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Abstract

When a fluid oscillates acoustically, non-linear time-averaged forces are exerted both on
a given particle suspended in the fluid and on the fluid itself. The latter effect gives rise
to a steady motion of the fluid, called acoustic streaming, which causes an additional
force on the suspended particle in the form of viscous drag. The resulting particle motion
due to an acoustic field is called acoustophoresis, and it is extensively exploited in the
field of acoustofluidics for controlled handling of biological microparticles in water-filled
microsystems actuated by ultrasound frequencies. A central phenomenon in these devices
is the micrometer-thin viscous boundary layer forming close to a solid wall, where the
fluid motion adapts to the solid motion. This boundary layer play an essential role for
both viscous dissipation and for the generation of the so-called boundary-driven acoustic
streaming.

In this thesis, a theory for the viscous boundary layer is developed, which extends
the current boundary-layer theories of the literature in two major perspectives: First, a
boundary condition on the oscillating acoustic pressure is derived, which take into account
the viscous dissipation in the boundary layer. Second, the well-known slip condition
on the acoustic streaming is extended to apply for a curved wall that oscillates in any
direction. The derived boundary conditions constitute the so-called “effective model” for
calculations of acoustic fields and streaming in arbitrary geometries where the boundary
layer is taken into account analytically. From a numerical point of view, the effective
model leads to drastic reductions in the memory requirements thus facilitating larger 3-
dimensional simulations.

Inspired by reported experimental observations of acoustic streaming in closed res-
onating cavities, the phenomenon of bulk-driven acoustic streaming is investigated theo-
retically. Bulk-driven acoustic streaming is often ignored in acoustofluidic devices having
length scales comparable to the acoustic wavelength. Here, it is found that bulk-driven
streaming can play an essential role in such systems if the acoustic motion is rotating.
Remarkably, this rotation may be induced unexpectedly even though the actuation is
not rotating. Therefore, a central message of this thesis is, that bulk-driven streaming
should not be ignored neither in the understanding nor in the calculations of resonat-
ing acoustofluidic devices. In this thesis, a general length-scale condition for ignoring
bulk-driven streaming is provided, which is rarely satisfied in acoustofluidic systems.

Acoustic trapping in capillary tubes is a promising application of acoustofludics which
has mainly been studied experimentally. Using the effective boundary conditions for the
viscous boundary layer, the acoustic fields and radiation force in long straight capillary
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tubes of arbitrary cross section are calculated. The analysis leads to an analytical expres-
sion for the axial radiation force and an optimal axial actuation length for the acoustic
trap.

Finally, due to the effective boundary-layer model, it is possible to calculate the acous-
tic streaming sufficiently fast so that many different channel shapes can be examined. This
advantage is exploited in an iterative algorithm that optimizes the channel shape in order
to suppress acoustic streaming. The resulting optimized shape is shown on the front page
of this thesis, and the corresponding streaming is suppressed by two orders of magnitude
relative to conventional rectangular channels. The numerically proposed shape may allow
for controlled handling of sub-micron particles by use of acoustophoresis, and as such, this
final result has promising perspectives for further experimental research.



Resumé

N̊ar en væske svinger akustisk, vil ulineære, tidsmidlede kræfter p̊avirke b̊ade en given
partikel i væsken men ogs̊a væsken selv. Den sidstnævnte effekt giver anledning til en jævn
væskebevægelse, kaldet akustisk strømning, som medfører en yderligere kraft p̊a partiklen
p̊a grund af viskøs gnidningsmodstand. Den resulterende partikelbevægelse foresaget af
et akustiske felt kaldes akustoforese, og denne effekt udnyttes i vid udstrækning inden for
feltet acoustofluidik, til at h̊andtere biologiske mikropartikler i væskefyldte mikrosystemer
aktueret med ultralyd frekvenser. Et centralt fænomen i disse systemer er det mikrometer-
tynde viskøse randlag som opst̊ar tæt ved en væg, hvor væskebevægelsen tilpasser sig til
vægbevægelsen. Dette randlag er af afgørende betydning b̊ade for viskøs dissipation og
for genereringen af akustisk strømning.

I denne afhandling udarbejdes først en teori for det viskøse randlag, som videreud-
vikler eksisterende randlagsteorier p̊a to afgørende m̊ader: For det første udledes en rand-
betingelse for det akustiske tryk, som tager højde for den viskøse dissipation i randlaget.
For det andet udvides den velkendte sliphastighedsbetingelse for den akustiske strømning
til at gælde for en krum væg, som svinger i en hvilken som helst retning. De opn̊aede
randbetingelser udgør den s̊akaldte “effektive model” til beregning af akustiske felter og
strømning i arbitrære geometrier, hvor der analytisk er taget højde for randlaget. Fra et
numerisk perspektiv medfører den effektive model en drastisk reduktion i den nødvendige
beregningshukommelse som tillader at større 3-dimensionelle systemer kan simuleres.

