole state it is not surprising that this can effectively be done by applying a
hydrogen model as we will outline in the following.

Solving the Schrödinger equation for the hydrogen atom, one typically utilises the
spherical symmetry of the problem and split the electron wave function into its angular
and radial components: ψ(r, θ, ψ) = R(r)Y (θ, ψ), where R and Y denote the radial and
angular components respectively. Since the potential energy in the Hamiltonian of the
hydrogen problem only has a dependence on r, it is enough to solve, what we will call
”the radial equation”, namely the eigenvalue problem with only the radial part of the
wave function. For the system consisting of two charged particles with the charge of one
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Figure 3.6: Illustration of the excitation of an electron from the occupied bands to the
unoccupied bands not including (including) the interaction between the
excited electron (green) and the created hole in the valence state (red) to
the left (right). The bound electron-hole (purple) pair (exciton) state is
shown to the right with the Rydberg series of the exciton states shown in
purple bands residing inside the electronic band gap (Eelec). The excitation
energy to the 1s exciton state is defined as the optical band gap (Eopt), and
the exciton binding energy is then defined as: EB = Eelec−Eopt. The Fermi
level is shown in dashed grey.

electron charge and l = 0 in SI units this reads:[
− h̄2

2me

∂2

∂r2 + e2

4πϵ0r

]
R(r) = EnR(r), (3.62)

where me is the electron mass, ϵ0 is the vacuum permittivity, and En is the spectrum
of allowed energies. It is well known that the solutions to this eigenvalue problem (for
the bound states) are given by [44]:

En = −me

2h̄2

(
e2

4πϵ0

)2 1
n2 . (3.63)

This series is known as the Rydberg series. We will now study how this can be applied
to an exciton located in a 2D monolayer. First of all, the problem now consists of a
particle with mass µ = memh

me+mh
, which we will denote the exciton mass and is the effective

mass of the bound electron-hole particle. Secondly, while the potential that enters the
Hamiltonian in the hydrogen problem in eq. 3.62 is the bare Coulomb potential, the
exciton is located inside a 2D monolayer, and therefore the electron-hole interaction is
screened by the intrinsic (q-dependent) dielectric screening of the 2D monolayer. This
means that the Hamiltonian of the exciton in a 2D monolayer takes the form (in SI
units): Hex = − h̄2

2me
∂2

∂r2 + e2

4πϵ0ϵ(r||)r||
, where the coordinate r is now the in-plane radial



3.6 Excitons, The Mott-Wannier Equation, and the Bethe-Salpeter Equation 49

vector describing the distance between the electron and the hole, r||, and ϵ(r||) is the
intrinsic dielectric screening of the 2D monolayer. Denoting the screened 2D Coulomb
interaction W 2D this Hamiltonian gives the exciton eigenvalue problem

[
−∇2

2µ
+W 2D(r||)

]
F (r||) = EnF (r||), (3.64)

where |F (r||)|2 describes the probability distribution of the in-plane distance between
the electron and the hole and En is the Rydberg series of the exciton binding energies.
eq. 3.64 is known as the Mott-Wannier model and can be solved numerically to yield
quantitatively accurate exciton binding energies. We note that we in eq. 3.64 (and
throughout this study) neglect an exchange term given by the dipole moment of the ex-
citon projected onto the exciton wave vector, and thus is present for indirect momentum
excitons. This term is known to be small and similarly neglected in previous studies of
2D excitons [90, 21].

The Mott-Wannier equation can easily be integrated with the QEH model to com-
putationally cheaply calculate exciton binding energies in vdWHs. This has been done
previously [75] by simply generalising eq. 3.57 to include the induced hole potential
(ϕh

i (q||, ω)) instead of the induced electron potential:

Wi(q||, ω) = ρe
i (q||, ω)(ϵM(q||, ω))−1ϕh

i (q||, ω), (3.65)

This gives the screened electron-hole interaction and can readily be calculated and
plugged into eq. 3.64 and it has previously been shown to yield accurate exciton bind-
ing energies [75]. This, as we will label the MW-QEH model, offers an efficient cheap
method for obtaining exciton binding energies, however it has two main shortcomings:
first, it only supplies the distinct exciton binding energies and it is therefore in general
not possible to obtain the full absorption spectrum of a 2D monolayer or vdWH includ-
ing excitonic effects. Second, when the MW-QEH model is used in combination with the
G0W0-QEH model to calculate the shift of the exciton peaks (in energy) upon insertion
in vdWHs the two models combined predict a blueshift of the A exciton peaks for few-
layer TMD vdWHs (relative to the freestanding monolayer) while in general a redshift
is found experimentally [82, 76]. In the following we will go through the Bethe-Salpeter
Equation [107] (BSE) which is a methodology to obtain the full absorption spectrum
of a 2D monolayer or vdWH including the effect of excitonic states. Furthermore, we
will show by in this thesis directly implementing the BSE formalism with the QEH
model that the absorption spectrum of a multilayer vdWH can be obtained including
interlayer dielectric screening and that the experimentally observed redshift can be re-
stored by combining the herein developed BSE-QEH model with the G0W0-QEH model.

To develop a compact many-body formalism for describing the electron-hole inter-
action it is from an initial point not straightforward nor obvious how to start. It is
tempting to follow a Green’s function approach similar to the derivation of the of G0W0
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approximation, however matters are complicated by the form of the irreducible polar-
isation in the G0W0 approximation, eq. 3.36. From a physical point of view this is
merely an electron and a hole propagator, propagating simultaneously without interact-
ing. This form of the irreducible polarisation is known as the RPA as we saw previously
and shows that, although the G0W0 approximation is a many-body formalism, by defini-
tion, it does not account for electron-hole interactions, and consequently excitonic states
are not included in the G0W0 formalism. Instead we are searching for a formalism where
the irreducible polarisability takes a form similar to: P ∼ GvG, where v couples the
electron and hole propagators, i.e. a propagating interacting electron and hole pair.

It turns out, as shown by Bethe and Salpeter [107], that it is possible to derive a
Dyson equation that includes a form of the irreducible polarisation suggested above, by
iterating Hedin’s equations again starting from the G0W0 result for the self-energy. In
other words we plug eq. 3.40 into the expression for the vertex, eq. 3.34 and assume that
the screened Coulomb interaction does not depend on the Green’s function propagator.
This gives us an expression for the vertex that in comparison to the first iteration
of Hedin’s equations in contains a term including the screened Coulomb interaction,
suggesting that we are moving in the right direction:

Γ(1, 2; 3) = δ(1; 3)δ(2; 3) + i
∫
d6d7W (1; 2)G(1; 6)G(7; 2)Γ(6, 7; 3). (3.66)

At this point, since the technical steps are very similar to the derivation of the G0W0
approximation (the next step is to insert this expression for the vertex in the Hedin’s
equation expression for the irreducible polarisation), we will focus on the physical argu-
ments instead of the mathematical steps, and give a more intuitive argumentation. Due
to the nature of the electron-hole interaction and the fact that the irreducible polaris-
ability has to take a form similar to: P ∼ GvG, it is necessary to introduce a four-point
kernel. To this end we introduce the four-point form of the (non-interacting) irreducible
polarisability:

L0(1, 2; 3, 4) = −iG(1; 3)G(4; 2). (3.67)
By carrying out the second iteration of Hedin’s equations we started above and simi-
larly generalising eq. 3.32, these few steps are left as an exercise to the reader, Bethe
and Salpeter showed that the (interacting) four-point reducible polarisability satisfies a
Dyson equation:

L(1, 2; 3, 4) = L0(1, 2; 3, 4) +
∫
d5d6d7d8L0(1, 2; 3, 4)K(5, 6, 7, 8)L(1, 2; 3, 4), (3.68)

where the kernel, K, contains all electrostatic electron-hole interactions and is given by:

K(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) −W (1, 2)δ(1, 3)δ(2, 4). (3.69)

We immediately see that W exactly gives the screened coupling between the two ”prop-
agators” as expected and supplies the electron-hole interaction we were aiming for. The
first term on the right hand side can be understood as an exchange interaction. We
note here that we have employed the G0W0 approximation for the exchange-correlation
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self-energy, as is typically done in ab-initio calculations, already in the expression for
the vertex (from the assumption of the independence of W on G above), however it is
straightforward to not employ the G0W0 approximation in which case the kernel takes
the form: K(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4) + i δΣxc(1;2)

δG(3;4) .
To solve eq. 3.68 to proceed and obtain the excitation energies we have to utilise

several tricks. We start out by introducing a two-particle state, defined by the product
of the electron and hole wave functions of the electron-hole pair state:

ψn1,n2,k,k+q(re, rh) = ψn1,k(re)ψn2,k+q(rh), (3.70)

which is the exciton state defined by the product of the electron and hole in the Kohn-
Sham orbital states n1 and n2 with momentum k and k + q, and defines a basis for a
two-particle space. From now we will use the contracted notation S = n1, n2,k,k + q
(and S ′ for (n3, n4 ) etc.) common in the literature. While the frequency dependence of
eq. 3.68 is given but not written explicitly (since there is only one frequency variable),
we will from now write it out since we will have to take special care of the frequency
dependence. If one assumes that the Kohn-Sham orbitals form a complete basis it is
possible to rewrite the BSE equation into another Dyson-like problem for the reducible
polarisation in the two-particle space [123]:

LSS′(ω) = L0
SS′(ω)

[
δn1n3δn2n4 +

∑
S′′
KSS′′(ω)LSS′′(ω)

]
. (3.71)

The assumption of completeness of the single-particle basis has the consequence that a
significant number of unoccupied bands are needed to converge BSE calculations. In
practice, typically 4-6 times as many unoccupied bands as occupied bands are needed
to be included. In the two-particle basis the kernel is given by:

KSS′(q) = VSS′(q) − 1
2
WSS′(q). (3.72)

The factor of 1
2 is a direct consequence of the optical selection rules i.e. that only singlet

excitations are allowed. In the next section we will write out the PW expression of the
screened interaction when we need it. To continue we must adopt an expression for
the non-interacting reducible polarisability. This is easy in the two-particle space, by
realising that by definition L0 does contain mixing of different states. This means that
the non-interacting reducible polarisability must be diagonal in the two-particle space
and furthermore have the single-particle transition energies, ϵS, as roots:

L0
SS′(ω) = fS

ϵS − ω + iη
δSS′ , (3.73)

where η is a small parameter to avoid numerical singularities and fS is the occupation
density of state S. With this expression for L0

SS′(ω) and by rewriting eq. 3.71 into an
eigenvalue problem for the excitation energies we get:

[(ϵS − ω + iη)δSS′ −KSS′(ω)fS]LSS′(ω) = fS′ . (3.74)
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Solving this equation is not straightforward due to the omega dependence of the Kernel,
and can simply not be carried out computationally for any 2D material in question.
To continue it is therefore necessary to employ an approximation to the Kernel and
simply fix the frequency to some value. Usually one puts ω = 0. It is important to
stress that this approximation is not justified. For semiconducting systems, where the
dielectric matrix only weakly depends on the frequency the resulting exciton energies
are close to independent the choice of ω (for ω chosen close to or below the quasi-particle
band gap). However for (semi-)metallic systems it is not scientifically sound to use the
static approximation and consequently BSE calculations are not being carried out for
such systems. This is the exact reason we did not study excitonic states in the study
of semiconducting 2D monolayers on a gated graphene monolayer in section 3.5, as is
obvious by examining fig. 3.4 again. Within the static approximation the eigenvalue
problem can be re-written into:

[H − (ω + iη)I]−1
SS′ fS′ = LSS′(ω) (3.75)

where the two-particle BSE Hamiltonian is defined as:

HSS′ = ϵSδSS′ − fSKSS′ (3.76)

and the kernel is now evaluated at a fixed frequency. From the expression of the BSE
Hamiltonian we see (as we would expect intuitively and also stated above when stating
the expression for the non-interacting reducible polarisation in the two-particle basis)
that only the diagonal contains the single-particle transition energies and the off-diagonal
contains the coupled electron-hole pair states, which are also present in the diagonal. The
Hamiltonian is non-hermitian, however if one only consider positive excitation energies,
i.e. restricting the excitation space to electron-hole excitations such that we only con-
sider one entry in the two-particle basis, the Hamiltonian becomes hermitian. This is
known as the Tamm-Dancoff approximation. In appendix D we show that the Tamm-
Dancoff approximation has a negligible effect on the excitation energies and oscillator
strengths on the BSE absorption spectrum for 2D TMD monolayers to validate this
approximation. The reason to write the inverse form of the eigenvalue equation is that
the term in the parenthesis can be transformed into its spectral representation, from
which we can define the BSE eigenvectors AS

λ and eigenvalues ES
λ:

HSS′AS
λ = ES

λA
S
λ (3.77)

and from which the transition energies can readily be found. The practical step of
writing out the inverse Hamiltonian in eq. 3.75 in its spectral representation is well-
defined, at least under the Tamm-Dancoff approximation where the BSE Hamiltonian is
a normal operator (since it is Hermitian) defined on a Hilbert space. Without the Tamm-
Dancoff approximation the BSE Hamiltonian is non-hermitian and unbounded (the BSE
Hamiltonian is also not bounded within the Tamm-Dancoff approximation), since it is
not possible to find a value k such that the eigenvalue of ωI is smaller than or equal to k,
when applied to an arbitrary function within the functional space the BSE Hamiltonian
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is defined on. Thus, strictly mathematically, the definition of the BSE hamiltonian on
its spectral representation form without the Tamm-Dancoff approximation is not well-
defined, but makes sense and gives sensible excitation values since the two-particle BSE
eigenvectors AS

λ are bounded. The computational advantage of this step is, because of
the separation of the two-particle BSE Hamiltonian the ω in eq. 3.75, can simply be
diagonalised once for all frequencies.

While the BSE Hamiltonian is usually build from Kohn-Sham orbitals and Kohn-
Sham eigenvalues (since self-consistent G0W0 calculations are very rarely carried out
for these systems) it is customary to apply a scissors-operator to the Kohn-Sham eigenval-
ues and shift the valence and conduction band extrema to the G0W0 electron ionisation
and electron affinity energies. From this the spectrum of exciton binding energies is
defined as the difference between the quasi-particle energy spectrum and the spectrum
of Eλ values. These eigenvalues corresponds to the optical excitation values one would
obtain by directly calculating the imaginary part of the two-particle polarisability (i.e.
the definition of the absorption spectrum in eq. 3.17) and thus defines the absorption
coefficients within the BSE formalism. The physical interpretation of the eigenvectors,
AS

λ, can be seen as a measure of the oscillator strength of the exciton state.

Finally we comment on the form of the reducible polarisability in the BSE@G0W0
formalism and directly show the effect of excitonic effects on the absorption spectrum
of 2D materials. If one considers eq. 3.68 and put the Kernel equal to zero we recover
the non-interacting electron-hole picture, i.e. the RPA. It is now instructive to directly
illustrate the effect of excitonic states on the absorption spectrum. In fig. 3.7 we plot the
absorbance of MoS2 within the RPA (red) and the BSE (blue) approximations. The PBE
single-particle band gap is shown in dashed red, the G0W0 quasi-particle in dashed blue,
and the lowest exciton energy in dashed black. The definition of the exciton binding
energy (EB) is shown and the RPA (BSE) spectra are calculated with respect to the
PBE (G0W0) band gaps. As expected, the RPA absorbance spectrum has its onset at
the single-particle band gap (the oscillator strength in both approximations are discrete
peaks, therefore the small weight below the band gap is due to finite Fermi smearing
effects) while in the BSE approximation significant excitonic states below the quasi-
particle band gap is found with large oscillator strengths signifying the low dielectric
screening in 2D materials. The two exciton peaks below the quasi-particle band gap are
labelled as the A and B excitons and have their origin from the spin-orbit split transitions
involving the K- and K’-points in the Brillouin zone as we discussed previously.

It is here also fit to discuss the sketch of the excitonic states in fig. 3.6. While this
illustration is pedagogical and informative it is to some extent incorrect since it mixes
the energy of single-particle and two-particle excited states. It is important to stress
that it is only the difference between the electronic band gap and the exciton energy
that is well-defined and that the exciton is defined as the difference between these as
illustrated in fig. 3.7. In other words, the ”position” of the exciton states in fig. 3.6 is
arbitrary relative to the quasi-particle band structure edges. This is equivalent to the
statement that only the relative (or change of) potential energy has a physical meaning
and the absolute value of the potential energy cannot be a driving force itself.
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Figure 3.7: Absorption spectrum of freestanding 2D monolayer MoS2 calculated within
the RPA (red) and the BSE (blue) approximations. The single-particle
band gap is shown in dashed red calculated with the PBE functional, the
G0W0 quasi-particle band gap is shown in dashed blue, and the lowest
exciton energy is shown in dashed black.

Even with the G0W0 self-energy and static approximations the BSE eigenvalue prob-
lem is a computationally heavy problem to solve and can as such only be solved accu-
rately for small systems and cannot directly be applied to rotated or even few-layer
vdWHs. In the next section we will however make this possible for vdWHs by im-
plementing the QEH model with the BSE to calculate the absorbance spectrum for
multilayer vdWHs.

3.7 Implementation of the Bethe-Salpeter
Equation with the Quantum Electrostatic
Heterostructure Model

Similarly to the effect of dielectric screening on the quasi-particle band gap we studied
in section 3.5, the exciton binding energy is reduced when a 2D monolayer is embedded
in a vdWH, due to the dielectric screening of the electron-hole interaction. We will in
this section present the implementation workflow developed and implemented in this
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thesis of what will be denoted the BSE-QEH method for calculating intralayer exciton
binding energies in vdWHs and show that it gives a better description of the experimen-
tally found energy redshift of exciton energies in vdWHs as opposed to the blueshift
predicted by the MW-QEH (in combination with the G0W0-QEH model). In chapter
4 we will directly apply the developed BSE-QEH model and the results of this can be
found in paper V.

As we saw in the previous section the two-particle BSE Hamiltonian takes the form
of eq. 3.75 and the BSE Kernel as eq. 3.72. The screened Coulomb interaction in the
BSE kernel can be expanded in plane-waves as [123]:

WSS′(q) = 4π
ω

∑
GG′

n∗
nk,n′k′(G)WGG′(k′ − k)nmk+q,m′k′+q(G′), (3.78)

where n∗
nk,n′k′(G) and nmk+q,m′k′+q(G′) are charge density matrices and WGG′(k′ − k)

is the screened electron-hole interaction for all G vectors in the plane-wave description.
The dielectric screening from the neighbouring layers in the vdWHs as calculated by the
QEH model is formally given by:

W vdWH
i (r, r′, ω) = Wi(r, r′, ω) + ∆Wi(r, r′, ω), (3.79)

whereW vdWH
i (r, r′, ω) is the total screened potential for layer i in the vdWH,Wi(r, r′, ω)

is the screened potential calculated for the freestanding 2D monolayer, and ∆Wi(r, r′, ω)
is the change in the screened potential for layer i due to dielectric screening from the
neighbouring layers. ∆Wi(r, r′, ω) is calculated by the QEH model as explained by eq.
3.58. The optical response of a material is mainly given by the G = 0 component of the
screened Coulomb interaction, with the contribution for higher reciprocal lattice vectors
falling of exponentially. In the BSE-QEH implementation we therefore add the change
in the screened potential (∆Wi(r, r′, ω) in eq. 3.79) to the G = G′ = 0 component
of eq. 3.78. By doing this, in the BSE formalism we obtain the screened electron-hole
interaction including the environmental screening from the neighbouring layers in the
vdWH and consequently one would expect the exciton binding energies to be reduced
(compared to the freestanding 2D monolayer) due to the stronger dielectric screening.
This implementation also allows us to obtain the absorption spectrum of each layer in a
vdWH including the effect of the screened electron-hole interaction, and as we will see
below then to obtain the absorption spectrum of the vdWH by the sum of the absorp-
tion spectrum of each layer. The shortcoming of this model is that it is not possible
to calculate interlayer exciton binding energies, since this requires a full treatment of
the orbital coupling between electrons and holes on neighbouring layers. As such the
resulting absorption spectrum accounts for all (screened) intralayer transitions in each
layer of the vdWH of consideration.

It has previously been shown that the MW-QEH method already gives a good de-
scription of the intralayer exciton binding energies. In general for vdWHs consisting of
monolayer TMDs we find exciton binding energies with the BSE-QEH model that are
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Figure 3.8: Absorption spectrum and excitation energies for bilayer MoS2/MoSe2 with
respect to the G0W0 quasi-particle band gap. The absorption spectrum
is calculated as the sum of the absorption spectra of the non-interacting
freestanding monolayers (grey) and with the BSE-QEH method (green)
for the bilayer. In the BSE-QEH method the quasi-particle band gap is
corrected with the G0W0-QEH method. The vertical dashed lines show
the MW-QEH values for the lowest lying exciton and the full lines are the
average of the experimentally measured A exciton energies (see paper V).
Red is for MoSe2 and black is for MoS2. This figure is taken from the
included paper V.

very close to those predicted by the MW-QEH model, and in general on the order of
20-40 meV lower. This is encouraging since the MW-QEH is expected to slightly over-
estimate the exciton binding energy due to the assumption that the electron and hole
wave functions are smeared out over the 2D monolayer in the MW model. In chapter
4 we will present and compare exciton binding energies for a number of vdWHs and
discuss this.

Instead we will in this section focus on the energy shift of the intralayer exciton peaks
(here focusing on the A peaks on monolayer TMDs) when comparing the exciton energy
in the freestanding monolayer and when embedded in a vdWH. As we saw in section 3.2
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and 3.3 the quasi-particle band gap of a monolayer is reduced when embedded in a vdWH
due to the increased dielectric screening. Similarly, the Coulomb interaction between
the bound electron-hole pair is reduced due to the increased dielectric screening in the
vdWH and consequently the exciton binding energy decreases. The energy shift of the
exciton peak upon embedding in a vdWH is therefore a trade-off between the dielectric
screening of the quasi-particle band gap and the exciton binding energy. The interlayer
hybridisation can of course also influence this, however in this section we will consider
the A exciton peak in TMD monolayers for which it is well known that interlayer orbital
hybridisation and charge transfer have little-to-no effect on the intralayer exciton energy
and the resulting shift is purely an effect of dielectric screening. Experimentally it is
found that the A exciton is redshifted upon embedding a monolayer in a vdWH, best
illustrated by the redshift of the A exciton in MoS2 going from freestanding monolayer
to bilayer [82] and that the magnitude of the redshift increases with the number of layers
added. The big shortcoming of the MW-QEH model is that this predicts a blueshift of
the A exciton in TMD monolayer for few-layer vdWHs when combined with the G0W0-
QEH model and below we will show the BSE-QEH correctly predicts a redshift. We
will now first see how the increased dielectric screening affects the monolayer absorption
spectrum in the BSE-QEH model and that the effect on the intralayer exciton binding
energy can be determined from this. Then we will do a thorough study on the exciton
energy shift comparing the BSE-QEH and the MW-QEH model for multilayer vdWHs
and compare this to available experimental data.

To see the effect of environmental dielectric screening on the absorption spectrum, we
calculate the absorption of bilayer MoS2/MoSe2 by two different methods. We note that
the unit cells of the two monolayers are incommensurate and that this system requires
hundreds of atoms to apply less than 1% to the layers. Such ab-initio calculations are
consequently not possible with a full conventional BSE calculation. In the first step we
simply calculate the BSE absorption spectrum of each freestanding monolayer and add
the two absorption spectra. This is plotted in gray in fig. 3.8, where the spectrum is cal-
culated with respect to their G0W0 quasi-particle band gaps. In the second method we
calculate the BSE-QEH absorption spectrum of each monolayer including the dielectric
screening from the other monolayer, as described above, and add them together. For
this cases we also calculate the change of quasi-particle band gap of each layer with the
G0W0-QEH method. The result is plotted in green in fig. 3.8. Considering the A and B
exciton peaks of both layers we find a small redshift of the excitation energy compared
to the freestanding monolayers as expected. Combining the screening of the exciton
binding energy with the screening of the quasi-particle band gap from the G0W0-QEH
method, we find a redshift of the energy of about 5 meV. Overall, the two spectra have
a very high resemblance which suggests that the dielectric screening is close to constant
for all states, in agreement with previous findings [122].

To this end we now compare the shift of the A exciton energy predicted by the MW-
QEH and the BSE-QEH model. In fig. 3.9 we plot the change of the A exciton peak
energy of the multilayer homostructure compared to freestanding monolayer for MoS2
(black), MoSe2 (blue), WS2 (red), and WSe2 (green), where the exciton binding energy is
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Figure 3.9: Shift of the exciton energy (∆Eexc) of the A exciton for multilayer TMD
van der Waals homostructures (2, 3, 4, 5, 10, 25, 75, 100 layers) relative to
the exciton energy in the freestanding monolayer for MoS2 (black), MoSe2
(blue), WS2 (red), and WSe2 (green). This is shown where the screening
of exciton binding energy is calculated with the MW-QEH model (top)
and the BSE-QEH model (bottom). For all cases the screening of the
quasi-particle energies is calculated with the G0W0-QEH model.

evaluated with the MW-QEH model (top) and with the BSE-QEH model (bottom). In
both cases the quasi-particle states are calculated with the G0W0-QEH method. With
the MW-QEH model we generally find a blueshift of the A exciton energy for up to
around 5 layers transitioning into a redshift thereafter and for MoSe2 a blueshift up
to many more layers. We stress this blueshift predicted by the MW-QEH model, for
any number of layers, is in direct contrast to experimental data. The BSE-QEH model
predicts a redshift of the exciton energy for multilayer TMD stacks for all number of
layer that increases with the number of layers in agreement with experiments. The
asymptotic bulk values for the redshift is close to the value shown at 100 layers.

While accurate experimental data on exciton redshifts in vdWHs is limited, two
experimental studies on bilayer systems are of specific interest. From experimental data
the exciton energy is known to redshift already comparing monolayer and bilayer TMD
structures which is accurately predicted by the BSE-QEH method. In fact for bilayer
MoS2 a redshift of the A exciton of around 15 meV is found [82] (± 5 mev adjusting for
the broadness of the peaks). We find a redshift of 11 meV and a blueshift of 12 meV with
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the BSE-QEH and MW-QEH methods respectively. Similarly, for bilayer MoS2/WSe2 a
redshift A exciton in MoS2 (WSe2) of 25 meV (20 meV) is found [72] with an estimated
error on both values around of around 10 meV. In comparison we calculated a redshift of
16 meV (19 meV) with the BSE-QEH method and a blueshift of 9 meV (4 meV) with the
MW-QEH model. While a definite benchmarking of the BSE-QEH method is difficult
it is clear that it accurately calculates exciton binding energies similar to the MW-QEH
method and that it significantly improves upon the description of exciton energy shifts in
vdWHs compared to the MW-QEH. It is also tempting to compare the asymptotic value
of the redshift in fig. 3.9 i.e. comparing the energy of the A exciton in the freestanding
monolayer and in the bulk crystal. For MoS2 we find this to be close to 60 meV with
the BSE-QEH model and a slightly smaller redshift with the MW-QEH model. However
such an analysis is difficult due to the discrepancy of available experimental data. Two
independent studies report a monolayer to bulk redshift of the A exciton in multilayer
MoS2 of around 25 meV [15] and 70 meV [76]. While this offers only little possibility
for accurate benchmarking we can conclude that the BSE-QEH (with the G0W0-QEH)
model predicts a redshift within this range of values. While both models seem to predict
monolayer to bulk exciton energy redshift in good agreement with available data, the
main advantage in the BSE-QEH for calculation exciton redshift are for few-layer vdWHs
where the MW-QEH model fails to predict the correct redshift.

We here include a brief comment on the apparent blueshift of the C excitons with
BSE-QEH method (fig. 3.8) and the redshift of the C (or D) excitons found experi-
mentally [76]. The C exciton in the TMDs is an excitation around the Γ-point in the
Brillouin zone. As we saw in fig. 3.2, multilayer vdWHs involving the TMDs exhibit
very strong interlayer hybridisation effects on the quasi-particle energies close to and
around the Γ-point. This means that to properly describe the redshift of the C exciton
it is necessary to include a description of the interlayer hybridisation affecting the ener-
gies around the Γ-point.

As shown in fig. 3.8 it is possible to obtain intralayer absorption spectra with the
BSE-QEH method. This enables an additional benchmarking test. Due to the enhanced
dielectric screening in multilayer systems the oscillator strength of the exciton states is
reduced per layer in vdWHs, compared to the freestanding monolayer. This is shown
in fig. 3.10 where the relative intensity (defined as the averaged integral over the peak
relative to the freestanding monolayer) for multilayer MoS2 is shown with experimental
data in green triangles [15] and values obtained from the BSE-QEH spectra in in black
circles. The fit is better than what can be expected for most ab-initio calculations,
however it does show that the BSE-QEH model well captures the reduction in the
oscillator strength for each monolayer in a vdWH. The oscillator strength of the A
exciton is reduced to around 70% of the value of the freestanding monolayer already
for 5 layers and from fig. 3.9 it is expected that this value only saturates after a few
hundreds layers.

Overall the BSE-QEH model present a strong tool for calculating exciton binding
energies, but especially intralayer absorption spectra and redshifted exciton energies for
vdWHs with an arbitrary number of layers. Because of the implementation flowchart
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Figure 3.10: The oscillator strength of the A exciton per layer for multilayer MoS2
normalised to the oscillator strength of the A exciton in freestanding
monolayer MoS2. The green triangles show the experimentally measured
values [15] and the black dots are the BSE-QEH calculated values.

of the BSE-QEH model, calculating the intralayer part of the absorption spectrum of
a N layer vdWH stack requires N BSE calculations for the freestanding monolayers.
This is because the interlayer coupling algorithm takes up an insignificant amount of
computational power. This means that the computational limitations of using the BSE-
QEH model for vdWHs do not lie in the number of layers, but in the number of atoms in
the unit cell of each freestanding monolayer. This enables accurate ab-initio calculation
of the absorption spectra at level of BSE for vdWH systems which have not been possible
to carry out before with conventional many-body codes.

3.8 Screened Rydberg Series in 2D Materials
Up to now we have studied how the dielectric environment affects the quasi-particle
energies and the A, B, and C excitons in 2D monolayers. The fact that the exciton ener-
gies can be well described by a numerical solution of hydrogen-like models suggest that
the excitonic states share a greater resemblance with the hydrogen atom. This is indeed
the case, considering the A exciton of monolayer MoS2 this exciton has a Rydberg state
of excitonic state, where the state with the lowest energy (i.e. highest exciton binding
energy), corresponds to the n = 1 state of the Rydberg state. In the previous chapters
we have mainly considered the n = 1 state of the A, B, and C excitons since these have
the highest oscillator strengths and therefore are most easily accessible to experimental
measurements. In this chapter we will study the Rydberg series of the A exciton of the
TMD monolayers and how this series is affected by its dielectric environment, i.e. in
a vdWH and on a dielectric bulk medium. At the end we will prove that, when the
dielectric constant of the bulk substrate becomes very high and dominates the intrinsic
dielectric screening of the 2D monolayer, the system enters a new dielectric screening
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regime, where the exciton is overscreened in great contrast to the underscreened case
known so far in 2D exciton physics (paper II and III).

In sections 3.6 and 3.7 we discussed how the exciton state can be modelled using a
hydrogen-picture. This lead us to the Mott-Wannier model for computational feasible
calculation of exciton energies by numerically solving an eigenvalue problem (eq. 3.64).
However, given the great resemblance with the hydrogen atom it is worthwhile to study
the analytic solutions to eq. 3.64. To arrive at an analytical expression for the allowed
exciton energies in 2D, we follow the method similar to the derivation leading to eq.
3.63 for the hydrogen atom. Due to the 2D nature of the problem it has been shown,
that the allowed states are half-integer values of n in eq. 3.63 [124], i.e. in 2D we
have n → n − 1

2 . The form of the screened electron-hole interaction in the exciton
Hamiltonian is discussed in section 3.6. The effective exciton dielectric function to enter
this Hamiltonian is the integrated intrinsic 2D dielectric function over the extension of
the exciton. In reciprocal space this is calculated as [90]:

ϵeff = a2
R
π

∫ 2π

0
dθ
∫ 1/aR

0
dqqϵ(q) (3.80)

for an exciton confined to a 2D plane, where aR is the exciton real space radius. Since
aR is itself a function of the effective exciton dielectric constant [124]

aR = 3n(n− 1) + 1
2µ

ϵeff , (3.81)

(here given for quantum number l = 0) eq. 3.80 has to be solved self-consistently. In
general the higher states in the Rydberg series have a larger spatial extension in real
space (i.e. smaller extension in reciprocal space). Also, as shown earlier in contrast to
the close-to-constant dielectric function in 3D the dielectric constant in 2D is a varying
function of q. This means that the exciton effective dielectric constant to enter the
screened Coulomb interaction in the exciton Hamiltonian itself becomes a function of
state index n. Putting all this together it is evident that the 2D exciton version of the
hydrogen Rydberg series (eq. 3.63) becomes:

En = −µ

2
1

ϵ2
n(n− 1

2)2 (3.82)

where ϵn is the exciton effective dielectric constant evaluated by eq. 3.80 for state n.
For the typical extension of excitons in q-space, which for the TMDs is typically up to
around 0.15 Å−1, the 2D dielectric function felt by the exciton can be approximated as
a linear function: ϵ2D(q||) ≈ 1 + 2πα||q||, where α|| is the in-plane static polarisability of
the 2D monolayer. Inserting this in eq. 3.80 the exciton effective dielectric constant for
exciton state n takes the form [90]:

ϵn = 1
2

(
1 +

√
1 + 32πµα

9n(n− 1) + 3

)
. (3.83)
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With the state dependent exciton effective dielectric constant in eq. 3.83, eq. 3.82 gives
the exciton binding energy for state n. This has been shown to give results close to
numerical solutions of the Mott-Wannier equation [90]. One consequence of the state
dependent exciton effective dielectric function, that has been extensively studied in the
previous literature, is that for a freestanding 2D monolayer, the relative decrease of the
energy of the higher Rydberg states (compared to the 1s state), is lower than that of
the bulk hydrogen Rydberg series [90, 21]. This is explained by the smaller extension
in q-space of the higher Rydberg states leads to a lower exciton effective screening due
to the positive slope of the dielectric function around q = 0 over the extension of the
exciton wave function in reciprocal space. This is therefore a direct consequence of the
linearly increasing screening in 2D (for small q) compared to the constant dielectric con-
stant in the hydrogen model and in 3D bulk systems.

We will now in this thesis show that it is possible to generalise eq. 3.83 to include the
effect of environmental dielectric screening, i.e. for instance the case of a 2D monolayer
located on (or encapsulated between) a dielectric media. We will then show that this
introduces a new dielectric screening regime of exciton physics in 2D where the slope
of the exciton effective dielectric function changes sign at q = 0, and that this leads to
underbound exciton states rather than overbound exciton states in the Rydberg series.
To this end we consider a 2D monolayer located on a dielectric screening media with
dielectric constant κ i.e. ϵsub(q = 0) = κ, where ϵsub(q) is the full q-dependent dielectric
function of the substrate. In this setup, the dielectric screening felt by the exciton is
the intrinsic screening from the 2D monolayer plus an exponentially decreasing contri-
bution from the substrate screening. The exponentially decreasing contribution from
the substrate follows directly from the fact, that the charge distribution is strictly con-
fined to the 2D monolayer and can be well described with an oscillating shape in-plane
dependence: ρ(r, z) = eiq·rδ(z), in polar coordinates with origen in the center of the
2D monolayer. It is easy to show that the electrostatic potential from this charge dis-
tribution decreases exponentially with q in the out-of-plane direction. To continue, we
first calculate the effective dielectric function defined as ϵ(q) = V (q)/W (q), projected
onto the exciton wave function, where V (q) is the bare Coulomb interaction between
the electron and the hole and W (q) is the screened Coulomb interaction between the
electron and the hole. We calculate W (q) using the QEH model. The calculation of
W (q) follows the method described in section 3.3 for vdWHs, i.e. by the method of im-
age charges and contains the full q-dependent (bulk) contribution to the 2D monolayer
dielectric function from the substrate. We do not include any frequency dependence in
the dielectric matrix from the substrate. In fig. 3.11 we plot V (q)/W (q) projected onto
the exciton wave function for three cases: freestanding WSe2 (black), WSe2 located on a
substrate with κ = 4 (blue, S1), and WSe2 located on a substrate with κ = 26 (red, S2).
The effective κ, as plotted by the dashed lines, are then defined as: κeff = (1 + κsub)/2.
We will from now reference S1 and S2 as the weakly and strongly screening substrates
respectively. For the freestanding 2D monolayer we find the well-known shape of the
2D dielectric function as discussed previously. When the monolayer is located on the
weakly screening substrate we find that the dielectric function is still dominated by the
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intrinsic 2D screening, however we now have that the ϵ(q = 0) limit differs from 1 as
a consequence of the contribution from the substrate. When the monolayer is located
on the strongly screening substrate the shape of the dielectric function differs signifi-
cantly, most pronounced with the sign of the slope of ϵ(q) reversed around q = 0 and
the exponential decrease of ϵ(q). In addition to the well-known 2D screening regime
and bulk screening regime this substrate dominated regime introduces a new dielectric
screening regime of exciton physics, and is a unique artefact of the 2D monolayer on a
bulk dielectric. Below we will study the implications this screening regime has on the
exciton physics. The grey lines in fig. 3.11 show the transition from the 2D screening
regime to the substrate dominated screening regime. We stress that values chosen for κ
in fig. 3.11 are experimentally realisable values [26, 94].

Figure 3.11: q-dependent dielectric function projected onto the exciton wave function
for freestanding WSe2 (black), WSe2 on a weakly screening substrate
(blue), and WSe2 on a strongly screening substrate (red). The gray lines
indicate the transition from one screening regime to the other and the
horizontal dashed lines show the effective κ as defined in the main text.
This figure is taken from included paper II.

We now return to deriving an analytical model to calculate the exciton effective di-
electric constant and exciton binding energies for the systems in fig. 3.11, to analytically
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calculate the excitonic properties in the substrate dominated screening regime. Since the
intrinsic substrate screening can be taken to be close to constant over the extension of
the exciton wave function, we approximate the intrinsic contribution from the substrate
as constant, κ. This means that the dielectric function in the 2D monolayer, over the
extension of the exciton wave function, can be well approximated as:

ϵ(q) = 1 + 2παq + κe−qd (3.84)

where d is the distance from the center of the 2D monolayer to its image charge in
the substrate. To proceed we insert eq. 3.84 in eq. 3.80 to calculate the exciton
effective dielectric function. It is straightforward to evaluate the integral to obtain:
ϵeff = 1 + 4

3πα
1

aR
− 2κa2

R
d2

(
d

aR
+ 1

)
e−d/aR + κ

d2 . To find a closed analytical solution we
realise that aR is at least twice as big as d (and for most states in the Rydberg much
bigger). We therefore expand the exponential function to second order in d/aR. This
leaves us with a polynomial function we can readily solve to obtain:

ϵn = 1
2

(1 + κ)

1 +

√√√√1 +
8µ(4

3πα − κd)
(3n(n− 1) + 1)(1 + κ)2

 . (3.85)

This expression is plotted in fig. 3.12 with full lines. In circles are plotted a numerical
average of the dielectric functions in fig. 3.11 up to 1/aR obtained by self-consistently
solving eq. 3.81 until convergence is achieved. For both models, the results is shown
for the three screening regimes shown in fig. 3.11. As expected and explained above,
we find a decrease of the exciton effective dielectric constant due to the negative slope
of the dielectric function for a freestanding 2D monolayer (black) and for a 2D mono-
layer on a weakly screening substrate (blue). We find excellent agreement between the
numerical solution and eq. 3.85. For the substrate dominated screening regime we find
a qualitative and fundamentally different behaviour, where a higher exciton effective
dielectric constant is found for the higher states in the Rydberg series. As the exciton
wave function expands in real-space for the higher Rydberg states, the exciton wave
function becomes more localised around q = 0, and consequently the exciton effective
dielectric constant increases due to the negative slope of the dielectric function for the
substrate dominated regime in fig. 3.11.

The result in fig. 3.12 introduces a new screening regime of exciton physics, where
the relation between the dielectric screening of the exciton and the exciton extension
is reversed compared the 2D screening regime and where the excitons become under-
bound opposite to overbound in the already known 2D screening regime. We are now
ready to calculate the exciton binding energies for 2D materials on strongly screening
substrates. We do this by numerically solving the 2D Mott-Wannier equation for the
exciton binding energies, eq. 3.64, with the screened electron-hole interaction used to
calculate the exciton effective dielectric function in fig. 3.11 i.e. including the substrate
dielectric screening. This is done for the three systems discussed above and shown in
fig. 3.13, where we plot the exciton binding energy for the Rydberg series normalised
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Figure 3.12: Exciton effective dielectric constant for state n in the Rydberg series of
the three systems shown in fig. 3.11, calculated numerically with the
QEH model (circles) and from the analytical solution (full lines) to the
exciton effective dielectric constant, eq. 3.85. The dashed lines show the
κ defined in the main text and also shown in fig. 3.11. This figure is
taken from included paper II.

to the 1s exciton binding energy. The color coding follows that of figs. 3.11 and 3.12.
In grey in shown the 2D hydrogen Rydberg series. For the freestanding 2D monolayer
(black) we find the well-known non-hydrogenic Rydberg series [90, 21], where the exci-
tons are overbound compared to the hydrogenic series. As a consequence of the increased
exciton screening in the substrate dominated screening regime (red), the higher states
in the Rydberg series become underbound. In the inset is shown the actual exciton
binding energiese on a logarithmic scale for the numerical solution to the Mott-Wannier
equation (triangles) and from the analytical model, i.e. calculating the exciton binding
energies from eq. 3.82 with the exciton effective dielectric constant from eq. 3.85 (empty
circles). Similar to the exciton effective dielectric constants we find an excellent agree-
ment between the numerical and analytical results. For the 1s states we find the largest
discrepancy, as high as about 0.1 eV for the freestanding 2D monolayer (black) which
was also found in the original work for freestanding 2D monolayers [90]. This can most
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likely be subscribed to the linear approximation of the dielectric function being least
accurate for the 1s state, since this has the largest extension in q-space. Furthermore,
an additional error for the 1s state for systems including substrate screening could be
expected since the expansion of d/aR in the derivation of eq. 3.85 is least accurate for
this state, however we find the inaccuracy of the exciton binding energy of the 1s states
to be dominated by the inherent inaccuracy of the linear approximation of ϵ(q).

Figure 3.13: Exciton binding energies, normalised to the 1s state, for the Rydberg se-
ries for the systems shown in fig. 3.11, calculated by numerically solving
the Mott-Wannier equation with the screened electron-hole interaction
calculated by the QEH model. The gray line shows the 2D exciton hy-
drogen series from which the non-hydrogenic behaviour of the 2D and
quasi-2D systems is obvious. The inset shows the exciton binding ener-
gies on a logarithmic scale. Full triangles are values from the numerical
solution of the Mott-Wannier equation (corresponding to the data in the
main plot) and the empty circles are the binding energies obtained from
the analytical model, eqns. 3.82 and 3.85. The color coding follows that
of figs. 3.11 and 3.12. This figure is taken from included paper II.
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We finally show that the new exciton screening regime is experimentally realisable
and show that the transition from the non-hydrogenic to hydrogenic regime and onto the
new screening regime, is well described by combining experimental and calculated exciton
energies. To study this, in a joint experimental study monolayer WSe2 has been grown
on different substrates, ranging over quartz, HfOx, hBN, encapsulated HfOz, and In2Se3,
with a wide spectrum of different κ-values. The 1s and 2s exciton energies were then
determined from photoluminescence measurements. The experimentally determined 1s
(black) and 2s (red) exciton energies are shown in fig. 3.14 (left). From the 2D and 3D
hydrogen models it can easily be deducted that the exciton binding energy of the 1s state
in the hydrogenic and non-hydrogenic series are then simply related to the difference in
1s and 2s exciton energy by: Eb = 9/8∆E12 (hydrogenic regime) and Eb = 2∆E12 (non-
hydrogenic regime). In fig 3.14 (right) the exciton energies in the two screening regimes
(determined from the experimentally determined 1s and 2s exciton energies) are plotted
in orange and red. It is clear that the non-hydrogenic exciton binding energies are higher
than the hydrogenic exciton binding energies due to the reduced screening in this regime.
We now calculate the exciton binding energies by numerically solving a Mott-Wannier
equation with the induced dielectric screening from the substrate, as outlined above. We
do this for the systems studied experimentally and plot the calculated exciton binding
energies in green in fig. 3.14. For small κ-systems we find that the calculated exciton
energies lies close to the non-hydrogenic series and in between the two non-hydrogen
and hydrogenic exciton series, resembling the 2D character of the exciton screening. For
κ-values around 4-10 we achieve the hydrogenic series (i.e. the bulk screening regime)
and for very high κ-values the calculated exciton energies are found below both the non-
hydrogenic and hydrogenic screening regime and enters the new over-screened regime.
The fact that the new over-screened exciton regime can be achieved experimentally opens
new pathways for exciton physics and introduces a new world of manipulating excited
states at the atomic level.

3.9 Interlayer Exciton in a 2D Heterostructure
for IR Photodetection

We will now discuss the connection between the oscillator strength of an optical excita-
tion and the peak of the excitation in the absorption spectrum. The oscillator strength
is a measure of the transition probability for an electron between the initial state and
the final state and it is calculated by taking the matrix element with the transition
dipole moment operator. In a simple picture, multiplying the oscillator strength with
the joint density of states essentially gives the peak height in the absorption spectrum
for this transition. This means that the amplitude of an excitation peak can be altered
by changing the joint density of states or the coupling parameter between the two states
as stated by Fermi’s golden rule. While the former is determined from the electronic
band structure the latter is known to have a strong dependence on a variety of factors.
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Figure 3.14: Left: Experimentally determined 1s (black) and 2s (red) exciton energies
obtained from photoluminescence spectra for WSe2 on different dielec-
tric substrates (see main text). Right: Exciton binding energies assum-
ing a non-hydrogenic screening regime (orange) and hydrogenic screening
regime (red) deduced from the experimentally determined 1s and 2s ex-
citon energies. In green is shown numerically calculated exciton energies.
This figure is taken from included paper III.

This includes the dielectric screening (as shown above) and the nature of the transi-
tion (momentum indirect transitions in general have lower oscillator strengths since it
requires the simultaneous absorption of a photon and a phonon to account for the mo-
mentum conservation). Also, a larger spatial distance between the final and initial states
in general lowers the coupling strength. This has huge implications for interlayer exci-
tons which have much lower oscillator strengths and can be difficult to detect in many
absorption measurements. Since the lowest bright energy transition in few-layer vdWHs
is given by the energy of the lowest lying interlayer exciton makes only few vdWH inter-
faces possible candidates for IR photodetectors due to two reasons: 1) only few vdWH
interfaces have a interlayer exciton energy in the IR region and 2) such an exciton state
needs to have an exciton binding energy much higher than the room temperature and a
high oscillator strength. Previous developed IR photodetectors either have an excitonic
absorption peak in the mid-high IR spectrum or are not environmentally stable [125,
126, 48, 19, 103], and as such the need for a stable low-energy IR photodetector is of
special interest.

We have shown that such a low IR photodetector with stable exciton states can be
achieved at the heterointerface between WS2 and few-layer HfS2. This result is shown
in paper IV, and here we will explain in greater details the peculiar mixed intra- and
interlayer character of this exciton state and its relation to its oscillator strength. In
fig 3.15 is shown the experimentally measured absorbance as a function of transition
energy for various setups including monolayer WS2 (blue filled), few-layer HfS2 (open
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red dots), the heterointerface between monolayer WS2 and few-layer HfS2 (open dark
red) and bulk HfS2 (dark red filled). The intralayer exciton peaks for both WS2 and
HfS2 (irregardless of the specific system) is located around 2 eV. This is in agreement
with our findings in the previous chapters, where we showed intralayer exciton energies
are redshifted of the order of a few hundreds meV in vdWHs. For the heterointerface
systems we in addition find a low lying exciton state located close to 0.2 eV. As we will
discuss below this exciton has been determined to have a mixed intra- and interlayer
exciton character and we calculate its exciton binding energy to be orders of magnitude
larger than the room temperature energy as generally found in few-layer vdWHs.

By calculating the electronic band structure from DFT we find that the bilayer
WS2/HfS2 has its CBM at the M-point (of the hexagonal Brillouin zone) purely localised
on the HfS2 monolayer. We find two close to degenerate VBMs: one located at the K-
point localised on the WS2 monolayer and one at the Γ-point with joint weight on both
monolayers. This gives two almost degenerate momentum indirect transitions: K-M and
Γ-M and at a first hand it is not obvious if the peak around 0.2 eV in fig 3.15 is the result
of a mix of both transition or only one of the transitions has a high enough oscillator
strength to be observed in an absorption spectra measurement. An interesting aspect
of the exciton peak at around 0.2 eV is that a reversed dependence on the dielectric
environment is found compared to fig. 3.10: the amplitude of the absorbance peaks
increases with the strength of the dielectric environment quantified by the number of
HfS2 layers.

To investigate this phenomenon we calculate the orbital character of the CBM state
the M-point and the two (almost degenerate) VBM states at the K- and Γ-points. The

Figure 3.15: Experimentally measured absorbance spectrum for monolayer WS2 (open
blue), 3 layers HfS2 (open red), buk HfS2 (full red), heterointerface of WS2
with 3 layers HfS2 (open dark red) and with bulk HfS2 (full dark red).
This figure is taken from included paper IV.
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Figure 3.16: The calculated weight of the HfS2 and WS2 layers for the WS2/HfS2
heterointerface with 1 and 5 layers of HfS2 respectively. This is shown for
the hole state at the Γ-point and for the electron at the M-point. This
figure is taken from included paper IV.

state at the M-point in the conduction band is solely located on the HfS2 layer, however
with mixed orbital presence of both Hf d- and S p-orbitals. For the K-point we find
that this state is on the other hand solely located on the d-orbital of W which is not
surprising from our previous knowledge about the TMD monolayers. A clue to our
investigation now arises by considering the Γ-point. From our studies of multilayer
TMD structures (in the previous sections and in following chapter 4) we know that a
significant interlayer orbital hybridisation is affecting the energies around the Γ-point
with joint orbital character of the d-orbitals of the transition metals and p-orbitals of he
chalcogenides atoms in both layers resulting in an interlayer hybridised state at the Γ-
point. We find that the weight on the S (p) on the HfS2 layer increases with the number
of HfS2 layers. The Γ-M exciton can evidently be regarded as a hybridised exciton
with both inter- and intralayer character and that the degree to which it resembles
an intralayer exciton depends on the number of HfS2 layers. We stress that the orbital
character of the K-point remains purely of W (d) character independently of the number
of HfS2 layers. This together with fact the M-point also have a S (p) orbital character
can explain why this transition can have an oscillator strength comparable to that of
intralayer excitons and explains why the peak amplitude increases with number of HfS2
layers in the measured absorbance spectrum. We stress that this does not rule out that
the peak around 0.2 eV does not have a contribution from the K-M transition.

To the extent of the author’s knowledge the study of vdWHs build with TMD mono-
layer based on transition metals with few electrons in the d-orbitals (Hf, Zr, Ti, Sc etc.)
have received only scant attention in the recent years. The above study suggests that it
is possible to utilise the presence of orbitals localised on the halogen/chalcogenide atoms
in the valence band edge states to achieve interesting interlayer hybridised states with
a stronger interlayer coupling strength, than the well-explored TMD monolayers based
on V, W, Mo, Pt, Pd, Cr and etc. This could possibly lead to the development of more
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devices in the IR and optical spectrum not only limited to photodetectors. The sug-
gested IR photodetector has a tunable peak position of the IR exciton peak which can
be predictably manipulated with the number of HfS2 layers of about 150 meV as shown
by both calculations and experiments with a strong oscillator strength over the full range
of few layers to bulk form. It can be hypothesised that the strong oscillator strength,
even with bulk HfS2 is only related to the first 5-10 HfS2 over which the electron wave
function is distributed. If this is true, it means that one could potentially replace the
remaining HfS2 with monolayers with a higher dielectric screening potential to achieve
a further tuning of the exciton energy and reach even lower excitation energies.
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CHAPTER 4
Exciton Energies:

Disentangling Dielectric
Screening, Orbital

Hybridisation, Twist-Angle,
and Substrate Effects

As we saw in chapter 3, extensive studies of the quasi-particle and excitonic states of
many vdWHs can be carried out, without including a detailed and correct description
of the interlayer orbital hybridisation. However, even though vdWHs are indeed charac-
terised by a weak interlayer interaction, and thus a weak interlayer orbital hybridisation,
it is becoming increasingly important to understand and calculate this effect accurately.
This is especially highlighted by the recent discovery of the onset of superconductivity in
bilayer graphene [12] and interlayer hybridised exciton states in vdWHs [3]. In section
4.1, we will discuss the difficulties of correctly calculating interlayer orbital hybridisation
effects in vdWHs, and why such effects are not even accurately described by the state-
of-the-art G0W0 formalism presented in chapter 3. This is mainly due to the fact that
the G0W0 formalism adopts the (possibly wrong) band line-up description provided by
conventional DFT methods. In this chapter we will show how this effect can be prop-
erly calculated and implemented into GPAW, by an efficient computationally cheaper
scheme. We will denote this developed method the ’LCAO Scissors-operator (LCAOS)
method’ and it is in this thesis implemented into the QEH model. This redefines the
QEH model to both include interlayer dielectric screening and interlayer orbital hybridi-
sation and charge transfer effects, such that excited state properties can now efficiently
be calculated for multilayer vdWHs including interlayer hybridisation effects. In section
4.2 the new, redefined QEH model, is then, in combination with the G0W0(Γ) and BSE-
QEH methods, applied to calculate exciton energies in vdWHs. With the use of the
redefined QEH model, it is now possible to split the exciton energies in vdWHs into its
components i.e. the renormalisation of the exciton energies due to dielectric screening,
interlayer hybridisation, charge transfer, bulk substrate effects etc., to better understand
the nature of the lowest excitonic states in vdWHs. By comparing our calculated exciton
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energies for a set of vdWHs to a large library of intra- and interlayer exciton energies
obtained from the literature, we benchmark to what accuracy ab-initio calculations can
be expected to fit with experimental values. These results are mainly presented in paper
V, and section 4.2 outlines some of the main results of this work and shows an example
of the calculated twist-angle dependency of exciton energies on interlayer hybridisation
effects.

4.1 Calculation of Interlayer Hybridisation
Effects in van der Waals Heterostructures

In chapter 3 we studied how the quasi-particle energies and exciton energies are influ-
enced by the dielectric screening from the environment due to the non-locality of the
dielectric function. However, even though the interlayer interaction between the 2D
monolayers in a vdWH is of van der Waals character, it is well-known that in some
systems there can be a substantial interlayer hybridisation of the wave functions which
leads to a significant renormalisation of the quasi-particle and exciton energies in parts of
the Brillouin zone. Examples of this include the strong interlayer hybridisation around
the Γ-point for MoS2 transitioning from monolayer to bulk [122] shifting the direct band
gap at the K-point to an indirect band gap from the Γ-point to the K-point. Other
examples include the twist-angle dependent exciton hybridisation for bilayer TMDs [3]
and the magic-angle superconductivity for bilayer graphene at a twist-angle close to 1.1
degrees [12]. Before we discuss how the interlayer hybridisation can be accurately mod-
elled we must first understand what is meant by accurately. In experiments measuring
the electronic band structure and exciton energies, it is not possible to disentangle the
different contributions from environmental screening, interlayer wave function hybridisa-
tion, interlayer charge transfer, and other effects, but merely to measure single excitation
energies. We therefore do not have any reliable experimental values to benchmark the
disentangled effects against and we are left to benchmark against numerical methods.
In the literature it is common to rely on the G0W0 (or self-consistent GW) approxima-
tion to give the best possible description of the electronic band structure. However, a
full G0W0 or self-consistent GW description for most vdWHs is not possible (which is
the very reason for the need of the QEH model) and such methods are therefore not
an obvious choice for benchmarking. The G0W0 approximation also fails to properly
describe the interlayer hybridisation, as we will return to below, eliminating this method
for benchmarking. The obvious choice is therefore to use numerical methods with less
computational cost and less numerical accuracy, that calculates the interlayer interac-
tion self-consistently. We settle on benchmarking the model we develop below against
self-consistent HSE calculations.

We can understand the idea of the LCAOS method by realising that GGA calcula-
tions include the effect of interlayer hybridisation self-consistently, and since the GGA
is an inherent single-particle description it does not contain the many-body dielectric
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Figure 4.1: Illustration of an example band line-up of the valence band maximum
(VBM) and conduction band minimum (CBM) for two 2D monolayers, pre-
dicted by DFT (left) and by the GW approximation (right). As discussed
in the main text, the poor description provided by most DFT functionals
of the electronic band gap leads to a poor description of the predicted band
line-up, and therefore a wrong description of interlayer orbital hybridisa-
tion. In the given example the DFT description predicts a strong interlayer
orbital hybridiation while the self-consistent GW description predicts little
to no interlayer orbital hybridisation. The dashed lines indicate the Fermi
levels.

screening outlined in the first sections of chapter 3. Therefore it is possible to isolate the
interlayer charge transfer and hybridisation effects from such calculations by comparing
the electronic band structure of the vdWH to GGA calculated electronic band structures
of the freestanding monolayers. However, as simple as this idea is, it will in general not
give a proper description of the interlayer orbital hybridisation as illustrated in fig. 4.1.
It is well-known that GGA heavily underestimates the electronic band gap and conse-
quently the exact position of the VBM and CBM relative to vacuum. As illustrated, the
band line-up will in some cases lead to the GGA calculation overestimating (this is the
example shown in fig. 4.1) or underestimating the interlayer hybridisation compared to
a self-consistent many-body description. We therefore seek a method, where we do a
self-consistent GGA calculation for the vdWH, with a set of scissors-operators in the
self-consistent loop, to start from the many-body quasi-particle band line-up (relative
to vacuum). In this way, it is possible to self-consistently calculate the interlayer or-
bital hybridisation for the vdWH starting from the correct many-body band line-up. As
outlined in section 2.3, GPAW supports three different modes for electronic structure cal-
culations: a plane-wave based description (PW), a basis set based description (LCAO),
and a finite-difference (FD) method. While all three modes are suitable for the desired
implementation, the supercells describing multilayer vdWHs and even twisted bilayers
contain hundreds (or thousands) of atoms and, of the three modes, LCAO is able to
carry out converged calculations for the largest supercells within GPAW. We therefore
pursue the implementation of the method within the LCAO mode.
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In the meantime, a derivation of the implementation scheme for a state-dependent
(k-point, band) scissors-operator in PW mode is presented in appendix C. Here an ana-
lytical expression for the correction matrix to the DFT Hamiltonian is derived, to achieve
the desired eigenvalue corrections for all states, only based on freestanding monolayer
eigenvalues. We will not follow this approach further, but the method is presented in
appendix C in case it will be found useful for future studies.

Within the framework of LCAO we consider the LCAO eigenvalue problem in eq.
2.31. Our aim is to apply a constant scissors-operator to both the occupied and un-
occupied states, where the constant scissors-operator can be different for the occupied
and unoccupied states, to match the G0W0(Γ) quasi-particle band edges. In addition,
we want to do this for all monolayers in the vdWH of consideration, where the scissors-
operator for occupied and unoccupied states can also differ from layer to layer. If we
add a correction to H̃µν in eq. 2.31: H̃µν → H̃µν + H̃S

µν (where ’S’ is short for ’scissors-
operator’), this gives a correction to the eigenvalues of: ∆ES

n = ∑
µν SµνcµnH̃

S
µνcνn. In

other words, it is possible to find a correction to the LCAO Hamiltonian, H̃S
µν , defined

from the desired corrections to the eigenvalues of states n. In practice, we define a con-
stant eigenvalue shift for both the occupied and unoccupied states for each layer in the
vdWH of consideration (i.e. the number of corrections equal two times the number of
layers in the vdWH). For a single monolayer, the eigenvalue corrections to the occupied
and unoccupied states are defined as the difference between the eigenvalue of a specific
state obtained from a LCAO calculation for the freestanding monolayer and the desired
eigenvalue for the same state (this could for instance be defined as the difference between
the LCAO and G0W0 eigenvalue at the VBM (CBM) at the K-point in the Brillouin
zone for the occupied (unoccupied) states). The desired eigenvalues will in this study in
practice be given by G0W0(Γ) quasi-particle energies for the freestanding monolayers.
When all energy corrections (∆ES

n) have been defined, the corresponding Hamiltonian
corrections are determined from the above definition of the correction Hamiltonian, and
an LCAOS calculation is performed for the full vdWH, where the determined Hamilto-
nian corrections are added and projected onto the wave functions of the layer it should
be applied to. This is in practice done from the available wave functions from the free-
standing monolayer calculations. This defines what we will label as the LCAOS method
in the remaining. The proposed method enables us to carry out calculations for up
to more than 1000 atoms and to correctly assess the effect of interlayer hybridisation
and charge transfer, by studying the interface self-consistently from the G0W0(Γ) band
line-up, and by applying a minimal strain to the monolayers. Such calculations cannot
be performed with conventional many-body ab-initio methods and thus, this approach
offers a unique tool with the already existing QEH model for calculating interlayer dielec-
tric screening and the BSE-QEH model developed in the chapter 3 to calculate exciton
binding energies in vdWHs irregardless of the number of layers and/or twist-angles. Fur-
thermore the method can effectively be utilised in combination with the big library of
G0W0 quasi-particle energies available in C2DB.
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We stress that we find little-to-no difference between the eigenvalues near the Fermi
level of interest for the usual class of TMD structures between the LCAO, FD, and PW
modes in GPAW. Below we will present a benchmarking study of the proposed method
and then apply it to multilayer- and twisted vdWHs in combination with the already
existing QEH model and the MW-QEH and BSE-QEH models for calculating exciton
energies in these structures.

We benchmark the LCAOS method against self-consistent calculations with the hy-
brid functional HSE and consider bilayer MoS2 (in the AB-stacking configuration) as a
first test system to avoid an initial erroneous description of the band line-up, since PW
HSE is the highest level of self-consistent computational theory we can apply reliably
to few-atoms vdWHs. In practice, this is done by first performing a self-consistent HSE
calculation and LCAO calculation for freestanding monolayer MoS2. The LCAO and
LCAOS calculations are performed with the PBE functional. The difference between
the valence- and conduction band edges for the two calculations at a chosen point in
the Brillouin zone (here the K-point), defines the scissors-operator for the valence- and
conduction states respectively. Next, we perform a LCAOS calculation with this defined
scissors-operator for bilayer MoS2 and compare to the self-consistent HSE calculation for
the same system. The result is shown in fig. 4.2 (left) where the HSE band structure for
bilayer (monolayer) MoS2 is shown in black (grey) and similarly the LCAOS (LCAO)
band structure for bilayer (monolayer) MoS2 is shown in red (blue). Overall we find
an excellent agreement between the HSE and LCAOS band structures for bilayer MoS2.
We first notice the lack of interlayer hybridisation effects at the K-point for both the
valence and conduction band in both methods where the bilayer states coincide with the
monolayer states for the HSE calculation and the LCAOS calculation agrees with the
self-consistent HSE calculation. Furthermore, the well-known effect and size of interlayer
hybridisation on the valence state energies around the Γ-point is also well-described by
the LCAOS method and so is the downshift of the conduction band between the K- and
Γ-point. The LCAOS method accurately describes the magnitude of the hybridisation
around the Γ-point leading to the direct to indirect band gap transition well-known for
the transition from monolayer to bilayer MoS2 [82]. A few features are not well captured,
for instance are the energies of some of the lower valence states between the K- and Γ-
point overestimated by the LCAOS method. This effect is found even for freestanding
TMD monolayers by comparing GGA band structures (in both PW and LCAO mode)
and G0W0 quasi-particle energies, suggesting that this is an inherent self-energy effect
not related to the interlayer interaction. Despite this, the overall resemblance between
the HSE and LCAOS band structures shows the high accuracy and proficiency of the
proposed LCAOS method.
At the interface between any two 2D materials (and throughout a vdWH independent
of the number of layers) the states in all layers will line up with respect to a common
Fermi level. Since the position of the Fermi level of the freestanding monolayers in gen-
eral will be different relative to the vacuum energy, a finite interlayer charge transfer
from one layer to the other(s) is therefore required to restore a common Fermi level for
the combined system. The interlayer charge transfer will set up small interface dipoles
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Figure 4.2: Left: band structure of bilayer MoS2 calculated with two different methods:
PW HSE (full black) and LCAOS PBE (dotted red). In dotted blue is
shown a LCAO PBE calculation for monolayer MoS2 and in full grey the
monolayer MoS2 PW HSE calculation. All calculations are performed fully
self-consistently. Right: energy shift of band edge states located on Mo
at the K-point (ECT) for 3 different bilayer systems: MoS2/CrS2 (black),
MoS2/WSe2 (purple), and bilayer MoS2 (red) plotted against the difference
in the position of the Fermi level for the two freestanding monolayers. This
is shown in black for bilayer MoS2 with the LCAOS PBE method and in red
circles (triangle) ((diamond)) for MoS2/CrS2 with the LCAOS PBE (PW
PBE) ((PW HSE)) method. Finally for MoS2/WSe2 the calculated value
in Ref. [75] (purple triangle) is compared to a LCAOS PBE calculation
(purple circle).

which give a shift of the states located on the different layers relative to each other.
This effect is obviously not found at homointerfaces such as bilayer MoS2, and thus
not present in fig. 4.2 (left), but will in general be present at any heterointerface. To
study how well the LCAOS method describes the interlayer charge transfer we set out
to study a set of bilayer systems: bilayer MoS2, MoS2/CrS2, and MoS2/WSe2. The last
system has previously been studied in Ref. [75]. We note in passing that the two latter
systems are not lattice matched and a small strain is applied to the two monolayers
to match them in a minimal unit cell, however this does not influence the validity of
the test as long as both the bilayer and freestanding monolayer systems are considered
with the same lattice constant and bond lengths. For the 3 systems we calculate the
offset of the band edges at the K-point (relative to the freestanding monolayer band
edges) due to the interlayer charge transfer (ECT) which is plotted against the Fermi
level difference of the freestanding monolayers in fig. 4.2. We utilise the flexibility of
the LCAOS method and determine ECT over a range of different Fermi level line-ups,
i.e. different scissor operators are applied to achieve a set of artificial Fermi level dif-
ferences, and we then evaluate ECT for each configuration by direct calculation. The
result for bilayer MoS2 is shown in black and defines a reference for comparison for the
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heterointerfaces. For bilayer MoS2 we find a linear relation between the Fermi level
difference and the shift of the band edge at the K-point. In red we show the calculated
values for bilayer MoS2/CrS2. The interesting aspect of this system is that the PW PBE
method (red triangle) and PW HSE calculation (red diamond) predict a significantly
different Fermi level difference (offset) for the freestanding monolayers and as can be
seen consequently also a significantly different interlayer charge transfer. We note here
that the Fermi level of MoS2 in both cases reside above that of CrS2 such that a charge
transfer from the MoS2 layer to the CrS2 layer is expected. We now artificially vary the
band line-up of this system with the LCAOS method and calculate the band offset (red
circles). While the LCAOS method overestimates the interlayer charge transfer, it gives
an overall good description of the two cases and follows a similar trend to bilayer MoS2.
The magnitude of transfered charge at a given Fermi level difference is influenced by a
set of different parameters such as the interlayer distance, the difference in electronaga-
tivity between the atoms of the two layers, etc. Comparing bilayer MoS2 and bilayer
MoS2/CrS2 we find an insignificant difference in the interlayer distance, however since
Mo has a considerably higher electronegativity than Cr it seems reasonable that we find
a smaller charge transfer in MoS2/CrS2 compared to bilayer MoS2. Finally we consider
MoS2/WSe2 where the interlayer charge transfer has previously been studied [75], and
it was in fact shown that the band offset only weakly depends on the applied strains.
The result of Ref. [75] is shown with a purple triangle (performed with the PW PBE
functional) and the LCAOS result is shown with a purple circle; also here an excellent
agreement is found. In summary, with the available calculated and obtained data, we
find the LCAOS method gives a very good description of the band offset due to the
interlayer charge transfer by comparing to PW PBE and PW HSE calculations. This
method can readily be combined with the dielectric screening effects already contained
in the QEH model and the BSE-QEH developed in chapter 3 to accurately calculate
quasi-particle and exciton energies in vdWHs, to enable accurate calculation of states
strongly affected by interlayer hybridisation effects.

