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Abstract

To meet the future energy demands of the World, fusion energy has been
proposed as a possible energy solution as it provides clean, sustainable and
reliable means of energy production. However, a working fusion power plant
has yet to be realised. Currently, the most promising reactor design is a
magnetic confinement device to called a Tokamak. One of the problems this
concept is facing is turbulent transport of particles and energy from the region
of closed magnetic field lines to that of open magnetic field lines and onto
plasma-facing materials of the reactor. Future reactors inherently contain
multiple ion species due to fusing of deuterium and tritium. Consequently,
understanding the influence of the multiple ion species on turbulent transport
is of utmost importance.
In this work, a drift fluid model is derived that consistently incorporates
multiple ion species and collisional interactions between species. The model
is derived from the Boltzmann equation and uses the Zhdanov closure to
obtain a closed set of equations from which the drift fluid expansion can be
performed.
The model equations are solved numerically using the discontinuous Galerkin
method and the numerical implementation of the equations is discussed in
detail.
With the numerical implementation of the equations, two topics are stud-
ied, seeded plasma blobs and turbulent transport. For the seeded blobs,
the influence of different ion mixes on the propagation of the blobs is exam-
ined through scaling of the blob velocity. The mixes that are studied are
deuterium-tritium mixtures as well as deuterium and doubly ionized helium
mixes. Finally, fully developed turbulence is investigated. In particular, the
impact of multiple ion species on the particle and energy fluxes across the
last closed flux surface is examined. For the blobs, it was found that when
the mixture is of deuterium and tritium, the velocity of the radial motion
decreases as the amount of tritium increases. From the deuterium helium
simulations, it is found that the higher mass of the helium is counteracted
by being doubly charged and results in similar blob velocities for deuterium
and helium dominated blobs respectively. For the turbulent transport the
results indicated that the increased presence of tritium yielded higher flux of
particles and energy from the edge to the scrape-off-layer.

Keywords: Isotopes, Multiple ion species, Drift-fluid equations, Plasma
blobs, Plasma turbulence, Numerical modelling
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Resumé

For at imødekomme fremtidens energiforbrug er fusionsenergi blevet foresl̊aet
som en mulig løsning, der kan levere ren, vedvarende og p̊alidelig energi.
Desværre er et fungerende fusionskraftværk endnu ikke realiseret. Det, for
øjeblikket, mest lovende reaktor design er et magnetisk indeslutningapparet
kaldet en Tokamak. Et af problemerne konceptet st̊ar over for, er transporten
af partikler og energi fra regionen med lukkede magnetfeltsliner til regionen
med åbne magnetfeltslineir og videre ud p̊a reaktorens vægge. Fremtidige
kraftværker vil i sagens natur indeholde flere forskellige ion isotoper, da fu-
sionen sker mellem deuterium og tritium. Som følge heraf, er det yderst vigtig
at forst̊a indflydelsen af flere ion isotoper p̊a den turbulente transport.
I denne afhandling udledes en drift-fluid model, der konsistent inkorporerer
flere ion isotoper og deres indbyrdes kollisionelle interactioner. Model er ud-
ledt fra Botlzmannligningen og bruger Zhdanov lukning til at opn̊a et lukket
sæt af ligninger, hvorfra drift-fluid udvidelsen kan udføres.
Modelligningerne løses numerisk ved brug den ikke-kontinuerte Galerkin me-
tode, og implementeringen af ligningerne diskuteres i detaljer.
Med den numeriske implementering af ligningerne, undersøges to emner; plas-
ma blobs og turbulent transport. For plasma blobs undersøges effekten af
forskellige ion blandinger p̊a udbredelsen gennem en skalering af blobhastig-
heden. Blandingerne der undersøges er deuterium tritium samt deuterium og
dobbelt ioniseret helium blandinger. Til sidst undersøges fuldt udviklet tur-
bulent transport. Her undersøges ion blandingens inflydelse p̊a partikel- og
energifluxen over sidste lukkede feltlinie. For blobene findes det, at for deute-
rium tritium blandinger falder den radiale hastighed, n̊ar mængden af tritium
øges i forhold til deuterium. For deuterium helium simuleringerne findes det,
at effekten af den større masse af helium bliver modvirket af dobbeltionise-
ringen. Dette resulterer i lignende hastigheder for hhv. deuterium og tritium
dominerede blobs. For den turbulente transport indikerer resultaterne, at en
øget tilstedeværelse af tritium fører til højere partikel- og energifluxer fra de
lukkede til de åben feltlinier.
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Chapter 1

Introdution and Motivation

No field of study exists without some form of motivation. This can be either
of pure interest for the sake of knowledge or from a more practical point of
view in order to achieve some goal. Naturally neither are mutually exclusive
and often one leads to the other. Plasma physics has for a long time been the
subject of study, in regards to understanding the heavens above us. However,
with the dawn of the nuclear age, the use of plasma physics for energy-related
topics, both destructive and peaceful, has become relevant.

1.1 A practical application - Fusion Energy
Harnessing energy from all kinds of sources is arguably the foundation of
mankind. From the first bonfire, millions of years ago [1] to prepare food
and stay warm, over harnessing natures kinematics for labour such as wind-
and watermills to mill flour and saw wood to today’s production of electricity
in modern adaptions of the aforementioned such as power plants. Much of
the power produced today is done with the burning of fossil fuels either for
electricity production, the transport sector or heating. A byproduct of the
consumption of fossil fuels is the release CO2 into the atmosphere. This gas
is quite good a trapping long wavelength radiation emanating from the earth,
but not as good at keeping out short wavelength radiation coming from the
Sun. The continued release of C02 upsets earths energy balance and will
eventually lead to a global warming of the planet until a new balance is
found. While CO2 free renewable energy sources are gaining traction, they
still suffer from not being an on-demand power source. A backup system is
needed in the cases when the wind is not blowing and the sun not shining.
One such future backup or main energy source could be fusion energy.
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1.2. PLASMA PHYSICS AND THE TOKAMAK

1.1.1 Fusion Energy
In the early 20’th century it was discovered that when combining light par-
ticles into the mass of the resulting particles was less than the sum of the
individual masses before the combination, or fusion, of the particles. From
Einstein’s theory of relativity, it was inferred that the small loss of mass could
result in large amounts of energy being released. The fusion of light protons
into helium is what powers the sun. However, this fusion process has a very
small reaction cross-section [2] and so is not viable for energy production on
Earth. The most achievable reaction is the deuterium-tritium (DT) reaction
which occurs as:

D+T → 4He(3.5MeV ) +n(14.1MeV ) (1.1)

This means that for each reaction there is a total of 17.6MeV released. The
energy of the alpha particles goes in to heating the DT mix to fusion temper-
atures (and later to the divortors) while neutron energy is radiated onto the
vessel walls. If it assume that, e.g., 80% of the energy is captured and used
for power production, then the reaction of 0.4g of deuterium and 0.6g tritium
(a total of 1g of fuel) produces around the same amount of energy as burning
4-6 tonnes of crude oil or roughly 6-8 tonnes of coal. With such an energy
density, a fusion power plant at 1000MW would need approximately 250kg
of fuel for a years operation which is significantly less than the 2-3 million
tons of coal needed to produce the same output. Deuterium can be obtained
directly from seawater while tritium can be bred by irradiating lithium with
neutrons which is common in the earth crust [3]. It is estimated that with
proven resources of deuterium and lithium, the worlds energy demand could
be met for the next six million years based on current estimates [4].

1.2 Plasma Physics and the Tokamak
Producing and harnessing the energy of fusion reactions requires a machine
capable of doing so. Naturally, with reaction temperatures well into the
millions of degrees Kelvin, creating a box that can contain it poses quite a
problem, especially since all known materials have far lower melting points.
At such high temperatures, the fuel attains the fourth state of matter, namely
the form of a plasma. Many concepts to build a container have been consid-
ered throughout the history of fusion energy research, with the most promi-
nent being a magnetic confinement device called a tokamak[5]. To under-
stand how this works and confines particles one first needs to know how
charged particles behave under the influence of electromagnetic fields.

2



1.2. PLASMA PHYSICS AND THE TOKAMAK

1.2.1 The Tokamak
From first-year electromagnetism, a typical physics student learns how a
charged particle, under the influence of electric and magnetic fields, behaves.
So if the particle has a charge q, the force acting upon the particle is then
the Lorentz force:

d

dt
m0v = q (E+v×B) (1.2)

Where m0 is the rest mass, v is the velocity of the particle, E and B are
the electric and magnetic field respectively. The electromagnetic forces are
known to be much stronger than the gravitational forces meaning the latter
can be neglected. Also, nuclear forces are not considered here. From the
Lorentz force equation, it is evident from the cross product of the velocity
with the magnetic field, that a charged particle in a magnetic field will gy-
rate around and along the magnetic field lines as long as the magnetic field
is present. Hence the particle is confined in the perpendicular direction. The
parallel component is unaffected by the magnetic field and the particle would
keep going along the magnetic field assuming it has a non-zero parallel com-
ponent. This is, of course, no problem if the container with the magnetic
field is infinitely long which is of course not possible. A ring, however, can
in a sense be considered an infinite loop and so taking a finite solenoid and
bending it into a doughnut shape creates a torus-shaped magnetic chamber.
While ingenious, it suffers from one major problem. Due to the bending, the
wires on the inside of the torus are more closely wound than the ones of the
outer part of the torus. This creates an inhomogeneous magnetic field of the
form

B(r)∝ 1
r

(1.3)

where r is the radial distance from the centre of the torus. The radius of the
gyrating motion, commonly referred to as the Larmor radius or gyro-radius,
is given as:

ρ=
√
Tm

qB
(1.4)

where m is the mass of the particle, T is the temperature and q the charge.
Upon inspection, it is evident the size of the radius depends on the position
of the particle in the inhomogeneous magnetic field, and in fact in the course
one gyration, the particle will experience a changing magnetic field. The
leads to the particle drifting since it travels a longer distance on the low field

3



1.2. PLASMA PHYSICS AND THE TOKAMAK

part of the trajectory compared to the high field side. Such a drift is called
the gradient-B drift. Due to the charge dependence in the Lorentz force,
two particles of opposite charge will drift in opposite directions, giving rise
to an electric field. When a gyrating particle experiences an electric field,
the particle will be accelerated when moving along the field and decelerated
when moving against the field or vice versa, depending on the charge of the
particle. This means that at one part of the trajectory perpendicular to
the electric field the particle will move faster than at the opposite part of
the trajectory perpendicular. Consequently, a second drift occurs, namely
the E ×B, or electric drift. The direction of the drift is independent of
the charge and so the whole plasma will move radially outward, making this
configuration inherently unstable. The solution to this problem is then to
make the particles go back into the inner part of the reactor when they are
on the outer. This is done by adding a magnetic field in the poloidal (around
the torus cross-section) which together with the toroidal creates a twisted
magnetic field. The poloidal field is produced by ramping up a current in
a large central solenoid that induces a toroidal current in the plasma which
then creates a poloidal magnetic field. The tokamak was initially conceived
in the early ’50s in the Soviet Union along with the construction of the first
tokamak, the T-1 in 58[6]. Since then, a large number of tokamaks have
been constructed, but a tokamak that produces surplus energy has yet to be
made. The record for highest fusion gain was by the Joint European Torus
with a Q-factor of 0.67[7]. Early versions of the tokamak used a circular
cross-section of the torus while modern ones have a triangular-shaped (or D-
shaped) cross-section. A schematic of a modern machine is shown in Fig. 1.1
along with a cross-section of the vessel.

Here it is seen that the magnetic field lines can be divided into two regions:
one with closed field lines ending on themselves and one with open field lines
ending on the divertor plates1. The closed region is often referred to as the
confined region while the open region is the scrape-off-layer (SOL) where
particles are carried towards to divertors and disposed of. The size of the
tokamak can be expressed in terms of the radius of the torus called the major
radius R, and the radius of the tube called the minor radius r. From these
quantities, it is common to define the parameter known as the aspect ratio
R/r.

1Naturally the field lines are not actually open since magnetic monopoles do not exist.
The use of ’open’ is to emphasize the interaction of the field lines with the vessel materials.
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1.2. PLASMA PHYSICS AND THE TOKAMAK

Figure 1.1: Left: Schematic of a tokamak (taken from [8]). Right: Cross-
section of tokamak (taken from [9]).

1.2.2 Plasma Physics
In the preceding section, the principle of the tokamak was outlaid with an
offset in how a particle acts in a magnetic field. Having a single particle
within a machine is not quite enough to make fusion happen but instead, a
large number of particles will be present. The presence of a large number of
interacting particles is a fundamental problem in physics and the question
is now how to deal with such a system. In the field of plasma physics, the
particles are characterised by the fact that they emanate and interact with
electric and magnetic fields. This is the main focus of Chapter 2. What can
now be done is to try to get an idea of the kind of plasma that can be expected
within a tokamak. Whether it is a relativistic, a quantum mechanical or a
collision dominated system presents a path for studying the system. The
density and temperature of the plasma can be used to classify the different
plasma regimes and one such diagram is shown in Fig. 1.2. At above 109K
the plasma begins to exhibit relativistic behaviour.

1.2.3 Turbulent transport
While the concept of the tokamak is very clear, bringing the machine to
fruition in terms of producing surplus energy has yet to be realised. One
problem is the high losses of particles and energy from the edge and the core
into the SOL. In classical theory, transport is carried through the diffusion
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1.2. PLASMA PHYSICS AND THE TOKAMAK

Tokamak

Solar corona

Ionosphere

ICF
White Dwarf

Strongly 
Collisional 
Classical

Strongly 
Collisional
Quantum

Ideal Classical

Quantum

Relativistic

Figure 1.2: Classification of plasmas according to temperature and density
where ωp = (e2n/mε0)1/2 is the plasma frequency. Figure modified from [10].

.

of particles and energy, but it is insufficient in describing the full loss. It
was later found that a correction to the classical transport due to the geo-
metrical shape of the magnetic field was needed which resulted in the theory
of neoclassical transport [11]. This too, however, is insufficient in describing
the full loss and one also needs to consider what is commonly referred to as
anomalous transport [12]. Consider a plasma with fluctuations in the pres-
sure. Under such circumstances the mechanism described earlier in regards
to the instability of a purely toroidal magnetic field confinement presents
itself again. A fluctuation, or perturbation, in the pressure, will experience a
polarising drift due to the grad-B drift (and curvature drift) and consequently
drift radially outward due to the resulting E×B-drift. These perturbations
drifting outward stretch along the magnetic field lines and are commonly
referred to as filaments or blobs. It has been found that these blobs con-
tribute significantly to the transport from the edge to the SOL [13]–[15].
Blobs entering the SOL can reach either the divertors or wall possibly caus-
ing degradation of the vessel materials as well as releasing impurities into the
plasma. The introduction of impurities to the main plasma can cause severe
cooling of the plasma, preventing fusion conditions from being reached. For
these reasons it is important to ensure material travels to the divertors and
do so in a steady stream. In order to alleviate this problem, it is necessary

6



1.3. STRUCTURE OF THESIS

to obtain a better knowledge of their characteristics. The approach for doing
so in this work is through numerical simulations using conditions similar to
those of a typical medium-sized tokamak such as the Experimental Advanced
Superconducting Tokamak (EAST) or Asdex Upgrade. The plasma which is
found in the edge and scrape-off-layer of a tokamak usually reaches temper-
atures up to some 100eV and densities up to 1019m−3. From the plasma
classification scheme presented in Fig. 1.2 it is clear that this kind of plasma
is a typical classical plasma where collisions are not dominant. Luckily, this
also means there is no need to worry about relativistic and quantum effects.
This is will be very useful in the next chapter when deriving a model well
suited for studying transport in this region.

1.3 Structure of Thesis
The focus of this work is the study of edge/SOL dynamics in which much
of the work done in this topic has only involved pure single species plasma
[16]–[20] or some effective particle representing a mix of species [21]–[23].
In this work, a true multi-species model is employed to study the effects
the ion mixture has on turbulent transport. This is studied in a 2D slab
configuration perpendicular to the magnetic field emulating a small region
in the outboard midplane of the tokamak, where the bulk of the transport
occurs. As mentioned, the main plasma in energy-producing machines will
be composed of a mix of deuterium, tritium and helium as well as some
amount of impurities. In this regard, it is known that the transport at
the LCFS is significantly influenced by the ion composition of the plasma
and in particular that the transition from a low confinement mode to high
confinement mode, commonly known as the LH-transition, is affected by the
mix [24]. Furthermore, at EAST temperatures have reached a record 100
million degree Kelvin [25] and pulses over 100 second [26] though not at the
same time. This has been achieved in part by the use of lithium in SOL
which has been shown to reduce transport across the LCFS [27]. The thesis
is divided into three main chapters, a theory, a numerical and a result chapter
which together contain the bulk of the work. Finally, the results from each
chapter are summarised in a conclusion chapter.

In Chapter 2 a theoretical model is derived based on the Boltzmann equa-
tion by taking moments to obtain expressions for macroscopic parameters
such as density velocity and temperature. From this, a drift fluid model, the
multi-ion Hot Edge-Sol Electrostatic or MIHESEL model, is derived similarly
to HESEL [17] along with appropriate approximation in order to obtain a
model suitable for numerical implementation.

7



1.3. STRUCTURE OF THESIS

The numerical implementation is discussed in Chapter 3. This includes
the choice of the discontinuous Galerkin method as the numerical method,
which forms the basis of the FELTOR library [28], as well as an overview of
the library. Furthermore, additions to the library in the form of a fully im-
plicit multistep backward differentiation formula (BDF) method along with a
non-linear solver to solve the non-linear system equation in the BDF method
are discussed.

In Chapter 4, the model is used to study the effects of isotopes on plasma
dynamics. The first part of the chapter is concerned with seeded blobs which
are studied using various mixtures of D and T, which are included in the first
submitted paper, and a mixture of deuterium and doubly ionized helium.
Blobs are a widely studied subject in regards to transport the simple setting
can provide much insight into the overall transport seen in a tokamak. The
second part of the chapter examines edge profiles and the turbulence that
evolves in this region. Here each blob in itself is not of much interest as it was
for seeded blobs, rather it is the statistical behaviour of the edge transport
that is of interest.

Finally, in Chapter 5, a summary of results and discussion hereof are
presented. Furthermore, an overview of future improvements and research
topics are discussed.

8



Chapter 2

Theory - from micro to macro

The goal of physics is often to make quantitative statements about the evo-
lution of a system of interest, in our case, a collection of charged particles
called a plasma. In principle, we know most of the first principles, such as
Maxwell’s equations, Schroedinger’s equation, the relativistic laws of motion
etc, and therefore all answers for our question should be right there for the
taking. However, this is rarely the case and intricate knowledge of the system
you wish to describe is needed to get any useful answers. It is for example
overly complicated for us to bring in quantum mechanics when wanting the
calculate the trajectory of a ping pong ball. In short, using a sledgehammer
to crack a nut is a bit extreme.

2.1 From the micro to the macro
In the introduction, the outline of plasma physics was roughly sketched as
a collection of charged particles interacting through and with electric and
magnetic fields. In the setting of a tokamak plasma located at the edge/SOL
region, it was argued that the plasma could be considered using classical
theory with a small number of collisions.

2.1.1 Fluid moment equations
To work with the system, two components are needed. One that describes the
kinematics of the particles and one that describes the evolution of the electric
and magnetic fields. For the latter it is known from first-year electromag-
netism that the classical evolution of these fields is governed by Maxwell’s

9



2.1. FROM THE MICRO TO THE MACRO

equations [29]:

∇·D = qn (2.1)
∇·B = 0 (2.2)

∇×E =− ∂

∂t
B (2.3)

∇×H = J + ∂

∂t
D (2.4)

whereD= ε0E+P is the electric displacement field with polarisation density
P , H = µ−1

0 B−M is the magnetic field with strength with magnetisation
field M , ε0 and µ0 are the vacuum permittivity and permeability and J
is the current density. These equations contain all classical electromagnetic
phenomena and are a bid overkill for the purpose of studying the edge/SOL
region. In this case, it is common to employ the electrostatic approximation
and assume the magnetic field perturbations to be negligible [30]. The result
is that the electric field can be expressed in terms of an electric potential φ

E =∇φ (2.5)

This lessens the complexity of the problem quite substantially. Returning
to the problem of solving for 1019 individual particles using the Lorentz
force equation is of course not possible either analytically or numerically.
Analytically, a three-body problem remains unsolved for an arbitrary system,
and n-body problems even more so. Numerically such problems are solvable
in discrete space, but tracking each particle quickly becomes unmanageable
as each particle interacts with each other creating an N2 problem, where N
is the number of particles1. What can be exploited on the other hand is
that when the number of particles in the system is enormous the individual
behaviour of each particle is of little interest. Instead it is more interesting
to study the collective behaviour of the system and seek a way to describe
this. The method going forward is a statistical approach where the plasma
can be described through a single-particle distribution function fs(x,v, t)
defined as the number density of particles of species s within phase space
volume element dxdv at a time t [32]. The variables x and v are considered
independent. From this distribution function, global parameters such as

1Less expensive particle approaches exits such as particle-in-cell, but even this is very
computationally demanding for such a big system of particles[31].
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2.1. FROM THE MICRO TO THE MACRO

particle density ns, velocity and pressure ps = nsTs can be obtained:

ns(x, t) =
∫
fs(x,v, t)dv (2.6)

nsus(x, t) =
∫
vfs(x,v, t)dv (2.7)

3
2ps(x, t) = 3

2ns(x, t)Ts(x, t) =
∫

(v−us)2 fs(x,v, t)dv (2.8)

To find how these evolve in time, the evolution of the distribution function
fs must be know. In this regard the procedure is very similar to what is used
to solve typical gas problems. In quick terms, the process is to assume all
particles to be identical and integrate out other particles and find an equation
for a single particle, but since all particles are identical, it can be used to
find global variables. If the plasma is relatively dilute the single particle
distribution function is governed by the Boltzmann equation, which can be
derived from the many particle Liouville equation. A thorough derivation
can be found in, e.g, [32], [33]. The Boltzmann equation is then given as(

∂

∂t
+v · ∂

∂x
+ Fs
ms
· ∂
∂v

)
fs =

(
∂

∂t
fs

)
col

+
(
∂

∂t
fs

)
src

(2.9)

where Fs(x, t) is the force acting on the species s. In the case of a plasma,
this will typically be comprised of the electric and magnetic field and as
such the force is given by the Lorentz force stated in Eq. (1.2). The right
hand side represents the changes to the distribution function due binary col-
lisions between particles of all species as well as some source/sink term. The
source/sink term could be in either added/removed energy, momentum, par-
ticles or all three and the source terms thus accounts for inelastic collisions
such as ionization of neutral particles. In the case where the collisions are
negligible in comparison to long range Coulomb interactions and there are
no sources, the right hand side is set to zero giving the Vlasov equation. In
principle, with the correct collision operator (and neglecting non-binary colli-
sions) the plasma system is fully described by the combination of the kinetic
Boltzmann equation (2.9) and Maxwell’s equations with all length and time
scales resolved. However, this system of equations is practically impossible
to solve. The aim is therefore to reduce the complexity of the system to
illuminate the relevant physics. Since turbulent transport occurring in the
edge and scrape-off-layer is of interest in this work, the system of equations
will be tuned such that this behaviour is highlighted without being overly
complicated. Before doing so we take a slight pause to consider the collision
operator.
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2.1. FROM THE MICRO TO THE MACRO

Collision Operator The origin of the Boltzmann equation is in the study
of dilute gasses. In such a case the collisions between particles are that
of two hard spheres. This means that the interaction is an ’instantaneous’
short-range scattering of the two colliding particles that had no prior in-
teraction. Since particles don’t interact, except for during collisions, this
also means that limiting the interactions to two-particle interactions, as op-
posed to multi-particle collisions, is a very good approximation. In a plasma
physics this is not the case as charged particles interact through long range
(Coulomb) interactions and so it is not only long term collisions while also
being many body interactions. Luckily however, two particle interactions are
effectively screened by the Debye length and so it is only relevant when the
distance between the two is smaller than the Debye length while the many
body interactions are dealt with in the collective electric field. Considering
this the collisions can be assumed similar to that of dilute gasses and as such
described as binary collisions. In that case the operator is bilinear in form:(

∂

∂t
fs

)
col

= Cs(fs) =
∑
s′
Css′(fs,fs′) (2.10)

A commonly used collision operator is the Landau collisions operator given
as [34]–[36]

Css′(fs,fs′) = 2π
ms

(
qsqs′

4πε0

)2
lnΛss′∇v·[∫

dv′U ·
(
fs′(v′)
ms

∇vfs(v)− fs(v)
ms′
∇v′fs′(v′)

)]
(2.11)

where lnΛss′ is the Coulomb logarithm and

Λss′ =
12πε0
|qsqs′|

µss′

γss′
λd. (2.12)

Here µss′ = msms′/(ms +ms′) is the reduced mass, γss′ = γsγs′/(γs + γs′)
with γs =ms/Ts and the Debye length for the plasma is given as:

λd =
(∑

s

nsq
2
s

ε0Ts

)− 1
2

(2.13)

Lastly, the rank two tensor U is expressed in terms of u= v−v′ as:

U = u2I−uu
u3 (2.14)
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2.1. FROM THE MICRO TO THE MACRO

As stated earlier, the desire is for an equation that describes the evolution
of the system which involves some form of averaged quantities, ns, us and
Ts. From the Boltzmann equation, this can be done by taking moments in
velocity space. The simple straight forward approach would be to multiply
the equation with kv⊗v..., where k is some factor like the mass m and the
outer product is performed i times with i being the number of the moment.
Performing this operation would result in a large system of equations. E.g.
the second moment would result in six individual equations etc. Instead,
expressions for the variables given in Eqs. (2.6) to (2.8) are sought. The
process is very similar to the naive approach stated above. This is rather
fundamental and can be found in a variety of textbooks [34], [37].