Inspireret af tidligere eksperimentelle observationer af akustisk strømning i lukkede res-
onanskaviteter, undersøges fænomenet “bulk-drevet strømning”. Denne form for strømning
bliver ofte ignoreret i akustofluidiske opsætninger med længdeskala sammenlignlig med den
akustiske bølgelængde. I denne afhandling konkluderes det, at bulk-drevet strømning kan
spille en afgørende rolle i s̊adanne systemer, hvis den akustiske bevægelse roterer. Det er
værd at bemærke, at denne rotation kan blive igangsat uventet, ogs̊a selvom aktueringen
ikke roterer. Derfor er et centralt budskab i denne afhandling at bulk-drevet strømning
ikke bør ignoreres, hverken i forst̊aelse eller i beregninger af akustofluidiske resonanssyste-
mer. I denne afhandling gives der en generel længdeskalabetingelse, som skal være opfyldt
for at forsvare at ignorere bulk-drevet strømning.

Akustisk indfangning i kapillærrør er en lovende anvendelse af akustofluidik, som hov-
edsageligt er blevet studeret eksperimentelt. Ved at anvende de effektive randbetingelser
for det viskøse randlag, beregnes de akustiske felter og den akustiske str̊alingskraft i lange
lige kapillærrør med arbitrær tværsnitsform. Denne analyse giver et analytisk udtryk for
den aksielle str̊alingskraft og en optimal aktueringslængde for akustisk indfangning i disse
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systemer.
Slutteligt, ved hjælp af af den effektive randlagsmodel har det vist sig muligt at beregne

den akustiske strømning tilstrækkeligt hurtigt, s̊aledes at mange forskellige kanalformer
kan blive undersøgt. Dette bliver brugt i en iterativ algoritme, som optimerer kanalformen
med m̊alet at minimere den akustiske strømning. Den resulterende optimerede form er
vist p̊a forsiden af denne afhandling, og dens strømningshastighed er undertrykt med to
størrelsesordner relativt til strømningen i konventionelle rektangulære kanaler. Denne teo-
retisk forsl̊aede kanalform kan potentielt facilitere akustisk h̊andtering af partikler mindre
end en mikrometer, og i det lys giver dette afsluttende resultat lovende perspektiver imod
fremtidige eksperimentelle undersøgelser.
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Chapter 1

Introduction

This chapter gives a brief introduction to the research field of microfluidics and its sub-
branch acoustofluidics, which is the topic of this PhD project. The particularly relevant
phenomenon of acoustic streaming is presented and the scope of the PhD project is estab-
lished. Finally, overviews of the research and thesis structure are provided.

1.1 Introduction to microfluidics

The fundamental idea in microfluidics is to process and manipulate fluids in channels or
cavities having a dimension of tens to hundreds of micrometers [7]. As a technology, it
is particularly interesting in the field of biochemistry as it offers a cheap and fast way to
precisely handle and perform assays on tiny amounts of biological fluids, say a single drop
of blood. Using different manipulation techniques, such fluids can be guided around in
microchannels, mixed with other fluids, diluted, concentrated, purified etc., and the whole
system constitute an automated biological laboratory on a microchip specialized for a spe-
cific purpose, often called lab-on-a-chip. Promising perspectives include the development
of point-of-care devices that offer cheap and fast diagnostics in areas without access to
conventional laboratories [8, 9], organ-on-a-chip devices used for drug testing on a per-
sonalized artificial human organ [10], or microreactors as shown Fig. 1.1(a) where many
chemical reactions can be rapidly tested in parallel and under different conditions [11].

The small length scale of microfluidics makes the physical behaviour different from
what we experience from every-day fluid phenomena. Most importantly, at this small
length scale, viscous forces are often dominant over inertial forces, and therefore, the fluid
motion is well described by a laminar flow where no mixing or turbulence occurs[12], see
Fig. 1.1(b). This makes microfluidics advantageous for controlled handling of biological
samples.

Not only may the fluid itself be controlled in microsystems, but also the suspended
particles. These can be controlled by exploiting a vast variety of physical forces [12, 13]
including inertial [14], gravitational [15], hydrodynamic [16], electric [17], magnetic [18],
dielectrophoretic [19, 20], optical [21, 22], and acoustic forces [23]. Using these forces,
suspended particles may be sorted out, trapped, or concentrated based on their physical
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(a) (b)

Flow3 mm

Figure 1.1: Optical images of microfluidic devices containing fluid colored with different
dies. (a) A microreactor with 2 × 16 individually addressed reagent inlets (blue) for
chemical reactions. Adapted from Wang et al. [11]. (b) A beautiful example of laminar
flow in a microchannel. Adapted from Kenis et al. [24].

properties such as density, compressibility, polarizability, permittivity, size, shape, etc.
From a physics point of view, microfluidics is therefore not just a study in hydrodynamics,
but requires the entire toolbox of classical physics.

1.2 Acoustofluidics

Acoustofluidics is the subbranch of microfluidics where acoustic fields are used to manipu-
late suspended particles or the fluid itself [23]. The knowledge that sound waves can move
particles dates back at least as early as 1680, where Robert Hooke observed the nodal
patterns on a glass plate as he ran a bow along the edge of the plate covered with flour.
The migration of particles due to sound waves is in general called acoustophoresis [12]
and this phenomenon can be exploited in a microfluidics setting by attaching e.g. a piezo-
electric transducer on a microchannel. The acoustic response is particularly enhanced
when actuating at the resonance frequency corresponding to a half standing pressure wave
across the microchannel as shown see Fig. 1.2(a). For a typical microchannel of width
λ
2 = 375 µm filled with water having the sound speed c0 = 1497 m

s [25], this correspond
to an ultrasound frequency of around f = c0

λ = 2 MHz.