We now change gears and study a heterointerface in greater detail and to directly
extract the effect of interlayer orbital hybridisation and charge transfer effects on the
quasi-particle energies. To do this we consider bilayer MoS2/WS2. We calculate the
LCAOS band structure with the scissors-operator defined in terms of the LCAO and
G0W0Γ band edges at the K-point for the freestanding monolayers. We note in passing
the G0W0Γ calculation have been carried out based on PBE eigenvalues and norm-
conserving PAW setups. The results can be found in fig. 4.4 (left) where the LCAOS
band structure is shown in red for the bilayer and the sum of the freestanding monolayer
LCAO band structures are shown in blue. The freestanding monolayer LCAO band
structures have been artificially shifted to match the G0W0Γ band edges after calcu-
lation. We now define the effect of interlayer orbital hybridisation and charge transfer
on the band structure energies as the difference in energy of each state in the bilayer
configuration compared to the state of the freestanding monolayer. This definition is
well-defined for states with little-to-no interlayer orbital hybridisation, where the state
in the bilayer can be projected onto one of the monolayers. However for mixed states, for
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Figure 4.3: Left: band structure of MoS2/WS2 calculated with the LCAOS PBE
method (red). In blue is shown the sum of the band structures of the
freestanding monolayers calculated with LCAO PBE, which is shifted with
the same scissors-operators as the LCAOS calculation after the monolayer
calculations have been performed. The scissor-operator is defined from
the G0W0Γ band edges at the K-point. Right: the derived interlayer hy-
bridisation and charge transfer effect on the two valence (bottom) and two
conduction (top) bands defined as the difference in the monolayer (Emono)
and bilayer (Ebi) eigenvalues. The conduction bands are shifted +0.5 eV
for clarity. See main text for the definition of the projection of each state
onto one of the two monolayers. The numerical disturbances are due to
band crossings.

instance for the valence states around the Γ-point, this definition bares little meaning
and we simply assign each state to one of the monolayers. In the further analysis in
the rest of the chapter we however keep in mind that both layers are subject to the
splitting due to hybridisation for these states. The result of this analysis is shown in
fig. 4.3 (right), where the effect is shown for the two valence- (bottom) and conduction
(top) bands. The small disturbances close the K- and Γ-point arise from band crossing
effects. This enables us, for the first time, to quantify and extract the effect of inter-
layer orbital hybridisation and charge transfer explicitly. As expected we find a large
splitting of the valence bands around the Γ-point where the effect on the quasi-particle
energies is close to three times the effect of the (almost constant) interlayer dielectric
screening effect. We also find a significant effect of orbital hybridisation between the
K- and Γ-point for the conduction bands. The interlayer charge transfer gives a small
constant shift of about 0.02 eV down (up) for the WS2 (MoS2) monolayer consistent
with the Fermi level for freestanding monolayer MoS2 is found to be located below the
Fermi level of freestanding WS2 in the G0W0Γ description. It is here evident that the
interlayer charge transfer does not affect the intralayer exciton energies, but increases
the interlayer exciton energy. On the other hand, the effect of orbital hybridisation sig-
nificantly reduces the momentum indirect exciton energies involving the valence Γ-point.
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Figure 4.4: Left: quasi-particle energies for MoS2/WS2 obtained with the G0W0Γ-
QEH model showing the sum of the quasi-particle energies of the freestand-
ing monolayers (Emono, black), including the interlayer screening from the
QEH model (Escr, red), and including both dielectric screening and the
interlayer orbital hybridisation effects (Ehyb, green). Right: full G0W0
calculation for the same structure based on PW PBE eigenvalues. Note
both calculations are shown without the effect of spin-orbit interaction for
clarity. A similar full G0W0 calculation can be found in fig. 3.2 including
spin-orbit interaction. The comparison between the left and right figures
and to fig. 3.2 also allows us to see the effect of the vertex correction. The
same color coding as fig. 3.2 is used in this plot. Note that less conduction
bands are included in the full G0W0 calculation than in the G0W0Γ-QEH
calculation. The left figure is taken from the included paper V.

We remind ourselves that the G0W0(Γ)-QEH model introduced and used in chapter 3
only includes the effect of interlayer dielectric screening. We are now in a position where
we can expand upon the G0W0(Γ)-QEH model by including the effect of interlayer
hybridisation and charge transfer in vdWHs, through the quantification of this effect in
fig. 4.3 (right). To take this into effect, in fig. 4.4 (left) we show the sum of the G0W0Γ
quasi-particle energies of the freestanding monolayers: MoS2 and WS2 in black. In red
we have added the, almost constant, effect of the interlayer dielectric screening to the
quasi-particle energies, and finally in green we have also added the effect of interlayer
orbital hybridisation and charge transfer for the 2 top (bottom) valence (conduction)
bands from fig. 4.3, as calculated by the redefined QEH model.

This disentangling of the dielectric screening, interlayer hybridisation, and charge
transfer effects redefines the QEH model. It enables us to accurately describe quasi-
particle states in vdWHs subject to a significant interlayer orbital hybridisation and
in detail examine which effect(s) the renormalisation of quasi-particle energies can be
subscribed to in vdWHs in different parts of the Brillouin zone. This tool can serve as a
valuable method to understand and learn from complex vdWH interfaces and not only
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answers the question: ”what happens” upon interface line-up, but also ”why it happens”.
The calculated G0W0Γ-QEH band structure is shown together with a full G0W0 cal-
culation for bilayer MoS2/WS2 to the right in fig. 4.4. We note this comparison also
allows to see the effect of the vertex correction and norm-conserving PAW setups by also
comparing to fig. 3.2. The effect is especially notable for the broken degeneracy of the
CBM by performing the calculation with norm-conserving PAW setups and applying the
vertex correction. While the resemblance between the two quasi-particle band structures
is rather large, we stress that it is to this point not possible to define what is the correct
quasi-particle band structure for bilayer MoS2/WS2. This is because while the G0W0Γ-
QEH model gives a better description of the interlayer orbital hybridisation and charge
transfer it lacks a proper description of how the GW self-energy correction is influenced
by a better description of the band line-up. On the other hand, the description of the
interlayer hybridisation in the full G0W0 is inhereted from the (possibly) wrong band
line-up provided by the PBE calculation. In future studies it will be interesting to see
how the LCAOS method can be used in combination with full G0W0(Γ) calculations to
give a better guess at the initial band line-up and act as a pre-self-consistent loop to
correct the main flaw of the G0W0(Γ) formalism.

4.2 Benchmarking Ab-Initio Calculated
Exciton Energies in vdWHs against
Experiments

In recent years vast efforts have been put into determining exciton energies in mono-
and few-layer vdWHs as accurately as possible. This has been done theoretically us-
ing computationally heavy methods such as the G0W0 and the BSE approximations
and experimentally with for instance absorbance and photoluminescence experiments.
Experimentally the field has moved into studying the effect of relative twist-angles be-
tween neighbouring monolayers on the electronic and optical states [3, 72, 12] and very
accurate experiments, down to the meV range, have been carried out to determine the
small redshift of exciton energies in vdWHs discussed in relation to the BSE-QEH model
in chapter 3. It is indeed important to keep pursuing to fine tune both experimental
and theoretical methods, however a direct comparison between the exciton energies ob-
tained within the two fields is not straightforward. This is because while computationally
heavy ab-initio methods are usually performed for idealised structures, for instance a
freestanding bilayer, possibly with applied strain to the monolayers and without tem-
perature effects, experiments are usually carried out with the presence of a supporting
substrate, at a finite temperature, and possibly a finite relative twist-angle between the
two monolayers, which cannot be modelled by computationally heavy ab-initio many-
body methods. Furthermore, when applying ab-initio methods the researchers always
know which quasi-particle states they are talking about, while in experimental studies
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it is often difficult to obtain other information than only the transition energies. The
situation is further complicated by the fact that the optical transitions that can be op-
tically measured in an experiment heavily rely on the quality of the interface(s) and
can as such be difficult to reproduce. It is evident that a systematic study on how the
mentioned effects affects the ab-initio calculated exciton energies is needed.

To shine light on this issue we have calculated the lowest lying exciton energies for
a set of bilayer TMD structures. We do this by utilising the BSE-QEH model (and
the MW-QEH model for interlayer and finite momentum intralayer exciton binding
energies) and the G0W0-QEH, including the developed method for obtaining the correct
interlayer hybridisation and charge transfer from section 4.1. We are now able to not
only accurately calculate exciton energies, but also disentangling and quantifying the
contribution of interlayer dielectric screening, interlayer hybridisation, charge transfer,
substrate, and twist-angle effects on each of the lowest lying exciton states, in the spirit
of fig. 4.4 (left). This is a strong tool to understand the nature of the lowest optical
transitions in few-layer vdWHs and to understand the discrepancy found between state-
of-the-art ab-initio calculations and experimental measurements. To carry out a proper
comparison to experiments the calculated exciton energies are compared to a large library
of experimentally measured exciton energies from literature (which can be found in paper
V). The discrepancy between different measurements (in different experimental studies)
of the same exciton state for the same system quantifies the deviation that can be
expected within experimental setups and evidently gives the lowest accuracy that can
be expected for ab-initio methods. This is here modelled by the standard deviation of all
experimental measurements (in the library of experimental studies) of the same exciton
state.

The study not only addresses to which accuracy ab-initio calculations and experi-
mental measurements can be expected to agree, it also supplies a valuable ”hand-book”
for both experimentalists and theoreticians to see how large specific physical effects can
be expected to be when calculating, measuring, and comparing exciton energies between
different studies. Here we will comment on some of the key details to understand the
complex nature of exciton energies at heterointerfaces. The detailed results can be found
in paper V.

We start out by considering how the relative twist-angle between two monolayers in
bilayer TMDs affects the exciton energies. When the monolayers are rotated relative
to each other the dielectric screening remains close to unchanged while the interlayer
orbital hybridisation can be significantly affected since only the latter involves the spa-
tial orbital overlap of the orbitals confined to each monolayer. For few-layer vdWHs
with degenerate intra- and interlayer exciton energies, it has recently been shown ex-
perimentally that the exciton energies are twist-angle dependent [3], as shown in purple
in fig. 4.5, where the experimentally measured lowest energy K-K exciton is plotted
for MoSe2/WS2. To assess this feature computationally we calculate the quasi-particle
band structure of MoS2/WS2, where we find both the K-K and Γ-K lowest energy quasi-
particle transitions to host close to degenerate intra- and interlayer exciton states. We
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calculate this for a range of relative twist-angles using the G0W0-QEH model (with
the interlayer hybridisation derived from the LCAOS method) and plot the (electronic)
quasi-particle band gap (full circles) in fig. 4.5. The empty circles are LCAO-PBE
calculations i.e. within the single-particle picture without applying a scissors-operator
to correct the band line-up. We stress the experimentally measured exciton energy is
for a different system than the one we calculate here, but it is shown to illustrate the
twist-angle dependent effect found experimentally for bilayers with degenerate intra-
and interlayer exciton energies (at this point it was not possible to obtain calculated
twist-angle dependent quasi-particle energies for MoSe2/WS2, but we note this is work
in progress). We note again that all reference to the G0W0-QEH model from now in-
cludes the description of the interlayer hybridisation and charge transfer presented in
section 4.1. In fig. 4.5 we show the calculated smallest quasi-particle (QP) gap in
MoS2/WS2 for the two transitions hosting degenerate transitions: the direct band gap
from K-K (black) and the indirect band gap from Γ-K (green). We start by considering
the calculated (with the G0W0-QEH method) quasi-particle energies and find the Γ-K
quasi-particle band gap to be the lowest quasi-particle band gap independent of the
twist-angle, however the figure excellently illustrates the care that must be taken when
assigning exciton energies to specific transitions in the band structure. As an example,
consider a PL measurement performed on MoS2/WS2 finding an exciton energy of 2.2 eV
(minus the exciton binding energy). Given the uncertainty in most experimental setups
the measured energy can be ascribed to all three transitions in the Brillouin zone shown
in fig. 4.5. If the layers are rotated by about 10 degrees the conclusion would incorrectly
state that the lowest lying interlayer exciton has an energy almost 150 meV higher than
the ab-initio calculated value at a 0 degrees twist-angle. This underlines the important
care that must be taken when comparing exciton energies between different studies. We
now rest a second with the peculiar dependence on the twist-angle for the direct band
gap and the Γ-K gap. When the two unit cells are rotated relative to each other, both
band gaps shifts up about 100 meV relative to the aligned bilayer. This shift is close
to constant over the full range of rotation. As mentioned, previous experimental work
have reported a similar observation for exciton energies in TMD bilayer systems having
close to degenerate intra- and interlayer excitonic states, which has been explained by
an inter-exciton hybridisation effect. It is therefore interesting that we find this effect
for MoS2/WS2 where we indeed predict both the K-K and Γ-K quasi-particle transi-
tions to host close to degenerate intra- and interlayer exciton states. On the other hand,
when the interlayer hybridisation is derived from a LCAO PBE calculation (empty black
circles), the lowest energy transition shows an opposite dependence on the twist-angle.
In this case, where no scissors-operator is applied, the intra- and interlayer band gaps
are not nearly degenerate. Consequently, within a standard LCAO description we find
a weaker interlayer hybridisation around the Γ-point (open circles) compared to the
LCAOS method (full circles). The result in fig. 4.5 suggests that the experimentally
observed effect can to some extent be understood already from the hybridisation effect
on the quasi-particle band structure. If we examine the LCAO and LCAOS results in
greater detail we find that in the LCAOS calculations the opening of both the K-K and
Γ-K quasi-particle gaps results from a downshift of about 60 meV of both the valence K-
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and Γ-point states and an upshift of about 40 meV of the conduction K-point states (rel-
ative to 0 degrees relative rotation). With the LCAO method we find a downshift of the
states at the valence Γ-point of only about half of that found within the LCAOS method.
The valence K-point states are close to unaltered and the conduction K-point states have
a downshift of about 40 meV, which leads to the small closing of the quasi-particle band
gap. The K-point states are purely located on the d-orbitals of the transition metal while
the Γ-point have mixed contribution from the d-orbitals of the transition metals and the
p-orbitals from the chalcogenide atoms (which is the very reason of the strong interlayer
hybridisation at this point in the Brillouin zone). We now hypothesise the origin of the
observed artefact. Due to the lattice match of MoS2 and WS2 it is possible to describe
the bilayer in a 1x1 unit cell without applying strains (at a 0 degrees relative rotation)
and where the minimal energy stacking configuration is AB. This stacking configuration
has the maximum average interlayer distance between the chalcogenide atoms on the
two layers possible. As the two layers are rotated relative to each other the average
distance between the chalcogenide atoms on the two layers decreases and consequently
a stronger interlayer hybridisation around the Γ-point is expected. This (small) effect is
also observed in our twisted bilayer calculations for this system. An increased interlayer
orbital interaction would shift a greater part of the electron density located on the chalco-
genide atoms into the van der Waals (free space) gap between the two monolayers to
take part in the interlayer orbital interaction. In a very simple picture the chalcogenide
atoms can be regarded as a quantum well, and as electronic density is shifted into the
van der Waals gap the width of the atomic quantum well is increased shifting down the
quantum energy levels. While this is a very simple picture it qualitatively describes the
observed larger downshift of the Γ-point states with the LCAOS method than with the
LCAO. (We mention again that we find a stronger interlayer hybridisation between the
chalcogenide atoms within the LCAOS method than in the LCAO method). The fact
that the K-point valence states shift down within the LCAOS method and not within
the LCAO method could potentially be described by an inter-quasi-particle hybridisa-
tion between the K-K and Γ-K transition states for the degenerate case (in the LCAOS
calculation) forcing the valence K-point states to shift down with the same magnitude
as the Γ-point to keep the two quasi-particle transitions degenerate or ”locked”. The
opposite behaviour of the K-point conduction states is harder to explain in a simple
picture. If electronic density from the chalcogenide atoms is shifted into the van der
Waals gap between the layers, this leaves more space for the d-orbitals on the transition
metals. Intuitively this would result in a downshift of the K-point conduction band state
as observed in the LCAO calculation, while the opposite effect is found in the LCAOS
calculation. In conclusion, the complex behaviour found in fig. 4.5 can to some extent
be understood qualitatively, however more work will have to go into this topic to deter-
mine the reasoning of the observed effect. It is however pleasing to see that a better
description of the interlayer hybridisation leads to a quantitatively better description of
the twist-angle dependent excitation energies.

The next matter we will elaborate on is the effect of the presence of a supporting
dielectric substrate in close proximity to the vdWHs. In most experimental setups the
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Figure 4.5: Calculated quasi-particle (QP) gap for the two lowest energy transitions in
MoS2/WS2 hosting degenerate transitions (see main text for description)
as a function of the relative twist-angle between the unit cell vectors of the
two monolayers in black and green. With full circles are shown G0W0Γ-
QEH calculations (including the scissors-operator described in section 4.1
to correctly describe the band line-up). With empty circles are shown
the Γ-K transition calculated with LCAO-PBE (i.e. without applying
the scissors-operator). In purple is shown the twist-angle dependence of
the interlayer exciton energy (Eexc) for MoSe2/WS2 from experimental
measurement [3]. It is stressed the experimentally measured exciton energy
is for a different system than the computed values, but is shown to illustrate
the qualitative effect found experimentally. This figure is modified from
the included paper V.

vdWH is either directly grown on or transfered to a weakly screening supporting sub-
strate such as a hBN or SiO crystal. Conversely, in most ab-initio calculations the
calculation is performed for the freestanding vdWH due to computational limitations.
Most supporting crystals, as the two mentioned above, are wide band gap crystals to
avoid interlayer hybridisation effects, affecting the states involved in the lowest energy
transitions. This suggests that the influence of the substrate can be modelled by only
including the dielectric screening effect of the substrate. As we learned from fig. 3.5 the
effect of the dielectric screening on the quasi-particle band gap depends on the (static)
polarisability of the monolayers in question and from fig. 3.9 we know that the exciton
energies are redshifted when the dielectric environment is enhanced. We can therefore
predict that the direct effect on the exciton energies will be a redshift of the exciton
energies, the size of which depends on: 1) the nature of the monolayers, 2) the dielectric
constant of the substrate, and 3) the thickness of the substrate. Evidently the effect
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is system dependent, however to determine the approximate size of these effects we
calculate the renormalisation of the two intralayer A excitons in MoS2/MoSe2 together
with the lowest interlayer exciton as a function of the thickness of a supporting hBN
substrate. This is shown in fig. 4.6. For the intralayer exciton binding energies we
apply the BSE-QEH method and for the interlayer exciton binding energy we apply
the MW-QEH method for calculating the exciton binding energies. In both cases the
screening of the quasi-particle band gap is calculated from the G0W0-QEH model. As
expected we find a redshift of the intralayer excitons in correspondence with the result
in fig. 3.9 having an asymptotic value around 40-50 meV on bulk hBN. The effect is gen-
erally smaller than the redshifts in fig. 3.9 due to the lower static polarizability of hBN
than of the TMD monolayers. The difference in exciton energy between the freestanding
(suspended) vdWH and the vdWH on a substrate approaches the accuracy claimed by
many theoretical and experimental groups showing dielectric screening effects from bulk
substrates indeed is an important factor to take into account comparing experimental
measurements and ab-initio calculations. The effect for a given system can be estimated
by combining the knowledge from figs. 3.5 and 4.6.

Figure 4.6: Shift of intra- and interlayer exciton energies in bilayer MoS2/MoSe2 as a
function of the number of supporting hBN layers. The intralayer exciton
energies in MoS2 (black) and MoSe2 (blue) are calculated with the BSE-
QEH model. The shift of the interlayer exciton energy (red) is calculated
with the MW-QEH model. The dielectric screening of the quasi-particle
energies is calculated with the G0W0-QEH method in all cases. This figure
is taken from the included paper V.

We conclude this chapter by commenting on the accuracy of ab-initio calculated intra-
and interlayer exciton energies in multilayer vdWHs. Specifically we have calculated the
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lowest K-K and Γ-K intra- and interlayer exciton energies for all six heterobilayer com-
binations that can be made from: MoS2, MoSe2, WS2, and WSe2 and we compare this
to a large library of experimental exciton energies from the literature. The detailed com-
parison and exact exciton energies are presented in paper V and here we will comment
more specifically on some details and on the general tendencies. The band line-up and
the possible degeneracy of the band edges at the K- and Γ-point are controlled by the
nature of the chalcogenide atom. The states at the K-point (for both the valence and
conduction bands) are purely located on the d-orbital of the metal atom and the states
at the valence Γ-point and the conduction K-Γ path is mixed metal d- and chalcogenide
p-orbital. We find that the chalcogenide atom fully determines the lattice constant of all
the monolayer structures meaning that MoS2/WS2 and MoSe2/WSe2 are lattice matched
and that the ionisation potential and electron affinity energies are determined by the
lattice constant, with little effect of the metal atom. This directly transfers into the
valence and conduction states at both the K- and Γ-points are close to degenerate for
the lattice matched bilayers and the governing parameters to determine the band line-up
can thus be understood from an ”indirect straining” effect by the chalcogenide atoms.
While the monolayers with sulfur atoms have close to the same ionisation potential for
the valence K- and Γ-point states the monolayers with selenide have an ionisation po-
tential for the Γ-point around 300 meV lower than that of the K-point. However, since
we find a larger effect of hybridisation at the Γ-point for systems with selenide and a
slightly larger (both intra- and interlayer) exciton binding energy for the Γ-K transition
for these systems, we find that several bilayers have close to degenerate intra- and in-
terlayer exciton energies, and thus are subject to the effect illustrated in fig. 4.5. In
addition to this, the mixed state at the Γ-point complicates the definition of the Γ-K
exciton for some bilayers, since what in experiments could possibly be classified as an
interlayer exciton has significant intralayer character and thus a larger exciton binding
energy. In paper V we thus compare both intra- and interlayer calculated Γ-K excitons
to the measured interlayer exciton energy for these systems (the difference in the calcu-
lations lies in the calculation of the exciton binding energy). This rationale is supported
by the fact that we for systems with degenerate intra- and interlayer Γ-K excitons find a
larger interlayer exciton energy than the reported value. The intralayer character of the
measured interlayer excitons cannot, however, fully explain the lower measured inter-
layer exciton energy. For the six TMD bilayers we find similar values for the dielectric
screening of the quasi-particle energies, the size of the interlayer hybridisation effects,
and a smaller effect of the charge transfer shift of the bands. The dielectric screening of
the quasi-particle energies takes values between 60 meV and 110 meV and we find it close
to independent of k-point index, with slightly larger effect on the conduction bands than
the valence bands. For the highest valence- and lowest conduction bands, the interlayer
hybridisation effect is closely confined to the valence bands around the Γ-point and the
conduction states between the K-Γ point, similar to the findings in the previous section,
with an effect up to 190 meV around the Γ-point. This effect is only found for bilayers
with close to degenerate states at the Γ-point. Interlayer charge transfer is found to shift
the states of the two layers relative to each other up around 70 meV.
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Without including the calculated effect of substrate and finite temperature effects,
we find 6 out of the 12 calculated intralayer exciton energies to agree within the experi-
mental uncertainty, with the discrepancy for the remaining intralayer excitons ranging
between -20 meV to +120 meV. We stress here that only 1/12 of the intralayer exciton
energies are calculated to have a lower energy than that of the average of the experi-
mentally measured exciton energies. For the interlayer exciton energies we calculate 2/6
exciton energies within the experimental measurements with the discrepancy for the re-
maining exciton states ranging between -50 to +250 meV. As discussed in chapter 3, all
calculations in this study are carried out at 0 K without electron-phonon coupling effects,
since this is not currently implemented in the GPAW code for many-body perturbation
theory methods. However, it has previously been shown that by including the Fan and
Debye-Waller self-energy corrections accounting for electron-phonon interactions, 0 K
phonons and finite temperature effects shifts down the A exciton energy of monolayer
MoS2 of about 90 meV [84] (from 0 K to 300 K). This is encouraging since it shows that
including calculated substrate and finite temperature effects, can redshift the exciton
energies up to 140 meV. The library of experimentally measured exciton energies, con-
tains measurements carried out in different environments (i.e. substrate, temperature,
etc). Thus, including substrate and finite temperature effects is not straightforward to
benchmark against the big ensemble of experimental data. We include substrate and
temperature effects effectively in our calculated energies by renormalising the calculated
exciton energies, by a combined factor, δ = 140 meV, that accounts for both substrate
and finite temperature effects corresponding to bulk hBN and a temperature of 300
K. In detail, denoting a calculated exciton energy Eexc we renormalise this energy to:
(Eexc − δ/2) ± δ/2. In words, we redshift all calcualted exciton energies by half of the
total effect of bulk substrate and room temperature effects and apply an uncertainty
of δ/2. From this, we find that 11/12 intralayer excitons and 3/6 interlayer excitons
agree with experimental observations, with a discrepancy of 20 meV for the remaining
intralayer exciton and discrepancies ranging from -50 to +180 meV for the remaining
interlayer excitons. This is a significant improvement of the agreement between calcu-
lated and experimentally measured energies and we stress only a small improvement of
the agreement is found by simply applying an uncertainty of δ/2 without redshifting the
calculated energies. We still find a significant overestimation of the calculated interlayer
exciton energy for the two lattice matched systems. The above calculations have been
performed for the (super)cells corresponding to a 5 degrees and 0 degrees relative twist-
angle for the lattice mismatched and lattice matched bilayers respectively. We therefore
expect to, on average, calculate a slightly smaller exciton energy for the lattice matched
systems, where the effect of degenerate intra- and interlayer exciton shown in fig. 4.5
is present. However, conversely we overestimate the interlayer exciton energy for the
two lattice matched systems and the discrepancy thus cannot be explained by the effect
of twist-angle. We also note here that previous many-body ab-initio calculations for
the exciton energies in lattice matched MoS2/WS2 results in even greater discrepancies
for the interlayer exciton energy of +330 meV [116] and +450 meV [28] respectively.
Both calculations are based on G0W0 quasi-particle energies and highlight the impor-
tance of correctly calculating the interlayer orbital hybridisation in these structures. In
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conclusion, we have shown that even by properly calculating the interlayer orbital hy-
bridisation in vdWHs and including the effect of finite temperature, twist-angle, and
substrate effects on the exciton energies, it is not possible to calculate interlayer exci-
ton energies in lattice matched few-layer vdWHs to within the experimental uncertainty.

The fact that the prediction of the interlayer exciton is less accurate is not surpris-
ing since this has a strong dependence on the vacuum level band line-up, which the
intralayer exciton energies does not depend on. The lower accuracy of the interlayer ex-
citon can thus most likely be described to an inaccuracy of the G0W0(Γ) description of
the electron affinity and ionisation potentials. The two lattice matched bilayers, in which
the ab-initio many-body calculations significantly overestimates the interlayer exciton
energy, are the only two of the considered bilayers that host both degenerate intra- and
interlayer exciton energies for two different transitions in the Brillouin zone, which are
themselves close to degenerate. One can hypothesise that this can lead to a hybridised
bi-exciton state, a 4-particle state, splitting the two interlayer excitons up and down in
energy similar to the hybridisation effect found around the valence Γ-point in the lattice
matched bilayers. This effect would shift down the interlayer exciton energy and could
potentially explain the discrepancy. It is, however, questionable if such a state would
have a strong enough oscillator strength to be measured by multiple independent exper-
iments. We note in passing that we find a better description of the interlayer exciton
energies based on G0W0Γ quasi-particle energies than on G0W0 quasi-particle energies.
Similar to the previous section all G0W0Γ calculations have been carried out based on
PBE eigenvalues and norm-conserving PAW setups.

Finally, it is important to underline the care that must be taken when comparing
exciton state energies between computational and experimental results, by commenting
on the specific case of MoS2/WSe2. For many years, the lowest lying interlayer exciton
energy was from experimental measurements reported to be around 1.55-1.60 eV [33, 22]
for an unknown transition in the Brillouin zone, while computational results, including
the results in this study, reported values almost 0.5 eV lower for the Γ-K transition.
Recently, an experimental study relieved this discrepancy by conducting a thorough
study on the nature of the different interlayer excitons in Mo2/WSe2 [63]. In this it was
shown, that there is in fact an interlayer exciton with an energy around 1.55 eV, however
this exciton arise from the K-K transition. The study also proved the existence of an
interlayer exciton with an energy around 1.05 eV, for the Γ-K transition. This example
excellently illustrates the care that must be taken when comparing computational results
to experimental data.



CHAPTER 5
The Computational 2D

Materials Database
In the remaining two chapters of this thesis we will change gears and look more into
materials discovery and applications. In this chapter the computational 2D materials
database (C2DB) will be presented which is the result of a big joint development in
the research group and which has been a significant part of this thesis (presented in
paper VI). Chapter 5.1 will briefly explain the overall ideas and governing workflow of
the developed database and in chapter 5.2 we will see an example of how the C2DB can
be used to aid the discovery of new materials design and applications by considering
photovoltaic applications of 2D materials, which have received vast interest in recent
years [67, 16, 70]. Chapter 6 will look more into two new classes of materials studied in
this thesis and their (possible) applications. All materials and calculated properties are
freely accessible at: https://cmr.fysik.dtu.dk/c2db/c2db.html.

5.1 The C2DB
Currently there exist a range of open materials databases. This non-exhaustive list in-
cludes the Open Quantum Materials Databases (OQDM) [106], the Automatic Flow for
Materials Discovery [25] (AFLOW), Novel Materials Discovery [1] (NOMAD), and the
Inorganic Crystal Structure Database [2] (ICSD). While these databases contain mil-
lions of materials in 0, 1, 2, and 3 dimensions they are characterised by presenting basic
materials properties determined experimentally and/or materials properties calculated
mostly within the DFT formalism. This makes such databases ideal for comparison of
calculated properties between codes, it gives a range of commonly known benchmark
systems, and allows statistical and machine learning algorithms to be applied to deter-
mine correlations between materials properties [52, 109, 40, 30, 91]. To supplement
these databases the C2DB is based on consistency and accuracy. The goal is to supply a
database of materials properties calculated with a consistent use of convergence param-
eters and with many-body methods such as the G0W0 and BSE methods for obtaining
the most accurate materials properties possible computationally. This is done by devel-
oping a well-defined workflow which is applied to all materials in the database. At the
time of publication the database contained close to 1500 2D materials, which shows that
a significant amount of computational power has been devoted to this project. At the
time of writing the number has grown to around 2500. In this context it is important

https://cmr.fysik.dtu.dk/c2db/c2db.html
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to mention a relatively recent study by Mounet et al. [86], which also presents calcu-
lated materials properties for 2D materials. A main difference between the C2DB and
the work by Mounet et al. is that while the materials in the C2DB are constructed by
substituting elements of known synthesised 2D materials, the materials in Mounet et
al. are found by determining possible exfoliable monolayers of layered bulk materials
(known as the top-down approach). In the following we will present the main parts of
the C2DB and in the next section we will see a direct application of the data in the
C2DB to predict new 2D materials as efficient light absorbers for photovoltaic devices.

The main result of the C2DB is the development of a robust workflow to calculate
the thermodynamic and dynamic stability together with electronic, magnetic, optical
properties, and other materials properties of 2D materials. The workflow is presented in
fig. 5.1. In general, the workflow takes an atomic structure (in this case a 2D material)
as input and generates a set of atomic properties as output. While the computational
details and full list of results can be found in the paper we will here go through some
of the main characteristics of the C2DB, give a brief overview of the initialisation of the
workflow, and give an example of its use related to the results obtained in chapters 3
and 4 about electronic and optical properties.

To generate the database of computationally calculated properties of 2D materials,
three ingredients are needed: a set of atomic structures, a robust workflow, and a set
of parameters to be applied in each step in the workflow (i.e. stability assessment,
convergence parameters etc.). The atomic structures are constructed by starting from
the atomic structures of experimentally synthesised materials. The symmetry groups
and stoichiometry of a structure defines what we denote as prototypes. At the time
of publication, from a set of 55 experimentally known synthesised 2D materials, this
generated 32 different prototypes. Within each prototype new candidate materials are
then generated by combinatorial lattice decoration i.e. substituting each element in the
structure with other elements with similar electronic configuration and/or properties.
This initially generated a set of over 1900 materials that was run through the workflow
in the first version of the database. As mentioned above, one of the main strengths of
the C2DB is the accuracy and reliability of the presented data. The first step of the
workflow is therefore to assess the stability of the 2D materials. This is done based
on two measures: the thermodynamic and dynamic stability. The thermodynamic sta-
bility is determined by calculating the energy above convex hull of the material where
the convex hull is constructed from all materials in the OQMD database [106]. This
ensures that not only the heat of formation favours a crystal lattice, but also that no
other competing phase is energetically more favourable. Secondly the dynamic stability,
i.e. the materials urge to distort into a different structure with another space group,
is calculated by calculating the phonon eigenvalues at the Γ-point. The parameters to
assess the stability are determined by benchmarking the calculated stability measures
for the experimentally known synthesised 2D materials. At the time of publication this
generated close to 200 new candidate 2D materials that were determined to be highly
stable and therefore possibly synthesisable. The full workflow has been applied for these
materials including the majority of all considered materials, which are predicted to be
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Figure 5.1: Workflow for the Computational 2D Materials Database. This figure is
taken from the included paper VI.

possibly stable. If a material is determined to be unstable the workflow is terminated
after the stability assessment.

The remaining part of the workflow calculates a variety of properties (as can be de-
ducted from fig. 5.1 and the online webpage) including PBE and G0W0 band structures
and BSE absorption spectra which were discussed in the previous chapters. To give an
example of the application of the C2DB we will here briefly discuss one of the main
results of the C2DB which relates to the methods and results from chapter 3 and chap-
ter 4. In fig. 5.2 (left) is shown the G0W0 quasi-particle band gap plotted against the
electronic band gap calculated at the level of DFT with a set of exchange-correlation
functionals: The PBE, the HSE, and the GLLBSC [71] functional. This is shown for
all materials in the C2DB that are semiconducting, predicted to be stable, and contain
less than 7 atoms in the unit cell. Here we see illustrated what we have continuously
stated throughout chapters 3 and 4, and was argued as the main reason for applying
many-body methods such as G0W0 and BSE: the DFT and hybrid methods in general
underestimates the electronic band gap. This is especially pronounced for the PBE func-
tional, which on average almost underestimates the electronic band gap by a factor of 2.
The hybrid functional, HSE, significantly improves upon this, but still underestimates
the band gap by almost 30% on average. Band gaps calculated with GLLBSC on aver-
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age get values very close to the G0W0 quasi-particle band gap, however it is important
to specify that there is still a considerable standard deviation involved with this descrip-
tion. The GLLBSC method invokes the derivative discontinuity to correct the size of
the electronic band gap as discussed in chapter 2 and it is therefore not surprising that
this on average provides a good description of the electronic band gap. In fig. 5.2 (right)
we see that the center of the electronic band gap (with respect to the vacuum energy)
is poorly described with especially the GLLBSC functional. This means that While
the GLLBSC functional gives a good description of the electronic band gap it is not
reliable to use this method in combination with for instance the QEH model or simply
applying the Anderson model for calculating band line-ups and electronic properties of
vdWHs. On the other hand, the PBE functional gives a good description of the band
gap center. Interestingly, this means that an adequate, and computationally feasible,
description of the band line-up of a vdWH can be obtained by applying the PBE band
gap center (and band edges) symmetrically opened to the GLLBSC electronic band gap.
This idea is explored in appendix E, where it is shown to significantly improve upon the
description of the position of the band edges relative to the vacuum energy compared
to G0W0 ionisation potentials and electron affinity energies. This can potentially be
used in combination with the QEH screening and hybridisation flowchart presented in
chapter 4, to achieve accurate band structure energies for vdWHs.

Figure 5.2: Left: electronic band gap calculated with the G0W0 approximation and at
the DFT level with three different exchange-correlation functionals: PBE,
HSE, and GLLBSC. Right: comparison of the band gap center relative
to the vacuum energy between the same methods as the plot to the right.
This figure is taken from the included paper VI.



5.2 Photovoltaic Potential of Novel 2D Semiconductors 95

5.2 Photovoltaic Potential of Novel 2D
Semiconductors

In this section we will show an example of how the data in the C2DB can effectively
be used to predict new materials properties and present a scheme to predict the photo-
voltaic potential of the 2D materials in the C2DB. It is important to stress that while
the work on this has taken up a significant amount of time during the study, the results
and manuscript are not ready for manuscript submission and have therefore not been
included in this thesis. We will therefore not discuss the results of this study in this
section, but merely go through the main ideas and the governing theory and principles
for the photovoltaic potential of a 2D material.

Because of the strong-light matter interaction in 2D materials it is rather obvious,
and not new, to explore the optical properties of 2D materials in terms of solar cell
applications. However, previous studies have been hindered by the significant computa-
tional costs of accurately calculating the absorbance ab-intio of 2D materials due to the
importance of including many-body effects. Consequently previous large-scale studies
have relied on a simple picture, where the absorbance is assumed to be a step function
above the electronic band gap as seen in for instance [77]. It is needless to say that
this poor approximation leads to non-trustworthy and suspicious results. With the large
number of BSE and RPA absorption spectra calculated and accessible in the C2DB it is
now possible to carry out an accurate large-scale study of the photovoltaic potential of
a large number of 2D materials and utilise the stability prediction in C2DB to estimate
the likelyhood that the most interesting 2D materials can be experimentally synthesised.
This study can pinpoint experimentalists to a short list of potential superior atomically
thin solar cells.

We will here outline the method to assess the photovoltaic potential of an atomically
thin material as presented by Bernardi et al. [7] and see that this is quantified by
the Power Conversion Efficiency (PCE). To generate power, a solar cell relies on the
photo-excitation of electrons, and subsequently extracting the excited electrons (and
left behind holes) at different potentials. This generates a power given by the product
of the current generated by the electrons and holes and the potential difference between
the electron and hole states. The generated electron-hole current is directly related to
the convolution of the absorbance of the 2D material (Abs(ω)) with the photon-flux of
the incident light (Jph(ω)):

Jabs = e
∫ ∞

0
Abs(ω)Jph(ω)dω. (5.1)

After excitation, the electrons and holes have to be extracted from the 2D material in a
transport process that is generally faster than the characteristic electron-hole recombi-
nation time. The loss of electron-hole current due to recombination effects is known as
the Internal Quantum Efficiency (IQE) and evidently the short-circuit voltage is given
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by:
Jsc = Jabs × IQE. (5.2)

While the IQE can differ significantly from system to system it usually takes values
between 0.60-0.80. The open-circuit voltage, i.e. the difference in potential between the
electron and hole states, is in equilibrium given by the lowest excitation energy. For
a 2D material this is given by the quasi-particle band gap minus the exciton binding
energy: eVoc = Eelec

gap − EB, see for instance fig. 5.3 (left) where the separation of
a photo-generated exciton to an ideal electron- and hole-acceptor is shown. This is
true in equilibrium, however the excited state is inherently a non-equilibrium state.
Since the electron and hole distribution under illumination differs from the Fermi-Dirac
distribution, the valence and conduction bands are no longer in thermal equilibrium with
each other and they no longer share the same Fermi level. This results in a reduction
of the open-circuit voltage (formally known as the difference between the quasi-Fermi-
levels) and has been shown to be of the order of 0.2-0.3 eV. We will label the reduction
in open-circuit voltage ∆VQFL, due to the difference in quasi-Fermi-levels between the
conduction and valence bands. Finally there are losses in connection with especially the
contact at the interface between the 2D material and the electron/hole-acceptors, but
also general Ohmic losses related to the finite conductance of the 2D material and the
acceptor material. Such Ohmic resistances are very system specific and it is common to
model this by a constant ”fill factor” (FF ). Given the large number of absorption spectra
in the C2DB (both at the level of the RPA and the BSE), we now have all quantities that
go into the calculation of the generated power from the photon absorption. To relate
the calculated powers to literature it is standard to normalise the calculated power to
the total integrated incident power (Ptot):

Ptot =
∫ ∞

0
h̄ωJph(ω)dω, (5.3)

and from this define the Power Conversion Efficiency of the solar cell as:

PCE = FF × IQE × (Voc − ∆VQFL) × Jabs

Ptot
. (5.4)

Some of the most well-known solar cells such as GaAs and Si reach PCE values close to
30% and 20 % respectively, while lower values around 1 % are found in previous accurate
calculations of the PCE of 2D materials [7]. However, it is important to bear in mind
that while the 2D materials are atomically thin the above stated PCE values for GaAs
and Si are for µm thick bulk crystals and that the PCE per unit thickness is orders
of magnitude larger for 2D materials than for GaAs and Si. This makes 2D materials
interesting for thin-film solar cell applications where they outperform state-of-the-art
bulk solar cells.

The highest possible achieveable PCE is limited by the Schockley-Queisser limit
(SQL) which is an open-circuit voltage dependent theoretical upper limit for the max-
imum possible PCE taking all losses into account [112]. The maximum possible PCE
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is close to 33 % for a single p-n junction at around 1.1 eV, i.e. close to the PCE of
GaAs. This underlines the larger potential for 2D materials for atomically thin solar
cell application than for conventional bulk solar cells. It is possible to even overcome
the SQL with 2D heterointerfaces, so-called tandem devices. The idea is sketched in
fig. 5.3 (right) where two 2D materials are combined into a vdWH. The advantage of
this setup is that, if the two 2D materials have different optical band gaps it is possible
to efficiently absorb light at a broader frequency range by combining a small band gap
semiconductor with a large band gap semiconductor. On the other hand the open-circuit
voltage for such systems will in general be lower due to the type-II band line-up of this
system. Since the C2DB also includes G0W0 electron ionisation and electron affinity
values for most materials where the BSE absorption spectrum is calculated, it is possi-
ble to simply obtain a good guess at the band line-up using the Anderson rule [5]. A
more accurate guess could also be obtained by making a qualified guess of the dielectric
screening of the band edges from the knowledge of the RPA static polarisability of the
two layers, which however still does not account for interlayer hybridisation effects.

Ideal	h+	acceptor	

(a)	Excitonic	single-junction	solar	cell	 (b)	Type-II	heterojunction	solar	cell	
								(excitons	and	charge	collectors	not	indicated)	

eVoc

EB

eVoc

(*)E12
Ideal	e-	acceptor	

Thermalization	

Thermalization	

(*)E12 > EB − EB,12

Figure 5.3: Left: illustration of an excitonic photon absorber with ideal electron- and
hole acceptors. The open-circuit voltage (Voc) is defined as the electronic
band gap minus the exciton binding energy. Right: illustration of bilayer
tandem photon-absorber setup with a type-II band line-up in which the
open-circuit voltage is defined as the interlayer band gap. * the energy
requirement for the sketched tandem solar cell to work efficiently.

While the discussion has been based on excitonic solar cells, it is also possible to
utilise the vast number of RPA absorption spectra for materials where the BSE ab-
sorption spectra have not been calculated. Since the RPA absorption spectra has been
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calculated based on the PBE Kohn-Sham electronic band gap, and since the GLLBSC
electronic band gap is calculated for all semiconductors, with the knowledge from fig.
5.2 it would be straightforward to shift the RPA absorption spectra to the GLLBSC
band gap and estimate the exciton binding energy from the 2D exciton hydrogen model
including environmental screening explained in section 3.8, by estimating κ through the
static polarisability of the monolayers.

Finally it is worth commenting on the dissociation of the electron-hole pair for gen-
erating the electron-hole current. In principle the electron and hole dissociability and
therefore the charge separability can be estimated from the electron and hole effective
masses calculated in the C2DB. However, while the effective electron masses for a 2D
material is only defined in-plane, the separation of the electron-hole pair is taking place
in the out-of-plane direction. It is therefore immediately not obvious how to obtain
a valid estimate of the electron-hole dissociation to the electron and hole acceptors.
Furthermore, the efficiency of the solar cell will also be affected by second order recom-
bination effects, such as Auger recombinations[64]. These effects will slightly lower the
generated efficiency and will have to be included in a more detailed description for the
most promising solar cell candidates.



CHAPTER 6
2D Janus Monolayers and
Self-Intercalated Bilayers

Until now we have mainly studied the the electronic and optical properties of 2D ma-
terials and vdWHs, with particular interest in investigating the physical mechanisms of
manipulation of excited states via dielectric screening and interlayer orbital hybridisa-
tion effects. In this chapter we will take a step back and study how the electronic and
optical properties can be tuned in a more general perspective with a broader range of
applications in mind. The first part of the chapter will be devoted to a detailed study
that has been carried out of a new class of 2D monolayers, 2D Janus structures, which
to a large degree resemble the well-known class of 2D TMDs monolayers, however as
we will see, the lack of out-of-plane mirror symmetry in the Janus class monolayers,
leads to interesting intrinsic properties, that can be used to manipulate electronic and
optical properties of vdWHs and 2D/bulk interfaces. In the second part of the chapter
we will turn our attention to a new class of materials, the self-intercalated 2D bilay-
ers, which opens up new pathways in low-dimensional materials science and offers new
methods for manipulation of the materials properties of vdWHs. We will show that the
self-intercalation process for a range of bilayer hosts is thermodynamically stable and
leads to the possibility of on/off-switching of a ferromagnetic phase and will discuss the
prospects of this new paradigm of vdWHs. In this chapter we will mainly discuss how
this affects the potential for the future of engineering the properties of vdWHs, and the
main experimental and computational details of this study can be found in paper X.

The results of this chapter on 2D Janus structures can be found in papers VII, VIII,
and IX. The first two sections will introduce the intrinsic out-of-plane dipole moment
in 2D Janus monolayers and outline the results of paper VII and IX which cover the
physics of 2D Janus monolayers at semiconductor-semiconductor and semiconductor-
metal interfaces. We will discuss some of the interesting features in a different light
than in the publications, especially the nature of the intrinsic dipole and the effect of
the environment on the magnitude of the intrinsic dipole moment. Section 6.3 outlines
the systematic screening study presented in paper VIII, where we will discuss in greater
detail the origin of the intrinsic dipole and the Rashba splitting in 2D Janus monolayers.
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6.1 Intrinsic Out-of-Plane Dipole Moment of
2D Janus Monolayers

The name Janus structure has its origin from the Roman god Janus, who has a two-
faced head: one face looking to the past and one face looking to the future. While the
two faces look very much alike, small details differ making them inherently different.
This is also very true for the structures we are about to study. A 2D Janus monolayer
is in general terms a 2D monolayer that lacks mirror symmetry in the out-of-plane
direction. Examples of such structures are already known and well-studied, one example
is phosphorene, however here we will study a new class the Janus monolayers, namely
that of TMD and pnictogen based Janus structures (simply to be denoted 2D Janus
monolayers from now). As illustrated in fig. 6.1 where MoSSe is shown as example,
2D Janus monolayers are the well-known 2D TMD monolayers where all chalcogenide
(and in practice also halogen) atoms on one side of the monolayer are substituted by
a different chalcogenide (or halogen) atom. Similar to the TMD class monolayers are
denoted MX2 structures we will denote Janus class 2D materials by MXY. We stress
that this includes combinations of halogen atoms on one side and chalcogenide atoms
on the other side and transition metals or pnictogens as the metal atom. For the 2D
monolayer shown in fig. 6.1, the monolayer consists of molybdenum atoms in the center
sandwiched between sulfur atoms on one side and selenium atoms on the other side.
One remarkable aspect about these 2D Janus monolayers are that both MoSSe [79, 128]
(H-phase) and BiTeI [38] (T-phase) have been experimentally synthesised and therefore
shown to exist as a stable monolayer. This fact encourages us to study this new class of
2D Janus monolayers in greater detail.

As we will see, just like MoS2 and MoSe2 share a great resemblance in terms of
both electronic and optical properties, so do MoSSe with both of these monolayers,
but yet the lack of out-of-plane mirror symmetry leads to some fascinating properties.
One is illustrated in fig. 6.2 (left) where the in-plane averaged electrostatic potential
is shown for MoSSe in the out-of-plane direction. A unique definition of the vacuum
level energy reference is theoretically possible in 2D, in contrary to bulk structures,

Figure 6.1: Atomic plot of one of the first experimentally synthesised 2D monolayer
Janus structures: monolayer MoSSe .
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due to the non-periodicity in the out-of-plane direction in 2D, and a finite change in
electrostatic potential across the layer is therefore well-defined. Because of the difference
in electronegativity between the sulfur and selenium atoms, there is a charge transfer
across the monolayer (compared to the neutral charge of the free atoms), which sets
up an intrinsic dipole moment of the 2D monolayer in the out-of-plane direction. This
leads to the difference in electrostatic potential across the monolayer shown in fig. 6.2
of about ∆Φ = 0.75 eV. At this point we hypothesise that the difference in reference
potential energy on either side could potentially be used to control and/or manipulate
the electronic properties of other structures on either side of the Janus monolayer with
respect to each other. An example of how this could look is hypothesised in fig. 6.2
(right) where an example of how the band line-up of a stack of 4 layers of the same Janus
2D monolayer is illustrated. Because of the shift of electrostatic potential energy across
each Janus monolayer the band extrema could possibly have a staggered band line-up
with a spontaneous dissociation of excitons. In the following we will show that this is
indeed the case.
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Figure 6.2: Left: in-plane averaged electrostatic potential of 2D H-phase monolayer
MoSSe shown in the out-of-plane direction (variable z). The position of
the conduction band minimum (CBM) and valence band maximum (VBM)
relative to the vacuum potential energy is shown. Right: sketch of band
alignment of a multilayer Janus structure. The energetically favourable
exciton dissociation is shown as discussed in relation to fig. 6.3. The
figures are taken from included papers VII and IX.

To study this hypothesis we calculate the electronic band structure for monolayer
MoSSe and stacks of MoSSe of up to 6 layers of MoSSe. We do this at the level of
DFT (with the PBE functional) since it is well-known that the qualitative features are
well described by DFT for the TMD structures. By calculation we find, as shown in
the band structure plot in paper VII by studying the effect on the K-point (where we
know the states have little-to-no influence of the interlayer orbital hybridisation), that
the otherwise degenerate states at the K-point, are shifted apart with an energy close to
∆Φ. This is true up to 3 layers after which the band extrema are pinned to the Fermi
surface and the vdWH enters a metallic state. This result confirms that the intrinsic out-
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of-plane dipole moment remains rather unaltered in (at least semiconducting) vdWHs
and indeed can be used to manipulate the electronic properties on either side of the
Janus structures relative to each other as depicted in fig. 6.2.

When the MoSSe multilayer structure has a thickness of more than 3 layers it transists
from a semiconducting to metallic regime. This transition depends on the vacuum level
shift across one monolayer, ∆Φ, and the band gap, EG, of one freestanding monolayer.
The splitting of the bands in neighbouring layers corresponds to ∆Φ as long as the
stack remains in the semiconducting state, with only a minor cancellation of the dipole
moment. We will return to this small cancellation of the intrinsic dipole upon stacking
later. Therefore, for any Janus structure, the number of layers for the semiconductor to
metal transition can be estimated as:

NIM = EG

∆Φ
+ 1. (6.1)

With the PBE band gap of 1.54 eV this gives N = 3 layers and with the calculated G0W0
band gap of 2.33 eV this yields N = 4 layers. For any van der Waals homostructure this
onset can be estimated from eq. 6.1. We now turn our attention to the metallic regime,
i.e. for the case of multilayer MoSSe for N ≥ 4 layers. After the onset of the metallic
state, the additional dipole moment added when more layers are stacked, will be coun-
teracted by a second oppositely directed dipole moment setup by a charge transfer from
the bottom to the top layer (or vice versa). This oppositely directed dipole have the
effect that the change in electrostatic potential across the multilayer structure remains
constant independent of the number of layers. The metallic multilayer structure with
build-up charge densities at the bottom and top layer can be modelled as a capacitor
system with the internal MoSSe layers giving an effective dielectric environment. Re-
quiring that the build-up charge densities has to counteract the intrinsic dipole moment
from the MoSSe layers (after the onset of the metallic state), this can from standard
electrostatics easily be shown to be given by:

σ(N) = ϵ⊥∆Φ
d

(
1 − NIM

N

)
, (6.2)

where σ is the charge density at the top and bottom layers, ϵ⊥ is approximated as the
bulk dielectric constant of bulk MoSSe (in the out-of-plane direction) which we calcu-
lated within the RPA, d is the MoSSe interlayer distance, and N is the number of layers
after the onset of the metallic state. The highest charge density is achieved for N → ∞
for which we estimate: σ(N → ∞) = 2.3 × 1013 e/cm2. The lowest value is found for
N = 5 for which we get σ(N = 5) = 5 × 1012 e/cm2. This makes metallic multilayer
Janus structures intrinsic pn-junctions, where the charge densities can effectively be con-
trolled solely by the number of layers without any external bias voltage, applied strain
etc.

After having studied the basic electronic properties relating to the intrinsic dipole
moment of Janus structures, we now return to study the exciton dissociation hypothe-
sised in fig. 6.2. For this to happen, two aspects have to be fulfilled: first, it has to
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Figure 6.3: Band offset between the two middle layers of mulitlayer MoSSe (black,
∆Eband) and difference in intra- and interlayer exciton binding energy
(green, ∆EB) as a function of the number of layers. On the top x-axis
is shown the calculated intrinsic electric field strength. The inset shows
the definition of ∆Eband and the red dashed line shows that exciton dis-
sociation is possible for less than around 17 layers for multilayer MoSSe.
This figure is taken from included paper VII.

be energetically favourable for the electrons and holes to dissociate to the edge-layers
of the multilayer structures. Second, the dissociation rate of excitons in the multilayer
structure should be higher than the electron-hole recombination rate. As we have seen
in our study of exciton binding energies in chapter 3 and 4, intralayer excitons gener-
ally have a higher exciton binding energy than interlayer excitons, due to the spatially
larger distance between the electron and hole for the latter. This means, if the VBM
and CBM are degenerate for neighbouring layers, such an exciton dissociation is not
energetically favourable. However, as illustrated in fig. 6.2 (right), a staggered band
line-up is achieved in multilayer Janus homostructures. Since ∆Φ is much larger than
the difference between the intra- and interlayer binding energies (this difference typi-
cally being around 0.1 eV for TMDs), exciton dissociation is energetically favourable
even for bilayer MoSSe. As more layers are added to the MoSSe multilayer structure the
band offset (∆Eband) between the CBMs (and VBMs) for neighbouring layers becomes
smaller, which is evident by calculating the band structure of the multilayer system. To
evaluate up to how many layers in multilayer MoSSe exciton dissociation is energetically
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favourable, we calculate the band offset and the intra- and interlayer exciton binding
energies for multilayer MoSSe. The band offset can be evaluated directly from the DFT
band structure calculations. The intra- and interlayer exciton binding energies are calcu-
lated by solving a Mott-Wannier equation where the screened electron-hole interaction
is calculated by the QEH method (eq. 3.64). The results are shown in fig. 6.3 where we
show the band offset (black) and the difference in intra- and interlayer exciton binding
energy (green, ∆EB) for the middle layer for multilayer MoSSe. While ∆EB stays close
to constant independent of the number of layers ∆Eband decreases rapidly. From this we
can conclude that for multilayer MoSSe exciton dissociation is energetically favourable
up to around 17 layers. In general, exciton recombination rates for excitons in TMD
like structures are well below values around 1012 s−1. In fig. 6.3 we show the calculated
electric field strength in the multilayer structures (top x-label) in the out-of-plane direc-
tion, which is directly related to the electron and hole dissociation rate. We find that
in the exciton dissociation regime the internal electric field strength exceeds 0.2 V/nm.
According to previous work for bulk MoS2 and MoSe2, the out-of-plane dissociation rate
in these structures exceeds 1013 s−1 already at an internal field strength of 0.1 V/nm [93].
These two arguments combined show that exciton dissociation is energetically favourable
and takes place at time scales much faster than exciton recombination time scales.

6.2 Manipulation of Interface Band Line-Up
and Schottky-Barriers

After an introduction of the intrinsic dipole moment of mono- and multilayer MoSSe,
we will now extend the scope and consider possible applications of 2D Janus monolayers
by studying the effect at semiconductor-metal heterointerfaces. At a semiconductor-
metal interface, the Fermi level of the metal and the semiconductor will have to align
to reach an equilibrium state. This will force the valence and conduction bands of the
semiconductor to bend in the interface region, creating an extra tunneling barrier for
electron transport across the interface known as the Schottky barrier height (SBH). The
SBH is a well-known and well-studied problem in relation to many applications such as
tunneling diodes and transistors, since it provides an additional electrical resistance in
the internal electrical circuits. Several methods for reducing the effect of band bending
are used, for instance, applying a bias voltage or insertion of single atoms to reduce the
overall SBH. While the line-up of the VBM and CBM with respect to the common Fermi
level at the interface, is a complicated process involving charge transfer and interface
dipoles, the intrinsic properties of the Janus monolayers open new possibilities to alter
the relative energy between the band edges of the semiconductor and the position of the
Fermi level in the metal. We will show it is possible to change the reference vacuum
energy of the semiconductor and the metal relative to each other at the interface, by
insertion of 2D Janus monolayers, and thus to manipulate the SBH at semiconductor-
metal interfaces.
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It is important to note that the SBH is not uniquely defined [58]. Here we will define
the SBH as the energy difference between the position of the Fermi level and the energy
of the CBM of the semiconducting monolayer within a DFT description. We stress, as
discussed below, that the SBH does not define the actual tunneling barrier for electron
(and hole) transport, but gives the energy gain after electron (or hole) transport in equi-
librium and thus affects the tunneling rate.

The 2D Janus monolayers are possible candidates to achieve this due to their atom-
ically thin nature and natural shift of the electrostatic potential energy over sub-nm
distances. The desired reduction of the distance between the CBM of the semiconductor
and the Fermi level at the interface can be achieved by inserting a 2D Janus monolayer
between the semiconductor and the metal. To prove this, we set out to study the SBH
at two interfaces: at the interface between 2D bilayer H-MoS2/T-MoS2 (in the H- and
T-phase respectively) and at the interface between 2D monolayer H-MoS2 and a bulk
gold (111) surface. All calculations are performed with the PBE functional due to the
large number of atoms required to represent the interfaces. If we first consider 2D bi-
layer H-MoS2/T-MoS2 we calculate the band structure of bilayer H-MoS2/T-MoS2 with
and without MoSSe inserted between the two layers. In both calculations, H-MoS2 and
T-MoS2 are strained to match the lattice constant of H-MoSSe. In fig. 6.4 (left) the cal-
culated band structure of bilayer H-MoS2/T-MoS2 is illustrated with the orbital weight
of each state projected on to the H-MoS2 (T-MoS2) layer is shown in blue (red). We
find that the CBM located on H-MoS2 is located about 0.7 eV above the common Fermi
level. To compare, in figure 6.4 (right) the calculated band structure with H-MoSSe
sandwiched between the two layers is shown, where the orbital weight of each state
projected onto H-MoSSe is shown in black. As shown above, the shift in electrostatic
potential energy across freestanding monolayer H-MoSSe is about 0.76 eV. This is there-
fore the maximum reduction of the SBH we can expect. After insertion of the Janus
monolayer the CBM on H-MoS2 is pinned at the Fermi surface showing that little to no
cancellation of the intrinsic dipole moment of H-MoSSe takes place. We conclude it is
therefore possible to use 2D Janus structures as a reliable accurate tuning of SBH at 2D
semiconductor-metal interfaces.

The fact that the intrinsic out-of-plane dipole moment of 2D Janus monolayers re-
mains close to unchanged upon insertion in (metallic) vdWHs is promising, however due
to the interlayer distances being characterised by van der Waals bonds, questions can be
asked on how this fact transfers to interfaces between 2D semiconductors and bulk metal-
lic systems such as Au or Pd, where interface interactions are characterised by covalent
bonds [35]. As shown in greater detail in paper IX we show that the intrinsic out-of-
plane dipole is indeed to a large extend unaltered at such bulk metal heterointerfaces by
studying a 5x5 supercell of H-MoS2 at an Au (111) surface, where the Au (111) surface
is modelled by 5 layers of Au atoms. Without a Janus monolayer the SBH is found to
be 0.65 eV. The insertion of H-MoSSe results in a reduction of the SBH of around 0.6 eV
and the intrinsic out-of-plane dipole moment of H-MoSSe is reduced about 20 % upon
insertion at the interface. Due to the well-known short range and complex nature of
the interface between H-MoS2 and bulk Au we take this reduction as an approximate
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Figure 6.4: Left: band structure of bilayer H-MoS2/T-MoS2. The orbital weight pro-
jected on to the H-MoS2 (T-MoS2) monolayer for each state is indicated by
blue (red). Faded color shows interlayer hybridized states. Right: Same
as left figure with H-MoSSe inserted between the two monolayers. The
orbital weight projected on to the H-MoSSe monolayer for each state is
shown in black. This figure is taken from included paper VIII.

upper bound of the reduction of the intrinsic dipole moment of 2D Janus structures at
complex semiconductor/metal interfaces. This fact is rather intriguing and the physical
understanding might not be straightforward. It can be beneficial to take a step back and
think about what this result tells us. The intrinsic dipole moment of the 2D is inherently
set up by a non-symmetric charge distribution across the monolayer. The separation of
positive and negative charge centers for the Janus monolayer arise from a difference in
electronegativity of the encapsulating atoms (i.e. S and Se in the case of MoSSe), how-
ever, as we will see in the next section the nature of the intrinsic dipole cannot be fully
understood simply from the difference in electronegativity of the encapsulating atoms.
When the 2D Janus monolayer is put in proximity of a dielectric screening media (2D
or bulk) we know from the previous chapters that the 2D monolayer is affected by both
interlayer dielectric screening, hybridisation, and charge transfer effects. To change the
intrinsic dipole moment of the Janus monolayer an external effect has to alter the asym-
metric charge distribution. The additional electron (and hole) charge residing on either
side of the central axis of the Janus monolayer can to some degree be regarded as lo-
cated at the S/Se atoms (in the case of MoSSe) in a Bader charge analysis and therefore
residing on orbitals confined to those atoms. To affect the intrinsic dipole moment of
the Janus monolayer, any external perturbation would have to affect the local potential
of those states, and change the relative potential between the orbitals on either side of
the Janus monolayer, to change the equilibrium assymmetric charge distribution. It is
maybe not too surprising that the dielectric screening itself does not alter the asymmet-
ric charge distribution since we know that the effect of dielectric screening on the band
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structure is close to constant for all bands and k-points. But it is not clear that the
orbital hybridisation between the halogen/chalcogenides atoms and the bulk interface
atoms does not affect this local potential and asymmetric distribution. Thus, the result
above indicates that the orbitals involved in the interlayer (orbital) bonding, i.e. the
orbitals around especially the Γ-point which have mixed contribution from d-orbitals
and s-orbitals of the transition metal and halogen/chalcogenide atoms respectively, do
not play a significant part in setting up the intrinsic out-of-plane dipole moment.

After showing that the intrinsic dipole moment of 2D Janus monolayers remains close
to unaltered, even at bulk metal interfaces, we now show that 2D Janus monolayers can
be used to not only manipulate the SBH at semiconductor-metal interfaces but also
control the excited states properties of semiconductor-semiconductor systems. We do
this by a similar approach to the one above in relation to SBHs. As we showed in
chapter 3 and 4, for 2D TMD homobilayers the CBM at the K-point is subject to no
interlayer hybridisation effects. We will now again utilise this fact to study the effect on
the optical properties of 2D TMD homobilayers after insertion of 2D Janus monolayers
between two monolayer semiconductors. To do this, we choose to study 2D bilayer H-
MoS2 and 2D bilayer H-MoS2/H-WS2, combined with a set of 2D Janus monolayers
with a broad range of intrinsic out-of-plane dipole moments. We then calculate the
energy splitting between the CBM of the two semiconductors after insertion of the
2D Janus monolayers and plot this as a function of the shift in electrostatic potential
energy across each freestanding 2D Janus monolayer in fig. 6.5. The definition of the
energy splitting is depicted in the inset. We find that the splitting of the two states
is linearly proportional to the intrinsic dipole moment of the freestanding 2D Janus
monolayer independent of the size of the dipole moment. This result shows that 2D
Janus monolayers can be used to control detailed electronic and optical properties of
semiconducting vdWHs, for instance the possibility to tune interlayer exciton energies
independently at semiconductor-semiconductor interfaces. This could expand the scope
of the use of vdWHs in the use in for instance (IR-)photodetectors discussed in the last
section of chapter 3, where it could potentially be used to tune the energy range of the
photodetector or for tandem solar cell devices discussed in section 5.2.

6.3 Electronic and Optical Properties of 2D
Janus Monolayers

In the previous two sections we studied monolayer MoSSe and multilayer stacks of MoSSe
in detail and showed the effect of the intrinsic out-of-plane dipole at semiconducting
and metallic interfaces. Since the properties studied in the previous chapter have been
specifically related to a few 2D Janus monolayers this section will be devoted to and
present a larger study of a wide range of Janus 2D monolayers to broaden the spectrum
of predicted stable 2D Janus structures and therefore enlarge the spectrum of possible
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Figure 6.5: Energy split of degenerate band edge states (∆ϵ) of semiconductor-
semiconductor homobilayers upon insertion of a 2D Janus monolayer be-
tween the two semiconductors plotted against the shift in electrostatic po-
tential energy across the freestanding 2D Janus monolayer (∆Evac). Differ-
ent semiconductor bilayers and Janus materials are combined as explained
in the main text. The dashed line has slope one. This figure is modified
from included paper VIII.

applications.
Inspired by the experimental synthesis of MoSSe [79, 128] (H-phase) and BiTeI [38]

(T-phase) we set out to study structures in the H- and T-phase containing a mix of
a selection of transition metals, the pnictogens, the halogens, and the chalcogenides.
Specifically we study structures with transition metals as the central atom in combina-
tion with either pnictogens as the side atoms or a mix of halogens and chalcogenides as
the side atoms. Furthermore we study structures with pnictogens as the central metal
atom and a mix of halogens and chalcogenides as the side atoms. The full set of 216
structures can be depicted from the details and figures in paper VIII. To quantify the
thermodynamic stability we calculate the energy above convex hull which, as discussed
previously, is a measure of the thermodynamic stability of the structure. From the
C2DB we know that a 2D monolayer can be expected to be thermodynamically stable if
the energy above convex hull is smaller than around 0.1 eV/atom [49]. Dynamical sta-
bility is determined from analysing the imaginary eigenvalues of the phonon spectrum.
We will not go through the details of the screening studies since a comprehensive study
can be found in paper VIII, but briefly summarise the results and instead here focus
on the peculiar nature of the intrinsic out-of-plane dipole moment and the Rashba effect.