Density The zeroth order moment with k = 1 describing the evolution of
the density is:
∫

dv ∂
∂t
fs+v ·∇xfs+ Fs

ms
· ∂
∂v

fs =
∫

dv
[(
∂fs
∂t

)
col

+
(
∂fs
∂t

)
Src

]
(2.15)

The first term is already given from 2.6 by using that the time derivative
and the integral variables are independent and hence the operations can be
interchanged giving ∂tns. Using the independence of x and v the second
term is found to be:∫

dvv ·∇xfs =
∫

dv∇x · (vfs)−����
���

�:0∫
dvfs∇x ·v

=∇x ·
∫

dvvfs =∇x · (nsus) (2.16)

When using the Lorentz force in the last term in the left hand side gives:∫
dvFs ·∇vfs =

∫
dv∇v · (Fsfs) = 0 (2.17)

For the collisional part of the right hand side it can be shown using the
divergence theorem and that fs→ 0 as v→±∞ that the Landau collision
operator conserves particles: ∫

dvCs = 0 (2.18)

This is a rather fundamental requirement as it would be very unphysical to
have a species creating particles simply by interaction with itself or another
species. Naturally, this excludes ionizing collisions which fall under the source

13



2.1. FROM THE MICRO TO THE MACRO

term. For the source term, there is no a priori knowledge, as it depends on
the physical setup, and so it is simply defined as:∫

dvSs ≡ Ss,n (2.19)

(2.20)

The source might be by, e.g., injection of particles or by ionization of neutral
atoms. Adding it all together gives the fluid continuity equation for the
evolution of the density of species s:

∂

∂t
ns+∇x · (nsus) = Ss,n (2.21)

Fluid velocity For the next moment, with i= 1 and k =ms, where ms is
the species particle mass, one has:

ms

∫
dvv

[
∂

∂t
fs+v ·∇xfs+ Fs

ms
·∇vfs

]

=ms

∫
dv
[(
v
∂fs
∂t

)
col

+
(
v
∂fs
∂t

)
Src

]
. (2.22)

For the first term the same procedure used for the zeroth order moment to
exchange integral and time derivative is used here. Using (2.7) one arrives
at:

ms

∫
dvv ∂

∂t
fs =ms

∂

∂t
(nsus) (2.23)

For the next term one starts with employing the product rule and spatial
independence of the velocity variable to write:

ms

∫
dv
(
∇x · (vvfs)−����

���:0
fs∇x · (vv)

)

=ms∇x ·
∫

dv (vvfs)≡ms∇x · 〈vv〉fs ≡∇x ·Πs (2.24)

This is just the next order moment which at the moment there is little infor-
mation about. What can be seen is that since v is a rank one tensor (vector)
the outer product vv results in a rank two tensor meaning Πs is a rank two
tensor. What to do is to write the velocities as the sum of the species aver-
age fluid velocity and the thermal velocity in that rest frame v = us +ws.
Inserting this into 2.24 yields:

〈vv〉fs = 〈(us+ws)(us+ws)〉fs
= 〈usus〉fs + 〈wsws〉fs + 〈usws〉fs + 〈wsus〉fs (2.25)
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2.1. FROM THE MICRO TO THE MACRO

Since us is already the mean velocity its one gets 〈usus〉fs = usus 〈1〉fs =
ususns. Similar one gets 〈usws〉fs = us 〈ws〉fs = 0 which is also the case for
〈wsus〉fs = 0 where it was used that 〈ws〉fs = 〈v〉fs−〈us〉fs = ns (us−us) =
0. The remaining term 〈wsws〉fs gives the pressure tensor Ps which as
mentioned is a rank two tensor. The trace of the pressure tensor gives the
scalar pressure:

ps = 1
3Tr(Ps) = 1

3ms

∫
dvw2

sfs (2.26)

In total one arrives at:

∇x ·Πs =∇x ·Ps+∇x · (msnsusus)
=∇x ·πs+∇x ·Ips+∇x · (msnsusus) (2.27)

Where I is the identity tensor and π is the viscous stress tensor which at
the moment there is no information about. Lastly for the left hand side the
force term remains:

ms

∫
dv qs
ms
v (E+v×B) ·∇vfs =

∫
dvqs∇v · (v (E+v×B)fs)

−
∫

dvqsv∇v · (E+v×B)fs−
∫

dvqs∇v · (v)(E+v×B)fs
=−msqsns (E+us×B) (2.28)

The first term after the first equality term vanishes as it is a surface term
(Gauss’ Theorem). The second term vanishes since E is independent of
velocity and v×B is perpendicular to ∇v. This leaves only the last term
giving the above result. For the collisional part of the right hand side the
lowest order expression for the moment of the collision operator can be found
by using the bi-linearity expressed in Eq. (2.10). Expanding the distribution
function around a Maxwellian 2 f0

s it can be shown that the frictional resistive
force of a species s′ acting on a species s yields [34], [38]:

Rs′→s,u =−msnsνs′→s (us−us′) (2.29)

where the collision frequency is given by [34], [39]:

νs′→α =
21/2ns′Z

2
sZ

2
s′e

4 lnΛss′
(
1 + ms

ms′

)
12π3/2ε20m

2
s

(
Ts
ms

+ Ts′
ms′

)3/2 . (2.30)

2The Maxwellian is expanded to first order in the relative mean velocity of the two
species assuming |us−us′ | � vs.
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2.1. FROM THE MICRO TO THE MACRO

Rewriting ms∇x ·(nsusus) =msnsus∇x ·us+msus∇x ·(nsus) and invoking
the continuity equation (Eq. (2.21)), the density can be pulled out of the time
derivative in the momentum equation giving the fluid velocity equation as

msns

(
∂

∂t
+us ·∇x

)
us =

−∇x ·πs−∇xps+ qsns (E+us×B) +Rs+SΓ−msusSn,s (2.31)
Where the SΓ is the momentum source defined as

SΓ ≡ms

∫
dv
(
v
∂fs
∂t

)
Src

(2.32)

Pressure For the next moment, an expression for the pressure evolution
is sought. The starting procedure is by taking k = 1

2ms, multiplying with
v2 and performing the integration. This moment corresponds to the energy
equation for the total energy 1/2mnu2, but with the help of the continuity
and velocity equation, an equation for the pressure can be obtained. It should
be noted that one could have taken the ’full’ moment and multiplied by v⊗v
which would give an equation for the full rank two pressure tensor, which
also encompasses the scalar pressure. The reason for not doing so is that
it would result in an additional six equations per species when the scalar
pressure is what is interesting. For the first term in the Boltzmann equation
the procedure is very similar to the other two moments:

1
2

∫
dvv2

s
∂

∂t
fs

=1
2

∫
dvw2

s
∂

∂t
fs+ 1

2

∫
dvu2

s
∂

∂t
fs = ∂

∂t

(3
2ps+ 1

2msnsu
2
s

)
(2.33)

This is the change in the total energy of the species. Here it was used that
v = us+ws giving v2 = (us+ws) · (us+ws) = u2

s +w2
s + 2us ·ws and that

〈us ·ws〉= us · 〈ws〉= 0. Also to get the pressure, Eq. (2.8) was used. Using
the same again and that ∇xv = 0 the next terms can be written as:

1
2ms

∫
dvv2v∇xfs =1

2ms

∫
dv∇x ·

(
v2vfs

)
−
��

���
���:0

∇x ·
(
v2v

)
fs

=1
2ms

∫
dv∇x ·

((
u2
s +w2

s + 2us ·ws

)
(us+ws)fs

)
=1

2ms∇x
(〈
w2
sws

〉
+u2

s�
��*

0
〈ws〉 + 2〈(ws ·us)ws〉

+
〈
w2
s

〉
us+u2

sus 〈1〉+ 2
���

���
��:0

〈(ws ·us)us〉
)

(2.34)
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The first non-zero term on the last line involves the next order moment
and is the heat flux qs = 1

2ms

〈
w2
sws

〉
. For the second non-zero term, the

integral is independent of us and so the term is proportional to the pressure
tensor introduced earlier. The third non-zero term is recognised as the scalar
pressure

〈
w2
s

〉
= ps and the last term is 〈1〉= ns. Putting it together gives:

1
2ms

∫
dvv2v∇xfs =∇x ·

(
qs+Ps ·us+ 3

2usps+ 1
2u

2
susns

)
(2.35)

Using the same approach as for the momentum equation, the last term on
the left hand side of the Boltzmann equation yields:

1
2ms

∫
dvv2 qs

ms
(E+v×B) ·∇vfs

= 1
2

∫
dv∇v ·

(
v2qs (E+v×B)fs

)
−∇v ·

(
v2qs (E+v×B)

)
fs

=−1
2

∫
dv2v · qs (E+v×B)fs+v2∇v · qs (E+v×B)fs

=−
∫

dvv · qs (E+v×B)fs =−
∫

dvv ·Efs =−nsus ·E (2.36)

Similar to the calculation for the resistive force in Eq. (2.29), the right hand
side can be evaluated to give:

Qs =
∑
s′

1
m

∫
dvv2C(fs,fs′) =

∑
s′

3nsmsνs′→s (Ts−Ts′)
ms+ms′

(2.37)

This is be recognised as the collisional thermal energy exchange between
a species s and all other species s′. Upon inspection it can be seen that
Qs′→s =Qs→s′ as would be expected in terms of energy conservation. Adding
it all together yields:

∂

∂t

(3
2msps+ 1

2msnsu
2
s

)
+∇x ·

(
qs+Ps ·us+ 3

2usps+ 1
2u

2
susns

)
−nsus ·E =Qs+SE,s (2.38)

The source term was simply defined as

SE,s ≡ms

∫
dvv2

(
∂fs
∂t

)
Src

(2.39)

and its exact composition will be discussed later in Section 2.1.3. This is the
total energy moment equation. Using the continuity equation multiplied by
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1/2msu
2
s and taking the dot product of the momentum equation with us the

pressure momentum equation can then be obtained:

3
2
∂

∂t
ps+ 3

2∇x · (psus) +Ps :∇xus+∇x ·qs

=Qs−u ·Rs+SE,s−us ·SΓ,s+ 1
2msu

2
sSn,s (2.40)

To summarise, an equation for the density, fluid velocity and pressure are now
at hand. These are however not usable at this time as it has been noticed
that each equation required part of the next order moment. One could go on
and find further moments and hope for the best, however the v ·∇xfs terms
naturally introduces the need for the next moment. This means one would
have to go on for infinity, which is of course quite time consuming. In the
end this leaves undefined quantities, namely the viscous stress tensor πs and
the heat flux qs. Due to these unknown parameters, the density, velocity and
pressure equations are for the moment unsolvable. Therefore, some method
is needed to close the system of equations such that they can actually be
solved.

Closure The method of closing the system is referred to as a closure
scheme. An example of a simple closure scheme could be by simply fix-
ing the fluid velocity and only solve the continuity/density equation. This
kind of closure is termed a truncation scheme [35], [40]. For the equations de-
rived above, one could also set the pressure tensor and heat flux to zero, this
would, however, leave out interesting physical behaviour. For this reason,
this closure scheme is not used. Another closure approach is the so-called
asymptotic scheme in which scales of the kinetic equations are exploited to
arrive at equations for the higher moments. The downside of this approach is
a vastly increased amount of complexity and mathematical rigour. One such
approach, and in plasma physics the most common approach, is to use the so-
called Chapman-Enskog procedure which expands the distribution function
in some small parameter ε [41]:

fs = fs,0 + εfs,1 + ε2fs,2 + ... (2.41)

This is done under the assumption that the mean free path λ and the mean
gyro-radius ρs is much smaller than characteristic parallel and perpendicular
length scales, L‖ and L⊥ respectively

ε≈ λ

L‖
∼ ρs
L⊥

(2.42)
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This method is used by Braginskii [37] to derive the famous Braginskii fluid
equations for density, fluid velocity and temperature. It is these equations
that form the basis of many single species drift fluid models, including the
HESEL equations. However, it turns out that when multiple ion species
are introduced the Chapman-Enskog procedure can become mathematically
overly complicated. Luckily there is another procedure which has proven
useful when dealing with multiple species. This method is the Grad’s moment
method [42] and is employed to form the Zhdanov closure which will be used
here[34]]. The main idea is to expand the distribution function in terms of
orthogonal tensorial Hermite polynomials as

fs = fs,0
∑
n

∑
m

(2m+ 1)!(m+n)!
n!(m!)2(2n+ 2m+ 1)!a

mn
s Hmn

(
ws

√
ms

Ts

)
(2.43)

where Hmn is the Hermite polynomials expressed in terms of Sonine polyno-
mials S and irreducible harmonic polynomials P :

Hmn = (−2)−1n!Snm+1/2

(cs
√
ms

Ts

)2
/2
P (m)

(
ws

√
ms

Ts

)
(2.44)

and the coefficients amn are given by:

nsa
mn
s =

∫
dcHmnfs (2.45)

Doing ample amounts of algebra and arithmetic will yield explicit expressions
for the polynomials and consequently the coefficients. Once an explicit form
of the distribution function is found, the unknown moments can be evaluated
and in this case give expressions for the pressure tensor and heat flux in
terms of density, fluid velocity and temperature to make a closed system of
equations. A thorough discussion on the difference between the Chapman-
Enskog closure scheme and Grad’s moment method can be found in [33], [34],
[43], [44].

2.1.2 Zhdanov Closure
The polynomials and coefficients discussed can be calculated explicitly to
form the distribution function fs and consequently evaluate the pressure
tensor and heat flux. The lowest moment approximation is the 13-moment
approximations which include all interesting physically meaningful quanti-
ties. Unfortunately, this does not provide sufficient accuracy [33], [34]. The
next moment approximation is the 21-moment approximation which gives
a good accuracy while going higher the 29-moment approximation does not

19



2.1. FROM THE MICRO TO THE MACRO

yield much increase in accuracy [33]. In the 21-moment closure used by Zh-
danov, the complexity of solving the system is such that the ion temperatures
are assumed nearly equal |Tα−Tβ| � Tα. This limitation does not apply to
electrons as the mass is much smaller. For future reference, the subscripts
α and β will be used for ions while the subscripts s and s′ denote both ions
and electrons. It should be noted that for the single ion species case, the
Chapman-Enskog procedure and Grad’s method yield identical results and
so the results obtained by Braginskii, which correspond to the 21-moment
method, are identical to the Zhdanov closure for a single ion species [34].
Furthermore, while cumbersome, the Chapman-Enskog method has been ap-
plied to multispecies as seen in [38], [45], albeit without expressions for the
viscous stress tensor. The two remaining terms in the moment equations,
disregarding the source terms, are the heat flux qs and the viscous stress
tensor πs. This closure has also been used for other fluid models to model
impurity transport in the edge [46], [47].

Heat flux To lowest order in the expansion of the distribution function,
where collisions are neglected, the ion and electron heat fluxes are given as:

q×,α = 5
2
pα
qαB

b×∇Tα, (2.46)

q×,e =−5
2
pe
eB
b×∇Te (2.47)

where b = B/B is the magnetic unit vector. These fluxes are commonly
referred to as the diamagnetic heat flux [48]. Going to next order, the colli-
sional contributions to the heat fluxes perpendicular to magnetic field are:

q⊥,α = pα
m2
αΩ2

c,α

∑
β

µαβνβ→α

(
3
2

[
∇pα
nα
−
Zα∇pβ
Zβnβ

]

− mα

mα+mβ

[(
13
4
mβ

mα
+ 4 + 15

2
mα

mβ

)
∇Tα−

27
4
Zα
Zβ
∇Tβ

])
. (2.48)

q⊥,e = pe
meΩ2

c,e

∑
α
να→e

(3
2

[∇pe
ne

+ ∇pα
Zαnα

]

−
[(

13
4 +
√

2
Zα

)
∇Te

])
. (2.49)

In this last expression, the collisional electron heat flux was reduced in com-
plexity following [38].
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Viscous stress tensor To express the viscous stress tensor is it useful to
first write the rate of stress tensor [34]:

W =∇uα+ (∇uα)T − 2
3I∇·uα (2.50)

It is further useful to split the tensor into a parallel part, a perpendicular
non-collisional gyroviscous part and a pependicular collisional part [49]:

π = π‖+πgy +π⊥ (2.51)

As before, the parallel term is neglected as only the perpendicular parts are
of interest. With the rate of stress tensor, the perpendicular components can
be written as [34]:

πs,gy =ηs,gy2 [b×W · (I−bb)− (I−bb) ·W ×b]

+ 2ηs,gy [b×W ·bb−bb ·W ×b] (2.52)

πs,⊥ =−ηs,⊥
[
(I−bb) ·W · (I−bb)+ 1

2(I−bb)(b ·W ·b)
]

−4ηs,⊥ [(I−bb) ·W ·bb+bb ·W · (I−bb)] (2.53)

The coefficients for ηα,gy and ηα,⊥ are:

ηs,gy = ps
2Ωc,s

(2.54)

ηs,⊥ =
∑
β

ηs′→s,⊥ = 1
4
ps

Ω2
c,s

∑
s′

msm
′
s

(ms+ms′)2 ·νs′→s
(

6
5
ms′

mα
+ 2− 4

5
ms′

ms

Zs
Zs′

)
.

(2.55)

Due to the appearance of the species gyro-frequency in the denominator, the
electron version is small compared to ions. Hence it can be neglected.

Correction to resistive force While the above expressions closes the
system of equations, the closure scheme allows for a correction to the per-
pendicular resistive force:

Rs′→s,T,⊥ = 3
2msnsνs′→sµs′s

(
b×∇Ts
msqsB

− b×∇Ts
′

ms′qs′B

)
. (2.56)

This the thermal resistive force. The physical meaning of this terms is dis-
cussed in detail in [37]. Summing over all species s′ this together with fric-
tional resistive force in Eq. (2.29) constitutes the total resistive force Rs,⊥
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acting on a species s. In this regard it should be noted that the expression
yields momentum conservation:

Rs′→s,⊥ =−Rs→s′,⊥ (2.57)

With this, closed forms of equations for density, fluid velocity and pressure
can now be given. These were obtained by taking moments of Boltzmann
equation and using the Zhdanov closure scheme. Lastly remains the source
terms.

2.1.3 Source terms
The sources were not explicitly given in the moment equations for density,
fluid velocity and pressure. Working in the fluid picture one can define fun-
damental sources Σf where f denotes one of the fundamental fluid variables,
n, u, T etc. Physically, these sources could be the addition of particles, ap-
plication of an external field that accelerates the plasma fluid or the heating,
by e.g. ICRH. The function Σf can be any function describing a desired
physical situation. It is instructive to write the general sources appearing
in the density, velocity and pressure equations denoted Sf in terms of these
fundamental sources [50]. The general source terms were again a function of
the energy source SE and flux source SΓ. Beginning with the density there
is not much new. It is a rather fundamental quantity so one simply has:

Sn = Σn (2.58)

For the fluid source:

SΓ =mu′Σn+mnΣu (2.59)

where u′ is the flow velocity of the added particles. The exact nature of Σu

depends on the situation, but could be e.g. an external electrical field or
something similar. Finally the source for the total energy is comprised as:

SE = 1
2mu

′2Σn+mnu ·Σu+ 3
2
(
T ′Σn+nΣT

)
(2.60)

The first term here corresponds to the addition of the fluid kinetic energy of
newly added particles, while the second corresponds to the increase in fluid
kinetic energy brought about by acceleration of the fluid due to some fluid
velocity source. The last term is the increase in total energy by the addition
of new particles with a temperature T ′ or by a thermal heating of existing
particles. In T ′ care must be taken, in the sense that the particle may be
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newly formed, possibly in the form of an atomic process such as ionisation
[51]. Here the temperature of the electron is not the same as the temperature
of the neutral particle, instead one has T ′e = me/mnT

′
n. It appears that for

all moment sources, there is a need for all lower moment sources. In the
expressions for the density, momentum and pressure the total source terms
can now be expressed in terms of fundamental sources [50]:

Sn = Σn (2.61)
mnSu = SΓ−muSn =m

(
u′−u

)
Σn+mnΣu (2.62)

Sp = SE−u ·SΓ + 1
2mu

2Sn = 1
2m

(
u′−u

)2
Σn+ 3

2
(
T ′Σn+nΣT

)
(2.63)

It should be noted that the pressure source is unaffected by the acceleration.
Naturally this is to be expected as pressure is related to the particles and
their thermal motion, to which the fluid velocity source adds nothing.

With this, there is now a complete closed set of equations for the fluid
variables, density, fluid velocity and pressure (or temperature).

2.2 Drift fluid expansion
Even though the equations of the macroscopic values nα, uα and pα along
with expressions for qα, πα and Rα form a closed set of equations, they
are still too tedious to work with. First, the number of equations for each
species is four (or five for 3D). Second, the equations allow for high-resolution
length and time scales. To overcome both problems a common procedure
used in plasma physics is the so-called drift fluid approximation. The idea
is to make an order of magnitude expansion of the velocity and then use
characteristic length and time scales of the physical phenomena of interest
to order the terms in the velocity equation [38], [52], [53]. Concerning this
work, the interesting physical phenomena are turbulent transport occurring
at the outboard midplane.

A note on the magnetic field Before deriving the drift fluid model, it is
worthwhile to consider the magnetic field composition. As mentioned in the
introduction the domain of the study is a 2D slab located at the outboard
mid-plane of the tokamak. If the poloidal contribution to the magnetic field
is assumed to be negligible or slowly varying over the domain, the changes
in the magnetic direction are small from flux surface to flux surface, mean-
ing the magnetic shear is negligible [5]. In such a case, the magnetic field
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perpendicular to the 2D slab can be considered parallel everywhere. If the
major radius of the tokamak R is much bigger than the minor radius r, the
aspect is large meaning the magnetic curvature is small. In such a case the
magnetic field can be assumed straight, which means it can be in a Cartesian
coordinate system as represented as:

B(x) = B0R

R+ r+x
ẑ (2.64)

where B0 is the field strength at the major radius R and r is the minor
radius. x = 0 is the last closed flux surface and as such positive x from the
last closed flux surface into the scrape-off-layer. This constitutes the form
of the magnetic field that is used in this work. It should be noted that the
zero-curvature assumption is not necessary for the derivation of the drift fluid
model in a slab geometry, but the low shear is.

2.2.1 Drift fluid velocities
For turbulent transport it is assumed that the dynamics evolve on time scales
much slower than the ion gyro-frequency time scale and that the perpendic-
ular gradient length scales are much longer than the ion gyro-radius length
scales:

ω

Ωc,s
∼ ε and ∇·u⊥

Ωc,s
∼ ε (2.65)

where ε� 1 and ω is some characteristic frequency. This means that ω ∼
∂t ∼ ε. Furthermore, the system is assumed weakly collisional meaning the
resistive force is small |Rs′→s| ∼ ε. The viscosity is also taken to be of order
ε [37], [54]. Additionally, the pressure is assumed to be order 1 and the same
goes for E/B. Expanding the perpendicular fluid velocity in terms of order
of ε yields:

us,⊥ = us,0,⊥+ εus,1,⊥+ ε2us,2,⊥+ .. . . (2.66)
With the above orderings the momentum equation can then be expanded

as:

0 = ε0qsns

(
E+

[
ε0us,0,⊥+ ε1us,1,⊥+ · · ·

]
×B− ∇ps

qsns

)

+ ε1
(
−msns

[
∂

∂t
+
(
ε0us,0,⊥+ ε1us,1,⊥+ · · ·

)
·∇
](
ε0us,0 + ε1us,1,⊥+ · · ·

)
−∇·πs(ε0us,0,⊥+ ε1us,1,⊥+ · · ·) +Rs(ε0us,0,⊥+ ε1us,1,⊥+ · · ·)

+msnsSu,s,⊥(ε0us,0,⊥+ ε1us,1,⊥+ · · ·)
)
. (2.67)
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Where is was used that the total derivative in the momentum equation
(Eq. (2.31)) is given as

d

dt
= ∂

∂t
+ (us ·∇) . (2.68)

Collecting terms of same order gives for ε0:

0 = qsns
(
E+us,0,⊥×B

)
−∇ps (2.69)

and for ε1:

0 = qsnsus,1×B−msns

(
∂

∂t
+us,0,⊥ ·∇

)
us,0−∇·πs(us,0,⊥)

+Rs(us,0,⊥) +msnsSu,s,⊥(us,0,⊥). (2.70)

Although the expansion has no end, it needs to be truncated at some point.
Luckily, the nature of the expansion is such that only velocities of order εn and
below are needed to evaluate all terms of order εn. This means a truncation
can be done at any stage without any considerations on the higher orders,
except that they are assumed negligible. It is common to truncate at ε1, as
is done here, since all terms of the fluid velocity equation are present. With
this out of the way, it is possible to derive expressions for us,0 and us,1. Since
it is perpendicular transport that is of interest, the procedure is to apply b×
to the equation (2.69):

0 = qsns
(
b×E+b×us,0,⊥×B

)
−b×∇ps

= qsns
(
b×E+Bus,0,⊥

)
−b×∇ps

⇒ us,0,⊥ = b×∇φ
B

+ b×∇ps
qsnsB

≡ us,E +us,d (2.71)

Here it was used that the electric field and potential are related as E =−∇φ
in the case of the electrostatic approximation. To get the perpendicular
part of the velocity, the triple vector product (or BACCAB) rule is used:
b× (a× b) = a(b · b)− b(a · b) = b2a− b2b/b(a · b/b) = b2a⊥. The velocity
components correspond to the E×B-drift and diamagnetic drift. The E×B-
drift is well known from from single particle motion where particles in a
magnetic field under the influence of an electric field will drift perpendicular
to the two fields. This type of drift is the main driver for transport of
particles. The diamagnetic drift on the other hand does not advect particles,
rather in the case of pressure gradients more gyrating particles are in the high
pressure region compared to low pressure region. This gives the appearance
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of a flow without any motion of the gyro-centers. It should be noted that
while it is not an actual drift, it can be related to the grad-B drift, curvature
drift and magnetization drift [55]. Moving on to the next order the same
procedure is followed applying b× to (2.70) and use the BACCAB rule again
to obtain:

0 =qsnsb×us,1×B−nsmsb×
(
∂

∂t
+us,0 ·∇

)
us,0

−b×∇·πs(us,0) +b×Rs(us,0) +msnsb×Su(us,0)

=qsnsus,1,⊥B−nsmsb×
(
∂

∂t
+us,0 ·∇

)
us,0

−b×∇·πs(us,0) +b×Rs(us,0) +msnsb×Su(us,0)

⇒ us,1,⊥ = ms

qsB
b×

(
∂

∂t
+us,0 ·∇

)
us,0 +∇·πs(us,0)

qsnsB

− b×Rs(us,0)
qsnsB

−msb×Ss(us,0)
qsB

≡us,p+us,π +us,R+uSu,s (2.72)

The four terms arising here are the polarisation term, which is a correction
to the E×B and diamagnetic drifts [56], the viscosity drift due to the stress
tensor, the resistive drift due to collisional interactions with other species
and a source/sink drift due to either the contribution of new particles or
some source in the velocity. This now gives a closed set of equations for
the velocities and so we no longer need to solve the momentum equation.
If one in the future wishes to have more terms included, the procedure is
very simple as one just does what was done to the two lowest orders, i.e.
apply b× and solve for uα,n in terms of lower order drifts. Above, six drift
terms have been defined, where the E×B and the diamagnetic drift were
explicitly given. The ε1 terms are all given through as functions of the ε0
drifts. Proceeding now to write them out explicitly gives for the polarisation
drift:

us,p = ms

qsB
b×

(
∂

∂t
+us,0 ·∇

)
us,0

= ms

qsB
b×

(
∂

∂t
+
[
b×∇φ
B

+ b×∇ps
qsnsB

]
·∇
)[
b×∇φ
B

+ b×∇ps
qsnsB

]
(2.73)

In the electrostatic approximations ∂tb= 0. Additionally, it is assumed that
the local curvature of the magnetic field is negligible and so ∇b = 0. With
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this and some vector algebra to move the b× under the derivative sign yields:

us,p =− ms

qsB

(
∂

∂t
+
[
b×∇φ
B

+ b×∇ps
qsnsB

]
·∇
)[
∇⊥φ
B

+ ∇⊥ps
qsnsB

]

=− ms

qsB

(
∂

∂t
+us,0 ·∇

)
us,0,⊥ (2.74)

The resistive drift Rs′→s consists of a frictional force and thermal force.
Inserting the expression for the lowest order drifts in the frictional force
(Eq. (2.29)) yields:

us,R,u,⊥ =−b×Ru,s(us,0)
qsnsB

=−
∑
s′

b

qsnsB
× (−msnsνs′→s [us−us′ ])

=
∑
s′
msνs′→s

b

qsB
×
(
�
�
�
��b×∇φ

B
+ b×∇ps

qsnsB
−
�
�
�
��b×∇φ

B
− b×∇ps

q′sn
′
sB

)

=−
∑
s′

msνs′→s
qsB

(
∇⊥ps
qsnsB

− ∇⊥ps
q′sn
′
sB

)
(2.75)

Doing the same for the thermal resistive force in Eq. (2.56) gives:

us,R,T,⊥ =−b×RT,s(us,0)
qsnsB

=− b×
qsnsB

(
3
2msnsνs′→sµs′s

(
b×∇Ts
msqsB

− b×∇Ts
′

ms′qs′B

))

= 3
2
nsνs′→sµs′s
qsnsB

(
∇⊥Ts
msqsB

− ∇⊥Ts
′

ms′qs′B

)
(2.76)

It should here be noted that because nsmsνs′→s = ns′ms′νs→s′ it can be
shown that ZsnsuR,s′→s =−Zs′ns′uR,s→s′ .