Acoustofluidics has gained increased interest over the past two decades [23, 26]. The
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(a)
Pressure

(b)(b) (c)(c)

Figure 1.2: Separation of lipids from blood utilizing ultrasonic an standing wave in
a microfluidic channel of width 350 µm and height 125 µm. (a) Schematic of the cross
section, where hard and heavy particles are focused in the pressure node. (b) Scematic
top view of the microchannel. (c) Optical image of the trifurcation region. Adapted from
Petersson et al. [29].

method allows for gentle [27, 28] manipulation of particles in their natural fluid medium
and does not require any prelabeling of the particles in order to influence them. The key
working principle in acoustofluidics is the acoustic radiation force which acts on particles
suspended in an acoustically excited fluid. One example is shown in Fig. 1.2 showing
separation of lipids from blood in a microchannel utilizing an ultrasonic standing pressure
wave. Particles that are heavier and harder than the surrounding fluid will be pushed
by the acoustic radiation force towards the pressure node at the center of the channel,
which is the case for the red blood cells in water. In contrast, particles that are lighter
and softer than the surrounding medium, will be pushed to the pressure anti-nodes at the
channel walls which is the case for the milk lipids in water. The key physical properties
that distinguish particles in acoustofluidics are the density ρp, the compressibility κp, and
the size which for a spherical particle is quantified by the radius ap. The phenomenon of
acoustophoresis has been used for many different applications within microflidics including
particle separation [29–35], enrichment of prostate cancer cells in blood [36], concentration
of red blood cells [37], acoustic trapping [38–48], acoustic tweezing [49–52], handling of sub-
micron particles [42, 53–55], cell synchronization [56], handling of swimming organisms [57,
58], single cell patterning [59, 60], controlled cell aggregation [61–63], and handling of
particles inside droplets [64].

Acoustic streaming

In addition to the acoustic radiation force, that acts on suspended particles, there are also
time-averaged acoustic forces acting on the fluid itself. The resulting steady motion of
the fluid is called acoustic streaming, and by the viscous drag force, suspended particles
experience a drag from this flow. An example is shown in Fig. 1.3(a), where the acoustic
streaming in a cross section of a microchannel is visualized from the measured velocity of
small tracer particles. It is quite remarkable, that acoustic fields can be used to generate a
flow inside a microchannel without using any pumps or valves. However, this flow is often
not desired if the purpose is to focus microparticles with the acoustic radiation force. For
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0 0

(c)

Figure 1.3: (a)-(b) Acoustic streaming in a cross section of a rectangular polymer
microchannel actuated by surface acoustic waves of frequency 6.2 MHz at the bottom
wall. (a) Experimentally measured velocity of particles of diameter 0.5 µm. (b) Numerical
simulation of the acoustic streaming velocity. From Barnkob et al. [65]. (c) The velocity
profile of the viscous boundary layer of characteristic length scale δ along the perpendicular
coordinate ζ away from the surface.

a spherical particle, the viscous drag force scales with the radius ap whereas the acoustic

radiation force scales with the volume a3
p. These scaling laws lead to one of the most

important obstacles in acoustofluidics for particle handling; namely that particles smaller
than a certain critical size follow the rotating acoustic streaming instead of being focused
by the acoustic radiation force. This critical particle diameter has been determined to be
around 2 µm for a spherical polystyrene particle in a standing pressure wave at 2 MHz
frequency in water [66, 67]. Hence, acoustic streaming must be explored and understood
in order to use acoustofluidic devices for handling of particles smaller than this size. This
can be done by either suppressing the acoustic streaming or by controlling it, so it acts
constructively. In particular, the suppression of acoustic streaming will be investigated in
this thesis.

When analyzing acoustic streaming in microchannels, an unavoidable physical phe-
nomenon is the viscous boundary layer, which is a narrow region close to a fluid-solid
boundary, where the fluid velocity adapts to the solid velocity as sketched in Fig. 1.3(c).
At 2 MHz frequency this width is as narrow as δ = 0.4 µm which is typically two to
three orders of magnitude smaller than the channel dimension. Nevertheless, significant
time-averaged viscous effects occur in the boundary layer which generate both dissipation
and acoustic streaming. A central goal of this PhD project is to understand the physics
of the viscous boundary layer in the general case of a curved oscillating interface.

In addition to the boundary-driven streaming which is generated by the viscous bound-
ary layer, viscous effects outside the boundary layer may also generate acoustic streaming,
which is called bulk-driven streaming. This kind of streaming is often ignored in a mi-
crofluidic setting [68, 69] but as shown in this thesis, it may actually play a significant role
in many cases.
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1.3 Overview of the research done in the PhD project

This PhD project investigates, from a theoretical point of view, the acoustic fields and
streaming in microsystems actuated at ultrasound frequencies. The overall goal is to use
theoretical insight to predict and explain acoustic phenomena that are relevant for the
development of acoustofluidic devices. The research is carried out in three major parts:

(1) The viscous boundary layer and effective boundary conditions (Paper I [1])
The viscous boundary layer is responsible for both dissipation of the acoustic fields
and for the generation of steady acoustic streaming. In this part of the research,
a theoretical understanding of these effects is developed with the outset in existing
boundary-layer theories [70–75], which will be extended to apply for the general case
of a curved wall oscillating in any direction. The work leads to effective boundary
conditions on both the acoustic pressure and the acoustic streaming, which allow
for numerical simulations where all the effects from the viscous boundary layer are
taken into account analytically without resolving the boundary layer numerically.