For the computational screening study we first note that the experimentally syn-
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thesised monolayers, MoSSe and BiTeI, are lying at or just below the convex hull and
thus predicted to be stable. In general we find group VI and VII transition metals in
combination with chalgonenides (H-phase), group IV transition metals in combination
with halogens (H-phase), group IV transition metals in combinations with chalcogens
(T-phase), and all combinations with a pnictogen atom as the central metal atom in the
T-phase are predicted thermodynamically stable. This includes the two experimentally
synthesised monolayers. In addition to this, with few exceptions, all thermodynamically
stable monolayers are found dynamically stable. In total we find 93 stable materials,
of which 70 are semiconducting. Among the 23 metallic structure 7 are predicted to
be in a ferromagnetic phase. This shows great promise for more 2D Janus monolayer
to be experimentally synthesised and encourage further study and classification of the
properties of 2D Janus monolayer structures.

For all stable monolayers we have calculated a broad range of electronic and opti-
cal properties including, PBE, HSE, and GW band structures and band gaps, effective
masses, out-of-plane dipole moments, RPA and BSE absorption spectra, exciton binding
energies, Rashba splitting parameters, etc. The calculated properties follows the work-
flow outlined in chapter 5. A large part of this data is presented in the data tables of
paper VIII and is also available at the C2DB. The electronic and optical properties of
the Janus class 2D materials qualitatively resemble that of the well-known TMD class
of 2D monolayers, with both direct (at the K-point for most H-phase monolayers) and
indirect electronic and optical band gaps, (G0W0) electronic band gaps in the range of
0.7-2.9 eV, exciton binding energies between around 0.4-1.1 eV, and for most monolay-
ers a significant redshift of some of the features in the absorption spectrum comparing
the absorption spectra calculated at the RPA and BSE level. In addition to this, the
2D Janus class monolayers possess out-of-plane shifts of the vacuum level potential up
to about 1.7 eV and for many structures significant Rashba-split states at the Γ-point.
We will return to the nature of the Rashba splitting at the end of this section. A very
interesting aspect of our study of the 2D Janus class materials is that it turns out that
the electronic properties of the Janus class 2D materials can be classified as presented in
paper VIII from the symmetry and chemical composition. The qualitative classification
can with very few exceptions predict if the monolayer is metallic or semiconducting and
for the latter case the location of the band extrema in the Brillouin zone only from the
chemical composition and phase of the monolayer. On one hand it is fascinating that
these properties can be found simply by knowing the M, X, and Y atoms. On the other
hand, at a very fundamental level all that make the properties of one material different
from another is the atomic composition and the symmetry group, which is exactly the
information contained in this classification.

As discussed above, the finite out-of-plane dipole moments of the Janus class 2D
materials can intuitively be understood from the difference in electronegativity between
the two side atoms (X and Y atoms). Here we look at this statement in greater detail by
plotting the change in electrostatic potential energy across the freestanding 2D Janus
monolayers against the difference in electronegativity between the X and Y atoms. This
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is shown in fig. 6.6. While a weak correlation can be seen significant deviations from this
trend are found. This is best illustrated by the H-phase structures MoSSe and WSSe.
The difference in electronegativity of sulfur and selenium is very small, but still these
monolayers possess a large out-of-plane dipole moment. Another example is H-phase
ZrSTe having a very small out-of-plane dipole moment even though the electronegativ-
ity of sulfur and tellurium is very different. This does not rule out that the out-of-plane
dipole moment depends on the difference in electronegativity between the X and Y atom
(conversely this difference is most likely the main driving force of this feature), however
it strongly suggests that the out-of-plane dipole moment is a property that cannot be
modelled by electrostatic models, but depends on more elaborate features such as inter-
atomic wave function overlaps.

One fascinating aspect of the 2D Janus monolayers is the strong Rashba splitting
of band edge states found for many of the monolayers studied above. It can be seen
in the electronic band structure as a symmetric splitting of the spin-up and spin-down
channels at either the VBM or CBM. We will here elaborate on the Rashba discussion
in paper VIII and discuss how the textbook picture of the Rashba splitting on one hand
gives an intuitive explanation for this effect, however that it is fundamentally lacking
as a quantitative correct description. Considering a 2D Janus monolayer as depicted
in fig. 6.1 the electrostatic potential changes rapidly close to the nuclei. This means
that the intrinsic electric field has small-range microscopic oscillations within the 2D
monolayer. Considering this problem from an electrostatic point of view, we know that
the electrostatic potential at either side of the 2D Janus monolayer differs by a size
proportional to the macroscopic out-of-plane dipole moment. This means, despite the
fact that the electric field varies at a microscopic length scale, the integral of the in-
plane averaged electric field over the full width of the 2D monolayer in the out-of-plane
direction has to equal the change in electrostatic potential across the layer, and therefore
has to be finite. We now (greatly) simplify the problem and approximate the electric
field in the out-of-plane direction as a constant, Ez. In this case, from the reference point
of an electron moving around inside the 2D monolayer, the electron will be subject to
a magnetic field of the size: B = 1

c2 E × v = 1
mc2 E × p, where v and p are the velocity

and (classical) momentum of the electron in the reference frame of the stationary 2D
monolayer. Similarly to the discussion of spin-orbit coupling effects in chapter 2, we will
use SI units to illustrate the dependence on the electron mass. Similar to the effect of
spin-orbit coupling, the spin of the electron will interact with the magnetic field, which
is given by projecting the effective magnetic field onto the Pauli spin matrices. If we
simply consider all other contributions to the potential energy to be contained in V , we
can write the Hamiltonian of the system, including the Rashba term, as:

H = − h̄2∇2

2m
+ V̂ + gsµB

2mc2 σ̂ · (E × p) (6.3)

where the first term is the kinetic energy, gs is the g-factor, µB is the Bohr magneton, and
σ̂ are the Pauli spin matrices. Assuming that the electric field only has a z component,
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Figure 6.6: Shift in vacuum level energy across the monolayer for the semiconduct-
ing 2D Janus monolayers found to be stable in paper IX for the H-phase
(MoSSe, black) and T-phase (BiTeI, orange) plotted against the difference
in electronegativity between the side atoms (X and Y). This figure is taken
from included paper IX.

eq. 6.3 can be written in matrix form as:

H =
[

− h̄2∇2

2m
+ V gsµBEz

2mc2 (∂x − i∂y)
gsµBEz

2mc2 (∂x + i∂y) − h̄2∇2

2m
+ V

]
. (6.4)

Assuming that the eigenstates are plane waves confined to the 2D monolayer and assum-
ing that the contribution from V̂ to the eigenenergies is V0, for an isotropic system, the
eigenvalues near the band edges can readily be found to yield:

ϵk = h̄2k2

2m
+ V0 ± gsµBEz

2mc2 k = h̄2k2

2m
+ V0 ± αRk. (6.5)

What we find is, that the spin of the electron coupling to the (constant) electric field in
the out-of-plane direction gives rise to a k-dependent term that splits the band edge state
in the two spin channels, giving two symmetrically split band edge states. αR = gsµBEz

2mc2

is known as the Rashba coupling parameter, which is linearly proportional to the electric
field strength and therefore controls the degree of splitting. It is useful to bring in an
alternative definition of the Rashba coupling parameter, which makes it easier to numer-
ically and experimentally quantify the coupling parameter. Defining kR as the distance
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in momentum space between the band edge extrema and the symmetry axis and ER as
the Rashba energy, namely the energy difference between the band edge extrema and
the point where the energy dispersion crosses the symmetry line, the coupling parame-
ter can be defined as αR = 2ER/kR. Computed values for ER and kR are given in the
data tables in the paper for all systems where Rashba-split states were observed. The
calculated values for ER and kR are in good agreement with previous experimentally
verified and numerically calculated values [20, 38] for similar TMD Janus structures.
Since αR is linear in the electric field, the Rashba energy should be proportional to the
change in electrostatic potential energy across the 2D Janus monolayer. This is plotted
in fig. 6.7 (left). At the same time, since the argument leading to the Hamiltonian
(eq. 6.3) is similar to the derivation of the spin-orbit corrections to the eigenvalues, it
is expected that the Rashba splitting will also correlate with the strength of the spin-
orbit coupling, which we here quantify as the difference between the electronic band gap
calculated with and without spin-orbit interaction included. This is plotted in fig. 6.7
(right). Following similar arguments to the derivation above, the textbook reasoning
and explanation mostly found in the literature behind the Rashba-split states are, that
the lack of out-of-plane mirror symmetry and strong spin-orbit coupling are the driving
parameters for strongly Rashba-split states [38]. However, as it is evident from fig. 6.7
we find no correlation between the Rashba energy and neither the shift in electrostatic
potential nor the strength of the spin-orbit coupling. This is a very important point, and
shows that the generally assumed picture of the physics of Rashba splitting, outlined by
the derivation above, does not give a satisfactory description of the physical mechanism.
This is most likely due to the microscopic details of the electrostatic field which are
ignored in the simplified model. In other words, it can be speculated, that the micro-
scopic features of the electric field in the region of space where the Rashba-split states
are confined to, are highly important, which are difficult to describe properly even with
numerical methods. Nevertheless, the high Rashba coupling parameters found here are
of great interest, since systems possessing Rashba-split states have caught the interest
in the spintronics community because these states allow for easy control of the spin-up
and spin-down channels separately.

To summarise we have studied the detailed properties of the new class of 2D Janus
monolayers including a classification of the stability and their electronic and optical prop-
erties, the Rashba splitting, and the intrinsic out-of-plane dipole moment, and shown
that the latter can be used to accurately manipulate SBHs at semiconductor-metal in-
terfaces, electronic and optical properties of vdWHs, and to form intrinsic pn-junction
in multilayer Janus structures. While only two 2D Janus monolayers have been synthe-
sised to this date, the large number of stable 2D Janus monolayers predicted in this
study opens a broad range of possible applications for this class of materials such as
intrinsic pn-junctions or tuning of the interlayer exciton energy in semiconducting type-
II vdWHs for photodetection. While the electronic properties of 2D monolayers and
vdWHs to a large degree right now can only be manipulated by ”external” parameters
such as straining the monolayers, applying a gate voltage, or by changing the atomic
composition by doping, such measures can in general introduce undesired side effects
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Figure 6.7: Left: Rashba energy against the shift in electrostatic potential energy
across the 2D monolayer for all stable structures possessing Rashba-split
band edges states for the H-phase (black) and T-phase (orange). Right:
Rashba energy against the difference in electronic band gap calculated with
and without spin-orbit coupling included in the ground state calculation
(normalized by band gap including spin-orbit coupling) for the same data
set as the left figure. The figures are taken from included paper IX.

that can be difficult to predict and control. In this aspect the class of atomically thin
Janus structures offers a clean method for electronic manipulation. It will be interesting
to what extent this will be utilised in applications in the upcoming years.

6.4 Self-Intercalation of Single Atoms in 2D
Bilayers

In the previous chapters we have studied how the electronic and optical properties of
vdWHs can be manipulated by the means of different techniques including; the nature
of the monolayers (the atomic species), the dielectric environment including substrate
screening or applied gate-voltage(s), the relative twist-angle between neighbouring mono-
layers, strains, doping, and as shown in the previous section, insertion of 2D Janus
monolayers at interfaces to alter the electrostatic potential. In this final section of the
final chapter we introduce a new paradigm of vdWH engineering, namely that of atomic
self-intercalation in vdWHs. In this section we will present a few of the main results
of the study in paper X and discuss the future prospects of this new class of quasi-2D
materials. The remaining technical details can be found in the publication.
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Due to the van der Waals nature of the interlayer interaction in vdWHs it is no
surprise that the interlayer gaps could potentially offer a platform for further engineering
of the vdWHs by insertion of single atoms, 1D chains, or molecules. However, it is by no
means obvious if this can be achieved experimentally or if such structures will be stable or
immediately disintegrate into other compounds. It is therefore rather surprising that not
only can such self-intercalated bilayers be synthesised by two of the most standard growth
methods, molecular beam epitaxy (MBE) and chemical vapor deposition (CVD), but
that self-intercalated bilayers are also found to be stable for a wide range of combinations
of atoms, as shown in this thesis. Furthermore, the concentration of self-intercalated
atoms can be accurately controlled. The fact that these structures can be grown by
both MBE and CVD enlarge the potential of the applications of these structures since
it opens the possibility for many labs to potentially grow self-intercalated vdWHs in the
future. In fig. 6.8 we show an example of self-intercalated bilayer Ta7S12 by a STEM
image where the Ta atoms are shown by purple and the S atoms are vaguely found in
the background in dark purple (it should be stressed the STEM image is obtained from
experimental collaborators of the author). The self-intercalated Ta atoms are highlighted
by yellow rings. The hexagonal lattice by the Ta in the pristine bilayer layers can be
easily spotted and the self-intercalated Ta atoms occupies the octahedral vacancies.

Figure 6.8: STEM image of self-intercalated bilayer Ta7S12. The self-intercalated Ta
atoms, occupying the octahedral sites are highlighted by yellow rings. The
shown example corresponds to an intercalation concentration of 33.3% (see
main text for definition). The scale bar has a length of 5 Å. This figure is
taken from included paper X.

The structure shown in fig 6.8 is an example of a self-intercalated bilayer with a 33.3%
self-intercalation concentration. The concentration degree is defined as the number of
occupied octahedral vacancies over the number of octahedral vacancies in the pristine
bilayer system. As mentioned, the self-intercalation concentration can be accurately
controlled in the growth process, for instance using MBE, which can be done by carefully
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controlling the ratio of Ta to S atoms. From this it is found that the concentration of
self-intercalated Ta atoms can be tuned over a range of: 0%, 25%, 33.3%, 50%, 66.6%,
and 100%. This gives a new spectrum of possibilities to explore the materials property
of the vdWH by not only inserting single atoms, but also precisely control the distance
between the self-intercalated atoms through the self-intercalation concentration.

By exploring this spectrum, both experimentally and through DFT calculations
we find an intriguing dependence of the magnetic phase of the vdWH on the self-
intercalation concentration for TaS2. While intrinsic bilayer TaS2 is non-magnetic and
remains non-magnetic for various self-intercalation concentrations it is found that the
most stable phase is a ferromagnetic phase at a self-intercalation concentration of 33.3%
as illustrated in fig 6.9. It therefore turns out that it is possible to control the magnetic
phase of the bilayer directly by controlling the self-intercalation concentration in the
growth process. We have performed DFT calculations to analyse this phase transition
and found that the ferromagnetic phase arises due to a significant charge transfer from
the self-intercalated Ta atoms to the native bilayer layers. This leaves an unpaired elec-
tron at the self-intercalated atom in a d-orbital crossing the Fermi surface. We speculate
that the exact self-intercalation concentration at which the phase transition takes place
is closely related to the orbital overlap between the self-intercalated atoms, which de-
termines the onset of when the charge transfer to the native bilayers is energetically
favourable together with the amount of the transfered charged.

To test the generality of the observed self-intercalation of bilayer TaS2 we have con-
ducted a substantial screening study calculating and analysing various self-intercalated
bilayers. We calculate the ground state of bilayer combinations of 16 different transition
metals with both S, Se, and Te. This is done for both the intrinsic bilayer and at 33.3%
and 66.6% self-intercalation concentrations (see paper X for all bilayer combinations).
For each system we calculate the energy above convex hull (in the same manner as in the
C2DB workflow). We stress here that the pristine bilayer has been included in the convex
hull for this analysis. From this analysis we find 14 different configurations that develop
ferromagnetism upon self-intercalation (i.e. we exclude systems which are already mag-
netic in the pristine bilayer structure). As illustrated in fig. 6.10 we predict 12 of these
self-intercalated bilayers to be thermodynamically stable. We also stress that 33.3% self-
intercalated Ta7S12 is found as one of these 12 systems. Of the 14 systems all structures
containing Ta, Nb, and Mo have been attempted to be grown. A successful growth was
achieved for the self-intercalated bilayer containing Ta and Nb, while self-intercalated
bilayers containing Mo disintegrated into other compounds immediately. We therefore
satisfactory found a one-to-one correspondence between the computationally predicted
stable self-intercalated bilayers and the successfully grown self-intercalated bilayers.

The fact that the self-intercalation process and development of ferromagnetism is
not limited to bilayer TaS2, but turns out to be a more general feature, opens new
possible pathways for more general manipulation of the properties of vdWHs using
self-intercalated single atoms. This window, and extend, of additional tuning of the
properties are now to be explored. Future studies should now be carried out to reveal
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Figure 6.9: Magnetic moment as a function of concentration of self-intercalated Ta
atoms for bilayer (purple) and bulk (blue) TaS2. The onset of the ferromag-
netic phase of self-intercalated bilayer TaS2 is found at an self-intercalation
concentration of 33.3%. This figure is taken from included paper X.

if other materials properties than the on/off-switching of a ferromagnetic phase can be
manipulated by this method. While the intercalation of foreign atoms have already been
achieved in bulk crystals there exist only few examples of this process in few-layer layered
materials [62, 121, 37, 118, 119]. It will be interesting to see the result of a systematic
study to test if the intercalation process in few-layer vdWHs is only limited to atoms
already present in the intrinsic bilayer and few others or how general the intercalation
process can be made. In either case, the (self-)intercalation of atoms in between the
layers in vdWHs offers yet another knot to turn to assemble vdWHs with unique new
materials properties and can be used in combination with the above mentioned methods
such as twist-angles, dielectric screening and gate-voltage, strain effects, Janus monolay-
ers etc. to expand the already almost infinite possible combinations of vdWHs.

At this point we are free to hypothesise what other possibilities the intercalated
bilayer structures opens up. The intercalated bilayer systems can to some extend be
considered as a quasi-2D system. On one hand, the system is still characterised by
the familiar 2D nature i.e. low dielectric screening, strongly bound exciton states, and
strong light-matter interaction. On the other hand, a recent study has shown that inter-
calation of Cu atoms into the van der Waals gap of bilayer NbS2 changes the transport
properties in the out-of-plane direction of the bilayer [78]. We note in passing that this
intercalation process was performed at a very high Cu chemical potential from a Cu
surface and the general stability of this intercalated system is questionable. Otherwise
Cu contamination of vdWHs would most likely present a huge problem. However, it
very well illustrates the hint of 3D character few-layer intercalated vdWHs possesses.
From another perspective the intercalated bilayers can also be viewed as a quasi-0D/2D
material: a host material (the intrinsic 2D bilayer) hosting single atoms. With very low
intercalation concentrations the orbitals of the intercalated atoms would have close to
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Figure 6.10: Energy above convex hull for the 14 self-intercalated bilayers found to
develop a ferromagnetic phase upon self-intercalation. The definition of
thermodynamic stability is chosen to be at 0.1 eV/atom over the convex
hull according to the stability analysis performed in the C2DB [49]. This
figure is taken from included paper X.

no overlap and would essentially be non-interacting. While the intercalated atoms will
still be covalently bonded to the bilayers it could potentially be possible to utilise some
of the properties of free atoms. This could for instance be single frequency emission
peaks from the intercalated atoms, which would have sharp atomic optical transitions
when intercalated in a wide band gap intrinsic bilayers. It will be exciting to follow how
the (self-)intercalated atoms will contribute to research in vdWHs in the following years.
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CHAPTER 7
Conclusion and Outlook

In this thesis we have applied analytical models and state-of-the-art ab-initio compu-
tational methods to calculate and explore the electronic and optical properties of 2D
materials and vdWHs. We have reviewed the state-of-the-art computational ab-initio
many-body methods, the GW, and BSE formalisms, and seen the importance of includ-
ing many-body effects in the description of 2D materials and vdWHs to capture the
strong quasi-particle and excitonic effects in these systems. In general, ab-initio compu-
tational methods can only be applied to a very limited number of vdWHs, due to the
computational requirements of such calculations and the large number of atoms neces-
sary to represent even few-layers vdWHs. This thesis has addressed these computational
requirements by having developed efficient algorithms for such calculations.

To summarise the results in this thesis, we have in section 3.5 shown how the non-
locality of the dielectric function can be used to manipulate and control the quasi-
particle band gap of 2D monolayer semiconductors on a graphene layer (and other di-
electric screening media), by applying a gate-voltage to the graphene monolayer. We
also showed how the magnitude of this effect depends on the static polarisability of the
2D semiconductor and that the effect can be further manipulated in a predictive manner
by intercalating monolayer hBN layers.

In section 3.7 we implemented the BSE method with the QEH model to be able
to accurately calculate exciton energies in multilayer vdWHs. This makes possible the
calculation of the absorption spectrum including excitonic effects of multilayer vdWHs
and furthermore we saw that this accurately captures the redshift of exciton energies in
vdWHs - an artefact not captured correctly by the Mott-Wannier model for few-layers
vdWHs previously developed. We showed in section 3.9 that a strong interlayer exci-
ton state exists at the heterointerface of WS2/HfS2 with a peculiar thickness dependent
interlayer to intralayer character transition. The exciton state exhibits an energy in
the infrared spectrum and resolves a long standing issue of finding optically strong and
active photodetectors in the infrared spectrum. Finally in chapter 3 we introduced a
new dielectric screening regime of 2D exciton physics that exists when a semiconducting
2D monolayer is placed on a strongly dielectric screening bulk media. Consequently the
exciton Rydberg series becomes overscreened - in contrast to the underscreened screen-
ing regime previously known for freestanding 2D monolayers. Furthermore we showed
how the nature of the Rydberg series can be varied by changing the dielectric constant
of the bulk dielectric media and that an inherent hydrogenic Rydberg series can in fact
be obtained in a semiconducting 2D monolayer. The new exciton screening regime is
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yet to be fully explored and can potentially open up new pathways for designing new
exciton states in vdWHs.

In chapter 4 we discussed and showed that it is necessary to go beyond the non-
self-consistent state-of-the-art ab-initio methods (such as G0W0) to obtain a correct
description of the interlayer orbital hybridisation and charge transfer effects in vdWHs.
We developed a computational method to accurately describe this interlayer interaction
and implemented this with the QEH model. We then combined the developed model
with ab-initio G0W0, BSE, and Mott-Wannier calculations to benchmark the accuracy
that can be expected of calculated intra- and interlayer exciton energies in vdWHs
against experimental observations. Interestingly we found that it is important treat the
interlayer interaction self-consistently from the quasi-particle band line-up to accurately
describe the twist-angle dependence of exciton energies for systems with degenerate intra-
and interlayer exciton state. In this, we also benchmarked the discrepancy that can be
expected from the dielectric screening from supporting substrates in experiments, from
interlayer orbital hybridisation effects, and studied finite temperature effects on optical
transition energies. From this, we benchmarked the discrepancy that can be expected be-
tween experimental measurements and ab-initio calculated exciton energies in vdWHs.
The developed methods for computationally feasible calculating excitonic absorption
spectra and interlayer orbital hybridisation effects in vdWHs offers and important tool
to accurately calculate quasi-particle energies and excitonic states in multilayer vdWHs
which have not been possible up to this date.

After studying electronic and optical states in vdWHs we turned our attention to ma-
terials discovery and manipulation of materials properties of vdWHs. First we presented
and outlined the developed workflow of the Computational 2D Materials Database. The
database offers a comprehensive study of the stability, single-particle, and many-body
electronic and optical properties of close to 3000 monolayers. The hope is that this
database will help guiding both theoreticians and experimentalists in future studies.
Our work included a significant study of the new Janus class of 2D monolayers where
we conducted a thorough classification study of their electronic and optical properties.
We found that the 2D Janus monolayers can be used to manipulate the Schottky barrier
at semiconductor-metal heterointerfaces, tune the band line-up and interlayer exciton
energies at semiconductor-semiconductor interfaces, and that in fact multilayer Janus
structures are natural inherent pn-junctions. While only two 2D Janus monolayers have
been experimentally synthesised to this date, the results in this study suggests that
Janus monolayers have a huge potential to influence the future of vdWH design and
applications, due to their wide range of out-of-plane dipole moments and their inherent
strong Rashba split states. Finally we introduced a new paradigm of materials science
by showing it is possible to self-intercalate single atoms in 2D bilayers and that such
self-intercalated structures in fact are stable for a large set of bilayers. We found that the
self-intercalation process influences the electronic properties and for several bilayer sys-
tems can change the magnetic phase dependent on the concentration of self-intercalated
atoms. It will be interesting to follow the future of these cross-dimensional structures,
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where it is possible to both combine the characteristic 2D properties with out-of-plane
3D-like properties and possibly utilise single-atom properties in low-concentration self-
intercalated bilayers.
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The emergent class of atomically thin two-dimensional (2D) materials has opened up completely new
opportunities for manipulating electronic quantum states at the nanoscale. Here we explore the concept of
dielectric band gap engineering, i.e., the controlled manipulation of the band gap of a semiconductor via its
dielectric environment. Using first-principles calculations based on the GW self-energy approximation we show
that the band gap of a two-dimensional (2D) semiconductor, such as the transition metal dichalcogenides, can be
tuned over several hundreds of meV by varying the doping concentration in a nearby graphene sheet. Importantly,
these significant band gap renormalizations are achieved via nonlocal Coulomb interactions and do not affect the
structural or electronic integrity of the 2D semiconductor. We investigate various heterostructure designs, and
show that, depending on the size of the intrinsic dielectric function of the 2D semiconductor, the band gap can
be tuned by up to 1 eV for graphene carrier concentrations reachable by electrostatic doping. Our work provides
opportunities for electrically controllable band gap engineering in 2D semiconductors.

DOI: 10.1103/PhysRevB.101.121110

I. INTRODUCTION

Two-dimensional (2D) materials such as graphene, hexag-
onal boron nitride (hBN), and the semiconducting transition
metal dichalcogenides (TMDCs), represent an emergent class
of materials with unique electronic and optical properties
making them interesting candidates for applications in a num-
ber of areas including (opto)electronics, photonics, energy,
and quantum technology [1–5]. A unique merit of these ma-
terials is that their properties can be tuned much more easily
than is possible with conventional bulk materials. This feature
stems from the extreme thinness of 2D materials, which makes
the electronic states living inside them highly susceptible
to their environment [6]. In particular, 2D semiconductors
encapsulated in van der Waals heterostructures constitute an
ideal platform for practicing and exploiting the art of band
gap engineering.

In addition to the conventional band gap engineering
schemes based on doping and alloying, the band gap of 2D
semiconductors can be controlled via mechanical strain [7,8],
layer stacking [9,10], and external electric fields [11,12]. In
all these cases, the fundamental physical mechanism under-
lying the band gap modification can be explained within
a single-particle picture. A fundamentally different type of
band gap engineering can be achieved in 2D materials by
exploiting the dependence of the electronic quasiparticle (QP)
energies on the dielectric environment outside the 2D layer.
This dependence stems from the electron’s self-energy, which
describes the interaction between the electron (or hole) and
its self-induced screening cloud. Because the shape and size
of the screening cloud depends on the dielectric environment,

*thygesen@fysik.dtu.dk

this effect can be exploited to change the QP energies without
changing the spatial shape or hybridization pattern of the 2D
semiconductor wave functions. Because of its nonlocal and
dynamical nature, dielectric screening effects on QP energies
are not captured by traditional mean-field approximations, but
require more rigorous QP theories such as the many-body GW
method [13,14].

Quasiparticle screening effects manifest themselves most
clearly in molecules deposited on metallic or dielectric sub-
strates. In such systems, the dielectric screening from the
substrate can shift the molecule’s orbital energies by sev-
eral eV relative to the gas-phase energies. These effects,
which have been demonstrated both experimentally [15–17]
and theoretically [18–20], are essential to take into account
for a proper description of electron transport in molecular
junctions. Here the dielectric screening from the metallic
electrodes can strongly influence the position of the frontier
molecular orbitals relative to the electrode Fermi level and
thereby affect the tunneling rate [21,22]. The shift in molecu-
lar energy levels can often be explained semiquantitatively by
a classical image charge model [18,19], although dynamical
corrections and wave function modifications may also play
a role [23,24]. Compared to molecules, 2D semiconductors
have better intrinsic screening ability making them less sus-
ceptible to their dielectric environment. Still, the internal
screening is weak enough that the QP band gap can be reduced
by up to 1 eV by substrate screening, as first shown by
first-principles GW calculations for hBN on graphene [13].
Experimentally, it was demonstrated using nonlinear optical
spectroscopy that the QP band gap of monolayer WS2 can
be varied by 0.3 eV depending on the choice of substrate
[25], and by GW calculation that the QP band gap is reduced
by about 0.5 eV for MoS2 on a gold substrate [26]. Sub-
sequently, the concept of dielectric band gap engineering in
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FIG. 1. The setup considered for electrically controlled band gap
engineering. A semiconducting 2D material is placed on top of a
graphene sheet separated by N layers of hBN. The concentration of
charge carriers in the graphene sheet can be adjusted via a bottom
gate. An increased doping level enhances the dielectric function of
the graphene sheet, which in turn weakens the screened electron-
electron interaction inside the 2D semiconductor leading to a reduc-
tion of its QP band gap.

2D materials has been explored for both lateral [27,28] and
vertical [29–31] heterostructure designs. In a recent work, Qiu
et al. [32] investigated the effect of dielectric screening on the
quasiparticle band gap of a single layer of ReS2 placed on top
of a back-gated graphene sheet. They found that the band gap
can be tuned between 2.15 and 1.93 eV when the gate voltage
was varied between −63 and 45 V.

In this work we present a theoretical analysis of a similar
setup providing both fundamental insight into the physical
mechanisms governing the idea of electrically controllable
dielectric band gap engineering in a 2D semiconductor and
numerical relations between key system parameters that can
be used to guide the future design of van der Waals (vdW)
structures with tailored band gaps. To this end we consider
a van der Waals heterostructure consisting of the 2D semi-
conductor placed on a graphene sheet (see Fig. 1). For various
types of 2D semiconductors, we explore how the QP band gap
depends on the doping concentration in the graphene sheet. In
practice, the latter can be controlled by an electrostatic bottom
gate. This setup allows the strength of the screened Coulomb
interaction inside the 2D semiconductor and thus the electron
self-energy, to be controlled externally via the concentration
of free charge carriers in the graphene sheet. The calculations
are made possible by the recently developed G�W method
[29], which calculates the change in the GW self-energy due
to the additional screening provided by the heterostructure
environment, which in turn is obtained using the quantum
electrostatic heterostructure (QEH) model [33].

II. RESULTS AND DISCUSSION

The QP energies are obtained from the linearized QP
equation

εQP
n = εn + Zn〈ψn|�(εn) − vxc|ψn〉, (1)

where ψn and εn represent approximate single-particle wave
functions and energies that are typically obtained from a
density functional theory calculation. In this work, we use
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation (xc)

functional to determine ψn and εn. In the QP equation, the
self-energy operator, �, which describes the interaction of the
electron/hole with its self-induced screening cloud, replaces
the local mean-field exchange-correlation potential, vxc. The
renormalization factor Zn accounts for the energy variation of
�(ε) around the energy εn.

Within the so-called G0W0 method, the electron self-energy
is approximated by the product of the Green’s function (G)
and dynamically screened electron-electron interaction (W ).
The 0 subscript indicates that G and W are evaluated from
the noninteracting ψn and εn, i.e., the non-self-consistent GW
approximation. The screened interaction, which is the main
object of interest in the present work, is defined as

W (r, r′, ω) =
∫

ε−1(r, r′′, ω)
1

|r′′ − r′|dr′′, (2)

where ε(r, r′, ω) is the microscopic dielectric function of the
material. We shall not go deeper into the theory of the GW
method here but refer the interested reader to one of the many
excellent reviews on the topic [34,35]. For the purpose of
the present work it suffices to note that due to the strong
nonlocality of the Coulomb kernel and dielectric function,
it is possible to affect the screened interaction W between
electrons in one region of space (here the 2D semiconductor)
by modifying the dielectric response in another region (here
the graphene sheet).

Conventional implementations of the GW method do not
readily allow for the study of systems like the one shown in
Fig. 1. This is due to the shear size of the supercells needed to
describe vdW heterostructures comprising 2D materials with
different in-plane lattice constants. For example, the smallest
supercells required to model a WS2/graphene bilayer when
the strain on each layer is not allowed to exceed 1%, contains
more than 300 atoms, which exceeds the system sizes that
can be treated by conventional GW codes. Furthermore, a
proper treatment of the dielectric function of doped graphene
requires extremely dense k-point sampling around the Dirac
cones making standard calculations intractable. In this work
we rely on the G�W method [29] in combination with the
QEH model [33]. The QEH model is used to compute the
dielectric function of the entire vdW heterostructure from
the dielectric functions of the individual layers. The method
circumvents the problem of large supercells due to lattice
mismatched 2D layers and allows for very fine k-point meshes
for the individual layers. We use the QEH model to calculate
the change in the screened interaction of the 2D semicon-
ductor, �W , due to the presence of the other layers of the
heterostructure (hBN and doped graphene). In a next step,
we calculate the change in the self-energy as �� = G�W
(integral over frequency not shown), which in turn yields
the change in the QP gap of the semiconductor. For more
details on the G�W methods we refer to Ref. [29]. We note
in passing that other approximation schemes for dealing with
dielectric screening in GW calculations for large systems have
been proposed [36,37].

In the following we consider the setup shown in Fig. 1
consisting of a monolayer transition metal dichalcogenide
(TMD) placed on top of a graphene sheet, possibly with a
number of hBN layers inserted in between. In Fig. 2 we plot
the QP band gap of four different TMDs as a function of
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FIG. 2. The quasiparticle band gap of four different TMD mono-
layers placed on top of a graphene sheet as a function of the position
of the Fermi level (i.e., carrier concentration) in graphene. The
configuration corresponds to Fig. 1 without any hBN layers between
the TMD and graphene sheet. The band gap of the freestanding
TMDs is indicated by dashed lines.

the Fermi level in the graphene sheet for the case where the
TMD is placed directly on top of the graphene layer. As the
Fermi energy is raised, the concentration of free carriers in
the graphene sheet increases leading to an enhanced dielectric
screening. This effect is visible in Fig. 5, which shows the
real part of the dielectric function of the TMD monolayer for
different values of the Fermi energy. The dielectric function
of the TMD is defined as the ratio between the screened and
bare Coulomb interaction in the TMD sheet,

W (q‖, ω) = 1

q‖ε(q‖, ω)
, (3)

where 1/q‖ is the bare 2D Coulomb interaction and W (q‖, ω)
is the screened interaction between charges in the TMD
obtained from the QEH model, and q‖ is the in-plane 2D
wave vector. The graphene plasmon is clearly visible at finite
doping concentrations. The intensity of the graphene plasmon
increases with the doping level leading to an enhanced di-
electric screening in the TMD layer. The lower right panel
of Fig. 5 shows the real part of the dielectric function for fixed
wave vector q‖ = 0.05 Å−1.

In the quasiparticle picture, where an electron is sur-
rounded by a positive screening cloud (together making up the
quasiparticle), the enhanced dielectric screening corresponds
to a larger/more effective screening cloud. The attractive
interaction between the bare particle and its screening cloud,
i.e., the self-energy of the electron, then increases resulting in
a stabilization of the quasiparticle and thus a reduction of the
band gap.

FIG. 3. Quasiparticle band gap of MoS2 in the geometry depicted
in Fig. 1 as a function of the number of hBN layers between MoS2

and graphene. Results are shown for three different doping concen-
trations in the graphene layer. The dashed black, green, and blue lines
are fits of the form a(EF )/(N + b) + E∞

gap where the asymptotic value
E∞

gap is the calculated QP band gap of MoS2 on bulk hBN.

In the configuration considered in Fig. 1 (no hBN layers
between the TMD and graphene), the screening from undoped
graphene reduces the TMD band gap by around 0.30 eV, as
compared to the freestanding TMD. The band gaps are then
further reduced by 0.25 eV as the graphene Fermi level is
increased from 0 to 0.8 eV. We stress that these very sub-
stantial band gap reductions are achieved without modifying
the atomic structure, the shape of the wave functions, or their
hybridization patterns, and highlights the unique opportunities
offered by atomically thin materials for tuning electronic
properties.

In Fig. 3 we show the variation of the TMD band gap (here
exemplified by MoS2) as a function of the number of hBN
layers separating the TMD and the graphene sheet. Results
are shown for the case of intrinsic graphene and for doping
concentrations corresponding to Fermi level shifts of 0.4 and
0.8 eV, respectively. The band gap shows an approximate 1/N
dependence on the number of hBN layers. The dashed lines
indicate best fits to the functional form a(EF )/(N + b) + E∞

gap,
where the asymptotic value E∞

gap is the band gap of MoS2 on
bulk hBN (which we calculate explicitly), b is an image plane
position, and a is the strength of the image charge. In these
fits only a was taken to depend on the doping concentration
in the graphene layer. The good quality of the fit confirms the
interpretation of the band gap reduction as an “image charge”
effect, i.e., the band gap reduction is due to the interaction
between the electron/hole in the TMD and its self-induced
screening cloud in the graphene layer. Furthermore we find b
to be very close to two times the MoS2/graphene interlayer
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FIG. 4. The reduction of the QP band gap of the semiconductor
monolayers listed in Table I when placed on intrinsic and doped
graphene (corresponding to �EF = 0.4), respectively. The band gap
reduction is plotted versus 1/α, where α is the static in-plane
polarizability of the freestanding 2D semiconductor. It is clear that
that the band gap reduction is stronger for 2D materials with weaker
intrinsic screening suggesting that the band gap renormalization is
determined by the relative change in screening provided by the
graphene layer. The dashed lines are added as guides to the eye
and the orange dot corresponds to previous experimental work [32]
(see main text).

distance, and we therefore believe this accurately reproduces
the distance to the image charge plane.

In the simplest image charge model, the band gap reduc-
tion is given by the electrostatic interaction between a point
charge in the TMD and its image charge in the graphene
layer. Indeed, this picture has been found to hold to a very
good approximation for molecules on metallic or insulating
surfaces [18,19]. In Fig. 4 we show the calculated band gap
renormalization for a number of different 2D semiconductors
when placed on top of the graphene layer. The considered
2D semiconductors are listed in Table I together with their
QP band gaps and static in-plane polarizability taken from
the Computational 2D Materials Database (C2DB) [38]. The
band gap reductions are plotted against the size of the static
in-plane polarizability of the 2D semiconductor. It is clear
that, independent of the doping concentration in the graphene
sheet, the band gap reduction is larger for 2D materials
with lower polarizability. This behavior can be understood
by realizing that the magnitude of the screening cloud in
the graphene layer, i.e., the image charge, depends on the
total charge of the quasiparticle in the 2D semiconductor,
i.e., the bare electron/hole plus its screening cloud in the 2D
semiconductor. The latter is obviously larger in 2D semicon-
ductors with a high intrinsic polarizability. This shows that the
amount by which the band gap can be tuned via the dielectric

FIG. 5. Contour plots: real part of the dielectric function of
MoS2/graphene evaluated in the MoS2 layer for different doping
concentrations along the in-plane wave vector. Bottom right plot: The
real part of the dielectric function evaluated along q‖ = 0.05 Å−1 for
intrinsic MoS2 (gray) and for three different doping concentrations
for MoS2/graphene (black, green, and blue).

environment depends on the degree of internal screening in
the 2D semiconductor itself. We note the band gap reduction
found by Jiong et al. [32], where a reduction of about 0.6 eV
of the band gap was found when monolayer ReSe2 was placed
on doped graphene. We have calculated the averaged in-plane
static polarizability of ReSe2 to be 6.58 Å, corresponding to
the orange dot in Fig. 4 and we find an excellent agreement
with the calculated values for the band gap reduction of other
2D monolayers.

In this work we have focused on the effect of dielectric
screening on the QP band gap. In general, optical excitations,
in particular bound excitons, are less affected by dielectric
screening because of the neutral nature of such excitations. On
the other hand, more loosely bound excitons or excitons with
charge transfer character [39,40], present larger electron-hole
separations and consequently experience stronger renormal-
ization by the dielectric environment. While the effect of
dielectric screening on optical excitations, in particular the

TABLE I. Band gap and static in-plane polarizability for the 13
monolayers shown in Fig. 4.

Monolayer Band gap (eV) Static polarizability (Å−1)

BN 7.17 0.96
HfO2 4.70 1.36
SnO2 1.84 1.84
TiO2 3.95 1.99
HfS2 2.94 3.16
SnS2 2.29 3.56
HfSe2 2.12 4.38
WS2 2.52 5.58
MoS2 2.53 6.19
WSe2 2.10 6.59
MoSe2 2.12 7.28
MoTe2 1.56 9.47
CrSe2 1.17 10.31
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lowest bound excitons in 2D materials, are easier to probe
experimentally as compared to the QP gap, the theoretical
treatment is limited by the assumption of static screening.
This assumption is valid when the dielectric function shows
weak variation with frequency up to a characteristic frequency
given by the exciton binding energy. This condition is usually
satisfied in intrinsic semiconductors and insulators. However,
when the dielectric function used to screen the electron-
hole interaction has a metallic component (like the intraband
screening in doped graphene; cf. Fig. 5) the assumption of
static screening cannot be justified and more elaborate meth-
ods are required in order to deal with the frequency dependent
electron-hole interaction [41].

In conclusion, our ab initio GW calculations show that it is
possible to control the quasiparticle band gap of an atomically
thin 2D semiconductor by varying the doping concentration in
a nearby graphene sheet. The physical mechanism underlying
the band gap renormalization is that the size of the screening
cloud dressing an electron/hole of the 2D semiconductor,
which determines its self-energy, is controlled by the screen-
ing ability of the graphene. The effect was shown to be well
described by a simple image charge model with the caveat that
the magnitude of the image charge depends on the intrinsic
screening of the 2D semiconductor. Thus, in general, the
effectiveness of dielectric band gap engineering is determined
by the intrinsic screening properties of the 2D material itself.
Our work highlights the unique opportunities for shaping
electron energy landscapes in 2D materials by dielectric
engineering without altering the atomic or electronic integrity
of the 2D material itself.

III. METHOD

All calculations have been performed with the electronic
structure software code GPAW [42]. The atomic structures

were relaxed using PBE with a plane-wave cut-off energy
of 800 eV, on a k-point grid with a density of 6.0 Å−1, and
with a Fermi smearing of 0.05 eV. All structures were relaxed
until the maximum force on any atoms was 0.01 eV/Å and
the maximum stress on the unit cell was 0.002 eV/Å3. The
ground state was calculated using the same parameters as
for the relaxation, but with a k-point grid of 12.0 Å−1. The
GW calculations were performed starting from the PBE wave
functions. Three GW calculations were done with a cut-off
energy for the self-energy of 170, 185, and 200 eV from
which the band gap was determined by extrapolating to an
infinite plane-wave cut-off. The electronic band gaps for the
van der Waals heterostructures were determined by calculat-
ing the screening correction to the valence and conduction
bands for the freestanding monolayer semiconductor in the
QEH model [33] which have previously been shown to yield
accurate results for heterostructures with a low degree of
hybridization at the band edges. The static polarizabilities
are calculated within the random phase approximation (RPA),
which were based on a PBE ground state calculation with a
20 Å−1 k-point density grid and a cut-off energy of 50 eV was
used for the RPA calculation. In both the GW and the RPA
calculations a truncated Coulomb interaction was used. All
band structure calculations are calculated including spin-orbit
interaction.
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(2013).

[18] J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett.
97, 216405 (2006).

121110-5

128 8 Papers



RIIS-JENSEN, LU, AND THYGESEN PHYSICAL REVIEW B 101, 121110(R) (2020)

[19] J. M. Garcia-Lastra, C. Rostgaard, A. Rubio, and K. S.
Thygesen, Phys. Rev. B 80, 245427 (2009).

[20] C. Freysoldt, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 103,
056803 (2009).

[21] S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Louie, M. S.
Hybertsen, and J. Neaton, Nano Lett. 7, 3477 (2007).

[22] M. Strange, C. Rostgaard, H. Häkkinen, and K. S. Thygesen,
Phys. Rev. B 83, 115108 (2011).

[23] M. Strange and K. S. Thygesen, Phys. Rev. B 86, 195121
(2012).

[24] C. Jin and K. S. Thygesen, Phys. Rev. B 89, 041102(R) (2014).
[25] M. M. Ugeda, A. J. Bradley, S.-F. Shi, H. Felipe, Y. Zhang,

D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen et al.,
Nat. Mater. 13, 1091 (2014).

[26] J. Ryou, Y.-S. Kim, K. Santosh, and K. Cho, Sci. Rep. 6, 29184
(2016).

[27] M. Rosner, C. Steinke, M. Lorke, C. Gies, F. Jahnke, and T. O.
Wehling, Nano Lett. 16, 2322 (2016).

[28] A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi,
T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn et al., Nat.
Commun. 8, 15251 (2017).

[29] K. T. Winther and K. S. Thygesen, 2D Mater. 4, 025059 (2017).
[30] Y. J. Zheng, Y. L. Huang, Y. Chen, W. Zhao, G. Eda, C. D.

Spataru, W. Zhang, Y.-H. Chang, L.-J. Li, D. Chi et al., ACS
Nano 10, 2476 (2016).

[31] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Nano Lett. 17,
4706 (2017).

[32] Z. Qiu, M. Trushin, H. Fang, I. Verzhbitskiy, S. Gao, E.
Laksono, M. Yang, P. Lyu, J. Li, J. Su et al., Sci. Adv. 5,
eaaw2347 (2019).

[33] K. Andersen, S. Latini, and K. S. Thygesen, Nano Lett. 15, 4616
(2015).

[34] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237
(1998).

[35] D. Golze, M. Dvorak, and P. Rinke, Front. Chem. 7, 377 (2019).
[36] M. Rohlfing, Phys. Rev. B 82, 205127 (2010).
[37] K. Noori, N. L. Q. Cheng, F. Xuan, and S. Y. Quek, 2D Mater.

6, 035036 (2019).
[38] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S.

Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M.
Larsen, A. C. Riis-Jensen et al., 2D Mater. 5, 042002 (2018).

[39] J. M. Garcia-Lastra and K. S. Thygesen, Phys. Rev. Lett. 106,
187402 (2011).

[40] A. Raja, L. Waldecker, J. Zipfel, Y. Cho, S. Brem, J. D. Ziegler,
M. Kulig, T. Taniguchi, K. Watanabe, E. Malic et al., Nat.
Nanotechnol. 14, 832 (2019).

[41] S. Gao, Y. Liang, C. D. Spataru, and L. Yang, Nano Lett. 16,
5568 (2016).

[42] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak,
L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen,
H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara,
M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T.
Olsen, V. Petzold et al., J. Phys.: Condens. Matter 22, 253202
(2010).

121110-6

8.1 Paper I 129



130 8 Papers

8.2 Paper II
Anomalous Non-Hydrogenic Exciton Series in 2D Materials on High-κ Di-
electric Substrates
A. C. Riis-Jensen, M. N. Gjerding, S. Russo, and K. S. Thygesen
Under review



Anomalous Non-Hydrogenic Exciton Series in 2D Materials on High-κ Dielectric
Substrates

Anders C. Riis-Jensen,1 Morten N. Gjerding,1 Saverio Russo,2 and Kristian S. Thygesen1
1Center for Atomic-scale Materials Design, Department of Physics,

Technical University of Denmark, DK - 2800 Kongens Lyngby, Denmark
2Centre for Graphene Science, College of Engineering,

Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL, UK
(Dated: June 25, 2020)

Engineering of the dielectric environment represents a powerful strategy to control the electronic
and optical properties of two-dimensional (2D) materials without compromising their structural
integrity. Here we show that the recent development of high-κ 2D materials present new opportuni-
ties for dielectric engineering. By solving a 2D Mott-Wannier exciton model for WSe2 on different
substrates using a screened electron-hole interaction obtained from first principles, we demonstrate
that the exciton Rydberg series changes qualitatively when the dielectric screening within the 2D
semiconductor becomes dominated by the substrate. In this regime, the distance dependence of the
screening is reversed and the effective screening increases with exciton radius, which is opposite to
the conventional 2D screening regime. Consequently, higher excitonic states become underbound
rather than overbound as compared to the Hydrogenic Rydberg series. Finally, we derive a general
analytical expression for the exciton binding energy of the entire 2D Rydberg series .

Intense research during the past decade has estab-
lished the unique optical properties of two-dimensional
(2D) semiconductors such as single layers of transition
metal dichalcogenides (MX2 and MXY with M=Mo,W
and X=S,Se,Te)1–5. Most fundamentally, these ultrathin
materials host strongly bound excitons with binding en-
ergies reaching up to 25% of the band gap6–8 making
them candidates for excitonic devices that can be oper-
ated at room temperature. Another unique feature is
the extreme degree to which these excitons can be ma-
nipulated and controlled externally, e.g. via the dielec-
tric environment9–16. Higher-lying excitonic states also
exhibit unusual properties. In particular, the Rydberg
series does not follow the 1/n2 Hydrogenic series known
from 3D materials, but show a distinct non-Hydrogenic
behavior as a direct consequence of the non-local nature
of the 2D dielectric function17,18. For a translation in-
variant system the q-dependent dielectric function obeys

ε(q) =
∫
d(r− r′)ε(r− r′)eiq·(r−r′) (1)

From this it follows that non-locality in real space trans-
lates into q-dependence in reciprocal space. In bulk semi-
conductors it is typically a good approximation to set
ε(r−r′) = εδ(r−r′), which yields a q-independent dielec-
tric function. In contrast, for a freestanding 2D semicon-
ductor ε(q) = 1 + αq (for small q), from which it follows
that screening in 2D is notoriously non-local. Further-
more, it has been shown that the dielectric function of a
2D material is sensitive to its dielectric environment, e.g.
a substrate. However, with a few notable exceptions19,20,
all experiments on excitons in 2D semiconductors re-
ported to date employed substrates with weak dielectric
screening, e.g. hBN, SiO2 or sapphire21–24. As a con-
sequence, the developed theory of excitons in atomically
thin materials have also exclusively focused on this sce-

nario.
In this work, we explore what happens to the exci-

tonic states of a 2D semiconductor, here exemplified by
WSe2, when the dielectric screening inside the 2D mate-
rial becomes dominated by the environment. For WSe2
on low-screening substrates we obtain the well known
non-hydrogenic exciton series17,25 where higher exciton
states are screened less than the n = 1 ground state. Here
we show that this trend is reversed when the dielectric
screening from the substrate exceeds the intrinsic screen-
ing in the 2D layer. At the end we generalize the 2D
hydrogen-like model previously developed25 for the ex-
citon effective dielectric constant in a 2D semiconductor
to include the effect of neighbouring substrate screening
and obtain excellent agreement with numerical solutions.

FIG. 1. A 2D layer with non-local, i.e. q-dependent, dielectric
function located on a dielectric media with constant permit-
tivity. The extension of the electric fields lines from two 2D
excitons with different spatial radius is depicted. The larger
the exciton radius, the more the screening is determined by
the environment outside the 2D material.

The excitonic states of the WSe2 monolayer are ob-
tained by solving the Mott-Wannier equation for the ex-
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citon envelope wave function[
− h̄

2

2µ

(
∂2

∂x2 + ∂2

∂y2

)
+W (r)

]
F (r) = EnF (r) (2)

where µ is the exciton effective mass, W (r) is the
screened electron-hole interaction, En the binding en-
ergy of state n, and F (r) is the probability amplitude
for finding the electron and hole at separation r. We use
an exciton mass for WSe2 of µ = 0.187 adopted from the
Computational 2D Materials Database26 To calculate the
screened interaction between the electron and hole in the
2D layer we use the Quantum Electrostatic Heterostruc-
ture (QEH) model27, which has previously been shown
to yield accurate energies for excitons in van der Waals
heterostructures28,29. The QEHmodel takes the ab-initio
response functions of the 2D layer as input and thus ac-
counts fully for the non-local screening in the monolayer.
Screening from the environment is taken into account by
the method of image charges. We define the effective per-
mittivity of the environment as κ = (εsub + 1)/2, where
εsub and 1 are the permittivities of the half spaces above
and below the 2D material, see Fig. 1. We here restrict
our calculations to merely consider a 2D monolayer on a
dielectric substrate. We do this since by the virtue of the
defintion of κ, the results obtained for a 2D monolayer
on a dielectric substrate with dielectric constant εa, will
be quantitatively very close to the same 2D monolayer
encapsulated between two substrates, both with dielec-
tric constants εa/2, and therefore this method is straight-
forward to generalize to the case of an encapsulated 2D
monolayer. All future calculations and references for sub-
strates therefore addresses the setup in Fig. 1 with a a
substrate on one side and vacuum on the other side.

Before turning to the results of the exciton calcula-
tions, we discuss how the dielectric function of the WSe2
monolayer is influenced by the dielectric environment.
We define the dielectric function of the 2D monolayer by

ε(q) ≡ V (q)
W (q) (3)

where V (q) = 1/q is the 2D Fourier transform of 1/r
and W (q) is the screened Coulomb interaction between
two point charges in the 2D layer as obtained from the
QEH model. In Fig. 2 we show the dielectric function of
freestanding WSe2 (black), WSe2 on a weakly screening
substrate (blue, denoted S1), and a strongly screening
substrate (red, denoted S2). The horizontal dashed lines
(κ2D, κS1, and κS2) mark the q = 0 limits of the dielec-
tric functions, which equal the effective permittivity of
the environment (see below). We note that, κS2 = 13,
could easily be realized upon encapsulation of WSe2 in
the high-layered materials HfOx30,31 , while the κS1 = 2.5
corresponds to WSe2 on a hBN substrate.

We can rationalize the small-q behaviour of the dielec-
tric functions in Fig. 2, by combining two basic facts
about screening in 2D. Firstly, in the small q-limit, the

density response function of a semiconductor takes the
form, χ0(q) = −αq2 (independent of dimensionality).
Secondly, the electrostatic potential from a 2D charge
distribution of the form ρ(r, z) = eiq·rδ(z), equals

V (r, z) = 1
q
eiq·re−q|z|. (4)

Focusing first on the case of an isolated 2D layer, i.e. ig-
noring the z-dependence, the dielectric function becomes
ε2D(q) = 1 − V (q)χ0(q) = 1 + αq. In particular, there
is no intrinsic screening from the 2D layer in the q → 0
limit. Next, consider the effect of a substrate. It should
be clear from Eq. (4), that in the q = 0 limit all screening
is due to the environment and thus ε(0) = κ (potentials
do not decay away from the layer and there is no intrinsic
screening from the layer itself). Moreover, the contribu-
tion to the dielectric function from the environment will
be exponentially suppressed for larger q. These consid-
erations are evidently in agreement with the results in
Fig. 2. Interestingly, when κ becomes comparable to
the maximum permittivity of the 2D layer, ε(q) changes
qualitatively; in particular, the slope at q = 0 changes
from positive to negative.

FIG. 2. The q-dependent dielectric function of monolayer
WSe2 in isolation (black), in a weakly screening environment
(blue), and in a strongly screening environment (red). In
the limit q → 0, the dielectric function becomes equal to
the constant permittivity of the environment, κ. When the
screening from the environment exceeds the intrinsic screening
in WSe2, the slope of ε(q) at q = 0 changes from positive
to negative. The light gray lines show intermediate systems
illustrating the transition from one screening regime to the
other.

At this point we return to the Mott-Wannier exciton
model Eq. (2). It is well known that the exciton Ryd-
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berg series in a 2D semiconductor is distinctly different
from the usual Hydrogenic series observed in 3D bulk
materials17. This can be understood as a direct conse-
quence of ε(q) being an increasing function of q in the
relevant wavevector range from 0 to around 1/a where a
is a characteristic exciton size (a > 10 Å) for the TMDs.
This form of ε(q) results in excitons with higher n be-
ing less screened due to their more delocalized nature25
(more delocalized in real space corresponds to more lo-
calized in reciprocal space). This trend is reflected by
the black symbols in Fig. 3, which shows the binding
energies obtained from Eq. (2) for the lowest (l = 0)
exciton states of freestanding WSe2 normalized to the
n = 1 state. As a reference, the grey curve shows the
result for a 2D Hydrogen model

EHydrogen
n = − µ

2
(
n− 1

2
)2
κ2
. (5)

Note that the constant permittivity, κ, and exciton
mass, µ, do not enter the scaled binding energy,
EHydrogen

n /EHydrogen
1 , which can thus be taken as a

universal curve corresponding to the situation of local
screening.

When WSe2 is placed in a weakly screening environ-
ment, e.g. on an hBN substrate corresponding to the blue
curve in Fig. 2, the scaled exciton binding energies move
closer to the Hydrogenic series but still display the same
trend of higher excitonic states being underscreened rel-
ative to the n = 1 ground state. In contrast, when WSe2
is placed in a strongly screening environment, e.g. encap-
sulated in HfOx corresponding to the red curve in Fig. 2,
the exciton binding energies move below the Hydrogenic
series. This marks a new screening regime in which the
excitons become more efficiently screened the larger n.

To understand the transition to the new exciton screen-
ing regime, we calculate the exciton wave function for the
three cases studied in Figs. 2 and 3 and from this extract
the exciton radius for the first six states in the Rydberg
series. We find an increasing exciton radius for higher
states in the Rydberg series as well known from the hy-
drogen atom model. For the n = 1 state of the freestand-
ing monolayer, we obtain an exciton radius around 16 Å
in good agreement with previous results32. We can define
an effective dielectric constant for the nth exciton state
by averaging the q-dependent dielectric function over a
disc with radius 1/an

〈εn〉 = 2a2
n

∫ 1/an

0
dq qε(q). (6)

The result is shown in Fig. 4 represented by the circular
dots. As the exciton radius increases monotonically with
n the size of the averaging disc shrinks and the effec-
tive dielectric constant 〈εn〉 increases or decreases with n
depending on the sign of dε/dq at q = 0.

It is instructive to supplement the reciprocal-space
analysis by a real space picture. As shown in Fig. 1,
an increasingly larger fraction of the field lines between

FIG. 3. Exciton Rydberg series of WSe2 plotted relative to
the n = 1 state. The different colors represent the exciton
binding energies obtained from the Mott-Wannier model with
environmental screening corresponding to the three dielectric
functions in Fig. 2. The universal Hydrogenic series is shown
by the grey curve. The inset shows the actual exciton binding
energies for the Mott-Wannier model (triangles) and from Eq.
5, with the analytical expression for the effective screening,
Eq. 7 (empty circles)

.

the electron and hole will pass through the environment
as the exciton radius increases. Therefore, as n increases
the effective screening will change from being dominated
by the 2D layer to being dominated by the environment.
Consequently, whether screening of the exciton will in-
crease or decrease with n is determined by the permit-
tivity of the environment relative to the intrinsic permit-
tivity of the 2D layer.
We now derive an analytical expression for the effec-

tive dielectric constant determining the screening of the
exciton. We do this by generalizing the previously devel-
oped screened Hydrogen model developed in Ref.25 for
freestanding 2D layers, to include the dielectric screen-
ing from a substrate. First we note that the exciton
wave functions in reciprocal space, i.e. F (q), are typ-
ically confined to small q-values where the intrinsic di-
electric function of the 2D layer is linear. We therefore
take ε(q) ≈ 1 + 2παq + κe−2dq, where α is the 2D static
polarizability and d is the distance between the center
of the 2D layer and the surface of the substrate (the
factor 2 accounts for the distance to the image charge).
The linear term describes the intrinsic screening from the
2D semiconductor while the last term is the substrate
screening which decays exponentially away from the sub-
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strate as discussed previously. Since the exciton radius
(an) is itself a function of the effective exciton dielectric
constant25, Eq. (6) has to be solved self-consistently with
the proposed form of ε(q). The integration can be read-
ily carried out analytically, however to obtain a closed
analytical form we Taylor expand the exponential term
around d/an after integration, which is in general a good
approximation for the the integration limits in eq. 6.
Given the large spatial extension of the exciton wave
function for the higher Rydberg states the accuracy of
this approximation increases with n. To relate 〈εn〉 and
an we use the relation from the ideal 2D hydrogen model
with angular momentum quantum number l = 0 (see for
instance Ref.25). Combining this we arrive at an expres-
sion for the effective exciton dielectric constant:

〈εn〉 = 1
2(1 + κ)

1 +

√
1 +

8µ
( 4

3πα− κd
)

(3n(n− 1) + 1)(1 + κ)2

 .

(7)
The result plotted in Fig. 4 (full lines) shows good agree-
ment with the QEH model for both low- and high-κ sub-
strates and demonstrating that the analytical expression
captures the combined effect of intrinsic 2D and the sub-
strate screening. We stress that the analytical Eq. (7)
contains no free parameters, but is completely defined
by α, κ, and d. The exciton binding energy can be ob-
tained from the 2D Hydrogen model, Eq. 5, by replacing
the κ by the effective exciton dielectric constant. Except
for underestimating the exciton binding energy of the 1s
state for the 2D and 2D@S2 systems of about 100 meV
and 50 meV respectively, we find excellent agreement for
all other Rydberg states, generally within about 15 %
compared to the QEH results, as shown in the inset of
Fig. 3. The underestimated value of the exciton binding
energy for the 1s state was also found in the original work
on freestanding 2D monolayers25 and can be ascribed to
the larger extent of F (q) for the 1s state which reduces
the accuracy of the linear approximation to the intrinsic
2D screening, ε2D(q) ≈ 1 + 2παq. In fact this approxi-
mation overestimates the intrinsic screening for larger q
leading to an underestimation of the binding energy for
the spatially localized 1s exciton.

Finally, we comment on the absolute size of the exci-
ton binding energies. While the first few states of the
Rydberg series of WSe2 on the weakly screening sub-
strate (κ = 2.5) are at least 100 meV, the 1s state in the
strongly screening environment (κ = 13) has a binding
energy around 140 meV which is reduced by more than
a factor 10 for the 2s state, making it unstable at room
temperature. By inserting 3 (or more) layers of hBN
(εhBN = 4) between WSe2 and the substrate, the binding
energy of the 2S state increases to 40 meV, making is
stable at room temperature. While the exciton binding
energies are significantly increased, the system remains
in the anomalous screening regime.

In conclusion, we have identified a new screening
regime for 2D semiconductors, which arises when the
2D material is placed in a dielectric environment with

FIG. 4. Effective state-dependent dielectric constant for the
excitons in the Rydberg series of WSe2 (circular dots), see
definition in Eq. 6, and from the analytical solution (full
lines), see definition in Eq. 7. The different colors correspond
to WSe2 in different screening environments and the colour
coding follows the previous figures. For n → ∞, the effective
dielectric constants converge towards the permittivity of the
environment, κ.

a permittivity exceeding that of the 2D layer itself. This
anomalous screening regime is characterized by a non-
local 2D dielectric function, ε(q), which decreases mono-
tonically with q. As a consequence, whereas the usual
non-Hydrogenic 2D exciton Rydberg series is character-
ized by states of higher n being less screened and there-
fore stronger bound as compared to the Hydrogen se-
ries, the opposite trend is observed in the anomalous 2D
screening regime. The new screening regime presents new
opportunities for advancing our understanding and abil-
ity to control exciton physics in 2D semiconductors.
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Abstract

Tailoring of the band gap in semiconductors is essential to the development of novel
devices. In standard semiconductors this modulation is generally achieved through
highly  energetic  ion  implantation.  In  two-dimensional  (2D)  materials  the  photo-
physical properties are strongly sensitive to the surrounding dielectric environment
presenting novel opportunities through van der Waal heterostructures encompassing
atomically thin high- dielectrics. Here we demonstrate a giant tuning of the exciton
binding energy of monolayer WSe2 as a function of the dielectric environment. Upon
increasing the average dielectric constant from 2.4 to 15, the exciton binding energy
is  reduced  by  as  much  as  300  meV  in  ambient  conditions.  The  experimentally
determined exciton binding energies are in excellent agreement with the theoretical
values predicted from a Mott-Wannier exciton model with parameters derived from
first  principles  calculations.  Finally  we  show  how  texturing  of  the  dielectric
environment can be used to realize potential well arrays for excitons in 2D materials,
that is a first step towards exciton metamaterials. 
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Introduction

The reduced  dimensionality  characterizing  atomically  thin  materials,  such  as  the
semiconducting two-dimensional transition metal dichalcogenides (2D-TMDs), leads
to strongly reduced screening of the Coulomb interaction. This results in a large
binding energy of neutral excitons of up to 1 eV  (1-4), which is dependent on the
dielectric  constant  of  the  surrounding  environment (5-8).  Therefore,  at  room
temperature  the  optical  properties  of  2D materials  are  largely  dominated  by  the
physics  of  excitons.  Understanding  the  underpinning  physics  of  2D  excitons  is
essential  to enable novel integrated photonics based on these quasiparticles. For
example,  the  electric  field  manipulation  of  the  oscillator  strength  of  one  exciton
species in a field-effect gated 2D-TMD transistor embedded in an optical microcavity
was recently shown to alter the nature of multiple hybridizations of exciton-polariton
states (9). Such a modulation enabled the observation of room temperature exciton
energy exchange between spatially separated TMDs in a microcavity (10), which is a
first  step  towards  the  wireless  exchange  of  information  embedded  in  the  valley
degree of freedom of charges.

The exciton binding energy of monolayer TMDs can be experimentally determined
by  optical  spectroscopy  measurements  displaying  features  associated  to  the
excitons  excited  states  known  as  Rydberg  states.  These  states  are  directly
measurable by means of optical reflectivity (11, 12), linear absorption (12, 13), one-
and  two-photon  photoluminescence  excitation  (13-15) and  second-harmonic
spectroscopy  (16). Very  recently,  the  Rydberg  series  has  been  observed  in  the
photoluminescence spectra  of  ultra  clean  monolayer  WSe2 encapsulated in  hBN
(17).  In  the  linear  optical  spectra,  the  s-like  Rydberg  states  of  the  A exciton  in
monolayer TMDs have been found to exhibit many interesting properties including
non-hydrogenic behaviour  (11) driven by due the non-local nature of 2D dielectric
screening (18), superior valley polarization and coherence (19), and Zeeman splitting
under magnetic field (17, 20) generating a wide interest in the scientific community.

Earlier experimental work explored the modification of the exciton binding energy (
Eb ) and quasiparticle gap of 2D-TMDs in contact with low- dielectrics (e.g. hBN,

sapphire, semimetal and PDMS substrates (17-19)) with a relative dielectric constant
smaller than or equal to that of the TMDs [The complexity of the problem grows upon
reducing the thickness of the TMDs down to the monolayer for which the dielectric
permittivity is a linear function of the wave-vector in the small wavelength limit.] The
experimental results have been explained by solution of a Mott-Wannier type exciton
model  which  depicts  the  exciton  as  a  2D  Hydrogenic  atom  with  a  Coulomb
interaction screened by the substrate and the monolayer itself (21-24). However, this
scenario can now be enriched by the recent discovery of 2D high-k dielectrics such
as photo-oxidised HfOx and ferroelectrics leading to an average dielectric constant of
the environment larger than that of the 2D semiconductors. Such novel dielectrics
could enable a breakthrough in the giant modulation of the exciton binding energy in
2D materials,  with  textured high-k  dielectrics  possibly  used for  creating  potential
profiles able to guide or confine excitons. At the same time, this innovation can mark
the birth of exciton metamaterials whereby the collective response of an array of
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exciton potential wells depends on the geometrical characteristics of the array and
differs profoundly from the response of an isolated individual potential well. 