For the viscous drift, the collisional perpendicular part results in the
corresponding drift

uπ,⊥ = 1
qαnαB


∂xηα,⊥

(
∂x(∂xφB + ∂xpα

qαnαB
)−∂y(∂yφB + ∂ypα

qαnαB
)
)

∂xηα,⊥
(
∂x(∂yφB + ∂ypα

qαnαB
) +∂y(∂xφB + ∂xpα

qαnαB
)
)

0
+∂yηα,⊥

(
∂x(∂yφB + ∂ypα

qαnαB
) +∂y(∂xφB + ∂xpα

qαnαB
)
)

−∂yηα,⊥
(
∂x(∂xφB + ∂xpα

qαnαB
)−∂y(∂yφB + ∂ypα

qαnαB
)
)

0

 (2.77)
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Similarly the gyro-viscous contribution to the viscous drift becomes:

uπ,gy = 1
qαnαB


∂xηα,gy

(
∂x(∂yφB + ∂ypα

qαnαB
) +∂y(∂xφB + ∂xpα

qαnαB
)
)

−∂xηα,gy
(
∂x(∂xφB + ∂xpα

qαnαB
)−∂y(∂yφB + ∂ypα

qαnαB
)
)

0
−∂yηα,gy

(
∂x(∂xφB + ∂xpα

qαnαB
)−∂y(∂yφB + ∂ypα

qαnαB
)
)

−∂yηα,gy
(
∂x(∂yφB + ∂ypα

qαnαB
) +∂y(∂xφB + ∂xpα

qαnαB
)
)

0

 (2.78)

Lastly remains the source drifts. With the definitions of Su and Sn given in
Eqs. (2.61) and (2.62) the resulting drift is given by:

uSu,s =−msb×Su,s
qsB

=− ms

qsB

([
b×u′s+∇φ

B
+ ∇ps
qsnsB

]
Σn,s

ns
+b×Σu,s

)
(2.79)

This concludes the individual drifts from the drift fluid expansion.

2.2.2 Drift reduced moment equations
With the continuity equation in Eq. (2.21) and the drift velocities derived
above, the drift reduced continuity equation can now be written out. Here
it is beneficial to split it into ion density equations and electron density
equation. The reason for this is that the polarisation drift and viscosity drift
both depend on mass and so are much smaller than their ion counterpart
meaning they can be neglected. For the ions the density equation becomes:

∂

∂t
nα+∇·

(
nα
[
uE +uD,α+up,α+uR,α+uπ,α+uSu,α

])
= Snα (2.80)

The electron counterpart with the mass consideration becomes:

∂

∂t
ne+∇·

(
ne
[
uE +uD,e+uR,e+uSu,e

])
= Sne (2.81)

Since the drift fluid expansion has been performed there is no need to look at
the momentum equation any more and leaving only the pressure equations.
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With the drifts, this gives the ion pressure equation:

3
2
∂

∂t
pα+ 3

2∇·
(
pα
[
uE +uD,α+up,α+uR,α+uπ,α

])
+pα∇·

(
uE +uD,α+up,α+uR,α+uπ,α

)
+πα :∇u0,α+∇·qα

=Qα−
(
uE +uD,α

)
·Rα(u0)

+Spα−
(
uE +uD,α

)
·Suα + 1

2mα

(
uE +uD,α

)2
Snα (2.82)

and the electron pressure equation

3
2
∂

∂t
pe+ 3

2∇·
(
pe
[
uE +uD,e+uR,e

])
+pe∇·

(
uE +uD,α+uR,α

)
+∇·qe

=Qe−
(
uE +uD,α

)
·Re(u0)

+Spe−
(
uE +uD,e

)
·Su,e+ 1

2me

(
uE +uD,e

)2
Sn,e (2.83)

While there are now equations for the density and pressure and the mo-
mentum is no longer needed, there is still the need for an equation that
updates the electric field. As mentioned the, the electrostatic approxima-
tion is used with the magnetic field assumed constant. A common approach
to find the electric field and consequently the potential could be to simply
find the charge distribution by subtracting the electron charge density ene
from the ion charge distribution ∑αZαenα and the solve the corresponding
Poisson equation:

∇2φ=−e(∑αZαnα−ne)
ε0

(2.84)

While simple, it would involve fast time scales. The trick is to invoke the
assumption of quasi-neutrality ne ≈

∑
αZαnα. What is meant with this is

that it is assumed that the macroscopic plasma to be neutral[30]. What it
does not mean, however, is that there can be no electrical field. The reason
for this is that fluctuations on the Debye length scale are allowed which
consequently allows for small electric fields. This is needed for the drift wave
instability to evolve.

From the ion equation it is seen that it contains the polarisation term
which includes the time derivative of the vorticity ω = ∇2φ

B . Subtracting the
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electron density equation from the sum of ion density equation yields:
∂

∂t

∑
α
Zαnα−ne+∇·

(∑
α
Zαnα

[
uE +uD,α+up,α+uR,α+uπ,α

]
−ne

[
uE +uD,e+uR,e

])
=
∑
α
ZαSnα−Sne (2.85)

Due to the quasi-neutrality condition, the ∂tn terms cancel each other and
the same goes for the uE terms. Furthermore, as noted earlier ZsnsuR,s′→s =
−Zs′ns′uR,s→s′ and so all resistive force terms drop out. With these consid-
erations we can now write the vorticity equation as:∑

Zα∇·nα
mα

qαB

(
∂

∂t
+uα,0 ·∇

)
uα,0,⊥

=∇·neuD,e
∑
α
Zα∇·nα

(
uD,α+uπ,α

)
−∇· (neuD) (2.86)

This now needs to be solved in regards to ∂tφ which unfortunately is rather
non-trivial as will be seen in the section on the numerical implementation.
This concludes all equations needed for a full system of coupled pde’s that
can be be used to study turbulent transport.

2.2.3 The MIHESEL equations
The equations as they are now are still somewhat computationally unwieldy
and so the aim is to reduce the complexity. This is done in two parts,
one where the individual expression within the equations is used to reduce
the number of terms and simplify. This does not change the physics of the
equations. The other part is where a number of approximations are employed
to make the model suitable for numerical implementation. The final set of
equations after these steps is the Multi-Ion Hot Edge/SOL Electrostatic,
abbreviated MIHESEL, model, an update of the HESEL model [17], which
does the same, but only for a single ion species.

2.2.3.1 Term reduction

To start, the polarisation drift and gyro-viscous drift terms in the density
equation are considered. For these two terms what is commonly referred to as
gyro-viscous cancellation is employed [53], [57]–[59]. Omitting the derivation,
the consequence of the cancellation is that part of the gyro-viscous stress
tensor cancels the diamagnetic advection contribution in the polarisation
terms:

∇·πgy,⊥,α+nα
(
uD,α ·∇

)
u⊥,α,0 =∇⊥χ. (2.87)
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Where∇⊥χ is the remainder of the gyro-viscous cancellation. As this appears
in the density equation it will naturally carry over to the vorticity equation.
The exact form of the remainder term is not discussed here as it is dropped
due to only contributing when the magnetic field is inhomogeneous in which
case the contribution is small. Moving on to the pressure equations, the
diamagnetic contributions from the drifts and the heat flux are reduced as
follows:

3
2∇·psuD,s+ps∇·uD,s+∇·q×,s

=3
2∇·

(
Ts
b×∇ps
qsB

)
+ps∇·

b×∇ps
qsnsB

+∇·
(

5
2
ps
qsB

b×∇Ts
)

=5
2∇·

(
Ts
qsB

b×∇ps
)
−
���

���
��:0b×∇ps

qsnsB
·∇ps + 5

2∇·
(
ps
qsB

b×∇Ts
)

=5
2∇·

(
b

qsB
×∇ [nsps]

)
= 5

2∇×
(
b

qsB

)
·∇

(
p2
s

ns

)
(2.88)

For the last equality the identity ∇· (G×H) = (∇×G) ·H − (∇×H) ·G
and that ∇ ·∇g = 0, for some function g, were utilised. Continuing with
the heat flux it is noted that the expressions for the electron heat flux given
in Eq. (2.49) greatly resembles the expressions of the frictional and thermal
resistive drifts given in Eqs. (2.75) and (2.76) and when taking the mass ratio
of ions and electrons into consideration meaning the heat flux can writen:

q⊥,e = q⊥,u,e+q⊥,T,e

=−3
2peuR,u,e−

∑
α
pe

(
13
4 +
√

2
Zα

)
2
3uR,T,α→e. (2.89)

Combining this with the resistive drift terms for electrons gives:

3
2∇· (peuR,e) +pe∇·uR,e+∇·q⊥,e−Qe+

(
uE +uD,e

)
·Re

= 5
2∇· (peuR,e)−��

���
�

uR,e ·∇pe +∇·q⊥,e−Qe+ b×∇φ
B

·Re+
��

��
��
�

b×∇pe
qeneB

·Re

=∇· (peuR,e)−∇·
∑
α
pe

(
1 +
√

2
Zα

)
2
3uR,T,e−Qe+uR,e · (qene∇φ) .

(2.90)
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Here it was used that (G×H) ·J =G ·(H×J) to rewrite
(
uE +uD,e

)
·Re.

Following a similar procedure for the ions results in:
3
2∇· (pαuR,α) +pα∇·uR,α−Qα+

(
uE +uD,α

)
·Rα

= 5
2∇·

(
pαuR,α

)
−Qα+uR,α · (qαnα∇φ) (2.91)

2.2.3.2 Drift terms and their final form

The above rewrites made for some simpler expressions. Unfortunately, the
drift versions of the moment equations are still not easily implementable.
Hence appropriate approximations are sought in order to get a numerically
implementable model. All drift terms are now considered individually, in the
context in which they appear.

E ×B drift related terms Starting with the main driver of the inter-
change instability in the form of the E×B-drift yields

∇· (nαuE) = nα∇·
(
b×∇φ
B

)
+uE ·∇nα

= d

dt
nα+nαC(φ) (2.92)

Where

C(f)≡∇·
(
b×∇f

b

)
(2.93)

is the curvature operator. The total derivative was given in Eq. (2.68). The
main driver of transport is the electric field. Henceforth the total derivative
will be evaluated using the E×B drift:

d

dt
≈ ∂

∂t
+uE ·∇ (2.94)

the above expression can be combined with the temporal derivative of the
density to yield:

∂

∂t
nα+∇· (nαuE) = d

dt
nα+nαC(φ) (2.95)

Performing the same procedure for the ion and electron pressure equation
yields:

3
2
∂

∂t
ps+ 3

2∇· (psuE) +pα∇·uE = 3
2
d

dt
ps+ 5

2pαC(φ) (2.96)

This is not really an approximation, but rather the form of which it appears
given the curvature operator.
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Diamagnetic drift For the diamagnetic drift, the approach used with the
electric drift wrt. the density equation in Eq. (2.92), is used here as well:

∇·
(
nsuD,s

)
=∇·

(
ns
b×∇ps
qαnsB

)
=∇·

(
b×∇ps
qsB

)
= 1
qs
C(ps) (2.97)

Since the above expression is the same for both electrons and ions, the re-
sulting contribution to the vorticity equation becomes:

∑
α
Zα∇·

(
nαuD,α

)
−∇·

(
neuD,e

)
= C

(∑
α
pα+pe

)
(2.98)

For the pressure equations it was seen in Eq. (2.88) that terms related to
diamagnetic drift partly cancel each other. Using the vector identities ∇·
(A×B) = (∇×A) ·B− (∇×B) ·A and that ∇× (∇φ) = 0 this can be
expressed in terms of the curvature operator:

3
2∇·psuD,s+ps∇·uD,s+∇·q×,s

= 5
2∇×

(
b

qsB

)
·∇

(
p2
s

nα

)
= 5

2
1
qs
C
(
p2
s

ns

)
(2.99)

This concludes the lowest order drift terms which are the main drivers of
transport with the diamagnetic drift being instrumental in the creation of
electric fields and the electric drift being the main driver of radial transport.
What should be noted here is that all the terms, though reduced in form,
contain the exact same physics as in Eq. (2.71).

Polarisation related terms For the next order drift, the polarisation
terms is considered first along with the gyro-viscous terms. Since it is mass
dependent the contribution to the electron pressure equation is negligible and
hence dropped. The polarisation term is however of utmost importance as it
allows for the calculation of the electric field through the vorticity equation.
For the density equation the implication of the gyro-viscous cancellation was
already discussed in which the remainder term in this is often neglected as
it merely serves as a correction when the magnetic field is inhomogeneous
[Madsen]:

∇· (nαup,α) +∇· (nαuπ,gy)

≈∇·
(
nα

Ωc,α

(
∂

∂t
+uE ·∇

)(
uE +uD,α

))
(2.100)
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Furthermore, this is approximated using the thin layer approximation, or
Boussinesq approximation, where the density factor before the total deriva-
tive is linearised. This reason for doing this is to easy the numerical imple-
mentation in the vorticity equation. The result is:

∇· ( nαΩc,α

(
∂

∂t
+uE ·∇

)(
uE +uD,α

)
≈ nα,0

Ωc,α,0
∇·

(
∂

∂t
+uE,0 ·∇

)(
uE,0 +uD,α,0

)
(2.101)

Where uE,0 is the E×B drift evaluated at a constant reference magnetic
field B0. Likewise, the diamagnetic drift uD,α,0 is evaluated using reference
values nα,0 and B0 in the denominator (see Eq. (2.71)). It is rather debatable
whether the thin layer approximation is valid since there are rather steep
gradients in the density in the outer mid-board region[60]. The ion pressure
counterpart is formally small and is consequently neglected [17]. The pressure
equations also contain the term pα∇·up,α which is approximated similarly
Eq. (2.101), except the pα factor is already outside the divergence. The result
is:

pα∇·up,α ≈
pα

Ωc,α,0
∇·

(
∂

∂t
+uE,0 ·∇

)(
uE,0 +uD,α,0

)
(2.102)

Resistive drift The interaction between particles is assumed twofold. First,
there is the electric field due to long-range interaction which is dealt with
through the electric drift. Secondly, there are the short-range electric inter-
actions which, as discussed earlier, closely resemble binary collisions. The
resistive contributions to the equations will be dealt with here. The terms as
they are now are rather cumbersome to work with and so appropriate approx-
imations are needed. The first thing to note is that the thermal part of the
resistive force partly cancels the temperature gradient part of the frictional
resistive force:

uR,s =−
∑
s′

νs′→s
msΩ2

c,s

(
∇ps
ns
− qs
qs′

∇ps′
ns′

)
+ 3

2
∑
s′

νs′→s
msΩ2

c,s
µss′

(
∇Ts
ms
− qs
qs′

∇Ts′
ms′

)

=−
∑
s′

νs′→s
msΩ2

c,s

(
ns
∇Ts
ns
− qs
qs′

ns′∇Ts′
ns′

)
−
∑
s′

νs′→s
msΩ2

c,s

(
Ts
∇ns
ns
− qs
qs′

Ts′∇ns′
ns′

)

+ 3
2
∑
s′

νs′→s
msΩ2

c,s
µss′

(
∇Ts
ms
− qs
qs′

∇Ts′
ms′

)
≈−

∑
s′

νs′→s
msΩ2

c,s

(
Ts
∇ns
ns
− qs
qs′

Ts′∇ns′
ns′

)
(2.103)
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To lessen the reading burden, a diffusion coefficient is introduced which is
defined as

Ds′→s = ρ2
sνs′→s =

νs′→sv
2
th,s

Ω2
c,s

(2.104)

where vth =
√
Ts/ms is the thermal speed and Ω = qsB/ms is the gyro fre-

quency as mentioned earlier. Evaluating the collision frequency νs′→s given
in 2.30 at reference density ns′,0 and temperature Ts,s′,0 and likewise for the
thermal velocity and lastly the gyro frequency at B0, the resistive drift can
be approximated as:

uR,s ≈−
∑
s′

Ds′→s,0ns′

ns′,0Ts,0

(
Ts
∇ns
ns
− qs
qs′
Ts′
∇ns′
ns′

)
≡ uR,s,0 (2.105)

Inserting this into the the density equation gives:

∇·
(
nsuR,s,0

)
=−

∑
s′

Ds′→s,0
ns′,0Ts,0

(
Ts∇ns′ ·∇ns+ns′∇Ts ·∇ns+Tsns′∇2ns

− Zs
Zs′

[
Ts′∇ns ·∇ns′+ns∇Ts′ ·∇ns′+Ts′ns∇2ns′

])
,

(2.106)

Multiplying by Zs it is, after some simple algebra, verified that Zs∇·
(
nsuR,s,0

)
=

−Z ′s∇·
(
n′suR,s′,0

)
. For the electron and ion pressure equation it was seen in

Eq. (2.90) and Eq. (2.91) respectively how the resistive drift enters. Using
the same approach as in the density equation it is found that:

∇·
(
psuR,s,0

)
≈∇·T0,snsuR,s,0 =−

∑
s′

Ds′→s,0
ns′,0(

Ts∇ns′ ·∇ns+ns′∇Ts ·∇ns+Tsns′∇2ns

− Zs
Zs′

[
Ts′∇ns ·∇ns′+ns∇Ts′ ·∇ns′+Ts′ns∇2ns′

])
, (2.107)

And lastly

uR,s · (qsns∇φ)' uR,s,0 · (qsns∇φ)

=−
∑
s′

Ds′→s,0
ns′,0Ts,0

(
Tsns′∇ns−

qs
qs′
Ts′ns∇ns′

)
· (qs∇φ) . (2.108)
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Viscosity The last kind of drift is the viscosity drift. As noted in Eq. (2.51)
this could be split into a collisional, gyro viscous and parallel part with the
latter being neglected. Starting with the collisional drift the thin layer ap-
proximation approach is employed as was done with the polarisation equation
to arrive at:

∇·nαuπ,⊥,α ≈
∑
β

nα,0Dπ,β→α,0
Ωc,α,0

∇2∇2
(
∇φ
B0

+ ∇pα
qαnα,0B0

)
, (2.109)

Here a viscosity diffusion coefficient has been introduced which is defined as

Dπ,β→α,0 ≡
η⊥,β→α,0
nα,0mα,0

=Dβ→α,0
mαmβ(

mα+mβ

)2

(
3
10
mβ

mα
+ 1

2 −
1
5
mβ

mα

Zα
Zβ

)
. (2.110)

where the coefficient η⊥,β→α,0 was defined in Eq. (2.55). Here it should be
noted that when α= β, the results is a factor two smaller than what is found
in Braginskii[37]. The gyro viscous part in the density equations was partly
cancelled due to the gyro-viscous cancellation with the polarisation drift as
discussed in Section 2.2.3.2. The corresponding term in the pressure equation
was also discussed, where it was argued that together with the polarisation
drift it was negligible. The pressure term corresponding to Eq. (2.109) is for-
mally small and so it is dropped[17]. The other ion pressure term containing
the polarisation drift is given as:

pα∇·uπ,⊥,α ≈ pα
∑
β

Dπ,β→α,0
Ωc,α,0

∇2∇2
(
∇φ
B0

+ ∇pα
qαnα,0B0

)
, (2.111)

Lastly for the viscosity dependent terms are the dyadic product term πuα,0.
For clarity, consider the lowest order drifts when the magnetic field is in the
z-direction:

uα,0 = b×φ
B

+ b×φ
qαnαB

= 1
B

(
−∂yφ
∂xφ

)
+ 1
qαnαB

(
−∂ypα
∂xpα

)
(2.112)

Inserting this into the pressure tensor when only considering the x,y coordi-
nates and approximating with B0 and n0 in the denominators, the perpen-
dicular collisional part can be written:

π⊥,α =−η⊥,α

 (∂xux−∂yuy) (∂xuy +∂yux)
(∂xuy +∂yux) −(∂xux−∂yuy)

 (2.113)

≈−η⊥,α

 −2∂xyφB0
−2 ∂xypα

qαnα,0B0
(∂xx−∂yy)φ

B0
+ (∂xx−∂yy)pα

qαnα,0B0

(∂xx−∂yy)φ
B0

+ (∂xx−∂yy)pα
qαnα,0B0

2∂xyφB0
+ 2 ∂xypα

qαnα,0B0

 (2.114)
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Likewise for the gyro-viscous part one gets:

πgy,α =−η⊥,α

 (∂xuy +∂yux) −(∂xux−∂yuy)
−(∂xux−∂yuy) −(∂xuy +∂yux)

 (2.115)

≈−η⊥,α


(∂xx−∂yy)φ

B0
+ (∂xx−∂yy)pα

qαnα,0B0
2∂xyφB0

+ 2 ∂xypα
qαnα,0B0

2∂xyφB0
+ 2 ∂xypα

qαnα,0B0
− (∂xx−∂yy)φ

B0
− (∂xx−∂yy)pα

qαnα,0B0

 (2.116)

Taking the gradient of the lowest order drift velocities gives

∇uα,0 =
[
∂xuα,0,x ∂yuα,0,x
∂xuα,0,y ∂yuα,0,y

]
≈

 −
(
∂xyφ
B0

+ ∂xypα
qαnα,0B0

)
−
(
∂yyφ
B0

+ ∂yypα
qαnα,0B0

)
(
∂xxφ
B0

+ ∂xxpα
qαnα,0B0

) (
∂xyφ
B0

+ ∂xypα
qαnα,0B0

) 
(2.117)

Proceeding now to take the double dot, or dyadic, product3 between the
viscous tensor and the gradient of the velocity gives:

πgy,α :∇uα,0 ≈−ηα

[∂xxφ
B0

+ ∂xxpα
qαnα,0B0

− ∂yyφ
B0

+ ∂yypα
qαnα,0B0

]2

−4
[
∂xyφ

B0
+ ∂xypα
qαnα,0B0

])
(2.118)

=−
∑
β

mαnα,0Dπ,β→α,0

[∂xxφ
B0

+ ∂xxpα
qαnα,0B0

− ∂yyφ
B0

+ ∂yypα
qαnα,0B0

]2

−4
[
∂xyφ

B0
+ ∂xypα
qαnα,0B0

])
(2.119)

where in the last equality the definition of the viscous diffusion given in
Eq. (2.110) was used.

Heat Fluxes The diamagnetic contribution to the ion heat flux, qs,×, was
already discussed in Section 2.2.3.2 resulting is a much more compact expres-
sion. Furthermore, in Eq. (2.90) it was seen for electrons how the resistive
part of the heat flux could be combined with the electron resistive drift. The
ion resistive heat flux given in Eq. (2.48) is approximated similar to all terms

3The definition of the double dot product is ambiguous and is often stated as either
A :B= aijbji orA :B= aijbij where sum over indices are implied. For this work the latter
is used, however it should be noted that for symmetric A or B the two are equivalent.
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including collisions:

∇·q⊥,α = pα
m2
αΩ2

c,α

∑
β

µαβνβ→α

(
3
2

[
∇pα
nα
−
Zα∇pβ
Zβnβ

]

− mα

mα+mβ

[(
13
4
mβ

mα
+ 4 + 15

2
mα

mβ

)
∇Tα−

27
4
Zα
Zβ
∇Tβ

])
. (2.120)

Sources and Sinks In Section 2.1.3 the sink and source terms Sn, Su
and Sp were expressed in regards to the fundamental fluid variable sources
Σn, Σu and Σ. The density and fluid velocity sources each contribute to Su
and consequently also to the resulting source drift uS . Inserting it into the
density equation yields

∇·
(
nsuSu,s

)
=−∇·

(
ns
msb×Su,s

qsB

)

=−∇·
[
ms

qsB

([
b×u′s+∇φ

B
+ ∇ps
qsnsB

]
Σn,s+nsb×Σu,s

)]

≈− ms

qsB0
∇·

([
b×u′s+∇φ

B0
+ ∇ps
qsns,0B0

]
Σn,s+nsb×Σu,s

)
(2.121)

Since there is a mass dependency, the term is neglected for electron density.
The approximations used here, readily carries over to the vorticity equation.
For the ion pressure equation the two terms containing the source drift are
written as:

∇·
(
psuSu,s

)
=−∇·ps

msb×Su,s
qsB

=−∇·
[
ms

qsB

([
b×u′s+∇φ

B
+ ∇ps
qsnsB

]
TsΣn,s+psb×Σu,s

)]

≈− ms

qsB0
∇·

([
b×u′s+∇φ

B0
+ ∇ps
qsns,0B0

]
TsΣn,s+psb×Σu,s

)
(2.122)
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and

ps∇·uSu,s =−ps∇·
msb×Su,s

qsB

=−ps∇·
[
ms

qsB

([
b×u′s+∇φ

B
+ ∇ps
qsnsB

]
Σn,s

ns
+b×Σu,s

)]

≈− ms

qsB0
∇·

([
b×u′s+∇φ

B0
+ ∇ps
qsns,0B0

]
Σn,s

ns
+b×Σu,s

)
(2.123)

For the pressure equations there was also a general pressure source Sp given
in Eq. (2.63). In the implementation, the zeroth order velocities are used to
evaluate the plasma fluid velocity giving

Sp ≈
1
2ms

(
u′s−

[
b×∇φ
B

+ b×∇ps
qsnsB

])2
Σn,s+ 3

2
(
T ′sΣn,s+nsΣT,s

)

=1
2ms

u′2s +
(
∇φ
B

+ ∇ps
qsnsB

)2
−2

(
b×∇φ
B

+ b×∇ps
qsnsB

)
·u′s

Σn,s

+ 3
2
(
T ′sΣn,s+nsΣT,s

)
(2.124)

where in the last equality it was used that b ·∇⊥φ= b ·∇⊥ps = 0 since only
the perpendicular components are of interest.