(2) Theoretical understanding of experimental observations (Paper II-IV [2–4])
The acoustic streaming and the acoustic radiation force result from non-linear time-
averaged effects of the acoustic fields which are not always trivial to predict. In this
part, two different experimentally relevant observations are analyzed theoretically:
First, inspired by the experimental observations of a peculiar streaming pattern in
a closed cavity by Hagsäter et al. [76], a theory for bulk-driven acoustic streaming
at resonance is developed. It is found that bulk-driven acoustic streaming can play
an essential role even for systems comparable to the acoustic wave length. Second,
inspired by the experimental [39–43, 45–47] and numerical [43, 45, 77] work on
acoustic trapping in long straight capillary tubes, a theory is developed for the
acoustic fields and the axial radiation force in theses systems. This theory is derived
for any cross section and therefore allow for general insight in the phenomenon of
acoustic trapping.

(3) Suppression of acoustic streaming (Paper V [5])
The effective boundary conditions derived in part (1) are in this final part exploited
to investigate how the shape of a resonating channel influence the acoustic fields and
streaming. It is found that the acoustic streaming can be dramatically suppressed
by optimizing the shape of the cavity.

1.4 Thesis overview

The scientific content of this PhD project has been thoroughly written in the five pub-
lished papers I-V [1–5], which I have therefore chosen to include in their original form in
Chapter 7. A central part of the thesis is the boundary-layer analysis carried out in Pa-
per I [1], and due to the comprehensive mathematical load of that paper, Chapter 3 gives
a summary of the key steps and results of that paper. Similarly, Chapter 4 supplements
the analysis of bulk-driven acoustic streaming carried out in Paper III [3], by presenting
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the key results as well as perspectives to experimental observations. It is emphasized that
the papers that are not supplemented by chapters are still significant, in particular the
final Paper V [5] that presents the suppression of acoustic streaming in shape-optimized
microchannels. Below, is given an overview of the chapters of the thesis.

Chapter 1: Introduction — A broad introduction to the fields of microfluidics and
acoustofluidics is given as well as a motivation and scope of the research.

Chapter 2: Theoretical background of acoustofluidics — The general conservation
laws of mass and momentum are presented as well as the governing equations for acoustic
fields and streaming. The wall motion and the no-slip boundary condition for an oscillat-
ing wall is defined as well as the acoustic radiation force. Acoustic streaming is introduced
and a historical development of the boundary-layer analysis is provided. Finally, concepts
and limitations of acoustophoresis in microsystems are discussed.

Chapter 3: The viscous boundary layer at a curved oscillating surface — The
key steps and results of the boundary-layer analysis carried out in Paper I [1] are provided,
including the derived effective boundary conditions on the acoustic fields and streaming.

Chapter 4: Bulk-driven streaming on the wavelength scale — Complementing the
findings of Paper III [3], the goal of this chapter is to emphasize that bulk-driven acoustic
streaming should not be ignored in microsystems of size comparable to the acoustic wave-
length. A general length-scale condition is derived for ignoring bulk-driven streaming.
Three examples of observations reported in the literature are considered and it is argued
that these may be classified as bulk-driven streaming.

Chapter 5: FEM modelling in COMSOL and validation — A brief introduction
to the Finite Element Method (FEM) used in the numerical simulations of the thesis is
given, as well as an overview of the equations and boundary conditions that are used in
the models. The validity of the numerical results and how these are substantiated are
discussed.

Chapter 6: Summary of results — The key results of each paper is summarized in a
combined overview.

Chapter 7 Papers of the PhD project — All the published papers from I-V [1–5] and
their supplemental material are provided in their original form.

Chapter 8 Conclusion and outlook — A final conclusion of the thesis is given as well
as a theoretical and and experimental outlook.



Chapter 2

Theoretical background of
acoustofluidics

In this chapter, the theoretical background of acoustofluidics, on which this thesis is build
upon, is established, and the general concepts and limitations of acoustophoresis are de-
scribed. Three places, I put a section named “This thesis” to point out where this thesis
contributes with new results in the given context.

2.1 The general conservation laws

The local conservation of mass and momentum is described in the Eulerian picture in
terms of the mass density ρ̃(r, t), the fluid velocity ṽ(r, t), and the stress tensor σ̃(r, t),

∂tρ̃ = ∇·[−ρ̃ṽ], (2.1a)

∂t(ρ̃ṽ) = ∇·[σ̃ − (ρ̃ṽ)ṽ], (2.1b)

where a tilde1 denotes a time-dependent field. Here, the stress tensor σ̃ is defined in terms
of the pressure p̃ and its viscous part τ̃ with the dynamic shear viscosity η0, and the bulk
viscosity ηb

0 [12],

σ̃ = −p̃I + τ̃ , τ̃ = η0

[
∇ṽ + (∇ṽ)T − 2

3
(∇· ṽ)I

]
+ ηb

0 (∇· ṽ)I. (2.1c)

As a constitutive relation, the adiabatic assumption is applied, stating that the entropy of
each infinitesimal fluid particle remains constant. Hence, the change in mass density and
the change in pressure are related through the isentropic compressibility κ0,

κ0 =
1

ρ0

(
∂ρ̃

∂p̃

)

S

=
1

ρ0c
2
0

, (2.2)

where ρ0 is the unperturbed mass density and c0 is the speed of sound of the fluid.
Table 2.1 provides an overview of the material parameters for water and some relevant
derived quantities used in this thesis.