In  this  work,  we explore,  both  experimentally  and theoretically,  the  effect  on the
exciton binding energy and quasiparticle band gap of monolayer WSe2 when placed
in a dielectric environment with dielectric screening lower than, comparable to, and
larger than the intrinsic screening in WSe2, respectively.  A systematic study of the
optical transmission for WSe2 in various dielectric environments (quartz, hBN, photo-
oxidised HfOx and ferroelectric In2Se3) reveals a monotonous scaling of the exciton
binding energy with increasing dielectric constant. We observe a relative change as
large as 300 meV between exciton binding energies measured in WSe2 on quartz
and encapsulated in the high-k dielectric HfOx. We show that the dependence of the
WSe2  exciton  binding  energy  on  the  dielectric  constant  of  the  environment  is
accurately captured by a 2D Mott-Wannier model with parameters obtained from first
principles.  Finally,  we  demonstrate  the  lateral  modulation  of  the  exciton  binding
energy  by  texturing  the  dielectric  environment  paving  the  way  towards  exciton
metamaterials in 2D systems.

Figure  1  Material  combination  and  heterostructures  for  different  dielectric
environments  (a) Schematic  illustration of  different  heterostructures used in  this
work.  Different dielectric materials including quartz ( = 3.8), h-BN ( = 4), HfOx ( =
15), and In2Se3 ( = 17). The average dielectric constants for each configuration are
marked  on  the  top  left  corner.  (b)  Photoluminescence  spectra  of  WSe2 in
configurations acquired at room temperature showing the shift of the exciton ground
state (1s). Inset: schematic illustration of the excitonic spectrum consisting of the 1s
excitonic groundstate and the excited states (2s, 3s…). The diagram shows  the
relationship between the quasiparticle band gap ( Eg ),  exciton binding energy (
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Eb , the lowest excitonic transition ( E1 s ) and the energy difference between the
1s and 2s states (E12).

van der Waals heterostructures of mechanically exfoliated monolayer WSe2 with a
range of dielectrics were prepared on optically transparent quartz substrates and on
reflective SiO2/p-Si using a dry-transfer technique based on a PDMS stamp (25). The
thickness  of  monolayer  WSe2 was  confirmed  by  photoluminescence  (PL)
spectroscopy, which exhibits intense PL and the emission is strongly quenched in
bilayer  and  its  bulk  counterpart.  This  is  due  to  crossover  from  a  direct  optical
transition to an indirect optical transition  (26). The dielectrics used in our work are
quartz  ( =  3.8),  h-BN ( =  4),  HfOx  ( =  15),  and  -In2Se3  ( =  17)  which  is  a
ferroelectric  (27).  The  HfOx is  obtained  through  a  recently  discovered  controlled
photo-oxidation process of HfS2 (28) which can be successfully carried out even after
the assembly of HfS2 in a van der Waals heterostructures without any degradation of
the  adjacent  WSe2 (29).  In  these  structures,  we  define  the  average  dielectric
constant  of  the  top  and  bottom  adjacent  dielectric  mediums  to  the  WSe2  as

κ=( εtop+εbottom )/2
 .  Hence,  the  studied  dielectric  environments  cover  a  large

parameter range from κ=2.4  for WSe2/quartz (i.e. κ<κWSe2 ) up to κ=15  for
HfOx/WSe2/HfOx (i.e. κ>κWSe2 ), see Figure 1a. 

Figure 1b shows the photoluminescence spectra for the structures of Figure1a. For
bare monolayer WSe2 on quartz the emerging measured peak is at 

1.67 eV
, which

corresponds to the A exciton from the direct optical transition at the K and K′ points.
The  A exciton  peak  position  is  found  to  be  heavily  dependent  on  the  dielectric
environment, displaying a redshift of 30meV  for 

κ=15
 compared to κ=2.4 .

Whilst PL probes the emission of the excitons, this is also heavily dependent on the
doping  and  strain  of  the  TMDs  which  a  priori can  be  sample  and  materials
dependent  (30, 31). Furthermore, the states of the Rydberg series are usually not
distinguishable in the PL spectra, making it impossible to characterize the exciton
binding energy. 

To probe the excitons Rydberg series, we employ optical transmission spectroscopy,
which is a well-established technique for this purpose. Figure 2a-e show the first and
second derivatives of the measured optical transmission spectra through the WSe2

(T) normalized to that of the substrate (T0).  The peak energies of the 1s and 2s
exciton states in the transmission spectra T/T0 correspond to the inflection points in
the  first  derivative  and peaks  in  the  second derivative.  For  WSe2 monolayer  on
quartz substrate the 1s state of the neutral A exciton appears at 

1.67 eV
 and its 2s

excited state is at 
1.87 eV

, resulting in an energy difference 
∆ E12

 of 
200meV

(Figure  2a).  The  corresponding energy difference  for  the  dielectric  environments
shown in Figure 1a are found to be  

155meV
 (hBN/WSe2/hBN, see Figure 2b),

105meV
 (HfOx/WSe2,  see Figure 2c),  

80meV
 (In2Se3 /WSe2,  see Figure 2e)

and 
49meV

 (HfOx/WSe2/HfOx, see Figure 2d). 
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Figure  2  Transmission  spectroscopy  results  (a-e)  The  first  derivative  of
transmission  spectra  

T /T 0

 of  WS2  on  quartz  substrate,  WSe2 encapsulated

between  hBN,  WSe2 supported  by  HfOx flake,  WSe2 sandwiched  between  HfOx

flakes and WSe2 supported by In2Se3 flake, respectively. Optical micrographs of the
corresponding heterostructures are presented in the first row. The outlines in optical
images indicate the WSe2 monolayer active area. Scale bars: 15 m (f-j) The second
derivative  of  transmission  spectra  

T /T 0

.  The  energy  differences  between  the

exciton ground state and the first excited exciton state are marked as ∆ E12  which
decrease when the WSe2 are adjacent to dielectric layers compared with that of
WSe2 on quartz substrate. 

The energies of the 1s and 2s exciton states as a function of the average dielectric
constants of the environment ( κ ) are shown in Figure 3a. We observe that both
the 2s and 1s states redshift with increasing κ , though the relative shift of the 1s
peak is much weaker than that of the 2s consistently with theoretical predictions for
2.4<κ<15   (32). Indeed, the weak dependence of the 1s state on the dielectric

environment has not been previously observed owing to the limited range of   (
1.5−3.8 ) presented in previous experimental studies (7). A plot of ∆ E12  as a

function of  reveals that  ∆ E12  has a monotonous dependence on the average
dielectric constant, see Figure 3b. 

To elucidate the effects of dielectric screening on the excitonic states, we analyse
theoretically E12 and the exciton binding energy Eb of monolayer WSe2 in different
dielectric environments by numerical solution of a 2D Mott-Wannier exciton model. In
atomic units the 2D Mott-Wannier Hamiltonian takes the form 
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H=
1
2μ ( ∂2

∂ x2
+ ∂2

∂ y2 )+W (r )

where  μ  is  the  exciton  effective  mass  and  W is  the  screened  electron-hole
interaction. We use the value μ = 0.19m0 from the ab-initio C2DB database (Ref.
37).  Following  Ref.  5,  the  screened  interaction  is  calculated  with  the  quantum
electrostatic  heterostructure  (QEH) model  (Ref.  24),  which  takes as  input  the  q-
dependent  dielectric  function  of  the  WSe2  monolayer  (obtained  from  density
functional theory, see Methods), the static bulk dielectric constants of the substrate
and capping materials (here represented by ), and the distance from the monolayer
to the substrate/capping. For all substrates the distance to the W atom in WSe2 was
set  to  d=5.3  Å.  This  value  was  fixed  for  the  case  of  an  hBN  substrate  and
corresponds to the weighted average of interlayer distance in bulk WSe2 and hBN.
However, the precise value of  d has very little effect on the exciton energies. The
results for E12 obtained from the Mott-Wannier model are shown in Figure 3b along
with  the  experimental  values.  The  agreement  is  truly  remarkable  given  the
parameter-free nature of the theoretical model. 

Since ∆ E12  is expected to be proportional to the exciton binding energy ( Eb ), a

measurement of 
∆ E12

 can reveal information on the quasiparticle gap in the TMD.

The simple 2D-hydrogen model with a Coulombic  1/εr  electron-hole interaction,

predicts 
Eb=9/8 (∆ E12)

. However, Chernikov et al. reported that Rydberg states in

a  monolayer  TMD  (on  a  low- substrate)  follow  a  non-hydrogenic  model  with

Eb=2∆E12

 (11).  The exciton binding energies estimated from the experimental

∆ E12  using  both  the  2D  hydrogen  and  non-hydrogenic  models  are  plotted  in

Figure 3c. In addition, we show  Eb  obtained from the numerical solution of the
Mott-Wannier model with electron-hole interaction obtained from the more elaborate
QEH model. It is clear that the non-hydrogenic model by Chernikov et al. deviates
significantly from the Mott-Wannier-QEH result, which in turn agrees fairly well with
the hydrogen model, in particular for larger -values. This shows that while the non-
hydrogenic  behaviour  of  the  Rydberg  series  prevails  for  2D  materials  in  low-
environments, the 2D hydrogen model is more appropriate for medium- to high-
environments. 

Previous theoretical studies based on the screened Keldysh models have shown that
the binding energy of the A exciton in TMDs has a power law dependence on  such
that  Eb=Eb

0
/κα , with  α=0.7  (33) and  Eb

0  the exciton binding energy of the
TMD in vacuum ( κ=1 ).  We find that our Mott-Wannier-QEH results agree well
with  this  model  for  α=0.66 .  The dashed black line shows the exciton binding
energy obtained from this model (33) using the calculated exciton binding energy of
monolayer WSe2 in vacuum of 450meV  (22, 33). 
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Figure  3d  shows  the  quasiparticle  gap  of  monolayer  WSe2 determined  from

Eg=E1s+Eb

 as  a  function  of  .  In  this  expression  
E1 s

 is  the  experimental

transition  energy  (cf.  Figure  1b)  while  
Eb

 is  obtained  from each  of  the  three

different models discussed above. Using 
Eb

 from the Mott-Wannier-QEH model,

the value of 
Eg

 for WSe2 on quartz is found to be 
2.07 eV

, whereas this value is

reduced by 330meV  upon encapsulation of the TMD in the high- dielectric HfOx.
To date, this is the largest reported reduction of the quasiparticle gap in monolayer
TMD induced by an oxide dielectric environment. 

Figure 3 Modulation of excitons and the band gap via dielectric engineering (a)
Peak  energies  for  1s  and  2s  exciton  states  as  function  of  average  dielectric
constants  ranging from 2.4 to 15, extracted from the second derivative spectra of
T/T0 in Figure 3. The dashed arrows are guide to the eye (b) The experimentally
obtained  E12  values  of  monolayer  WS2  as  a  function  of   are  compared  with
theoretical  results.  (c)  The   dependence  of  the  exciton  binding  energies
experimentally determined from the measured E12 using the 2D hydrogen model (

Eb=9/8 (∆ E12)
 and  non-hydrogen  model  (

Eb=2∆E12

).  The  exciton  binding

energies  obtained  from  the  numerical  solution  of  the  Mott-Wannier  model  with
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screened electron-hole interaction obtained from the QEH model are also shown. (d)
The variation of the band gap as function of , estimated from 

Eg=E1s+Eb

. 

Understanding the role of the dielectric environment on the exciton binding energy
and quasiparticle gap of a TMD is a first step to the development of specific exciton
potential profiles which can guide or trap excitons. To this end, we first study the
spatial  change  of  the  exciton  binding  energy  of  a  monolayer  WSe2 across  the
dielectric boundary with 

κ=2.4
 (quartz/WSe2) to κ=8  (quartz/WSe2/HfOx), see

Figure 4a. Figure 4b and c show the second derivative of the normalized optical
transmission spectra ( T /T 0 ) acquired at different points along the green line (see
Figure  4a)  cutting  across  the  aforementioned  dielectric  boundary.  The  peaks
corresponding to the 1s and 2s excitonic states of WSe2 taken from different spatial
positions shift according to the value of . More specifically, we find that ∆ E12  for

WSe2 on quartz is 
≈196meV

  and it reduces to 
≈107meV

 in the region of WSe2

on  HfOx.  These  values  are  consistent  with  data  shown in  Figure  2.  The  spatial
dependence of the exciton binding energy is summarised in the plot of Figure 4d,
where Eb=2∆E12 .   

To further demonstrate the ability to tune the exciton binding energy of 2D crystals
through  the  texturing  of  the  dielectric  environment  we  have  considered
SiO2/WSe2/PMMA stacks. Hence, we define a dielectric array corresponding to a
triangular lattice of holes using standard electron-beam lithography, see Figure 4e.
Spatially-resolved PL mapping reveals a shift in the WSe2 peak in correspondence of
the  holes  ( ε air=1,κ=2.45 )  with  respect  to  the  regions  covered  by  PMMA  (
ε pmma=3,κ=3.45 ),  see Figure 4f.  This shift  is consistent with the change in the

relative dielectric constant induced by the PMMA. 

In  first  approximation,  that  the  PL  peak  energy  is  given  by  
Eg=E1s+Eb

.

Experimentally  we observe that  
E1 s

 is  weakly dependent  on  ,  and it  can be

considered constant in the range of  of our sample, see Figure 3a. Hence, the
exciton binding energy shift is equal to the change of the quasiparticle energy gap:
∆ Eb (κ )=∆ Eg (κ ) ,  where  

∆ Eg (κ )=Eg (κ0 )−Eg (κ )
 and  for  the  case  of  the

experiment  
κ0=2.45

.  Furthermore,  using the relationship  

Eb=
Eb (κ0 )

κ0.66

 we can

estimate the value of  
k

 using  κ=(
Eb (κ0 )

∆ Eb
)
−0.66

+κ 0  and  Eb (κ0 )=225meV . The

computed values of ∆ Eb  and  are shown in Figure 4g,h and they agree very well
with what is expected for our choice of dielectrics. The change of the exciton binding
energy shows that  texturing  of  the  dielectric  environment  can be used to  create
potential wells for excitons in 2D materials, whilst maintaining their atomic integrity
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(see Figure 4h). Finally, we note that in our experiment we have chosen the diameter
of the holes to be sufficiently large to probe the photophysics of textured dielectrics
using PL mapping with a sub-diffraction limited laser beam (34). However, with the
use of  recently  demonstrated  tip  enhanced direct  laser  writing  techniques in  2D
materials (35), it should be possible to reduce the size of the disks in a regime where
quantum confinement becomes prominent.  

Figure 4 Spatial modulation of exciton binding energy in monolayer WSe2.  (a)
An  optical micrograph  of  monolayer  WSe2  spreading  across  different  dielectric
environments  on  quartz  and  photo-oxidised  HfOx  (red,  monolayer  WSe2;  purple,
HfOx). Scale bar: 15 µm. The second derivative of T/T0 of monolayer WSe2  taken
from different locations along the green line from position 1-5 (on quartz) to position
6-10 (on HfOx) showing the variation of the exciton ground stage 1s state (b) and the
first  excited  excitonic  state  2s  (c).  (d)  Lateral  modulation  of  the  exciton  binding
energy of  WSe2 along the  green dashed line  determined from  

Eb=2∆E12

.  (e)

Optical micrograph of SiO2/WSe2/PMMA stack with a triangular lattice arrangement
of holes defined by electron-beam lithography. (f) Spatially-resolved PL map of the
SiO2/WSe2/PMMA stacks showing the shift in peak position across the scanned area
(green box in panel (e)). Red lines outline the edges of the monolayer WSe 2. (g)
Exciton binding energy shift 

∆ EB

 and κ  extrapolated form the PL map data in

panel (f). (h) Line-cut across the red dashed line in panel (g) showing the change in
binding energy and 

κ
 according to the PMMA profile (blue dashed line).

Conclusion

In conclusion, we have demonstrated a giant tuning of the exciton binding energy in
monolayer WSe2 as a function of the dielectric environment. For the first time, we
employ  an  atomically  thin  high-k  dielectric  such  as  HfOx to  attain  an  average
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dielectric  constant  much larger  than that  of  the  TMD, i.e.  
k=15

,  leading  to  a

suppression close to 
30meV

 of the exciton binding energy in ambient conditions.

The quantitative changes of the exciton binding energies of monolayer WSe2 for a
range of dielectrics are in good agreement with our numerical solution of a 2D Mott-
Wannier  model  which  accounts  for  both  the  intrinsic  nonlocal  screening  in  the
monolayer and the screening from the dielectric environment. Finally, we study the
spatial  modulation  of  the  exciton  binding  energy  across  boundaries  of  different
dielectrics.  Hence,  we show experimentally that  a textured dielectric environment
can be used to create potential wells for excitons in 2D materials without hampering
the structural integrity of these atomically thin semiconductors. These results pave
the way towards the development of exciton metamaterials in the form of arrays of
textured dielectrics exhibiting a collective optical response which differs profoundly
from that of an individual potential well.
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Material preparation
Monolayer WSe2, hBN, HfS2  and In2Se3 were prepared by mechanical exfoliation of
their bulk crystals. A variety of heterostructures were produced using a dry-transfer
technique. For HfOx-supported WSe2 and HfOx-encapsulated WSe2, the HfS2 layers
are  first  used  for  stacking.  Once  the  heterostructures  are  complete.  The  laser
oxidation is then scanned onto the desired region to transform HfS2 into high-k oxide
following our previous report. The 473 nm laser wavelength with the energy density
of 53 mJ/m2 is used. The laser exposure time of 10 s and the step size of 0.5 m
are used. The WSe2, HfS2 were purchased from 2Dsemiconductors and hBN was
provided by Manchester Nanomaterials. 

PMMA/WSe2 samples  were  prepared  by  spinning  300nm of  PMMA (MicroChem
950K) on top of the mechanically-exfoliated crystals and curing at 180 °C for 60sec.
Electron-beam lithography (NanoBeam NB4) was used to define the patterns and
developed in a 3:1 IPA:MIBK solution (Sigma Aldrich). 

Transmission and PL measurements
The transmission measurement was performed at room temperature using a x white-
light source. The light was passed through the structures and transmitted light was
collected by an objective lens. The transmitted light was then dispersed in a 300
g/mm grating spectrometer and detected by a CCD.  

Spatially-resolved photoluminescence spectra were acquired in a custom-built setup
using a 514 nm laser  for  excitation  (34).  Light  was collected by a x50 objective
(Olympus MPLAN-FL) and dispersed by a 300 g/mm grating and collected by a CCD
camera.

Theoretical Methods

All ab initio calculations have been performed using the GPAW code(36). The 1s and
2s exciton binding energies are obtained by numerical solution of a 2D Mott-Wannier
equation. The quantum electrostatic heterostucture (QEH) model is used to obtain
the  screened  electron-hole  interaction  taking  the  full  q-dependent  dielectric
screening from the WSe2 layer itself and the substrate/capping layers into account
(24). 
The atomic structure of the WSe2 monolayer and the electron and hole effective
masses,  which  defines  the  exciton  effective  mass,  were  adopted  from  the
Computational  2D  Materials  Database  (C2DB)(37).  The  q-dependent  dielectric
function of the WSe2 monolayer, used as input for the QEH model, is calculated in
the random phase approximation (RPA) with local field effects included up to 50 eV
cut-off on the reciprocal lattice vectors and a similar energy cut-off on the sum over
empty  states.  In  these  calculations  the  monolayers  were  separated  by  15  Å  of
vacuum and a truncated Coulomb interaction is used in the out-of-plane direction to
avoid  unphysical  screening arising  from the  periodic  boundary  conditions  on the
supercell.
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Mid- and long-wavelength infrared (MW–LWIR) photo-
detectors are useful for many important applications, 
such as in medical, security, surveillance and material 

evaluation. A photodetector consists of light-sensitive material that 
can absorb electromagnetic radiation, and the photons are subse-
quently converted into a measurable current. In the MW–LWIR 
regime (3–15 μm), which corresponds to photon energy of around 
83–413 meV, there are only a handful of narrow bandgap semi-
conductors that are suitable for this purpose. The widely available 
infrared photodetectors are made of III–V and II–VI compound 
semiconductors, such as Hg1–xCdxTe, In1–xGaxAs and InSb (ref. 1). 
However, delicate and expensive processes are required to grow 
these compounds and the lattice matching between the materials 
and substrate further limits their availability.

The performance of infrared photodetectors is largely determined 
by the charge-generation efficiency from absorbing impinging pho-
tons on the active region, the lifetime and mobility of the charge 
carriers and the dark current from thermally activated carriers. The 
small binding energy (Eb < 25 meV) (refs. 2,3) of electron–hole pairs 
(excitons) in conventional narrow bandgap infrared photodetectors 
means the thermal energy at room temperature (25 meV) is suf-
ficient to overcome it, and thus excitons spontaneously dissociate 
into free carriers once formed. Similarly, the thermal-carrier gener-
ation and lattice phonon is evident at room temperature. Therefore, 
the infrared-generated carriers can easily decay to the ground state 

in the absence of cooling1,4,5. These processes shorten the carrier 
lifetime and prevent charge extraction that eventually lowers the 
efficiency of the photodetectors, especially at higher temperatures. 
The necessity to operate at substantially reduced temperatures to 
suppress these processes complicates the detector architecture and 
limits their sensitivity at room temperature.

For the past few years, two-dimensional (2D) materials and 
their heterostructures have emerged as a promising platform for 
electronic and optoelectronic applications, with a particular inter-
est in transition metal dichalcogenides (TMDs) semiconductors6–10. 
The out-of-plane van der Waals bond in 2D materials is advanta-
geous as it allows the 2D materials to be fabricated on any substrate 
without a lattice-matching constraint. Subsequently, the absence of 
dangling bonds on the surface would eliminate dark current from 
surface-recombination, which is ideal for photodetectors. 2D semi-
conductors have strongly bound excitons due to a strong quantum 
confinement and reduced dielectric screening11,12. The recombina-
tion of electron and hole, that is, the decay of the exciton, is lim-
ited by resonance stabilization due to the overlap of electron and 
hole wavefunctions, which results in an extended lifetime for the 
exciton5,13. The indirect bandgap character of many 2D semicon-
ductors benefits from phonons at a higher temperature, which aids 
in momentum conservation on photoabsorption. Therefore, the 
thermal effect could potentially have a positive effect for infrared 
photodetectors based on 2D semiconductors. Furthermore, 2D 

High oscillator strength interlayer excitons 
in two-dimensional heterostructures for 
mid-infrared photodetection
Steven Lukman1, Lu Ding� �1, Lei Xu2, Ye Tao3, Anders C. Riis-Jensen4, Gang Zhang5, 
Qing Yang Steve Wu� �1, Ming Yang� �1,2, Sheng Luo� �6, Chuanghan Hsu6, Liangzi Yao� �7, 
Gengchiau Liang� �6, Hsin Lin� �7, Yong-Wei Zhang5, Kristian S. Thygesen� �4, Qi Jie Wang� �3, 
Yuanping Feng� �2 and Jinghua Teng� �1

The development of infrared photodetectors is mainly limited by the choice of available materials and the intricate crystal 
growth process. Moreover, thermally activated carriers in traditional III–V and II–VI semiconductors enforce low operating tem-
peratures in the infrared photodetectors. Here we demonstrate infrared photodetection enabled by interlayer excitons (ILEs) 
generated between tungsten and hafnium disulfide, WS2/HfS2. The photodetector operates at room temperature and shows an 
even higher performance at higher temperatures owing to the large exciton binding energy and phonon-assisted optical transi-
tion. The unique band alignment in the WS2/HfS2 heterostructure allows interlayer bandgap tuning from the mid- to long-wave 
infrared spectrum. We postulate that the sizeable charge delocalization and ILE accumulation at the interface result in a greatly 
enhanced oscillator strength of the ILEs and a high responsivity of the photodetector. The sensitivity of ILEs to the thickness 
of two-dimensional materials and the external field provides an excellent platform to realize robust tunable room temperature 
infrared photodetectors.
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semiconductors have been shown to integrate easily with metals14 
or graphene15, which makes them suitable for optoelectronic appli-
cations as facile carrier extraction or injection sites.

Graphene has attracted numerous interests in MW–LWIR 
detection due to its broadband absorption and high carrier mobil-
ity. However, the low-absorption coefficient, high dark current 
and short-carrier lifetime hamper the performance16. An intrinsi-
cally narrow-bandgap black phosphorus17,18 shows a thickness and 
electrostatic-gating bandgap dependence adjustable from 0.2 to 
2.0 eV (0.62–6.2 μm). The bandgap can be further extended down to 
0.15 eV (8.3 μm) by alloying with arsenic (black AsP)19,20. However, 
this material is not thermodynamically stable. Alternatively, a hand-
ful of narrow-bandgap TMD semiconductors with Egap < 1 eV have 
also emerged recently as promising candidates for infrared detec-
tors, such as (Zr, Ni, Pd, Pt, Bi)Se2/Te2 (ref. 21). Nonetheless, the dif-
ficulties in fabrication and controlling the bandgap impose greater 
challenges on their practical applications22–24.

When two dissimilar TMD semiconductors are stacked together 
to form a type II heterostructure, a space-indirect interlayer exci-
ton (ILE) will form through charge hopping between materials. 
These ILEs have a large Eb (refs. 25–27), which is comparable to that 
of the intralayer excitons generated within parent materials11,12. 
The photoactive range of ILEs is determined by the band-energy 
alignment of the constituent material, which offers the potential 
to utilize ILEs for a tunable infrared photodetector. Nevertheless, 
the space-indirect character of the ILE renders it with a weak 
optical absorption25,26,28. Here we explore the unique properties of 
ILEs in a 2D TMD heterostructure formed between WS2 and HfS2 
and demonstrate a highly responsive room-temperature-operated 
MW–LWIR photodetector with a tunable detection range. Based 
on the study of the thickness dependence, response to electric 
field and excitation density and ab initio calculations, we postulate 
that the observed ILEs have the same order of oscillator strength 
as intralayer excitons. An enhanced spatial orbital overlap and 

phonon-assisted momentum conservation favour the optical tran-
sition of ILEs. The findings here provide insights to tailor ILEs for 
optoelectronic applications that offer a promising way to make a 
compact and efficient room-temperature photodetector that can be 
extended down to the far infrared.

Formation and characteristics of ILEs. The conduction band 
minimum (CBM) and valence band maximum (VBM), relative 
to vacuum24, of monolayer WS2 and HfS2 are illustrated in Fig. 1a. 
HfS2 (d0 semiconductor) was chosen for this study because it has a 
deep CBM and high electron mobility, in which it is favourable for 
ILE electrons to reside when paired with d2 semiconductors (that 
is, WS2) (ref. 29). Different thicknesses of HfS2 were laid on top of 
monolayer WS2 to maintain a direct bandgap for optical excitation. 
For subsequent discussion, ‘thinner’ and ‘thicker’ HfS2 refer to ~3 
and 30 layers (bulk), respectively, unless otherwise specified.

The optical responses of individual TMDs and the heterostruc-
tures are plotted in Fig. 1b. The reported absorbance was calculated 
from the differential reflectance contrast of the flakes and normal-
ized to the thickness (details in Supplementary Information). The 
A exciton peak, which is associated with the band-edge transitions 
in monolayer WS2, centres around 2.04 eV (Fig. 1b). This value 
is close to the previously reported value30. However, HfS2 is an 
indirect-bandgap material, so the bandgap is inferred from extrapo-
lation to the abscissa. We notice the main excitonic peaks of the 
heterostructures are slightly broadened and redshifted (1.94 eV) 
compared with those of the parent materials. The observed broad-
ening, ΔΓ, is associated with a shortened lifetime of the photo-
generated excitons as τ = ħ/ΔΓ (ref. 31) (where ħ = is the Planck 
constant/2π) due to charge hopping at the interface.

Interestingly, the heterostructure has an additional strong absorp-
tion peak in the lower energy region as shown in Fig. 1b, which  
is not present in the constituent materials. The heterostructure 
peaks are centred at 0.24 eV for WS2/3L HfS2 and at 0.21 eV for WS2/ 
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Fig. 1 | Optical characteristics of ILEs in WS2/HfS2 heterostructures. a, Energy band diagram illustrating the VBM and CBM of monolayers of WS2 and 

HfS2. b, Absorption spectra of the parent materials (WS2 and HfS2) in the visible range, and the stacked heterostructures in the infrared and visible ranges 

normalized to the thickness. λexc�=�532�nm. 1L, one layer; 3L, three layers; bulk, ~30 layers. c, The effect of an externally applied Vg that ranges from −40�V to 

+40�V on the absorption spectra of monolayer WS2 with 3L HfS2 (left) and bulk HfS2 (right). d, The evolution of ILE PL spectra observed in monolayer WS2 

with 3L HfS2 (top) and bulk HfS2 (bottom) as a function of laser power. The ILE PL spectra blueshift with increasing power (excitation density). The shifts are 

more prominent in bulk HfS2 than in 3L HfS2. The ILE energy in WS2/bulk HfS2 is lower than that in WS2/3L HfS2. The PL spectra are bi-Gaussian for 3L HfS2 

and mono-Gaussian for bulk HfS2. a.u., arbitrary units. 
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bulk HfS2. The absorption becomes stronger and redshifts with 
increasing layers of HfS2 (Extended Data Fig. 1). These low-energy 
absorptions show no obvious sample angular dependence (Extended 
Data Fig. 2). Furthermore, the peak energy is responsive to an exter-
nal electric field (Fig. 1c). The gate dependence suggests these peaks 
are associated with ILEs with the dipole moment pointing from 
HfS2 to WS2, which substantiates the charge transfer at the interface. 
Strong intralayer exciton quenching of WS2 (Supplementary Fig. 4) 
also suggests electron transfer to HfS2 (refs. 32,33). We can rule out the 
possibility of energy transfer as the photoluminescence (PL) of HfS2 
decreases compared to that of bare HfS2.

Exciton accumulation and band structure at the interface. The ILE 
PL (λexc = 532 nm) is prominent even at room temperature, which 
demonstrates a robust radiative recombination. The PL spectral 
shape changes with the thickness of HfS2—a thinner HfS2 consists 
of a broader emission peak made of two Gaussian peaks (Fig. 1d).  
The energy difference between the two peaks (ΔILE) decreases 
with an increasing number of HfS2 layers and finally merges into 
one broad peak in bulk HfS2 (Fig. 1d and Extended Data Fig. 3). 
Increasing excitation density results in blue-shifts of overall PL peak 
(Fig. 1d). The more substantial blueshift in WS2-bulk HfS2 indicates 
a stronger excitonic dipole-dipole repulsion34.

We also found that the PL intensity in WS2/bulk HfS2 satu-
rates at a lower fluence than the thinner counterpart (8 × 104 for 
bulk versus 5 × 105 W μm–2 for 3L HfS2; Extended Data Fig. 4), 
which confirms a more prominent exciton–exciton annihilation 
in thicker samples. The higher density of ILEs in the WS2/bulk 

HfS2 interface is responsible for the stronger excitonic repulsion 
and annihilation observed. We fitted the integrated PL intensity 
(I) with the exponential function I ≈ CPα, with C a constant and P 
the excitation power, and we obtained α ≈ 0.8–0.9 (Extended Data 
Fig. 4). Although the dependence is sublinear, α is higher than in 
typical p–n junctions (~0.5) (refs. 14,34–36), in which ILEs favour-
ably separate into charge carriers. The fact that we encountered an 
unusually high sublinear power dependence suggests ILEs prob-
ably remain as excitons.

The accumulation of ILEs at the interface is also supported by a 
simple estimation of ILE density via the plate capacitor formula37. 
The maximum ILE density based on the blueshift yields a lower 
boundary value of nILE = 4.7 × 1011 cm−2 and 1.3 × 1012 cm−2 for WS2 
with 3L and bulk HfS2, respectively (details in Supplementary 
Information). These values are comparable with the intralayer 
WS2 exciton density generated from the same excitation density, 
which is in the order of 1011–1012 cm−2. We postulate that the 
observed high exciton density at the interface is due to band bend-
ing, which favours electron and hole accumulation in HfS2 and 
WS2, respectively.

To verify the interfacial band bending, we studied the photore-
sponse of the heterostructure under the illumination of a 532 nm 
laser. A schematic diagram of the device used in this study is given 
in Fig. 2a. The current–voltage (I–V) curves under different exci-
tation powers are shown in Fig. 2b. As the metal–TMD junction 
forms an ohmic contact at near-zero voltage (Supplementary Fig. 8),  
the sign of the photovoltage and photocurrent correlates with the 
band structure at the interface. The photocurrent shifts the I–V 
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a Vds was used for charge extraction when the device was used as a photodetector. b, I–V curves of the heterostructure in WS2/3L HfS2 and WS2/bulk HfS2 

at different excitation powers. The curves shift to the second quadrant with increasing power, which indicates charge carrier accumulation at the interface. 

c, Schematic diagram illustrating the band bending at the interface. Details of the band bending are given in the text. We assumed that only the VBM of 

HfS2 shifts relative to the VBM of WS2 as the number of layers increases, because the calculation shows the shift in CBM is relatively small. All of the 

measurements were conducted at room temperature and photoexcitation was achieved by laser with the photon energy centred at 2.33�eV. d, Band profiles 

of 1L-WS2/3L-, 5L- and 7L-HfS2 heterojunctions without an external bias (Vg�=�0). The energy reference was set to be the vacuum level (Evac�=�0�eV). The 

areas highlighted in grey area are the spaces between WS2 and HfS2. EF is plotted as a black dashed line. The black dots denote the location of atoms in the 
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curve into the second quadrant, which suggests that carriers accu-
mulate near the junction, instead of being depleted as occurs in a 
typical p–n diode.

Band bending at the heterostructure junction of 2D materials is 
possible and has been verified experimentally38–40. The band bend-
ing at the heterostructure junction is dependent on the relative 
Fermi energy level (EF) and carrier concentration at the junctions. If 
we assume a similar EF for 3L and bulk HfS2, the magnitude of band 
bending in both cases is expected to be similar, yet with a narrower 
depletion width in 3L HfS2 as space is more constrained than in bulk 
HfS2 (Fig. 2c). We performed a theoretical calculation to estimate 
the band-bending diagram through a self-consistent calculation for 
charge density and potential in real space; the results are plotted in 
Fig. 2d (for WS2/3L, 5L and 7L-HfS2). The change in band bending 
when an external bias is applied is shown in Extended Data Fig. 5. 
The reduction of the bandgap in bulk HfS2 is mainly reflected as the 
upward shift of the VBM of HfS2 as the CBM hardly changes with 
thickness (Supplementary Fig. 17). In this model, we assume that 
the band bending in monolayer WS2 is small or non-existent as it 

is physically not practical. The model clearly shows an increasing 
depletion width with the number of HfS2 layers.

The aforementioned junction at the heterostructure interface 
acts as a trap for ILEs, as illustrated in Fig. 2c, and results in their 
accumulation at the interface. These trapped ILEs work as antennas 
that borrow their oscillator strength, f, from the surroundings41,42. 
From a classical viewpoint, when an electron is bound to the nuclear 
framework and has an oscillating dipole, the oscillator strength 
f is directly proportional to the integral over the absorption band. 
The ILE absorption in this study has the same magnitude as those 
of intralayer A excitons (Fig. 1b), and thus direct ILE generation 
via photoexcitation is highly favourable. Also, the accumulation of 
ILEs could have enhanced the electron–hole overlap at the interface, 
which overcomes the spatially indirect nature of the transition and 
contributes to the large f, as proposed by Lau et al.43. This is an exper-
imentally observed large interband oscillator strength of ILEs in 2D 
materials27,44,45, which is generally two orders of magnitude smaller 
than the intralayer exciton f due to the spatially separated wavefunc-
tion. To better understand the nature of the optical transition in the 
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energy prohibits hybridization and thus explains the angular independence between the two materials (detail in the text). e, Ab initio calculated interface 

exciton Eb as a function of number of HfS2 layers (blue squares) on the right axis. Black and red filled circles are the theoretical and experimental redshifts, 

respectively, of the ILE optical band gap (Eoptgap) plotted as a function of the number of HfS2 layers. Dashed lines are fitted exponential functions. The 

mean�±�s.d. of the experimental values result from the averaging of multiple measurements. 
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ILEs, we conducted an ab initio calculation of the band structure at 
the heterostructure interface.

Calculated band structure at the heterointerface. In type II het-
erostructures formed between WS2 and HfS2, the VBM of WS2 shifts 
from the K point to the Γ point. The states in the K point are mainly 
built by d orbitals of the W atom and are hardly affected by HfS2 
due to a large separation between the layers. However, the S pz state, 
which contributes to the occupied states in the Γ point, can directly 
interact with neighbouring layers and shifts the VBM to the Γ point. 
Also, the maximum energy differences at the K and Γ points in 
WS2 are very small (Fig. 3a), and thus when spin–orbit coupling is 
introduced, it raises the energy at the K point and moves the VBM 
back to the K point (details in the Supplementary Information). In 
contrast, the CBM of HfS2 is unaffected by the hybridization and 
remains at the M point.

From the ab initio calculation, we found the hole states at the Γ 
point extend over both the WS2 and HfS2 layers (Fig. 3b). Hence, 
the interlayer coupling strength is substantial at the Γ point due to 
interlayer hybridization, and dependent on the thickness of HfS2. 
It is worth noting that the HfS2 orbital contribution to the VBM 
increases with the number of layers (colour scale in Fig. 3a), which 
means the optical transition from the Γ to the M point becomes less 

interlayer (more intralayer) in character and the matrix elements 
for this transition are more favourable. In contrast, the wavefunc-
tion overlap at the K point is negligible. Therefore, we conclude that 
the observed ILE absorption originates from the Γ–M instead of the 
K–M transition even though the VBM could be located at the K 
point after hybridization (Fig. 3c). It is worth mentioning that the 
observed ILEs share certain similarities with interface excitons in 
lateral heterostructures, partly due to the charge delocalization and 
wavefunction overlap.

The large energy difference of the CBM and VBM in WS2 
and HfS2 in our heterosystem results in a non-degenerate and 
non-interacting ILE and intralayer exciton, which explains the small 
or negligible angular dependence on the ILE oscillator strength and 
energy. This outcome is in agreement with previous work by Falko 
and co-workers.46,47. In their study, they observed a prominent angu-
lar dependence (Φ) of the ILEs close to 0 and 60° rotation angles due 
to the strong hybridization of an ILE with an intralayer exciton via 
interlayer conduction-band tunnelling.

We further investigated the decrease in the optical bandgap of 
ILEs with increasing thickness of HfS2 by calculating the quasipar-
ticle bandgap at the GW level and the ILE binding energy from 
first-principles calculations for the heterostructure (Supplementary 
Section 11). The optical band gap can be determined as 
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Eopt
gap ¼ Eqp

gap � Eb;IE
I

. where Eqp
gap

I
 is the quasiparticle bandgap and 

Eb;IE
I

 is the ILE binding energy (Fig. 3d). As a consequence of the 
higher dielectric screening with increasing HfS2 layers, we found 
that both Eqp

gap

I
 and Eb;IE

I
 decrease, which results in an overall small 

redshift of Eopt
gap

I
 (Fig. 3e). Hence, the change in Eopt

gap

I
 is a result of a 

complex interplay of both factors, which can be manipulated to tune 
the ILE energy.

Highly sensitive and responsive infrared photodetector. The 
enhanced optical properties of the ILEs of WS2/HfS2 heterostruc-
tures renders them suitable for infrared photodetection. The device 
structure is shown in Fig. 2a. The device was operated in a photo-
conductive mode, with the voltage applied between the drain and 

source (Vds) to dissociate the ILE and extract free carriers. The pho-
tocurrent is defined as Iph = |Ids,illum| – |Ids,dark|, where Ids,illum and Ids,dark 
are the current under illumination and the dark current, respec-
tively. Figure 4a shows the I−V curve of WS2/3L HfS2 when photoex-
cited with an infrared laser (λexc = 4.7 μm). When a negative voltage 
is applied to the drain relative to the source, Iph increases because 
the charge extraction is favourable under this condition, which we 
called a positive feedback (Fig. 4b, left). However, a positive Vds con-
fines the ILE to the interface, which results in more recombination 
(relative to zero Vds) and fewer extractable carriers (negative feed-
back; Fig. 4b, right). A thicker HfS2 has a larger Ids,dark, which stems 
mainly from a stronger confinement and recombination of the elec-
trons and holes at the interface. We also found that the change in 
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interlayer bandgap energy did not noticeably affect the dark current 
(Extended Data Fig. 6). From the current generated, we calculated 
the responsivity, which is defined as (R = Iph/Pdevice), where Pdevice is 
the effective laser power on the sample area, Pdevice = PinAdevice/Alaser, 
Pin is the incident laser power, Adevice is the effective sample area 
and Alaser is the laser spot area. Peak responsivities of 8.2 × 102 and 
9.5 × 102 A W−1 were observed for WS2/3L HfS2 on laser illumina-
tions of λ = 4.7 and 4.3 μm, respectively, at a gate voltage (Vg) of 
+40 V (Fig. 4c). With increasing exciton concentration (as Pdevice 
increases), the Iph and R decrease primarily due to a higher exci-
ton scattering and recombination. We note that the thickness of the 
HfS2 and the bias Vg determine the value of R, which is expected as 
both variables determine the ILE absorption edge.

We analysed the fundamental operating speeds of the WS2/
HfS2-heterostructure photodetectors by calculating the aver-
age lifetime of the photocarriers in the channel. Using the transit 
time (τtransit) calculated from the charge carrier mobility (details in 
Supplementary Information), we can estimate the carrier lifetime 
(τlifetime) from the photoconductive gain G by using τlifetime = G × τtransit 
(ref. 48). Figure 4d shows the calculated carrier lifetime of the ILEs 
under different Vg and excitation power along with the respec-
tive fitted values by using the Hornbeck–Haynes model (details in 
Supplementary Information). The calculated response time is ~1 ns 
at Vg = 0 V with Vds = −1.5 V and Pdevice ≈ 400 nW. We can also 
extrapolate the carrier lifetime of the photodetector to an excitation 
power that is not achievable in our set-up. Based on the model, a 
fundamental response time of ~1 ps is possible at Pdevice = 1 mW at 
Vds = −1.5 V. The fast intrinsic response time is anticipated because 
HfS2 and WS2 have high mobilities for electron and hole transport, 
respectively49,50. Nonetheless, the operating speed of our device is 
in the millisecond range (Extended Data Figs. 7 and 8). It is not the 
fastest infrared photodetector reported, but we believe there is room 
for improvement.

Discussion and future directions. Figure 5a compares the respon-
sivity of the heterostructures in our study to other 2D-based photo-
detectors (hybrid 2D-systems are excluded), regardless of their bias 
voltage and excitation power. The high responsivity of the Mo/W 
2D photodetector in visible and near infrared (NIR) range results 
from the direct bandgap nature of the band-edge excitation. The 
enhanced absorption of the ILEs in this study boosted the respon-
sivity by two orders of magnitudes in the MW–LWIR range, which 
makes it comparable to those of Mo/W-based photodiodes in the 
visible and near infrared range (Fig. 5a). Furthermore, the intrinsic 
dipole of an ILE, which is responsive to the externally applied field, 
can be exploited to dynamically tune the detection range and sen-
sitivity (Fig. 5b).

The calculated detectivities, D*, of our WS2/HfS2-heterostructure 
photodiodes is higher than those of other commercially available 
infrared photodetectors, especially for room and elevated tempera-
ture operations (Fig. 5c). The spectral broadening and increase in 
phonon-assisted transition at high temperatures enhance the detec-
tion range and detectivity, respectively. We also demonstrated that 
absorption is tunable and extendable up to 20 μm (0.06 eV) by elec-
trostatic doping, as shown in Extended Data Fig. 9. Theoretically, the 
absorption bandwidth can be further extended to the far-infrared 
range, either by applying a higher Vg or choosing a suitable combi-
nation of materials with the right band alignment. The versatility 
of ILEs in 2D heterostructures is not limited to two materials (AB 
stacking). Further stacking with similar or dissimilar materials on 
top of the second material would create either ABA or ABC struc-
tures (Extended Data Fig. 10). ABA stacking potentially produces a 
‘quantum well’ structure that increases the efficiency further from 
AB stacking, whereas ABC stacking allows the simultaneous forma-
tion of two different ILEs, which could be tailored to either dual 
photodetection or photoemission systems.

Conclusions. In summary, a tunable, highly responsive and 
room-temperature MW–LWIR photodetector based on a WS2/HfS2 
heterostructure has been demonstrated. The absorption band can 
be tuned and extended to 20 μm under a modest electric field, far 
beyond the cutoff wavelength of black phosphorus/black AsP. A 
strongly enhanced ILE absorption due to the unique band align-
ment and orbital hybridization contributed to the strong photo-
response. Our study provides a glimpse of the physics of ILEs in 
the unique heterostructures and offers a promising technology for 
infrared photodetection and, potentially, a photoemitter.
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Methods
Sample fabrication. Multilayer samples were fabricated by means of a mechanical 
exfoliation transfer process. For this, we initially exfoliated WS2 and HfS2 flakes 
from bulk crystals (bought from 2D semiconductors) onto polydimethylsiloxane 
substrates. Monolayer regions of these flakes were identified via optical microscopy, 
atomic force microscopy and Raman spectroscopy. Then, we first transferred the 
WS2 flake onto the target substrate, a silicon wafer covered with a SiO2 layer and 
predefined metal markers. Subsequently, the HfS2 flake was transferred on top of 
the WS2 flake. After the transfer, the samples were annealed under Ar gas at 150 °C 
for a few hours.

Optical spectroscopy. The absorption spectra were obtained by reflectance 
measurements of the samples at room temperature. The reflectance measurements 
were performed using the broadband emission from a tungsten halogen lamp. The 
spot size on sample was about 2–3 μm. The reflected light was collected by the 
same objective and deflected by a beam-splitter to a spectrometer equipped with 
a CCD (charge-coupled device) camera cooled to liquid-nitrogen temperature. 
For λ > 1,700 nm, we utilized a Fourier transform infrared set-up (Bruker FTIR 
spectroscopy, Vertex 80v) with a HgCdTe detector and Hyperion 2000 microscope 
to measure the sample reflectance. A commercial Au mirror was used as the 
reference. The reflectance spectra of the samples were determined by normalizing 
them to the reflection spectra of the substrate, which is highly transparent in 
the wavelength range of interest. Quartz and silicon substrates was used for the 
measurements in the visible to NIR, and mid-to-far infrared, respectively. Here, 
Δr/r = (rf – rs)/rs, where rf denotes the reflectance from the sample on the substrate 
and rs is the reflectance of the substrate. For a thin film, the differential reflectance 
spectra Δr/r is related to the absorption coefficient of the material α(λ) as51,52:

Δr
r
¼ 4n

n20 � 1
αðλÞ ð1Þ

where n is the refractive index of the flakes under investigation and n0 is the 
refractive index of the substrate. For the heterointerface, the average value of n 
is used to calculate the absorption coefficient. The values reported in this study 
are the absorption coefficient of the material normalized to its thickness for an 
impartial comparison.

The PL of the heterostructures in the infrared range was measured in the same 
set-up by exciting the samples with a 532 nm laser. Raman and PL (<900 nm) 
measurements were performed in a photon scanning tunnelling microscope 
set-up (Alpha 300S, WITec Gmbh). A continuous-wave laser at 532 nm was 
coupled to a ×50 microscope objective and focused on a submicrometre spot on 
the sample surface. PL and scattered light were collected with the same objective, 
passed through long-pass filters, coupled into a grating spectrometer and detected 
with a Peltier-cooled CCD. Information was extracted from the spectra by using 
a fitting routine undertaken manually, which yields the integrated intensity, 
spectral position and full-width at half-maximum for each spectral feature 
extracted using a Gaussian fit. All of the experiments were performed under a low 
excitation density to obtain a reasonable signal-to-noise ratio and to minimize the 
generation of trions.

Device structure and characterization. The metal contact patterns were 
written using electron beam lithography (Elionx ELS7000) and an electron beam 
evaporator (Denton Vacuum Explorer). The devices were initially coated with 
polymethyl methacrylate by spin coating at 5,000 r.p.m. for 90 s. The post bake 
was performed at 180 °C for 2 min. The design of the electrodes was done with 
AutoCAD software. The patterns (designed with AutoCAD) were then written 
with a 100 pA current and a registration dose of 960 μC cm–2 (0.06 μs dot–1). The 
written patterns were developed by using methyl isobutyl ketone and isopropyl 
alcohol with a developing time of 70 s. The electrode pads consisted of Ti and Au, 
in which Ti was used to improve the adhesion, with thicknesses of 5 and 50 nm and 
deposition rates of 0.1 and 1 A s–1, respectively. The samples were then soaked with 
acetone for 24 h for the metal contact liftoff. The heterostructures were exfoliated 
on SiO2, which provides insulation from the heavily doped silicon back gate. 
Electrostatic doping was performed by grounding the gold contact and applying a 
voltage to the back gate. Furthermore, the silicon chip was glued on a ceramic chip 
carrier using conductive silver paste. The metal contacts of the source and drain 
as well as the back gate were wire bonded to the selected pins using metal wires. In 
a typical measurement, the source and back gate were biased by two independent 
Keithley (2450 and 2420) sourcemeters and the drain is the common ground. The 
sourcemeters were controlled by a computer to measure the I–V relation of the 
device. The responsivity measurement in the infrared range was measured with 
mid-infrared lasers (tunable continuous wave/pulsed external cavity quantum 
cascade laser). The lasers were focused by an infrared lens to a final spot size of 
approximately 100 μm.

Experimental data analysis. For each 2D layer and heterostructure, the absorption 
and PL were measured at room temperature, unless specified. To take into account 
the spatial inhomogeneity of the ILE absorption/emission, spatial averaging was 
employed. For this, the average absorption/emission energy of the ILE, and its s.d., 

were calculated from the values extracted from a routine procedure for normal 
curve fitting applied to the spectra collected from the heterostructure regions. On 
average, 5–10 spectra were evaluated for each individual heterostructure. Multiple 
devices were made by stacking the 2D materials together, without any control on 
the alignment.

Computational methods. The first-principle calculations for the band structure 
as a function of the number of HfS2 layers were performed by using the Vienna 
ab initio simulation package53 with a generalized gradient approximation of the 
Perdew–Burke–Ernzerhof (PBE) functional54 without spin–orbit corrections 
included. The ion–electron interaction was treated by the projector-augmented 
wave method55, and the van der Waals interaction was taken into consideration 
using the DFT-D3 method56. The electron wavefunction was expanded on 
a plane-wave basis set with a cutoff energy of 450 eV. A 6 × 6 × 1 Γ-centred 
Monkhorst–Pack grid was adopted for the Brillouin-zone integration. A 
vacuum slab of more than 15 Å was applied along the z direction (normal to the 
interface) to avoid spurious interactions between repeated slabs. To construct 
the quasiparticle bandgap at the GW level, a GW calculation was done using 
GPAW57,58 for the WS2 and HfS2 monolayers with a plane-wave cutoff energy of 
800 eV for the ground state and 300 eV for the GW calculation on a 18 × 18 × 1 
k-point grid, which included spin–orbit corrections. The quasiparticle bandgap 
was then constructed by correcting the GW monolayer band structures with the 
N-dependent screening correction calculated from the quantum electrostatic 
heterostructure model59 and an N-dependent hybridization correction from the 
PBE band-structure calculations for each k point in each band. This method has 
previously been shown accurate for calculating the band structure of multilayer 
van der Waals heterostructures60. The ILE binding energies were calculated by 
solving the Mott–Wannier equation with the screened electron–hole interaction 
calculated within the quantum electrostatic heterostructure model. The effective 
electron and hole masses were calculated from the PBE band structures. 
Structural relaxation was carried out using the conjugate-gradient algorithm 
until the total energy converged to 10−4 eV and the Hellmann–Feynman force on 
each atom was less than 0.01 eV Å–1, respectively.

The calculation of the band diagram of WS2/HfS2 was conducted through 
a self-consistent calculation for the charge density and electric potential in real 
space. The tight-binding Hamiltonian of 1L-WS2/3L-HfS2 was interpolated by 
a Wannier basis via the Wannier90 package61, for which the input was provided 
from the first-principles results. In the tight-binding Hamiltonian, we considered 
W d, Hf d and S p orbitals for the Wannier bases and the Hamiltonian can 
reproduce bands around the highest valance band and the lowest conduction 
band obtained from the first-principles calculations. The spatial electric 
potential was obtained by solving self-consistently the Poisson equation, with 
the charge density obtained from the wavefunction of the Wannier tight-binding 
Hamiltonian. In the self-consistent calculation, we applied the real-space finite 
element method62 to numerically solve the Poisson equation, and the relative 
permittivities for HfS2 and WS2 were 2 (ref. 63) and 4.13 (ref. 64), respectively. 
To approximate the experimental bulk-HfS2 device, the 3L-HfS2 Hamiltonian 
was further extended to various numbers of layers of HfS2. The extension was 
achieved by inserting n layers of the HfS2 Hamiltonian with interlayer coupling 
extracted from the 3L-HfS2 layers. 1L-WS2 was lightly n doped with a doping 
concentration ~1 × 106 cm−2 and the HfS2 was intrinsic. The band profiles were 
plotted according to the band-edge shifting information given by the calculated 
electric potential profile.

Data availability
The data within this paper are available in a public data repository at https://doi.
org/10.6084/m9.figshare.12220454 (ref. 65). Source data are provided with this paper.
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8.5 Paper V
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Under preparation

List of points to be addressed:

· General revision.
· Obtain calculated quasi-particle energies for twisted MoSe2/WS2.
· Implement Mott-Wannier-QEH model for calculating screened exciton binding en-

ergies for excitons with electron and/or hole states located on both layers in bilayer
structures.



Excitons and Band Alignment in 2D van der Waals Heterostructures: Ab-Initio
Calculations versus Experiments

Anders C. Riis-Jensen1 and Kristian S. Thygesen,1
1Center for Atomic-scale Materials Design, Department of Physics,

Technical University of Denmark, DK - 2800 Kongens Lyngby, Denmark
(Dated: July 12, 2020)

In this study we resolve a long-standing issue in exciton physics of van der Waals heterostructures
(vdWHs); we address the matter of to which accuracy ab-initio calculated intra- and interlayer
exciton energies can be expected to agree with experimentally measured exciton energies. We
do this by computationally quantifying substrate-, finite temperature-, and twist-angle effects on
calculated exciton energies within ab-initio many-body perturbation theory methods. Such effects
affects exciton energies in experimental measurements, but are not present in conventional ab-
initio many-body calculations. We combine ab-initio many-body GW and BSE calculations with
electrostatic and computational effective models, to perform accurate many-body calculations for
vdWHs containing up to more than a thousand atoms. Specifically we employ a self-consistent
numerical scheme to correct the wrong interlayer hybridization predicted by non-self-consistent ab-
initio many-body calculations, such as the G0W0 approximation. From this we directly calculate
the effect of substrate and twist-angle effects on the exciton energies, which are shown to redshift
the exciton energies up to about 30-50 meV and 60-120 meV respectively. By including these effects,
we calculate exciton energies for several commensurate and incommensurate few-layer vdWHs and
compare the calculated exciton energies to a large library of experimentally measured energies
obtained from the literature. By including computed substrate-, temperature, and twist-angle-
effects on the calculated exciton energies we benchmark intralayer excitons can be calculated to
within 20 meV of the experimentally measured values and significantly improves upon the accuracy
compared to experimental measurements. We also find that interlayer excitons can be calculated
to within the experimental uncertainty for incommensurate bilayers, while the calculated interlayer
exciton energies in commensurate MoS2/WS2 and MoSe2/WSe2 are overestimated and outside the
experimental range of uncertainty. The commensurate bilayers are furthermore subject to degenerate
intra- and interlayer excitons resulting in a further blueshift of the exciton energies upon rotation,
and we show it is necessary to treat the interlayer hybridization self-consistently from the quasi-
particle band line-up to correctly quantify this energy shift.

I. INTRODUCTION

The exfoliation of monolayer graphene in 20041 opened
a new paradigm of materials science by introducing the
class of 2-dimensional (2D) materials. The class of 2D
materials are unique in the field of materials science and
are characterized by their atomically thin extension in
the out-of-plane direction. Since then, the discovery
of monolayer MoS2

2, the first 2D semiconducting ma-
terial showing extraordinary strong excitonic effects3,4
and the discovery that any set of 2D monolayers can be
stacked into so-called van der Waals heterostructures5–7
(vdWHs) opened up new pathways and potentials for the
world of 2D materials. In recent years special attention
have been paid to experimentally investigate and map
out intra- and interlayer exciton energies in few layer
semiconducting vdWHs (see table I). Furthermore, de-
tailed experiments have been carried out to prove the ex-
istence of a superconducting phase in bilayer graphene8,
intralayer to interlayer exciton dissociation times9, Moiré
effects on exciton energies9, twist-angle dependence of ex-
citon energies10, and fascinating intra- and interlayer ex-
citon hybridization effects11. While the vdWHs are char-
acterized by weak interlayer van der Waals bonds and
only little interlayer orbital hybridization, the above ex-
periments prove that it becomes increasingly important

to accurately incorporate interlayer hybridization effects
into ab-initio calculations. Non-self-consistent state of
the art ab-initio methods, such as the G0W0 approxima-
tion, are challenged by the fact that such calculations
cannot be carried out for large vdWHs and that the
description of the interlayer hybridization is inhereted
from the DFT band line-up and thus fundamentally
wrong.12,13 Furthermore, experiments are carried out on
a supporting substrate and for vdWHs at different rela-
tive twist-angles between the layers. This have an effect
on the measured exciton energies, however these effects
are not contained in conventional ab-initio calculations.
This makes a one-to-one comparison between experimen-
tal observations and ab-initio calculations cumbersome,
and a study quantifying these effects in the literature is
needed to benchmark the effect on exciton energies to be
able to properly compare experimental observations with
ab-initio calculations.
In this work we resolve this issue and benchmark

to what accuracy intra- and interlayer energies can be
calculated ab-initio compared to experimentally mea-
sured exciton energies for large vdWHs. We calculate
the intra- and interlayer exciton energies for 6 different
TMD heterobilayers by combining state of the art ab-
initio computational many-body methods with effective
electrostatic and computational models. Specifically we
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treat the interlayer dielectric screening with the previ-
ously developed QEH model14 and apply a herein devel-
oped computational model for correctly treating the in-
terlayer hybridization and interlayer charge transfer self-
consistently from the G0W0Γ quasi-particle band line-
up. This corrects the wrong interlayer description of
the interlayer hybridization pattern predicted by non-
self-consistent many-body ab-initio methods (such as full
G0W0 calculations) widely applied in the computational
society. This enables us of accurately calculating exciton
energies for vdWHs containing thousands of atoms not
possible with conventional codes and to directly disentan-
gle the effect of interlayer dielectric screening, interlayer
orbital hybridization, and interlayer charge transfers ef-
fects. This let us directly calculate the effect of twist-
angle rotations and dielectric substrate screening on the
exciton energies - effects also not possible to calculate
by conventional many-body ab-initio methods and let us
quantify the uncertainty related to these effects for com-
putational methods. We benchmark the accuracy of the
calculated intra- and interlayer exciton energies against
a large library of experimentally measured exciton en-
ergies obtained from the literature and discuss the un-
certainty within the experimental measurements, which
gives a lower bound on the accuracy that can be expected
from computational methods. By including the uncer-
tainty from calculated substrate-, twist-angle-, and tem-
perature effects, we show that intralayer exciton energies
can be calculated to within 20 meV of the experimen-
tal uncertainty, while interlayer exciton energies can be
calculated to within the experimental uncertainty for all
considered incommensurate bilayers. For the two com-
mensurate bilayers our calculated exciton energies over-
estimate the interlayer exciton energy. We discuss this
issue in relation to the hybridised intra- and interlayer
exciton energies found in the two commensurate bilayer
systems.

II. METHODS

To calculate vdWH quasi-particle energies we split the
calculation into an ab-initio calculation for the freestand-
ing monolayers and effective models for the interlayer in-
teraction. We calculate the quasi-particle energies for
the freestanding monolayers by the G0W0Γ approxima-
tion. This approximation is obtained by iterating Hedin’s
equations15 starting from the initial guess of the self-
energy: Σ0(1, 2) = δ(1, 2)vxc(1) which after 1 iteration
leads to a self-energy of the form:

Σ = iGv[1− χ0(v + fxc)]−1. (1)

Here χ0 is the non-interacting density response function,
v is the bare Coulomb interaction, and fxc = δvxc/δn is
the vertex xc-kernel. We note that all calculations are
performed with norm-conserving (NC) atomic PAW se-
tups. The effect of the vertex kernel is to shift the band
alignment up relative to vacuum (compared to a G0W0

calculations), and the overall effect of doing a G0W0Γ
calculation with NC atomic setups compared to a G0W0
calculation with non-NC atomic setups, is only a mi-
nor change of the quasi-particle band gap, but a better
description of the band line-up relative to the vacuum
energy16.
The interlayer interaction is split into three compo-

nents: interlayer dielectric screening, interlayer orbital
hybridization effects, and interlayer charge transfer ef-
fects. The interlayer dielectric screening is calculated by
the previously developed QEH14 model. We stress that
the handling of the dielectric screening in 2D needs spe-
cial care due to the fundamentally different behaviour
of the dielectric function in the q → 0 limit: in 2D
ε(q = 0) = 1, while in 3D ε(q = 0) > 1. For a mathe-
matically strict isotropic 2D system, the static dielectric
function takes the form17:

ε2D(q) = 1 + 2πα|q| (2)

for small q. Here α is the static 2D in-plane polarizability
of the material and the q → 0 limit is easily recovered.
From the 2D dielectric function the screened Coulomb
interaction takes the well known form:

W2D(q) = −2π
q ε−1

2D(q). (3)

In the QEH model the interlayer dielectric screening is
modelled by coupling the individual monolayers in the
vdWH using a classical electrostatics model. First the
interacting density response function of each monolayer
in the vdWH (index i) are calculated ab-initio in their
freestanding form within the Random Phase Approxima-
tion (RPA) by solving the Dyson equation

χi(r, r′, ω) = χ0(r, r′, ω) (4)

+
∫ ∫

dr1dr2χ
0
i (r, r1, ω) 1

|r1 − r2|
χi(r, r′, ω)

(5)

where χ0
i (r, r′, ω) is the non-local non-interacting den-

sity response function for layer i. From this the induced
density in each freestanding monolayer, from an external
multipole electrostatic potential, is determined to model
the electrostatic part of the interlayer interaction. After
this, the response functions for all monolayers are coupled
through a Dyson equation for the full density response
function of the vdWH, from which the difference in the
screened Coulomb interaction between the vdWH and
the individual freestanding monolayers can be obtained.
Finally the screened Coulomb interaction for the vdWH
is defined as:

W̄ vdWHs
i (r, r′, ω) = W̄i(r, r′, ω) + ∆W̄i(r, r′, ω). (6)

Here W̄i(r, r′, ω) is the screened interaction for a
freestanding monolayer, ∆W̄i(r, r′, ω) is the change in
the screened interaction in layer i due to the presence
of all the other layers in the vdWH evaluated by the
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QEH model, and W̄ vdWHs
i (r, r′, ω) is the resulting total

screened potential for layer i in the vdWH. From this
the effect on the quasi-particle energies can directly be
obtained from the change in the GW self-energy due to
the change in W .

To accurately calculate the effect of interlayer orbital
hybridization we apply a herein developed method, in
which we perform a LCAO calculation for the full vdWH,
applying (possibly different) scissors operators to the
valence- and conduction band states for each individ-
ual monolayer in the vdWH to match the G0W0Γ quasi-
particle band edges for the freestanding monolayers. In
practice we consider the LCAO eigenvalue problem∑

ν

H̃µνcνn =
∑
ν

ŜµνcνnEn (7)

where the smooth wave functions within the PAW for-
malism are expanded in a linear combination of atomic
orbitals:

〈
ψ̃n
∣∣ =

∑
µ cµn 〈Ψµ| with weight cµn. Ŝµν is

the overlap operator between states |µ〉 and |ν〉: Ŝµν =
〈Ψµ| Ŝ |Ψν〉. H̃µν is the LCAO Hamiltonian, En the al-
lowed quantum level energies, and we refer to the original
work for the implementation of the LCAO mode in the
GPAW code18–20. By adding a correction to the LCAO
Hamiltonian, H̃S

µν , this gives rise to a correction to the
eigenvalues: ∆ES

n =
∑
µν SµνcµnH̃

S
µνcνn. By defining

the desired eigenvalue corrections, it is thus possible to
determine H̃S

µν and correct the initial band line-up. In
this way, we can self-consistently evaluate the interlayer
orbital hybridization and charge transfer starting from
the many-body G0W0Γ band line-up. This corrects the
possibly wrong description of the interlayer hybridiza-
tion offered by non-self-consistent ab-initio many-body
calculations, which inherets the description of the in-
terlayer band line-up and hybridization pattern from a
single-particle description. We denote this method the
LCAOS method and the calculations will be performed
with the PBE functional. The LCAOS calculation for the
vdWH allows the direct extraction of the effect of inter-
layer hybridization and charge transfer on the band struc-
ture energies by comparing to the band structure of the
freestanding monolayers. We will label the calculation
of screened quasi-particle energies in vdWHs by combin-
ing G0W0Γ calculations for the freestanding monolayers
with the presented models for the interlayer interactions
as the G0W0Γ-QEH model.

In fig. 1 is shown an example where we have cal-
culated the quasi-particle band structure of MoS2/WS2
with the method outlined above. The sum of the
G0W0Γ quasi-particle energies for the freestanding non-
interacting monolayers is shown in black. We then ex-
plicitly divide the interlayer interaction into its compo-
nent of the interlayer interaction to highlight the state
dependence of the different components. The interlayer
hybridization is only shown for the two top (bottom) va-
lence (conduction) bands for simplicity. In red the ef-
fect of the interlayer dielectric screening is added to the

quasi-particle energies which we find to be close to con-
stant throughout the Brillouin zone in agreement with
previous findings21. In green we have also added the ef-
fect of interlayer hybridization and charge transfer. A
constant shift up (down) throughout the Brillouin zone
of the states localised on MoS2 (WS2) of about 20 meV
is found due to the interlayer charge transfer. We find no
effect on the quasi-particle energies around the K-point
due to interlayer hybridization while we find a symmetric
splitting of the valence states around the Γ-point of about
190 meV. This shows that the effect of orbital hybridiza-
tion in parts of the Brillouin zone have a larger effect on
the quasi-particle energies than the interlayer dielectric
screening, which is found to be a constant shift of the
quasi-particle energies of about 70-90 meV. We note that
the calculation in fig. 1 is carried out without including
spin-orbit effects for simplicity, but that the calculation
of the exciton energies in the remaining part of this study
fully includes spin-orbit interaction effects.

FIG. 1. Quasi-particle band structure of MoS2/WS2 calcu-
lated with the G0W0Γ-QEH model. In black is shown the sum
of the quasi-particle energies calculated for the freestanding
non-interacting monolayers (Emono). In red is added the ef-
fect of interlayer dielectric screening (Escr) and in green is
on top of this added the effect of interlayer orbital hybridiza-
tion and charge transfer (Escr,hyb). The interlayer coupling is
calculated with the QEH model as outlined in the main text.