Neoclassical corrections It has been found that the calculation of the
collisional transport, exemplified in the viscosity and resistivity drifts which
is due to coulomb collisions, underestimates the transport in tokamak plas-
mas. Due to the magnetic geometry of a tokamak, particles can follow a
banana orbit trajectory within the plasma which severely increases the col-
lisional effects of the plasma[11]. As a consequence the collisional diffusive
transport is significantly increased. To account for the increased transport
caused by diffusion, the diffusion coefficients are modified by Pfirsch-Schluter
corrections in which a neoclassical correction is added to the classical diffu-
sion coefficients in the form of [61]

D→
(

1 + R

a
q2

95

)
D (2.125)

where q95 is the safety factor at the flux surface where 95% of the toroidal
flux is enclosed. Depending on the magnetic field configuration, this can
significantly increase the diffusive transport. It should be noted that the
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derivation of Pfirsch-Schluter corrections assume the magnetic field lines to
be closed while this model concerns transport on both open and closed field
lines. While a thorough derivation is beyond to scope of this work, it is
expected that the same mechanism occurs on the open field lines at least to
some extend as so the correction is applied equally here.

Parallel parametrisation The model so far has only dealt with a 2D
slab geometry, meaning the parallel fluxes have been completely neglected.
In order to remedy this the losses due to parallel transport are parametrised.
Unfortunately the parallel expansion with multiple species is not well un-
derstood in regards to a tokamak plasma, and so for the time being an
averaged approach will be used. For losses in the open field lines the im-
plementation is in line with the HESEL[62] model which, in turn, follows
the original ESEL model with cold ions[63]. In the single ion species case
it has been found that plasmas filaments expand into vacuum at the sound
speed cS =

√
(Te+Ti)/mi[64]. This expansion acts as a sink on the filament,

depleting it of particles. The parallel damping rate for the densities is then
in the single species case:

τn = Lb
2McS

(2.126)

where M is the Mach number and Lb is the parallel blob size which is ap-
proximated to be:

Lb = 2πq95R

6 ≈ q95R (2.127)

Since the multi-species systems are the focus here, the single ion sound speed
will be substituted with a common sound speed given by:

cS =
√∑

snsTs
msns

. (2.128)

This gives for the parallel loss term for the density equations
∂

∂t
nα −= nα

τn
. (2.129)

The vorticity is also affected by parallel loss mechanisms. This is in part due
to parallel advection of the vorticity and is parametrised as:

∑
α

nα,0
Ωc,α,0

∂

∂t

(
∇2φ

B
+ ∇2pα
qαnα,0B0

)
−= 1

τn

∑
α

nα,0
Ωc,α,0

(
∇2φ

B
+ ∇2pα
qαnα,0B0

)
(2.130)
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Similarly the ion and electron pressure are advected in the parallel direction
leading to loss. The resulting parametrisation is

3
2
∂

∂t
ps −= 9

2
ps
τn

(2.131)

Lastly the pressure is also subject to parallel heat conduction. The electron
parallel heat conduction due to currents is small due to quasi-neutrality. Con-
versely, parallel heat conduction due to thermal gradients is non-negligible.
The size of the heat conduction depends on the mix of the ions and so here
an effective charge approach will be used. The final parametrisation of the
electron heat conduction on the open field lines is given by:

∇‖ ·qe,T ≈−χ(Zeff ,0) neT
7/2
e

meνieff→e,0T
3/2
0 L2

c

(2.132)

where Lc is the parallel gradient scale, χ(Zeff ,0) is a Spitzer-Harm coefficient
related to the electron thermal conductivity evaluated at reference values and
νieff→e,0 is the collision frequency of the electrons with the effective ion mix
also evaluated at reference values. Zeff = ∑

αnαZ
2
α/ne. For Zeff ,0 = {1,2}

one gets χ(Zeff ,0) = {3.16,4.9}.
On closed magnetic field lines there is also a parallel loss in the form of

compression of the parallel current which is approximated by drift waves as
follows [62]:

∂

∂t
ne −= α

(
T̃e+ T̄e

n̄e
ñe− eφ̃

)
(2.133)

∂

∂t
pe −= αT̄e

(
T̃e+ T̄e

n̄e
ñe− eφ̃

)
(2.134)

where the coefficient is given by[65]

α = ne,0
σ‖(Zeff ,0)meνieff→e,0L

2
‖

(2.135)

and σ‖(Zeff ,0) is the Spitzer-Harm coefficient related to electrical conductiv-
ity. For Zeff ,0 = {1,2} one gets σ‖= {0.51,0.43}. L‖ is the parallel ballooning
length, and it typically set so L‖ = Lb The contribution to the electron den-
sity equation readily carries over to the vorticity equation. The mean and
fluctuation values are defined as follows:

f̄ = 1
Ly

∫ Ly

0
fdy (2.136)

f̃ = f − f̄ (2.137)
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The Spitzer-Harm coefficients were first evaluated numerically in [66] while
analytical expressions for any value of Z are given in [33]. It should be noted
that for the drift wave loss, only the electron density is explicitly affected.
This is due to the assumption that the electrons due to their small mass
contribute nearly exclusively to the current. The ions are implicitly affected
as they are coupled to the electron density through the vorticity equation.

Normalisation and the MIHESEL equations All terms involved in
the equations have now been derived and discussed. These can now be read-
ily inserted into the density, vorticity and pressure equations Eqs. (2.80),
(2.82), (2.83) and (2.86). Before writing down the full set of equations, it
is instructive to normalise all the above expressions. The idea is to bring
the scales of the equations into a comparable regime of order one and at the
same time put them into a dimensionless form. The procedure for doing this
is the gyro-Bohm normalisation:

Ts
Te,0
→ T̆s,

x

ρRef
→ x̆, Ωc,Ref ,0t→ t̆,

qrefφ

Te,0
→ φ̆,

ns
ne,0
→ n̆s, (2.138)

where ρRef =
√
Te,0mRef /q2

RefB
2
0 is the reference larmor radius and Ωc,Ref ,0 =

qRefB0/mRef the reference gyro frequency. Furthermore, constant parame-
ters are normalised as:

ms/mRef → µs, ns,0/ne,0→ as, Ts,0/Te,0→ τs (2.139)

The procedure for normalising the equations is rather straight forward and
only an illustrative glimpse will be given here. Starting with, e.g., the time
derivative in the pressure equation one gets:

3
2
∂

∂t
ps = 3

2ωRefne,0Te,0
∂

∂t̆
p̆s (2.140)

For the curvature taking, e.g. the potential related term in the density equa-
tion, one gets:

nsC(φ) =−ns
∂yφ

B0R
=−n0n̆s

Te,0
qRef ρRefR0B0

∂y̆φ̆

=−n0Ωc,Ref n̆s
ρRef
R0

∂y̆φ̆=−n0Ωc,Ref n̆sκ∂y̆φ̆ (2.141)

where κ= ρRef /R0 has been introduced as the curvature constant. This can
be done for all terms in all equation and will result in a factor ωRef and
either ne,0 for density and vorticity or the ne,0Te,0 for the pressure equations.
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From here on the breve (̆) is dropped for simpler notation. Introducing the
generalised potential

φ∗α = φ+ pα
Zαaα,0

, (2.142)

dividing through with Ωc,Ref and the appropriate field normalisation and
setting reference values to one yields:

d

dt
nα+nαC(φ) + 1

Zα
C(pα)

−aα
µα
Zα
∇·

(
d0

dt
∇⊥φ∗α

)
= Λnα , (2.143)

∑
α
aαµα∇·

(
d0

dt
∇⊥φ∗α

)
−C

(∑
α
pα+pe

)
= Λw, (2.144)

3
2
d

dt
pα+ 5

2pαC(φ) + 5
2

1
Zα
C
(
p2
α

nα

)

−pα
µα
Zα
∇·

(
d0

dt
∇⊥φ∗α

)
= Λpα , (2.145)

3
2
d

dt
pe+ 5

2peC(φ)− 5
2C
(
p2
e

ne

)
= Λpe . (2.146)

And the right hand side which contain all interactions due to collisions
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are given by:

Λnα =
∑
s

Ds→α,0
asτα

(
Tα∇ns ·∇nα+ns∇Tα ·∇nα+Tαns∇2nα

− Zα
Zs

[
Ts∇nα ·∇ns+nα∇Ts ·∇ns+Tsnα∇2ns

])
−
∑
β

aαDπ,β→α,0
Ωc,α,0

∇2∇2φ∗α+ Ξn,‖+Snα , (2.147)

Λw =
∑
α

∑
β

Zα
aαDπ,β→α,0

Ωc,0,α
∇2∇2φ∗α+ Ξw,‖+Sw, (2.148)

Λpα =5
2
∑
s

Ds→α,0
as

(
Tα∇ns ·∇nα+ns∇Tα ·∇nα+Tαns∇2nα

− Zα
Zs

[
Ts∇nα ·∇ns+nα∇Ts ·∇ns+Tsnα∇2ns

])
−pα

∑
β

Dπ,β→α,0
Ωc,α,0

∇2∇2φ∗α−
∑
β

Dβ→α,0
µαaβ

µαβ∇·
(

3
2

[
nβ∇pα−

Zα
Zβ

nα∇pβ
]

− µα
µα+µβ

nαnβ

[(
13
4
µβ
µα

+ 4 + 15
2
µα
µβ

)
∇Tα−

Zα
Zβ

27
4 ∇Tβ

])

+
∑
s

Ds→α,0
asτα

(
Tαns∇nα−

qα
qs
Tsnα∇ns

)
· (qα∇φ)

+
∑
β

µαaαDπ,β→α,0

[(
∂2
xφ
∗
α−∂2

yφ
∗
α

)2
+ 4(∂xyφ∗α)2

]

+
∑
s

3nαnsνs→α,0µα (Ts−Tα)
as(µα+µs)

+ Ξpα,‖+Spα , (2.149)

Λpe =
∑
s

Ds→α,0
asτe

(
Te∇ns ·∇ne+ns∇Te ·∇ne+Tens∇2ne

−Ze
Zs

[
Ts∇ne ·∇ns+ne∇Ts ·∇ns+Tsne∇2ns

])

+
∑
α

(
1 +
√

2
Zα

)
Dα→e,0∇· (ne∇Te)

+
∑
s

Ds→e,0
asτe

(
Tens∇ne−

qe
qs
Tsne∇ns

)
· (qe∇φ)

+
∑
s

3nensνs→e,0µe (Ts−Te)
as(µe+µs)

+ Ξpe,‖+Spe . (2.150)

where Ξf,‖ represents the parallel loss terms for a field f with expressions
given in Eqs. (2.129) to (2.134). Similarly, the Sn terms are all expressions
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related to sources including drifts associated with sources as given in 2.121
2.122 2.123 2.124 as well as for whatever form Σnα . For the vorticity equation,
the quasi-neutrality condition gives ∑αZαΣnα−Σne = 0. Two forms of the
total derivative were used which are given as

d

dt
= ∂

∂t
+ 1
B
{φ, ·} and d0

dt
= ∂

∂t
+{φ, ·} . (2.151)

where the Poisson bracket was used, which is given as:

{f,g} ≡ ∂xf∂yg−∂yf∂xg (2.152)

2.2.3.3 Summability of the MIHESEL model

One important aspect of the multispecies model is that it should converge
to a single species model when multiple species are identical in mass, charge
and temperature. I.e., taking a single ion species plasma and arbitrarily
dividing it into two identical species should give the exact same result. For
the MIHESEL equations this means that:

∑
α

(
∂

∂t
nα+∇· [nαuα]

)
=
(
∂

∂t
ni+∇· [niui]

)
(2.153)

where ∑αnα = ni and ui are evaluated using ni. The same goes for the
pressure equation. However, the truncation involved in the drift expansion
procedure appears to introduce an asymmetry that causes the above men-
tioned condition to not be met. Looking further into the drift it is found
that the E×B, diamagnetic and resistive drift all either add linearly in nα
or add to zero, leading to exact results. The polarisation on the other hand
introduces non-linear addition of the density as seen in the following:

∑
α
∇·nαup,α =

∑
α
∇·

(
nα

Ωc,α
b× d

dt

(
b×∇φ
B

+ b×∇pα
qαnαB

))

6=∇·
(∑

αnα
Ωc,α

b× d

dt

(
b×∇φ
B

+ b×∇pi∑
α qαniB

))
(2.154)

where ni = ∑
αnα. The non-linearity in nα is as a consequence of the in-

clusion of the diamagnetic drift as a lowest-order drift. However, this is
debatable as such a drift is inherently charge separating at this order. This
potentially violates the quasi-neutrality condition. Similarly, the expression
for the perpendicular collisional part of the stress tensor evaluated at u0,α is
non-linear. Overall the result is that the density equation does not sum up
in a way that makes it possible to arbitrarily split a species, solve the system
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as a multi-species system and still get the same overall result. Fortunately,
a number of the approximations were employed which linearised the equa-
tions in such that the density equation sum up as expected. However, the
pα∇·

(
up,α+uπ,⊥

)
still retain the non-linearity in density under summation.

Fortunately, the terms are higher-order and so are in numerical experiments
found to be small. More generally, consider a single species being split as:

nα(x,y, t= 0) = fα(x,y)ni(x,y, t= 0),
∑
α
fα(x,y) = 1 (2.155)

where fα(x,y) is some function describing the splitting. If fα(x,y) = const,
the ratio of the species is a constant in space, and so the density and ion
pressure equations add as required. It is only in the cases where it is not a
constant that the non-addibility of the equations is present. It should also be
noted that the resistive force, in general, seeks to homogenise the density ratio
over space, further reducing the problem, unless there is a constant source
such that counteracts this. Furthermore, the drift fluid expansion, which is a
rather fundamental expansion in plasma physics, contains an inconsistency in
that the diamagnetic drift with this ordering should lead to charge separation.
This is in contrast to the quasi-neutrality condition. Thus the inclusion of
the diamagnetic term as a lowest-order is questionable [67]. While this is an
inconsistency in the approach, the terms that supply the inconsistency are
higher-order terms meaning their contribution is small. Furthermore, the
resistive forces between ion species act to equilibrate the ion density ratios
over all space. Hence the separation in ion species is small and therefore
negligible.

2.3 Section conclusion - current issues and
ideas for future implementations

In the previous sections, the derivation of the fluid equations from the single-
particle Boltzmann equation was discussed. Concerning this, it was clear that
a closure was needed to obtain a solvable set of equations. For this work,
the Zhdanov closure was used, which is based on Grad’s moment method,
which was originally used for dilute gasses, but easily generalises to charged
particles. In this context, the Zhdanov closure used a 21-moment method
to obtain accurate representations of the physical quantities. However, this
closure was limited to only deal with similar ion temperatures ‖Tα−Tβ‖ �
Tα. In future work, this should be expanded upon such that temperature
limits are not as strict. This will be useful when studying, e.g., heating by
ion cyclotron resonance heating (ICRH) where the heating is dominated by
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transfer at the resonance frequency. This means that a main ion will be
heated by the ICRH whereas other species will be predominantly heated by
collisions. This is possible to investigate as the model is now provided that
the ICRH heating is significantly slower than the collisional heat exchange. In
such a case, the temperatures will equilibrate faster than the heated species
heats up. In regards to neutrals, they are typically much colder than the
plasma, and so when they are ionized they start at a lower temperature,
meaning the MIHESEL model is not well suited for such cases. To overcome
the temperature limitation, a thorough mathematical derivation of the 21-
moment method should be done without the limitation. Some work has
been done to get exact expressions for an arbitrary number of moments with
arbitrary temperatures [43], [68], [69]. This could serve as a starting for the
studies.

Furthermore, the drift fluid expansion presented an adding problem when
there are more than two species. The problem was that the terms involving
polarisation and collisional viscosity do not add in such a way that a single
species could be described as an arbitrarily split two or more species plasma.
It was noted that the main cause of the problem was the inclusion of the
diamagnetic drift in the lowest order drift, which in turn is due to steep
gradient in the edge/SOL region. However, there is an inconsistency in this
as it is a charge separating drift and the derivation is hinged on the quasi-
neutrality condition which might be violated in such a case. How the splitting
problem can be overcome should be something that is considered for future
studies.

In the parametrisation of the parallel dynamics, a common averaged ap-
proach was used by, e.g., using a common sound speed. In this regard it
would be preferable to do more work on multi-species plasma expansion in a
vacuum in order to obtain a more accurate parametrisation. Starting studies
could/should involve [70]–[72].

Lastly, the model was derived as an extension of the HESEL model along
with many of the same approximations, such as the Boussinesq approxi-
mation. This was in large part due to numerical convenience. It would be
interesting to test the effect of the approximation compared to the full model.

In the next chapter, the numerical implementation of the model is pre-
sented along with the numerical framework used to solve them. In chapter
4, the equations are employed to study both seeded blobs and turbulent
transport.
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Chapter 3

Numerical implementation

In the previous section, the theoretical derivation of the MIHESEL model
was presented. Based on the Boltzmann equations, the moment equations
were derived to develop a reduced fluid model that could be used to study
turbulent transport. However, providing an analytical solution to the MI-
HESEL equations is close to impossible. As such, the system of equations
is cast as an initial value problem, which allows for performing numerical
simulations to obtain a solution. In this section, the tools used to solve the
equations will be presented. This includes the numerical library that is used,
the spatial discretisation, linear and non-linear solvers and time integration
schemes. The time integration and non-linear solver are the main contribu-
tions to the library as a result of this work. Furthermore, for the MIHESEL
equations stated in Eqs. (2.143) to (2.146) the vorticity and ion pressure
equations are coupled in the time derivative. This means that to solve the
problem, the equations have to cast in a numerically suitable way.

3.1 Numerical implementation of MIHESEL
In this section, the numerical implementation of the MIHESEL equations
is discussed. This in particular, concerns dealing with the coupling of the
potential and ion pressure.

3.1.1 Symmetrise linear problem
The right hand side op the MIHESEL equations (Eqs. (2.143) to (2.146)) are
easily implemented as they all contain ’known’ variables. The left hand side
however, contains unknown variables, namely ∂tnα,∂tφ,∂pα and ∂tpe which
are all needed to integrate the equations in time. What complicates matters
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is the coupling between the variables, and in particular the potential and ion
pressure. To illustrate the dependence, it is instructive to write the equations
in matrix from:

1 0 · · · −a1
µ1
Z1
∇2 − µ1

Z2
1
∇2 0 · · · 0

0 1 · · · −a2
µ2
Z2
∇2 0 − µ2

Z2
2
∇2 . . . 0

... . . . . . . ... ... . . . . . . 0

0 0 0 ∑
αaαµα∇2 µ1

Z1
∇2 µ2

Z2
∇2 · · · 0

0 0 0 −p1
µ1
Z1
∇2 3

2 −p1
µ1
Z2

1a1
∇2 0 · · · 0

0 0 0 −p2
µ2
Z2
∇2 0 3

2 −p2
µ2
Z2

2a2
∇2 . . . 0

... ... ... ... ... . . . . . . 0

0 0 0 0 0 0 0 3
2



·



∂
∂tn1

∂
∂tn2

...

∂
∂tφ

∂
∂tp1

∂
∂tp2

...

∂
∂tpe



=



Λn1−n1C(φ)− 1
Z1
C(p1) +a1

µ1
Z1
∇·{φ,∇⊥φ∗1}

Λn2−n2C(φ)− 1
Z2
C(p2) +a1

µ2
Z2
∇·{φ,∇⊥φ∗2}

...
(Λw +C (∑α pα+pe)−

∑
αaαµα∇·{φ,∇⊥φ∗α})(

Λp1− 5
2p1C(φ)− 5

2
1
Z1
C
(
p2

1
n1

)
+p1

µ1
Z1
∇·{φ,∇⊥φ∗1}

)
(

Λp2− 5
2p2C(φ)− 5

2
1
Z2
C
(
p2

2
n2

)
+p2

µ2
Z2
∇·{φ,∇⊥φ∗2}

)
...(

Λpe− 5
2peC(φ) + 5

2C
(
p2
e
ne

))



(3.1)

Given that the right hand side is known, the above system becomes a Helmholtz
type linear system of equation that needs to be solved for the temporal deriva-
tives ∂t. An exact general solution to this linear system is not possible to
obtain, hence it needs to solved numerically and for this work it is done it-
eratively. It is first noted that the density part is coupled with pressure and
potential but not the other way around. Furthermore, the electron pressure
is not coupled to anything in ∂tpe and so is easy to evaluate. This leaves
the potential and ion pressure part of the matrix. Since these are indepen-
dent of nα and pe the focus is on that square asymmetric sub-matrix. The
numerical library that is used in this work solves linear problems using the
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conjugate gradient method. This is further discussed in Section 3.2.4. This
method only works for symmetric positive definite problems [73]. Hence the
aforementioned sub-matrix need to be symmetrised. This is done by dividing
the pressure equations with pα and change the sign of the vorticity equation.
The final result is:

−∑αaαµα∇2 −µ1
Z1
∇2 −µ2

Z2
∇2 · · ·

−µ1
Z1
∇2 3

2
1
p1
− µ1

Z2
1a1
∇2 0

−µ2
Z2
∇2 0 3

2
1
p2
− µ2

Z2
2a2
∇2

... . . .

 ·


∂tφ
∂tp1
∂tp2

...



=



−(Λw +C (∑α pα+pe)−
∑
αaαµα∇·{φ,∇⊥φ∗α})(

Λp1− 5
2p1C(φ)− 5

2
1
Z1
C
(
p2

1
n1

)
+p1

µ1
Z1
∇·{φ,∇⊥φ∗1}

)
/p1(

Λp2− 5
2p2C(φ)− 5

2
1
Z2
C
(
p2

2
n2

)
+p2

µ2
Z2
∇·{φ,∇⊥φ∗2}

)
/p2

...

 (3.2)

As mentioned the conjugate gradient works with symmetric positive definite
matrices. The above matrix is symmetric, and since the negative Laplacian
is positive definite and the factor 3

2p
−1
α means a diagonal of positive values

which is positive definite, the matrix as a whole is symmetric positive definite
and so solvable by the conjugate gradient method. To solve the MIHESEL
equations one then proceeds by first solving the above system (Eq. (3.2))
for ∂tφ and ∂tpα respectively and subsequently solve the density for ∂t by
substitution of the corresponding pressure equation. Solving for ∂tpe is done
by evaluating the right-hand side. The inversion is performed for each call to
the MIHESEL equations. The amount of time they are evaluated depends
on the type of time integration scheme that is used. This is discussed in
Section 3.2.5. The inversion is performed for each iteration in the nonlinear
solver Section 3.2.5. In this is regard is it worth noting that the convergence of
the matrix inversion is secondary to the convergence of the nonlinear solver
as we are interested in the new state of the system and not explicitly the
new ∂t·. Naturally, the convergence of the nonlinear solver is dependent on
the convergence of the matrix inversion. However, high tolerances are not
necessary for the matrix inversion in order to achieve an accurate result in
the nonlinear solver. In general, it is noted that the number of iterations in
the nonlinear solver increases as the tolerance of the linear solver is reduced.
However, reaching a high tolerance in the linear solver can be very expensive,
meaning it is often beneficial to set a low tolerance at the cost of more
nonlinear iterations in order to achieve a shorter run time.
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3.2 Spatial discretisation and numerical library
There are a variety of methods for discretizing the spatial domain each with
its strengths and weaknesses. These include, but are not limited to, the finite
difference, finite volume, finite element or discontinuous Galerkin method.
For this work, the choice of a numerical library falls on the discontinuous
Galerkin library Feltor[28] which, as the name suggests, uses the discon-
tinuous Galerkin discretisation method. The choice of this library was due
to its ability to easily invert coupled linear equations and adaptiveness in
the number of equations which grows when more species are added. This is
especially important as the number of ion species can be set arbitrarily.

3.2.1 Feltor library
Feltor is an open-source library/framework developed at the University of
Innsbruck and subsequently the Technical University of Denmark for solving
problems in plasma physics1. It is designed for easy implementation and
time integration of partial differential equations without the need for ad-
vanced knowledge of numerical methods. The library is written in C++, is
used as a header-only library and can be run in parallel using either openMP
or CUDA together with MPI. This allows for utilisation of a wide range of
hardware, such as Skylake nodes and NVIDIA GPUs, which in turn allows
for fast execution of simulations. Also, the Feltor library comes with par-
allelised implementations of all the necessary basic linear algebra routines,
including scalar-vector, vector-vector and matrix-vector operations. This
makes it straight forward to implement new parallel routines. In general, to
avoid heavy memory usage, there is an emphasis on matrix-free methods, i.e.
methods where only the matrix-vector product is needed. In regards to lin-
ear solvers, many Krylov subspace methods, such as the conjugate gradient
method, have this feature. This also means that implementing new physics
models in parallel is straight forward when using the implemented classes.