1
The tilde has only been used in Paper III [3], but after confusing several reviewers, I have decided to use

it to distinguish physical time-dependent fields ρ̃(r, t) from time-independent fields ρ1(r), see Eq. (2.4b).

7
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Table 2.1: Material parameters for water at 25 ◦C [25]. The values below the line is for
the frequency f = 1 MHz.

Parameter Symbol Value Unit

Mass density ρ0 997.05 kg m−3

Sound speed c0 1496.7 m s−1

Compressibility κ0 452 TPa−1

Dynamic viscosity η0 0.890 mPa s

Bulk viscosity ηb
0 2.485 mPa s

Boundary-layer width δ ∝ f−
1
2 0.53 µm

Acoustic damping factor Γ0 ∝ f 4.03× 10−6 –

Boundary-layer smallness k0δ ∝ f
1
2 2.24× 10−3 –

2.2 The acoustic perturbation expansion

Acoustic fields may be described as small oscillating perturbations ρ̃1 in the fluid den-
sity away from the equilibrium value ρ0, thus defining the small acoustic perturbation
parameter,

εac =
ρ̃1

ρ0
� 1. (2.3)

The perturbation ρ̃1 in the density implies the acoustic velocity ṽ1 and the acoustic pres-
sure p̃1, which are also small in the sense κ0p̃1 ∼ εac and 1

c0
ṽ1 ∼ εac. The dependent fields

ρ̃, ṽ, and p̃ are therefore written as the perturbation expansion,

Ã(r, t) = A0 + Ã1(r, t) + Ã2(r, t). (2.4a)

The zeroth-order fields with subscript “0” are here assumed to be constant in space and
time. The first-order fields with subscript “1” are assumed to be oscillating harmonically
with the angular frequency ω and are written as a single Fourier component with the
time-independent complex amplitude A1(r). The second-order fields Ã2 are induced by
products of first-order fields, and therefore have both a steady part A2(r) and a second-
harmonic part that oscillates with the double frequency 2ω. Hence, the time-independent
fields A1(r) and A2(r) without the tilde are defined by the relations,

Ã1(r, t) = Re
[
A1(r)e−iωt

]
, A2(r) = 〈Ã2(r, t)〉 =

1

T

∫ T

0
Ã2(r, t) dt, (2.4b)

where angular brackets “〈·〉” denote time averaging over a full oscillation period T = 2π
ω .

In particular, the time averaged product of two first-order fields is,

〈Ã1B̃1〉 =
1

T

∫ T

0
Ã1(r, t)B̃1(r, t) dt =

1

2
Re
[
A1B

∗
1

]
, (2.4c)

where “Re” is the real part of a complex number and “∗” denotes complex conjugation.
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2.3 Wall motion and the no-slip condition

We consider a fluid domain Ω as shown in Fig. 2.1, which is embedded in an elastic solid
material with a fluid-solid interface that oscillates harmonically around the equilibrium
position ∂Ω or s0 with the angular frequency ω. The instantaneous position s̃(s0, t)
and velocity Ṽ 0(s0, t) of the wall element with equilibrium position s0 are written as in
Eq. (2.4b) in terms of the complex amplitudes s1(s0) and V 0

1 (s0),

s̃(s0, t) = s0 + s̃1(s0, t), s̃1(s0) = Re
[
s1(s0)e−iωt

]
, (2.5a)

Ṽ 0(s0, t) = ∂ts̃ = Ṽ 0
1 (s0, t), Ṽ 0

1 (s0) = Re
[
V 0

1 (s0)e−iωt
]
, (2.5b)

where V 0
1 (s0) = −iωs1(s0) and i =

√
−1 is the imaginary unit. Here, the superscript “0”

on the surface velocity Ṽ 0 denotes a velocity field which is only defined at the surface and
therefore has no perpendicular derivative, see Section II F of Paper I [1]. When formulating
the boundary condition on the fluid velocity ṽ(r, t), it is important to note that the fluid
velocity ṽ is Eulerian, i.e. it refers to the fluid velocity at the fixed coordinate r, whereas
the solid velocity Ṽ 0(s0, t) is Lagrangian i.e. it refers to the velocity of the wall element at
the position s̃ = s0 + s̃1 slightly displaced from the equilibrium position s0 of evaluation,
see Fig. 2.1. The no-slip boundary condition on the instantaneous wall position s̃(s0, t) is
therefore [74, 78],

ṽ
[
s̃(s0, t), t

]
= Ṽ 0(s0, t

)
, at s0. (2.6a)

For wall displacements s̃1 much smaller than the length scale of variations in the fluid
velocity ṽ, this condition may be written by inserting s̃ = s0 + s̃1 from Eq. (2.5) on the
left-hand side and Taylor expanding,

ṽ(s0, t) +
(
s̃1 ·∇

)
ṽ = Ṽ 0

1 , at s0, (2.6b)

Figure 2.1: Sketch of the interface (wall) between the fluid domain Ω (blue) and the solid
domain (grey). The equilibrium position of the wall is called ∂Ω or s0 (black line), the
instantaneous position of the wall is s̃(s0, t) (green line), and the instantaneous displace-
ment displacement of the wall is s̃1(s0, t) (orange arrows). The Lagrangian wall velocity
Ṽ 0(s0, t) (magenta arrow) is the velocity at the instantaneous position s̃(s0, t).
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where Ṽ 0 = Ṽ 0
1 from Eq. (2.5b) was used. Combining this result with the acoustic

perturbation expansion described in Section 2.2 leads to the no-slip boundary condition
on the time-independent velocity fields v1(r) and v2(r) defined in Eq. (2.4b),

v1 = V 0
1 , v2 + 〈(s1 ·∇)v1〉 = 0, at s0. (2.6c)

Using this Lagrangian no-slip condition allows for local time-averaged mass flux at the
boundary equilibrium position s0, but the global time-averaged mass flux vanishes as
required, see Appendix A for details.