To obtain excition energies we calculate the zero mo-
mentum intralayer exciton binding energies by solving
the Bethe-Salpeter Equation (BSE) for the freestanding
monolayers including the interlayer dielectric screening
from the QEH model. This is done by considering the
two-particle BSE Hamiltonian:

HSS′(q) = (εQP
mk+q − ε

QP
nk )δSS′ − (fmk+q − fnk)KSS′(q),

(8)
with the two-particle kernel KSS′ :

KSS′(q) = VSS′(q)− 1
2WSS′(q). (9)

The first term on the right hand side is the electron-hole
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exchange interaction and the second term is the direct
screened electron-hole interaction. In a plane-wave ex-
pansion the static screened electron-hole interaction is
given by22:

WSS′(q) = 4π
ω

∑
GG′

n∗nk,n′k′(G)WGG′(k′−k)nmk+q,m′k′+q(G′),

(10)
where n∗nk,n′k′(G) and nmk+q,m′k′+q(G′) are charge den-
sity matrices and WGG′(k′−k) is the screened electron-
hole interaction for all G vectors in the plane-wave de-
scription. To correct the screened interaction for the
presence of all other layers in the vdWH, we calculate
∆W̄i(r, r′, ω) for layer i using the QEH model and add
this correction to the G = G′ = 0 component in equation
10. This method is labelled as the BSE-QEH model. We
find an overall small redshift of the exciton energies in
vdWHs by combining the G0W0Γ-QEH model and the
BSE-QEH model to calculate screened quasi-particle and
exciton binding energies in agreement with experimental
observations2 upon stacking of the monolayers.

Finite momentum intralayer and interlayer exciton
binding energies are calculated by solving a Mott-
Wannier model including the interlayer dielectric screen-
ing of the electron-hole interaction and calculating the
effective mass of the exciton state in question. In the
Mott-Wannier model it is assumed that the exciton state
is governed by the hydrogen-like form:[

− ∇
2

2µex
+W2D(r||)

]
F (r||) = EbF (r||), (11)

where W2D is the screened electron-hole interaction cal-
culated by the QEH model, F (r||) gives the probability
amplitude for the distance between the electron and the
hole, µex is the effective in-plane exciton mass, ∇ is the
kinetic energy, and Eb is the exciton binding energy. The
exciton effective mass is given by: 1

µex
= 1

µe
+ 1

mh
, where

the electron is located in the conduction band and the
hole in the valence band. The electron and hole effec-
tive masses are calculated from the second derivative of
the DFT band structures of the freestanding monolayers.
Once the effective masses has been computed from the
band structure, the exciton binding energies can be cal-
culated. This will be refered to as the MW-QEH model.

In fig. 2 we show an example of the absorption spec-
trum of MoS2/MoSe2 calculated with the BSE-QEH
model (green) and for the sum of the absorption spec-
tra of the freestanding non-interacting monolayers (grey).
The interlayer dielectric screening of the quasi-particle
energies are calculated with the G0W0Γ-QEH model. We
find a small downshift of the lowest lying excitation en-
ergies as expected due to the environmental dielectric
screening. The average of the experimentally measured
exciton energies for MoS2/MoSe2 from table I is shown
with vertical full lines and the excitation energies calcu-
lated with the MW-QEH is shown with vertical dashed
lines. We note that due to the large lattice mismatch

between MoS2 and MoSe2 such an excitonic absorption
spectrum would not be possible to calculate ab-initio at
the level of the BSE with conventional codes, without
applying significant strains to one or both of the layers.
We also stress that we do not apply strains to any layers
within the BSE-QEH and MW-QEH models applied in
this study and under 0.1% of strain to any of the mono-
layers in the G0W0Γ-QEH model.

  

  MoSe2
A exciton

  MoSe2
B exciton

   MoS2
A exciton

   MoS2
B exciton

   C excitons

FIG. 2. Absorption spectrum for bilayer MoS2/MoSe2 with
the BSE-QEH model in green. For reference is shown the sum
of the absorption spectrum of the freestanding monolayers,
i.e. without any interlayer interaction in grey. The A and B
exciton peaks of the two layers are labelled and experimental
data is shown in vertical full lines, see tables I and II. With
vertical dashed lines are shown the peak position predicted
by the MW-QEH model.

III. RESULTS AND DISCUSSION

To determine the possible accuracy of computational
methods for calculating exciton energies in vdWHs it
is necessary to first assess the experimental accuracy of
experimentally measured intra- and interlayer exciton
energies. A library of experimentally measured intra-
and interlayer exciton energies obtained from the litera-
ture, for the 6 bilayer systems considered in this study,
can be found in table I. In the same table we also list
the substrate and temperature for the given experiment
where known. For experimentally measured intralayer
exciton energies we find a variation of about 120 meV
within the experiments and up to about 130 meV for
the interlayer exciton energies. One exception of these
values is the interlayer exciton state in MoS2/WSe2
which we will return to later. The lower bound of the
expected accuracy that can be achieved by ab-initio
calculations will in the following be defined by the
standard deviation of the exciton energies listed in
table I for each exciton state in each system. Thus
we will compare our calculated exciton energies to the
uncertainty (standard deviation) of the experimentally
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measured exciton energies centered around the average
of the experimentally measured exciton energy. The
reported energies in table I are all taken from photolu-
minescence measurements.

While conventional many-body ab-initio calculations
are performed at 0 K without the presence of a dielec-
tric screening substrate, from the data in table I it is
evident that temperature, substrate, and possibly other
effects alters the experimentally measured exciton ener-
gies. Previous studies have quantified finite temperature
effects in ab-initio many-body calculations for the A ex-
citon in MoS2 where a redshift of about 90 meV from 0 to
300 K was found44, however a systematic computational
study on the effect of substrate screening and twist-angle
of the exciton energies lacks in the literature. Since the
dielectric substrates in experimental setups usually are
wide band gap insulators such as hBN and SiO2, the sub-
strate only very weakly hybridize with the valence and
conduction bands of the TMD vdWHs and as such the
effect of the substrate on the exciton energies can be lim-
ited to only considering the effect of dielectric screening.
We here utilize the G0W0Γ-QEH, BSE-QEH, and MW-
QEH models to computationally benchmark the effect
of substrate screening on the exciton energy of the K-K
intra- and interlayer exciton energies of MoS2/MoSe2 by
calculating the exciton energies on a varying number of
supporting hBN layers. This is shown in fig. 3 and we
note that the K-K transition should be representative for
the lowest energy exciton states since we find the dielec-
tric screening to be close to constant throughout the Bril-
louin zone. We stress again that such calculations cannot
be carried out with conventional ab-initio codes due to
the lattice mismatch of MoS2, MoSe2, and hBN, without
applying significant strains to one or more of the layers,
and that we here do not apply strains to any of the layers.
As mentioned above, the screening of the quasi-particle
energies is calculated from the G0W0Γ-QEH model, the
screening of the intralayer exciton binding energies is cal-
culated with the BSE-QEH model, and the interlayer ex-
citon binding energy is calculated with the MW-QEH
model. For the intralayer exciton energies we find a red-
shift of about 50 meV for the intralayer exciton in MoS2
(black) and about 40 meV for the intralayer exciton in
MoSe2 (blue) comparing the freestanding bilayer with
the asymptotic value of the bilayer on an infinitely thick
hBN substrate. We note 300 layers of supporting hBN
corresponds to a thickness of about 100 nm. The calcu-
lated redshift of the intralayer exciton is expected and
of the same magnitude as experimentally measured ex-
citon redshifts in multilayer vdWHs2. While the effect
is small it is of the same size as the standard deviation
(i.e. the uncertainty) of most experimental values for
exciton energies as listed in table II and so is an impor-
tant parameter to take into account. We find an overall
redshift of the interlayer exciton of about 40 meV, with
a small blueshift for few layers of hBN. The blueshift is
a wrong artefact of the MW-QEH which also predicts a

blueshift of the intralayer exciton energy for few layer
vdWHs. We therefore expect a slightly larger redshift of
the interlayer exciton energy in a complete BSE descrip-
tion. The result presented here can be used to assess
the effect of hBN, however a recent study45 have quan-
tified the dependence of the dielectric screening on the
static polarizability of both the 2D semiconductor mono-
layer and substrate and showed this have a predictable
dependence on these parameters. This, together with
the result in fig. 3 allows both experimentalists and the-
oreticians to estimate the effect of substrate screening
when comparing ab-initio calculations with experimen-
tal observations for different substrates and thicknesses
for any semiconductor/dielectric-support system.

FIG. 3. Change in exciton energy (∆E) of the intra- (black
and blue) and interlayer (red) K-K excitons in MoS2/MoSe2
when placed on N number of hBN layers. The change in
the exciton binding energy is calculated with the BSE-QEH
model for the intralayer exciton binding energies and with
the MW-QEH model for the interlayer exciton energy. The
screening of the quasi-particle energies is calculated from the
G0W0Γ-QEH model for all states.

It has recently been show that in vdWHs with nearly
degenerate intra- and interlayer exciton states, the two
excitons hybridize and the exciton energies attains a
peculiar twist-angle dependence. This have been found
experimentally for MoSe2/WS2

11 where the conduction
band minima of the two monolayers are nearly degen-
erate, and the two degenerate exciton states are the
K-K intra- and interlayer exciton states. The lowest
exciton energy remains constant over a wide range of
twist-angles and shift down about 100 eV close to 0
degrees of relative twist-angle. This effect is explained
by a hybridised intra- and interlayer excitonic state. By
studying MoS2/WS2 where we similarly find close to
degenerate intra- and interlayer exciton states (see fig.
1), we demonstrate this effect can be captured and well
described by the theoretical framework in this study.
In fig. 4 we show the calculated K-K (black) and Γ-K
(green) smallest quasi-particle (QP) energy gaps for bi-
layer MoS2/WS2 as a function of the twist-angle between
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the two monolayers calculated with the G0W0Γ-QEH
method. Upon rotation, we find an upshift of both the
Γ-K and K-K quasi-particle band gaps of about 110 meV
and 100 meV respectively that remains close to constant
over the full range of rotation. This is in agreement with
the experimental observation for the exciton energy in
MoSe2/WS2

33, which is plotted in purple for reference
on the qualitative effect. We note the experimentally
measured exciton energy change is observed for the K-K
exciton, while we find both the K-K and Γ-K transitions
to host degenerate intra- and interlayer exciton states
for MoS2/WS2. The observed effect is a result of a
non-symmetric opening of the quasi-particle band gaps
where the valence bands shift down about the double
amount as the upshift of the conduction states. We
also perform a calculation with the PBE functional46,
i.e. within a non-interacting single-particle description
without applying the scissors operator to correct the
band line-up (open circles). In this description the
intra- and interlayer electronic band gaps are not nearly
degenerate and we find the opposite effect: the Γ-K
band gap shifts down about 25 meV on average upon
rotation and as such the effect would not be captured
by non-self-consistent ab-initio methods such as G0W0
where the interlayer hybridization is inherited from
the single-particle band line-up. The results in fig. 4
shows that the experimentally observed effect can be
understood already from the quasi-particle energies and
underlines the importance of a correct self-consistent
description of the band line-up to properly describe the
interlayer hybridization.

Finally we are in a position where we can assess the
computational accuracy that can be obtained for intra-
and interlayer exciton energies in few layers vdWHs by
including the effects of substrate, twist-angle, and tem-
perature effects in ab-initio many-body calculations. Fur-
thermore we apply the proper accurate description of the
interlayer orbital hybridisation outlined above. We have
calculated the lowest lying intra- and interlayer exciton
energies for the K-K and Γ-K transitions in each of the
6 freestanding bilayer systems considered in this study,
with the method outlined above. In general we find
that the position of the ionization potential and elec-
tron affinity levels relative to the vacuum energy, to a
large degree is determined by the nature of the chalco-
genide atoms. The lattice constant of each monolayer is
similarly determined by the nature of the chalcogenide
atoms. This means that monolayer MoS2 (MoSe2) and
WS2 (WSe2) are found to be lattice matched and con-
sequently MoS2/WS2 and MoSe2/WSe2 have close to
degenerate ionization potentials and/or electron affinity
levels. At the same time monolayers with selenide have
the ionization potential of the valence Γ-point states sig-
nificantly lower than that of the K-point states, while
monolayers with sulfur have the K- and Γ-point ioniza-
tion potentials close to degenerate. This combined with
the fact that the exciton binding energy, for some sys-

FIG. 4. Calculated Quasi-particle band gaps as a function of
twist-angle for MoS2/WS2. The full circles show the G0W0Γ-
QEH quasi-particle (QP) energies for the K-K (black) and
Γ-K (green) lowest energy transitions. In empty circles is
shown the Γ-K quasi-particle energy calculated in a single-
particle picture with the PBE functional, i.e. without ap-
plying a scissors-operator to correct the band line-up and
achieve a correct description of the interlayer hybridization.
In purple is shown experimental exciton energies33 for bilayer
MoSe2/WS2 for a reference on the qualitative effect.

tems, is slightly higher when the hole is located at the
Γ-point makes the overall exciton energy map complex
and no overall picture can easily be deducted for which
points in the Brillouin zone host the lowest lying exciton
states. The picture is further blurred by the fact that the
definition of interlayer excitons is not well-defined for sys-
tems with degenerate Γ-point states. In these bilayers the
hole state at the Γ-point resides in both layers, however
the exciton state could potentially still be experimentally
determined to be an interlayer exciton state. Thus, for
these systems we calculate the theoretical lower and up-
per limit of the "interlayer" exciton energy corresponding
to the hole fully located in the same and opposite layer
as the electron state respectively.
The calculated exciton energies (without accounting

for substrate, finite temperature, and twist-angle effects)
are shown in tab. II (left 4 columns). The average of the
experimental data from the literature are shown in the
right 2 columns. Without taking substrate, twist-angle,
and temperature effects on the calculated exciton ener-
gies into account we find that the lowest intralayer exci-
ton energies can be predicted to within the experimen-
tal uncertainties for 6/12 of the lowest intralayer exci-
ton states. For the remaining intralayer excitons we find
discrepancies between the calculated exciton energy and
the experimentally measured energy (including the ex-
perimental uncertainty) between -20 meV to +120 meV,
with only one intralayer exciton energy underestimated
by our calculations. For the interlayer exciton energies
we find 2/6 exciton energies within the experimental un-
certainty, with a discrepancy between -50 meV to +250
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meV for the remaining interlayer exciton energies (assum-
ing intralayer character of mixed exciton states which are
all overestimated in energy). For the interlayer excitons
we similarly only find one exciton energy to be compu-
tationally underestimated. The experimental measure-
ments in table I are carried out at a wide range of sub-
strate and temperatures. To include substrate and tem-
perature effects in the benchmarking of the calculated
energies, we define δ to be the combined calculated en-
ergy redshift of substrate and finite temperature effects
(from 0 K to room temperature) to be: δ = 140 meV,
following the discussion above and fig. 3. Since the
substrate and temperature effects redshifts the exciton
energies, we introduce these effects by redefining the cal-
culated exciton energies in table II (denoted Eexc) to be:
(Eexc− δ/2)± δ/2 i.e. we redshift the calculated exciton
energy by δ/2 and define a calculated uncertainty from
substrate and temperature effects to be δ/2. The intro-
duction of this definition allows us to make an overall
comparison to all experimentally measured exciton ener-
gies irregardless of the substrate and temperature. We
will not include the effect of twist-angle energy depen-
dence, since this effect is only present for a few bilay-
ers, but will discuss its effect on systems with degenerate
intra- and interlayer excitons below. Including the cal-
culated substrate and temperature effects 11/12 calcu-
lated and experimentally measured exciton energies are
found to agree (including their uncertainties), except the
lowest energy intralayer exciton in bilayer MoS2/MoSe2,
which is underestimated by 20 meV. For interlayer ex-
citons we now find 3/6 exciton energies to agree with
a discrepancy for the remaining energies ranging from -
50 meV to +180 meV (assuming an intralayer character
of the mixed excitons states). We note again in pass-
ing that these effects are not present in conventional ab-
initio many-body calculations and that simply applying
an uncertainty of ±δ/2 without redshifting the exciton
energies by δ/2 only slightly improves the results. We
thus find including substrate and finite temperature ef-
fects improves upon to the comparison to experimentally
measured exciton energies. Including substrate and fi-
nite temperature effects still leaves the interlayer exciton
energy in MoS2/WS2 MoSe2/WSe2 significantly overes-
timated and MoS2/MoSe2 slightly underestimated. It is
interesting the significantly overestimated exciton ener-
gies are found for the two lattice matched bilayers, where
we find hybridized intra- and interlayer exciton energies.
As discussed above this introduces an extra uncertainty
in relation to the twist-angle dependence of the calcu-
lated and experimentally measured exciton energies.

Focusing on lattice matched MoS2/WS2 the calculated
overestimated interlayer exciton energy in this study is
also found by previous studies applying full BSE@G0W0
calculations finding an interlayer exciton energy of 1.83
eV12 and 1.95 eV13 respectively. The lower limit in this
study is closer to the experimental value, suggests the im-
portance of correctly calculating the interlayer hybridiza-
tion self-consistently, however a significant discrepancy is

still found. As shown above, substrate and temperature
effects can reduce this discrepancy by about 150 meV (fig.
3) bringing the energy closer to the experimental value,
however since the computations for the lattice matched
bilayers are carried out at a 0 degree relative twist-angle,
a further upshift of the calculated exciton energy can be
expected at other twist-angles (fig. 4). This suggests a
more fundamental lack of accuracy of the quasi-particle
ionisation potential or electron affinity levels offered by
the G0W0(Γ) approximation and shows ab-initio many-
body methods cannot calculate interlayer exciton ener-
gies in vdWHs to within the experimental accuracy.
Another point worth a comment is the significantly

different experimentally measured interlayer exciton en-
ergies for bilayer MoS2/WSe2 listed in table I. While
the two experimental references reporting values between
1.55-1.59 eV were the governing values for the interlayer
exciton energy for several years, these two studies re-
ported a lowest lying interlayer exciton energy about 0.5
eV higher than computational studies. Recently, a new
study32 resolved the issue by showing the existence of an
interlayer exciton with an energy around 1.60 eV for the
K-K transition and a significantly lower energy interlayer
exciton for the Γ-K transition around 1.05 eV. We find
that lowest lying measured energy for the Γ-K to corre-
spond well with our calculated value. This study under-
lines the great care that must be taken when comparing
experimentally measured exciton energies with computa-
tionally calculated exciton energies, when the exact na-
ture of the former is not known.

IV. CONCLUSION

In this work we have performed ab-initio many-body
perturbation theory calculations, for predicting intra-
and interlayer exciton energies in 6 different TMD bilayer
van der Waals heterostructures. We have presented an ef-
ficient numerical scheme for accurately calculating inter-
layer hybridisation effects on exciton energies in van der
Waals heterostructures, by self-consistently calculating
the interlayer hybridisation from the G0W0Γ band line-
up. This corrects the substantially lacking description of
the interlayer charge transfer and interlayer hybridisaiton
offered by widely used non-self-consistent ab-initio many-
body perturbation theory models. By combining this
with the BSE approximation and the quantum electro-
static heterostructure model, allowed us to perform ab-
initio many-body perturbation theory calculations, for
predicting intra- and interlayer exciton energies in 6 dif-
ferent TMD bilayers. By the use of the developed models,
accurate ab-initio calculations have been performed for
systems with up to more than 1000 atoms. Furthermore,
by directly calculating the effect of twist-angle and sub-
strate effects and considering finite temperature effects,
we benchmarked the calculated intra- and interlayer ex-
citon energies against a large library of experimentally
measured exciton energies. Substrate and temperature
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effects computationally accounts for a redshift of up to
about 50 meV and 90 meV respectively. Including the
computed uncertainties in relation to these effects, we
can conclude that many-body ab-initio calculations can
predict and reproduce experimentally measured lowest
energy intralayer exciton energies to within the experi-
mental uncertainty for 11/12 of the considered excitons in
the 6 TMD bilayers, with the remaining intralayer exci-
ton state underestimated by 20 meV. Including substrate
and temperature effects 3/6 of the interlayer exciton en-
ergies can be calculated to within the experimental uncer-
tainty. The inclusion of substrate and finite temperature
effects significantly improves upon the comparison be-
tween ab-initio calculated and experimentally measured
exciton energies. We find the computed energy for the
interlayer exciton in the two lattice matched systems:
MoS2/WS2 and MoSe2/WSe2 to both be significantly
overestimated and outside the range of the experimen-
tal uncertainty. These two systems furthermore have de-
generate intra- and interlayer exciton states, resulting in
a twist-angle dependent blueshift of the exciton energies
of 50-100 meV upon rotation. This effect cannot account

for the discrepancy suggesting a fundamental error in the
GW quasi-particle band edge energy description for lat-
tice matched systems. One can hypothesise the effect can
be explained by realising that the two lattice matched
bilayers, in which the ab-initio many-body calculations
significantly overestimates the interlayer exciton energy,
are the only two of the considered bilayers that host both
degenerate intra- and interlayer exciton energies for two
different transitions in the Brillouin zone. This can lead
to a hybridised bi-exciton state, a 4-particle state, split-
ting the two interlayer excitons up and down in energy
similar to the hybridisation effect found around the va-
lence Γ-point in the lattice matched bilayers and thus
reduce the interlayer exciton energy.
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System Eintra Eintra Einter Substrate Temperature

MoS2/MoSe2
23 1.83 1.53 SiO2 Room temp.

MoS2/MoSe2
23 1.82 1.60 1.47 SiO2 5 K

MoS2/MoSe2
24 1.83 1.55 1.34 SiO2 Room temp.

MoS2/WS2
25 1.83 1.96 1.50 SiO2

MoS2/WS2
26 1.82 1.97 1.42 SiO2 Room temp.

MoS2/WS2
27 1.83 1.94 1.5

MoS2/WS2
28 1.85 2.01 1.5 SiO2

MoS2/WS2
29 1.86 1.96 1.55 CaF2

MoS2/WSe2
30 1.87 1.64 1.55 SiO2 Room temp.

MoS2/WSe2
31 1.85 1.65 1.59 Al2O3

MoS2/WSe2
32 1.05 hBN 20 K

MoSe2/WS2
33 1.57 1.97 1.55 SiO2 Room temp.

MoSe2/WS2
34 1.58 2.01 1.53 SiO2 Room temp.

MoSe2/WS2
35 1.58 2.02 1.53 SiO2 Room temp.

MoSe2/WSe2
35 1.57 1.65 1.35 SiO2 Room temp.

MoSe2/WSe2
36 1.32 SiO2 30 K

MoSe2/WSe2
37 1.57 1.66 1.38 Graphite Room temp.

MoSe2/WSe2
38 1.65 1.74 1.33 Schott borofloat R©33 3 K

MoSe2/WSe2
39 1.67 1.74 1.34 SiO2 2.3 K

MoSe2/WSe2
40 1.57 1.66 1.35 SiO2 Room temp.

MoSe2/WSe2
41 1.68 1.71 1.39 SiO2 4 K

MoSe2/WSe2
42 1.56 1.74 1.35 BN 5 K

WS2/WSe2
43 1.99 1.66 SiO2 Room temp.

WS2/WSe2 1.95 1.45 SiO2 78 K

TABLE I. Overview of experimentally measured intra- (Eintra) and interlayer (Einter) exciton energies together with the
substrate on which the bilayer was placed and temperature under which the measurement was conducted. For the intralayer
exciton energies the left coloumn is the exciton energy for the layer labelled to the left in the system statement (and vice
versa for the right coloumn). All energies are obtained from photoluminescence measurements. All energies are in eV and
temperatures are in kelvin. The data is taken from the literature.
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Calculated Calculated Experimental

System K-Kintra Γ-Kintra K-Kinter Γ-Kinter Intralayer Interlayer

MoS2 1.88 1.80
1.27 1.58

1.83 ± 0.01
1.41 ± 0.09

MoSe2 1.55 1.85 1.56 ± 0.04

MoS2 1.90 1.80
1.94 1.80-1.86

1.83 ± 0.01
1.50 ± 0.05

WS2 2.11 1.94 1.97 ± 0.04

MoS2 1.90 1.95
1.25 1.06

1.86 ± 0.01 1.57 ± 0.03
WSe2 1.73 2.06 1.65 ± 0.01 1.05

MoSe2 1.57 1.86
1.57 1.89

1.58 ± 0.01
1.54 ± 0.03

WS2 2.09 2.16 2.00 ± 0.01

MoSe2 1.57 1.62
1.65 1.62-1.71

1.61 ± 0.05
1.35 ± 0.02

WSe2 1.73 1.88 1.70 ± 0.04

WS2 2.11 2.18
1.55 1.93

1.97
1.45

WSe2 1.74 2.07 1.66

TABLE II. Calculated intra- and interlayer exciton energies for the six bilayers listed in the left coloumn, without accounting
for substrate, temperature, and twist-angle effects. For both intra- and interlayer excitons we show the intra- and interlayer
K-K and Γ-K transition energies. Experimental values are the average exciton energies taken from table I for each exciton for
each system and the uncertainty is the taken as the standard deviation within the experimental data. For MoS2/WSe2 we
explicitly list the significantly lower interlayer exciton energy32 and for mixed interlayer exciton states we list bound the intra-
and interlayer character energies (see main text for a discussion). Including substrate and finite temperature effects redefines
the calculated exciton energies to: (Eexc − δ/2) ± δ/2 (see main text for discussion) which is shown to significantly improve the
agreement between calculations and experiments. All values are in eV.
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1. Introduction

Over the past decade, atomically thin two-dimensional 
(2D) materials have made their way to the forefront of 
several research areas including batteries, (electro-)
catalysis, electronics, and photonics [1, 2]. This 
development was prompted by the intriguing and 
easily tunable properties of atomically thin crystals 
and has been fueled by the constant discovery of new 
2D materials and the emergent concepts of lateral 
[3] and vertical [4] 2D heterostructures, which opens 
completely new possibilities for designing materials 
with tailored and superior properties.

So far more than fifty compounds have been syn-
thesised or exfoliated as single layers (see figure 7). 
These include the well known monoelemental crys-
tals (Xenes, e.g. graphene, phosphorene) [5] and 
their ligand functionalised derivatives (Xanes, e.g. CF, 
GeH) [6], transition metal dichalcogenides (TMDCs, 
e.g. MoS2, TaSe2) [7], transition metal carbides and 
-nitrides (MXenes, e.g. Ti2CO2) [8], group III–V 

semiconductors and insulators (e.g. GaN, BN) [9, 10],  
transition metal halides (e.g. CrI3) [11, 12], post-trans-
ition metal chalcogenides (e.g. GaS and GaSe) [13, 14]  
and organic-inorganic hybrid perovskites (e.g. 
Pb(C4H9NH3)2I4) [15]. However, the already known 
monolayers are only the tip of a much larger iceberg. 
Indeed, recent data mining studies indicate that several 
hundred 2D materials could be exfoliated from known 
layered bulk crystals [16–19]. In the present work we 
take a complementary approach to 2D materials dis-
covery based on combinatorial lattice decoration and 
identify another few hundred previously unknown 
and potentially synthesisable monolayers.

In the search for new materials with tailored 
properties or novel functionalities, first-principles 
calcul ations are playing an increasingly important 
role. The continuous increase in computing power 
and significant advancements of theoretical methods 
and numerical algorithms have pushed the field to a 
point where first-principles calculations are compa-
rable to experiments in terms of accuracy and greatly  
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surpass them in terms of speed and cost. For more 
than a century, experimental databases on e.g. struc-
tural, thermal, and electronic properties, have been a 
cornerstone of materials science, and in the past dec-
ade, the experimental data have been augmented by an 
explosion of computational data obtained from first- 
principles calculations. Strong efforts are currently 
being focused on storing and organising the compu-
tational data in open repositories [20, 21]. Some of 
the larger repositories, together containing millions 
of material entries, are the Materials Project [22], the 
Automatic Flow for Materials Discovery (AFLOW-
LIB) [23], the Open Quantum Materials Database 
(OQMD) [24, 25], and the Novel Materials Discovery 
(NOMAD) Repository [26].

The advantages of computational materials data-
bases are many. Most obviously, they facilitate open 
sharing and comparison of research data whilst reduc-
ing duplication of efforts. In addition, they underpin 
the development and benchmarking of new methods 
by providing easy access to common reference sys-
tems [27]. Finally, the databases enable the applica-
tion of machine learning techniques to identify deep 
and complex correlations in the materials space and 
to use them for designing materials with tailored 
properties and for accelerating the discovery of new  
mat erials [28–30]. Among the challenges facing the 
computational databases is the quality of the stored 
data, which depends both on the numerical precision 
(e.g. the employed k-point grid and basis set size) and 
the accuracy of the employed physical models (e.g. the 
exchange-correlation functional). Most of the existing 
computational databases store results of standard den-
sity functional theory (DFT) calculations. While such 
methods, when properly conducted, are quite reliable 
for ground state properties such as structural and ther-
modynamic properties, they are generally not quantita-
tively accurate for excited state properties such as elec-
tronic band structures and optical absorption spectra.

Compared to databases of bulk materials, data-
bases of 2D materials are still few and less developed. 
Early work used DFT to explore the stability and elec-
tronic structures of monolayers of group III–V honey-
comb lattices [31, 32] and the class of MX2 trans ition 
metal dichalcogenides and oxides [33]. Later, by data- 
filtering the inorganic crystal structure database 
(ICSD), 92 experimentally known layered crystals 
were identified and their electronic band structures 
calculated at the DFT level [34]. Another DFT study, 
also focused on stability and band structures, explored 
around one hundred 2D materials selected from differ-
ent structure classes [35]. To overcome the known limi-
tations of DFT, a database with many-body G0W0 band 
structures for 50 semiconducting TMDCs was estab-
lished [36]. Very recently, data mining of the Materials 
Project and experimental crystal structure databases in 
the spirit of [34], led to the identification of close to 
one thousand experimentally known layered crystals 
from which single layers could potentially be exfoliated  

[16–19]. These works also computed basic energetic, 
structural and electronic properties of the monolayers 
(or at least selected subsets) at the DFT level.

In this paper, we introduce the open Computa-
tional 2D Materials Database (C2DB) which organises 
a variety of ab initio calculated properties for more 
than 1500 different 2D materials. The key characteris-
tics of the C2DB are:

 •  Materials: the database focuses entirely on 2D 
materials, i.e. isolated monolayers, obtained by 
combinatorial lattice decoration of known crystal 
structure prototypes.

 •  Consistency: all properties of all materials are 
calculated using the same code and parameter 
settings following the same workflow for 
maximum transparency, reproducibility, and 
consistency of the data.

 •  Properties: the database contains a large and 
diverse set of properties covering structural, 
thermodynamic, magnetic, elastic, electronic, 
dielectric and optical properties.

 •  Accuracy: Hybrid functionals (HSE06) as well 
as beyond-DFT many-body perturbation theory 
(G0W0) are employed to obtain quantitatively 
accurate band structures, and optical properties are 
obtained from the random phase approximation 
(RPA) and Bethe–Salpeter equation (BSE).

 •  Openness: the database is freely accessible and can 
be directly downloaded and browsed online using 
simple and advanced queries.

The systematic combinatorial approach used to 
generate the structures in the database inevitably pro-
duces many materials that are unstable and thus unre-
alistic and impossible to synthesise in reality. Such 
‘hypothetical’ structures may, however, still be useful in 
a number of contexts, e.g. for method development and 
benchmarking, testing and training of machine learn-
ing algorithms, identification of trends and structure-
property relationships, etc. For this reason we map out 
the properties of all but the most unstable (and thus 
chemically unreasonable) compounds. Nevertheless, 
the reliable assessment of stability and synthesisability 
of the candidate structures is an essential issue. Using 
the 55 materials in the C2DB, which have been exper-
imentally synthesised in monolayer form, as a guide-
line, we set down the criteria that a hypothesised 2D 
material should fulfill in order for it to be ‘likely syn-
thesisable’. On the basis of these criteria, we introduce a 
simple stability scale to quantify a candidate material’s 
dynamic and thermodynamic stability. Out of an ini-
tial set of around 1900 monolayers distributed over 32 
different crystal structures, we find 350 in the most sta-
ble category. In addition to the 55 experimentally syn-
thesised monolayers, this set also includes around 80 
mono layers from experimentally known vdW layered 
bulk materials, and thus around 200 completely new 
and potentially synthesisable 2D materials.

2D Mater. 5 (2018) 042002
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In section 2, we describe the computational work-
flow behind the database. The structure and properties 
of the materials are calculated using well established 
state-of-the-art methodology. Technical descriptions 
of the different steps in the workflow are accompanied 
by illustrative examples and comparisons with litera-
ture data. Since documentation and validation is the 
main purpose of the section, we deliberately focus on 
well known 2D materials like the Xenes and transition 
metal dichalcogenides where plenty of both compu-
tational and experimental reference data is available. 
It should be clear that the novelty of the present work 
does not lie in the employed methodology nor in the 
type of materials properties that we calculate (we note, 
however, that to the best of our knowledge the present 
compilation of GW and BSE calculations represents 
the largest of its kind reported so far). The significance 
of our work is rather reflected by the fact that when 
large and consistently produced data sets are organised 
and made easily accessible, new scientific opportuni-
ties arise. As outlined below, this paper presents several 
examples of this effect.

In section 3 we give an overview of the materials 
and the data contained in the C2DB and provide some 
specific examples to illustrate its use. Using an exten-
sive set of many-body G0W0 calculations as a refer-
ence, we establish the performance of various DFT xc- 
functionals for predicting band gaps, band edge posi-
tions, and band alignment at hetero-interfaces, and 
we propose an optimal strategy for obtaining accurate 
band energies at low computational cost. Similarly, 

the 250 BSE calculations allow us to explore trends in 
exciton binding energies and perform a statistically 
significant and unbiased assessment of the accuracy 
and limitations of the widely used Mott–Wannier 
model for 2D excitons. From the data on more than 
600 semiconductor monolayers, we present strong 
empirical evidence against an often employed relation 
between effective masses and band gaps derived from 
k · p perturbation theory. Inspired by the potential 
of using 2D materials as building blocks for plasmon-
ics and photonics, we propose a model to predict the 
plasmon dispersion relations in 2D metals from the 
(intraband) plasma frequency and the onset of inter-
band trans itions and use it to identify 2D metals with 
plasmons in the optical frequency regime. We propose 
several new magnetic 2D materials (including both 
metals and semiconductors) with ferromagnetic or 
anti-ferromagnetic ordering and significant out-of-
plane magnetic anisotropy. Finally, we point to new 
high-mobility 2D semiconductors including some 
with band gaps in the range of interest for (opto)elec-
tronic applications.

In section 4 we provide our conclusions together 
with an outlook discussing some opportunities and 
possible future directions for the C2DB.

2. Workflow

The workflow used to generate the data in the C2DB 
is illustrated in figure 1. It consists of two parts: In the 
first part (left panel) the unit cell and atom positions 

Figure 1. The workflow used to calculate the structure and properties of the materials in C2DB. The cross indicates that the material 
is not included in the database at all, while the stop sign indicates that no more of the workflow is performed.

2D Mater. 5 (2018) 042002
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are optimised for different magnetic configurations: 
non-magnetic (NM), ferro-magnetic (FM) and 
antiferro-magnetic (AFM). Materials satisfying 
certain stability and geometry criteria (indicated 
by green boxes) are subject to the second part (right 
panel) where the different properties are computed 
using DFT and many-body methods. The G0W0 band 
structure and BSE absorbance calculations have been 
performed only for semiconducting materials with up 
to four atoms in the unit cell. Per default, properties 
shown in the online database include spin–orbit 
coupling (SOC); however, to aid comparison with 
other calculations, most properties are also calculated 
and stored without SOC.

All DFT and many-body calculations are per-
formed with the projector augmented wave code 
GPAW [37] using plane wave basis sets and PAW 
potentials version 0.9.2. The workflow is managed 
using the Python based atomic simulation environ-
ment (ASE) [38]. We have developed a library of 
robust and numerically accurate (convergence veri-
fied) ASE-GPAW scripts to perform the various tasks 
of the workflow, and to create the database afterwards. 
The library is freely available, under a GPL license.

Below we describe all steps of the workflow in 
detail. As the main purpose is to document the work-
flow, the focus is on technical aspects, including 
numerical convergence and benchmarking. An over-
view of the most important parameters used for the 
different calculations is provided in table 1.

2.1. Structure relaxation
The workflow is initiated with a crystal structure 
defined by its unit cell (Bravais lattice and atomic 
basis). The crystal lattice is typically that of an 
experimentally known prototype (the ‘seed 
structure’) decorated with atoms picked from a 
subset of the periodic table, see figure 2. We refer 
to materials by the chemical formula of their 
unit cell followed by the crystal structure. The 
latter is indicated by a representative material of 
that prototype, as described in section 3.1. For 
example, monolayer MoS2 in the hexagonal H 
and T phases are denoted MoS2-MoS2 and MoS2-
CdI2, respectively. Now, MoS2 is in fact not stable 
in the T phase, but undergoes a 2 × 1 distortion to 
the so-called T′ phase. Because the T′ phase is the 
thermodynamically stable phase of WTe2, we denote 
MoS2 in the distorted T phase by Mo2S4-WTe2. In the 
following, we shall refer to the unit cell with which 
the workflow is initiated, i.e. the unit cell of the seed 
structure, as the primitive cell or the 1 × 1 cell, even if 
this cell is not dynamically stable for the considered 
material (see section 2.4).

The unit cell and internal coordinates of the atoms 
are relaxed in both a spin-paired (NM), ferromagnetic 
(FM), and anti-ferromagnetic (AFM) configuration. 
Calculations for the AFM configuration are performed 
only for unit cells containing at least two metal atoms. 

The symmetries of the initial seed structure are kept 
during relaxation. All relevant computational details 
are provided in table 1.

After relaxation, we check that the structure has 
remained a covalently connected 2D material and not 
disintegrated into 1D or 0D clusters. This is done by 
defining clusters of atoms using the covalent radius 
[39]  +  30% as a measure for covalent bonds between 
atoms. The dimensionality of a cluster is obtained 
from the scaling of the number of atoms in a cluster 
upon repetition of the unit cell following the method 
described by Ashton et al [16]. Only materials con-
taining exactly one cluster of dimensionality 2 are 
given further consideration (an exception is made for 
the metal-organic perovskites (prototype PbA2I4) for 
which the metal atom inside the octahedron represents 
a 0D cluster embedded in a 2D cluster). To illustrate the 
effect of the covalent radius  +  30% threshold, figure 3 
shows the distribution of the candidate structures in 
the database as a function of the covalent factor needed 
to fully connect the structure. Most materials have a 
critical covalent factor below 1.3 and fall in the green 
shaded region. There is, however, a tail of around 100 
disconnected materials (red region); these materials 
are not included in the database (see first green box in 
figure 1).

We also check that the material is not already con-
tained in the database (second green box in figure 1). 
This is done by measuring the root mean square dis-
tance (RMSD) [40] relative to all other materials in 
the C2DB with the same reduced chemical formula. A 
threshold of 0.01 Å is used for this test.

In case of multiple metastable magnetic configu-
rations (in practice, if both a FM and AFM ground 
state are found), these are regarded as different phases 
of the same material and will be treated separately 
throughout the rest of the workflow. To indicate the 
magnetic phase we add the extensions ‘FM’ or ‘AFM’ 
to the material name. The total energy of the spin-
paired ground state is always stored, even when it 
is not the lowest. If the energy of the non-magnetic 
state is higher than the most stable magnetic state 
by less than 10 meV/atom, the workflow is also per-
formed for the non-magnetic state. This is done in 
recognition of the finite accuracy of DFT for predict-
ing the correct energetic ordering of different magn-
etic states.

We have compared the lattice constants of 29 
monolayers with those reported in [41], which were 
obtained with the VASP code using PBE and very 
similar numerical settings and find a mean absolute 
deviation of 0.024 Å corresponding to 0.4%. The small 
yet finite deviations are ascribed to differences in the 
employed PAW potentials.

2.2. Crystal structure classification
2.2.1. Symmetry
To classify the symmetries of the crystal structure 
the 3D space group is determined using the crystal 
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symmetry library Spglib [42] on the 3D supercell with 
a tolerance of 10−4 Å.

2.2.2. Prototypes
The materials are classified into crystal structure 
prototypes based on the symmetry of the crystals. 
For two materials to belong to the same prototype, 
we require that they have the same space group, the 
same stoichiometry, and comparable thicknesses. The 
last requirement is included to distinguish between 
materials with the same symmetry and stoichiometry 
but with different number of atomic layers, see for 
example monolayer BN and GaS in figure 4. Each 
prototype is labelled by a specific representative 
material. For prototypes which have been previously 

investigated, we comply with the established 
conventions. However, since the field of 2D materials is 
still young and because C2DB contains a large number 
of never-synthesised materials, some of the considered 
crystal structures fall outside the known prototypes. In 
these cases we have chosen the representative material 
to be the one with the lowest energy with respect to the 
convex hull. Some of the crystal structure prototypes 
presently contained in the C2DB are shown in figure 4.

2.3. Thermodynamic stability
The heat of formation, ∆H , is defined as the energy 
of the material with respect to the standard states of 
its constituent elements. For example, the heat of 
formation per atom of a binary compound, AxBy, is

Table 1. Overview of the methods and parameters used for the different steps of the workflow. If a parameter is not specified at a given step, 
its value equals that of the last step where it was specified.

Workflow step(s) Parameters

Structure and energetics (1–4)a vacuum  =  15 Å; k-point density  =  6.0/̊A
−1

; Fermi smearing  =  0.05 eV; PW  

cutoff  =  800 eV; xc functional  =  PBE; maximum force  =  0.01 eV/Å; maximum 

stress  =  0.002 eV/̊A
3
; phonon displacement  =  0.01Å

Elastic constants (5) k-point density  =  12.0/Å
−1

; strain  =  ±1%

Magnetic anisotropy (6) k-point density  =  20.0/Å
−1

; spin–orbit coupling  =  True

PBE electronic properties (7–10 and 12) k-point density  =  12.0/Å
−1

 (36.0/Å
−1

 for step 7)

Effective masses (11) k-point density  =  45.0/Å
−1

; finite difference

Deformation potential (13) k-point density  =  12.0/̊A
−1

; strain  =  ±1%

Plasma frequency (14) k-point density  =  20.0/̊A
−1

; tetrahedral interpolation

HSE band structure (8–12) HSE06@PBE; k-point density  =  12.0/̊A
−1

G0W0 band structure (8, 9) G0W0@PBE; k-point density  =  5.0/Å
−1

; PW cutoff  =  ∞ (extrapolated from 170, 185 and 

200 eV); full frequency integration; analytical treatment of W(q) for small q; truncated 

Coulomb interaction

RPA polarisability (15) RPA@PBE; k-point density  =  20.0/Å
−1

; PW cutoff  =  50 eV; truncated Coulomb  

interaction; tetrahedral interpolation

BSE absorbance (16) BSE@PBE with G0W0 scissors operator; k-point density  =  20.0/Å
−1

; PW cutoff  =  50 eV; 

truncated Coulomb interaction; at least 4 occupied and 4 empty bands

a For the cases with convergence issues, we set a k-point density of 9.0 and a smearing of 0.02 eV.

Figure 2. The materials in the C2DB are initially generated by decorating an experimentally known crystal structure prototype with 
atoms chosen from a (chemically reasonable) subset of the periodic table.
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∆H = (E(AxBy)− xE(A)− yE(B))/(x + y), (1)

where E(AxBy) is the total energy of the material AxBy, 
and E(A) and E(B) are the total energies of the elements 
A and B in their standard state. When assessing the 
stability of a material in the C2DB, it should be kept 
in mind that the accuracy of the PBE functional for 
the heat of formation is only around 0.2 eV/atom 
on average [43]. Other materials databases, e.g. 
OQMD, Materials Project, and AFLOW, employ fitted 
elementary reference energies (FERE) [44] and apply a 
Hubbard U term [45] for  the rare earth and transition 
metal atoms (or a selected subset of them). While 
such correction schemes in general improve ∆H  
they also introduce some ambiguity, e.g. the dataset 
from which the FERE are determined or the exact 
form of the orbitals on which the U term is applied. 
Thus in order not to compromise the transparency 
and reproducibility of the data we use the pure PBE 
energies.

For a material to be thermodynamically stable it is 
necessary but not sufficient that ∆H < 0. Indeed, ther-
modynamic stability requires that ∆H  be negative not 
only relative to its pure elemental phases but relative to 
all other competing phases, i.e. its energy must be below 
the convex hull [46]. We stress, however, that in general, 
but for 2D materials in particular, this definition cannot 
be directly applied as a criterion for stability and syn-
thesisability. The most important reasons for this are 
(i) the intrinsic uncertainty on the DFT energies stem-
ming from the approximate xc-functional (ii) substrate 
interactions or other external effects that can stabilise 
the monolayer (iii) kinetic barriers that separate the 
monolayer from other lower energy phases rendering 
the monolayer (meta)stable for all practical purposes.

We calculate the energy of the 2D material relative 
to the convex hull of competing bulk phases, ∆Hhull. 
The convex hull is currently constructed from the 2836 
most stable binary bulk compounds which were 
obtained from the OQMD [24]. The energies of the 

bulk phases were recalculated with GPAW using the 
PBE xc-functional and the same numerical settings 
as applied for the 2D materials (but the structure was 
not re-optimised). Because the bulk reference struc-
tures from OQMD were optimised with the VASP 
code and with Hubbard U corrections for materials 
containing 3d elements, and because the PBE misses 
attractive vdW interaction, the bulk energies could be 
slightly overestimated relative to the monolayers. As a 
consequence, monolayers that also exist in a layered 
bulk phase could have ∆Hhull < 0, even if the layered 
bulk phase is part of the convex hull and thus should 
be energetically more stable than the monolayer. Com-
paring our ∆Hhull values for 35 compounds with the 
exfoliation energies calculated in [18] employing vdW 
compliant xc-functionals for both bulk and mono-
layer, we estimate the errors in the convex hull energies 
to be below 0.1 eV/atom.

As an example, the convex hull for FexSe1−x is 
shown in figure 5. The convex hull as defined by the 
bulk binaries is indicated by the blue lines. The labels 
for the 2D materials refer to the crystal prototype and 
magnetic order. Clearly, most 2D materials lie above 
the convex hull and are thus predicted to be thermo-
dynamically unstable in freestanding form under 
standard conditions. However, as mentioned above, 
depending on the material, errors on the PBE forma-
tion energies can be sizable and thus the hull diagram 
should only be taken as guideline. Nevertheless, in 
the present example we find that FeSe (which is itself 
a prototype) with anti-ferromagnetic ordering lies 
slightly below the convex hull and is thus predicted to 
be thermodynamically stable. This prediction is con-
sistent with the recent experimental observation that 
monolayer FeSe deposited on SrTiO3 exhibits AFM 
order [47].

2.4. Phonons and dynamic stability
Due to the applied symmetry constraints and/or 
the limited size of the unit cell, there is a risk that the 
structure obtained after relaxation does not represent 
a local minimum of the potential energy surface, but 
only a saddle point. We test for dynamical stability by 
calculating the Γ-point phonons of a 2 × 2 repeated 
cell (without re-optimising the structure) as well as 
the elastic constants (see section 2.5). These quantities 
represent second-order derivatives of the total energy 
with respect to atom displacements and unit cell 
lengths, respectively, and negative values for either 
quantity indicate a structural instability.

The Γ-point phonons of the 2 × 2 supercell are 
obtained using the finite displacement method [48]. 
We displace each atom in the primitive cell by  ±0.01 Å, 
and calculate the forces induced on all the atoms in the 
supercell. From the forces we construct the dynamical 
matrix, which is diagonalised to obtain the Γ-point 
phonons of the 2 × 2 cell (or equivalently the Γ-point 
and zone boundary phonons of the primitive cell). The 
eigenvalues of the dynamical matrix correspond to the 
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Figure 3. The distribution of candidate structures for the 
C2DB with respect to the critical covalent factor at which 
they become 2D. Materials in the red region are excluded 
from the database.
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square of the mass-renormalised phonon frequencies, 
ω̃ . Negative eigenvalues are equivalent to imaginary 
frequencies and signal a saddle point.

Our procedure explicitly tests for stability against 
local distortions of periodicities up to 2 × 2 and thus 
provides a necessary, but not sufficient condition for 
dynamic stability. We stress, however, that even in 
cases where a material would spontaneously relax 
into a structure with periodicity larger than 2 × 2, 
the Γ-point dynamical matrix of the 2 × 2 cell could 

exhibit negative eigenvalues. Our test is thus more 
stringent than it might seem at first glance. In principle, 
a rigorous test for dynamic stability would require the 
calculation of the full phonon band structure. Math-
ematically, the instabilities missed by our approach are 
those that result in imaginary phonons in the interior 
of the BZ but not at the zone boundary. Physically, such 
modes could be out of plane buckling or charge den-
sity wave-driven reconstructions with periodicities of 
several unit cells. In general, however, these types of 

Figure 4. Examples of crystal structure prototypes currently included in the C2DB.
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instabilities are typically rather weak (as measured by 
the magnitude of the imaginary frequency) as com-
pared to more local distortions such as the T to T′ dist-
ortion considered below. Moreover, they could well 
be a special property of the isolated monolayer and 
become stabilised by the ubiquitous interactions of the 
2D material with its environment, e.g. substrates. This 
is in fact supported by the full phonon calculations by 
Mounet et al for ∼ 250 isolated monolayers predicted 
to be easily exfoliable from experimentally known lay-
ered bulk phases [18]. Indeed, most of the instabilities 
revealed by their calculations are of the type described 
above and would thus be missed by our test. However, 
these instabilities cannot be too critical as the mono-
layers are known to be stable in the vdW bonded lay-
ered bulk structure.

As an example, figure 6 compares the dynami-
cal stability of a subset of transition metal dichalco-
genides and -oxides in the T and T′ phases (CdI2 and 
WTe2 prototypes). The two upper panels show the 
smallest eigenvalue of the Γ-point dynamical matrix 
of the 2 × 2 cell. Only materials above the dashed line 
are considered dynamically stable (for this example we 
do not consider the sign of the elastic constants which 
could further reduce the set of dynamically stable 
materials). Since the unit cell of the T′ phase contains 
that of the T phase it is likely that a material initially 
set up in the T′ phase relaxes back to the T phase. To 
identify these cases, and thereby avoid the presence of 
duplicates in the database, the third panel shows the 
root mean square distance (RMSD) between the struc-
tures obtained after relaxations starting in the T- and 
T′ phase, respectively. Structures below the dashed 
line are considered identical. The color of each sym-
bol refers to the four different potential energy surfaces 
illustrated at the bottom of the figure.

2.4.1. Stability criteria
To assess the stability of the materials in the C2DB, we 
turn to the set of experimentally synthesised/exfoliated 
monolayers. For these materials, the calculated energy 
above the convex hull and minimum eigenvalue of 
the dynamical matrix are shown on figure 7. It is clear 
that all but five known monolayers have a hull energy 
below 0.2 eV/atom, and three of these have only been 
synthesised on a metal substrate. Turning to the 
dynamical stability, all but one of the experimentally 
known monolayers have a minimum eigenvalue of the 
dynamical matrix above −2 eV Å−2, and 70% have a 
minimum eigenvalue above −1 × 10−5 eV Å−2.

Guided by these considerations, we assign each 
material in the C2DB a stability level (low, medium 
or high) for both dynamical and thermodynamic sta-
bility, as illustrated in table 2. For ease of reference, we 
also define the overall stability level of a given mat erial 
as the lower of the dynamical and thermodynamic 
stability levels. If a material has ‘low’ overall stability 
(marked by bold in the table), we consider it unstable 
and do not carry out the rest of the workflow. Mat erials 

with ‘high’ overall stability are considered likely to be 
stable and thus potentially synthesisable. Mat erials 
in the ‘medium’ stability category, while unlikely to 
be stable as freestanding monolayers, cannot be dis-
carded and might be metastable and possible to syn-
thesise under the right conditions. For example, free-
standing silicene has a heat of formation of 0.66 eV/
atom, but can be grown on a silver substrate. Likewise, 
the T′ phase of MoS2 (WTe2 prototype) has an energy 
of 0.27 eV/atom higher than the thermodynami-
cally stable H phase, but can be stabilised by electron  

doping.

2.5. Elastic constants
The elastic constants of a material are defined by the 
generalised Hooke’s law,

σij = Cijklεkl (2)

where σij , Cijkl and εkl are the stress, stiffness and 
strain tensors, respectively, and where we have 
used the Einstein summation convention. In two 
dimensions, the stress and strain tensors have three 
independent components, namely planar stress/
strain in the x and y directions, as well as shear stress/
strain. The stiffness tensor is a symmetric linear map 
between these two tensors, and therefore has up to 
six independent components. Disregarding shear 
deformations, the relationship between planar strain 
and stress is[

σxx

σyy

]
=

[
C11 C12

C12 C22

] [
εxx

εyy

]
. (3)

For all materials in the C2DB, we calculate the planar 
elastic stiffness coefficients C11, C22, and C12. These are 
calculated using a central difference approximation 
to the derivative of the stress tensor: the material 
is strained along one of the coordinate axes, x or y, 
and the stress tensor is calculated after the ions have 
relaxed. We use strains of ±1% which we have found 
to be sufficiently large to eliminate effects of numerical 

0.0 0.5 1.0
FexSe1−x

−0.3

−0.2

−0.1

0.0

∆
H

[e
V

/a
to

m
]

FeSe

Fe2Se4

Fe2Se2
FeSe (AFM)
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Figure 5. Convex hull for FexSe1−x. The convex hull as 
defined by the bulk phases is represented by the blue lines. 
Blue squares denote bulk binary reference phases while 
orange triangles represent 2D materials. The labels for the 2D 
materials refer to the crystal prototype and magnetic order.
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noise and sufficiently small to stay within the linear 
response regime.

Table 3 shows the calculated planar stiffness coef-
ficients of a set of 2D materials. As can be seen the val-
ues from the C2DB are in very good agreement with  
previously published PBE results. For the isotropic 
mat erials MoS2, WSe2 and WS2, C11 and C22 should 
be identical, and we see a variation of up to 0.6%. This 
provides a test of how well converged the values are 

with respect to numerical settings.

2.6. Magnetic anisotropy
The energy dependence on the direction of 
magnetisation, or magnetic anisotropy (MA), arises 
from spin–orbit coupling (SOC). According to the 
magnetic force theorem [96] this can be evaluated from 
the eigenvalue differences such that the correction to 
the energy becomes

∆E(n̂) =
∑

kn

f (εn̂
kn)ε

n̂
kn −

∑
kn

f (ε0
kn)ε

0
kn, (4)

where εn̂
kn and f (εn̂

kn) are the eigenenergies and 
occupation numbers, respectively, obtained by 
diagonalising the Kohn–Sham Hamiltonian including 
SOC in a basis of collinear spinors aligned along the 

direction n̂, while ε0
kn and f (ε0

kn) are the bare Kohn–
Sham eigenenergies and occupation numbers without 
SOC.

For all magnetic materials we have calculated 
the energy difference between out-of-plane and in-
plane magnetisation EMA(i) = ∆E(ẑ)−∆E(i),  
(i = x̂, ŷ). Negative values of EMA(i) thus indicate  
that there is an out-of-plane easy axis of magnet isation.

Calculations for the ground state have been per-
formed with plane-wave cutoff and energetic conv-
ergence threshold set to 800 eV and 0.5 meV/atom 
respectively. For all calculations we have used a 
Γ-centered Monkhorst–Pack k-point with a den-

sity of 20/̊A
−1

. The SOC contribution is introduced 

via a non-self-consistent diagonalisation of the 
Kohn–Sham Hamiltonian evaluated in the projector- 
augmented wave formalism [97].

2.7. Projected density of states
The projected density of states (PDOS) is a useful tool 
for identifying which atomic orbitals comprise a band. 
It is defined as

ρS
l (ε) =

∑
a∈S

∑
kn

∑
m

|〈φa
l,m|ψkn〉|2δ(ε− εkn), (5)

where ψkn are the Kohn–Sham wave functions with 
eigenvalues εkn and φa

l,m are the spin-paired Kohn–
Sham orbitals of atomic species S with angular 
momentum l (s, p, d, f ). We sum over all atoms 
belonging to species S so every atomic species has one 

T
T′

T
T′

T
T′

T
T′

Figure 6. Dynamical stability of a set of transition metal dichalcogenides and -oxides in the T and Tʹ  phases (CdI2 and WTe2 
prototypes), respectively. The first and second panels show the minimum eigenvalue of the Γ-point dynamical matrix of the 2 × 2 
unit cell (containing 12 and 24 atoms for the T and T′ phase, respectively. The lower panel shows the root mean square distance 
(RMSD) between the relaxed structures. The color indicates whether the material is dynamically stable in the T phase (black), the T′ 
phase (blue), both phases (orange) or neither of the phases (green).
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entry per angular momentum channel. In the PAW 
formalism this can be approximated as

ρS
l (ε) =

∑
a∈S

∑
kn

∑
m

|〈p̃a
l,m|ψ̃kn〉|2δ(ε− εkn) (6)

where ψ̃kn are the pseudo wave functions and p̃a
l,m are 

the PAW projectors associated with the atomic orbitals 

φa
l,m. The PDOS is calculated from equation (6) using 

linear tetrahedron interpolation [98] (LTI) of energy 

eigenvalues obtained from a ground state calculation 

with a k-point sampling of 36/Å
−1

. In contrast to other 

techniques for calculating the PDOS using smearing, 

the PDOS yielded by the LTI method returns exactly 

zero at energies with no states. Examples of PDOS 

Figure 7. The calculated energy above the convex hull and minimum eigenvalue of the dynamical matrix (evaluated at the Γ-point 
for the 2 × 2 cell) for the 55 materials in the C2DB that have been synthesised or exfoliated in monolayer form, see [6, 9, 10, 12, 
49–94]. The three materials highlighted in red have only been synthesised on metallic substrates. The black dashed lines indicate the 
thresholds used to categorise the thermodynamic and dynamic stability of materials in the C2DB.
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are shown in figure 9 (right) for respectively the 
ferromagnetic metal VO2 and the semiconductor WS2 
in the H phase (MoS2 prototype).

2.8. Band structures
Electronic band structures are calculated along 
the high symmetry paths shown in figure 8 for the 
five different types of 2D Bravais lattices. The band 
energies are computed within DFT using three 
different xc-functionals, namely PBE, HSE06, and 
GLLBSC. These single-particle approaches are 
complemented by many-body G0W0 calculations 
for materials with a finite gap and up to four atoms 
in the unit cell (currently around 250 materials). For 
all methods, SOC is included by non-selfconsistent 
diagonalisation in the full basis of Kohn–Sham 
eigenstates. Band energies always refer to the 
vacuum level defined as the asymptotic limit of the 
Hartree potential, see figure 12. Below we outline the 
employed methodology while section 3.2.1 provides 
an overview and comparison of the band energies 
obtained with the different methods.

2.8.1. PBE band structure
The electron density is determined self-consistently 

on a uniform k-point grid of density 12.0/̊A
−1

. From 
this density, the PBE band structure is computed 
non-selfconsistently at 400 k-points distributed 
along the band path (see figure 8). Examples of 
PBE band structures are shown in figure 9 for the 
ferromagnetic metal VO2 and the semiconductor 
WS2 both in the MoS2 prototype structure. The 

expectation value of the out-of-plane spin component, 

〈χnkσ|Ŝz|χnkσ〉, is evaluated for each spinorial wave 

function, χnkσ = (ψnk↑,ψnk↓), and is indicated by 
the color of the band. For materials with inversion 
symmetry, the SOC cannot induce band splitting, 

meaning that 〈χnkσ|Ŝz|χnkσ〉 is ill-defined and no 

color coding is used. The band structure without SOC 
is indicated by a dashed grey line. We have compared 
our PBE  +  SOC band gaps of 29 different monolayers 
with those obtained with the VASP code in [41] and 
find a mean absolute deviation of 0.041 eV.

2.8.2. HSE band structure
The band structure is calculated non-selfconsistently 
using the range-separated hybrid functional HSE06 
[99] on top of a PBE calculation with k-point density 

12.0/̊A
−1

 and 800 eV plane wave cutoff. We have 
checked for selected systems that the HSE band 
structure is well converged with these settings. The 
energies along the band path are obtained by spline 
interpolation from the uniform k-point grid. As an 
example, the HSE band structure of WS2 is shown in 
the left panel of figure 10 (black line) together with 
the PBE band structure (grey dashed). The PBE band 
gap increases from 1.52 eV to 2.05 eV with the HSE06 
functional in good agreement with earlier work 
reporting band gaps of 1.50 eV (PBE) and 1.90 eV 
(HSE) [100] and 1.55 eV (PBE) and 1.98 eV (HSE) 
[101], respectively. A more systematic comparison of 
our results with the HSE  +  SOC band gaps obtained 
with the VASP code in [41] for 29 monolayers yield a 
mean absolute deviation of 0.14 eV. We suspect this 
small but non-zero deviation is due to differences in the 
employed PAW potentials and the non-selfconsistent 
treatment of the HSE in our calculations.

Table 2. The materials in the C2DB distributed over the nine stability categories defined by the three levels (high, medium and low) of 
dynamical stability (columns) and thermodynamic stability (rows).  The overall stability of the materials is defined as the lower of the two 
separate stability scales. Materials with low overall stability (bold) are considered unstable.

Thermodynamic stability 

(eV/atom)

Dynamic stability (eVÅ−2)

Total|ω̃2
min| > 2 or Cii  <  0 10−5 < |ω̃2

min| < 2, Cii  >  0 |ω̃2
min| < 10−5, Cii > 0

∆H > 0.2 6.0% 4.2% 1.7% 12.0%

∆H < 0.2 14.9% 10.9% 6.4% 32.2%

∆Hhull < 0.2 11.4% 24.1% 20.3% 55.8%

Total 32.3% 39.2% 28.5%

Table 3. Planar elastic stiffness coefficients (in N m−1) calculated at the PBE level. The results of this work are compared to previous 
calculations from the literature and the mean absolute deviation (MAD) is shown.

C11 (N m−1) C22 (N m−1) C12 (N m−1)

C2DB Literature C2DB Literature C2DB Literature

P (phosphorene) 101.9 105.2 [95] 25.1 26.2 [95] 16.9 18.4 [95]

MoS2 131.4 132.6 [19] 131.3 132.6 [19] 32.6 32.7 [19]

WSe2 120.6 119.5 [19] 121.3 119.5 [19] 22.8 22.7 [19]

WS2 146.3 145.3 [19] 146.7 145.3 [19] 32.2 31.5 [19]

MAD 1.7 — 1.4 — 0.6 —
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2.8.3. GLLBSC fundamental gap
For materials with a finite PBE band gap, the 
fundamental gap (i.e. the difference between the 
ionisation potential and electron affinity) also 
sometimes referred to as the quasiparticle gap, is 
calculated self-consistently using the GLLBSC [102] 
xc-functional with a Monkhorst–Pack k-point grid 
of density 12.0/̊A

−1
. The GLLBSC is an orbital-

dependent exact exchange-based functional, which 
evaluates the fundamental gap as the sum of the 
Kohn–Sham gap and the xc-derivative discontinuity, 

Egap = εKS
gap +∆xc. The method has been shown to 

yield excellent quasiparticle band gaps at very low 

computational cost for both bulk [102, 103] and 2D 
semiconductors [36].

In the exact Kohn–Sham theory, εKS
v  should equal 

the exact ionisation potential and thus ∆xc should be 
used to correct only the conduction band energies 
[104]. Unfortunately, we have found that in prac-
tice this procedure leads to up-shifted band energies 
(compared with the presumably more accurate G0W0 
results, see figure 20). Consequently, we store only the 
fundamental gap and ∆xc in the database. However, as 
will be shown in section 3.2.1 the center of the gap is in 
fact reasonably well described by PBE suggesting that 
efficient and fairly accurate predictions of the absolute 

Figure 8. Overview of the five 2D Bravais lattices and corresponding Brillouin zones. The unit vectors a1 and a2 are shown together 
with the angle between them γ. The primitive unit cell is indicated in gray. High symmetry points of the BZ and the path along which 
the band structure is evaluated, are indicated in blue.
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band edge energies can be obtained by a symmetric 
GLLBSC correction of the PBE band edges.

2.8.4. G0W0 band structure
For materials with finite PBE band gap the quasiparticle 
(QP) band structure is calculated using the G0W0 
approximation on top of PBE following our earlier 
work [105, 106]. Currently, this resource demanding 
step is performed only for materials with up to four 
atoms in the unit cell. The number of plane waves 
and the number of unoccupied bands included in the 
calculation of the non-interacting density response 
function and the GW self-energy are always set equal. 
The individual QP energies are extrapolated to the 
infinite basis set limit from calculations at plane wave 
cutoffs of 170, 185 and 200 eV, following the standard 
1/NG dependence [107, 108], see figure 11 (right). 
The screened Coulomb interaction is represented on 
a non-linear real frequency grid ranging from 0 eV to 

230 eV and includes around 250 frequency points. The 
exchange contribution to the self-energy is calculated 
using a Wigner–Seitz truncation scheme [109] for a 
more efficient treatment of the long range part of the 
exchange potential. For the correlation part of the self-
energy, a 2D truncation of the Coulomb interaction is 
used [110, 111]. We stress that the use of a truncated 
Coulomb interaction is essential to avoid unphysical 
screening from periodically repeated layers which 
otherwise leads to significant band gap reductions.

Importantly, the use of a truncated Coulomb 
interaction leads to much slower k-point conv-
ergence because of the strong q-dependence of the 
2D di electric function around q  =  0. We allevi-
ate this problem by using an analytical expression 
for the screened interaction when performing the 
BZ int egral around q  =  0 [106]. This allows us 

to obtain well converged results with a relatively 

low k-point density of 5.0/Å
−1
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12 × 12 k-points for MoS2). For example, with this 
setting the G0W0 band gap of MoS2 is converged to 
within 0.05 eV, see figure 11 (left). In comparison, 
standard BZ sampling with no special treatment of 
the q  =  0 limit, requires around 40 × 40 k-points to 
reach the same accuracy.

Figure 10 (right) shows the PBE and G0W0 band 
structures of WS2 (including SOC). The G0W0 self-
energy opens the PBE band gap by 1.00 eV and the HSE 
gap by 0.47 eV, in good agreement with previous stud-

ies [112]. We note in passing that our previously pub-
lished G0W0 band gaps for 51 monolayer TMDCs [36] 
are in good agreement with the results obtained using 
the workflow described here. The mean absolute error 
between the two data sets is around 0.1 eV and can be 
ascribed to the use of PBE rather than LDA as start-
ing point and the use of the analytical expression for W 
around q  =  0.

A detailed comparison of our results with previ-
ously published G0W0 data is not meaningful because 
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of the rather large differences in the employed imple-
mentations/parameter settings. In particular, most 
reported calculations do not employ a truncated 
Coulomb interaction and thus suffer from spurious 
screening effects, which are then corrected for in dif-
ferent ways. Moreover, they differ in the amount of 
vacuum included the supercell, the employed k-point 
grids and basis sets, the in-plane lattice constants, and 
the DFT starting points. For example, published val-
ues for the QP band gap of monolayer MoS2 vary from 
from 2.40 to 2.90 eV [113–120] (see [119] for a detailed 
overview). The rather large variation in published GW 
results for 2D materials is a result of the significant 
numerical complexity of such calculations and under-
lines the importance of establishing large and consist-
ently produced benchmark data sets like the present.