3.2.2 Discontinuous Galerkin
A brief overview of the discretisation method employed by the Feltor li-
brary and how differential operators are constructed will now be presented
following the outline of [74], [75]. The general aim of discretisation methods
is to represent some function using a discrete number of (weighted) points.
In this regard, it should be noted that this implementation is for structured

1The code can be obtained from https://github.com/feltor-dev/feltor
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grids only. The main idea of the discontinuous Galerkin method is to divide
a domain into small subdomains, or cells, and expand a function through a
set of orthogonal functions on each cell:

fn(x) =
k−1∑
k=0

akPk(x) (3.3)

where ak is some coefficient and Pk is some polynomial of degree k and fn(x)
the function f(x) on cell n. It is important to note that the function fn(x)
is zero outside the cell. This is then used to approximate the function f(x)
on the whole domain with a finite sum of these functions:

f(x) =
N∑
n=1

fn(x) (3.4)

Take, e.g., a 1D grid of length lx with Nx cells with equal grid spacing hx.
The cells are defined on the interval [76]:

Inx = {(x) : x ∈
[
xnx−1/2,xnx+1/2

]
} (3.5)

with nx ∈ [1,Nx]. For nx = 1,Nx this gives x1−1/2 = 0 and xNx+1/2 = lx. The
idea is now to form basis functions of polynomials on these cells. The space
of polynomials is defined as:

V p
h = {v : v|Inx ∈ Pp;1≤ nx ≤Nx} (3.6)

Where Pp(Inx) is the set of polynomials on the space Inx .
The polynomials are not unique, and a wide range of choices are avail-

able[77]. The choice of polynomial basis for this library is the orthogonal
Legendre polynomials which are recursively defined on an interval [−1,1]
through

(p+ 1)Pp+1(x) = (2p+ 1)xPp(x)−pPp−1(x) (3.7)

with P0 = 1, P1 = x, and p the degree of the polynomial. The inner product
of two polynomials can be given exactly[78]. For the Legendre polynomials
using the Gauss-Legendre quadrature on the interval [−1,1] gives:∫ 1

−1
Pn(x)Pm(x)dx=

p∑
j=0

wjPn(xaj )Pm(xaj ) = p

2p+ 1δnm (3.8)

where wj and xja denote the Gauss-Legendre weights and abscissas. The
weights are given by

wj = 2

(1−x2
j)
[
P ′p(xj)

]2 (3.9)
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and the corresponding abscissas are given by the roots of the of the poly-
nomials Pp which are symmetric around x = 0. The polynomials are also
complete meaning that:

∞∑
n=0

2n+ 1
2 Pn(x)Pn(x′) = δ(x′−x) (3.10)

which in discrete form is given as:
p∑

n=0

2n+ 1
2 ωjPn(xai )Pn(xaj ) = δij (3.11)

A function can now be expressed in spectral space in discrete form as:

f̄p ≡ 2p+ 1
2

p∑
j=0

wjPp(xaj )f(xaj ) (3.12)

where f(x) with x ∈ [−1,1] is some real function. This gives a (forward)
transformation operator from physical space to spectral space [74], [78]:

Fnj ≡
2n+ 1

2 wjPn(xaj ) (3.13)

A (backward) transformation operator, Bin from spectral space to physical
space can be found by requiring the product of the forward and backward
transformation to be unitary ∑p

k=0BikFkj = δij . Using the discrete com-
pleteness (Eq. (3.11)) this gives:

Bin = Pn(xai ) (3.14)

The unitarity property gives:

f(xai ) =
p∑

n=0

p∑
j=0

BinFnjf(xaj ) (3.15)

So far, only the interval [−1,1] has been considered. Naturally it is beneficial
to extend this to an arbitrary interval [a,b]. As mentioned earlier, the domain
can be split into N equidistant grid. This means the results can readily be
applied on the function representation to the n′th cell where xanj ≡ xn+ h

2x
a
j

with xn being the cell center and h= (b−a)/N . An approximation fh(x) of
a function f(x) on [a,b] can be then expressed as:

fh(x) =
N∑
n=1

p∑
k=0

f̄nkPnk(x) (3.16)

53



3.2. SPATIAL DISCRETISATION AND NUMERICAL LIBRARY

where f̄nk is given by Eq. (3.12) with fnj = f(xanj) and the polynomials have
been shifted such that

Pnk(x) =

Pk
(

2
h(x−xn)

)
, x−xn ∈

[
−h
2 ,

h
2

]
0, otherwise

(3.17)

This is the discontinuous Galerkin expansion. Here it should be noted that
since the expansions are made on each cell, the boundaries of the expansion
in the given cell and the adjacent cell do not necessarily coincide resulting in
discontinuities. Hence the name of the method. Since an aim of the library is
to numerically solve partial differential equations, there is a natural need for
differential operators. A problem here is that the cell boundaries do not have
a well defined value and so a choice needs to be made about the numerical flux
across the boundaries. Three options are available, the forward, backward
and centered:

f̂B(x) = lim
ε→0,ε>0

fh(x− ε) (3.18)

f̂C(x) = 1
2
(
f̂B(x) + f̂F (x)

)
(3.19)

f̂F (x) = lim
ε→0,ε>0

fh(x+ ε) (3.20)

In regards to boundary conditions on the domain on the whole domain, there
is the choice of Dirichlet, Neumann and periodic. For Dirichlet it is assumed
that f̂(a) = f̂(b) = 0 on the boundary while for Neumann it is assumed that
f̂(a) = limε→0,ε>0 fh(a+ ε) and f̂(b) = limε→0,ε>0 fh(b)− ε). For both cases
this means some care has to be taken when the boundary-values are non-zero.
Lastly, periodic boundaries assume f̂(a− ε) = limε→0,ε>0 fh(b− ε) and f̂(a+
ε) = limε→0,ε>0 fh(b+ ε). For the derivative, the centered flux is discussed
as this is what is used in the numerical implementation of the MIHESEL
equations. The derivative in the spectral space, derived in weak formulation
[74], is given as:

f̄x = (1⊗T )◦ D̄cen

x,
Neu
Per
Dir

f̄ (3.21)
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with the centered differential operator given as

D̄
x,
Neu
Per
Dir

= 1
2



M−MT−L
M −MT

M−MT+L
RL 0

0
−LR

0

−LR M −MT RL

0 −LR . . . . . .
. . . RL

0
RL

0
−LR

M−MT+R
M −MT

M−MT−R



(3.22)

where the Neumann operator corresponds to the upper expressions in the
corners, the periodic corresponds to the middle and the Dirichlet to the
bottom expressions in the corners. All non-corner entries are the same for
all boundary conditions. The operators in Eq. (3.22) are given as

Tij = 2i+ 1
h

δij (3.23)

Mij =

1− (−1)i+j , i≤ (j−1)
0, else

(3.24)

Rij = 1 (3.25)
Lij = (−1)i+j (3.26)

RLij = (−1)j (3.27)
LRij = (−1)i (3.28)

The indices are such that i, j = 0, ..p. The derivative in physical space is given
as:

fx = (1⊗V )◦Dcen

x,
Neu
Per
Dir

f (3.29)

where the differential operator is

Dcen

x,
Neu
Per
Dir

=
(
1⊗F T

)
◦ D̄cen

x,
Neu
Per
Dir

◦ (1⊗F ) (3.30)
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with

F = TBTW (3.31)

Tij = 2i+ 1
h

δij (3.32)

Wij = hwj
2 δij (3.33)

Vij =W−1
ij (3.34)

and B was the backward transformation matrix defined in Eq. (3.14). Again
the indices are i, j = 0, ...,p. This concludes the first derivatives.

A typical problem in partial differential equations is solving the (general)
elliptic equation:

− ∂

∂x

(
χ(x) ∂

∂x
φ(x)

)
= ρ(x) (3.35)

For the MIHESEL equations, a similar term is associated with finding the
potential and ion pressure, which will be discussed in detail in Section 3.1.
Before the elliptic equation can be solved, it is necessary to obtain a discreti-
sation of the operator. This is given as:

ρ= (1⊗V )
[
DT
x ◦χ◦ (1⊗V )◦Dx+αJ

]
φ (3.36)

At a first glance this is simply the successive application of the first deriva-
tive differentiation operator. However, the successive application of the first
derivative does not convergence for a given ρ. For this reason, the jump term
J is introduced which penalises the discontinuities at the cell boundaries. It
is given as:

JNeu
Per
Dir

=



R
L+R
L+R

−RL 0
0
−LR

0
−LR L+R RL

0 −LR . . . . . .
. . . −RL

0
−RL

0
−LR

L
L+R
L+R


(3.37)

The notation used to distinguish Neumann, periodic and Dirichlet boundaries
in Eq. (3.22) is also used here. The result of the jump term is convergence
when solving for φ but at the cost increased numerical diffusion that increases
as α increases. What value of α should be taken is undefined, however, it
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seems to be beneficial for it to be of order 1 [75]. It should be noted that as the
resolution of the domain increases with reduced discontinuities to follow, the
effect of the jump term diminishes. This concludes the differential operators.

It should lastly be noted that the order of the discretisation is prescribed
by the number of polynomial coefficients in the polynomial expansion. For a
zeroth-order polynomial, p= 0, there is one coefficient and so, the discretisa-
tion is first order. Likewise, if p = 1, it is a second-order discretisation. So,
in general, the order of the discretisation is p+ 1.

3.2.3 Time integration
No numerical library for solving partial differential equations with a temporal
component is complete without a time integration scheme. Such schemes can
in general be split into two types, explicit and implicit time integration[79].
The two approaches can also be combined such that part of the equations are
solved explicitly and the rest solved implicitly. This is sometimes referred to
as IMEX, or semi-implicit, schemes. As a quick summary, suppose the state
of the system y(t) at time t is known and the aim is to find the state at some
later time t+ δt as prescribed by a system of equations f(y, t). The simplest
approaches describing these systems are the first order Euler method which,
for the explicit, implicit and IMEX scheme, can be written as:

yn+1 = yn+ δtf(yn, tn) (3.38)
yn+1 = yn+ δtf(yn+1, tn+1) (3.39)
yn+1 = yn+ δt(g(yn, tn) +h(yn+1, tn+1)) (3.40)

Where g(y, t) and h(y, t) are the two component functions in the IMEX
scheme which add up as f(y, t) = g(y, t) +h(y, t). As can be seen, integra-
tion by the explicit Euler is very easy to perform as yn is known, whereas
the implicit Euler requires solving a (coupled) system of algebraic equations
to obtain yn+1. In general, explicit schemes are very easy to incorporate
and each time step is cheap to apply as it requires only a single function
evaluation for each step. Implicit schemes, on the other hand, can be far
more computationally demanding than explicit and IMEX schemes. This is
due to the need for solving a large system of possibly non-linear algebraic
equations. If an algebraic solution is unobtainable an iterative solver can be
used instead. The choice of which iterative solver to use highly depends on
the type of system you wish to solve. In general, implicit schemes can be
far more computationally demanding but often allows for larger times steps.
Especially if iterative schemes are used to solve the system, multiple function
evaluations are needed before an acceptable solution is obtained. A rule of
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thumb for PDE’s is to use explicit schemes for advective problems and im-
plicit schemes for diffusive problems. The reason for this is that for diffusive
problems the maximum stable time step in explicit schemes goes as:

δtmax ∝D∆δx2, (3.41)

where δx is the grid spacing, while implicit schemes do not suffer this short-
coming. Here D is some diffusion coefficient. This quickly becomes pro-
hibitive if the discretised spatial domain is very large with small grid spacing.
If the problem is purely advective, explicit schemes are limited by the CFL
condition[79]:

uδt

∆x ≤ Cmax (3.42)

where Cmax is the maximum Courant number that is usually around 1 for
explicit whereas this does not apply for implicit schemes. However, as the
time step only goes linearly with the grid spacing it is often advantageous to
use explicit schemes for advective problems as the time step is much cheaper
to perform. If the problem contains both advective and diffusive parts, an
explicit approach might be applicable if the advection stability constraint is
dominant, i.e. small diffusion coefficient. Otherwise one has to resort to an
implicit method or an IMEX method. In the latter case, it is common to
have the explicit part contain any advective components while the implicit
part gets the diffusive components. If the diffusive part is linear, it can be
solved using either a direct or as in the case of Feltor, an iterative linear
solver such as conjugate gradient.

When the MIHESEL equations were first implemented into the Feltor
framework, only explicit schemes and IMEX schemes for a linear implicit part
were present. An explicit Runge Kutta method was used initially, however, it
quickly became evident that even with HPC resources only a limited number
of initial value problems were solvable.

The issue with the MIHESEL equations (Eqs. (2.143) to (2.146)) is that
they are clearly non-linear and more importantly, they are non-linear in the
diffusive part and the diffusive part is the dominating limitation for the
time integration. To overcome this problem, a fully implicit scheme was
implemented in such a way that it required no changes to the existing code
being used in the explicit scheme. The resulting time integration scheme
chosen was the backward differentiation formula (BDF) method which is a
class of linear multistep methods. The method relies on approximating the
time derivative using a finite difference approach which by using previous
time steps can increase the order of the method. The general expression for
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α0 α1 α2 α3 α4 α5 β

s= 1 1 - - - - - 1

s= 2 4
3 −1

3 - - - - 2
3

s= 3 18
11 − 9

11
2
11 - - - 6

11

s= 4 48
25 −36

25
16
25 − 3

25 - - 12
25

s= 5 300
137 −300

137
200
137 − 75

137
12
137 - 60

137

s= 6 360
147 −450

147
400
147 −225

147
72
147 − 10

147
60
147

Table 3.1: Coefficient for the BDF formula to perform implicit time integra-
tion[80].

scheme is [80]:

yn+1 =
s−1∑
k=0

αkyn−k + δtβf (yn+1, tn+1) (3.43)

where s is the order of the method. The coefficients αk and β for orders
s = 1..6 are given in Section 3.2.3 : The stability of the methods decrease
as the order increases, hence usually only orders up to three are used. As
this is a multistep method, a problem presents itself in regards to starting
the algorithm. The problem is that for orders higher than one, the method
needs more than one previous value. However, as this is an initial value
problem, more than one initial values are not know. Hence a starting method
is needed to kick-start the procedure. For this, a multistage implicit Runge-
Kutta method of order s, that has since been implemented in the library, is
used. It should be noted here that multi stage methods are in this case more
expensive to use since for each non-linear iteration the matrix in Eq. (3.2)
needs to be inverted. This is the reason for using the single stage, multi step
BDF method over implicit Runge Kutta methods. To solve the non-linear
system of equations arising from the time integration a non-linear solver was
needed. This will be discussed in detail in Section 3.2.5 along with testing of
the numerical implementation of the BDF method.

3.2.4 Linear Solvers
As mentioned in Section 3.1, the MIHESEL model, the ion pressure and
vorticity equations (Eqs. (2.144), (2.145) and (3.2)) are coupled in the time
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derivative. This means, that to put the MIHESEL equations in a form suit-
able for the BDF method the equations have to be solved for ∂tφ,∂tp1,∂tp2, · · ·
before the time integration can be performed. This requires solving a linear
system of equations. When the equations were first implemented, only the
conjugate gradient method was implemented. To speed up the convergence
of the linear solve, it is implemented as a nested method, where the linear
problem is solved first on a coarse grid, and the projected to a finer grid.
This is repeated until it reaches the finest grid. The idea is that the pro-
jected solution is a good initial guess on the finer grid. The consequence
of this is a significant reduction in the number of iterations and more im-
portantly, wall clock time. Typically three grids are sufficient for a good
speedup. For preconditioning the system, a simple diagonal preconditioner
using the inverse weights V given in Eq. (3.33). Since the conjugate gradient
method is designed for symmetric positive definite matrices, the coupling of
the time derivatives in the potential and pressure need to be cast as such.
This will be discussed in detail in Section 3.1.1.

3.2.5 Non-Linear Solvers
In Section 3.2.3, the implementation of time integration techniques and in
particular the implicit BDF method was discussed. Here it was discussed
that in order to solve the system of equations arising in the Eq. (3.43) a
nonlinear solver was needed. To find a solution to the problem it is first
noticed that the time integration is in fact cast in the form of a fixed point
iteration (or Picard iteration, non-linear Richardson):

yi+1
n+1 =K(yin+1) (3.44)

where K(xn+1) represents the right hand side of Eq. (3.43) and i is the iter-
ator. This forms a basis for constructing an efficient non-linear solver, but a
fixed point solver itself would not work as that the convergence properties of
the method are dependent on the time step [81]. This is similar to the prob-
lems encountered with the explicit method. A modification to the method
can be performed where a damping factor is introduced. The process is then
to use the residual given as:

ri = yin+1−K(yin+1). (3.45)

The residual is then added to the solution with some damping parameter ω:

yi+1
n+1 = yin+1−ωri (3.46)
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mMax mres maxiter AAstart ω β ε
10 10 500 0 0.1 0.9 10−7

Table 3.2: Typical input parameters for the Anderson acceleration algorithm.

This is the nonlinear version of modified Richardson iteration where the
damping parameter ω can either be fixed or chosen using a line search method
[82]. In the case of ω = 1, it reduces to the simple fixed-point iteration.
The damping parameter can significantly improve the convergence of the
solver but it still might be prohibitively slow. One solution which has been
implemented is to accelerate the convergence of the iterations using Anderson
acceleration [83]. The idea is to use a linear combination of several previous
iterations and a new trial solution to construct a new solution. If the new
solution falls within some tolerance the iteration is terminated, and if not it
is used to obtain the next iterative solution. The algorithm is summarized
in Algorithm 1 and is based on the algorithm presented in [84].

A number of input parameters are needed for the algorithm to run. The
function F (y) is a function whose root needs to found. In regards to the
BDF method, this should be Eq. (3.45) that is written as Fi(y) = yin+1−
K(yin+1) = ri where the aim is for the residual to get a close to zero as
possible. The method requires the input mMax,mres,maxiter and AAstart
stating the maximum number of previous iterations that should be used to
obtain a new trial solution, after how many iterations the procedure should
be restarted, the total number of iterations performed before it is deemed
not to be converging and lastly a delay in when the acceleration should
begin. The values ω and β are damping parameters. The first is related to
the modified Richardson iteration Eq. (3.46), while the latter is a damping
parameter that aims to allow for more aggressive acceleration based on a
linear combination of the previous iterations. Lastly, ε is the tolerance in
the error for terminating the procedure and Snorm is the norm with which
the residual is calculated. For the latter, the norm is calculated using the
weights given by Eq. (3.33). Some typical values that have been found to
give good results are given in Table 3.2.

The algorithm was originally implemented for the use of electronic struc-
ture computations but has within recent years become much more studied
and implemented for the general solution of non-linear systems of equations
[86]. In particular, it has been shown that it is closely related to quasi-newton
methods [87] and in the case of linear problems that it is very similar to the
GMRES method for linear problems [86]. The above algorithm is a slight
modification as it contains a restart after every m iteration using information
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Algorithm 1 Anderson Acceleration algorithm based on [84] and [85]
procedure AA(F (y),y,mMax,mres,maxiter,ε,β,ω,Snorm,AAstart)

System Initialization
Set mAA = 0
for i= 1, ..,maxiter do

if i mod mres = 0 then
mAA= 0

fi = F (yi−1) //
gi = yi−1−ω ·fi
if |fi|Snorm < ε then

Return yi
if mMax= 0 then
yi = gi

else
if k > AAstart then

dfi = fi−fi−1
if mAA<mMax then
GmAA = gi−gi−1

else
Gj = Gj+1, j < mMax . Shift all entries by one.
GmMax

= gi−gi−1 . Add gi−gi−1 to last entry.
mAA=mAA+ 1

if mAA= 0 then
yi = gi

else
if mAA= 1 then

R(1,1) =
√
dfi . First entry in R in QR decomposition

Q(1) = dfi
R(1,1) . First column in Q in QR decomposition

else
if mAA>mMax then

mAA=mAA−1
QRdelete(Q,R) . Remove column from Q and update R

accordingly
for j = 1, ...,mAA−1 do

R(j,mAA) =Q(j) ·dfi . Update R in QR decomposition
dfi = dfiR(j,mAA)Q(j)

R(mAA,mAA) =
√
dfi,dfi

Q(mAA) = dfi
R(mAA,mAA)

SolveR ·γ =QT ·fi . Solve least squares problem by backward
substitution.

yi = gi−G ·γ . Update yi
if β > 0 and β 6= 1 then
yi = yi− (1−β)(fi−Q ·R ·γ)
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only from the most recent iteration [85]. The implementation of the restart
procedure seems to significantly improve the convergence of the algorithm.
It should be noted that while the implicit time integration allows for larger
time steps, larger steps, in general, require more iterations to converge. The
reason for this is that the bigger the time-step, the bigger the error in the
initial guess is and hence the problem becomes more ill-conditioned. For the
initial guess, a linear prediction is given by:

yn+1 =
N−1∑
i=0

βiyn−i (3.47)

where N is the order of the method. Note that these coefficients are only
applicable if the time step is fixed. Usually N = 2 seems to be a good choice,
in which case β1,2 = 2,−1. The coefficients are given by Pascal’s triangle.
To test the implementation of the nonlinear solver, it is used to solve an
initial value problem with an implicit time stepper. The idea is to construct
a problem and manufacture a solution (method of manufactured solutions,
or MMS), such that the problem can be solved for a known solution, which
allows measuring the numerical error. For this procedure the BDF method
discussed in Section 3.2.3 with the Anderson accelerator as the inner solver
is applied to the problem, allowing for testing the time integrator and non-
linear solver at the same time. The validity of the time integration is to see
whether the reduction in error reduces with the order of the method. The
test of the Anderson acceleration is in the fact that it converges to the correct
solution. The MMS is:

∂

∂t
T (t,x,y) = η∇2T (t,x,y) + cos(t)T (t,x,y) +S (3.48)

With a manufactured solution:

T (t,x,y) = sin(t)exp(−2ηt)sin(x)sin(y) (3.49)

Which gives a source:

S = cos(t)exp(−2ηt)sin(x)sin(y)(1− sin(t)) (3.50)

The test is such that the simulation is run until a fixed time, and the number
of steps taken to get there is varied meaning the time step size is varied. As
the number of time steps used to integrate over a fixed interval increases,
the error is expected to decrease as err ∝ n−Nts where N is the order of the
method and nts is the number of time steps used for the fixed interval. The
convergence results are shown in Fig. 3.1. Here the error of the solution rela-
tive to the exact solution is shown as a function of the number of time steps
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used to resolve the same time interval. It is seen that for each spatial order
there is a minimal error in the time integration that can be obtained. E.g.,
for first-order spatial resolution, the first-order temporal method obtains the
desired reduction in error as a function of the number of time steps whereas
higher-order temporal methods do not see the desired reduction in error.
They do however obtain a smaller error than the first order. As the spatial
order is increased it is seen that the correct order of reduction is obtained
concluding in the sixth order spatial discretisation that all temporal orders
achieve the correct error reduction scaling. An exception is the second and
third-order spatial discretisation where the temporal error reduction order
is not obtained. The cause seems to be that despite the order in space, the
error in the spatial discretisation is still so large that it is dominating. In
general, it should be noted that there is a ’competition’ between the spatial
discretisation error and the temporal. This means, e.g., that it is possible
to see the full effect of a 6th order BDF method when using a third-order
spatial method but one needs to use either very large time steps, which gives
a large temporal error or a very fine grid which gives a small spatial error.
If none of these is the case the error introduced by the spatial discretisation
will dominate.

3.3 Possible Future implementations
In the previous two sections, the Feltor library and the implementation
of the MIHESEL model into it were discussed. When running the MIHE-
SEL code, the experience is often that the bottleneck in the performance is
the linear inversion of Eq. (3.2). Especially when turbulent dynamics are
evolving, the number of iterations on each grid become large. Some possi-
ble considerations to alleviate this could be to use a pure multigrid method
instead as the convergence of the method scales linearly with the size of the
system. Furthermore, the preconditioning used for the system in the form of
the inverse weights is rather crude. Hence, it might be beneficial to examine
better preconditioners such as e.g. multigrid preconditioned conjugate gra-
dient. Both methods have recently become available in the library, but have
not been implemented in the solution of the MIHESEL equations.

In regards to the nonlinear solver, the Anderson acceleration has proven
to be a decent nonlinear solver that is easy to implement. However, it does
sometimes stagnate causing a breakdown in the simulation or require a large
number of iterations. In many other libraries, it is common to use a variation
of Newton’s method [88]. The exact formulation of this method requires
the inverse Jacobian. This is often quite impractical as the calculation of
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the inverse Jacobian matrix can be very expensive and memory intensive.
Another approach is to approximately solve the system for the inverse Jacobi
in an iterative fashion using a matrix-free Krylov inversion scheme. This
method is known as a Newton-Krylov method and should in many cases have
better convergence properties [89][81]. Since this only requires matrix-vector
products and basic linear algebra operations the Feltor library is well suited
for this kind of problem. Additionally, the linear problems involved with
approximating the inverse Jacobian, can be asymmetric and not necessarily
positive definite. Hence a linear solver that works for these problems is
needed. A version of GMRES [90] and BICGSTAB [91], both of which work
for nonsymmetric and indefinite problems, have recently been implemented
as part of this project, making the future implementation of the Newton
method easier.
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Chapter 4

Results

In the previous two sections, a multiple ion-species drift fluid model was de-
rived. It is an extension of the HESEL model developed in house and used
to study turbulence transport in the edge/SOL at the outboard midplane.
Furthermore, the numerical implementation of the model in the FELTOR
library, with the addition of fully implicit time integrators with non-linear
solvers was discussed in the previous chapter on the numerical methods. In
this section, the model will be employed to investigate physics related to
transport at the outboard midplane. This section contains two overarching
themes, seeded 2D blobs and 2D turbulent transport, with the goal of inves-
tigating the influence of isotope mixtures on transport in the edge/SOL. The
first part on seeded 2D blobs contains the first paper on the MIHESEL model,
that introduces the model and examines the effects of a deuterium-tritium
mixture on the radial propagation of the blob. Additionally, the effect of ion
charge on the blob propagation is examined by simulating a deuterium he-
lium mix, where the latter is double charged. The second part is focused on
turbulence in general. This is done by simulating edge profiles with certain
mixtures of deuterium and tritium using realistic density and temperature
profiles resembling what can be found in medium-sized tokamaks such as
EAST, ASDEX-Upgrade, K-STAR or TCV.