2.4 The acoustic fields

The first-order acoustic fields ρ̃1(r, t), ṽ1(r, t), and p̃1(r, t) all have the time-harmonic
form given in Eq. (2.4b) with the time-independent complex amplitudes ρ1(r), v1(r), and
p1(r). They are governed by the first-order expansion of Eq. (2.1) and the boundary
condition (2.6c), which for a homogeneous fluid become [1],

−iωκ0p1 = −∇· v1, for r ∈ Ω, (2.7a)

−iωρ0v1 = ∇· σ1 = −(1− iΓ0)∇p1 − η0∇× (∇× v1), for r ∈ Ω, (2.7b)

v1 = V 0
1 , for r ∈ ∂Ω, (2.7c)

where the vector identity ∇2A = ∇(∇·A)−∇×∇×A was used, as well as the relation
p1 = c2

0ρ1 from Eq. (2.2). In Eq. (2.7b) the dimensionless bulk damping coefficient Γ0 is,

Γ0 =

(
4

3
+
ηb

0

η0

)
η0ωκ0. (2.8)

The velocity field v1 is eliminated from Eq. (2.7) by taking the divergence of Eq. (2.7b)
and using Eq. (2.7a) leading to a Helmholtz equation for the pressure p1,

∇2p1 + k2
cp1 = 0, k2

c =
1

1− iΓ0
k2

0, k0 =
ω

c0
. (2.9)

Here, kc is the complex-valued compressional wave number with the real part k0. The
velocity field v1 is most conveniently represented as the following Helmholtz decomposi-
tion [71, 72, 78, 79],

v1 = vd1 + vδ1, with ∇× vd1 = 0, ∇· vδ1 = 0, (2.10)

where vd1 is a compressible potential flow with length scale d to be determined in Chapter 3,
and vδ1 is an incompressible solenoidal flow with length scale δ. Inserting Eq. (2.10) into
Eq. (2.7) and requiring solenoidal and irrationally parts to cancel separately leads to the

following equations for the velocity fields vδ1 and vd1 ,

∇2vδ1 + k2
sv

δ
1 = 0, k2

s =
2i

δ2 , δ =

√
2η0

ρ0ω
, (2.11a)

∇2vd1 + k2
cv

d
1 = 0, vd1 =

−i(1− iΓ0)

ωρ0
∇p1, (2.11b)
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with the shear wave number ks and the boundary-layer width δ. The incompressible
velocity field vδ1 that satisfy Eq. (2.11a) describes a heavily damped shear velocity field
which is confined to the narrow boundary-layer region of width δ ∼ 0.5 µm from the wall,
see Table 2.1. Note that no approximations where made in obtaining Eqs. (2.9) and (2.11)
from Eqs. (2.7a) and (2.7b).

This thesis: Pressure acoustics with viscous boundary layers

A major contribution of this thesis is the derivation of a boundary condition on the
acoustic pressure p1 that take into account all the effects from the viscous boundary layer,
as described in Chapter 3.

2.5 Time-averaged physical quantities of the acoustic fields

The oscillating acoustic pressure p̃1 and velocity ṽ1 are usually not observed directly in
experiments but indirectly through time-averaged effects. The relevant time-averaged
quantities are defined in this section.

Energy of the acoustic fields

The local acoustic energy density Eac(r) is the sum of the local kinetic energy density
Ekin(r) and the local potential energy density Epot(r),

Eac(r) = Ekin(r) + Epot(r), Ekin(r) =
1

4
ρ0|v1(r)|2, Epot(r) =

1

4
κ0|p1(r)|2.

(2.12a)

The strength of the acoustic fields in a cavity Ω of volume V and fluid/solid surface area
A is often described through the space(-and-time)-averaged acoustic energy density Ēac,
denoted by an overbar,

Ēac =
1

V

∫

Ω
Eac dV. (2.12b)

At steady state, the total stored energy VĒac in a cavity is maintained because the total
input power AP̄wall delivered by the wall with velocity Ṽ 0

1 is equal to the total viscous
dissipation power VP̄diss lost in the fluid. In Appendix B these quantities are shown to
be [80],

P̄wall =
1

A

∫

∂Ω

〈
Ṽ 0

1 · σ̃1

〉
· n dA, P̄diss =

1

V

∫

Ω

〈
τ̃1 : (∇ṽ1)T

〉
dV. (2.13)

A high acoustic energy density is obtained by actuating the system at a resonance with
frequency ω = ωres and a high quality factor Q which is defined as the ratio between the
total stored energy VĒac and the total energy 1

ωres
VP̄diss dissipated per radian,

Q =
ωresĒac

P̄diss

, at ω = ωres. (2.14)
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For systems with acoustically hard walls, which is approximately the case for silicon/glass
channels, it is possible to excite a fluid resonance and approximately measure the Q-factor
of the fluid cavity [81], and the resonance frequency in this case will be very close to the
eigenfrequency of the fluid cavity. In contrast, for systems with acoustically soft walls,
such as polymer channels, it is more meaningful to consider the resonator properties of
the full device [82], and the resonance frequency of the full device is often very different
from the eigenfrequency of the fluid cavity alone.