For bulk materials, self-consistency in the Green’s 
function part of the self-energy, i.e. the GW0 method, 
has been shown to increase the G0W0 band gaps and 
improve the agreement with experiments [121]. The 
trend of band gap opening is also observed for 2D 
materials [106, 120, 120, 122], however, no system-
atic improvement with respect to experiments has 
been established [122]. For both bulk and 2D mat-
erials, the fully self-consistent GW self-energy system-
atically overestimates the band gap [121, 122] due to 
the neglect of vertex corrections [122, 123]. In G0W0 
the neglect of vertex corrections is partially compen-
sated by the smaller band gap of the non-interacting 
Kohn–Sham Green’s function compared to the true 
interacting Green’s function. In this case, the vertex 
corrections corrections will affect mainly the abso-
lute position of the bands relative to vacuum while the 
effect on the band gap is relatively minor [122].

In table 4 we compare calculated band gaps from 
C2DB with experimental band gaps for three mono-
layer TMDCs and phosphorene. The exper imental 
data has been corrected for substrate interactions [122, 
124], but not for zero-point motion, which is expected 
to be small (<0.1 eV). The G0W0 results are all within 
0.2 eV of the experiments. A further (indirect) test of 
the G0W0 band gaps against exper imental values is 
provided by the comparison of our BSE spectra against 
experimental photoluminescence data in table 7, 
where we have used a G0W0 scissors operator. Finally, 
we stress that the employed PAW potentials are not 
norm-conserving, and this can lead to errors for bands 
with highly localised states (mainly 4f and 3d orbitals), 

as shown in [108]. Inclusion of vertex corrections and 
use of norm conserving potentials will be the focus of 

future work on the C2DB.

2.9. Band extrema
For materials with a finite band gap, the positions of 
the valence band maximum (VBM) and conduction 
band minimum (CBM) within the BZ are identified 
together with their energies relative to the vacuum 
level. The latter is defined as the asymptotic value of 
the electrostatic potential, see figure 12. The PBE 
electrostatic potential is used to define the vacuum level 
in the non-selfconsistent HSE and G0W0 calculations. 
For materials with an out-of-plane dipole moment, a 
dipole correction is applied during the selfconsistent 
DFT calculation, and the vacuum level is defined as the 
average of the asymptotic electrostatic potentials on 
the two sides of the structure. The PBE vacuum level 
shift is also stored in the database.

2.10. Fermi surface
The Fermi surface is calculated using the PBE xc-
functional including SOC for all metallic compounds 
in the database. Based on a ground state calculation 

with a k-point density of at least 20/̊A
−1

, the 
eigenvalues are interpolated with quadratic splines and 
plotted within the first BZ. Figure 13 (left) shows an 
example of the Fermi surface for VO2-MoS2 with color 
code indicating the out-of-plane spin projection 〈Sz〉. 
The band structure refers to the ferromagnetic ground 
state of VO2-MoS2, which has a magnetic moment of 
0.70 µB per unit cell, characterised by alternating spin-
polarised lobes with 〈Sz〉 = ±1.

2.11. Effective masses
For materials with a finite PBE gap, the effective 
electron and hole masses are calculated from the 
PBE eigenvalues; initially these are calculated on 

an ultrafine k-point mesh of density 45.0/Å
−1

 

uniformly distributed inside a circle of radius  

0.015 ̊A
−1

 centered at the VBM and CBM, respectively. 

The radius is chosen to be safely above the noise level of 
the calculated eigenvalues but still within the harmonic 
regime; it corresponds to a spread of eigenvalues of 
about 1 meV within the circle for an effective mass 
of 1 m0. For each band within an energy window of  
100 meV above/below the CBM/VBM, the band 

Table 4. Comparison between calculated and experimental band gaps for four freestanding monolayers. The experimental values have 
been corrected for substrate screening. MAD refers to the mean absolute deviation between the predicted values and the measured values.

Material

Band gap (eV)

PBE HSE06 GLLBSC G0W0 Experiment

MoS2 1.58 2.09 2.21 2.53 2.50 [125]

MoSe2 1.32 1.80 1.88 2.12 2.31 [126]

WS2 1.53 2.05 2.16 2.53 2.72 [127]

P (phosphorene) 0.90 1.51 1.75 2.03 2.20 [124]

MAD w.r.t. experiment 1.10 0.57 0.43 0.15 —
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curvature is obtained by fitting a third order polynomial. 
Even though the masses represent the second derivative 
of the band energies, we have found that the inclusion 
of 3rd order terms stabilises the fitting procedure and 
yields masses that are less sensitive to the details of 
the employed k-point grids. For each band the mass 
tensor is diagonalised to yield heavy and light masses 
in case of anisotropic band curvatures. The masses (in 
two directions) and the energetic splitting of all bands 
within 100 meV of the band extremum are calculated 
both with and without SOC and stored in the database. 
Other approaches exist for calculating effective masses, 
such as k · p perturbation theory (see e.g. [128] and 
references therein); the present scheme was chosen for 
its simplicity and ease of application to a wide range of 
different materials.

In addition to the effective masses at the VBM 
and CBM, the exciton reduced mass is calcu-
lated by applying the above procedure to the direct 
valence-conduction band transition energies, 
εv−c(k) = εc(k)− εv(k). For direct band gap mat-
erials the exciton reduced mass is related to the elec-
tron and hole masses by 1/µex = 1/m∗

e + 1/m∗
h , but in 

the more typical case of indirect band gaps, this rela-
tion does not hold.

As an example, figure 14 shows a zoom of the band 
structure of SnS-GeSe around the VBM and CBM 
(upper and lower panels). The second order fits to 
the band energies (extracted from the fitted 3rd order 
polynomial) are shown by red dashed lines. It can be 
seen that both the conduction and valence bands are 
anisotropic leading to a heavy and light mass direction 
(left and right panels, respectively). The valence band 
is split by the SOC resulting in two bands separated by 
∼ 10 meV and with slightly different curvatures. The 
conduction band exhibits a non-trivial band split-
ting in one of the two directions. The peculiar band  
splitting is due to a Rashba effect arising from the 
combination of spin–orbit coupling and the finite 
perpend icular electric field created by the permanent 
dipole of the SnS structure where Sn and S atoms are 
displaced in the out of plane direction leading to a siz-
able vacuum level difference of 1.13 eV, see figure 12.

Table 5 shows a comparison between selected effec-
tive masses from the C2DB and previously published 
data also obtained with the PBE xc-correlation func-
tional and including SOC. Overall, the agreement is 

very satisfactory.

2.12. Work function
For metallic compounds, the work function is 
obtained as the difference between the Fermi energy 
and the asymptotic value of the electrostatic potential 
in the vacuum region, see figure 12. The work function 
is determined for both PBE and HSE band structures 
(both including SOC) on a uniform k-point grid 

of density 12.0/̊A
−1

. Since the SOC is evaluated 
non-selfconsistently, the Fermi energy is adjusted 
afterwards based on a charge neutrality condition.

2.13. Deformation potentials
For semiconductors, the deformation potentials 
quantify the shift in band edge energies (VBM or 
CBM) upon a linear deformation of the lattice. The 
uniaxial absolute deformation potential along axis i 
(i = x, y) is defined as [129, 130]

Dα
ii =

∆Eα

εii
, α = VBM, CBM (7)

where ∆Eα is the energy shift upon strain and εii are 
the strains in the i-directions.

The deformation potentials are important physical 
quantities as they provide an estimate of the strength 
of the (acoustic) electron-phonon interaction, see sec-
tion 3.2.2. Moreover, they are obviously of interest in 
the context of strain-engineering of band gaps and 
they can be used to can be used to infer an error bar on 
the band gap or band edge positions due to a known or 
estimated error bar on the lattice constant.

The calculation of Dα
ii  is based on a central differ-

ence approximation to the derivative. A strain of ±
1% is applied separately in the x and y directions and 
the ions are allowed to relax while keeping the unit cell 
fixed. Calculations are performed with the PBE xc-
functional, a plane wave cutoff of 800 eV, and a k-point 

density of 12/̊A
−1

.
The change in band energy, ∆Eα, is measured rela-

tive to the vacuum level. In cases with nearly degen-
erate bands, care must be taken to track the correct 
bands as different bands might cross under strain. In 

this case, we use the expectation value 〈Ŝz〉 to follow 
the correct band under strain. Figure 15 shows how 
the band structure of MoS2 changes as a function of 
strain. Both the VBM and the CBM shift down (relative 
to the vacuum level) when tensile strain is applied in 
the x direction, but the conduction band shows a much 
larger shift, leading to an effective band gap closing 
under tensile strain.

Table 6 shows a comparison between the defor-
mation potentials in the C2DB, and literature values 
obtained using similar methods. There is generally 
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Figure 13. Left: Brillouin zone and Fermi surface calculated with PBE and spin–orbit coupling for VO2 in the MoS2 crystal structure. The 
Fermi surface is colored by the spin projection along the z-axis. Right: Brillouin zone, valence band maximum (VBM) and conduction 
band minimum (CBM) for WS2 in the MoS2 crystal structure. The grey areas in both plots mark the irreducible Brillouin zone.
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CB, direction 2

−1.0

−0.5

0.0

0.5

1.0

〈S
z
〉

Figure 14. Zoom of the band structure of SnS in the GeSe crystal structure around the conduction and valence band extrema 
(upper and lower panels). Second order fits used to determine the effective masses are shown by red dashed lines. The peculiar 
band splitting in the conduction band minimum (upper left panel) is caused by a Rashba effect arising from the combination of 
spin–orbit coupling and the finite perpendicular electric field created by the asymmetric SnS structure.

Table 5. Calculated PBE effective masses (in units of m0), for the highest valence band and lowest conduction band, for different 2D 
materials. All C2DB values are calculated including spin–orbit coupling.

Material k-point

Electron mass (m0) Hole mass (m0)

C2DB Literature C2DB Literature

MoS2 K 0.42 0.44 [128] 0.53 0.54 [128]

WSe2 K 0.46 0.40 [128] 0.35 0.36 [128]

Phosphorene (zig-zag) Γ 1.24 1.24 [95] 6.56 6.48 [95]

Phosphorene (armchair) Γ 0.14 0.13 [95] 0.13 0.12 [95]

MAD 0.02 — 0.03 —
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good agreement, and part of the discrepancy can be 
ascribed to the fact that, in contrast to [131], our num-

bers include spin–orbit coupling.

2.14. Plasma frequencies
The dielectric response of a 2D material is described 
by its 2D polarisability, α2D (see section 2.15 
for a general introduction of this quantity). For 
metals, it can be separated into contributions 
from intraband and interband transitions, i.e. 
α2D = α2D,intra + α2D,inter . We have found that local 
field effects (LFEs) are negligible for the intraband 
component, which consequently can be treated 
separately and evaluated as an integral over the Fermi 
surface. Specifically, this leads to the Drude expression 
for the polarisability in the long wave length limit 

α2D,intra(ω) = −ω2
P,2D/(2πω

2) where ωP,2D is the 2D 
plasma frequency, which in atomic units is given by

ω2
P,2D =

4π

A

∑
snk

|q̂ · vsnk|2δ(εsnk − εF), (8)

where vsnk = 〈snk|p̂/m0|snk〉 is a velocity matrix 
element (with m0 the electron mass), q̂ = q/q is the 
polarisation direction, s, n, k denote spin, band and 
momentum indices, and A is the supercell area. The 
2D plasma frequency is related to the conventional 3D 

plasma frequency by ω2
P,2D(ω) = ω2

P,3D(ω)L/2 where L 
is the supercell height.

The plasma frequency defined above determines the 
intraband response of the 2D metal to external fields. 

In particular, it determines the dispersion relation of 
plasmon excitations in the metal. The latter are defined 
by the condition ε2D(ωP) = 1 + 2πqα2D(ωP) = 0, 
where q is the plasmon wave vector. Neglecting inter-
band transitions (the effect of which is considered in 
section 3.2.4), the 2D plasmon dispersion relation 
becomes

ωP(q) = ωP,2D
√

q. (9)

The plasma frequencies, ωP,2D, for polarisation in 
the x and y directions, respectively, are calculated for 
all metals in the C2DB using the linear tetrahedron 
method [98] to interpolate matrix elements and 
eigenvalues based on a PBE band structure calculation 

with a k-point density of 20/Å
−1

.

2.15. Electronic polarisability
The polarisability tensor αij  is defined by

Pi(q,ω) =
∑

j

αij(q,ω)Ej(q,ω),
 (10)

where Pi is the i’th component of the induced 
polarisation averaged over a unit cell and Ej is the j’th 
component of the macroscopic electric field. Using 

that Pi = (Di − Ei)/(4π) =
∑

j(εij − δij)Ej/(4π) 

one observes that αij = (εij − δij)/(4π), where εij is 
the dielectric function. In contrast to the dielectric 
function, whose definition for a 2D material is not 
straightforward [119], the polarisability allows for 
a natural generalisation to 2D by considering the 
induced dipole moment per unit area,
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Figure 15. Left: Valence- and conduction bands of MoS2 for  ±4.5% biaxial strain. Right: Energies of the VBM and CBM at the 
K point as function of strain. The symbols are the results of full DFT calculations, while the dashed lines are obtained from the 
deformation potentials evaluated at ±1% strain.

Table 6. Absolute deformation potentials (in eV) of the VBM and CBM for different materials. All results are based on the PBE xc-
functional.

Material k-point

Valence band Conduction band

C2DB Ref. [131] C2DB Ref. [131]

MoSe2 K −1.43 −1.86 −5.57 −5.62

WS2 K −1.25 −1.59 −6.66 −6.76

WSe2 K −1.21 −1.43 −6.21 −6.35

hBN K −1.57 −1.63 −4.55 −4.62

MAD 0.26 — 0.14 —
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P2D
i (q,ω) =

∑
j

α2D
ij (q,ω)Ej(q,ω).

 (11)

Since the Pi is a full unit cell average and P2D
i  is 

integrated in the direction orthogonal to the slab, we 

have P2D
i = LPi and α2D

ij = Lαij, where L is the length 
of the unit cell in the direction orthogonal to the slab.

In the following, we focus on the longitudinal 
components of the polarisability and dielectric ten-
sors, which are simply denoted by α and ε. These are 
related to the density-density response function, χ, via 
the relations

α2D(q,ω) =
L

4π
(ε(q,ω)− 1), (12)

ε−1(q,ω) = 1 + 〈vc(q)χ(ω)〉q, (13)

where vc  is the Coulomb interaction and

〈vcχ(ω)〉q =
1

V

∫

Cell
drdr′dr′′vc(r, r′)χ(r′, r′′,ω)e−iq(r−r′′),

 (14)

where Cell is the supercell with volume V . The re-  
sponse function, χ, satisfies the Dyson equation [132] 
χ = χirr + χirrvcχ, where χirr is the irreducible 
density-density response function. In the random 
phase approximation (RPA) χirr is replaced by the 
non-interacting response function, χ0, whose plane 
wave representation is given by [133, 134]

χ0
GG′(q,ω) =

1

Ω

∑
k∈BZ

∑
mn

( fnk − fmk+q)

×
〈ψnk|e−i(q+G)·r|ψmk+q〉〈ψmk+q|ei(q+G′)·r|ψnk〉

�ω + εnk − εmk+q + iη
,

 (15)

where G, G′ are reciprocal lattice vectors and Ω is the 
crystal volume.

For all materials in the database, we calculate the 
polarisability within the RPA for both in-plane and 
out-of-plane polarisation in the optical limit q → 0. 
For metals, the interband contribution to the polaris-
ability is obtained from equation (15) while the intra-
band contribution is treated separately as described in 
section 2.14. The single-particle eigenvalues and eigen-
states used in equation (15) are calculated with PBE, a 

k-point density of 20/Å
−1

 (corresponding to a k-point 

grid of 48 × 48 for MoS2 and 60 × 60 for graphene), 
and 800 eV plane wave cutoff. The Dyson equation is 
solved using a truncated Coulomb potential [105, 
111] to avoid spurious interactions from neighboring 
images. We use the tetrahedron method to interpolate 
the eigenvalues and eigenstates and a peak broadening 
of η = 50 meV. Local field effects are accounted for by 
including G-vectors up to 50 eV. For the band sum-
mation we include 5 times as many unoccupied bands 
as occupied bands, which roughly corresponds to an 
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monolayer NbS2 in the T phase (right). For metals, the real part is shown both with and without the intraband contributions.
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energy cutoff of 50 eV. The calculations are performed 
without spin–orbit coupling.

In figure 16 we show the real and imaginary part of 
α2D for the semiconductor MoS2. The PBE band gap of 
this material is 1.6 eV and we see the onset of dissipa-
tion at that energy. We also see that the initial structure 
of Im α is a constant, which is exactly what would be 
expected from the density of states in a 2D mat erial 
with parabolic dispersion. Finally, we note that the 

static polarisability Re α|ω=0 ≈ 6Å, which can easily 
be read off the figure. The polarisability is also shown 
for the metallic 1T-NbS2 where we display the real part 
with and without the intraband Drude contribution 
ω2

P,2D/(�ω + iη)2.

2.16. Optical absorbance
The power absorbed by a 2D material under 
illumination of a monochromatic light field with 
polarisation ê is quantified by the dimensionless 
absorbance:

Abs(ω) = 4πωα2D(qê → 0,ω)/c, (16)

where c is the speed of light. In section 2.15 we gave a 
prescription for evaluating α2D in the RPA. However, 
absorption spectra of 2D semiconductors often display 
pronounced excitonic effects, which are not captured 
by the RPA. The Bethe–Salpeter equation (BSE) is a 
well-known method capable of describing excitonic 
effects and has been shown to provide good agreement 
with experimental absorption spectra for a wide range 
of materials [135].

For materials with finite band gap and up to four 
atoms per unit cell, we have calculated the RPA and 
the BSE absorption spectra for electric fields polarised 
parallel and perpendicular to the layers. The calcul-
ations are performed on top of PBE eigenstates and 
eigenvalues with spin–orbit coupling included and 
all unoccupied band energies shifted by a constant 
in order to reproduce the G0W0 quasiparticle gap 
(the scissors operator method). If the G0W0 gap is 
not available we use the GLLBSC gap for non-magn-
etic materials and the HSE gap for magnetic mat-
erials (since GLLBSC is not implemented in GPAW 
for spin-polarised systems). The screened interaction 
entering the BSE Hamiltonian is calculated within the 
RPA using a non-interacting response function evalu-
ated from equation (15) with local field effects (i.e. 
G-vectors) included up to 50 eV and 5 times as many 
unoccupied bands as occupied bands for the sum over 
states. We apply a peak broadening of η = 50 meV and 
use a truncated Coulomb interaction. The BSE Ham-
iltonian is constructed from the four highest occu-
pied and four lowest unoccupied bands on a k-point 

grid of density of 20/Å
−1

, and is diagonalised within 

the Tamm–Dancoff approximation. We note that the 
Tamm–Dancoff approximation has been found to 
be very accurate for bulk semiconductors [136]. For 
monolayer MoS2 we have checked that it reproduces 

the full solution of the BSE, but its general validity for 
2D materials, in particular those with small band gaps, 
should be more thoroughly tested.

In figure 17 we show the optical absorption spec-
trum of MoS2 obtained with the electric field polarised 
parallel and perpendicular to the layer, respectively. 
Both RPA and BSE spectra are shown (the in-plane 
RPA absorbance equals the imaginary part of the RPA 
polarisability, see figure 16 (left), apart from the factor 
4πω and the scissors operator shift). The low energy 
part of the in-plane BSE spectrum is dominated by a 
double exciton peak (the so-called A and B excitons) 
and is in excellent agreement with experiments [55].

In general, calculations of electronic excitations 
of 2D materials converge rather slowly with respect 
to k-points due to the non-analytic behavior of the 
dielectric function in the vicinity of q  =  0 [119, 
137, 138]. In figure 18 we show the k-point depend-
ence of the binding energy of the A exciton in MoS2 
obtained as the difference between the direct band 
gap and the position of the first peak in figure 17. We 
observe a strong overestimation of the exciton bind-
ing energy at small k-point samplings, which conv-
erges slowly to a value of  ∼0.5 eV at large k-point 
samplings. For 48 × 48 k-points, corresponding to 
the k-point sampling used for the BSE calculations 
in the database, the exciton binding energy is 0.53 eV, 
whereas a 1/N2

k  extrapolation to infinite k-point sam-
pling gives 0.47 eV (see inset in figure 18). In general, 
the exciton binding energy decreases with increasing 
k-point sampling, and thus the exciton binding ener-
gies reported in the C2DB might be slightly overesti-
mated. However, since G0W0 band gaps also decrease 
when the k-point sampling is increased (see figure 11) 
the two errors tend to cancel such that the absolute 
position of the absorption peak from BSE-G0W0 
conv erges faster than the band gap or exciton binding 
energy alone.
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Figure 18. Convergence of the binding energy of the lowest 
exciton in monolayer MoS2 obtained from a BSE calculation 
as a function of k-point mesh. The quasiparticle energies 
entering the BSE Hamiltonian are obtained from a fully 
converged PBE calculation with a scissors operator applied 
to match the G0W0 band gap. The red point represents the 
k-point sampling applied in the database, which is seen 
to overestimate the extrapolated exciton binding energy 
by  ∼0.06 eV (inset).

2D Mater. 5 (2018) 042002

192 8 Papers



21

S Haastrup et al

The BSE-G0W0 method has previously been 
shown to provide good agreement with experimental 
photoluminescence and absorption measurements on 
2D semiconductors. In table 7 we show that our calcu-
lated position of the first excitonic peak agree well with 
experimental observations for four different TMDCs 
and phosphorene. Experimentally, the monolayers are 
typically supported by a substrate, which may alter the 
screening of excitons. However the resulting decrease 
in exciton binding energies is largely cancelled by a 
reduced quasiparticle gap such that the positions of 
the excitons are only slightly red-shifted as compared 
with the case of pristine monolayers [139].

3. Database overview

Having described the computational workflow, we 
now turn to the content of the database itself. We first 
present a statistical overview of all the materials in the 
C2DB (i.e. without applying any stability filtering) 
by displaying their distribution over crystal structure 
prototypes and their basic properties. We also provide 
a short list with some of the most stable materials, 
which to our knowledge have not been previously 
studied. Next, the predicted stability of the total set of 
materials is discussed and visualised in terms of the 
descriptors for thermodynamic and dynamic stability 
introduced in section 2.4.1. In section 3.2 we analyse 
selected properties in greater detail focusing on 
band gaps and band alignment, effective masses and 
mobility, magnetic properties, plasmons, and excitons. 
Throughout the sections we explore general trends and 
correlations in the data and identify several promising 
materials with interesting physical properties.

3.1. Materials
In table 8 we list the major classes of materials currently 
included in the database. The materials are grouped 
according to their prototype, see section 2.2.2. For each 
prototype we list the corresponding space group, the 
total number of materials, and the number of materials 
satisfying a range of different conditions. The atomic 
structure of some of the different prototypes were 
shown in figure 4. The vast majority of the 2D materials 
that have been experimentally synthesised in monolayer 

form are contained in the C2DB (the 55 materials in 
figure 7 in addition to seven metal-organic perovskites). 
These materials are marked in the database and a 
literature reference is provided. Additionally, 80 of the 
monolayers in the C2DB could potentially be exfoliated 
from experimentally known layered bulk structures 
[16–19]. These materials are also marked and the ID of 
the bulk compound in the relevant experimental crystal 

structure database is provided.
To illustrate how all the materials are distributed in 

terms of stability, we show the energy above the con-
vex hull plotted against ω̃2

min in figure 19. It can be seen 
that the structures naturally sort themselves into two 
clusters according to the dynamic stability. The points 
have been colored according to the three levels for 
dynamic stability introduced in section 2.4. The lower 
panel shows the distribution of the materials in the 
grey region on a linear scale. While most of the exper-
imentally known materials (red and black dots) have 
high dynamic stability, a significant part of them fall 
into the medium stability category. The marginal dis-
tributions on the plot show that the more dynamically 
stable materials are also more thermodynamically sta-
ble. The mean energy above the convex hull is 0.12 eV 
for the materials with high dynamical stability, while it 
is 0.25 eV for the others.

In table 9 we show the key properties of a selected 
set of stable materials, distributed across a variety of 
different crystal structure prototypes. To our knowl-
edge, these materials are not experimentally known, 
and they are therefore promising candidates further 

study and experimental synthesis.

3.2. Properties: example applications
In the following sections we present a series of case 
studies focusing on different properties of 2D materials 
including band gaps and band alignment, effective 
masses and mobility, magnetic order, plasmons and 
excitons. The purpose is not to provide an in-depth 
nor material specific analysis, but rather to explore 
trends and correlations in the data and showcase some 
potential applications of the C2DB. Along the way, we 
report some of the novel candidate materials revealed 
by this analysis, which could be interesting to explore 
closer in the future.

Table 7. Comparison between calculated and experimental positions of the first excitonic peak for four different transition metal 
dichalcogenide monolayers and phosphorene.

Material

Energy of the first bright exciton (eV)

BSE@PBE-G0W0 Experiment

MoS2 2.00 1.83 [140], 1.86 [141], 1.87 [142]

MoSe2 1.62 1.57 [140], 1.57 [143], 1.58 [144]

WS2 2.07 1.96 [141], 2.02 [144]

WSe2 1.71 1.64 [142], 1.66 [143]

P (phosphorene) 1.45 1.45 [145], 1.75 [146]

MAD w.r.t. experiment 0.066 —
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3.2.1. Band gaps and band alignment
The band gaps and band edge positions of all 
semiconductors and insulators in the C2DB have 
been calculated with the PBE, HSE06, and GLLBSC 
xc-functionals while G0W0 calculations have been 
performed for the  ∼250 simplest materials. The relatively 
large size of these datasets and the high degree of 
consistency in the way they are generated (all calculations 
performed with the same code using same PAW 
potentials and basis set etc) provide a unique opportunity 
to benchmark the performance of the different xc-
functionals against the more accurate G0W0 method.

Figure 20 compares the size and center of the 
band gaps obtained with the density functionals to 
the G0W0 results. Relative to G0W0 the PBE func-
tional underestimates the gaps by 45%, i.e. on average 
the PBE values must be scaled by 1.83 to reproduce 
the G0W0 results. The HSE06 band gaps are closer to 
G0W0 but are nevertheless systematically underesti-

mated by more than 20%. On the other hand, GLLBSC 
shows very good performance with band gaps only 
2% smaller than G0W0 on average. Table 10 shows the 
mean absolute deviations of the DFT methods relative 
to G0W0. We note that although GLLBSC provides an 
excellent description of the G0W0 band gaps on aver-
age the spread is sizable with a mean absolute deviation 

of 0.4 eV.
We note a handful of outliers in figure 20 with large 

HSE band gaps compared to PBE and G0W0. For one 
of these, namely the ferromagnetic CoBr2-CdI2, we 
obtain the band gaps: 0.30 eV (PBE), 3.41 eV (HSE), 
and 0.91 eV (G0W0). For validation, we have per-
formed GPAW and QuantumEspresso calculations 
with the norm-conserving HGH pseudopotentials 
and plane wave cutoff up to 1600 eV. The converged 
band gaps are 0.49 eV (GPAW-HGH-PBE), 0.51 eV 
(QE-HGH-PBE) and 3.69 eV (GPAW-HGH-HSE), 
3.52 eV (QE-HGH-HSE), which are all in reasonable 

Table 8. Overview of the materials currently in the C2DB. The table shows the number of compounds listed by their crystal structure 
prototype and selected properties. Egap > 0 and ‘direct gap’ refer to the PBE values, ‘high stability’ refers to the stability scale defined in 
section 2.4.1, and the last three columns refer to the magnetic state, see section 2.1. In this overview, separate magnetic phases of the same 
structure are considered different materials.

Prototype Symmetry

Number of materials

Total Egap > 0 Direct gap

High 

stability NM FM AFM

C P6/mmm 4 4 3 1 4 0 0

CH P3m1 8 7 6 1 8 0 0

CH2Si P3m1 2 2 2 1 2 0 0

BN P3m2 10 9 5 1 10 0 0

GaS P3m2 125 34 95 8 100 18 7

FeSe P4/nmm 103 13 90 26 74 18 11

GeSe P3m1 20 19 5 6 20 0 0

PbSe P4/mmm 44 6 38 1 33 8 3

P Pmna 9 9 0 1 9 0 0

MoS2 P3m2 241 85 176 53 156 85 0

CdI2 P3m1 315 95 231 90 218 80 17

WTe2 P21/m 75 29 48 34 57 13 5

FeOCl Pmmn 443 92 385 65 328 63 52

MoSSe P3m1 9 6 6 5 8 1 0

C3N P6/mmm 25 1 24 0 25 0 0

YBr3 P6/mmm 57 11 51 0 21 24 12

TiCl3 P32m 69 35 51 2 32 23 14

BiI3 P3m1 123 69 66 15 48 54 21

TiS3 Pmmn 34 8 28 5 31 2 1

MnTe3 P21/m 29 3 27 1 22 4 3

Cr3WS8 Pmm2 35 34 18 8 35 0 0

CrWS4 Pmm2 18 17 7 8 18 0 0

Ti2CO2 P3m1 28 8 20 12 19 6 3

Ti2CH2O2 P3m1 13 3 12 3 10 2 1

Ti3C2 P3m2 12 0 12 0 7 5 0

Ti3C2O2 P3m2 26 0 26 0 20 6 0

Ti3C2H2O2 P3m2 14 0 14 0 10 4 0

PbA2I4 P1 27 27 27 0 27 0 0

Sum 1918 626 151 347 1352 416 150
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agreement with the C2DB results. It should be interest-
ing to explore the reason for the anomalous behavior 
of the HSE band gap in these materials.

Compared to the band gaps, the gap centers pre-
dicted by PBE and HSE06 are in overall better agreement 
with the G0W0 results. This implies that, on average, the 
G0W0 correction of the DFT band energies is symmet-
ric on the valence and conduction band. In contrast, the 
GLLBSC predicts less accurate results for the gap center. 
This suggests that an accurate and efficient prediction 
of absolute band energies is obtained by combining the 
GLLBSC band gap with the PBE band gap center.

Next, we consider the band alignment at the inter-
face between different 2D materials. Assuming that 
the bands line up with a common vacuum level and 
neglecting hybridisation/charge transfer at the inter-
face, the band alignment is directly given by the VBM 
and CBM positions relative to vacuum.

We focus on pairs of 2D semiconductors for which 
the G0W0 band alignment is either Type II (∆E > 0) or 
Type III (∆E < 0), see figure 21 (left). Out of approxi-
mately 10 000 bilayers predicted to have Type II band 
alignment by G0W0, the PBE and HSE06 functionals 

predict qualitatively wrong band alignment (i.e. Type 
III) in 44% and 21% cases, respectively (grey shaded 
areas). In particular, PBE shows a sizable and system-
atic underestimation of ∆E as a direct consequence of 
the underestimation of the band gaps in both mono-
layers.

3.2.2. Effective masses and mobilities
The carrier mobility relates the drift velocity of 
electrons or holes to the strength of an applied electric 
field and is among the most important parameters for 
a semiconductor material. In general, the mobility is a 
sample specific property which is highly dependent on 
the sample purity and geometry, and (for 2D materials) 
interactions with substrate or embedding layers. Here 
we consider the phonon-limited mobility, which can 
be considered as the intrinsic mobility of the material, 
i.e. the mobility that would be measured in the absence 
of any sample specific- or external scattering sources.

The effective masses of the charge carriers have 
been calculated both with and without SOC for  ∼600 
semiconductors. Figure 22 shows the electron mass 
plotted against the hole mass. The data points are scat-
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Figure 19. The dynamic stability of the candidate materials as a function of the energy above the convex hull on a log scale (top), 
and a linear scale (bottom). Experimentally synthesised monolayers are circled in black, while the known layered 3D structures are 
marked in red. The three different dynamic stability levels are indicated both by the horizontal dashed lines and the color of the 
points. The upper panel shows the marginal distribution of the energy over the convex hull for the points in each of the three stability 
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tered, with no clear correlation between the electron 
and hole masses. Overall, the electron masses are gen-
erally slightly smaller than the hole masses. The mean 
electron mass is 0.9 m0, while the mean hole mass is 1.1 
m0, and 80% of the electron masses are below m0 while 
the fraction is only 65% for the holes. This is not too 
surprising, since, on average, the energetically lower 
valence band states are expected to be more localised 
and thus less dispersive than the conduction band 
states.

The right panel of figure 22 shows the effective 
mass for electrons and holes plotted as a function of 
the inverse band gap. It can be seen that there is no clear 
correlation between the two quantities, which is con-
firmed by calculating the cross-correlation coefficient: 

for both electrons and holes it is less than 0.02. This 
provides empirical evidence against the linear rela-
tion between effective masses and inverse band gaps 
derived from k · p perturbation theory. The relation is 
based on the assumption that the perturbative expan-
sion is dominated by the conduction and valence band 
and that the momentum matrix element between 
these states, 

〈
uc

∣∣p̂∣∣uv

〉
, does not vary too much as 

function of the considered parameter (here the type 
of material). These assumptions clearly do not hold 
across a large set of different semiconductors. If we 
focus on a specific class of materials, e.g. sulfides in the 
MoS2 structure indicated by the highlighted symbols, 
we see a slightly improved trend but still with signifi-
cant fluctuations.

Table 9. Key properties of selected stable materials in the C2DB, which have not been previously synthesised. The calculated properties 
are the magnetic state, formation energy, energy above the convex hull, work function, PBE gap and and the nature of the gap (direct or 
indirect).

Prototype Formula Magnetic state ∆H  (eV) ∆Hhull (eV) Φ (eV) PBE gap (eV) Direct gap

BiI3 VI3 FM −0.51 −0.15 5.3

CoCl3 NM −0.65 −0.21 1.13 No

CoBr3 NM −0.41 −0.16 0.96 No

CoI3 NM −0.14 −0.14 0.53 No

CdI2 FeO2 FM −1.14 −0.36 7.31

MnSe2 FM −0.47 −0.18 5.09

MnS2 FM −0.57 −0.12 5.74

PdO2 NM −0.40 −0.08 1.38 No

CaBr2 NM −2.09 −0.02 4.86 No

FeOCl RhClO NM −0.65 −0.18 5.49

NiClO AFM −0.64 −0.17 6.32

NiBrO AFM −0.52 −0.16 5.78

ScIS NM −1.68 −0.14 1.66 Yes

FeSe CoSe FM −0.27 0.02 4.22

RuS NM −0.38 0.05 4.72

MnSe AFM −0.50 −0.20 0.90 No

MnS AFM −0.64 −0.19 0.78 No

GaS AlSe NM −0.72 −0.02 2.00 No

AlS NM −0.89 0.00 2.09 No

GeSe GeSe NM −0.19 0.04 2.22 No

GeS NM −0.22 0.05 2.45 No

GeTe NM −0.01 0.09 1.47 No

SnSe NM −0.33 0.10 2.15 No

MoS2 VS2 FM −0.88 −0.02 5.95

ScBr2 FM −1.59 −0.40 0.16 No

YBr2 FM −1.73 −0.23 0.34 No

FeCl2 FM −0.67 −0.16 0.35 Yes

TiBr2 NM −1.14 −0.04 0.76 No

ZrBr2 NM −1.34 −0.04 0.83 No

Ti2CO2 Zr2CF2 NM −2.36 −0.08 3.92

Hf2CF2 NM −2.26 0.03 3.62

Y2CF2 NM −2.50 −0.17 1.12 No

WTe2 NbI2 NM −0.37 0.04 3.01

HfBr2 NM −1.16 −0.18 0.85 No

OsSe2 NM −0.17 0.00 0.57 No
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If one assumes energetically isolated and parabolic 
bands, the intrinsic mobility limited only by scattering 
on acoustic phonons can be estimated from the Takagi 
formula [147],

µi =
e�3ρv2

i

kBTm∗
i m∗

dD2
i

. (17)

Here i refers to the transport direction, ρ is the mass 
density, vi  is the speed of sound in the material, m∗

i  is 
the carrier mass, m∗

d is the equivalent isotropic density-
of-state mass defined as m∗

d =
√

m∗
x m∗

y , and Di is the 
deformation potential. We stress that the simple Takagi 
formula is only valid for temperatures high enough 
that the acoustic phonon population can be approxi-
mated by the Rayleigh–Jeans law, n ≈ �ωac/kBT , but 
low enough that scattering on optical phonons can be 
neglected.

For the semiconductors in the C2DB we have 
found that the denominator of equation (17) var-
ies more than the numerator. Consequently, a small 
product of deformation potential and effective mass 
is expected to correlate with high mobility. Figure 23 
shows the deformation potential plotted against the 
carrier mass for the valence and conduction bands, 
respectively. The shaded area corresponds, somewhat 
arbitrarily, to the region for which m∗

i Di < m0(1 eV). 
The 2D semiconductors which have been synthesised 
in monolayer form are indicated with orange symbols 
while those which have been used in field effect tran-
sistors are labeled. Consistent with experimental find-
ings, phosphorene (P) is predicted to be among the 

materials with the highest mobility for both electrons 
and holes.

Interestingly, a number of previously unknown 2D 
materials lie in this shaded region and could be can-
didates for high mobility 2D semiconductors. Table 11 
lists a few selected materials with high intrinsic mobil-
ity according to equation (17), which all have ‘high’ 
overall stability (see section 2.4.1). In the future, it will 
be interesting to explore the transport properties of 

these candidate materials in greater detail.
To put the numbers in table 11 to scale, we consider 

the well studied example of MoS2. For this material we 
obtain an electron mobility of 240 cm2 V−1 s−1 while 
a full ab initio calculation found a phonon-limited 
mobility of 400 cm2 V−1 s−1 (in good agreement with 
experiments on hBN encapsulated MoS2 [148]), with 
the acoustic phonon contribution corre sponding to a 
mobility of 1000 cm2 V−1 s−1. Similarly, for the series 
MX2 (M  =  W, Mo, X  =  S, Se), we calculate room-
temper ature electron mobilities between 200 cm2 V−1 
s−1 and 400 cm2 V−1 s−1, which are all within 50% of 
the ab initio results [149]. Presumably, as in the case 
for MoS2, the good quantitative agreement is partly a 
result of error cancellation between an overestimated 
acoustic phonon scattering and the neglect of optical 
phonon scattering. Importantly, however, the relative 
ordering of the mobilities of the four MX2 mono layers 
is correctly predicted by equation (17) for all but one 
pair (MoS2 and WSe2) out of the six pairs. These results 
illustrate that equation (17) should only be used for 
‘order of magnitude’ estimates of the mobility but  
that relative comparisons of mobilities in different 
materials are probably reliable.

3.2.3. Magnetic properties
Recently, a single layer of CrI3 was reported to exhibit 
ferromagnetic order with a Curie temperature of 
45 K [12]. This comprises the first example of a pure 
2D material exhibiting magnetic order and there is 
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Table 10. The mean absolute deviation (in eV) of the band gap and 
band gap center calculated with three different xc-functionals with 
respect to G0W0.

PBE HSE06 GLLBSC

MAD w.r.t. G0W0 (band gap) 1.49 0.82 0.38

MAD w.r.t. G0W0 (gap center) 0.37 0.32 0.76
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currently an intense search for new 2D materials with 
magnetic order persisting above room temperature 
[150–152].

For 2D materials, magnetic order will only per-
sist at finite temperatures in the presence of magnetic 
anisotropy (MA). Indeed, by virtue of the Mermin–
Wagner theorem, magnetic order is impossible in 2D 
unless the rotational symmetry of the spins is broken 
[153]. A finite MA with an out of plane easy axis breaks 
the assumption behind the Mermin–Wagner theorem 
and makes magnetic order possible at finite temper-
ature. The critical temperature for magnetic order in 
2D materials will thus have a strong dependence on the 
anisotropy.

The MA originates from spin–orbit coupling and 
is here defined as the energy difference between in-
plane and out-of-plane orientation of the magnetic 
moments, see equation (4). With our definition, a 
negative MA corresponds to an out-of-plane easy axis. 
We note that most of the materials in the C2DB are 
nearly isotropic in-plane. Consequently, if the easy 
axis lies in the plane, the spins will exhibit an approxi-
mate in-plane rotational symmetry, which prohibits 
magnetic order at finite temperatures. Since spin–
orbit coupling becomes large for heavy elements, we 
generally expect to find larger MA for materials con-
taining heavier elements. In general the magnitude of 
the MA is small. For example, for a monolayer of CrI3 
with a Curie temper ature of 45 K [12] we find a MA of  
–0.85 meV per Cr atom in agreement with previous 

calculations [154]. Although small, the MA is, how-
ever, crucial for magnetic order to emerge at finite 
temperature.

In figure 24 we show the magnitude of the magn etic 
anisotropy (red triangles) and the magnetic moment per 
metal atom (blue triangles) averaged over all materials 
with a given chemical composition. The plot is based on 
data for around 1200 materials in the medium to high 
stability categories (see table 2) out of which around 
350 are magnetic. It is interesting to note that while the 
magn etic moment is mainly determined by the metal 
atom, the MA depends strongly on the non-metal atom. 
For example, the halides (Cl, Br, I) generally exhibit much 
larger MAs than the chalcogenides (S, Se, Te). Overall, 
iodine (I) stands out as the most significant element for a 
large MA while the 3d metals Cr, Mn, Fe, Co are the most 
important elements for a large magnetic moment. Since 
the MA is driven by spin–orbit coupling (SOC) and the 
spin is mainly located on the metal atom, one would 
expect a large MA to correlate with a heavy metal atom. 
However, it is clear from the figure that it is not essential 
that the spin-carrying metal atom should also host the 
large SOC. For example, we find large MA for several 3d 
metal-iodides despite of the relatively weak SOC on the  
3d metals. This shows that the MA is governed by a rather 
complex interplay between the spins, orbital hybridisa-
tion and crystal field.

A selection of materials predicted to have high 
overall stability (see section 2.4.1) and high out-
of-plane magnetic anisotropy (MA < −0.3 meV/

Table 11. Key transport properties of selected materials with high intrinsic room-temperature mobility according to equation (17). All the 
materials shown have ‘high’ overall stability as defined in section 2.4.1. µhigh is the larger value of the mobilities in the x or y directions, m* 
is the corresponding effective mass, and µhigh/µlow  is the ratio of the mobilities in the two directions.

Carrier Formula Prototype PBE gap (eV) µhigh (cm2 V−1 s−1) m* (m0)
µhigh

µlow

Holes PbS2 MoS2 1.39 30 000 0.62 1.4

OsO2 WTe2 0.17 23 000 0.23 3.0

ZrCl2 MoS2 0.98 12 000 0.43 1.1

WSSe MoSSe 1.40 5500 0.37 1.0

Electrons PtTe2 CdI2 0.30 9600 0.17 1.3

GaO GaS 1.56 7200 0.32 1.0

NiS2 CdI2 0.58 6000 0.29 1.5

RuTe2 WTe2 0.64 4600 1.55 8.5
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magn etic atom) is listed in table 12. We find several 
semiconductors with anisotropies comparable to CrI3 
and some metals with higher values. If we also look at 
materials with medium overall stability, we find semi-
conductors with anisotropies up to 2 meV/atom. It 
is likely that some of these materials will have Curie 

temper atures similar to, or even higher than, CrI3.
In addition to the MA, the critical temperature 

depends sensitively on the magnetic exchange cou-
plings. We are presently developing a workflow for 
systematic calculation of exchange coupling constants, 
which will allow us to estimate the Curie temper-
ature of all the magnetically ordered 2D materials. 
The database contains several 2D materials with anti- 
ferromagnetic order. As a note of caution, we mention 

that the magnetic interactions in AFM materials typi-
cally arise from the super-exchange mechanism, which 
is poorly described by PBE and requires a careful verifi-
cation using a PBE  +  U scheme [155].

3.2.4. Plasmons
The unique optical properties of 2D materials 
make them highly interesting as building blocks for 
nanophotonic applications [156, 157]. Many of these 
applications involve electron rich components which 
can capture, focus, and manipulate light via plasmons 
or plasmon-polaritons. Graphene sheets can host 
plasmons that are long lived, can be easily tuned via 
electrostatic or chemical doping, and can be used 
to confine light to extremely small volumes [158]. 

Table 12. Selection of magnetic materials with a negative MA per magnetic atom. The prototype, the magnetic moment of the 
magnetic atom, the energy gap calculated with PBE xc-functional and the magnetic state are also shown. The experimentally synthesised 
ferromagnetic monolayer CrI3 is highlighted.

Formula Prototype

Magnetic 

moment (µB)

PBE gap 

(eV) MA (meV/atom) Magnetic state

∆Hhull 

(eV/atom)

OsI3 BiI3 0.9 0.0 −3.17 FM 0.18

CrTe FeSe 2.6 0.0 −1.85 AFM 0.15

FeCl3 BiI3 1.0 0.01 −1.84 FM −0.08

FeTe FeSe 1.9 0.0 −1.06 FM 0.08

MnTe2 CdI2 2.7 0.0 −0.94 FM −0.10

FeBr3 BiI3 1.0 0.04 −0.88 FM −0.04

CrI3 BiI3 3.0 0.90 −0.85 FM −0.21

MnTe FeSe 3.8 0.69 −0.75 AFM −0.15

NiO PbSe 1.1 0.0 −0.53 FM 0.05

FeBrO FeOCl 1.1 0.0 −0.47 FM −0.05

CrISe FeOCl 3.0 0.0 −0.45 FM −0.10

MnSe2 CdI2 2.8 0.0 −0.40 FM −0.18

CrIS FeOCl 3.0 0.35 −0.36 FM −0.10

MnO2 CdI2 3.0 1.13 −0.36 FM 0.02

VCl3 BiI3 2.0 0.0 −0.35 FM −0.01

MnSe FeSe 3.7 0.90 −0.31 AFM −0.20

CrSe FeSe 2.0 0.0 −0.31 AFM 0.12
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Figure 25. (left) Plasmon dispersion relations for the unscreened (i.e. intraband) and true plasmons, �ωP and �ωtrue
P , respectively, 

for NbS2 in the H phase (the MoS2 crystal structure prototype). This is compared to the full first principles calculations of 
the plasmons in NbS2 by Andersen et al (data points) [159]. (right) The in-plane averaged true plasmon frequency versus the 
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However, due to the limited charge carrier density 
achievable in graphene, its plasmons are limited to the 
mid-infrared regime. Here we show that some metallic 
monolayers support plasmons with significantly 
higher energies than graphene and could potentially 
push 2D plasmonics into the optical regime.

Figure 25 (left) shows the plasmon dispersion 
for monolayer NbS2 in the MoS2 crystal structure. 
The effect of interband transitions on the plasmon is 
significant as can be seen by comparison to the pure 
intraband plasmon (�ωP). The true plasmon energies 
are obtained from the poles of the (long wave length 
limit) dielectric function including the interband 
transitions, ε = 1 + 2πq(α2D,intra + α2D,inter), yield-
ing ωtrue

P = ωP,2Dq1/2[1 + 2πqα2D,inter(ωtrue
P )]−1/2. For 

simplicity we ignore the frequency dependence of the  
interband polarisability, i.e. we set α2D,inter(ωtrue

P ) ≈ 
α2D,inter(ω = 0), which should be valid for small plas-
mon energies (far from the onset of interband trans-
itions). The validity of this approximation is con-
firmed by comparing to the full ab initio calculations 
of Andersen et al (blue dots) which include the full q- 
and ω-dependence [159]. The figure shows that inter-
band screening generally reduces the plasmon energy 
and becomes increasingly important for larger q.

Figure 25 (right) shows the in-plane averaged true 
plasmon energy of all metals in the C2DB plotted 
against the intraband plasmon energy at a fixed plas-
mon wavelength of λP = 50 nm (corresponding to q0 
at the dashed vertical line in the left panel). For com-
parison, the plasmon energy of freestanding graphene 
at this wavelength and for the highest achievable dop-
ing level (EF = ±0.5 eV relative to the Dirac point) is 
around 0.4 eV. The data points are colored according 
to the overall stability level as defined in section 2.4.1. 
Table 13 shows a selection of the 2D metals with ‘high’ 
overall stability (see section 2.4.1) and large plasmon 
frequencies. We briefly note the interesting band 
structures of the metals in the FeOCl prototype (not 
shown) which exhibits band gaps above or below the 
partially occupied metallic band(s), which is likely to 
lead to reduced losses in plasmonic applications [160]. 

A detailed study of the plasmonic properties of the 
lead candidate materials will be published elsewhere. 
However, from figure 25 (right) it is already clear that 
several of the 2D metals have plasmon energies around 
1 eV at λP = 50 nm, which significantly exceeds the 

plasmon energies in highly doped graphene.

3.2.5. Excitons
Two-dimensional materials generally exhibit 
pronounced many-body effects due to weak screening 
and strong quantum confinement. In particular, 
exciton binding energies in monolayers are typically an 
order of magnitude larger than in the corresponding 
layered bulk phase and it is absolutely crucial to include 
excitonic effects in order to reproduce experimental 
absorption spectra.

The electronic screening is characterised by the 
in-plane 2D polarisability, see equation (12). For a 
strictly 2D insulator, the screened Coulomb poten-
tial can be written as W2D(q) = v2D

c (q)/ε2D(q) with 
ε2D(q) = 1 + 2πα2Dq and v2D

c (q) = 2π/q is the 
2D Fourier transform of the Coulomb interaction. 
The q-dependence of ε2D indicates that the screen-
ing is non-local, i.e. it cannot be represented by a q- 
independent dielectric constant, and that Coulomb 
interactions tend to be weakly screened at large dis-
tances (small q vectors) [119, 161, 162]. This is in 
sharp contrast to the case of 3D semiconductors/
insulators where screening is most effective at large 
distances where its effect can be accounted for by a q- 
independent dielectric constant. For a two-band 
model with isotropic parabolic bands, the excitons 
can be modeled by a 2D Hydrogen-like (Mott–Wan-
nier) Hamiltonian where the Coulomb interaction is 
replaced by W = 1/εr and the electron mass is replaced 
by a reduced excitonic mass µex  derived from the cur-
vature of conduction and valence bands. It has previ-
ously been shown that the excitonic Rydberg series of 
a 2D semiconductor can be accurately reproduced by 
this model if the dielectric constant, ε, is obtained by 
averaging ε2D(q) over the extent of the exciton in recip-
rocal space [163]. For the lowest exciton (n  =  1), the 
binding energy can then be expressed as

EB =
8µex

(1 +
√

1 + 32πα2Dµex/3)2
. (18)

It has furthermore been demonstrated that this 
expression gives excellent agreement with a 
numerical solution of the Mott–Wannier model 
employing the full q-dependent dielectric function, 
ε2D(q) = 1 + 2πα2Dq, for 51 transition metal 
dichalcogenides [163]. We note that the previous 
calculations were based on LDA and we generally find 
that the PBE values for α2D obtained in the present 
work are 10–20% smaller compared with LDA.

In figure 26, we compare the binding energy of the 
lowest exciton obtained from BSE-PBE with G0W0 
scissors operator and the Mott–Wannier model equa-
tion (18), respectively. Results are shown for the 194 

Table 13. Selection of 2D metals with high plasmon energies ωtrue
P  

for a plasmon wavelength of λP = 50 nm. The interband screening 
α2D,inter at ω = 0 and the in-plane averaged 2D plasma frequency 
ωP,2D, which are required to reproduce ωtrue

P , are also reported.

Prototype Formula Magnetic state

ωtrue
P  

(eV)

α2D,inter 

(Å)

ωP,2D  

(eV Å0.5)

TiS3 TaSe3 NM 0.99 12.54 12.48

FeOCl PdClS NM 0.93 4.13 9.52

FeOCl NiClS NM 0.90 5.60 9.66

CdI2 TaS2 NM 0.82 5.59 8.79

FeOCl ZrIS NM 0.75 7.68 8.43

CdI2 NbS2 NM 0.73 8.2 8.42

FeOCl ZrClS NM 0.73 13.6 9.35

TiS3 TaS3 NM 0.73 34.22 12.44

PbSe NiO FM 0.72 2.9 7.16
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non-magnetic semiconductors out of the total set of 
∼ 250 materials for which BSE calculations have been 
performed. We focus on the optically active zero-
momentum excitons and compute the exciton masses 
by evaluating the curvature of the band energies at the 
direct gap, see section 2.11. For anisotropic materials 
we average the heavy and light exciton masses as well 
as the x and y components of the polarisability, α2D, 
to generate input parameters for the isotropic model 
equation (18).

Although a clear correlation with the BSE results 
is observed, it is also evident that the Mott–Wannier 
model can produce significant errors. The mean abso-
lute deviation between BSE and the model is 0.28 eV 
for all materials and 0.20 eV for the subset of trans-
ition metal dichalcogenides (TMDCs). Furthermore, 
the Mott–Wannier model seems to overestimate EB for 
more strongly bound excitons while the opposite trend 
is seen for weakly bound excitons. As explained below 
these trends are a consequence of systematic errors in 
the Mott–Wannier model which can be traced to two 
distinct sources.

 (i)  Weak screening: If α2D is small (on the order of  
1 Å), the exciton becomes strongly localised and 
the orbital character of the states comprising the 
exciton plays a significant role. In general, the 
Mott–Wannier model tends to overestimate the 
exciton binding energy in this case as can be seen 
from the relatively large deviation of points with 
model binding energies  >2.0 eV in figure 26. The 
overestimated binding energy results from the 
homogeneous electron and hole distributions 
implicitly assumed in the Mott–Wannier model. 
In reality, the short range variation of the electron 
and hole distributions is determined by the shape 
of the conduction and valence band states. In 
general these will differ leading to a reduced spatial 
overlap of the electron and hole and thus a lower 
Coulomb interaction. For example, SrCl2 in the 
CdI2 prototype (α2D = 0.68 Å) has a BSE binding 

energy of 2.1 eV and a model binding energy of 
3.4 eV. From the PDOS of this material (see the 
C2DB webpage) it is evident that the electron and 
hole are mainly residing on the Sr and Cl atoms, 
respectively.

 (ii)  Breakdown of the parabolic band approximation: 
Materials with small band gaps often exhibit 
hyperbolic rather than parabolic band structures 
in the vicinity of the band gap. This typically 
happens in materials with small band gaps such 
as BSb in the BN prototype. In figure 26 these 
materials can be identified as the cluster of points 
with model binding energies  <0.25 eV and BSE 
binding energies  >0.25 eV. A similar situation 
occurs if the conduction and valence bands flatten 
out away from the band gap region. In both of 
these cases, the excitons tend to be delocalised over 
a larger area in the Brillouin zone than predicted 
by the parabolic band approximation of the Mott–
Wannier model. Typically, such delocalisation will 
result in larger binding energies than predicted by 
the model. For example, FeI2 in the CdI2 prototype 
exhibits shallow band minima in a ring around the 
Γ-point and has a BSE binding energy of 1.1 eV 
and a model binding energy of 0.5 eV because the 
model assumes that the exciton will be located 
in the vicinity of the shallow minimum (and 
thus more delocalised in real space). A detailed 
inspection reveals that such break down of the 
parabolic band approximation is responsible for 
most of the cases where the model underestimates 
the binding energy.

Other sources of errors come from contributions 
to the exciton from higher/lower lying bands, i.e. break 
down of the two-band approximation, and aniso-
tropic exciton masses not explicitly accounted for by 
equation (18).

Based on this comprehensive and unbiased assess-
ment of the Mott–Wannier model, we conclude 
that while the model can be useful for understand-
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ing trends and qualitative properties of excitons, its 
quanti tative accuracy is rather limited when applied to 
a broad set of materials without any parameter tuning. 
For quantitative estimates α2D should not be too small 
(certainly not less than 2 Å) and the the validity of 
the effective mass approximation should be carefully 
checked by inspection of the band structure.

It has been argued that there should exist a robust 
and universal scaling between the exciton binding 
energy and the quasiparticle band gap of 2D semi-
conductors, namely EB ≈ Egap/4 [164]. This scaling 
relation was deduced empirically based on BSE-GW 
calculations for around 20 monolayers and explained 
from equation (18) and the relation α2D ∝ 1/Egap 
from k · p perturbation theory. Another work 
observed a similar trend [165] but explained it from 
the 1/Egap dependence of the exciton effective mass 
expected from k · p perturbation theory. Based on our 
results we can completely refute the latter explanation 
(see figure 22 (right)). In figure 26 (right) we show the 
exciton binding energy plotted versus the direct PBE 
and G0W0 band gaps, respectively. While there is a cor-
relation, it is by no means as clear as found in [164].

4. Conclusions and outlook

The C2DB is an open database with calculated properties 
of two-dimensional materials. It currently contains 
more than 1500 materials distributed over 32 different 
crystal structures. A variety of structural, elastic, 
thermodynamic, electronic, magnetic and optical 
properties are computed following a high-throughput, 
semi-automated workflow employing state of the art 
DFT and many-body methods. The C2DB is growing 
continuously as new structures and properties are being 
added; thus the present paper provides a snapshot of the 
present state of the database. The C2DB can be browsed 
online using simple and advanced queries, and it can be 
downloaded freely at https://c2db.fysik.dtu.dk/ under a 
Creative Commons license.

The materials in the C2DB comprise both exper-
imentally known and not previously synthesised 
structures. They have been generated in a system-
atic fashion by combinatorial decoration of differ-
ent 2D crystal lattices. The full property workflow 
is performed only for structures that are found to be 
dynamically stable and have a negative heat of forma-
tion. We employ a liberal stability criterion in order not 
to exclude potentially interesting materials that could 
be stabilised by external means like substrate interac-
tions or doping even if they are unstable in freestand-
ing form. As an important and rather unique feature, 
the C2DB employs beyond-DFT methods, such as the 
many-body GW approximation, the random phase 
approx imation (RPA) and the Bethe–Salpeter equa-
tion (BSE). Such methods are essential for obtaining 
quantitatively accurate descriptions of key properties 
like band gaps and optical spectra. This is par ticularly 
important for 2D materials due the weak dielectric 

screening in reduced dimensions, which tends to 
enhance many-body effects. For maximal transpar-
ency and reproducibility of the data in the C2DB, all 
relevant parameters have been provided in this paper. 
Additionally, all scripts used to generate the data are 
freely available for download under a GPL license.

Beyond its obvious use as a look-up table, the 
C2DB offers access to numerous well documented, 
high-quality calculations, making it ideally suited for 
benchmarking and comparison of different codes 
and methodologies. The large set of different available 
properties makes the C2DB interesting as a playground 
for exploring structure-property relations and for 
applying and advancing machine learning approaches 
in materials science. Moreover, the C2DB should be 
useful as a stepping stone towards the development 
of theoretical models for more complex 2D structures 
such as van der Waals heterostructures (see below).

As reported in this work, based on the combinato-
rial screening approach, we have identified a number 
of new, potentially synthesisable 2D materials with 
interesting properties including ferromagnets with 
large magnetic anisotropy, semiconductors with high 
intrinsic carrier mobility, and metals with plasmons in 
the visible frequency range. These predictions are all 
based on the computed properties of the perfect crys-
talline materials. While the pristine crystal constitutes 
an important baseline reference it remains an idealised 
model of any real material. In the future, it would be 
interesting to extend the database to monolayers with 
adsorbed species and/or point defects. Not only would 
this allow for a more realistic assessment of the magn-
etic and (opto)electronic properties, it would also 
facilitate the design and discovery of 2D materials for 
e.g. battery electrodes and (electro)catalysis [166, 167].

The C2DB should also be useful as a platform for 
establishing parametrisations of computationally 
less expensive methods such as tight-binding models 
[168] and k · p perturbation theory [128]. Such meth-
ods are required e.g. for device modeling, descrip-
tion of magn etic field effects, and van der Waals het-
erostructures. The database already provides band 
structures, spin orbit-induced band splittings, and 
effective masses, which can be directly used to deter-
mine model parameters. It would be straightforward 
to complement these with momentum matrix ele-
ments at band extrema for modeling of optical prop-
erties and construction of full k · p Hamiltonians. 
Similarly, the spread functional required as input for 
the construction of Wannier functions e.g. by the ASE 
[38] or the Wannier90 [169] packages, could be easily 
and systematically produced. This would enable direct 
construction of minimal basis set Hamiltonians and 
would allow for the calculation of Born charges and 
piezo electric coefficients as well as certain topologi-
cal invariants [170]. A workflow to calculate exchange 
couplings of magnetic 2D materials is currently being 
developed with the aim of predicting magnetic phase 
transitions and critical temperatures.
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Of specific interest is the modeling of the elec-
tronic and optical properties of vdW heterostructures. 
Due to lattice mismatch or rotational misalignment 
between stacked 2D layers, such structures are difficult 
or even impossible to treat by conventional ab initio 
techniques. Different simplified models have been 
proposed to describe the electronic bands, including 
tight-binding Hamiltonians derived from strained lat-
tice configurations [171] and perturbative treatments 
of the interlayer coupling [172]. In both cases, the data 
in the C2DB represents a good starting point for con-
structing such models. The effect of dielectric screen-
ing in vdW heterostructures can be incorporated e.g. 
by the quantum electrostatic heterostructure (QEH) 
model [173] which computes the dielectric function 
of the vdW heterostructure from the polarisabilities of 
the isolated monolayers. The latter are directly avail-
able in the C2DB, at least in the long wavelength limit.

Finally, it would be relevant to supplement the 
current optical absorbance spectra by other types of 
spectra, such as Raman spectra, infrared absorption 
or XPS, in order to assist experimentalists in charac-
terising their synthesised samples. The automatic first-
principles calculation of such spectra is, however, not 
straightforward and will require significant computa-

tional investments.
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Efficient Charge Separation in 2D Janus van der Waals Structures
with Built-in Electric Fields and Intrinsic p−n Doping
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Denmark, DK-2800 Kongens Lyngby, Denmark

ABSTRACT: Janus MoSSe monolayers have been recently synthe-
sized by replacing S by Se on one side of MoS2 (or vice versa for
MoSe2). Due to the different electronegativities of S and Se, these
structures carry a finite out-of-plane dipole moment. As we show here
by means of density functional theory calculations, this intrinsic dipole
leads to the formation of built-in electric fields when the monolayers
are stacked to form N-layer structures. For sufficiently thin structures
(N < 4), the dipoles add up and shift the vacuum level on the two
sides of the film by ∼N·0.7 eV. For thicker films, the vacuum level shift
saturates at around 2.2 eV due to compensating surface charges, which
in turn leads to the formation of atomically thin n- and p-doped
electron gasses at the surfaces. The doping concentration can be tuned
between 5 × 1012 and 2 × 1013 e/cm2 by varying the film thickness.
On the basis of band structure calculations and the Mott−Wannier
exciton model, we compute the energies of intra- and interlayer excitons as a function of film thickness, suggesting that the Janus
multilayer films are ideally suited for achieving ultrafast charge separation over atomic length scales without chemical doping or
applied electric fields. Finally, we explore a number of other potentially synthesizable two-dimensional Janus structures with
different band gaps and internal dipole moments. Our results open new opportunities for ultrathin optoelectronic components,
such as tunnel diodes, photodetectors, or solar cells.

■ INTRODUCTION
The unique optical properties of atomically thin crystals
combined with the possibility to combine them into lateral
and vertical heterostructures have placed two-dimensional (2D)
materials at the forefront of photonic and optoelectronic
materials research.4−1 Among the unique optical properties
that distinguish the 2D materials from the more conventional
bulk semiconductors are their strong light−matter interac-
tions8−10 and pronounced excitonic effects.11,12 Furthermore,
by stacking individual 2D materials into van der Waals (vdW)
heterostructures,2 their optical properties can be further
controlled by engineering of the band structure3 or the dielectric
environment.13,14

While the strong excitonic effects in 2D semiconductors are of
interest for some applications, they can pose a serious problem
for others. This holds in particular for photodetectors and solar
cells, which rely on efficient dissociation of photoexcited
excitons into free electrons and holes. For in-plane charge
separation, the problem has been overcome by forming lateral
p−n junctions using split gate techniques,15,16 which creates a
sufficiently large potential gradient to dissociate the excitons.17

For out-of-plane device architectures, the exciton dissociation
has been achieved using hetero-bilayers, e.g., MoS2−WSe2, with
natural type-II band alignment18,19 or by applying an external
bias voltage across an N-layer stack, e.g., five layers of WSe2.

20

Here, we propose a novel type of vdW-bonded N-layer
structure with an intrinsic electric field in the out-of-plane

direction stemming from an out-of-plane asymmetry and finite
dipole moment of the individual monolayers. Above a certain
critical thickness, the built-in electric field becomes compen-
sated by surface charges accumulating at the surfaces leading to
natural n- and p-doping of the two outermost monolayers, thus
generating an ultrathin p−n junction. The electric field strength,
the electronic band alignment throughout the structure, and the
doping concentration at the surface layers can be tuned to some
extent by varying the film thickness. We show that the built-in
electric field in structures with up to around 20 layers is sufficient
to dissociate intralayer excitons into interlayer excitons, which is
the critical step for achieving charge separation. Finally, we show
that these unique properties are not limited to MoSSe. In fact,
our first-principles calculations predict a number of other stable
and potentially synthesizable 2D materials with finite dipole
moments. By stacking different types of 2D Janus structures, one
could potentially engineer not only the band edge positions but
also the internal electric field and the doping concentration at
the surface layers.
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■ METHODS

All calculations have been performed with the GPAW21 code.
The in-plane lattice constant of the monolayer MoSSe is
calculated with the Perdew−Burke−Ernzerhof (PBE) func-
tional.22 To get an accurate description of the interlayer
distance, we use the Bayesian error estimation functional
(BEEF)−vdW functional, which includes a nonlocal van der
Waals correction.23 We find that the calculated interlayer
distance does not change as the number of layers in the Janus
structure is increased from 2 to 3. Therefore, we take the
interlayer distance calculated for the bilayer structure as the
optimum distance for all of the multilayer structures. The wave
functions are expanded in a plane wave basis with an energy
cutoff of 800 eV. For structural relaxations, we employ a 18 × 18
× 1 Monkhorst−Pack grid.24 The PBE band structures are
calculated on a very fine 54 × 54 × 1 k-point grid with a 800 eV
plane wave cutoff and by inclusion of spin−orbit coupling. A
vacuum region of 15 Å is inserted in the perpendicular direction
to separate the periodically repeated images. A Fermi smearing
of 0.01 eV was used for all of the calculations.
To calculate the screened electron−hole (e−h) interaction in

the multilayer structures, the dielectric building block of
monolayer MoSSe is calculated following ref 13 to be used as
input for the quantum electrostatic heterostructure (QEH)
model. The calculations are performed in the random phase
approximation (RPA) using wave functions and eigenvalues
from a PBE ground-state calculation with a 100 × 100 × 1 k-

point grid and an 800 eV plane wave cutoff. For the density
response function, a plane wave cutoff of 150 eV is used (to
account for local field effects). The in-plane exciton effective
mass used in the 2D Mott−Wannier model is calculated from
the PBE band structure and is found to be μex = 0.24m0 (for the
direct exciton at theK-point), wherem0 is the free electronmass.
The dielectric constant for bulk MoSSe (in which MoSSe layers
are stacked together as in 2H MoS2 bulk) was calculated in the
RPA based on a PBE ground-state calculation. The ground-state
calculation of the bulk MoSSe to be used as a starting point for
the RPA calculation was done on a 24 × 24 × 18 k-point grid
using a 800 eV plane wave cutoff. The number of bands was set
to six times the number of valence bands, and we converged five
times the number of valence bands in the ground-state
calculation. All of these bands were used in the RPA calculation,
which had a plane wave cutoff of 125 eV.
For more details on the calculation of intra- and interlayer

exciton binding energies from the 2DMott−Wannier model, we
refer to the detailed accounts given in refs 25 and 26.