4.1 Seeded 2D Filaments - Blobs
In this section seeded filaments - or blobs - are studied. Seeded blob filaments
are a well-studied topic in regards to understanding the transport through
blobs. Studies have been performed using a variety of modelling approaches
such as drift fluid, gyro fluid, particle in cell and hybrid models, see e.g. [21],
[52], [92]–[95]. They provide a simple look at the interchange dynamics of
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edge transport in a simplified setting. As such, they allow for a qualitative
understanding of the turbulence driving mechanisms, while also providing
some quantitative understanding of how the dynamics of the filaments are
affected by the filament width, amplitude, ion temperature etc. [92].

4.1.1 Deuterium tritium Blobs
4.1.1.1 Prelude

The first paper produced regarding this work introduces the MIHESEL model
and goes through many of the steps given in Chapter 2 used to derive the
model. At the time of writing, the paper has been submitted to Physics
of Plasmas and is in review of the first revision. In the seeded blobs, only
the dynamics perpendicular to the magnetic field are accounted for in the
paper. As such it is a pure 2D simulation. This means that the parallel
parametrisations and sources terms are not part of the paper. With the
model derived, the paper presents to first numerical results produced with the
model by investigating the influence of a deuterium-tritium isotope mix on
the radial propagation of seeded blobs. The initial mixture is divided into the
background mix and the perturbation mix. A parameters scan over different
compositions with varying background and perturbation mixes allows for a
scaling of the maximum radial velocity of the centre of mass of the blob. The
initialisation of the blobs is such that the electric potential is zero.

While this is somewhat idealised, it still gives insight into transport prop-
erties. The idealised nature comes is as it does not take into account how the
blob was materialised in the first place. It turns out that the initialisation of
the potential can have a significant impact on the propagation of the blob.
A study of the effect of the initial potential can be found in [23].
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Transport in the edge and scrape-off layer mediated by turbulent fluctuations is often studied using drift fluid models.
In this work, we expand previous work on a two-fluid single ion species drift model to a multi-ion-species model that
incorporates collisional interactions between the individual species while conserving energy. The model is simplified
into a set of equations that are computationally realisable. This is used to study the dependency of seeded blob prop-
agation on different mixes of deuterium and tritium isotopes in the background and blob respectively. We find that
the background mix is initially the dominant driver that determines propagation, but that the blob mix becomes the
dominating factor for the continued evolution. It is found that the maximum velocity of the blob scales stronger with
the initial blob mix than the background mix.

I. INTRODUCTION

A fusion plasma is inherently composed of multiple ion
species due to the fusion of two particles into a third of a dif-
ferent type. In future fusion reactor plasmas the reaction will
be based on deuterium and tritium that fuses into in helium.
How species of all kinds interact and how these interactions
carry over to transport coefficients, particularly in regards to
impurity transport, has been studied theoretically1–4. The
importance of multi-component plasmas has become evident
from experimental results that show how transport, and conse-
quently confinement, is changed when the ion mix changes5,6.
Numerically, this has been studied using gyro-kinetic codes
by comparing simulations with different single species main
ions7 and in some cases also with heavy impurities8. Drift
wave turbulence modeling9 has also been employed, but again
this was only with a single main ion species. True multi-
component mixtures have been numerically studied focusing
on impurities and their influence on turbulent behaviour us-
ing a drift fluid approach10 but only with lower-order drifts in
the direction perpendicular to the magnetic field. Other ap-
proaches used single ion species models to simulate mixes
by using an effective mass and charge11–13. This limits the
studies to plasmas with a uniform ratio of ion densities as
well as equal temperatures. These assumptions are not valid
when considering, e.g., fuelling with a single species, or when
ion cyclotron resonance heating (ICRH) is used to heat the
plasma. Here the resonance frequency predominantly leads
to heating of particles with the same mass-charge ratio, such
as deuterium and doubly charged helium 4. None of these
approaches include the dynamics arising from the collisional
interactions between all species.

In toroidally confined plasmas much of the turbulent trans-
port occurs where the edge of the core with closed magnetic
field lines, meets the scrape-off layer (SOL) with open mag-
netic field lines, at the last closed flux surface (LCFS). In this
paper, we present a drift fluid turbulence model for the perpen-
dicular dynamics in a 2D slab geometry of the SOL/EDGE
at the outboard midplane14. The model seeks to accurately
include the interactions between all plasma species through

a)Electronic mail: aslakp@fysik.dtu.dk

collisions resulting in resistive drifts for each species. The
model uses the Zhdanov closure2 for plasma mixes with mul-
tiple ion species of arbitrary mass and charge. The model is
to be considered an extension of the HESEL14,15 model and
allows for solving for the evolution of the individual densi-
ties and pressures of an arbitrary number of species. In this
regard, we note that the HESEL model is based on the Bra-
ginskii closure16, which uses the Chapman-Enskog approxi-
mation with two Laguerre-Sonine polynomials, whereas the
Zhdanov closure uses Grad’s 21 moment method. It should
be emphasized that for a single ion species the Zhdanov and
Braginskii closures approaches yield identical results for the
transport coefficients. The Zhdanov closure naturally assumes
a multi-component plasma making it useful for our model.
Similar results can be obtained using the Chapman-Enskog
approach as done in refs. 4 and 1 at the cost of a heavy
mathematical formalism. For the pressure equations, the clo-
sure limits us to studying near equal temperatures in the ion
species.

The remainder of this paper is organised as follows: In Sec-
tion II we outline the theoretical steps towards a multispecies
model with collisional effects and derive the associated en-
ergy theorem. This is simplified into a computationally ef-
ficient model named MIHESEL in Section III. The model is
tested by simulating a range of DT mixes in seeded blobs in
Section IV. Finally, in Section V we summarize and discuss
our findings.

II. MULTISPECIES DRIFT FLUID MODEL WITH
COLLISIONAL EFFECTS

The starting point for the derivation of the multispecies drift
fluid model is the general momentum equation for an arbitrary
plasma species1, denoted with subscripts s:

msns
d
dt
us = nsqs (E+us×B)+Rs−∇ps−∇ ·←→π s, (1)

where ms, qs, ns, us are the mass, charge, density and fluid
velocity of species s, d/dt = ∂t +us ·∇ is the total derivative,
E,B are the electric and magnetic field respectively, ps is the
scalar pressure and←→π s the viscous stress tensor. The quantity
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Rs is the total resistive force acting on the species due to col-
lisions with other species. In general we can split this resistive
force into a frictional Rs,u part and a thermal Rs,T part. The
perpendicular frictional part for a species s′ acting on species
s is given by2

Rs′→s,u,⊥ =−nsmsνs′→s
(
u⊥,s−u⊥,s′

)
, (2)

while the thermal force is given by:

Rs′→s,T,⊥ =
3
2

msnsνs′→sµs′s

(
b×∇Ts

msqsB
− b×∇Ts′

ms′qs′B

)
, (3)

where Ts is the species temperature and νs′→s is the colli-
sion frequency between two species defined below and µss′ =
msms′/(ms +ms′). Furthermore, we have introduced the mag-
netic unit vector b=B/B where the magnetic field in a Carte-
sian coordinate system is assumed to be of the form:

B(x) =
B0R

R+ r+ x
ẑ, (4)

where B0 is the magnetic field at the major radius R, r is the
minor radius and ẑ is the unit vector pointing in the z-direction
parallel to the magnetic field. We assume the magnetic field
to be straight and that. Assuming a tokamak with a large as-
pect ratio and small q-factor this can be viewed as an approx-
imation of the magnetic field at the outboard midplane. Fur-
thermore, due to the large aspect ratio, this does not take into
account the magnetic field shear. Summing over all species s′

gives the total resistive force acting on species s. In the case of
electron-ion interactions, we will consider the large mass ra-
tio and make appropriate approximations. In the current case,
this means neglecting the ion gradient term in Eq. 3 when
dealing with ion-electron resistive forces. In the derivation of
the total resistive force2 it is assumed that Tα −Tβ � Tα for
ion-ion interactions. Throughout the paper, we use the species
indices s and s′ for ions and electrons alike, while α and β will
be used for ions only and likewise e for electrons. This is to
distinguish terms where there are different approximations for
ions and electron due to, e.g., the mass ratio.

The stress tensor ←→π is comprised of a parallel compo-
nent, a perpendicular collisional component and a gyro vis-
cous component. Since we only consider a 2D slab geometry,
we leave out the parallel component of the stress tensor. With
b along the z-axis in an (x,y,z) coordinate system, the perpen-
dicular collisional part of the ion stress tensor is given by:

←→π ⊥,α =−η⊥,α

[
(∂xux−∂yuy) (∂xuy +∂yux)

(∂xuy +∂yux) (−∂xux +∂yuy)

]
, (5)

where the coefficient is given by summing over all ion species:

η⊥,α = ∑
β

η⊥,β→α =
1
4

pα

Ω2
c,α

∑
β

mα mβ(
mα +mβ

)2

·νβ→α

(
6
5

mβ

mα
+2− 4

5
mβ

mα

Zα

Zβ

)
, (6)

with the ion gyro-frequency

Ωc,α =
Zα eB
mα

, (7)

where Zα is the charge number. We have here only considered
the ion viscous stress tensor due to the mass dependency. The
electron stress tensor is therefore neglected.

The non-collisional gyro-viscous part of the tensor is given
by:

←→π gy,α = ηα,gy

[
−(∂xuy +∂yux) (∂xux−∂yuy)

(∂xux−∂yuy) (∂xuy +∂yux)

]
, (8)

with the coefficient given by:

ηα,gy =
pα

2Ωc,α
. (9)

Again the electron stress tensor is small compared to the ion
stress tensor due to the small mass and so it is neglected.
For the collisional parts of the resistive force and stress tensor
the collision frequency is defined as2:

νs′→s =
21/2ns′Z2

s Z2
s′e

4 lnΛss′
(

1+ ms
ms′

)

12π3/2ε2
0 m2

s

(
Ts
ms

+
Ts′
ms′

)3/2 . (10)

The Coulomb logarithm is defined such that:

Λss′ =
12πε0

|ZsZs′e2|
µss′

γss′
λd , (11)

with γss′ = γsγs′/(γs + γs′) where γs = ms/Ts. Finally, the De-
bye length is given as:

λd =

(
∑
s

nsZ2
s e2

ε0Ts

)− 1
2

. (12)

Numerically solving the momentum equation requires resolv-
ing all time and lengths scales including electron gyro-motion
scales. Turbulent transport occurs on time and length scales
much larger than these scales. Hence, we use a reduced fluid
model that resolves the proper scales and captures the physics
of interest while being numerically accessible. With all ele-
ments defined, we follow Ref.14 and proceed to the drift or-
dering. Here, we employ the usual assumptions of the charac-
teristic time scales being longer than the reference ion (such as
deuterium) gyro period and perpendicular lengths scales being
longer than the ion gyro radius:

ω
Ωc,Re f

� 1 and
ρ2

α
L2
⊥
� 1, (13)

where

ρα =

√
Tα

mα Ω2
c,α

. (14)

The lowest order drifts following this are the electric and dia-
magnetic drift, which are given by:

us,0 = uE +uD,s =
b×∇φ

B
+
b×∇ps

qsnsB
. (15)
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The plasma at the outboard midplane is weakly collisional,
meaning the resistive force can be assumed to be next order
(denoted order 1). Following Ref. 16, the same goes for the
viscous stress tensor. Consequently, for the next order drift
we find the polarisation, resistive and viscous drift:

us,1 = up,s +uR,s +uπ,s

= Ω−1
c,s b×

d
dt
us,0−

b×Rs

qsnsB
+
b×∇ ·←→π s

qsnsB
. (16)

The resistive and viscous drifts depend on the velocity us, but
the respective drifts are first order meaning we use only zeroth
order drifts us,0 when evaluating them.
We now turn our attention to the equations for density, vor-
ticity and pressure. Inserting the expression for the fluid ve-
locities into the continuity equation1, yields the perpendicular
density equation for ions:

∂
∂ t

nα +∇ · (nα [uE +uD,α +up,α +uR,α +uπ,α ]) = 0.

(17)

We impose quasi-neutrality ∑α Zα nα = ne, meaning there is
no need to solve an electron density equation explicitly. As a
result, multiplying the density equation for all species by their
charge state Zs (with Ze =−1) and summation under the quasi
neutrality condition yields the vorticity equation:

∑
s

Zs

(
∂
∂ t

ns +∇ · (nsus)

)
=

∑
α

Zα ∇ · (nα [uD,α +up,α +uπ,α ])−∇ · (ne [uD,e]) = 0

(18)

Here, we have used that the viscosity and polarisation terms
are mass dependent and so are negligible for electrons. Also
we employed that the resistive force conserves momentum,
Rs′→s =−Rs→s′ and consequently that all ∇ ·ZsnsuR,s terms
cancel.
Finally, the pressure equations are found from the multi-
species pressure moment equation1. For electrons this gives:

3
2

∂
∂ t

pe +
3
2

∇ · (pe [uE +uD,e +uR,e])

+pe∇ · (uE +uD,e +uR,e)+∇ ·qe = Q̃e, (19)

and for each ion species α:

3
2

∂
∂ t

pα +
3
2

∇ · (pα [uE +uD,α +up,α +uR,α +uπ,α ])

+pα ∇ · (uE +uD,α +up,α +uR,α +uπ,α)

+←→π α : ∇u0,α +∇ ·qα = Q̃α . (20)

Here, the total collisional energy exchange is Q̃s = ∑s′ Q̃s′→s.
The interspecies collisional energy exchange is given as
Q̃s′→s = Qs′→s−us ·Rs′→s with Qs′→s = −Qs→s′ , which is
required for energy conservation. As the resistive force is or-
der 1 due to low collisionality, it is evaluated using the low-
est order drifts, which gives −us ·Rs′→s ' −us,0 ·Rs′→s =

−uR,s′→s · (qsns∇φ +∇ps). Finally, the thermal energy ex-
change is given by2:

Qs′→s =
3nsmsνs′→s (Ts′ −Ts)

ms +ms′
. (21)

By using the expression for the collision frequency in equation
(10) it is easily verified that this satisfies the required energy
conservation condition Qs′→s =−Qs→s′ . For the ion pressure
equation (20) the collisional energy exchange and the resistive
drifts can be combined to read:

3
2

∇ · (pαuR,α)+ pα ∇ ·uR,α − Q̃α

=
5
2

∇ · (pαuR,α)−∑
s

Qs→α +uR,α · (qα nα ∇φ) . (22)

We now turn our attention to the heat flux qs. In general it
can be split into a parallel q‖,s, perpendicular collisional q⊥,s
and diamagnetic heat flux q×,s. For ions, omitting the parallel
component, these are given by2

q×,α =
5
2

pα

qα B
b×∇Tα , (23)

q⊥,α =
pα

m2
α Ω2

c,α
∑
β

µαβ νβ→α

(
3
2

[
∇pα

nα
− Zα ∇pβ

Zβ nβ

]

− mα

mα +mβ

[(
13
4

mβ

mα
+4+

15
2

mα

mβ

)
∇Tα −

27
4

Zα

Zβ
∇Tβ

])
.

(24)

Although the expression is lengthy, it should be noted that in
the case of a single ion species, it reduces to the expression
found in Braginskii16.

For electrons similar expressions are given in Ref. 2. When
using the mass disparity between ions and electrons this can
be written in a compact form4:

q×,e =−
5
2

pe

eB
b×∇Te (25)

q⊥,e =
pe

meΩ2
c,e

∑
α

να→e

(
3
2

[
∇pe

ne
+

∇pα

Zα nα

]

−
[(

13
4

+

√
2

Zα

)
∇Te

])
. (26)

From the resistive force Eq. 2 and 3 in the large mass ratio
limit and using the lowest order drifts, the electron resistive
drift becomes:

uR,u,e =−∑ να→e

meΩ2
c,e

(
∇pe

ne
+

∇pα

Zα nα

)
and

uR,T,e =
3
2 ∑ να→e

meΩ2
c,e

∇Te. (27)

With this it is instructive to write the perpendicular collisional
heat flux as:

q⊥,e = q⊥,u,e +q⊥,T,e =



4

−3
2

peuR,u,e−∑
α

pe

(
13
4

+

√
2

Zα

)
2
3
uR,T,α→e. (28)

Combining Eq. (28) with the collisional energy exchange and
the resistive drift terms in the electron pressure equation we
obtain:

3
2

∇ · (peuR,e)+ pe∇ ·uR,e +∇ ·q⊥,e− Q̃e =

∇ · (peuR,e)−∇ ·∑
α

pe

(
1+

√
2

Zα

)
2
3
uR,T,e

−Qe +uR,e · (qene∇φ) . (29)

Lastly, we simplify the polarisation term by employing the
gyro-viscous cancellation in which part of the gyro viscous
tensor component cancels out the diamagnetic contribution to
the advection velocity in the polarisation term giving a simpler
expression. Since the gyro-viscous part of the stress tensor is
non-collisional it is independent of other species and as such
the cancellation holds regardless of the number of ion species.
A commonly used form of this cancellation is expressed as17:

∇ ·πgy,⊥,α +nα (uD,α ·∇)u⊥,α,0 = ∇⊥χ. (30)

The term on the right hand side represents the remainder of
the gyro-viscous cancellation. As this is commonly neglected,
which we will also do, we will not consider it in detail. The
polarisation term then reads:

∇ · (nα [up,α +uπ,gy,α ]) (31)

=−∇ · nα

Ωc,α

d′

dt

(
∇⊥φ

B
+

∇⊥pα

qα nα B

)
+∇ ·nαuχ,α ,

where the term uχ,α is the drift associated with the remainder
of the gyro-viscous cancellation stated in Eq. (30) and where
the total derivative is given by:

d′

dt
=

∂
∂ t

+(uE +up,α +uR,α +uπ,α) ·∇. (32)

We note that due to the appearance of the polarisation drift in
the advective part of the total derivative, the drift is recursively
defined by itself, making it impractical for numerical imple-
mentations. As such it is commonly dropped. We do the same
when deriving the numerically implementable model.

It should be noted that due to the drift fluid expansion, and
subsequent truncation, the ion density, ion pressure and vortic-
ity equations contain an asymmetry when adding the ion den-
sities together. This means that multiple identical ion species
with equal temperature, but with different densities, do not
add exactly to give the same as if they were represented by one
combined density distribution unless nα/nβ = const. every-
where. Correct summing of the ion species is a fundamental
requirement for multispecies modelling, and so should always
be considered carefully. Taking e.g. the ion density equation
this would imply that

∑
α

(
∂
∂ t

nα +∇ ·nαuα

)
=

∂
∂ t

ni +∇ ·niui (33)

where ni = ∑α nα . For our drift fluid version of the continuity
equation this equality does not hold. The source of inequality
occurs in the vorticity and ion pressure equations and are re-
lated to terms associated with polarisation and viscosity drifts.
This is because the terms are non-linear in nα as e.g

∑
α

∇ ·nαup,α = ∑
α

∇ ·nα Ωc,αb×
d
dt

(
b×∇φ

B
+
b×∇pα

qα nα B

)

6= ∇ ·∑
α

nα Ωc,αb×
d
dt

(
b×∇φ

B
+
b×∇∑α pα

qα ∑α nα B

)
,

(34)

which in turn is due to the inclusion of the diamagnetic drift
as a lowest order drift as seen in equation (15). The validity
of the occurrence of the diamagnetic drift at this order is dis-
cussed in Ref. 18. As the polarization and viscosity drift are
of higher order the effect is expected to be small and therefore
negligible, which has been confirmed by numerical experi-
ments (see last paragraph of IV).

A. Energy conservation

In this section we derive the energy theorem for the col-
lisional multispecies drift fluid model expressed in equation
Eqs. (17) to (20). Similar to Refs. 14 and 19 we start by
multiplying the vorticity equation (18) with eφ followed by
integrating over all space while neglecting the surface terms.
Combining all this together yields the global fluid kinetic en-
ergy:

∫
dVeφ ∑

α
∇ ·Zα nαup,α + eφ ∑

α
∇ ·Zα nαuD,α

−eφ∇ ·neuD,e + eφ ∑
α

∇ ·Zα nαuπ,α

=
∫

dVuE ·∑
α

mα nα
d
dt

(uE +uD,α)

+uE ·
(

∑
α

∇pα +∇pe

)
+uE ·∑

α
∇ ·π = 0. (35)

The next part of the energy theorem is the thermal energy
given by the pressures. Integrating the electron pressure equa-
tion (19) over space and neglecting surface terms yet again,
gives:
∫

dV
3
2

∂
∂ t

pe−uE ·∇pe +uR,e · (qene∇φ)−Qe = 0. (36)

Finally, we perform the same procedure for the ion pressure
equations Eq. (20):

∫
dV

3
2

∂
∂ t

pα +nα mαuD,α
d
dt

(uE +uD,α)

−uE ·∇pα +(∇ ·πα) ·uD,α +uR,α · (qα nα ∇φ)
+πα : ∇uα,0−Qα = 0. (37)

With the above equations at hand we proceed to sum every-
thing together. To this end we first look at the interaction terms
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between ion species, i.e. the resistive and heat exchange term.
Starting with the resistive fluid drift for ions we have:

uR,α = uR,e→α +∑
β
uR,β→α . (38)

Evaluating the frictional force given in Eq. (2) with the low-
est order drifts we have that the resistive drift is linear in
ns and that nsuR,s′→s is antisymmetric in s and s′. Conse-
quently, all terms related to uR cancel when summing all
pressure equations. As for the heat exchange term (Eq. (21)),
since msnsνs′→s =ms′ns′νs→s′ it becomes evident that Qs′→s =
−Qs→s′ and consequently that all ion-ion heat exchange terms
cancel when summed and similar for ion-electron heat ex-
change. Integration by parts of the πα : ∇uα,0 term allows
for the diamagnetic part to cancel the fourth term in Eq. (37).
The total ion thermal energy contribution to the energy theo-
rem then becomes:

∫
dV

3
2

∂
∂ t ∑

α
pα +∑

α
mα nαuD,α ·

d
dt

(uE +uD,α)

−∑
α
uE ·∇pα −∑

α
(∇ ·πα) ·uE +∑

α
uR,e→α · (qα nα ∇φ)

−∑
α

Qe→α = 0.

(39)

The final energy theorem is now obtained by adding the con-
tributions from the vorticity (35), electron (36) and ion pres-
sure (39), and invoking the density equation to put the density
under the time derivative. In conclusion, the energy theorem
reads:

∂
∂ t

∫
dV
(

3
2

pe +∑
α

(
3
2

pα +
1
2

mα nα u2
α,0

))
= 0. (40)

This is the general energy theorem and so the total energy
given as the sum of the thermal and kinetic energy as we ex-
pect.

III. COMPUTATIONALLY IMPLEMENTABLE MODEL:
MIHESEL-MODEL

The system of equations presented in Section II is numer-
ically cumbersome to implement and so we seek to simplify
the equations to get a numerically workable model. In this
section we also discus the influence of the approximations on
the energy theorem and the summability of the equations in
regards to the asymmetry in summation discussed earlier. As
mentioned, we consider a 2D slab geometry with x and y as
the radial and poloidal directions respectively with the mag-
netic field given by equation (4). The process of simplifying
the model starts with the terms involving the polarisation and
gyro viscosity drifts. As mentioned in equation (30), the sum
of these terms results in the gyro viscous cancellation. The
remainder term uχ,α from the cancellation is dropped in (32)
and for computational convenience we employ the thin layer
approximation14. The terms involving the polarisation drift,

which only concerns ions, are thus reduced to:

∇ · (nα [up,α +uπ,gy,α ])'−
nα,0

Ωc,α,0
∇ ·
(
d0

t ∇⊥φ ∗α
)
, (41)

∇ · (pα [up,α +uπ,gy,α ])'−∇ · pα

Ωc,α,0

(
d0

t ∇⊥φ ∗α
)
, (42)

pα ∇ · (up,α +uπ,gy,α)'−
pα

Ωc,α,0
∇ ·
(
d0

t ∇⊥φ ∗α
)
, (43)

with

φ ∗α =
φ
B0

+
pα

qα nα,0B0
and d0

t = ∂t +uE,0 ·∇. (44)

Here, ns,0 is the characteristic reference value for density. The
expression in Eq. (42) is formally small14, and is consequently
left out of the ion pressure equation. The exclusion of this
term does not violate the energy theorem. The similarity of
the approximations in Eq (41) and (43) is required for energy
conservation.

Moving on to the collisional terms and starting with the
frictional resistive component we evaluate them using the low-
est order drifts uE and uD,α , in which case the electric drifts
cancel, leaving only the diamagnetic contribution. The total
resistive drift is then approximated as:

uR,s =−∑
s′

νs′→s

msΩ2
c,s

(
∇ps

ns
− qs

qs′

∇ps′

ns′

)

+
3
2 ∑

s′

νs′→s

msΩ2
c,s

µss′

(
∇Ts

ms
− qs

qs′

∇Ts′

ms′

)
. (45)

Similar to Ref. 14 we see that the thermal gradient terms par-
tially cancel and so we neglect them giving the approximation:

uR,s '−∑
s′

νs′→sv2
th,s

Ω2
c,sTs

(
Ts

∇ns

ns
− qs

qα
Ts′

∇ns′

ns′

)
(46)

'−∑
s′

Ds′→s,0ns′

ns′,0Ts,0

(
Ts

∇ns

ns
− qs

qs′
Ts′

∇ns′

ns′

)
= uR,s,0,

(47)

where we define the diffusion coefficient as:

Ds′→s,0 ≡ ρ2
0,sνs′→s,0. (48)

For the density equation and pressure equation this results in:

∇ ·nsuR,s ' ∇ ·nsuR,s,0 =−∑
s′

Ds′→s,0

ns′,0Ts,0
(

Ts∇ns′ ·∇ns +ns′∇Ts ·∇ns +Tsns′∇2ns

− Zs

Zs′

[
Ts′∇ns ·∇ns′ +ns∇Ts′ ·∇ns′ +Ts′ns∇2ns′

])
, (49)

∇ · psuR,s ' ∇ ·T0,snsuR,s,0 =−∑
s′

Ds′→s,0

ns′,0(
Ts∇ns′ ·∇ns +ns′∇Ts ·∇ns +Tsns′∇2ns
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− Zs

Zs′

[
Ts′∇ns ·∇ns′ +ns∇Ts′ ·∇ns′ +Ts′ns∇2ns′

])
, (50)

uR,s · (qsns∇φ)' uR,s,0 · (qsns∇φ)

=−∑
s′

Ds′→s,0

ns′,0Ts,0

(
Tsns′∇ns−

qs

qs′
Ts′ns∇ns′

)
· (qs∇φ) . (51)

These approximations do not change the energy conservation
as the two first terms appear as surface terms in the integral
and as such are intergrated out. Eq. 51 is symmetric in in-
dices and all terms cancel when summing over all species.
For the electron pressure equation the resistive contributions
from Eq. (29) are approximated as:

∇ · (peuR,e)−∇ ·∑
α

pe

(
1+

√
2

Zα

)
2
3
uR,T,e

' ∇ · (peuR,e,0)−∑
α

Dα→e,0

(
1+

√
2

Zα

)
∇ · (ne∇Te) . (52)

The ion heat conduction is approximated as:

∇ ·q⊥,α '∑
β

Dβ→α,0

mα n0,β
µαβ ∇ ·

(
3
2

[
nβ ∇pα −

Zα

Zβ
nα ∇pβ

]

− mα

mα +mβ
nα nβ

[(
13
4

mβ

mα
+4+

15
2

mα

mβ

)
∇Tα −

Zα

Zβ

27
4

∇Tβ

])
.