Time-averaged vector quantities of the acoustic fields

The time-averaged energy flux density Sac, and the acoustic angular momentum density
Lac with respect to the unperturbed fluid position r are deffined as,

Sac = 〈p̃1ṽ1〉, Lac = 〈d̃1 × (ρ0ṽ1)〉, (2.15a)

where d̃1(r) = Re
[

i
ωv1(r)e−iωt] is the fluid displacement at the position r. Outside the

viscous boundary layers, these quantities are related as found by using Eq. (2.11b) and

∇× vd1 = 0,
∇× Sdac = ω2Ld

ac, (2.15b)

where fields with superscript d are defined as in Eq. (2.15a) with v1 → vd1 . This relation
becomes important in Chapter 4 and in Paper III [3], since it shows that bulk-driven
acosutic streaming is a consequence of rotating acoustics.

The acoustic fields set up the time-averaged momentum flux density tensor T ac,

T ac = ρ0〈ṽ1ṽ1〉. (2.16a)

By taking the negative divergence of this tensor and using Eqs. (2.10) and (2.11b) yields

the acoustic body force fac = fdac + f δac acting on the fluid (see also Eq. (36b) and (50) in
Paper I [1]),

−∇· T d
ac = ∇(Edpot − Edkin

)
+ fdac, fdac =

Γ0ω

c2
0

Sdac, (2.16b)

−∇· T δ
ac = −ρ0∇· 〈ṽδ1ṽδ1 + ṽδ1ṽ

d
1 + ṽd1 ṽ

δ
1〉 = f δac. (2.16c)

Here, the body force fdac drives the so-called bulk-driven acoustic streaming outside the
viscous boundary layers, and f δac drives the so-called boundary-driven acoustic streaming.
These phenomena, are discussed in Section 2.6 below.

The acoustic radiation force

The acoustic radiation force is a key phenomenon in the field of acoustofluidics and de-
scribes the time-averaged force on a particle due to the acoustic fields. For a spherical
particle of radius ap in the long-wave-length limit ap � λ and far away from any obstacle,
such as walls or other particles, the general expression for the radiation force is [83],

Frad = −πa3
p

[
2κ0

3
Re
(
f∗0 p
∗
1∇p1

)
− ρ0Re

(
f∗1v

∗
1 ·∇v1

)]
, (2.17)
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where f0 and f1 are the dimensionless complex-valued monopole and dipole scattering
coefficients, respectively. Note that since Eq. (2.17) is only correct far from the walls,

it is implied that v1 = vd1 and the superscript “d” is omitted in expressions for the
acoustic radiation force. Equation (2.17) may be written in terms of the acoustic radiation
potential, or Gorkov potential Urad [84], by writing f0 and f1 in real and imaginary parts

as f0 = f r
0 +if i

0 and f1 = f r
1 +if i

1, and using that ∇×v1 = 0 outside the viscous boundary
layer,

Frad = −∇Urad − πa3
p

[
2κ0

3
f i

0Im
(
p∗1∇p1

)
− ρ0f

i
1Im

(
v∗1 ·∇v

)]
, (2.18a)

Urad =
4

3
πa3

p

[
f r

0Epot −
3

2
f r

1Ekin

]
. (2.18b)

In many cases, the square parenthesis in Eq. (2.18a) is neglected either because f i
0 and

f i
1 are small (see Table 2.2) or because a standing wave is assumed for which Im

(
p∗1∇p1

)

and Im
(
v∗1 ·∇v

)
vanish. In that case, the acoustic radiation force is a conservative force

towards the minima in the radiation potential Urad , thereby facilitating the focusing of
particles which is exploited in acoustofluidics.

The expression for the scattering coefficients f0 and f1 may take into account in-
creasingly detailed physics [79, 83, 84, 88–92]. Here, the scattering coefficients derived
by Settnes and Bruus [83] are used, which are valid for a spherical particle of radius ap,
compressibility κp, and density ρp in a viscous fluid with viscous boundary-layer width δ,

f0 = 1− κp

κ0
, f1 =

2
(ρp

ρ0
− 1
)(

1− γ
)

2
ρp

ρ0
+ 1− 3γ

, γ = −3

2

[
1 + i

(
1 +

δ

ap

)]
δ

ap
. (2.19)

Table 2.2 gives the material parameters and scattering coefficients for polystyrene particles
which are often used to test the performance of microfluidic devices in the development
process.

Table 2.2: Material parameters for polystyrene particles. The compressibility is calcu-

lated as κps =
3(1−σps)

1+σps

1

ρpc
2
ps

[66]. The values below the line are for a spherical particle of

diameter 2ap = 10δ in water (e.g. radius ap = 1.9 µm and frequency f = 2 MHz). The
contrast factor Φps is correct within 0.26 % for all particle sizes in a viscous fluid.