■ RESULTS AND DISCUSSION

Janus MoSSe monolayers have been recently synthesized using
both controlled sulfurization of MoSe2

27 and selenization of
MoS2.

28 Following the experimental realizations, a number of
computational studies have considered various aspects of
MoSSe monolayers, including magnetism29,30 as well as
electronic, optical, and transport properties.31−33 One study

Figure 1. Band structures for the 1−6 layer Janus structure. Red and blue show the bands projected onto the top and bottom layers, respectively, while
all layers in between are colored gray. Faded blue or red indicates a high hybridization between neighboring layers. From there, one can see a direct
band gap for the monolayer MoSSe at the K-point, while all multilayer structures have an indirect band gap from Γ to K, with the valence band
maximum and conduction band minimum located at the bottom and top layers, respectively.
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also explored multilayers of MoSSe and reported an observed
rapid closing of the band gap as a function of the number of
layers saturating at a value around 0.1 eV for N > 3, but without
providing a physical explanation for this effect.34 In contrast to
these findings, we show that the Janus multilayers undergo an
insulator-to-metal transition at aroundN = 4, which is driven by
the internal dipole of the structure.
To obtain the equilibrium structure, we have performed

density functional theory (DFT) calculations for AB-stacked
MoSSe multilayer structures using the BEEF−vdW exchange-
correlation functional23 as implemented in the GPAW
electronic structure code21 (see Methods for more details).
We find in-plane lattice constant of 3.251 Å in good agreement
with previous work27,28,35 and interlayer spacings of 6.896 Å
(defined as the Mo−Mo distance), which is found to be
practically independent of the number of layers in the multilayer
structure. An example of a four-layer structure is shown in Figure
2b.
The difference in electronegativity of sulfur and selenium

leads to the formation of a static dipole of 0.038 |e|Å per lateral
unit cell across each MoSSe monolayer. When several layers are
stacked together, these dipoles add up and generate a potential
gradient in the direction perpendicular to the film. The evolution
of the band structures ofMoSSemultilayer structures forN = 1−
6 are shown in Figure 1. The band structures are obtained with
the PBE functional.22 Interestingly, the band structures change
dramatically with N despite the fact that wave functions on
neighboring layers hybridize only weakly due to the weak vdW
bonds. For N ≥ 4, the band gap vanishes and the Fermi level
intersects the valence bandmaximum (VBM) at the Γ-point and
the conduction band minimum (CBM) at the K-point of the
lateral 2D Brillouin zone. The bands located on the top and
bottom layers are colored red and blue, respectively. Clearly, the
charge transfer occurs between the outermost layers of the
structure.
The insulator−metal (IM) transition occurs when the built-in

potential difference between the top and bottom layers exceeds
the band gap, EG. At this point, the CBMmoves below the VBM,
resulting in a net positive (negative) charge in the top (bottom)
layer. This shift in the charge density creates a dipole in the

direction opposite to the intrinsic dipoles of the MoSSe layers.
The effect is clearly visible from the difference in the electrostatic
potential on the two sides of the multilayer structure (see Figure
2c). In the same figure, we show a qualitative sketch of the
charge transfer, the intrinsic dipoles of the individual
monolayers, and the counter balancing dipole due to the charge
transfer (a). The potential difference across anN-layer structure,
ΔΦ(N), is seen to saturate at a value around 2.2 eV. Adding
more layers will increase the potential difference created by the
internal dipoles (which simply add up). However, after the onset
of the IM transition, any increase in the internal dipole will be
counterbalanced by surface charges transferred between the
outermost monolayers. The number of layers at which this IM
transition occurs is approximately

N E / 1IM G 0= ΔΦ + (1)

where ΔΦ0 is the potential difference across a single layer. For
theMoSSe monolayer, we findΔΦ0 = 0.76 eV and EG = 1.54 eV,
yielding NIM = 3, in good agreement with the band structure
calculations in Figure 1. We note in passing that, due to the well-
known underestimation of the band gap by the PBE xc-
functional, NIM might also be underestimated. In fact, using the
G0W0 calculated band gap for monolayer MoSSe of 2.33 eV, we
obtain NIM = 4.
ForN >NIM, the charge density at either side can be estimated

from a simple plate capacitor model

N
d

N
N

( ) 10 IMi
k
jjj

y
{
zzzσ =

ϵ ΔΦ
−⊥

(2)

where ϵ⊥ is the dielectric constant of bulk MoSSe in the out-of-
plane direction, ΔΦ0 is the potential difference created by a
single layer, and d is the interlayer distance. We have calculated
the dielectric constant within the random phase approximation
(RPA) for bulk MoSSe and obtained ϵ⊥ = 3.68ϵ0 (see Methods
for further details). The prefactor in eq 2 corresponding to the
charge density in the limit N→∞ then becomes σ(∞) = 2.3 ×
1013 e/cm2.
We next turn to an analysis of the charge separation ability of

the Janus structures. Upon light illumination, electron−hole (e−
h) pairs will be generated within the structure. Due to the small

Figure 2. (a) Qualitative sketch of the charge transfer at four layers with the intrinsic dipole moment shown below and the dipole moment due to the
charge separation above. (b) Sketch of the p- and n-doping of the outermost layers. (c) Difference between the workfunction on either side of an N-
layer Janus structure calculated from the PBE band structure.
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spatial overlap of the wave functions in neighboring layers, the
generated e−h pairs will predominantly be of the intralayer type.
The photoexcited e−h pairs will thermalize rapidly on a sub-
picosecond time scale.36 In comparison, e−h recombination in
similar transition-metal dichalcogenide (TMD) structures
without built-in electric fields occurs on time scales of at least
several picoseconds.37−39 At room temperature, the e−h
recombination is dominated by defect-assisted processes and
consequently significantly longer e−h lifetimes are expected for
highly pure samples. After thermal relaxation, the resulting
nonequilibrium distribution includes hot electrons and holes
with energies above the band gap as well as bound excitons. The
hot electrons and holes will separate efficiently in the large built-
in electric field. Consequently, we focus on the bound excitons,
which are more difficult to dissociate.
Excitons in layered TMD structures have binding energies in

the range of 0.5 eV (isolated monolayers) to 0.1 eV (bulk),
which are significantly larger than kBT at room temperature. The
crucial first step of the exciton dissociation process is the
transformation of the intralayer excitons into an interlayer
exciton with the electron and hole located on neighboring layers.
This process requires that the energy of the interlayer exciton is
equal to or lower than the intralayer exciton. In the absence of an
electric field, this condition is never satisfied because of the
weaker e−h binding energy in the spatially separated interlayer
exciton.40 However, in structures with a built-in electric field,
this energy difference can be overcome by the band offset
between neighboring layers.
To determine the conditions for exciton dissociation, we

calculate the binding energies of intra- and interlayer excitons in
stacked MoSSe as a function of film thickness. We use a 2D
Mott−Wannier model, which has been shown to yield accurate
binding energies for excitons in mono- and few-layer
TMDs25,41,42 as well as for interlayer excitons in vdW
heterostructures.26 The 2D Mott−Wannier Hamiltonian takes
the form

W F E Fr r r
2

( ) ( ) ( )2D
2

ex
B

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑμ
−

∇
+ =

(3)

where μex is the exciton effective mass and W(r∥) is the
electron−hole interaction energy. The exciton effective mass is
defined as μex

−1 = me
−1 + mh

−1, where the hole and electron masses
must be evaluated at the band extremum of the relevant layer.
Assuming direct (i.e., zero-momentum) excitons, both the
electron and hole masses should be evaluated at the K-point of
the BZ yielding an exciton mass of μex = 0.24m0. We stress that
eq 3 remains valid in the case of interlayer excitons because even
though the electron and hole are now spatially separated in the
out-of-plane direction, their motion is still confined to their
respective layers. On the other hand, this spatial separation
affects the screened electron−hole interaction W. We calculate
W using the quantum electrostatic heterostructure (QEH)
model13 to include the additional screening from the
surrounding layers. We obtain binding energies for intralayer
excitons in the center of the film in the range of 0.38 eV (forN =
3) to 0.23 eV (for N → ∞) and interlayer exciton binding
energies from 0.29 eV (for N = 3) to 0.15 eV (for N → ∞).
In Figure 3, we show the difference in binding energy between

the intra- and interlayer excitons in the central layers of an N-
layer MoSSe structure (green symbols)

E N E N E N( ) ( ) ( )B B
intra

B
interΔ = − (4)

The black curve shows the band offset between two neighboring
layers of the structure, as shown in the inset. The two curves
cross around N = 17, as indicated by the red dashed line. For
structures thicker than this critical thickness, the difference in
exciton binding energy cannot be overcome by the band offset
and the exciton cannot dissociate (more precisely, the driving
force for exciton dissociation is strongly reduced).
The above analysis is based on a picture where excitons are

composed of electrons and holes bound to specific layers.
Alternatively, we can describe the excitons by a homogeneous
anisotropic three-dimensional (3D) Mott−Wannier model,
where the layered nature of the Janus structure is accounted
for by using different dielectric constants and effective masses in
the in- and out-of-plane directions. Such a model was developed
in ref 43 and applied to bulk TMDs. Using input parameters
from first-principles calculations, the model yields binding
energies, EB, of 83 and 52 meV for bulk MoS2 and MoSe2,
respectively, and exciton radius in the out-of-plane directions
(a0*) of around 1.1 and 1.4 nm. Assuming similar values for bulk
MoSSe, the characteristic field strength at which this exciton
dissociates, EB/a0*, becomes roughly 0.1 V/nm. It can be seen
that the result for the critical thickness obtained with this
homogeneous anisotropic 3D model is in reasonable agreement
with the result obtained with the layered 2D exciton model. In
fact, by extrapolating the results, we find the internal field
strength to reach 0.1 V/nm at around 30 layers. We stress that
according to ref 43, the exciton dissociation rate for out-of-plane
field strengths of 0.1 V/nm is well above 1013 s−1 for both direct
and indirect excitons in both MoS2 and MoSe2. From this, we
conclude that exciton dissociation in MoSSe Janus structures up
to the critical thickness of about 20 layers occurs much faster
than the exciton recombination, which is characterized by rates
<1012 s−1.37−39

In this paper, we have focused on the charge separation ability
of MoSSe Janus structures. This property is essential for a
number of optoelectronic devices, including photodetectors and
solar cells. The latter application might seem impossible

Figure 3. Difference in intralayer exciton binding energy (EB
intra) and

interlayer exciton binding energy (EB
inter) in green for the central layer

and band offset between neighboring layers in black also for the central
layer in anN-layer structure. At the crossover between the two curves at
around N = 17 layers, the interlayer exciton is no longer energetically
favorable and exciton dissociation cannot take place. This critical limit
is shown by the red dashed line. The inset shows the definition of the
band offset between neighboring layers.
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considering the band structures in Figure 1, which shows a
decreasing band gap reaching zero for N > 3. However, one
should keep in mind that this is the situation in equilibrium.
Upon excitation, charge carriers excited in the interior of the p−
n junction will separate due to the built-in field and electrons
(holes) will move to the n (p) side of the structure. This charge
imbalance will create a dipole opposite to the built-in field (just
like the charge transfer creating the p and n surface doping in
equilibrium). The size of the nonequilibrium charge distribu-
tions will determine the achievable photovoltage, which is given
by the difference in the (quasi-)Fermi levels of electrons and
holes, respectively. The size of the nonequilibrium charge
distributions, and thus the achievable voltage, will depend on the
carrier lifetimes (limited by recombination processes) relative to
the rate of charge separation. Assuming a conservative
recombination rate of 1 ps, the critical field strength at which
perpendicular exciton dissociation in bulk TMDs dominates the
recombination is 0.01 V/nm,43 which is easily achieved in the
stacked Janus structures (cf. Figure 3). We conclude that it
should be possible to realize finite photovoltages in stacked
Janus structures, even for films with N > NIM. The situation is
illustrated in Figure 4.

We mention that other applications of (stacked) 2D Janus
structures could be envisioned such as the tunnel diodes, e.g., to
separate light-absorbing layers in multijunction solar cells,
tunnel field-effect transistors,44 or for tuning band alignment or
Schottky barriers in van der Waals heterostructures.45

Finally, we show that finite out-of-plane dipole moments in
2D materials are not limited to the MoSSe monolayer. We have
performed DFT calculations for a number of monolayers with
similar structures and chemical compositions to MoSSe. The
results of these calculations, including the atomic structure, total
energies, electronic band structure, and much more, are directly
available in the Computational 2D Materials Database
(C2DB).46 For the monolayers found to be both dynamically
and thermodynamically stable (according to the criteria used in
the C2DB and described in ref 46), we show in Figure 5 the
relation between the G0W0 band gap and the workfunction
difference. We find a linear relation between the workfunction
difference and the internal dipole moment for the five structures
sharing the same geometry as MoSSe. We here therefore only
show the workfunction difference, which is the interesting
parameter for an actual experimental realization. We note in
passing that BiTeI is known as layered bulk material and should
be easily exfoliable according to ref 47. Indeed, BiTeI has been
recently exfoliated and studied in its monolayer form.48

Returning to Figure 5, we observe a large variation in the key
electronic properties of these Janus structures. This suggests that
in addition to controlling the number of layers in the Janus

structure, it is also possible to control the size of the built-in field
and therefore the surface layer doping level, by varying the type
of material. In particular, by combining different 2D Janus layers
into van der Waals heterostructures, it should be possible to
design not only the band alignment but also the built-in electric
field and, e.g., obtain nonlinear potential profiles.

■ CONCLUSIONS
In summary, our first-principles calculations show that 2D vdW
structures consisting of stacked Janus MoSSe monolayers host a
strong built-in electric field of about 0.1 V/Å. The electric field
induces a staggered band alignment throughout the structure,
and at a critical thickness of three to four layers, the CBM of the
top layer meets the VBM of the bottom layer triggering an
electron transfer between the outermost monolayers. The
charge density on the surface layers of this natural vertical p−n
junction can be tuned between about 5 × 1012 and 2 × 1013 e/
cm2 by varying the film thickness (these values correspond to the
cases of 5 and 17 layers, respectively). Using many-body GW
calculations in combination with a 2D Mott−Wannier model,
we estimated the energy of intra- and interlayer excitons as a
function of film thickness. These calculations show that for film
thickness below approximately about 20 layers, the shift in band
edges at neighboring layers exceeds the difference in binding
energy of the intra- and interlayer excitons and thus facilitates
the spontaneous dissociation of photogenerated intralayer
excitons into spatially separated electron−hole pairs. On the
basis of these results, we propose that Janus vdW structures
could be used as basis for ultrafast and ultrathin photodetectors
or electrical diodes. In the future, it would be interesting to
explore the possibility of using 2D Janus structures to introduce
highly local potential gradients in intrinsic semiconductors
without the need for doping. This could be interesting for charge

Figure 4. Sketch of the dissociation of excitons. (a) Band alignment at
equilibrium; (b) exciton dissociation after photoexcitement and the
corresponding quasi-Fermi levels. The spatial separation of the holes
and the photoexcited electrons sets up an opposite dipole, which again
opens a band gap.

Figure 5.Workfunction difference andG0W0 band gap for five different
TMD monolayer Janus structures with MoSSe: the structure
considered in this study highlighted in red, and in green BiTeI, which
has a different structure from MoSSe, and the other four structures in
blue, which all share the same structure as MoSSe. This shows that the
charge transfer and band alignment shift can also be controlled by the
material in addition to adjusting the number of layers.
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separation in solar cells or for tuning band alignment at the
interface between two different semiconductors.
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ABSTRACT: Inspired by the recent synthesis of mono-
layer MoSSe, we conduct a first-principles high-throughput
investigation of 216 MXY Janus monolayers consisting of a
middle layer of metal atoms (M) sandwiched between
different types of chalcogen, halogen, or pnictogen atoms
(X,Y). Using density functional theory and many-body
perturbation theory, we perform an exhaustive computa-
tional characterization of the 70 most stable semiconduct-
ing monolayers. These are found to exhibit diverse and fascinating properties including finite out-of-plane dipoles, giant
Rashba-splittings, direct and indirect band gaps ranging from 0.7 to 3.0 eV, large exciton binding energies, and very strong
light−matter interactions. The data have been generated using the workflow behind the Computational 2D Materials
Database and are freely available online. Our work expands the class of known Janus monolayers and points to several
potentially synthesizable structures, which could be interesting candidates for valley- or optoelectronic applications or for
generating out-of-plane electric fields to control charge transfer, charge separation, or band alignments in van der Waals
heterostructures.
KEYWORDS: two-dimensional materials, Janus monolayers, optical properties, electronic properties, excitons, dipole moment

Two-dimensional (2D) semiconductors composed of a
single or few layers of covalently bonded atoms exhibit
interesting physical properties including layer-depend-

ent band gaps,1,2 spin-valley coupling,3,4 and strong light−
matter interactions5,6 dominated by significant excitonic
effects.7−11 The extreme thinness of these materials makes
them highly susceptible to their environment opening up for
easy tunability of their properties via strain,12,13 external
fields,14−16 or by varying the dielectric environment.17,18 The
possibility of stacking different 2D layers into van der Waals
heterostructures opens further prospects for designing artificial
structures with tailored properties.19,20

While the field of 2D materials has long been dominated by
graphene, boron-nitride, and the transition-metal dichalcoge-
nides (TMDCs), more recently other types of materials have
caught the attention of the community. These include the
MXenes (metal-nitrides and -carbides),21 metal halides such as
the ferromagnetc CrI3,

22 and the monolayers MoSSe and
BiTeI with finite out-of-plane dipole moments,23−25 which are
the subject of the current paper. To date, more than 50
materials have been synthesized in monolayer form,26 but
computational studies suggest that many hundreds of known
layered bulk crystals can be exfoliated to the single-layer
limit.27−29 One such database of 2D materials is the

Computational 2D Materials Database (C2DB), which is
based on a comprehensive workflow for characterizing the
stability and basic properties of hypothetical monolayers.26

Ferroelectric materials are interesting for a number of
reasons. For example, the internal electric field in such
materials can lead to a staggered band gap profile producing
2D confined electron gases at the surface of a ferroelectric
insulator,30,31 or it can be used to separate electron−hole pairs
in photovoltaic systems.32,33 In bulk crystals, the spontaneous
polarization is typically driven by the displacement of an ion
away from a high-symmetry position. Due to the relatively
small energy gain associated with this symmetry breaking,
conventional ferroelectrics lose their polarization above a
certain phase transition temperature and become paraelectric.
In contrast, in the recently synthesized MoSSe and the
exfoliated BiTeI monolayers, the finite dipole is not associated
with a spontaneous symmetry breaking but is a property of the
structure independent of temperature. Theoretical studies have
indicated that Janus monolayers could be useful as structural
phase transition materials,34 for photocatalytic water split-
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ting,35 and for combined in-plane/out-of-plane piezoelectric-
ity.36 In addition, they could facilitate a number of interesting
effects when stacked into multilayers or combined with other
2D materials. For example, the large intrinsic dipole could be
used to separate intralayer excitons into interlayer excitons,37

move charges between different layers of a heterostructure,38,39

or tune band alignment and Schottky barriers at interfaces.
In this paper, we perform a systematic investigation of MXY

Janus structures in the crystal structures of MoSSe (H-phase)
and BiTeI (T-phase). Following the workflow developed for
the C2DB, we first evaluate the thermodynamic and dynamic
stability of the materials and next compute the magnetic,
elastic, electronic, and optical properties of the 70 most stable
materials exhibiting a finite band gap. Due to the known
limitations of density functional theory (DFT), we employ the
G0W0 self-energy method to obtain quasiparticle band
structures and the Bethe−Salpeter equation (BSE) for optical
excitations. We provide an overview of our results including a
discussion of some structure−property relations, a classifica-
tions of the materials’ electronic properties, and a more in-
depth description of a few representative materials. All results
are available in the C2DB and can be browsed online or
directly downloaded (https://cmr.fysik.dtu.dk/c2db/
c2db.html).

RESULTS
We consider MXY Janus monolayers in the crystal structures of
the experimentally realized MoSSe23 and BiTeI25 monolayers,
respectively. The two structures are shown in Figure 1. Due to
the lack of mirror symmetry, such structures possess a
macroscopic dipole moment in the out-of-plane direction.
The size of the dipole will depend on various factors, but as we
will see, it correlates strongly with the difference in
electronegativity of the X and Y atoms.
Hypothetical MXY Janus monolayers are produced by

decorating the MoSSe and BiTeI prototype crystal structures.
For the central M atom, we consider the group IV−V
transition-metal atoms (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) as
well as the pnictogens (As, Sb, Bi). For the X and Y atoms, we
consider the chalcogens (S, Se, Te), halogens (Cl, Br, I), and
the pnictogens (As, Sb, Bi). This yields a total of 108
monolayers in each of the two crystal structures. The complete
set of considered structures can be deduced from Figures 2 and
3. For these 216 monolayers, various electronic and optical
properties are calculated (see Methods section and Figure 13).

STABILITY
We assess the thermodynamic stability of the monolayers from
their energy above the convex hull, Ehull. The convex hull is a

phase diagram representing the energy of the most stable
(possibly mixed) phase of the material as a function of the
stoichiometry. If a hypothetized material lies above the convex
hull, that is, if Ehull > 0, the material is thermodynamically
unstable and will eventually decompose into other phase(s), if
it can be synthesized at all. In the current work, the convex hull
is constructed from the 2836 most stable binary bulk
compounds obtained from the OQMD database.40 The total
energies of these bulk structures were calculated with the PBE
exchange−correlation functional using the GPAW code with
the same settings as applied for the Janus monolayers. The
calculated energy above convex hull per atom, Ehull, for the 216
MXY Janus monolayers is shown in Figures 2 and 3.
In general, the variation in Ehull with the type of atoms is

much larger than the difference between the two crystal phases,
that is, for a given MXY composition, the difference in energy
between the two phases is relatively small. The most stable
structures are found for: (1) H-phase with M a group V−VI

Figure 1. Two types of MXY Janus monolayers considered in this work: MoSSe (left) and BiTeI (right).

Figure 2. Thermodynamic stability of the H-phase for different
MXY Janus monolayers. The colors denote the energy above the
convex hull in eV/atom.
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transition metal and both X and Y a chalcogen, (2) H-phase
with M a group IV transition metal and both X and Y a
halogen, (3) T-phase with M a pnictogen and X/Y a
chalcogen/halogen, and (4) T-phase with M a group IV−V
transition metal and both X and Y a chalcogen.
To test for dynamical stability, we calculate the elastic

coefficients and the phonons at the Γ-point and the corner
points of the BZ. Only materials with positive elastic
coefficients and no imaginary phonon frequencies are
considered stable.
The combined criteria of Ehull < 0.2 eV/atom, real phonon

freqencies (at high symmetry points) and positive elastic
constants, reduces the original set of 216 materials to 93. Out
of these, 70 are nonmagnetic and have a finite PBE band gap.
These materials are listed in Tables 1 and 2 in appendix A (see
Supporting Information), where we list various properties such
as PBE, HSE, and GW band gaps, electron and hole effective
masses, BSE exciton binding energies, and the vacuum level
shift across the monolayers. These 70 monolayers will be
discussed further in the following section.

OUT-OF-PLANE DIPOLE
As already mentioned, the lack of mirror symmetry in the Janus
structures leads to a finite out-of-plane dipole moment.
Because of the difference in electronegativity between the X
and Y atoms, charge will be transferred across the metal layer
creating an out-of-plane dipole moment. The size of the dipole
can be quantified by the shift in the vacuum level on the two
sides of the layer, see Figure 4. We note that because of the
dipole-induced potential step, the vacuum level on the two
sides of the monolayer will in general be different. We choose
to reference the band edge energies to the average value of the
asymptotic potential on the two sides of the monolayer.

Combined with the size of the potential step (vacuum level
shift), this allows to obtain the band energies relative to the
vacuum level on either side of the monolayer. Not
unexpectedly, the size of the dipole (or equivalently the
vacuum level shift) correlates with the difference in electro-
negativity of the X and Y atoms (Δχ), see Figure 5.
Pronounced exceptions from this trend occur for, for example,
ZrSeTe and ZrSTe, which have very similar vacuum level shift
despite a significant Δχ of 0.5. These deviations suggest that
other attributes, such as interatomic distances, the electro-
negativity of the M atom, and the specific interatomic wave
function overlaps, also influence the size of the resulting dipole.
Figure 5 also reveals a wide range of vacuum level shifts

possessed by the Janus monolayers, ranging from essentially 0
eV to around 1.8 eV. The wide range of dipoles makes the
Janus monolayers ideal for applications in van der Waals

Figure 3. Same as Figure 2, but for the T-phase.

Figure 4. Averaged electrostatic potential, ϕ(z), (blue) compared
to the vacuum level for H-MoSSe. Between +z and −z, a jump in
the potential of around 0.75 eV is observed as a consequence of
the out-of-plane dipole moment. In green and orange, the VBM
and the CBM are indicated.

Figure 5. Correlation between the electronegativity difference of X
and Y and out-of-plane dipole quantified by the vacuum level shift
(see Figure 4). The results for the H-phase (T-phase) are shown in
black (orange), and the red line is linear fit with a slope of about
1.35 eV/Δχ (Pauling scale).
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heterostructure-based devices where they could be used to set
up internal fields of varying strength to control charge transfer,
charge separation, and band alignment.
In the following two sections we provide an overview of the

electronic and optical properties of the 70 stable and
semiconducting MXY Janus monolayers identified in the
previous section. By necessity the discussion will focus on
general trends and classifications of the qualitative features. A
few band structures and optical spectra will be discussed for
specific representative materials, and we refer the interested
reader to the C2DB where all data are available.

ELECTRONIC BAND STRUCTURES
Before focusing on the 70 stable semiconductors, we give an
overview of the band structure of all the 216 Janus monolayers

(excluding the few magnetic compounds). By manual
inspection, we have found that the qualitative features of the
PBE band structures, with very few exceptions, can be classified
according to the group of the M and X/Y elements as shown in
Figure 6. The plot is divided into the H-phase (top) and the T-
phase (bottom). Notice that the bottom rows refer to

structures with mixed chalcogens and halogens for the XY
atoms, that is, a chalcogen on one side on the M layer and a
halogen on the other side. The matrix plot first of all shows
whether the monolayer is metallic or semiconducting for a
certain combination of M and XY atoms. For the semi-
conductors, it is further indicated whether the valence band
maximum (VBM) and conduction band minimum (CBM) are
located at a high-symmetry point or a high-symmetry path.
Materials belonging to the last row are found to exhibit a
Rashba split conduction band, while H-phase monolayers with
group VI metals in combination with S and Te are found to
exhibit a Rashba split VBM (see below for a more detailed
discussion). The classification holds for the vast majority of
materials, with a few exceptions that we return to below.
The greater part of 216 monolayers are found to be metallic.

On the other hand, among the 93 stable materials, only 23 are
metals (7 in the H-phase and 16 in the T-phase among which 7
are ferromagnetic), while 70 are semiconducting. The
semiconducting structures in the H-phase are found among
four combinations of M and XY atoms, while T-phase
structures are semiconducting for only two combinations of
M and XY atoms. A direct band gap is only found for the H-
phase when the M atom is a group VI transition-metal atom
(Cr, Mo, W) and XY are chalcogen atoms, except for
structures of the form MSTe. A close to direct band gap is
also found in a few cases, namely for structures where M is a
pnictogen atom (last row in Figure 6). These structures are,
however, subject to a considerable Rashba splitting close to the
CBM, and in the H-phase, the position of CBM depends on
the nature of the M atom.
There are a few exceptions to the classification found in

Figure 6. In both the H- and T-phase with a group IV
transition-metal atom and X,Y both chalcogen atoms, some of
the structures are found to be semi-metallic with PBE but open
a band gap with the HSE functional. These structures are H-
HfSTe, H-TiSTe, H-TiSeTe, T-HfSTe, T-HfSeTe, and T-
ZrSTe. When the HSE functional is used, the band structures
follow the classification in Figure 6. Because the workflow
classifies the materials as metals/nonmetals on the basis of the
PBE band structure (see Figure 13), these materials are treated
as metals, and consequently the G0W0 band structure and BSE
absorption spectrum have not been calculated. T-TiSTe and T-
TiSeTe are predicted to be semi-metallic by both PBE and
HSE.

RASHBA SPLITTING
The Rashba effect is a momentum-dependent splitting of the
spin band structure in the vicinity of a band extremum. It
occurs as a result of spin−orbit coupling in systems lacking an
inversion center, most notably in 2D systems with broken
mirror symmetry such as surfaces, interfaces, or 2D Janus
structures, but has also been observed in bulk crystals such as
the layered van der Waals crystal BiTeI.41 The spin−orbit
coupling leads to a splitting of the spin bands by the effective
magnetic field, v × E/c2, seen by an electron moving with
velocity v in an electric field, E(r). In reality, the total electric
field has a complex spatial variation on a subatomic length
scale. However, the prevailing (over)simplified picture of the
Rashba effect, neglects the microscopic details of E and simply
replaces it by a constant out-of-plane polarized field. While this
model captures the qualitative features of the Rashba splitting,
we show below that it is completely unable to provide a
quantitative description.

Figure 6. Qualitative classification of the band structure of MXY
Janus monolayers in the H-phase (top) and T-phase (bottom). We
classify the electronic properties of the MXY monolayers by if they
are found to be metallic or semiconducting. For the semi-
conducting materials, we further state at which high-symmetry
point or high-symmetry path the band extrema are located. This is
done based on the combination of M (vertical axis) and XY
(horizontal) atoms. The classification is based on the PBE band
structure omitting the few magnetic materials.
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Close to an (isotropic) band extremum, the Rashba-split
spin bands take the form

ε α= ℏ
*

±
m

k k
2nk

2
2

(1)

where α is the Rashba coupling parameter which quantifies the
strength of the effect. The Rashba coupling parameter is
related to the energy and momentum shift of the spin bands
via α = 2ER/kR. In Tables I and II in the Supporting
Information, we list ER and kR for the Janus monolayers where
a notable Rashba splitting is found at either the VBM or CBM.

We find values up to 77 meV for ER and 82 mÅ −1 for kR. For
monolayer BiTeI, we find ER = 56 meV, which is about half of
the measured value of bulk BiTeI.41 For the VBM, we find
Rashba coupling parameters in the range 5−30 meV Å in good
agreement with previous calculated values for H-phase TMDC
Janus structures.42 For the CBM, we find similar values for
most monolayers and much larger values for some monolayers
(e.g., T-AsISe, T-BiISe, T-BiITe, T-SbISe, T-SbIS, and T-
SbITe) ranging up to some hundreds meV Å.
In Figure 7 we show that there is absolutely no correlation

between the Rashba energy, ER, and the size of the vacuum
level shift. The latter is proportional to the out-of-plane dipole
and thus the averaged out-of-plane electric field inside the
monolayer. This clearly demonstrates the quantitative
limitations of the simple Rashba model. Furthermore, in
Figure S1 in the Supporting Information, we show that there is
only very weak correlation between ER and the strength of the
spin−orbit coupling (here quantified by the shift of the band
edge energy induced by the spin−orbit coupling). These
findings underline the complex nature of the Rashba effects.

EXAMPLES OF BAND STRUCTURES

As representatives for H-phase group VI-chalcogen and group
IV-halogen MXY monolayers, we show in Figure 8 the band
structures of H-WSSe (left panel) and H-TiClI (right panel).
We note in passing that all band structures include spin−orbit
coupling. The band structure of WSSe is similar to the well-
known TMDCs, while TiClI hosts a characteristic flat valence
band separated from lower-lying occupied bands. Our PBE
results (gray lines) are compared to G0W0 (orange symbols),
and the band energies are aligned to the vacuum level defined
as the average of the vacuum level on the two sides of the layer.
As expected, we find a distinct opening of the gaps in G0W0
emphasizing the previously found important role of many-body
effects in 2D materials.5,43 For WSSe, the direct gap at K opens
from 1.40 eV (PBE) to 2.33 eV (G0W0).

Figure 7. Vacuum level shift (x-axis) against the Rashba energy (y-
axis).

Figure 8. Band structure of H-WSSe (left panel) and H-TiClI (right panel). All energies are referenced to the vacuum level defined as the
average of the asymptotic potential on the two sides of the monolayer, see Figure 4. The orange dots and black interpolated lines show the
G0W0 results, while the gray lines show the PBE result.
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While G0W0 produces an almost symmetric shift in opposite
directions of the occupied and unoccupied states in WSSe, the
situation is very different for TiClI where the intermediate
occupied band at around −4 eV is almost unchanged by the
G0W0 self-energy. We speculate that this is a result of the
orbital character of the intermediate band wave function,
which contains almost equal amounts of Cl/I p states, which
are mostly occupied, and Ti d states, which are mostly
unoccupied.
In Figure 9, we show the band structure of BiClTe in the T-

phase. Both PBE and G0W0 predict a direct gap of 0.64 and
1.74 eV, respectively. However, in contrast to the H-phase
group VI-chalcogens discussed above, the direct gap resides at
Γ rather than K. Furthermore, we note that the G0W0

correction to the PBE bands is rather asymmetric: While the
valence bands shift down by about 0.9 eV, the conduction
bands shift up by only 0.3 eV. While the valence band at Γ is
doubly degenerate with light and heavy hole masses of 0.24m0

and 0.31m0, respectively, the conduction band has a Mexican
hat-like shape due to a Rashba effect driven by the
combination of strong spin−orbit coupling and lack of
inversion symmetry. This behavior is not reproduced by theFigure 9. Same as in Figure 8, but for T-BiClTe.

Figure 10. Band gaps (from G0W0), exciton binding energies (from BSE), and vacuum level shifts across the monolayer for the 70 MXY
Janus monolayers found to be stable, nonmagnetic, and nonmetallic. Results for the H-phase and T-phase are shown in black and orange,
respectively.

ACS Nano Article

DOI: 10.1021/acsnano.9b06698
ACS Nano 2019, 13, 13354−13364

13359

8.8 Paper VIII 223



G0W0 calculation due to the interpolated nature of the band
structure.
Figure 10 shows the distribution of the G0W0 band gaps of

all 70 MXY monolayers. As is the case for the out-of-plane
dipole, the band gap size shows rather large variation ranging
from 0.7 to 3.0 eV.

OPTICAL ABSORPTION AND EXCITONS
One of the most distinctive characteristics of 2D semi-
conductors is their strong interaction with light.44 This effect

arises from the localized nature of the electronic states in one
direction (quantum confinement) in combination with the
weak dielectric screening, which leads to strongly bound
electron−hole pairs (excitons) with large oscillator strengths.5,6
Specifically for the TMDCs, the optical properties also include
spin-valley selective excitation of electron−hole pairs by means
of circularly polarized light.3,4 However, exploitation of this
feature, for example, for valleytronics,45 is currently limited by
intervalley scattering that reduces the lifetime and mean free
path of valley-labeled excitons. Due to the similarity with the
TMDCs, both in terms of atomic and electronic structure,
some of the MXY Janus monolayers might also display spin-
valley coupling and thus could become interesting candidates
for valleytronics applications.
Here we explore some basic optical and excitonic properties

of the 70 stable, semiconducting MXY Janus monolayers.
Specifically, we calculate the optical absorbance spectrum
(essentially the imaginary part of the polarizability) within the
random phase approximation (RPA) and the BSE, respec-
tively.5 The BSE calculations are performed using the PBE
wave functions and energies with a scissors operator correction
of the PBE band gap to match the G0W0 gap. Spin−orbit
coupling is fully included. For more details on the calculations,
we refer to ref 26.
In Figure 11 we show, as an example, the optical absorbance

spectrum of AsBrTe in the T-phase as calculated with the RPA

and BSE methods, respectively. The absorbance, that is, the
percentage of incoming light absorbed by the monolayer, can
be obtained from the 2D polarizability, α2D, according to
Abs(ω) = 4πωα2D(q → 0,ω)/c, where c is the speed of light.
Due to the weak dielectric screening in (freestanding) 2D
materials, the RPA spectrum resembles closely the single-
particle result which reads

∑ ∑ ∑α ω
ω

χ χ δ ω ε ε→ = |⟨ | ̂ | ⟩| − +
∈ ′

′ ′q
N A

p( 0, )
1

( )
k n n

n x n n n
k

k k k k2D 2
BZ

occ. unocc.
2

(2)

where Nk is the number of k-points, A is the area of the in-
plane unit cell, and χ denotes spinor wave functions, and we
have assumed normal incident light polarization along the x-
axis. The BSE spectrum takes a similar form, except that the
single-particle matrix elements and energy differences are
replaced by their many-body analogues obtained by diagonal-
izing the two-particle BSE Hamiltonian.
Above the direct quasiparticle (QP) gap of 2.64 eV the RPA

spectrum exhibits a number of peaks arising from groups of
transitions in the QP band structure with similar energy.
Interestingly, the absorbance reaches 10% close to the band
gap and exceeds 40% at 4 eV. These high absorption rates are a
consequence of the 2D confinement and the similar orbital
character of the conduction and valence bands (which both
consists of mainly Te and Br p orbitals) giving rise to large
oscillator strengths.
Compared to RPA, the BSE spectrum shows a distinct red

shift of the excitation energies due to the attractive electron−
hole interaction. In particular, strong excitonic peaks appear
below the band gap with a binding energy of the lowest exciton
of around 0.6 eV. The formation of a correlated excitonic state
is associated with a significant increase in oscillator strength
resulting in an absorbance exceeding 25%, which dwarfs the
absorbance strength of excitons in the TMDCs.

Figure 11. Optical absorbance of AsBrTe in the T-phase. The RPA
(orange) is compared to the BSE spectrum that accounts for
excitonic effects (black). The vertical line denotes the direct band
gap obtained from G0W0.

Figure 12. Oscillator strength of the lowest lying exciton peak as a
function of the energy of the exciton energy. The oscillator
strength has been normalized by the unit cell area. For reference,
the orange dots represent the well-known TMDCs MoS2, MoSe2,
WS2, and WSe2.
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An overview of the exciton binding energies, defined as the
difference between the direct QP band gap and the lowest
eigenvalue of the BSE Hamiltonian, for the 70 semiconducting
Janus monolayers can be seen in Figure 10. The values range
from 0.3 and 1.0 eV with a tendency of large exciton binding
energies to be correlated with large QP band gaps. Such
correlations have been observed before and can be explained
by an approximate scaling of EB with the effective dielectric
constant of the 2D material, which in turn is inversely
proportional to the band gap.46,47

Finally, we consider the oscillator strengths of the lowest
excitonic transitions. The oscillator strength is defined as
|⟨0|p̂x|Ψex⟩|

2, where |0⟩ is the ground state, |Ψex⟩ is the lowest
bright exciton, and p̂x is the x components of the momentum
operator. In Figure 12 the oscillator strength is plotted against
the corresponding exciton energy for the 70 Janus monolayers.
For reference, the orange dots represent the well-known
TMDCs MoS2, MoSe2, WS2, and WSe2. For several of the
Janus structures, the lowest exciton couples significantly
stronger to light than is the case for the TMDCs. We find

that strong exciton absorbance is most pronounced for Janus
structures containing group IV transition metals (Ti and Zr).
For these structures, the valence and conduction bands are
both located mainly on the d-orbitals of the transition metal,
similar to the well-known TMDCs. We ascribe the strong
exciton absorbance in these materials to an unusually high joint
density of states (JDOS) around the Γ-point of the BZ. In the
group IV compounds, these transitions are located just above
the direct band gap and lead to the formation of a highly
localized (in real space) and strongly bound exciton. This is in
contrast to group V and VI transition-metal MXY and MX2
structures. For these structures, we also find a high JDOS
around the Γ-point but at energies much higher than the direct
band gap leading to the formation of the well-known strong C-
exciton situated just above the band gap. We note that the
extraordinary strong exciton oscillator strength observed for
some of the Janus monolayers should not be directly attributed
to the lack of mirror symmetry. Indeed, similar absorbance
strengths are found for other MX2 structures containing group
IV transition metals, such as PtS2 (see ref 26).

Figure 13. Workflow used to calculate the structure and properties of semiconducting Janus monolayers. Adapted with permission from ref
26. Copyright 2018 IOP Publishing.
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CONCLUSIONS

In summary, we have performed a systematic computational
study of 216 MXY Janus monolayers lacking mirror symmetry.
For the 70 most stable materials with a finite band gap, we
performed detailed DFT and many-body calculations for the
basic electronic and optical properties. The characterizing
property of the Janus monolayers is the existence of a finite
out-of-plane dipole moment giving rise to a difference in the
electrostatic potential on the two sides of the layer. We found
that these shifts can be substantial, reaching 1.8 eV for some of
the materials. We envision that such layers can be used to set
up and control large out-of-plane electric fields inside van der
Waals heterostructures. It was found that the band structures
of the Janus monolayers can be qualitatively classified
according to the groups of the metal (M) and nonmetal
(X,Y) atoms. While most combinations yield metallic
compounds, the vast majority of the stable materials were
found to be semiconducting. The band structures of the 70
most stable and semiconducting monolayers comprise both
direct and indirect band gaps ranging from 0.7 to 3.0 eV (from
G0W0 calculations). A few compounds were found to exhibit
Rashba-split valence or conduction bands due to the
combination of strong spin−orbit coupling and lack of mirror
symmetry. As well-known from other 2D semiconductors, the
optical properties of the Janus monolayers are dominated by
excitonic effects. The binding energies of the lowest excitons
range from 0.3 to 1.0 eV. Interestingly, the lowest excitons in
Janus monolayers of group IV metal atoms (Ti and Zr) can
exhibit extremely high oscillator strengths (almost 10 times
larger than those of the well-known TMDCs), resulting in
below-band gap absorbance peaks exceeding 40%. All the data
reported in this paper as well as data for other properties not
discussed here are available online as part of the Computa-
tional 2D Materials Database (C2DB).

METHODS
The workflow used to calculate the properties of the Janus
monolayers has been introduced in our previous work.26 It relies on
the atomic simulation environment (ASE)48 and the electronic
structure code GPAW.49 The part of the workflow relevant for
semiconducting materials, on which we focus in the present work, is
shown in Figure 13). In the first part of the workflow (left section),
we relax the unit cell and atomic positions, check whether the 2D
sheet has disintegrated during relaxation, and whether it is already
contained in the database. Next, we classify the material according to
crystal symmetries and occupied Wykoff sites and calculate the heat of
formation relative to the standard states of its elements and the energy
above the convex hull, Ehull. The latter represents the energy relative
to other competing bulk phases. In order to account for inaccuracies
in the PBE total energy and possible substrate stabilizing effects, we
consider materials to be thermodynamically stable if Ehull < 0.2 eV/
atom. We stress that a criterion of Ehull < 0.2 eV/atom is rather
conservative and will most likely generate false positives, that is,
materials that may not be stable or synthesizable in reality.50 On the
other hand, with a more stringent stability criterion, we run the risk of
missing interesting candidates that might be stable in reality, for
example, due to the finite error bars on the DFT energies or possible
stabilization via substrate interactions. We stress that the interested
user can adjust the threshold value for Ehull via the C2DB Web site.
The dynamical stability is assessed by calculating the elastic tensor
and phonon frequencies at high-symmetry points of the Brillouin zone
(BZ) (the Γ-point and the corners of the BZ). Materials with a
negative stiffness coefficient or one or more imaginary phonon
frequencies are deemed dynamically unstable and are not given
further consideration.

In the second part of the workflow (right section), we calculate the
band structure (at the PBE, HSE, and G0W0 level), the direct and
indirect band gaps, the position of the band edges relative to the
vacuum level and the corresponding k-points in the BZ, the out-of-
plane dipole moment, the effective masses, the polarizability (at the
RPA@PBE level), and the optical absorption spectrum (at the BSE@
G0W0 level). We stress that the workflow calculates additional
properties (projected density of states, Born charges, elastic tensor,
deformation potentials, piezoelectric tensor, lattice contribution to the
polarizability, and Raman spectrum). These properties are available in
the C2DB but will not be discussed further in the present work. More
details about the calculations including parameter settings can be
found in ref 26.
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Csonka, S. Exfoliation of Single Layer BiTeI Flakes. 2D Mater. 2018,
5, No. 031013.
(26) Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt,
P. S.; Hinsche, N. F.; Gjerding, M. N.; Torelli, D.; Larsen, P. M.; Riis-
Jensen, A. C.; Gath, J.; Jacobsen, K. W.; Mortensen, J. J.; Olsen, T.;
Thygesen, K. S. The Computational 2D Materials Database: High-
Throughput Modeling and Discovery of Atomically Thin Crystals. 2D
Mater. 2018, 5, No. 042002.
(27) Lebeg̀ue, S.; Björkman, T.; Klintenberg, M.; Nieminen, R. M.;
Eriksson, O. Two-Dimensional Materials from Data Filtering and Ab
Initio Calculations. Phys. Rev. X 2013, 3, No. 031002.
(28) Ashton, M.; Paul, J.; Sinnott, S. B.; Hennig, R. G. Topology-
Scaling Identification of Layered Solids and Stable Exfoliated 2D
Mater. Phys. Rev. Lett. 2017, 118, 106101.
(29) Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys,
A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G.;
Marzari, N. Two-Dimensional Materials from High-Throughput
Computational Exfoliation of Experimentally Known Compounds.
Nat. Nanotechnol. 2018, 13, 246.
(30) Nakagawa, N.; Hwang, H. Y.; Muller, D. A. Why Some
Interfaces Cannot Be Sharp. Nat. Mater. 2006, 5, 204.
(31) Nazir, S.; Cheng, J.; Yang, K. Creating Two-Dimensional
Electron Gas in Nonpolar Oxide Interface via Polarization
Discontinuity: First-Principles Analysis of CaZrO3/SrTiO3 Hetero-
structure. ACS Appl. Mater. Interfaces 2016, 8, 390−399.
(32) Wallace, S. K.; Svane, K. L.; Huhn, W. P.; Zhu, T.; Mitzi, D. B.;
Blum, V.; Walsh, A. Candidate Photoferroic Absorber Materials for
Thin-Film Solar Cells from Naturally Occurring Minerals: Enargite,
Stephanite, and Bournonite. Sustainable Energy Fuels 2017, 1, 1339−
1350.
(33) Butler, K. T.; Frost, J. M.; Walsh, A. Ferroelectric Materials for
Solar Energy Conversion: Photoferroics Revisited. Energy Environ. Sci.
2015, 8, 838−848.
(34) Sun, Y.; Shuai, Z.; Wang, D. Janus Monolayer of WSeTe, a New
Structural Phase Transition Material Driven by Electrostatic Gating.
Nanoscale 2018, 10, 21629−21633.
(35) Ma, X.; Wu, X.; Wang, H.; Wang, Y. A Janus MoSSe
Monolayer: a Potential Wide Solar-Spectrum Water-Splitting Photo-
catalyst with a Low Carrier Recombination Rate. J. Mater. Chem. A
2018, 6, 2295−2301.
(36) Dong, L.; Lou, J.; Shenoy, V. B. Large In-Plane and Vertical
Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS
Nano 2017, 11, 8242−8248.
(37) Riis-Jensen, A. C.; Pandey, M.; Thygesen, K. S. Efficient Charge
Separation in 2D Janus van der Waals Structures with Built-In Electric
Fields and Intrinsic p-n Doping. J. Phys. Chem. C 2018, 122, 24520−
24526.
(38) Palsgaard, M.; Gunst, T.; Markussen, T.; Thygesen, K. S.;
Brandbyge, M. Stacked Janus Device Concepts: Abrupt pn-Junctions
and Cross-Plane Channels. Nano Lett. 2018, 18, 7275−7281.
(39) Cavalcante, L. S.; Gjerding, M. N.; Chaves, A.; Thygesen, K. S.
Enhancing and Controlling Plasmons in Janus MoSSe-Graphene
Based Van Der Waals Heterostructures. J. Phys. Chem. C 2019, 123,
16373.
(40) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C.
Materials Design and Discovery with High-Throughput Density
Functional Theory: The Open Quantum Materials Database
(OQMD). JOM 2013, 65, 1501−1509.
(41) Bahramy, M.; Arita, R.; Nagaosa, N. Origin of Giant Bulk
Rashba Splitting: Application to BiTeI. Phys. Rev. B: Condens. Matter
Mater. Phys. 2011, 84, No. 041202.
(42) Cheng, Y.; Zhu, Z.; Tahir, M.; Schwingenschlögl, U. Spin-
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Data tables and figures

In tables 1 and 2 we provide some key electronic and optical properties for the 70 non-

magnetic, stable, and semiconducting MXY Janus monolayers investigated in this work.

The two tables report the properties for the T-phase and H-phase structures, respectively.

In figure 1 we show that the Rashba energy only weakly correlates with the amplitude of the

spin-orbit coupling for the Rashba split state (see main text for definition).
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Table 1: Key electronic and optical properties of MXY Janus monolayers in the T-Phase.
The table lists the formula unit, formation energy (Ef) [eV], energy above convex hull (Ehull)
[eV/atom], PBE band gap (EPBE

gap ) [eV], HSE band gap (EHSE
gap ) [eV], G0W0 band gap (EGW

gap )
[eV], nature of the band gap, electron effective mass (me), hole effective mass (mh) [mfree],
G0W0 conduction band minimum (EGW

CBM) [eV], G0W0 valence band maximum (EGW
VBM) [eV],

exciton binding energy (Eb) [eV], and vacuum level shift across the monolayer (∆Evac) [eV],
Rashba splitting (if present) in the k (kR) [mÅ−1] and energy (ER) [meV] directions. The
nature of the Rashba split point is denoted by c (v) for conduction (valence) band and
M, K, or G denoting the high symmetry point. Cases where the effective mass could not
be determined in a meaningful way because of non-parabolic bands, e.g. due to Rashba
splitting, are indicated by ’n/a’.

Structure Ef Ehull EPBE
gap EHSE

gap EGW
gap Direct gap me mh EGW

CBM EGW
VBM Eb ∆Evac kR ER

AsBrS -0.26 0.03 1.39 2.04 2.51 No n/a 0.62 -4.54 -7.06 0.79 0.14 20(c-G) 8
AsClS -0.35 0.05 1.54 2.26 2.79 No n/a 0.78 -4.67 -7.46 0.95 0.66 13(c-G) 2
AsBrSe -0.29 -0.02 1.23 1.84 2.27 No n/a 0.5 -4.53 -6.8 0.72 0.63 19(c-G) 6
AsClSe -0.38 0.0 1.37 2.06 2.56 No 0.87 0.74 -4.63 -7.19 0.79 1.13 7(c-G) 1
AsISe -0.16 -0.0 1.15 1.68 2.03 No 0.21 n/a -4.28 -6.31 0.51 0.04 45(c-G) 35
AsIS -0.11 0.06 1.34 1.95 2.36 No 0.27 0.28 -4.26 -6.61 0.46 0.53 52(c-G) 39

AsBrTe -0.24 -0.03 1.24 1.84 2.23 No 0.75 0.62 -4.35 -6.58 0.58 1.18 6(c-G) 1
AsClTe -0.32 0.01 1.48 2.15 2.6 No 0.17 0.94 -4.4 -7.0 0.49 1.62 0 0
AsITe -0.12 -0.02 0.98 1.5 1.79 No n/a 0.22 -4.21 -6.01 0.47 0.55 31(c-G) 22
BiBrS -0.56 -0.0 0.93 1.6 2.34 No n/a 1.12 -5.34 -7.68 0.81 0.03 73(c-G) 59
BiClS -0.66 -0.03 1.04 1.74 2.53 No 0.3 1.22 -5.46 -7.99 0.79 0.3 62(c-G) 50
BiBrSe -0.58 -0.02 0.77 1.36 2.01 No 0.22 0.96 -5.31 -7.32 0.71 0.36 60(c-G) 54
BiClSe -0.68 -0.05 0.88 1.51 2.2 No 0.2 1.01 -5.38 -7.58 0.72 0.61 48(c-G) 43
BiISe -0.44 -0.01 0.65 1.22 1.77 No 0.27 0.48 -5.12 -6.89 0.67 0.08 70(c-G) 77
BiIS -0.41 0.01 0.82 1.47 2.04 No n/a 0.33 -5.15 -7.19 0.58 0.41 78(c-G) 74

BiBrTe -0.5 -0.03 0.63 1.16 1.69 No n/a 0.39 -5.15 -6.84 0.48 0.78 35(c-G) 31
BiClTe -0.6 -0.05 0.64 1.2 1.74 No n/a 0.31 -5.15 -6.89 0.46 0.99 29(c-G) 23
BiITe -0.37 -0.02 0.45 0.93 1.42 No 0.13 0.45 -5.02 -6.44 0.49 0.37 51(c-G) 56
BrSSb -0.42 0.01 1.22 1.84 2.42 No n/a 0.71 -4.75 -7.17 0.87 0.11 31(c-G) 13
BrSbSe -0.44 -0.02 1.07 1.65 2.16 No n/a 0.7 -4.73 -6.9 0.76 0.48 25(c-G) 10
ClSbSe -0.54 0.0 1.17 1.8 2.4 No n/a 0.9 -4.83 -7.24 0.79 0.81 12(c-G) 4
ISbSe -0.31 -0.0 1.02 1.53 1.99 No 0.27 0.58 -4.44 -6.43 0.64 0.03 54(c-G) 47
ISSb -0.28 0.04 1.22 1.78 2.26 No n/a 0.39 -4.41 -6.67 0.72 0.4 67(c-G) 55

BrSbTe -0.38 -0.03 1.06 1.62 2.07 No 0.58 0.83 -4.53 -6.6 0.55 0.93 6(c-G) 1
ClSbTe -0.47 -0.0 1.26 1.87 2.38 No 0.16 1.01 -4.55 -6.93 0.55 1.2 0 0
ISbTe -0.25 -0.02 0.84 1.32 1.68 No n/a 0.43 -4.4 -6.07 0.49 0.45 29(c-G) 21
ZrSSe -1.48 -0.01 0.61 1.51 2.21 No 0.41 0.2 -4.64 -6.85 0.44 0.05 0 0
HfSSe -1.47 -0.01 0.68 1.51 2.18 No 0.31 0.2 -4.69 -6.86 0.48 0.01 0 0

3

8.8 Paper VIII 231



Table 2: Same as table 1 for the H-phase structues.

Structure Ef Ehull EPBE
gap EHSE

gap EGW
gap Direct gap me mh EGW

CBM EGW
VBM Eb ∆Evac kR ER

CrSeTe -0.27 0.11 0.57 0.99 0.97 Yes 0.99 1.15 -4.28 -5.26 0.45 0.78 0 0
CrSSe -0.57 -0.0 0.78 1.24 1.29 Yes 0.94 1.01 -4.5 -5.79 0.51 0.83 0 0
CrSTe -0.32 0.16 0.26 0.82 0.69 No 1.1 5.14 -4.61 -5.31 0.48 1.57 38(v-G) 1
HfBrCl -1.34 -0.08 0.82 1.36 1.93 No 0.62 0.36 -2.25 -4.18 0.85 0.36 0 0
HfBrI -0.89 -0.0 0.71 1.16 1.61 No 0.52 0.34 -2.21 -3.82 0.7 0.36 0 0
HfClI -1.03 0.13 0.81 1.29 1.78 No 0.71 0.41 -2.25 -4.03 0.74 0.69 0 0
HfSSe -1.28 0.19 0.89 1.64 2.18 No 0.49 0.57 -5.21 -7.38 1.02 0.04 0 0

MoSeTe -0.48 0.02 1.14 1.59 1.84 Yes 0.56 0.72 -3.18 -5.02 0.48 0.72 0 0
MoSSe -0.81 0.0 1.45 1.95 2.33 Yes 0.48 0.6 -3.29 -5.62 0.53 0.75 0 0
MoSTe -0.55 0.06 0.99 1.59 1.99 No 0.66 n/a -3.41 -5.4 0.51 1.46 67(v-G) 4
TiBrCl -1.33 -0.05 0.83 1.3 1.47 No 1.27 0.62 -2.62 -4.09 0.69 0.48 0 0
TiBrI -0.88 0.04 0.68 1.04 1.2 No 1.33 0.59 -2.54 -3.74 0.5 0.53 0 0
TiClI -1.01 0.07 0.75 1.19 1.38 No 1.49 0.72 -2.55 -3.94 0.56 0.98 0 0
TiSSe -1.1 0.12 0.51 1.34 1.33 No 1.95 1.12 -5.09 -6.42 0.69 0.01 0 0
WSeTe -0.32 0.04 1.04 1.49 1.8 Yes 0.56 0.4 -3.28 -5.09 0.45 0.68 0 0
WSSe -0.72 0.0 1.4 1.91 2.31 Yes 0.43 0.37 -3.37 -5.69 0.51 0.73 0 0
WSTe -0.42 0.08 1.14 1.68 2.07 No 1.24 n/a -3.44 -5.5 0.5 1.4 82(v-G) 12
ZrBrCl -1.51 -0.02 0.91 1.4 1.88 No 0.68 0.43 -2.35 -4.23 0.87 0.38 0 0
ZrBrI -1.09 0.02 0.77 1.17 1.59 No 0.67 0.42 -2.29 -3.88 0.76 0.42 0 0
ZrClI -1.23 0.07 0.88 1.32 1.74 No 0.71 0.48 -2.33 -4.07 0.8 0.77 0 0

ZrSeTe -1.02 0.11 0.26 0.78 0.89 No n/a 0.74 -4.94 -5.83 0.47 0.13 0 0
ZrSTe -1.12 0.12 0.21 0.67 0.74 No n/a 0.65 -4.94 -5.83 0.47 0.06 0 0
BiBrS -0.44 0.11 1.25 1.98 2.67 No 0.44 0.48 -5.21 -7.87 0.76 0.34 63(c-G) 31
BiClS -0.54 0.09 1.5 2.27 2.98 No 0.43 0.92 -5.28 -8.26 0.92 0.7 51(c-G) 22
BiClSe -0.56 0.07 1.29 1.99 2.61 No 0.28 0.51 -5.21 -7.82 0.87 1.08 44(c-G) 23
BiIS -0.29 0.14 0.45 1.18 1.73 No 0.31 0.26 -5.1 -6.83 0.5 0.15 0 0

BiClTe -0.47 0.08 0.58 1.15 1.68 Yes n/a 0.17 -5.1 -6.77 0.46 1.55 0 0
BrSSb -0.29 0.14 1.43 2.03 2.61 No n/a 0.43 -4.76 -7.37 1.06 0.47 0 0
ClSbSe -0.41 0.14 1.67 2.29 2.86 No 0.39 0.49 -4.63 -7.49 1.07 1.3 0 0
BrSbTe -0.25 0.1 1.32 1.82 2.25 No 0.66 0.31 -4.42 -6.67 0.57 1.38 0 0
ISbSe -0.18 0.13 1.01 1.59 1.97 No 3.52 0.31 -4.43 -6.4 0.47 0.31 0 0
BiISe -0.33 0.1 0.48 1.19 1.69 No 0.28 0.28 -5.03 -6.72 0.5 0.22 54(c-G) 42

BiBrTe -0.39 0.09 0.58 1.16 1.63 No n/a 0.21 -5.04 -6.67 0.45 1.2 30(c-G) 17
BiITe -0.26 0.09 0.39 1.0 1.4 No n/a 0.23 -4.93 -6.34 0.46 0.71 35(c-G) 32

BrSbSe -0.32 0.1 1.46 2.04 2.57 No n/a 0.35 -4.51 -7.08 0.89 0.88 0 0
ISSb -0.13 0.18 0.79 1.46 1.81 No n/a 0.3 -4.69 -6.5 0.42 0.1 0 0
ISbTe -0.13 0.11 1.02 1.44 1.78 No 0.53 0.19 -4.27 -6.05 0.39 0.81 0 0

AsBrSe -0.13 0.14 1.5 2.1 2.5 No 0.63 0.25 -4.41 -6.91 0.66 1.13 0 0
AsISe 0.01 0.17 0.45 1.05 1.3 No n/a 0.22 -4.41 -5.71 0.35 0.41 0 0

AsBrTe -0.08 0.13 1.06 1.66 1.96 No 0.58 0.33 -4.56 -6.53 0.52 1.72 0 0
AsITe 0.04 0.14 0.33 0.87 1.09 No 0.51 0.21 -4.39 -5.48 0.34 1.02 0 0
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Figure 1: The ratio of the strength of the spin-orbit coupling (see main text) and the band
gap against the Rashba energy (y-axis).
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ABSTRACT: The possibility of stacking two-dimensional (2D) materials into van der
Waals (vdW) heterostructures has recently created new opportunities for band structure
engineering at the atomic level. However, despite the weak vdW interaction, controlling
the electrostatic potential governing the band lineup at the 2D interfaces is still posing a
significant challenge. Here, we demonstrate that 2D Janus monolayers, possessing an
intrinsic out-of-plane dipole moment, can be used to control the band alignment at
semiconductor−semiconductor and metal−semiconductor interfaces in a highly
predictive manner. Using density functional theory (DFT), we calculate the band
structure of a wide range of different vdW interfaces. We find that upon insertion of a
Janus structure the band line-ups and Schottky barriers can be controlled to high accuracy. The main result of this work is that the
out-of-plane dipole moment of the Janus structure changes little upon insertion in the interface. As a consequence, the effect on the
electrostatic potential at the interface can be predicted from the properties of the freestanding Janus structure. In addition to this, we
predict 47 stable Janus monolayers, covering a wide range of dipole moments and band edge positions and thus providing a
comprehensive library of 2D building blocks for manipulating the band alignment at interfaces.

■ INTRODUCTION
More than a decade after the discovery of graphene,1 the class
of atomically thin two-dimensional (2D) crystals remains one
of the hottest topics in physics. An important reason is that
such materials open new possibilities for studying and
manipulating electronic quantum states directly at the atomic
length scale. By stacking different 2D layers into van der
Waals (vdW) heterostructures, it is, at least in principle,
possible to design the energy landscape of the electrons, i.e.,
the band structure, with a precision far beyond what is
possible with conventional epitaxial growth.2 In this paper, we
introduce the idea of using 2D Janus monolayers to control
the electrostatic potential and band line up at vdW interfaces.
Many solid-state devices, including semiconductor (SC)

lasers,3−5 solar cells,6,7 and transistors,8 rely on heterostructure
materials with electronic energy levels carefully aligned across
their interfaces. This makes the interfacial band lineup
problem one of the most critical challenges for the
semiconductor industry. Quite generally, the band alignment
at SC heterojunctions can be categorized into three types
according to the relative position of valence and conduction
bands on the two sides of the interface. In Figure 1, we show
examples of type-I and type-II band alignments. It is
exceedingly difficult if not impossible by means of conven-
tional techniques employed in the semiconductor industry
(doping, strain, alloying) to change the band alignment at an
interface without changing the composition or structure of the
material(s) in the vicinity of the interface. This clearly implies
a risk of degrading other of the material properties, e.g., the
carrier mobility, carrier lifetime, etc. A key result of this paper

Received: February 21, 2020
Revised: April 3, 2020
Published: April 3, 2020

Figure 1. Left: sketch of a type-I band alignment between two
different semiconductors. Right: sketch of the achieved type-II band
alignment between the two semiconductors by sandwiching a Janus
monolayer between them, which shifts the electrostatic potential on
either side of the Janus monolayer. In a type III band alignment, the
valence band maximum (VBM) of one of the structures is located
above the conduction band minimum (CBM) of the other structure.
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is that the band alignment can be controlled elegantly and
with high precision in vdW heterojunctions without affecting
the material structure or composition.
For metal/SC interfaces, the single most critical parameter

used to characterize the band alignment is the height of the
Schottky barrier (SB), i.e., the distance between the metal
Fermi level and the nearest band edge of the SC (valence
band or conduction band). Apart from the position of the
bands in the intrinsic materials, i.e., the work function of the
metal and the electron affinity and ionization potential of the
SC, a number of effects influence the SB including Pauli
repulsion and metal-induced gap states (MIGSs).9−13 Such
effects lead to Fermi-level pinning (FLP)10,14−16,18−22 and
deviations from the Anderson rule,23 which makes it difficult
to control (in practice minimize) the SB. This is further
complicated by the unpredictable effect of the chemical
interactions at the interface.17 One specific and important
motivation for developing means to control the SB at metal−
2D semiconductor interfaces comes from the huge interest in
atomically thin field-effect transistors, e.g., based on transition-
metal dichalcogenides (TMDs). For such devices, the SB at
the source/drain contacts remains a performance-limiting
factor that must be improved for them to become
competitive.24−33

Due to the presence of MIGS, it has been proven ineffective
to dope SC/metals structures to lower the SB. This has
previously been explained by the fact that while originating on
the metal the states are still localized deeply into the SC,34

effectively neutralizing the effect of doping. Approaches to
overcome this includes inserting a layer of boron nitride
between the metal and the SC22,35 or different oxide
layers;36−39 however, the exact effect of all of the above-
mentioned mechanisms is extremely difficult to predict.
In this work, we propose an alternative method to control

and adjust the band lineup at solid interfaces in a highly
predictable manner. By sandwiching a 2D material with a
finite out-of-plane dipole moment, i.e., a Janus monolayer,
between two materials, it is possible to introduce an
atomically sharp potential step across the interface. For SC/
SC interfaces, this opens the possibility of controlling the
band lineup and even changing the type of band alignment,
while for metal/SC interfaces, the SB can essentially be made
to vanish. Importantly, we find that the dipole moment of the
Janus layer does not change significantly upon insertion in the
heterostructure, meaning that the resulting shift in the band
offset can be predicted to high accuracy from the properties of
the isolated Janus monolayer, at least for systems with small
interlayer charge transfer. Beyond pure vdW-bonded struc-
tures, we find that the intrinsic dipole moment is unaltered,
even when placed on conventional bulk metal surfaces. Using
high-throughput density functional theory (DFT) computa-
tions, we further predict 47 new Janus monolayers that we
find to be stable, have a finite band gap, and a finite out-of-
plane dipole moment. The induced shift in electrostatic
potential achievable by these novel 2D Janus monolayers
range from close to zero to about 2 eV, showing the high
degree of band offset tunability offered by the proposed
concept.