(53)

Again, this does not alter the energy theorem.
Finally, we consider terms related to the ion viscous stress

tensor. When calculating the stress tensor, we evaluate the
velocities using the lowest order drifts and use the same ap-
proximation used in the polarisation drift. Furthermore, the
viscosity coefficients η⊥,α are computed using reference val-
ues for the pressure and magnetic field. The tensor finally
reads:

←→π ⊥,α '−η⊥,α

[
−2∂xyφ ∗α (∂xx−∂yy)φ ∗α

(∂xx−∂yy)φ ∗α 2∂xyφ ∗α

]
. (54)

In the approximations of terms including the viscosity drift
we evaluate η⊥,α and nα in the denominator at reference val-
ues as done in, e.g., Eqs. (57) to (60). For the dyadic prod-
uct of the stress tensor and the zeroth order drifts entering
the ion pressure equation, the perpendicular collisional part is
then approximated using reference values for pressure, col-
lision frequency and magnetic field in the viscosity coeffi-
cient. Likewise the lowest order drift is given approximated
as u⊥,α,0 = b×∇φ ∗α . In the end this gives:

π⊥,α,0 : ∇u⊥,α,0

'−∑
β

mα nα,0Dπ,β→α,0

[(
∂ 2

x φ ∗α −∂ 2
y φ ∗α

)2
+4(∂xyφ ∗α)

2
]
,

(55)

πgy,α,0 : ∇u⊥,α,0 = 0, (56)

where the stress tensor diffusion coefficient is defined as:

Dπ,β→α,0 ≡
η⊥,β→α,0

nα,0mα,0

= Dβ→α,0
mα mβ(

mα +mβ
)2

(
3

10
mβ

mα
+

1
2
− 1

5
mβ

mα

Zα

Zβ

)
.

(57)

The remaining terms involving the stress tensor are approxi-
mated as:

∇ ·nαuπ,⊥,α '∑
β

nα,0Dπ,β→α,0

Ωc,α,0
∇2∇2φ ∗α , (58)

∇ · pαuπ,⊥,α '∑
β

pα,0Dπ,β→α,0

Ωc,α,0
∇2∇2φ ∗α , (59)

pα ∇ ·uπ,⊥,α ' pα ∑
β

Dπ,β→α,0

Ωc,α,0
∇2∇2φ ∗α . (60)

The term given in Eq. (59) is left out as ∇ ·(pαuπ,α)/∇ ·qα ∼
ρ2

α/L2
⊥� 1. The two other terms in Eqs. (58) and (60) are ap-

proximated so that together with Eq. (56) energy is conserved.
Having done all the approximations above we employ neo-

classical corrections to the equations by multiplying the diffu-
sion coefficients by a correction factor14:

Ds′→s→
(

1+
R
r

q2
95

)
Ds′→s, (61)

where R is the major radius, r is the minor radius and q95 is the
safety factor. In principle, the neoclassical correction should
only be applied to the averaged fields on closed field lines as it
assumes longer timescales than what is found in intermittent
turbulent transport. However, to simplify the implementation
of open and closed field lines the correction is kept for the
whole domain.

For numerical convenience we perform gyro-Bohm nor-
malisation giving the dynamic variables:

Ts

Te,0
→ Tα,e,

x
ρD
→ x, Ωc,D,0t→ t,

eφ
Te,0
→ φ ,

ns

ne,0
→ nα,e,

(62)

and the static values:

ms

mD
→ µs,

ns,0

ne,0
→ as,

Ts,0

Te,0
→ τs. (63)

Here Ωc,D,0 = eB0/mD, ρD =
√

Te,0/mDΩ2
c,D,0, with the sub-

script D indicating deuterium. In general it can be any normal-
isation but for this work we will use Deuterium as the normal-
ising species. We can now write down the final MIHESEL-
model equations:

d
dt

nα +nαC (φ)+
1

Zα
C (pα)

−aα
µα

Zα
∇ ·
(

d0

dt
∇⊥φ ∗α

)
= Λnα , (64)

∑
α

aα µα ∇ ·
(

d0

dt
∇⊥φ ∗α

)
−C

(
∑
α

pα + pe

)
= Λw, (65)
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3
2

d
dt

pα +
5
2

pαC (φ)+
5
2

1
Zα

C

(
p2

α
nα

)

−pα
µα

Zα
∇ ·
(

d0

dt
∇⊥φ ∗α

)
= Λpα , (66)

3
2

d
dt

pe +
5
2

peC (φ)− 5
2
C

(
p2

e

ne

)
= Λpe . (67)

Here φ ∗α = φ + pα/qα aα is the generalised potential. The
right hand side contains all terms related to collisions and vis-
cosity and are given by:

Λnα =∑
s

Ds→α,0

asτα

(
Tα ∇ns ·∇nα +ns∇Tα ·∇nα +Tα ns∇2nα

− Zα

Zs

[
Ts∇nα ·∇ns +nα ∇Ts ·∇ns +Tsnα ∇2ns

])
−∑

β

aα Dπ,β→α,0

Ωc,α,0
∇2∇2φ ∗α , (68)

Λw =∑
α

∑
β

Zα
aα Dπ,β→α,0

Ωc,0,α
∇2∇2φ ∗α , (69)

Λpα =
5
2 ∑

s

Ds→α,0

as

(
Tα ∇ns ·∇nα +ns∇Tα ·∇nα +Tα ns∇2nα

− Zα

Zs

[
Ts∇nα ·∇ns +nα ∇Ts ·∇ns +Tsnα ∇2ns

])
− pα ∑

β

Dπ,β→α,0

Ωc,α,0
∇2∇2φ ∗α

−∑
β

Dβ→α,0

µα aβ
µαβ ∇ ·

(
3
2

[
nβ ∇pα −

Zα

Zβ
nα ∇pβ

]

− µα

µα +µβ
nα nβ

[(
13
4

µβ

µα
+4+

15
2

µα

µβ

)
∇Tα −

Zα

Zβ

27
4

∇Tβ

])

+∑
s

Ds→α,0

asτα

(
Tα ns∇nα −

qα

qs
Tsnα ∇ns

)
· (qα ∇φ)

+∑
β

µα aα Dπ,β→α,0

[(
∂ 2

x φ ∗α −∂ 2
y φ ∗α

)2
+4(∂xyφ ∗α)

2
]
+∑

s

3nα nsνs→α,0µα (Ts−Tα)

as(µα +µs)
, (70)

Λpe =∑
s

Ds→e,0

as

(
Te∇ns ·∇ne +ns∇Te ·∇ne +Tens∇2ne

−Ze

Zs

[
Ts∇ne ·∇ns +ne∇Ts ·∇ns +Tsne∇2ns

])
+∑

α

(
1+

√
2

Zα

)
Dα→e,0∇ · (ne∇Te)

+∑
s

Ds→e,0

asτe

(
Tens∇ne−

qe

qs
Tsne∇ns

)
· (qe∇φ)+∑

s

3nensνs→e,0µe (Ts−Te)

as(µe +µs)
. (71)

The advective derivatives are defined as:

d
dt

=
∂
∂ t

+
1
B
{φ , ·} and

d0

dt
=

∂
∂ t

+{φ , ·} , (72)

where { f ,g} = ∂x f ∂yg− ∂y f ∂xg is the Poisson bracket. The
curvature operator is given as:

C ( f )≡ ∇ ·
(
b×∇⊥ f

B

)
=−ρD

R
∂y f . (73)

Lastly, we revisit the energy conservation. We have already
discussed how none of the approximations lead to a violation
of the energy conservation and redoing the calculation of the

energy theorem with these approximations yields:

∂
∂ t

∫
dV
(

3
2

pe +

(
∑
α

3
2

pα +aα µα
|∇φ ∗α |2

2

))
= 0 (74)

As mentioned, models such as the HESEL model14 that use
only one ion species have been extensively used to study the
evolution of the dynamics in the edge/SOL. The MIHESEL
model naturally reduces to a single ion species model. In this
case the sum over species s involves only one ion species and
the electrons, while the sums over α and β reduce to a sin-
gle ion species term each. In the latter case, one has α = β ,
meaning that, e.g., µα = µβ .
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IV. SIMULATIONS OF SEEDED BLOB DYNAMICS

As a first test and demonstration of the model we solve
the above equations with seeded blobs as the initial condition
where we introduce a Gaussian perturbation in the density:

nα(x,y, t = 0) = nα,bg +nα,b exp

(
− (x− xc)

2

2σ2
x,α

− (y− yc)
2

2σ2
y,α

)
.

(75)

Here nα,bg is the background density and nb is the blob ampli-
tude. For the width of the blob we use σx,α = σy,α = 10ρD for
all species. For reference values we have ne,0 = 1.5 ·1019m−3,
Te,0 = Tα,0 = 20eV and B0 = 2T . In the poloidal (y) direc-
tion we employ periodic boundaries while we use Dirich-

let and Neumann boundaries for the inner and outer radial
(x) boundaries respectively. The equations are numerically
solved using the FELTOR discontinuous Galerkin library20.
Here we have Nx = 2Ny = 192 grid cells and use three poly-
nomial coefficients for a third order method. The box size
is Lx = 2Ly = 200ρD. The time integration is done using a
third order implicit backward differentiation formula (BDF)
method with a time step of dt = 0.5. The resulting non-linear
system of equations is solved using Anderson acceleration21,
where for each Anderson iteration we solve the system of
equation for the partial derivative. This means we need to per-
form an inner inversion of the potential and ion pressure equa-
tions since these are intricately coupled in the time derivative.
To do so we cast them in the form:




−∑α aα µα ∇2 − µ1
Z1

∇2 − µ2
Z2

∇2 · · ·
− µ1

Z1
∇2 3

2
1
p1
− µ1

Z2
1 a1

∇2 0

− µ2
Z2

∇2 0 3
2

1
p2
− µ2

Z2
2 a2

∇2

...
. . .



·




∂tφ
∂t p1
∂t p2

...


=




−(Λw +C (∑α pα + pe)−∑α aα µα ∇ · {φ ,∇⊥φ ∗α})(
Λp1 − 5

2 p1C (φ)− 5
2

1
Z1

C
(

p2
1

n1

)
+ p1

µ1
Z1

∇ · {φ ,∇⊥φ ∗1 }
)
/p1(

Λp2 − 5
2 p2C (φ)− 5

2
1

Z2
C
(

p2
2

n2

)
+ p2

µ2
Z2

∇ · {φ ,∇⊥φ ∗2 }
)
/p2

...




(76)

Because of the complex form of the matrix we invert this
system with a matrix-free approach. We consider a two ion-
species plasma of deuterium and tritium, which is split into
different configurations for the background and perturbation
mix. The collection of configurations are all possible combi-
nations of ’Background mix’ and ’Perturbation mix’ given in
table I. The sum of ion densities is such that in normalised
units, ntot,bg = ∑α nα,bg = 1 and ntot,b = ∑α nα,b = 1 for all
runs.

An example of the evolution of the electron density profile
is shown in Fig. 1 for the case of 50%D and 50%T in both
background and perturbation with the center of mass position
superimposed on top. Here we see the characteristic ’plum-
ing’ behaviour of seeded blobs moving radially outward. Ad-
ditionally, there is an asymmetrical evolution of the blob in the
poloidal direction. This asymmetry is a consequence of finite
ion temperature effects. Both the radial and poloidal motions
are very similar to what is seen in e.g. Ref. 22 and 23 for
single ion species simulations. The electron density is shown,
as it is the sum of the ion densities and as such, serves as an
indicator of the overall plasma evolution.

In Fig. 2 left, we show the radial center of mass position for
the blob as a function of time. In Fig. 2 right, we show the
radial center of mass normalized to the case of 50%-50% DT

in both background and blob. The center of mass is defined
as:

Xc ≡
1
M

∫
x∑

α
mα
(
nα −nα,bg

)
dV, (77)

where M is the mass of the blob given as

M =
∫

∑
α

mα
(
nα −nα,bg

)
dV. (78)

The electron mass is neglected since it is much smaller. From
the left figure, we observe that the blobs overall follow much
the same trend with the light mixes moving faster. This picture
eventually becomes less clear as light blobs in heavy back-
grounds appear to have moved further at the end of the simu-
lation. From the right figure, we see that the initial develop-
ment is grouped within the seven distinct background mixes
(see Table I) but quickly separates according to the perturba-
tion mix. At around tΩciD ∼ 1800 this picture is switched as
we observe a grouping corresponding to the perturbation mix
after which they will start to separate again. Overall it is evi-
dent that initial mixes with more deuterium (green) in general
move faster radially than with tritium (purple) while the de-
pendency on the perturbation mix increases over time.
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D T D T D T D T D T D T D T
Background mix 12,5 87,5 25 75 37,5 62,5 50 50 62,5 37,5 75 25 87,5 12,5
Pertubation mix 12,5 87,5 25 75 37,5 62,5 50 50 62.5 37.5 75 25 87,5 12,5

Table I: Table of setups for mixes in background and perturbation with 49 unique initial conditions in total.
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Figure 1: Electron density for the case of 50% D, 50% T in both background and perturbation taken at different snapshots with
the center of mass superimposed as magenta crosses.

Taking the time derivative of the center of mass position
yields the radial velocity of the center of mass. This is related
to the flux given by24:

Γ(t) =
∫

∑
α

mα nαuα dV = MVC = M
d
dt
XC. (79)

Consequently, it is interesting to look at the (maximum) ve-
locity as it indicates the (maximum) flux. The radial veloc-
ity is shown in fig. 3. Here it is observed that mixes with
more deuterium especially in the blob have higher initial ra-
dial velocity and reach their maximum earlier than for tritium
dominated simulations. However, over time, this picture will
reverse with tritium dominated blobs having higher velocity in
the end. Taking a closer look at the maximum velocity in fig.
3 right, it becomes clear that the moment at which the maxi-
mum value is obtained is highly dependent on the background
density illustrated by the seven groupings. Comparing each
group we see that overall the maximum velocity decreases as
the amount of tritium in the background increases. Within
each group, it is clear that the amount of tritium in the pertur-
bation significantly affects the maximum velocity.

To quantitatively estimate the influence of the mixture we
perform a simple scaling analysis. From previous scaling
studies of the maximum blob velocity we know that it scales
as vmax ∝ m−0.5 (see e.g. Ref. 13) and so we expect something
similar in our case. However, since the mix in the background
can differ from the blob mix we use a composite scaling of
the form vmax ∝ ma

eff ,bgmb
eff ,b where we have introduced an ion

effective mass given by:

meff =
∑α nα mα

∑α nα
. (80)

With this the dependency of the effective mass of the ini-
tial blob and background on the maximum radial velocities

is found to scale as:

Vmax(meff ,b,meff ,bg)

= 0.055(±0.001)
(

m−0.34(±0.01)
eff ,b +m−0.25(±0.01)

eff ,bg

)
. (81)

From this velocity scaling we observe that the maximum ra-
dial velocity scales strongest with the perturbation mix, but
also that the background mix plays a significant role. It should
be noted that in the case of uniform initial ratio the back-
ground and the perturbation effective masses are the same.
With this we get a scaling of Vmax(meff ) ∝ m−0.589

eff . This dif-
fers slightly from the theoretical m−0.5

eff scaling, however, the
magnitude of blob put us in an energy-limited regime, as dis-
cussed in Ref. 25, giving the slightly higher mass dependency.
Naturally, this scaling only works with the initial conditions
presented earlier. The dependency of the effective mass in the
blob is expected to also scale with, e.g., the magnitude of the
blob.

Lastly, we consider how the mix in the blob evolves. Within
the model equations, we have included interactions between
all species through collisions, which are contained within the
resistive drift terms as seen in Eq. (45). Here it is observed
that the resistive force will result in an equilibration of the mix
such that nα → cα nβ where cα is some constant. We examine
this by looking at the ratio of tritium in the blob over time nor-
malized to the background ratio with the result being shown
in Fig. 4. In this figure, there is a clear tendency for all mixes
to converge to the background mix as a consequence of the re-
sistive force. As a result, it is to be expected that in a plasma
where this is a dominating force, the plasma will tend towards
a homogeneously mixed plasma that can be described by an
effective mass approach. Up to now, we have only considered
the center of mass propagation. We now discuss the differ-
ences in the density distribution for the 50%D 50%T case. In
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Figure 2: Left: Radial center of mass of electron density. Right: Radial center of mass normalised to 50% D, 50% T.
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Figure 3: Left: Radial center of mass velocity. Right: Maximum radial velocity against time of occurrence.

Fig. 5 we show the difference both with and without the terms
involving ion-ion resistivity at different points in time. We no-
tice that, regardless of the resistivity, the difference between
the two species is very small compared to the initial blob per-
turbation meaning there is little separation between the two
species. Comparing the two cases with and without resistive
drift (top and bottom) it is evident that the resistive force has
a smoothing effect on the species as the differences in the re-
sistive scheme are a factor five smaller than the non-resistive
counterpart. This supports our earlier observation in Fig. 4
where we saw a tendency to equilibrate towards a global ratio.
It should be noted that the evolution of the electron density
distribution is the same for both cases as it equals the sum of
ion densities and ion-ion resistive drifts cancel each other.

Earlier in Section II we discussed the issue with asymmetry
in nα when adding densities (see Eq. (34)) that could cause
different outcomes when splitting a single species into two.

We have therefore performed simulations similar to the above
but with a mix of pure deuterium in order to gauge the error
introduced by this non-physical artefact. From these simula-
tions, the error amounts to small deviations in the position of
blob over time. The errors are of a magnitude of below 10−4

when normalised to a single species simulation. In regards to
the DT runs this can be considered negligible and can not be
attributed to the mass effects we see. Furthermore, runs with
the same mix ratio in blob and background show errors up to
10−7. As the resistive drift drives the ratio of the blob and
background mix towards equality the error introduced by the
asymmetry in summation will diminish over time in general
and so the error level is considered acceptable.
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Figure 4: Tritium percentage in blob normalised to
background tritium percentage.

V. DISCUSSION

Based on the Zhdanov 21 moment closure, we have de-
rived a drift ordered fluid model that incorporates multiple
ion species and describes the evolution of the density, vortic-
ity and pressure. The model includes consistent ion-ion and
electron-ion collisional interactions while maintaining energy
conservation. Based on the drift fluid equations for density,
vorticity and pressure a computationally workable model was
derived and studied through seeded blobs with different mix-
tures of deuterium and tritium in both the background and
blob. We discussed how the mix in the background and blob
affect the propagation of the blob individually and found that
initially, the deuterium dominated mixes developed the fastest
with the background mix playing a leading role. However,
as time progresses the mixture in the blob became dominant.
We found that both parameters are important for the scaling of
the maximum velocity but with the blob mix playing a larger
role. Furthermore, we discussed how the resistive forces be-
tween the mixes tend to equilibrate so that the mixing ratio is
the same everywhere in the plasma. As time progresses the
plasma is expected to converge to a system that can be mod-
elled with an effective mass. The asymmetry in summation
discussed in II was examined and found to be inconsequen-
tial. The mass dependency on the blob propagation suggests
that radial transport will decrease as the isotope mix increases
the overall mass. In future studies, we plan to investigate the
isotope dependency on cross-field particle and energy trans-
port in the edge in a fully developed turbulent plasma. In
these studies, we will furthermore account for parametrisation
of parallel losses as in Ref. 15.
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Figure 5: Ion density difference for the case of 50% D, 50% T in both background and perturbation taken at different snapshots.
Top three are with ion-ion resistivity drift enabled while bottom three are without ion-ion resistivity.
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4.1. SEEDED 2D FILAMENTS - BLOBS

4.1.1.3 Postlude

The paper introduced the MIHESEL model derived from the moment equa-
tions the drift fluid expansion of the momentum equation. In relation to this,
it was shown that the model was energy conserving in the form given in the
paper:

∫
dV

∑
α

(
mαnα,0

|∇⊥φ|2

2 + 3
2pα

)
+ 3

2pe = 0 (4.1)

Hence the full energy, in the form of fluid kinetic and thermal energy, is
conserved. For the full MIHESEL model given in Eqs. (2.143) to (2.146),
which contain the parallel parametrisation, the conservation of energy con-
tains a non-zero right-hand side due to the inclusion of parallel loss terms
and sources. Following the theoretical discussion, the first use of the model
was presented. In this, simulations of seeded blobs with a variety of mixes of
deuterium and tritium in background and perturbation were investigated. It
was found that overall the inclusion of tritium slowed down the blob prop-
agation compared to a deuterium dominated blob. The exact dependency
was found to be on whether the deuterium was in the background or the
perturbation initially. A velocity scaling of the effect of the background and
perturbation mix on the maximum radial velocity of the blobs was found as:

Vmax(meff ,b,meff ,bg)

= 0.055(±0.001)
(
m
−0.34(±0.01)
eff ,b +m

−0.25(±0.01)
eff ,bg

)
. (4.2)

This shows that while the maximum velocity depends on both types of mixes,
the perturbation mix is slightly more dominant. That the background is also
important, reveals itself in the fact that the perturbation mix tends towards
the background mix as seen in fig. 4 in the paper. This homogenisation of
the mixture ratio is caused by the resistive force between species. Overall, it
can be concluded that for the case of uniform ratio in the initial perturbation
and background, the velocity scaling falls well in line with the scaling found
in [23].

Poloidal motion In the paper, the radial propagation of the blob was the
primary focus of the numerical simulation. The MIHESEL model does, like
its predecessor the HESEL model, contain lower-order finite Larmor radius
effects through the gyro-viscous stress tensor and the generalised vorticity.
The resulting behaviour is that there is a poloidal motion of the blob. This
is also seen in [52], [92], [96] where the blob moves in the negative B×∇B
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Figure 4.1: Poloidal center of mass position over time for DT simulations.

direction. In the particle picture, this motion results from a gyrating particle
transversing a non-uniform electric field. The variation of the electric field
happens on the scale of the blob width. As a reminder, the gyro-radius is
given as:

ρα = mαv⊥,α
|qα|B

=
√
Tαmα

|qα|B
(4.3)

which shows that higher mass means larger gyro-radius. This implies that
a heavy particle would experience a more varied electric field compared to a
lighter particle and so should cause increased poloidal motion. In Fig. 4.1 the
centre-of-mass position in the poloidal direction over time is shown. In this,
it is observed that it is the isotope mixture in the blob that is the determining
value regarding the magnitude of the poloidal centre-of-mass position. This
falls well in line with the notion that heavier particles have larger gyro-radii
than lighter (assuming the same charge) and so exhibit more pronounced
poloidal motion. Interestingly, it is the mixtures where the background is
deuterium dominated and the perturbation is tritium dominated that expe-
riences the largest poloidal propagation.

4.1.2 Deuterium helium blobs
In the previous subsection, blobs with mixes of deuterium and tritium were
studied as these are the main components of a burning plasma. Naturally,
in a true burning plasma, Helium will also be a main component of the
plasma mix as it is the ash of the DT fusion reaction as stated in Eq. (1.1).
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Figure 4.2: Left: Deuterium helium radial center-of-mass position over time.
Right: Normalised center of mass.

Furthermore, doubly ionised helium four is interesting as it has the same mass
charge ratio as deuterium, meaning it is the same gyro frequency for both
species. In this section, a similar simulation scan of 49 individual mixtures as
the one found in the paper is performed but with helium instead of tritium.
To make a comparable situation, the electron density is the same for all blob
simulation. This means that when helium substitutes tritium, the helium
density will only be half what it would be if it were tritium. The density of
deuterium is unchanged.

The radial position of the centre-of-mass is shown in Fig. 4.2 along with
normalisation regarding the case where 50% of the electrons are contributed
by the deuterium and the rest from the helium. Moving forward, the mix-
tures will be referred to by the amount of electrons each species supplied,
e.g., 75%−25% means the helium supplied 25% of the electrons. In Fig. 4.2
left it is observed that the difference in the evolution of the centre-of-mass
for all mixtures is less pronounced than what was observed in the DT case
presented in the paper. This is also supported in the Fig. 4.2 right with the
normalised positions where the initial deviation goes up to about 1.12 where
for the DT case it was around 1.17. Subsequently, all curves tend towards
1.0. From Fig. 4.2 right it is also seen that there is an initial grouping accord-
ing to the perturbation mix where groups with large amounts of deuterium
have higher initial acceleration, and vice versa. In the very beginning, the
background mix has a minor influence on the acceleration. However, as time
progresses, the combination of the background mix and perturbation mix
plays an increasing role.

Looking into the velocity of the centre of mass, shown in Fig. 4.3 left,
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Figure 4.3: Left: Deuterium-Helium radial centre of mass velocity. Right:
Maximum center of mass velocity against time of occurence.

it is evident that the behaviour is very similar to that of DT, i.e. that the
more deuterium, the higher the maximum radial velocity is. From a simple
balance of terms, a scaling law can be found from the vorticity equation
when neglecting the viscosity term. Assuming equal width for all species,
the scaling comes to:

urad,blob ∼

√√√√ σ

R

∑
α δpα+ δpe∑
αmαnα,0

(4.4)

where σ is the width of the blob, δps is the amplitude of the of species pertur-
bation. From this scaling, it can be seen that for a pure helium plasma, the
maximum blob velocity should be a factor 3/4 slower than a similar situation
containing pure deuterium. However, from Fig. 4.3 right, it is observed that
the ratio of magnitudes of the maximum velocity of the deuterium and helium
dominated simulations, is close to unity. Here it is also found that the helium
dominated mixes reach their maximum velocity later than a deuterium dom-
inated mix. This shows that the helium mix has a slower acceleration, but
also that in accelerated over a longer time period. A possible explanation
for the discrepancy in the velocity scaling can be found when taking into
account the poloidal motion.