■ COMPUTATIONAL DETAILS
All calculations were performed with the GPAW code.40

Monolayer structures were relaxed using the Perdew−Burke−
Ernzerhof (PBE) functional41 on a Monkhorst−Pack k-point

grid42 with a k-point density of 6.0 and a planewave cutoff of
800 eV. The unit cells had 15 Å of vacuum in the
perpendicular direction, and a Fermi smearing of 0.05 eV
was used. The band structure and the size of the dipole
moment were calculated using a k-point density of 12.0.
Spin−orbit coupling was not included. For the multilayer
structures, the interlayer binding distances were determined
using the BEEF-vdW functional.43 All structures were relaxed
until the maximum force on any atom was below 0.01 eV/Å
and the maximum stress on the unit cell was 0.002 eV/Å3.
Since the layers in the heterostructures, in general, will have
incommensurable lattices, it is necessary to use larger
supercells and strain one or both materials slightly. Table 1

presents a summary of the supercell size and strain applied to
each layer in each heterostructure. For H-phase/H-phase
interfaces, AB stacking was used, while for H-phase/T-phase
interfaces, AA stacking was used, i.e., the metal atoms were
stacked on top of each other. These stacking configurations
were found to be energetically most stable. To judge the
stability (dynamic and thermodynamic) of the new Janus
monolayers resulting from the high-throughput study, we
followed the criteria of the Computational 2D Materials
Database.44

■ RESULTS
Recently, both MoSSe45,46 and BiTeI47 have been realized in
the monolayer form experimentally. These structures possess

Table 1. Computational Details about the Supercells Used
for the Heterostructure Calculations Including the Cell
Size, Strain, and Smallest Interlayer Distance d

structure cell size
strain
(%) d (Å)

graphene/H-MoSSe/hBN graphene: 4 × 4 1.62 3.82/3.69
H-MoSSe: 3 × 3 −0.46
hBN: 4 × 4 3.31

T-MoS2/H-MoSSe/H-MoS2 T-MoS2: 1 × 1 0 3.51/3.67
H-MoSSe: 1 × 1 −2.06
H-MoS2: 1 × 1 0

H-MoS2/H-MoSSe/H-MoS2 H-MoS2: 1 × 1 0 3.54/3.63
H-MoSSe: 1 × 1 −2.06

H-WS2/H-MoSSe/H-WS2 H-WS2: 1 × 1 0 3.52/3.66
H-MoSSe: 1 × 1 −2.06

H-MoS2/H-CrSSe/H-MoS2 H-MoS2: 1 × 1 0 3.61/3.75
H-CrSSe: 1 × 1 1.76

H-MoSe2/H-MoSTe/H-
MoSe2

H-MoSe2: 1 × 1 0 3.61/3.74
H-MoSTe: 1 × 1 <0.01

H-MoSe2/H-TaSSe/H-MoSe2 H-MoSe2: 1 × 1 0 3.58/3.81
H-TaSSe: 1 × 1 −2.59

H-MoSe2/H-TiSSe/H-MoSe2 H-MoSe2: 1 × 1 0 3.63/3.86
H-TiSSe: 1 × 1 −2.93

H-MoSe2/H-WSeTe/H-
MoSe2

H-MoSe2: 1 × 1 0 3.66/3.58
H-WSeTe: 1 × 1 −3.29

H-MoS2/H-WSSe/H-MoS2 H-MoS2: 1 × 1 0 3.54/3.65
H-WSSe: 1 × 1 −2.10

H-MoSe2/H-WSTe/H-MoSe2 H-MoSe2: 1 × 1 0 3.64/3.68
H-WSTe: 1 × 1 −1.25

H-MoSe2/H-ZrBrCl/H-
MoSe2

H-MoSe2: 1 × 1 0 3.69/3.57
H-ZrBrCl: 1 × 1 −4.82

H-MoSe2/H-TiBrCl/H-
MoSe2

H-MoSe2: 1 × 1 0 3.78/3.64
H-TiBrCl: 1 × 1 −1.75
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an out-of-plane dipole moment created by the difference in
electronegativity of the S and Se (I and Te) atoms,48 which
are located on different sides of the central metal layer, see
Figure 2. Such structures with broken mirror symmetry and a
finite out-of-plane dipole moment are known as Janus
monolayers.
In Figure 1, we illustrate the concept of band lineup control

at vdW heterojunction interfaces. On the left is shown an
example of a bilayer consisting of two (possibly) different

semiconducting 2D monolayers having a type-I band align-
ment. On the right is shown the same two monolayers, with a
Janus monolayer sandwiched in-between. By choosing a Janus
monolayer with an appropriate size of the out-of-plane dipole
moment, it is possible to shift, for instance, a type-I band
alignment into a type-II band alignment as shown. Another
obvious application is to use Janus monolayers to lower the
SB at metal/SC interfaces. For a general metal/SC interface,
where the Fermi level of the metal is located between the
valence band maximum (VBM) and conduction band
minimum (CBM) of the SC, the bands originating from the

Figure 2. Top and side views of the atomic structures of the MoSSe prototype (left) and the BiTeI prototype (right).

Figure 3. Left: band structure of a bilayer consisting of MoS2 in the
H- and T-phases, respectively. Right: band structure of the same
structure with the Janus monolayer MoSSe sandwiched in between
the two layers. For both plots, red/blue is the projection of the bands
onto the T- and H-phase of MoS2, respectively, while black is the
projection onto MoSSe. Notice how the insertion of MoSSe shifts
the band edges of H-MoS2 with respect to the Fermi level of the
structure, effectively lowering the SB.

Figure 4. Electrostatic potential, with respect to the vacuum energy, for the bilayer and trilayer structures from Figure 3 in the direction
perpendicular to the layers. The right column is a close-up of the top of the figures in the left column, showing the vacuum-level shift ΔU on
either side of the heterostructures. In orange is shown the VBM, CBM, and EF.

Figure 5. Left: band structure of H-MoS2 at the bulk Au metal
surface. Right: band structure of the same structure with the Janus
monolayer MoSSe sandwiched in between. For both plots, red/blue
is the projection of the bands onto the Au and H-MoS2, respectively,
while black is the projection onto MoSSe.
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SC will bend at the interface, creating a Schottky barrier.
Below we show that by inserting a Janus monolayer between
the metal and the SC, one can control the SB.

Schottky Barriers at Metal/SC Interfaces. To illustrate
the concept in practice, we have calculated the band structure
of both SC/SC and metal/SC vdW heterostructures with and
without a Janus monolayer sandwiched in-between. First,
consider the two band structures shown in Figure 3. On the
left is shown the band structure of bilayer T-MoS2/H-MoS2.
We note that MoS2 is well known to be metallic in the T-
phase and semiconducting in the H-phase. We note that the
T-phase is in fact dynamically unstable and undergoes a
transition to the T′-phase; however, this is unimportant for
the present discussion. On the right is shown the band
structure of the same structure with H-MoSSe sandwiched in-
between. For the two cases, we consider an AB and ABA
stacking, respectively. The red color represents the bands
projected onto the T-MoS2 layer, blue is projected onto the
H-MoS2 layer, and black is projected onto the Janus H-MoSSe
layer. For the bilayer, we see that the bands from T-MoS2 are
crossing the Fermi level, which overall renders the bilayer
metallic, while the H-MoS2 more or less preserves the size of
its direct band gap at the K-point. The distance from the
CBM of H-MoS2 to the Fermi level is approximately 0.6 eV,

Figure 6. Same as Figure 5 with a Pd(111) surface instead of a
Au(111) surface.

Figure 7. Left: band structure of a bilayer H-MoS2. Right: band
structure of the same structure with the Janus monolayer MoSSe
sandwiched in between the two layers. For both plots, red/blue is the
projection of the bands onto the two MoS2 layers, while black is the
projection onto MoSSe. Notice how the insertion of MoSSe splits
the bands of the two MoS2 layers at the K-point.

Figure 8. Splitting of the conduction bands Δϵ for a SC bilayer,
upon insertion of a Janus monolayer, as a function of the shift in
potential across the freestanding Janus monolayer ΔEvac. Each data
point represents a different Janus monolayer sandwiched between
two identical SCs. From left to right, the Janus monolayers are TiSSe,
ZrBrCl, TiBrCl, WSeTe, WSSe, MoSSe, MoSSe, CrSSe, WSte, and
MoSTe. The exact trilayer composition can then be deducted from
Table 1. We stress that there is little-to-no difference between
trilayers H-MoS2/H-MoSSe/H-MoS2 and H-WS2/H-MoSSe/H-WS2.
The fact that the shift in band energies is very close to the shift of the
freestanding Janus monolayer shows the highly predictive nature of
the proposed strategy for band alignment engineering.

Figure 9. Energy above the convex hull for all Janus monolayers
calculated in this study colored according to their phase. Structures
with an energy above the convex hull lower than 0.1 eV/atom are
considered thermodynamically stable. Dynamical stability is shown
by a black circle.
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which equals the SB of the interface. On the right, after
insertion of the MoSSe layer, we see how the SB has
essentially vanished. Now, the CBM of the H-MoS2 layer just
touches the Fermi level, thus reducing the SB to almost zero.
We note that the SB of T-MoS2/H-MoS2 has previously been
studied, where it was shown that the SB can be shifted by 0.3
eV by varying the stacking pattern.49 While this is an
interesting result, the method proposed in our study gives the
possibility to vary the SB, in a highly controlled manner,
anywhere between the electronic band gap and essentially 0
eV, by varying the Janus monolayer material, which will be
demonstrated later.
A more detailed picture of the electrostatic discontinuity

induced by the Janus monolayer is shown in Figure 4. The top
panel shows the electrostatic potential perpendicular to the T-
MoS2/H-MoS2 bilayer (averaged over the in-plane directions).
The lower panel shows the same for the trilayer structure
including H-MoSSe. Here, the right-hand side plot is a close-
up of the upper part of the left plot. For the bilayer, we see a
minor change in the electrostatic potential across the bilayer
of 0.03 eV. Since both T-MoS2 and H-MoS2 have a zero
dipole moment in the out-of-plane direction in their
freestanding monolayer form, this shift originates from a
small interfacial dipole created at the interface. This
phenomenon is well known for metal−SC interfaces and has
also been seen at graphene/SC interfaces.50 After insertion of
H-MoSSe, we now find a shift of 0.63 eV. This large shift
arises because of the internal dipole in the H-MoSSe layer and
gives the shift in the band structure we observed in Figure 3.
We here stress that we in this study consider the manipulation
of SB defined by the SC band edges relative to the Fermi level
and do not consider the tunneling barrier evident from Figure
4, which for some systems can impose an additional barrier.
Modeling of such additional tunneling barriers are system-
specific and will be the scope of future studies.
It can be interesting to study how the intrinsic dipole

moment of the Janus monolayers are affected by strain effects.
To do this, we calculate the vacuum-level shift and band gap
of strained monolayer H-MoSSe. The applied strain ranges
from -3% to +3% (see Figure S1 in the Supporting
Information), which we believe are experimentally realizable
values. We find that the vacuum-level shift across monolayer
MoSSe can be varied between 0.74 and 0.77 eV. While this
gives rise to only little variation in the intrinsic dipole moment
of the Janus monolayers, it shows that the proposed setup is
very robust to strain effects. On the other hand, the band gap

changes over a range from 1.1 to 1.6 eV, showing a great
possible tunability of the electronic properties of Janus
monolayers.
To further illustrate the concept, we consider the band

structure of a bulk metal/SC interface and calculate the band
structure of H-MoS2 at the bulk Au(111) surface and at the
bulk Pd(111) surface. The bulk metal surface is modeled by a
slab of four atomic layers. The calculation has been performed
in a 1 × 1 cell, with H-MoS2 unstrained and Au and Pd
strained significantly to match the lattice constant of H-MoS2.
Despite the very large strain, we find that the typical
characteristics of both the Au and Pd band structures can
be recognized, i.e., the wide 6sp bands crossing the Fermi
surface and the flat 5d bands at around −1.5 eV for Au and
the 5d bands crossing the Fermi level for Pd. This can be seen
in Figures 5 and 6. Notice that the same color coding has
been used as that for the previous band structure plot.
Comparing the SB with and without H-MoSSe, we find a
reduction of the SB of about 0.6 eV for the Au surface, which
is close to the reduction found for T-MoS2/H-MoS2. For the
Pd surface, the reduction is closer to 0.5 eV, showing a larger
cancellation of the internal dipole of MoSSe in this case. We
note here that no chemical interactions are taking place at the
MoS2/Au interface, while a considerable chemical bond
strength is present at the MoS2/Pd interface.51 Thus, this
stronger interaction explains the larger cancellation of the
internal dipole. This is further stressed by the interlayer
distance between H-MoS2 and Au/Pd. For H-MoS2/Au, the
smallest out-of-plane interlayer distance is 3.4 Å, while it is
only 2.0 Å for H-MoS2/Pd. This shows that the reduction of
the out-of-plane dipole moment is rather modest, even at
metal surfaces that couple strongly to the Janus monolayer.

Band Alignment at SC/SC Interfaces. Next, we consider
how the band alignment can be tuned for SC/SC interfaces.
Specifically, we consider bilayer H-MoS2 with and without a
H-MoSSe layer sandwiched in between. The band structure of
both cases is depicted in Figure 7 using the same coloring as
in Figure 3. We first notice the direct to indirect band gap
transition in going from the monolayer to bilayer H-MoS2,
where the VBM is located at the K-point for monolayer H-
MoS2 and at the Γ-point for bilayer H-MoS2. The two layers
hybridize strongly around the Γ point, leading to significant
band splitting. In contrast, the interlayer hybridization is
negligible around the K-point and the two bands are
essentially degenerate. Therefore, the relative band positions
at the K-point can be used to deduce the effect of electrostatic

Figure 10. Overview of all stable Janus monolayers in the MoSSe (H-phase) and BiTeI (T-phase) prototypes, sorted according to the vacuum-
level shift (red). The band gap is shown in green on an absolute scale relative to vacuum, such that the valence band maximum and conduction
band minimum can be found from the white/green boundaries. All energies refer to PBE calculations.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c01286
J. Phys. Chem. C 2020, 124, 9572−9580

9576

8.9 Paper IX 239



shift induced by the Janus monolayer. After insertion of the
H-MoSSe layer, we see the splitting of both the conduction
and valence bands at the K-point, effectively turning the
perfect band alignment into a type-II band alignment. For the
H-MoS2/H-MoSSe/H-MoS2 heterostructure, we find a
splitting of 0.72 eV, which equals that of the T-MoS2/H-
MoSSe/H-MoS2 heterostructure to within about 0.1 eV.
Upon further stacking of Janus monolayers in a multilayer
structure, recent studies48,52 have shown that the effect is to

close the band gap, effectively creating a naturally doped p−n
junction. This also shows that more than one Janus monolayer
can be inserted if a larger shift in the potential is desired.
It is also interesting to see how the interface can be

controlled for a SC at a graphene monolayer because of the
semimetallic nature of graphene, and we therefore now
consider the two graphene/hBN and graphene/H-MoSSe/
hBN systems, where hBN is hexagonal boron nitride. In the
same manner as for T-MoS2/H-MoSSe/H-MoS2, we find for

Table 2. Material Properties of All Semiconducting Stable Material Candidatesa

material phase a (Å) Egap
(PBE) Egap

(HSE) ΔEvac Ecenter
(PBE) ΔHf ΔHfull

HfSSe T 3.71 0.68 1.51 0.01 5.32 −1.47 −0.01
BiSBr T 4.11 0.93 1.60 0.03 6.13 −0.56 −0.00
SbSel T 4.17 1.02 1.53 0.03 5.12 −0.31 −0.00
AsSel T 3.93 1.15 1.68 0.04 5.01 −0.16 −0.00
ZrSSe T 3.74 0.61 1.51 0.05 5.44 −1.48 −0.01
BiSel T 4.27 0.65 1.22 0.08 5.68 −0.44 −0.01
SbSBr T 3.99 1.22 1.84 0.11 5.55 −0.42 0.01
AsSBr T 3.72 1.39 2.04 0.14 5.44 −0.26 0.03
VBrCl T 3.75 1.29 3.77 0.21 3.98 −1.01 0.00
BiSCl T 4.07 1.04 1.74 0.30 6.35 −0.66 −0.03
HfBrI H 3.64 0.71 1.16 0.36 2.90 −0.89 −0.00
BiSeBr T 4.19 0.77 1.36 0.36 5.96 −0.58 −0.02
HfBrCl H 3.43 0.82 1.36 0.36 3.11 −1.34 −0.08
BiTel T 4.42 0.45 0.93 0.37 5.43 −0.37 −0.02
VBrI T 3.99 1.19 3.49 0.37 3.96 −0.66 0.01
ZrBrCl H 3.49 0.91 1.40 0.38 3.37 −1.51 −0.02
SbSI T 4.08 1.22 1.78 0.40 5.20 −0.28 0.04
BiSI T 4.19 0.82 1.47 0.41 5.80 −0.41 0.01
ZrBrI H 3.70 0.77 1.17 0.42 3.15 −1.09 0.02
SbTeI T 4.32 0.84 1.32 0.45 4.93 −0.25 −0.02
SbSCl T 3.94 1.32 1.99 0.46 5.82 −0.51 0.04
VSeTe H 3.47 0.12 0.75 0.48 5.05 −0.50 0.00
TiBrCl H 3.38 0.83 1.30 0.48 3.65 −1.33 −0.05
SbSeBr T 4.08 1.07 1.65 0.48 5.44 −0.44 −0.02
AsSI T 3.84 1.34 1.95 0.53 5.11 −0.11 0.06
TiBrI H 3.63 0.68 1.04 0.53 3.43 −0.88 0.04
AsTeI T 4.09 0.98 1.50 0.55 4.84 −0.12 −0.02
BiSeCl T 4.15 0.88 1.51 0.61 6.12 −0.68 −0.05
AsSeBr T 3.82 1.23 1.84 0.63 5.34 −0.29 −0.02
AsSCl T 3.65 1.54 2.26 0.66 5.71 −0.35 0.05
WSeTe H 3.43 1.04 1.49 0.68 4.17 −0.32 0.04
MoSeTe H 3.43 1.14 1.59 0.72 4.47 −0.48 0.02
WSSe H 3.25 1.40 1.91 0.73 4.50 −0.72 0.00
MoSSe H 3.25 1.45 1.95 0.75 4.85 −0.81 0.00
ZrClI H 3.64 0.88 1.32 0.77 3.27 −1.23 0.07
BiTeBr T 4.34 0.63 1.16 0.78 5.64 −0.50 −0.03
SbSeCl T 4.03 1.17 1.80 0.81 5.66 −0.54 0.00
CrSSe H 3.13 0.78 1.24 0.83 5.16 −0.57 −0.00
SbTeBr T 4.24 1.06 1.62 0.93 5.23 −0.38 −0.03
TiClI H 3.55 0.75 1.19 0.98 3.58 −1.01 0.07
BiTeCl T 4.30 0.64 1.20 0.99 5.69 −0.60 −0.05
AsSeCl T 3.76 1.37 2.06 1.13 5.58 −0.38 0.00
AsTeBr T 3.98 1.24 1.84 1.18 5.16 −0.24 −0.03
SbTeCl T 4.19 1.26 1.87 1.20 5.40 −0.47 −0.00
WSTe H 3.36 1.14 1.68 1.40 4.39 −0.42 0.08
MoSTe H 3.36 0.99 1.59 1.46 4.64 −0.55 0.06
AsTeCl T 3.93 1.48 2.15 1.62 5.39 −0.32 0.01

aThe table contains information about elements, structural phase, in-plane lattice constant [Å], PBE and HSE electronic band gaps [eV], shift in
the electrostatic potential across the Janus monolayer [eV], the PBE band gap center relative to vacuum [eV], the heat of formation [eV/atom],
and the energy above the convex hull [eV].
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graphene/H-MoSSe/hBN that the bands of hBN shift down
by 0.69 relative to the Fermi level after the inclusion of H-
MoSSe. This is larger than the shift observed for T-MoS2/H-
MoSSe/H-MoS2; however, the comparison to this system is
not completely justified because in the latter case the
conduction band gets pinned at the Fermi level. It is more
interesting to observe that the shift is slightly smaller than that
for H-MoS2/H-MoSSe/H-MoS2. This observation can be
explained by the larger cancellation of the internal dipole of
H-MoSSe by graphene as compared to that of H-MoS2. The
larger cancellation of the internal dipole in H-MoSSe on
graphene compared to that in H-MoS2 can be understood
from the simple point that the S and Se atoms in H-MoSSe
are spatially longer separated from the valence states of H-
MoS2 (located on the Mo atoms) compared to the states in
graphene.
To investigate whether the induced band offset for a SC/

Janus/SC vdWH can be predicted from the dipole moment of
the freestanding Janus monolayer, we have calculated the band
structure for ten different SC/Janus/SC vdWHs. For a given
trilayer, the same SC is used on both sides (in analogy to the
H-MoS2/H-MoSSe/H-MoS2 structure studied above). For the
SC, we use either H-MoS2 or H-MoSe2 (depending on what
fits the lattice constant of the Janus monolayer better) and
then investigate the effect of changing the Janus monolayer.
The Janus monolayers have been chosen such that they span a
wide range of dipole moments and their lattice constants are
close to those of MoS2 or MoSe2 to minimize the applied
strain (see the next section for a discussion on the other Janus
monolayers). We also include the structure H-WS2/H-
MoSSe/H-WS2 to study the effect of having the same Janus
monolayer sandwiched between two different pairs of SCs. We
use an in-plane 1 × 1 unit cell for the calculations, and only
apply strains to the Janus monolayer to keep the band
structure of the SC unchanged. We calculate the shift of the
electrostatic potential on either side of the freestanding
strained Janus monolayer and the induced band shift of the
SC in the SC/Janus/SC configuration. These values are
plotted against each other in Figure 8. It is evident that the
induced band shift of the bands between the two SCs in the
SC/J/SC trilayer can be predicted from the out-of-plane
dipole moment of the freestanding Janus monolayer. We note
in passing that there is a linear relationship between the shift
in electrostatic potential and the internal out-of-plane dipole
moment of the Janus monolayer. One more point is worth
noticing from Figure 8. First, we see to within 0.01 eV the
same band shift for the H-MoS2/MoSSe/H-MoS2 and H-
WS2/H-MoSSe/H-WS2, showing that the band shift induced
by a Janus monolayer is only little affected by the choice of
SC. This effect can be ascribed to the fact that the bands get
pinned at the Fermi level, limiting the possible band shift (as
seen above for T-MoS2/H-MoSSe/H-MoS2), and second, for
metallic heterostructures, the free carriers can more effectively
screen the internal dipole of the Janus monolayer. This is also
the reason why the shift in potential is smaller in the SC/
Janus/SC system compared to the potential shift for the
freestanding Janus monolayer for all systems since there will
always be a small finite cancellation of the internal dipole
moment. If the concentration of S and Se atoms on either side
is altered, this will affect the intrinsic out-of-plane dipole
moment. To achieve the interface manipulations discussed in
this chapter experimentally, we stress that the proposed

method is highly dependent on the quality of the transfer of
the Janus monolayer into (or onto) the desired structures.

Janus Monolayer Library. To further expand the
prospects of the ideas put forward in this study, we consider
the set of Janus monolayers from our previous study by Riis-
Jensen et al.53 In this study, an initial set of 216 Janus
monolayers with the chemical formula MXY in the H- and T-
phases commonly known from the transition-metal dichalco-
genides (TMDs) were investigated.
In the following, we adopt the notation used in the

Computational 2D Materials Database (C2DB)54 and in Riis-
Jensen et al. and refer to the H and T crystal structures as the
MoSSe and BiTeI prototypes. All structures and properties
shown in this work are available in the C2DB. The 216
candidate materials were constructed by combinatorial lattice
decoration of the MoSSe and BiTeI prototype structures using
elements with similar chemical properties. Specifically, for
both MoSSe and BiTeI prototypes, all possible combinations
using one of the transition metals from groups V, VI, and VII
(for the central metal atom in the prototypes) in combination
with two elements from either the pnictogens (As, Sb, Bi), or
chalcogens (S, Se, Te), or halogens (Cl, Br, I) were
considered. In addition, the study considered all combinations
using one of the pnictogens as the metal atom, one element
from the chalcogens, and one element from the halogens. This
makes a total of 108 candidate structures for each prototype.
To assess the thermodynamic stability, we calculate the heat
of formation and the energy above the convex hull, with the
latter defined as the most stable elementaries and binaries, see
C2DB44 for more details. For the dynamic stability, we
calculate the Γ-point phonons of the 2 × 2 cell as well as the
elastic tensor. An imaginary phonon frequency or negative
elastic constant implies a dynamically unstable material. In
Figure 9, we show the calculated energy above the convex hull
for all 216 structures. The MoSSe prototype is shown in blue,
and the BiTeI prototype is shown in orange. Taking
uncertainties in the calculated heat of formation into account,
we consider a material to be thermodynamically stable if its
energy above the convex hull is less than 0.1 eV/atom, as
marked by the gray area. Points that have a black circle
indicate materials that are dynamically stable and have a finite
band gap.
We predict 47 materials that are both semiconducting,

thermodynamically stable, and dynamically stable. Out of
these, 27 are in the BiTeI phase with a pnictogen atom as the
central metal atom, and among these is the experimentally
realized BiTeI. For the 47 materials that we find to be
semiconducting and predicted to be stable, we plot the shift in
the electrostatic potential across the material (red), together
with the band edges (white/green boundaries) in Figure 10.
All stable semiconducting materials, their in-plane lattice
constant, electronic band gap, band gap center, the shift in the
potential, heat of formation, and the energy above the convex
hull are summarized in Table 2. The large variation in the
band edge position and dipole strength underlines the
flexibility of the proposed concept.

■ CONCLUSIONS
We have proposed, and critically assessed, a new method for
tuning the band lineup at solid-state interfaces by the insertion
of a Janus monolayer in the interface. Due to its out-of-plane
dipole moment, the Janus monolayer creates a step in the
electrostatic potential, which gives rise to a relative shift of the
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band energies on the two sides of the interface. Our DFT
calculations show that the dipole of the Janus monolayer is
almost unperturbed by the interface. Consequently, the shift
in band alignment is determined by the intrinsic dipole of the
Janus monolayer and therefore can be predicted to high
accuracy. This important finding is a result of the inertness of
the Janus monolayer and stands in contrast to existing
methods that involve the formation of chemical bonds and
complex charge transfer processes whose effects on the band
energies are difficult to predict. Finally, we conducted a
computational screening for new Janus monolayers and
identified 47 (meta)stable candidates with a large range of
out-of-plane dipole moments, providing great flexibility for
tuning of band alignment.
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Engineering covalently bonded 2D layered 
materials by self-intercalation

Xiaoxu Zhao1,2,9, Peng Song2,9, Chengcai Wang3, Anders C. Riis-Jensen4, Wei Fu2, Ya Deng5, 
Dongyang Wan6, Lixing Kang5, Shoucong Ning1, Jiadong Dan1, T. Venkatesan1,6, Zheng Liu5, 
Wu Zhou7, Kristian S. Thygesen4, Xin Luo8 ✉, Stephen J. Pennycook1 ✉ & Kian Ping Loh2 ✉

Two-dimensional (2D) materials1–5 offer a unique platform from which to explore the 
physics of topology and many-body phenomena. New properties can be generated by 
filling the van der Waals gap of 2D materials with intercalants6,7; however, post-growth 
intercalation has usually been limited to alkali metals8–10. Here we show that the 
self-intercalation of native atoms11,12 into bilayer transition metal dichalcogenides 
during growth generates a class of ultrathin, covalently bonded materials, which we 
name ic-2D. The stoichiometry of these materials is defined by periodic occupancy 
patterns of the octahedral vacancy sites in the van der Waals gap, and their properties 
can be tuned by varying the coverage and the spatial arrangement of the filled sites7,13. 
By performing growth under high metal chemical potential14,15 we can access a range 
of tantalum-intercalated TaS(Se)y, including 25% Ta-intercalated Ta9S16, 33.3% 
Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 
(which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic 
order was detected in some of these intercalated phases. We also demonstrate that 
self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. 
Our work establishes self-intercalation as an approach through which to grow a new 
class of 2D materials with stoichiometry- or composition-dependent properties.

Increased research into 2D materials has heralded a new branch of 
condensed-matter physics concerned with the description of electrons 
in atomically thin structures. So far, research efforts have primarily 
focused on 2D monolayers2 and their hetero-stacked structures3, 
in which new properties can be engineered by generating superlat-
tices of different moiré wavelengths. However, these hetero-stacked 
structures are currently produced by bottom-up methods that are 
low yielding and show poor reproducibility16. An alternative method 
of compositional tuning involves the intercalation of foreign atoms 
into the van der Waals (vdW) gap that is sandwiched by the chalcogen 
atoms; this has been shown to induce pseudo-2D characteristics in 
bulk crystals and modify their electronic properties4,6,7. Depending 
on the interlayer stacking registries, the vdW gaps in transition metal 
dichalcogenides (TMDs) contain either octahedral and tetrahedral 
vacancies or trigonal-prismatic vacancies13, which provide docking 
sites for a diverse range of intercalants. Examples of successful inter-
calants include alkali metals8–10 such as Li, Na and K; transition met-
als17–21 such as Cu, Co, Ni, Fe and Nb; noble metals22–24 such as Ag, Au 
and Pt; as well as Sn and various organic molecules25–27. Charge trans-
fer from the intercalants7—or increased spin–orbit coupling due to 
the presence of heavy atoms7,24,28—can enhance superconductivity10, 

thermoelectricity25 or spin polarization7. Intercalation is typically 
achieved using post-growth, diffusion-limited processes, either elec-
trochemical or in the solid state. A well-defined intercalated phase 
with long-range crystalline order is difficult to obtain by such methods 
and usually requires harsh treatment conditions21,22,29. Moreover, an 
intercalation phase diagram that correlates the density and spatial 
distribution of the intercalated atoms with the mesoscopic properties 
of the intercalation compound is currently lacking. Compared with the 
intercalation of foreign atoms into a TMD, the intercalation of native 
atoms—those that are present in the TMD itself—has so far received 
little attention11,29,30. Such self-intercalated TMD compounds may exist 
as local energy minima in the region of the intercalation phase diagram 
in which a metal-rich stoichiometry is promoted by growth conditions 
involving metal atoms at high chemical potential. However, growth 
windows of TMDs using high metal chemical potentials have so far 
remained relatively unexplored31,32.

In this work, the growth of 2D TMDs using both molecular beam 
epitaxy (MBE) and chemical vapour deposition (CVD) methods was 
investigated under high metal chemical potentials. We discovered 
that—independent of the growth method used—a metal-rich chemical 
potential promotes the self-intercalation of a metal (M) into MX, MX2 
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or M2X3 layered 2D compounds (M, metal; X, chalcogen), producing 
covalently bonded MxXy compounds. We term this class of materials 
ic-2D. Taking TaS2 as an example, the intercalated Ta atoms occupy the 
octahedral vacancies in the vdW gap to form distinct topographical pat-
terns, as verified by atomic resolution scanning transmission electron 
microscopy–annular dark field (STEM–ADF) imaging. By varying the 
ratio of intercalating atoms to octahedral vacancies in the vdW gap, we 
grew TaxSy or TaxSey films and quantified the extent of Ta-intercalation 
using σ, the percentage of initial total vacancy sites that are occupied by 
intercalated atoms. Our results indicate that self-intercalation is com-
mon to a broad class of vdW crystals, and it offers a powerful approach 
through which to transform layered 2D materials into ultrathin, cova-
lently bonded ic-2D crystals with ferromagnetic properties.

We first describe the self-intercalation of native atoms—that is, Ta—
into a TaS2 bilayer during MBE deposition on a silicon wafer, as a means 
to demonstrate the formation of an ic-2D film via octahedral vacancy 
filling of a 2D bilayer material. Wafer-scale Ta-intercalated TaS2 bilayer 
films were grown on 2-inch, 285-nm SiO2/Si wafers in a dedicated MBE 
system14. Ultra-pure Ta and S molecular beams were evaporated from 
an e-beam evaporator and a sulfur cracker cell equipped with a valve, 
respectively (Fig. 1a, b). We could routinely grow 2H-phase TaS2 bilayer 
films using a high S chemical potential—that is, a Ta-to-S flux ratio of 
around 1:10 (Fig. 1a, Supplementary Fig. 1)—for 3 h and a substrate 
temperature of 600 °C. When the Ta:S flux ratio was increased to 1:6 
(Fig. 1b, c), the film became non-stoichiometric with respect to TaS2 
owing to the excess of Ta atoms. A fingerprint of the Ta-rich environ-
ment is the presence of Ta adatoms (Fig. 1d) occupying the centre of 
the honeycombs (Fig. 1e) or situated on top of the Ta sites (Fig. 1f) in 
the monolayer TaS2 film, as observed by STEM when the growth was 
interrupted partway through (Supplementary Fig. 2). When Ta and 
S are continually supplied in the appropriate ratio, the Ta adatoms 
become embedded in the TaS2 structure, occupying the octahedral 
vacancies between two S layers (Fig. 1g). The ic-2D crystals therefore 
have a sequential, TaS2-Ta-TaS2-Ta layer-by-layer growth mechanism; 
as such, multilayer or bulk-phase ic-2D crystals can be readily accessed 
simply by increasing the growth time. The thermodynamic stability 
of such intercalated phases was assessed using energy-composition 
phase diagrams generated through density functional theory (DFT) 
calculations (Fig. 1h). It was found that stoichiometric H-phase TaS2 is 
formed only under S-rich conditions (when the chemical potential of 
sulfur, μS, exceeds −5.3 eV), whereas at higher Ta:S flux ratios (low μS), 
various Ta-intercalated TaxSy configurations—ranging from Ta9S16 (25% 
Ta intercalation) to Ta8S12 (66.7% Ta intercalation)—entered a thermo-
dynamically stable state.

Notably, a Ta:S flux ratio of approximately 1:6 produced a a a3 × 3  
superlattice of Ta atoms (Fig. 2a) sandwiched between two TaS2 mon-
olayers. The extent of intercalation (σ) was 33.3%, and the overall stoi-
chiometry of the crystal became Ta7S12, as corroborated by both the 
real-space STEM image (Fig. 2b) and the corresponding fast Fourier 
transform (FFT) pattern (Fig. 2c). Image simulation and sequential 
STEM images capturing the diffusion of intercalated atoms showed 
that the periodically arranged bright spots in the STEM image were 
induced by the intercalation of Ta (Fig. 2d, Supplementary Information 
section  1, Supplementary Videos  1, 2). We also collected STEM 
cross-section images (Fig. 2e, f) to verify the existence of an intercalated 
Ta atomic layer in the vdW gap of ic-2D films grown by CVD.

The homogeneous Ta7S12 phase was grown directly on a 2-inch silicon 
wafer (Supplementary Fig. 3). The Ta7S12 film was formed by the coa-
lescence of nano-domain crystals (around 50 nm) separated by mirror 
twin boundaries or tilted grain boundaries (Supplementary Informa-
tion section 2). The amorphous islands and gaps seen in the STEM 
images were attributed to the poor stability of TaxSy and to sample 
damage incurred during transfer. Energy dispersive X-ray spectroscopy 
(EDS) and electron energy loss spectroscopy (Supplementary Fig. 4) 
verified that the film was composed solely of Ta and S, with no foreign 

elements, and X-ray photoelectron spectroscopy (Supplementary 
Fig. 5) confirmed that the chemical stoichiometry agreed very well 
with Ta7S12. The Raman spectra of the film exhibited two prominent Eg

3 
and A1g

3  peaks at 300 cm−1 and 400 cm−1, respectively, matching those 
of H-phase TaS2 films. The fingerprint of the intercalation was a series 
of minor peaks in the 100 cm−1 to 170 cm−1 range (Supplementary Fig. 6), 
which were absent in pure H-phase TaS2

33 and are attributed to the 
covalent bonds between the intercalated Ta atoms and their octahe-
drally coordinated S atoms (Supplementary Fig. 7).

25% Ta-intercalated TaS2 has a stoichiometry of Ta9S16 and was pro-
duced at a slightly lower Ta chemical potential than Ta7S12, correspond-
ing to a Ta:S ratio of around 1:8. The intercalated Ta atoms occupy the 
octahedral vacancies in every a a2 × 3  unit length, and this phase was 
distinguished by the square symmetry of the intercalated atomic lattice 
(Fig. 2g, k, Supplementary Fig. 8). When the Ta:S flux ratio was further 
increased to 1:5, a Ta10S16 phase (σ = 50%) was successfully grown 
(Fig. 2h). The intercalation concentration—the percentage of total 
vacancy sites that were occupied—was determined to be exactly 50% 
via atom counting (Supplementary Fig. 9). Notably, this phase is char-
acterized by atomic chains that are interconnected over a short range, 
forming an overall glassy phase. Clear diffusive rings were observed 
in the proximity of the first-order FFT spots (Fig. 2l, Supplementary 
Fig. 10), confirming this short-range ordered structure34. When the 
Ta:S flux ratio was further increased, the glassy phase was retained, 
but the short atomic chains became denser before fully evolving into 
a complete atomic plane when σ reached approximately 100% (Sup-
plementary Fig. 11). The use of growth conditions intermediate between 
those that give rise to high-symmetry phases resulted in phase separa-
tions, and atomically sharp domain boundaries separating two 
high-symmetry phases were apparent (Supplementary Information 
section 3).

To verify that ic-2D films could be produced by methods other than 
MBE, we used CVD to grow self-intercalated TaxSey crystals using excess 
Ta precursors. The crystal domains of these films were in the micro-
metre range—considerably larger than the nanosized domains grown 
by MBE (Supplementary Fig. 12). A typical Ta8Se12 crystal (σ = 66.7%) is 
depicted in Fig. 2i. Notably, it possesses a Kagome lattice belonging to 
the P6 wallpaper symmetry group. A well-defined a a3 × 3  periodic 
lattice can be unambiguously identified in the atomic-resolution STEM 
image (Fig. 2m; for the simulated image, see Supplementary Fig. 13). 
At even higher Ta chemical potential we successfully synthesized Ta9Se12 
crystals (σ = 100%), in which the trigonal prismatic vacant sites in 
AA-stacked Ta9Se12 were fully occupied (Fig. 2j)—as seen from the top 
view (Fig. 2n) and side view (Fig. 2e, Supplementary Fig. 14) STEM 
images. By precisely controlling the metal:chalcogen ratio during 
growth, we can prepare a full range of Ta-intercalated TaxSey or TaxSy 
compounds with intercalation levels ranging from σ = 25% to over 100%, 
as verified by EDS (Supplementary Fig. 15, Supplementary Table 1).

In ic-2D films, the intercalated Ta atoms are octahedrally coordi-
nated to the S6 cage, as opposed to the trigonal-prismatic coordination 
that is adopted in pristine TaS2. Charge transfer from the intercalated 
Ta atoms to the TaS2 host layers creates new electron ordering and 
modifies the Ta d-band splitting. Because the amount of charge trans-
fer is dependent on the concentration of the intercalant, the system 
can be tuned. To investigate whether ferromagnetic order is present 
in the intercalated samples, magneto-transport measurements were 
carried out on MBE-grown Ta7S12 (σ = 33.3%) with a predominantly 2Ha 
stacking registry (Fig. 3a, Supplementary Fig. 16) and bilayer thickness 
(Supplementary Fig. 17). Figure 3c shows the temperature-dependent 
resistivity, in which a non-saturating upturn is observed below 30 K 
owing to the disorder-induced metal–insulator transition in the poly-
crystalline sample35. Linear magnetoresistance up to 9 T is observed 
at low temperatures in Ta7S12 (Fig. 3d), owing to density and mobil-
ity fluctuations36. The anomalous Hall effect (AHE) arises from the 
interplay of spin–orbit interactions and ferromagnetic order, and is 
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a potentially useful probe of spin polarization. We observed AHE in 
Ta7S12 in addition to the linear ordinary Hall effect (OHE). Figure 3e 
shows a nonlinear Hall effect in the proximity of zero magnetic field 
and a linear OHE at high field. Although both multiband conduction 
and the AHE contribute to the nonlinear Hall effect, the observed 
linear OHE suggests single-carrier (hole) conduction in Ta7S12 and 
thus excludes multiband transport as the origin of the nonlinear Hall 
effect37,38. The nonlinear Hall effect is therefore ascribed to AHE, which 
arises from ferromagnetism in conductors39. After subtracting the 
linear OHE, anomalous Hall resistance of up to 0.75 Ω is observed at  
1.5 K; this decreases with increasing temperature and disappears at 10 K, 
which is in line with Monte Carlo simulations based on the Ising model  
(Supplementary Fig. 18).

The effects of self-intercalation on the electrical properties of TMDs 
were further assessed in Ta8Se12 (σ = 66.7%), which forms a Kagome 
lattice. It was found that the intercalation of Ta atoms and the forma-
tion of Kagome lattices stabilize the charge-density wave states. The 
temperature-dependent Hall signal reveals an AHE below 15 K and 
confirms ferromagnetic order in Ta8Se12 (Supplementary Fig. 19, 20).

We performed DFT calculations in order to understand the origin of 
the magnetization in self-intercalated Ta7S12. Perfect bilayer 2Ha-stacked 
TaS2 (Supplementary Fig. 21) possesses a non-magnetic ground state, 
in which ferromagnetism can be induced by the double exchange mech-
anism40, triggered by the charge transfer from intercalated Ta to pristine 
TaS2 (Fig. 3f). When the intercalated Ta adopts a a a3 × 3  superstruc-
ture, six S atoms bond with one intercalated Ta atom to form an octahe-
dral unit in the vdW gap. By contrast, each S atom is shared by three Ta 
atoms in the pristine TaS2 layer. This difference in local bonding arrange-
ment induces charge transfer from the octahedral-coordinated inter-
calated Ta atom to the prismatic-coordinated Ta atom in the TaS2 layer 
(Fig. 3f). In pristine H-phase TaS2, the Ta d orbitals and the S p orbitals 
are well separated in terms of energy, with the states at the Fermi level 
having mainly Ta d z 2 and Ta d x 2 characteristics (Supplementary Fig. 21). 
In Ta7S12 (σ = 33.3%), the intercalated Ta atoms introduce additional 
spin-split bands across the Fermi level, and a magnetic ground state 
develops (Fig. 3g, h). The magnetic moments are localized on the d orbit-
als of the intercalated Ta atom, as evidenced by the calculated interca-
lated Ta orbital-resolved spin-up and spin-down band structures in Fig. 3g 
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and Fig. 3h, respectively. The states at the Fermi level comprise the 
prismatic-centred Ta d z 2 orbitals hybridized with the spin-up band of 
the d x y−2 2 orbital of the intercalated Ta. However, only the intercalated 
Ta atoms exhibit a net spin density, as illustrated in Fig. 3i, in which the 
top view spin density isosurface matches the shape of the d x y−2 2 orbital. 
In addition, the non-magnetic 3a × 3a charge-density wave state of Ta7S12 
can be ruled out owing to its relative instability compared with the fer-
romagnetic state41.

The existence of a magnetic moment correlates with a large degree of 
charge transfer between the intercalated Ta and the TaS2 layers. Strong 
charge transfer occurs when the proportion of intercalated Ta atoms 
is low, whereas charge transfer becomes relatively weak in a heavily 
intercalated (Fig. 3j) compound, in accordance with the calculated 

charge difference and the variation of Bader charge on the Ta atoms 
(Supplementary Fig. 22, Supplementary Table 2).

To investigate whether the self-intercalation phenomenon occurred 
for other TMDs, we performed a high-throughput DFT study of 48 dif-
ferent intercalated TMD bilayers, using a semi-automated workflow for 
maximal consistency and veracity42. Specifically, we considered TMDs 
of the transition metals Mo, W, Nb, Ta, Ti, Zr, Hf, V, Cr, Mn, Fe, Co, Ni, 
Pd and Pt, as well as Sn, and the chalcogens S, Se and Te (Fig. 4a) at σ 
values of 33.3% or 66.7%. Out of this set of TMDs, we observed that 14 
bilayer configurations—Ti8S12, Ti8Se12, Ti8Te12, Co7S12, Co7Se12, Co7Te12, 
Nb7S12, Nb7Se12, Nb7Te12, Mo7S12, Mo7Se12, Ta7S12, Ta7Se12 and Ta7Te12 
(highlighted by specific σ values and chalcogens in Fig. 4a and Sup-
plementary Table 3 for magnetic moment)—develop ferromagnetic 
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order upon self-intercalation, whereas their parental MX2 bilayers are 
nonferromagnetic. Notably, group V and group VI TMDs exhibit strong 
ferromagnetism after self-intercalation (Fig. 4b). MX2 bilayers that are 
intrinsically ferromagnetic—that is, VX2, CrX2, MnX2 and FeX2—retain 
ferromagnetism upon self-intercalation (highlighted by orange trian-
gles in Fig. 4a). Among the 14 self-intercalated 2D ferromagnets that 
we generated, the formation energies of 12 of these—the two excep-
tions being MoS2 and MoSe2—were lower than or similar to those of the 
non-intercalated materials (Supplementary Figs. 23, 24), indicating 
that self-intercalation is energetically feasible.

To validate our theoretical predictions, we attempted to grow a 
wide variety of ic-2D materials (Fig. 4a). In this figure, blue triangles 

indicate that the self-intercalation can be experimentally realized11,12, 
whereas grey triangles indicate that intercalation was not successful 
under our experimental conditions. We succeeded in growing several 
ic-2D crystals—namely V11S16 (Fig. 4c, Supplementary Fig. 25), In11Se16 
(Fig. 4d, Supplementary Fig. 26) and FexTey (Fig. 4e, Supplementary 
Fig. 27)—by either CVD or MBE. The topological features and corre-
sponding FFT patterns of these crystals are depicted in Fig. 4f–h. The 
intercalated V11S16 has a 2a × 2a superstructure, and the intercalation 
concentration was estimated at 75% (Fig. 4f). In11Se16 also showed a 
2a × 2a superstructure; however, in this case, the intercalated In atoms 
reveal a signature honeycomb structure (Fig. 4g). The crystal structure 
of self-intercalated FexTey was complicated—additional Fe atoms were 
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found to be intercalated into the atomic network of the pristine FeTe 
matrix as interstitials, because telluride-based TMDs offer the largest 
spacing between the host atoms43. Upon intercalation, the FexTey phase 
reveals new symmetries, as confirmed by the emergence of superspots 
in the FFT pattern (Fig. 4h). A similar complex intercalation network 
was also observed in VxTey (Supplementary Fig. 28).

We have developed a robust method to engineer the composi-
tion of a broad class of TMDs, by means of self-intercalation with 
native metal atoms during growth. Because the main principle is the 
application of high chemical potential of metal atoms to provide 
the driving force for intercalation during growth, this technique 
should be compatible with most growth methods. The metal inter-
calants occupy octahedral vacant sites in the vdW gap, and distinct 

stoichiometric phases are produced depending on the levels of 
intercalation. High-throughput DFT simulations—supported by 
growth experiments—show that the self-intercalation method is 
applicable to a large class of 2D layered materials, thus enabling 
a library of materials with potentially new properties to be cre-
ated from existing layered materials. Owing to the versatility with 
which the composition can be controlled, it is possible to tune—in 
one class of materials—properties such as ferromagnetism and the 
formation of spin-frustrated Kagome lattices. The implication of 
this work is that bilayer (or thicker) TMDs can be transformed into 
ultrathin, covalently bonded 3D materials, with stoichiometry that 
can be tuned over a broad range by varying the concentration of 
the intercalants.
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Methods

Growth of self-intercalated TMD films by MBE
Ta-intercalated TaxSy films were grown in a dedicated MBE chamber 
(base pressure <6 × 10−10 torr). Before growth, the 2-inch SiO2 substrates 
were degassed in the same chamber at 500 °C for 2 h. Ultrapure Ta 
(99.995%, Goodfellow) and S powders (99.5% Alfa Aesar) were evapo-
rated from a mini electron-beam evaporator and a standard sulfur 
valved cracker, respectively. The flux density of Ta was precisely con-
trolled by adjusting the flux current. The temperature of the S cracker 
cell was maintained at 110 °C, and the flux density was controlled by the 
shutter of the cracker valve. The substrate temperature was maintained 
at 600–650 °C and the growth time was about 3 h for all thin films. 
Controlled growth of 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated 
Ta7S12 and 50% Ta-intercalated Ta10S16 films was achieved when the Ta/S 
ratio was set at around 1:8, around 1:6 and around 1:5, respectively. A 
slightly higher growth temperature facilitates the self-intercalation 
process. After growth, both Ta and S sources were turned off and the 
sample was further annealed for another 30 min before cooling to room 
temperature. In-intercalated InxSey samples were grown in a custom-
ized MBE chamber (base pressure <6 × 10−10 torr). Before growth, the 
1 cm × 1 cm SiO2 substrate was degassed in the chamber at 600 °C for 
1 h. Ultrapure In2Se3 powder (99.99%) and Se pellets (99.999%) were 
evaporated from a mini electron-beam evaporator and an effusion cell, 
respectively. The temperature of the Se effusion cell was set at 150 °C 
with a hot-lip at 220 °C. The substrate temperature was maintained at 
400 °C and the growth time was about 2 h. Controlled growth of In11Se16 
films was achieved when the In2Se3/Se ratio was set at around 1:3.

Growth of self-intercalated TMD films by CVD
Ta-intercalated TaxSey crystals were grown by CVD. Before growth, the SiO2 
substrate was sequentially cleaned using water and acetone, followed by 
5 min of O2 plasma. The furnace was purged by 300 standard cubic centi-
metres (sccm) of Ar gas for 5 min. Se powders and mixed Ta/TaCl5 powders 
were applied as precursors that were located upstream in a one-inch quartz 
tube. 40 sccm Ar and 10 sccm H2 was used as a carrier gas. The samples 
were grown at 800 °C for 30 min. After growth, the sample was cooled 
down quickly in a continuous stream of Ar. Controlled growth of 66.7% 
Ta-intercalated Ta8Se12 and 100% Ta-intercalated Ta9Se12 was achieved 
when the content of Se powders and mixed Ta/TaCl5 powders were 1 g/15 
mg/1.5 mg and 1 g/30 mg/3 mg, respectively. V-intercalated VxSy crystals 
were grown by CVD. Before growth, the SiO2 substrates were treated by 
the same method as indicated for the growth of TaxSey. Two quartz boats 
containing 0.5 g S and 0.3 g VCl3 were loaded upstream of the one-inch 
quartz tube to dispense the precursors. The carrier gas was 40 sccm Ar 
together with 10 sccm H2. The sample was grown at 680 °C for 30 min. 
After growth, the sample was cooled quickly under the protection of 100 
sccm Ar. Fe-intercalated FexTey crystals were grown by CVD. Before growth, 
the SiO2 substrates were treated by the same method as indicated for the 
growth of TaxSey. Two quartz boats containing Te (>99.997%) and FeCl2 
(>99.9%) were placed upstream of the one-inch quartz tube to dispense 
the precursors. The sample was grown at 600 °C for 30 min. After growth, 
the sample was cooled quickly under the protection of 100 sccm Ar.

Sample characterization
X-ray photoelectron spectroscopy was performed using a SPECS XR 50 
X-ray Al Kα (1,486.6 eV) source with a pass energy of 30 eV. The cham-
ber base pressure was lower than 8 × 10−10 mbar. Raman spectra were 
collected at room temperature using the confocal WiTec Alpha 300R 
Raman Microscope (laser excitation, 532 nm).

STEM sample preparation, image characterization and image 
simulation
The as-grown TMD films were transferred via a poly (methyl meth-
acrylate) (PMMA) method under the protection of graphene. A 

continuous graphene film was coated on fresh Ta7S12 film to protect 
the surface oxidation via a conventional PMMA method. Subsequently, 
graphene/Ta7S12 composites were immersed in 1 M KOH solution to 
detach the PMMA/Ta7S12 composite from the SiO2 substrate, followed 
by rinsing in deionized water. The PMMA/graphene/Ta7S12 film was 
then placed onto a Cu quantifoil TEM grid that was precoated with con-
tinuous graphene film44. The TEM grid was then immersed in acetone 
to remove the PMMA films. Atomic-resolution STEM-ADF imaging 
was performed on an aberration-corrected JEOL ARM200F, equipped 
with a cold field-emission gun and an ASCOR corrector operating at 
60 kV. The convergence semiangle of the probe was around 30 mrad. 
Image simulations were performed with the QSTEM package assuming 
an aberration-free probe with a probe size of approximately 1 Å. The 
convergence semiangle of the probe was set at around 30 mrad, and 
the accelerating voltage was 60 kV in line with the experiments. The 
collection angle for high-angle annular dark-field imaging was between 
81 and 280 mrad and for medium angle annular dark-field imaging was 
from 30 to 110 mrad. The phonon configurations were set at 30 with 
defocus value of 0. The STEM–EDS were collected and processed in an 
Oxford Aztec EDS system.

Device fabrication and measurements
MBE-grown Ta7S12 and CVD-grown Ta8Se12 were selected to fabricate 
Hall-bar devices using e-beam lithography and e-beam evapora-
tion of Ti/Au (2/60 nm). The MBE-grown Ta7S12 film was then etched 
into Hall-bar geometry using deep reactive-ion etching. The final 
devices were encapsulated with hexagonal boron nitride flakes using 
a dry-transfer method in the glovebox (both O2 and H2O less than 1 
ppm), to avoid the degradation of Ta7S12 and Ta8Se12 under ambient 
conditions. Low-temperature transport measurements were carried 
out in an Oxford Teslatron system. All resistances were derived from 
four-terminal measurements using an SR830 lock-in amplifier, with a 
constant excitation current of 1 μA.

DFT calculations
First-principles calculations based on DFT were implemented in the 
plane wave code VASP45 using the projector-augmented wave poten-
tial approach. For the exchange and correlation functional, both the 
local density approximation and the Perdew–Burke-Ernzerhof (PBE)46 
flavour of the generalized gradient approximation were used, and no 
discernible difference were found in the results. A kinetic energy cut 
off of 500 eV was used for the TaS2. A Monkhorst Pack47 k-grid sampling 
with a k-point density of 6.0 Å−1 was used for geometry optimization. For 
thin-film calculations, a vacuum thickness of 20 Å was added in the slab 
to minimize the interaction between adjacent image cells. Geometry 
optimization was performed with the maximum force convergence 
criterion of 0.005 eV Å−1. To treat the strong on-site Coulomb interac-
tion of localized Ta d orbitals, we used Dudarev’s approach48 with an 
effective U parameter of Ueff = 3.0 eV. The zone centre phonon modes 
were calculated using density functional perturbation theory with the 
local density approximation functionals.

High-throughput DFT calculations
These were carried out with the electronic structure code GPAW49 
following a semi-automated workflow for maximal consistency and 
accuracy42. The relaxations of the self-intercalated bilayers were done 
on a Monkhorst-Pack47 grid with a k-point density of 6.0 Å−1 using the 
PBE46 and BEEF-vdW functionals50 for describing exchange-correlation 
effects. A vacuum of 15 Å was used in the out-of-plane direction to avoid 
non-physical periodic interactions. The plane-wave expansion was cut 
off at 800 eV. All systems were relaxed until the maximum force on any 
atom was 0.01 eV Å−1 and the maximum stress on the unit cell was 0.002 
eV Å−3. All systems were calculated in the intercalated structure with 
both a spin-paired calculation and a spin-polarized calculation. If the 
total energy of the spin-polarized structure was found to be more than 
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0.01 eV per atom lower than the spin-paired structure, the structure 
was concluded to be magnetically more stable than its non-magnetic 
counterpart. The atomic structures of calculated self-intercalated TMDs 
(33.3% and 66.7% intercalation concentration) are presented in Supple-
mentary Fig. 29, in which the polymorphism of single-layer MoX2, WX2, 
NbX2 and TaX2 (X = S, Se and Te) reveals an H-phase, whereas the rest of 
the TMDs are T-phase, adopting an AA stacking polytype. MoX2 and WX2 
adopt the AA′ stacking order whereas NbX2 and TaX2 adopt AB′ stack-
ing. All intercalants occupy the octahedral vacancies in the vdW gap.

Data availability
The main data supporting the findings of this study are available within 
the paper and its Supplementary Information. Additional data are 
available from the corresponding authors upon reasonable request.

Code availability
The Python code is available in the Supplementary Information.
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APPENDIXA
Abbreviations

ND N Dimensional

BSE Bethe-Salpeter Equation

C2DB Computational 2D Materials Database

DFT Density Functional Theory

CVD Chemical Vapor Deposition

CBM Conduction Band Minimum

FD Finite Difference

GGA Generalized Gradient Approximation

GPAW Grid-based Projector-Augmented Wave method

HOMO Highest Occupied Molecular Orbital

IQE Internal Quantum Efficiency

LCAO Linear Combination of Atomic Orbitals

LCAOS Linear Combination of Atomic Orbitals Scissors-operator

LDA Local Density Approximation

MBE Molecular Beam Epitaxy

MW Mott-Wannier

NC Norm Conserving

PCE Power Conversion Efficiency

PBE Perdew-Burke-Ernzerhof

PW Plane-Wave

QEH Quantum Electrostatic Heterostructure

RPA Random Phase Approximation



256 A Abbreviations

SBH Schottky Barrier Height

TMD Transition Metal Dichalcogenide

VBM Valence Band Maximum

vdWH van der Waals Heterostructure



APPENDIX B
Calculation of the

Electronic Density in GPAW
We will start our discussion by taking the our starting point around eq. 2.19 where we
defined the expectation value of the atomic energy levels in term of the smooth wave
functions and the transformed Hamiltonian. When calculating the expectation value of
the electronic density, we do this from the single-particle wave function:

n =
∑

n

fn|ψn|2. (B.1)

Note that as in the main text we omit the notation of the real-space coordinate r. In
basis of the real space projectors |s⟩ this can be written as:

n =
∑

n

fn⟨ψn||s⟩⟨s||ψn⟩. (B.2)

As mentioned in the main text, to ease the computational difficulties the frozen core
approximation is typically applied. This means that the expectation value must be split
into a term calculating the (system independent) expectation value for the frozen core
orbitals and the free valence wave functions:

n =
core∑

n

⟨ψc
n||s⟩⟨s||ψc

n⟩ +
val∑
n

fn⟨ψn||s⟩⟨s||ψn⟩ (B.3)

where we have specifically denoted the core orbitals as ψc
n and the summations now run

over core and valence states separately. The first term is part of the atomic basis setup.
The last term is numerically easier to evaluate with the smooth wave functions and we
therefore apply the transformation to the expectation value as we did in eq. 2.19:

n =
core∑

n

⟨ψc
n||s⟩⟨s||ψc

n⟩ +
val∑
n

fn⟨ψ̃n|T̂ †|s⟩⟨s|T̂ |ψ̃n⟩. (B.4)

We now split the transformation operator T̂ as in the main text: T̂ = (1 + T̂ a), however
before we insert this in expression above we realise that, since the smooth wave function
can be expanded as a linear combinations of partial waves with coefficients p̃a

i , ϕ̃a
i and

p̃a
i must constitute a complete set, so can the transformation operator confined to the

augmentation sphere:
T̂ a =

∑
i

T̂ a|ϕ̃a
i ⟩⟨p̃a

i |. (B.5)
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Now, since |s⟩ simply maps any state ⟨ψ||s⟩ → ψ by inserting this and the above
form of the transformation operator we immediately find that we get two terms, as we
would expect. These are simply the core- and (smooth) valence densities respectively:∑core

n |ψc
n|2+∑val

n fn|ψ̃n|2 plus a correction term that in fact includes the projector function
overlaps: P a

i,n = ⟨p̃a
i ||ψ̃n⟩. By carefully caring out the analysis of the remaining terms

one finds that the final expression for the expectation value of the electronic density take
the following form:

n =
core∑

n

|ψc
n|2 +

val∑
n

fn|ψ̃n|2 +
∑

a,i1,i2
fn⟨ψ̃n||p̃a

i1⟩⟨p̃a
i2||ψ̃n⟩

(
ϕa

i1ϕ
a
i2 − ϕ̃a

i1ϕ̃
a
i2

)
, (B.6)

where we have used the expansion of the smooth wave functions into partial waves in eq.
2.21 and we notice that Da

i1,i2 = fn⟨ψ̃n||p̃a
i1⟩⟨p̃a

i2||ψ̃n⟩. This gives the form of the electronic
density within the PW mode in GPAW from the smooth wave functions.



APPENDIXC
Derivation of a

State-Dependent
Scissors-Operator within the

Plane-Wave Description
In the following is presented the generalized state-dependent (k-point, band) within
the PW formalism of GPAW, for example, but not limited to, improve the description
of interlayer orbital hybridisation of van der Waals heterostructures. This is done by
finding an analytical expression for the correction to the DFT Hamiltonian to obtain
the desired eigenvalue correction for each state, which here is taken to be the difference
between the GGA and G0W0 eigenvalues for each freestanding monolayer. To do this
we consider the evaluation of the eigenvalues from the GPAW Hamiltonian, eq. 2.26:

ϵnk = ⟨ψ̃nk|Ĥ|ψ̃nk⟩, (C.1)

with ψ̃nk being the pseudo wave function with band index (n) and k-point index (k).
It follows that, adding a correction Ma

i1i2 to eq. 2.27, will give a correction to the
eigenvalues corresponding to:

∆ϵnk =
a∑

i1,i2

⟨ψ̃nk|P̃ a
i1⟩Ma

i1i2⟨P̃ a
i2|ψ̃nk⟩, (C.2)

or defining the expansion coefficients: P a
nkj = ⟨ψ̃nk|P̃j

a⟩ we get:

∆ϵnk =
a∑

i1,i2

P a
nki1M

a
i1i2

(
P a

nki2

)∗
. (C.3)

We now seek a generalized form of Ma
i1i2 . For each of the 2D layers in the van der

Waals heterostructure we want to apply a correction to each state (band and k-point),
corresponding to the difference betweeh the PBE eigenvalue and the G0W0 quasi-particle
energy for the freestanding monolayer. For each layer we will denote this by: ∆Ed

nk =
EGW

nk − EGGA
nk , where d is the layer index, and the corrections for each state in the

van der Waals heterostructure is then the collection of the corrections to all layers:
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Enk = ∑
d R

d
nkE

d
nk, where Rd

nk is the mapping between the states in each monolayer and
the states in the van der Waals heterostructure. To findMa

i1i2 we start out by minimising
the (squared) error (to be denotoed Ω) between the actual corrections contributed by
Ma

i1i2 in the Hamiltonian, eq. C.3, and the desired corrections, ∆Enk:

Ω =
∑
nk

a∑
i1,i2

[
P a

nki1M
a
i1i2

(
P a

nki2

)∗
− ∆Enk

]2
. (C.4)

Differentiating Ω with respect to Ma
i1i2 and equalling zero, simplifying, and rearranging

this can be put on the form:

∑
nk

(
P a

nki′
1

)∗
P a

nki′
2
∆Enk + c.c. =

∑
nk

a∑
i1,i2

Ma
i1i2P

a
nki1

(
P a

nki2

)∗ (
P a′

nki′
1

)∗
P a′

nki′
2

+ c.c., (C.5)

where c.c. denotes the complex conjugate. This equation only involves the difference in
PBE eigenvalues and G0W0 quasi-particle energies for each monolayer and the expan-
sion coefficients from which Ma

i1i2 can be determined, by inverting the equation for each
set (i1, i2, a) to determine Ma

i1i2 .



APPENDIXD
Effect of the Tamm-Dancoff
Approximation on the BSE
Absorption Spectra of 2D

TMD Monolayers
In fig. D.1 is shown the BSE absorption spectrum for freestanding monolayer MoS2
within the Tamm-Dancoff approximation (black) and without invoking the Tamm-Dancoff
approximation (grey). The calculations is carried out without including spin-orbit effects
and only excitations from the two highest valence bands to the two lowest conduction
bands are considered. The absorption spectrum is calculated with respect to the G0W0
quasi-particle band gap. In agreement with previous observations [108], we find a negligi-
ble difference for the absorbance with/without the Tamm-Dancoff approximations with
an overall slightly higher oscillator strength within the Tamm-Dancoff approximation.
Overall, the result in fig. D.1 shows the small effect of the off-diagonal coupling terms in
the full BSE Hamiltonian between the positive energy and negative energy excitations,
and thus validates the use of this approximation, at least for 2D TMD monolayers. To
underline the computational advantage of emplyoing the Tamm-Dancoff approximation,
we list some computation details. We stress that both the full BSE calculation and
the BSE calculation within the Tamm-Dancoff approximation has been run on the same
number of cores for the k-point and pair-orbital decomposition. For the full BSE calcula-
tion the BSE Hamiltonian consists of 59904 pair orbitals and took 27 hours to complete.
Within the Tamm-Dancoff approximation the number of pair orbitals is reduced to 14976
and the computational time is reduced by over a factor of 10: to about 2½ hours. Note
the reduction of the number of pair orbitals exactly equals a factor of 4 as expected since
we only consider the {vc} entry of the wo-particle BSE Hamiltonian within the Tamm-
Dancoff approximation. These computational details excellently shows the reduced size
of the BSE Hamiltonian within the Tamm-Dancoff approximation (as explained in the
main text in chapter 3), and the non-linear relation between the computational time
required to diagonalise a matrix and the size of the matrix.
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Monolayers

Figure D.1: Absorption spectrum of monolayer MoS2 calculated within the BSE ap-
proximation. The BSE eigenvalues are evaluated for the excitations from
the two highest valence bands to the two lowest conduction bands without
the effect of spin-orbit coupling. This is done within the Tamm-Dancoff
approximation (black) and without invoking the Tamm-Dancoff approx-
imation (grey). The spectrum is calculated with respect to the G0W0
quasi-particle band gap.



APPENDIX E
Quasi-Particle Ionisation
Potentials and Electron

Affinities from GLLB-SC and
PBE

In this appendix we briefly explore the idea that accurate G0W0 quasi-particle ionisa-
tion potentials and electron affinity energies can be computationally feasible obtained by
combing the PBE band gap center with the GLLBSC electronic band gap size. As shown
in chapter 5, while the PBE functional significantly underestimates the electronic band
gap, compared to the quasi-particle band gap calculated with the G0W0 approximation,
it accurately predicts the center of the electronic band gap with respect to the vacuum
energy. On the other hand the GLLBSC (which includes the derivative discontinuity in
its estimate of the electronic band gap), provides a on average good description of the
size of the electronic band gap, but fails to predict the exact position of the ionisation
potential and electron affinity level accurately. Thus the knowledge of the PBE band
gap center and the GLLBSC band gap size could potentially give a good description of
the G0W0 quasi-particle band edges. In fig. E.1 (left) we plot the difference between
the G0W0 ionisation potential and the PBE VBM in blue and similarly the difference
between the G0W0 electron affinity and the PBE CBM. This is done for all materials in
the C2DB where a G0W0 calculation have been performed. On the right plot of fig. E.1
we plot the same difference, where the PBE band edges have been symmetrically shifted
according the difference between the PBE and the GLLBSC electronic band gaps. Com-
paring the PBE band edge energies with G0W0 quasi-particle electron inonisation and
electron affinity energy, we find that this overestimates (underestimates) the ionisation
energy (electron affinity) by on average around 1 eV (0.7 eV) with a significant standard
deviation of the ionisation potential up to more than 1 eV. Including the shift of the
PBE band edges defined by the GLLBSC electronic band gapis found to significantly im-
prove the description of the ionisation potential and electron affinity energies. Including
this shift the ionisation potential (electron affinity) is centered around -0.3 eV (-0.1 eV)
with standard deviations less than 0.6 eV. While this method is not suitable to provide
accurate predictions of single systems, it can with advantage be used in larger screening
studies where accurate many-body calculations cannot be afforded to be carried out.
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Figure E.1: Left: Difference between the G0W0 ionisation potential and the PBE
VBM in blue (∆Φiz) and similarly the difference between the G0W0 elec-
tron affinity and the PBE CBM in red (∆Φaf). Right: same as left, where
the PBE band edges have been symmetrically shifted according the differ-
ence between the PBE and the GLLBSC elecronic band gaps.
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