Regarding the poloidal motion, it was previously discussed that the mag-
nitude of the poloidal motion depends on the gyro-radius compared to the
blob width. As the gyro-radius of doubly ionised helium-four is a factor

√
2

smaller than deuterium it is expected that the poloidal motion is decreased
as the amount of Helium increases. The results of the poloidal centre of mass
are shown in Fig. 4.4 where this point is clear. The deuterium dominated mix
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Figure 4.4: Poloidal centre of mass position

exhibits the most pronounced poloidal motion. When the deuterium domi-
nated both background and perturbation the blob experiences most poloidal
motion. This is in contrast to the DT simulations where a tritium domi-
nated blob in a deuterium dominated background showed to most poloidal
behaviour. Hence, the background mix can either enhance or diminish the
effect that the perturbation mix has on the poloidal behaviour. Since deu-
terium is favoured in the scaling compared to helium, it seems to enhance the
poloidal motion of the deuterium (or tritium in case of DT mix) dominated
perturbation. Returning to the matter of the maximum radial blob velocity
scaling, it was noted that in general helium blobs were not slower than the
deuterium by the amount prescribed by the scaling. However, this scaling
only considers the radial motion. But as it was just seen, the deuterium also
exhibits more poloidal motion than the helium counterpart, meaning their
trajectories are different. This could account for the discrepancy between the
scaling and the observed behaviour of the maximum radial velocity.

Regarding transport in the SOL/edge, it is evident that while doubly
charged helium is heavier than deuterium, the higher charge nearly cancels
the transport reducing effect of the increased mass. Hence, for a helium
deuterium plasma, it is to be expected that the transport across the last
closed flux surface is comparable to that of a pure deuterium plasma.
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4.2 2D Turblence
In the previous section, isotope effects on seeded blobs were investigated.
Seeded blobs are an idealised area of study, although much can be inferred
with regards to transport. However, to get statistics of the transport in
the outer edge blob simulations are no longer sufficient. In the region of
the plasma where the edge of the core plasma with closed magnetic field
lines meets the scrape-off-layer, with open magnetic field lines, the plasma
dynamics is highly dominated by turbulent transport. Understanding turbu-
lent transport is highly important in the realisation of a future fusion power
plant. It is therefore of interest to study the effects of isotope mixtures in
such a setting. Turbulence has been studied in a variety of settings in regards
to transport in the edge/SOL region, e.g.,[16], [18], [20]. In particular, the
influence of ion temperature dynamics [62] and neutrals [51] on the devel-
opment of turbulent transport have been studied using the HESEL model.
Additionally, gyro-fluid approaches have also been employed in the study of
the edge turbulence [21].

4.2.1 Simulation setup
In turbulence simulations, the domain is a 2D slab, perpendicular to the
magnetic field, located at the outboard midplane of a tokamak. As such, the
simulation domain can be divided into two main regions, namely the edge
and the sol. Within each region, there are further two regions [62]. For the
closed field line region, which corresponds to the edge, there is an inner edge
region where an initial profile is forced, while the outer edge region allows for
turbulence evolution. The open region contains the scrape-off-layer (SOL)
and the wall shadow region where there is damping according to the parallel
parametrisation given in Section 2.2.3.2. The difference between these two
regions is the strength of the parallel loss terms, where the wall region will
have much higher losses. A schematic of the domain is seen in Fig. 4.5.

The density and temperature profiles are initialised as:

nα =nbg +
(
ninner ,α−nbg,α

) 1
2 tanh

(
1 + sign

[
x−xnα,c
anα

])
(4.5a)

Ts =
−

√
Tinner ,s−1
xinner

(x)


·
(
Ts,bg +

(√
Ts,inner −Ts,bg

) 1
2 tanh

(
1 + sign

[
x−xTsc
aTs

]))
(4.5b)
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Figure 4.5: Setup of simulation domain with the closed field lines edge region
and open field lines SOL and wall region.

where nbg is the background density and ninner is the density at the inner
boundary. The shift xn/T,c caries little importance as the initial profile will
degrade and become unstable. Hence, for this work, it is simply set as the
midpoint between the profile forcing region. The parameter a specifies the
width of the profile. Naturally ninner > nbg . The same goes for the temper-
ature. As the MIHESEL model doesn’t evolve the temperature, but instead
the pressure, an initial condition for the pressure is needed. This is simply
obtained by multiplying the density and temperature profiles. For the ion
temperature, it is required from the closure that Tα = Tβ, while the electron
temperature does not have to equal the ion temperature. The potential is
initially zero everywhere. In the way the profiles are given in Eq. (4.5) tur-
bulence will only develop due fluctuations arising from finite numerics of a
computer. Since these fluctuations are small, turbulence will only develop
over long periods of time. To accelerate the initial destabilisation of the
profile, a small perturbation, or blob, is introduced onto the initial density
profile. Following [62] the inner boundary of the domain contain a forcing
region where the profiles are forced toward the prescribed profiles in order to
maintain the turbulent behaviour. For a generic field f this is expressed as:

∂

∂t
f = · · ·+ finit−f

τforce
(4.6)

where τforce is the forcing time. In effect, this is a source terms that emu-
lates a continuous injection of particles and energy into the edge from the
core. Furthermore, as mentioned in Section 2.2.3.2, the parallel dynamics
are parametrised with closed field line losses (Eqs. (2.133) and (2.134)) and
open field line losses (Eqs. (2.129) to (2.132)). To enforce these regions, each
terms is multiplied by a tanh function corresponding to their region.

To keep the simulation stable it has been found that forcing a minimum
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background in the SOL and wall region is necessary. The way this is done is
by adding a term to the right hand side of the MIHESEL equations:

fmin,force =


f−fmin
τbg

, iff < fmin

0, otherwise
(4.7)

where f is the field and τbg is some relaxation time. This means that if
the, e.g., the density drops below some minimum, it will be forced towards
this minimum. As such, it is similar to the profile forcing in the inner edge
region with the difference that the forcing is not active when the values are
above the minimum. In principle the SOL and wall region are rather dilute
in both density and temperature expect when filaments are ejected into the
SOL from the edge. Additionally, some amount of recycling does occur which
’feeds’ the SOL and so the background forcing implemented with Eq. (4.7)
can be viewed as a recycling source.

Taking this into account, the dependence of isotope composition on the
turbulent transport is examined with a parameter scan over both the in-
ner boundary composition and the minimum background composition in the
SOL/wall region.

For all simulations, the electron density is set such such that the value at
the inner boundary is ninner ,e = 1.5n0 where n0 = 1.5 ·1021m−3 is the reference
density. The background floor in the SOL/wall region is nfloor ,e = 0.25n0.
The ions are comprised of deuterium and tritium and the mixes in the inner
boundary and the minimum background are given in Table 4.1.

The reference temperature is set to be T0 = 20eV with the inner electron
and ion temperatures set at Ts = 4T0 for all species. For the background floor
value, it is set at Ts,bg = 0.25T0. The dimension are lx = 10.5cm = 250ρD in
the radial direction and ly = 8.4cm = 200ρD in the poloidal direction where
ρD =

√
(Te/mD) is the reference length. The magnetic field at the last closed

flux surface is B0 = 2T with a major radius R = 1.65, minor radius r = 0.5
and safety factor of q = q95 = 6. In regards to Fig. 4.5, the edge region is set
to have a width of 100ρD = 4.2cm. The same goes for the SOL region while
the wall region has a width of 2.1cm. The widths of the initial profiles are
set to a= 10 for both density and temperature. For the radial direction, the
inner boundary conditions are Dirichlet, while the outer are Neumann for
nα, ps and φ. The poloidal direction features periodic boundary conditions.

For the numerical domain, the grid size was chosen to be Nx = 480 and
Ny = 384 for a grid spacing of ∆x= ∆y= 0.52ρD. The number of polynomial
coefficients was chosen to be 1. The optimal choice would have been a higher
order such as 3, but this case proved to be prohibitively expensive in the
inversion of the potential ion pressure coupling matrix (Eq. (3.2)). The jump
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Inner
mixture

composition

Outer
background
minimum

%D %T %D %T
75 25 75 25
75 25 50 50
75 25 25 75
50 50 75 25
50 50 50 50
50 50 25 75
25 75 75 25
25 75 50 50
25 75 25 75

Table 4.1: Table of setups for mixes on inner boundaries and background
minimum floor with a total of 9 mixtures

factor (see Eq. (3.36)) in the elliptic operator was set to α = 2.2. This was
chosen as it was observed to introduce sufficient numerical diffusion to avoid
oscillations particularly in ∇2φ. Lastly, the time resolution was chosen to be
∆t = 0.25Ω−1

c,D where the parameters for the nonlinear solver are in given in
Table 3.2. Snapshots of the density, pressure and temperature at t = 0.4ms
are shown in Fig. 4.6. It is observed that the structure of the plasma if
dominated by filaments. This is in agreement with other results presented
in e.g. [62]. This filamentary structure is seen in both density and pressure
profiles. The same also holds for the electron temperature, whereas the ion
temperature displays far more diffusion, with less clear structures.

In the initial phase, when the turbulence is initiated by a perturbation in
the initial profile, a large amount of material and energy are expelled from
the edge. This initial transient event is rather extreme and is not a recuring
event seen in general in turbulence simulation. To show this, it is instructive
to study the advective flux of the particles and thermal energy. The advective
flux of some quantity C is given by:

Γn = Cu (4.8)

For this work, it is the transport across the last closed flux surface that is of
interest as it gives a measure of the amount of material and energy that is
transported from the closed field lines to the open. The main velocity driver
of the radial flux is the E×B drift. Considering this, and using Eq. (4.8),
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Figure 4.6: Snapshots of density (top), pressure (middle) and tempera-
ture (bottom) at t = 0.4ms for deuterium (left), tritium (middle), electrons
(right). Simulation mix is Inner: 50%D 50%T; BG: 50%D 50%T,
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the radial particle and heat flux are given as:

Γn(x,y, t) =−n∂yφ
B

and Γp(x,y, t) =−p∂yφ
B

(4.9)

where φ is the electric potential. The poloidally averaged radial flux across
the LCFS for possible mixes in Table 4.1 is shown in figure Fig. 4.7.

It is observed that the initial phase, up to t∼ 0.2ms, exhibit large fluctua-
tions in the flux. This is particularly clear for the Inner: 75%D,25%T mixes
seen in the top row. This is the extreme transient event discussed before. It
is noted that such an event does not occur again after this. Curiously, for
each subgroup of the mixes in the inner region (rows Fig. 4.7), it is the com-
positions where the inner mix is the same as the outer background mix, that
have the largest initial spikes within each row. This seems to indicate that
the composition in SOL/wall regions has some amount of influence on the
processes happening in the inner region. Disregarding the initial phase, it is
evident that the flux is governed by large fluctuations, which is characteristic
of intermittent turbulence.
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Figure 4.7: Electron particle flux for each composition.

To investigate the influence of the mixtures on the radial flux, a proba-
bility density function of the radial flux is produced using Gaussian kernel
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density estimation1. Only the flux data after t = 0.2ms are included to ex-
clude the initial erratic fluctuations mentioned above. The results are com-
pared according to the mixes in the inner region and the outer background.
The resulting comparisons are shown in Fig. 4.8 for the density flux with
the six comparisons (corresponding to three row-wise comparisons and three
column-wise comparisons of Fig. 4.7).
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Figure 4.8: PDFs for electron flux across the last closed flux surface with row
wise and column wise comparisons in relation to Fig. 4.7.

Descriptors of each pdf of both particle and heat flux are given in Ta-
bles 4.2 and 4.3. From the descriptors of both flux distributions, it is observed
that the particle and heat flux across the LCFS increases as the amount of
tritium in the inner region forcing composition compared to deuterium, in-
creases. E.g. the deuterium dominated mix (top left in Fig. 4.8) has a mean
flux of 7.3 · 1020m−2s−1 against 8.3 · 1020m−2s−1 for the tritium dominated
mixture (bottom right in Fig. 4.8). Within each subgroup of the inner mix-
ture, it is further observed that when the inner mixture is equal to that of the
mixture of the outer minimum, the flux is at its highest. This corresponds to
the diagonal from top left to bottom right in Fig. 4.7. That the flux across the
last closed flux surface increases as the mass increases is in contrast to what
was observed in the simulations of the DT blobs in Section 4.1.1 and what

1Computations performed using Scipy’s Gaussian Kernel density estimation function.
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Mixture
Inner: %D, %T, BG:%D, %T

Mean
1020m−2s−1

Standard dev.
1020m−2s−1 Skewness Kurtosis

75.0, 25.0; 75.0, 25.0 7.3 7.09 2.43 8.87
75.0, 25.0; 50.0, 50.0 6.79 7.1 3.28 16.89
75.0, 25.0; 25.0, 75.0 5.75 5.48 1.86 4.08
50.0, 50.0; 75.0, 25.0 7.33 6.92 1.79 4.11
50.0, 50.0; 50.0, 50.0 8.2 7.11 2.19 8.02
50.0, 50.0; 25.0, 75.0 7.33 7.05 2.96 15.15
25.0, 75.0; 75.0, 25.0 6.59 6.0 2.05 5.96
25.0, 75.0; 50.0, 50.0 7.39 6.77 1.97 5.97
25.0, 75.0; 25.0, 75.0 8.31 8.09 1.89 5.22

Table 4.2: PDF descriptors for electron particle flux across the last closed
flux surface.

Mixture Mean
kJm−2s−1

Standard dev.
kJm−2s−1 Skewness Kurtosis

75.0, 25.0; 75.0, 25.0 8.27 8.49 2.61 10.42
75.0, 25.0; 50.0, 50.0 8.05 8.76 3.16 15.47
75.0, 25.0; 25.0, 75.0 7.54 7.48 1.94 4.52
50.0, 50.0; 75.0, 25.0 9.03 8.8 1.83 4.15
50.0, 50.0; 50.0, 50.0 9.63 8.54 2.19 7.68
50.0, 50.0; 25.0, 75.0 8.98 8.96 2.73 12.07
25.0, 75.0; 75.0, 25.0 9.28 8.83 2.21 6.8
25.0, 75.0; 50.0, 50.0 9.37 8.93 2.0 5.55
25.0, 75.0; 25.0, 75.0 9.89 9.86 1.87 4.78

Table 4.3: PDF descriptors for electron heat flux across the last closed flux
surface.
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has been found using gyro-fluid models [21]. In the blob simulations, it was
found that the maximum radial velocity scaled inversely with the mass of the
ion in the blob. I.e. the more deuterium the faster the blob. This was related
to the flux and it was stated that a deuterium dominated plasma would lead
to higher flux. However, it should be noted that the 2D blob simulations,
only involved 2D effects, while these simulations also contain parametrisation
of the parallel dynamics. In particular, the drift wave parametrisation given
in Eq. (2.134), affects the electron density and pressure, and consequently, it
appears in the vorticity equation. Since the ion density and pressure are cou-
pled to the vorticity, the drift waves also affect the ion pressure and density
profiles where it acts as a damping term. While the deuterium dominated
simulation has a smaller flux it is, however, observed both from the flux in
Fig. 4.7 and its statistical descriptors in Table 4.2 that more extreme events
appear in the deuterium case. This shows up as increasingly large spikes in
the flux signal, and as a larger kurtosis for the deuterium dominated mix.
Hence, this indicates that if there are large amounts of deuterium in the inner
region and the outer region, then the plasma will be prone to more extreme
events. Additionally, the deuterium dominated plasmas appear to be more
dilute in density and energy. This is seen in Figs. 4.9 and 4.10 where the
poloidally and time-averaged profiles are lower than the tritium dominated
profiles. The time averaging is done over time entire simulation run, except
for the initial phase. This suggests that the deuterium mixes are not able to
build up profiles that could lead to large fluxes.

A simple test of pure deuterium and pure tritium has also been performed
as a simple test of the model in a single species case. The results for the fluxes
are shown in fig. Fig. 4.11, although these are for a shorter time than the
DT mix. The average particle flux in these cases after the initial transient
phase are 7.8 · 1020m−2s−1 with standard deviation of 7.1 · 1020m−2s−1 for
deuterium and 5.15 ·1020m−2s−1 with standard deviation ±6.02 ·1020m−2s−1

for tritium. This is a substantial difference that is more in line with the
expected decrease in transport when the mass increases. This goes against
the results obtained with the mixtures presented above. In this regard, it
is hard to imagine that the flux would vary as such in between the pure D
and T runs but should rather follow the same trend with decreased flux with
increased mass.

That the flux increased as the amount of tritium in the inner region in-
creased deviates from what is expected and should be further tested. In this
regard, it should be noted that the number of large events for e.g. the deu-
terium dominated simulation, is ∼ 10 suggesting that the simulation needs to
be run for longer times to get better statistics on the large events. That there
is possibly too few large events is also evident when examining the kurto-
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Figure 4.9: Temporally and poloidally averaged radial electron density pro-
files with row wise and column wise comparisons in relation to Fig. 4.7.
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Figure 4.10: Temporally and poloidally averaged radial electron pressure
profiles with row wise and column wise comparisons in relation to Fig. 4.7.
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Figure 4.11: Particle flux for pure deuterium (left) and pure tritium (right).

sis. This appears to vary substantially from simulation to simulation. Hence
the distribution does not seem to properly represent the extreme events. It
was noted that the blob simulations suggested increased flux with decreased
mass and that the model differences between these simulations and the blob
simulation were the parallel parametrisation. In this regard, it would be
beneficial to investigate the exact role of particularly the drift wave damp-
ing. Additionally, the number of simulation mixes was rather small, more
simulations should be performed to get better statistics on the influence of
the mixture on the fluxes. Lastly, the numerical setup could be tested with
higher resolution to see if it is the problem was with e.g. the resolution or
that the jump factor in the elliptic operator introduces too much numerical
diffusion.

4.3 Section conclusion and Ideas for future
studies

In this section two main themes were studied, namely seeded blob and turbu-
lence simulations. For the seeded blobs, the first submitted paper with the
model was discussed, along with the results of mixtures of deuterium and
tritium in the propagation of blobs. Here it was found that overall, the more
tritium there is in the blob the slower it evolves. In addition, the compositions
of deuterium and double ionized helium in blobs were examined. Here it was
found that, while the helium is much heavier than tritium and deuterium,
the double charged nature of the helium counteracted the increased weight.
This was seen in the radial blob velocity, where, the helium dominated blobs
were only slightly slower than the deuterium dominated blob.

The turbulence studies were a first look into the influence of isotope
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mixtures on the transport in the edge/SOL using the MIHESEL model. Here
it was found that the particle flux increased as the particle mass increased.
This is in constrast to what is to be expected. Hence more studies are needed
to cast light on what might be the cause of this discrepancy. Looking beyond
this problem, there is still much more to explore with a multi species model.

The effect of isotopes on the LH transition has been studied experimen-
tally[24], [97], [98]. It has been shown that the HESEL model, which is the
basis of the MIHESEL model, can show a transition in confinement that
resembles the LH-transition [99]. How mixtures affect this transition could
provide new insights into the LH transition and is particularly interesting in
regards to the upcoming DT campaign at the Joint European Torus (JET).
Furthermore, EAST has shown that the extensive use of lithium has pro-
duces good confinement results and reduces e.g. ELMs [27]. This has also
been numerically studied and shown that the inner profiles are raised when
lithium is introduced [100]. This is similar to the results shown here, where
a mismatch in the inner forcing mix and the outer minimum mix leads to
raised profiles. Using the MIHESEL model, the effect of various isotopes on
edge transport mitigators could be studied.

97



Chapter 5

Conclusion and Outlook

On the path to clean abundant and reliable energy, the fusion of light nuclei
such as deuterium and tritium has been proposed as a viable solution to pro-
duce energy. This was discussed in Chapter 1 of the thesis, where the basic
theory of the plasma confinement device known as a tokamak was given. In
conjunction with this, the problems facing the fusion community in realising
a workable fusion reactor was presented. In particular, the instabilities aris-
ing from fluctuations in the edge and the resulting turbulent transport were
discussed. To overcome this problem, it first needs to be understood. In this
regard, the influence of multiple ion species mixtures on turbulent transport
has not been studied extensively in the existing literature. Therefore, the
goal of this thesis has been threefold. First, to derive a multi-ion species
model based on the drift fluid expansion approach. Second, to numerically
implement the model and implement numerical methods to solve the equa-
tions, and third, to use this implementation to study first seeded density
perturbations, known as blobs, and second fully developed turbulence in a
setting emulating the outboard midplane of a tokamak.

5.1 Conclusions
In chapter 2, the multi-ion species drift fluid model, called the MIHESEL
model, was derived. The starting point of the derivation was the Boltz-
mann single-particle equation. From this, equations for the evolution of the
individual species fluid density, velocity and pressure were derived by tak-
ing moments of the Boltzmann equation. The equations obtained by purely
taking moments of the Boltzmann equation contain quantities from the next
higher-order moment. Hence a closure is needed. For this work, the Zhdanov
closure was employed, which uses Grad’s method, to close the equations.
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While the closed set of equations for each plasma species contain all the nec-
essary information, they are not practical for studying turbulent transport in
the edge of the tokamak. To obtain equations well suited for this study, an
approach known as drift fluid expansion was employed. From this, expres-
sions for individual drift were obtained, which in turn could be used in the
density and pressure equation. From these, a number of approximations, in
the form of linearisations, were used to obtain equations that are numerically
implementable. These final equations constitute the MIHESEL model.

In chapter 3, the numerical implementation of the MIHESEL model equa-
tions, derived in the previous chapter, was discussed. To solve the MIHESEL
equations numerically it was found that a linear problem had to be solved
first. This was due to coupling in the potential and pressure time derivatives
resulting in a linear Helmholtz type system. This was cast in a symmetric
positive definite form suitable for the conjugate gradient solver implemented
in the numerical library Feltor. In regards to the numerical library the
numerical discretisation method, known as discontinuous Galerkin, was dis-
cussed. The MIHESEL equations contain non-linear diffusive terms and so to
make the library capable of solving the MIHESEL equations in a reasonable
time frame, a backward difference formula (BDF) fully implicit time integra-
tor was implemented. This is an iterative procedure and since the MIHESEL
equations are non-linear a solver was implemented. The non-linear solver is
based on the Anderson Acceleration of the non-linear Richardson iteration.
The combined time integrator and non-linear solver were tested using the
method of manufactured solutions and found to give correct results and in
particular that the solvers converge with the expected order.

In Chapter 4, the numerical implementation of the MIHESEL model was
used to study seeded density perturbation, known as blobs, and turbulent
transport. For the blobs, two kinds of mixtures were studied, a deuterium-
tritium mix (presented in the first submitted paper) and a deuterium helium
mix. For both cases, several mixture compositions were studied. The mix-
tures were split into two a background mix and perturbation mix and the
influence of both mixes on the radial centre of mass propagation was investi-
gated. For the DT simulations, it was found that more deuterium in general
increases the maximum radial centre of mass velocity. In regards to the indi-
vidual influence of the background mix and perturbation mix, it was found
that the maximum velocity scaled stronger with the perturbation mix than
the background. In the deuterium helium case, it was found that the influ-
ence of the increased mass was counteracted by the double charged nature of
the helium. In particular, the maximum radial centre of mass velocity was
found to be nearly equal, with helium being slightly lower. In this regard, it
was expected, based on a velocity scaling, that the helium dominated blobs
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would have a factor 3/4 smaller maximum velocity compared to deuterium
dominated. In respect to this, it was noted that the poloidal movement of the
perturbations was more pronounced in the case of a deuterium dominated
plasma especially if the deuterium was in the perturbation. This is a possible
explanation for the helium velocity overshooting the scaling estimate. The
second part of the chapter focused on turbulence simulations. Here mixtures
of deuterium and tritium were investigated. To keep the simulations stable,
a minimum background on the open field lines was enforced. To study the
influence of the mixtures two parameters were varied, namely the mixture of
the inner forcing region and the mixture of the outer minimum background.
From the simulations, the temporal and poloidally averaged flux over the
last closed flux surface was calculated. Here it was found that the flux in-
creased as the amount of tritium also increased. This is in contrast to what
is expected and suggests more studies are needed.

5.2 Outlook
In the derivation of the MIHESEL model from the Boltzmann equation, the
Zhdanov closure was used to obtain a closed set of equations. For this closure
it is assumed that Tα ≈ Tβ. This could be expanded upon in the future
to include arbitrary temperatures for the ions, which would be of use for
studying, e.g., ICRH heating of multi-ion plasmas. To obtain the MIHESEL
equations a number of approximations were employed to make the numerical
implementation easier. As numerical libraries expand in capabilities, more
problems are possible to solve. Hence it could be interesting to implement a
full model with approximations. Lastly, the drift fluid expansion results in a
small symmetry problem for the densities. I.e., a single ion plasma arbitrarily
split into two (identical) ion species does not necessarily add exactly to what
the single ion plasma would give. It was argued that the effect is minor,
however, some more study into this would be beneficial.

In regards to the numerical methods, the non-linear Anderson acceler-
ation solver was implemented for use in the implicit BDF method. In the
future, other non-linear solvers could be implemented giving a wider range
of tools to solve a wide range of problems. One such method could be a
Newton-Krylov method which is known to be robust when solving non-linear
equations. In regards to the linear solver, the current go-to method in the
Feltor library is the preconditioned conjugate gradient. However, for the
MIHESEL implementation, it is often found the bottleneck is in the inversion
of the linear problem of the coupled pressure and potential. Implementations
of other efficient methods should also be considered.
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Naturally, the issues discussed above in regards to transport should be
investigated more closely to find the possible cause of the discrepancy that
increased mass leads to increased flux. These studies should focus on the ef-
fect of the parallel parametrisations and the numerical setup. As a multi-ion
model, the MIHESEL model can study many topics related to the dynam-
ics of turbulence in the edge/SOL. One such topic could be the influence
of the ion mixture on the LH transition where it has been found that the
LH threshold decreases as the mixture mass increases. Moreover, the use
of transport mitigators such as lithium in the SOL as it is used at EAST
has experimentally shown great results in improving the confinement of the
plasma. This too could be studied with a multi-ion species model. In con-
nection with this, the MIHESEL model also includes source and sink terms,
which can also be made to include ionisation of neutral particles. As such
the injection of neutral lithium and subsequent ionisation could be studied
with the model.

Naturally, it is expected that as the model is applied to different areas
of study, more topics of interest will present itself. The continued use of the
model will hopefully reveal areas where the MIHESEL model can be improved
with new additions and features, all of which can contribute to further the
understanding of the dynamics of the tokamak edge and scrape-off-layer.
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