Parameter Symbol Value Unit

Mass density [85] ρps 1050 kg m−3

Compressibility κps 249 TPa−1

Sound speed [86] cps 2350 m/s
Poison’s ratio [87] σps 0.35 –

Monopole coefficient [83] f0,ps 0.443 –
Dipole coefficient, Eq. (2.19) f1,ps 0.034(1 + i 0.005) –
Contrast factor, Eq. (2.20) Φps 0.165 –

Frad in a rectangle, Eq. (2.20) max |F rect
rad | 0.017 pN
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Figure 2.2: A standing pressure wave p1 = pa cos(k0y) (magenta lines) with wavelength
λ = 2π

k0
parallel to two infinite walls at z = 0 and z = H. The green arrows show the

radiation force Frad from Eq. (2.20) for positive contrast factor Φ. The blue arrows show
the boundary-driven acoustic streaming v2 (blue arrows) with the magnitude 0 (dark red)

to 3

8ρ
2
0c

3
0

∣∣pa
∣∣2 of Eq. (2.21) (light yellow). Analytical solution of v2 is from Mulleret al. [93]

with the aspect ratio H
1
2
λ

chosen to 180
380 .

A relevant example is a standing wave of the form p1 = pa cos(k0y) as shown in Fig. 2.2,
for which ∇Ekin = −∇Epot = Ēack0 sin(2k0y) ey with Ēac = 1

4κ0p
2
a giving the radiation

force from Eq. (2.18),

F rect
rad = 4πa3

pΦĒack0 sin(2k0y) ey, Φ =
1

3
f r

0 +
1

2
f r

1. (2.20)

This example introduces the acoustic contrast factor Φ [79, 83, 89]. For hard (κp < κ0)
and heavy (ρp > ρ0) particles Φ is positive and the radiation force is towards the pressure
nodes as shown in Fig. 2.2.

2.6 Acoustic streaming

Acoustic streaming is a steady flow that adds to the oscillatory motion of a sound wave
and it has been known for more than 200 years. Some of the first studies of the phe-
nomenon were the thorough observations of the motion of fine grains over a Chladni plate
by Chladni [94], Ørsted [95], and Savart [96] in the early 1800. It was here noted, that
whereas large grains found rest at the nodal lines of smallest plate vibration, finer grains
gathered at the anti nodes having the largest vibration. This phenomenon was explained
by M. Faraday [97] to be caused by steady currents in the air above the plate. A thorough
theoretical treatment was provided by Lord Rayleigh [70], who explained the acoustic
streaming observed in resonating Kundts tubes [98] to be driven by non-linear effects in
the viscous boundary layer forming close to the walls. By integrating over the viscous
boundary layer, he derived the so-called limiting velocity as a matching condition between
the inner flow in the boundary layer and the outer streaming rolls. For the standing wave
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shown in Fig. 2.2 with pressure p1 = pa cos(k0y) and velocity vd1(y) = vda sin(k0y) ey, this
seminal limiting velocity is,

vRayleigh
2 = − 3

8ω
∂y
∣∣vd1
∣∣2 ey = −3

8

∣∣vda
∣∣2

c0
cos(2k0y) ey = −3

8

∣∣pa
∣∣2

ρ2
0c

3
0

cos(2k0y) ey. (2.21)

In Fig. 2.2 is shown the acoustic streaming obtained by imposing the boundary condition
v2 = vRayleigh

2 at the parallel walls [93]. The matching approach by Lord Rayleigh was
later generalized by Nyborg [71] who formulated the limiting-velocity theory for standing
waves close to weakly curved walls having a curvature radius much larger than the viscous
boundary-layer width δ, and oscillating in the normal direction. Further generalizations
of the limiting-velocity theory are listed in Table 2.3 and cover the inclusion of travelling
waves by Lee and Wang [73], thermoviscous contributions by Rednikov and Sadhal [75],
and wall velocities in any direction for a flat wall by Vanneste and Bühler [74].

Table 2.3: Overview of different contributions to the slip-velocity theory. “Field type”
refers to the type of the amplitude p1 of the pressure p̃1 = Re

(
p1e−iωt).

Year Author(s) Field type Wall motion Shape Viscous model

1884 Lord Rayleigh [70] Real Motionless Flat Viscous
1958 Nyborg [71] Real Perpendicular Curved Viscous
1990 Lee & Wang [73] Complex Perpendicular Curved Viscous
2011 Rednikov & Sadhal [75] Complex Motionless Curved Thermoviscous
2011 Vanneste & Bühler [74] Complex Any direction Flat Viscous
2018 Bach & Bruus [1] Complex Any direction Curved Viscous

This thesis: The slip velocity for curved elastic walls

This thesis contributes to the development of the slip-velocity theory by allowing for both
curved walls and wall motion in any direction. Furthermore, the boundary-layer theory is
formulated in coordinate-free form without reference to any particular coordinate system
which facilitates implementation in general systems, see Chapter 3 for further details.

Governing equations for acoustic streaming

The steady streaming velocity v2 in a homogeneous fluid is described by the second-order
time-averaged part of Eq. (2.1) and the boundary condition (2.6c) [1],

0 = ρ0∇· v2 + ∇· 〈ρ̃1ṽ1〉, for r ∈ Ω, (2.22a)

0 = −∇p2 + ∇· τ2 − ρ0∇· 〈ṽ1ṽ1〉, for r ∈ Ω, (2.22b)

0 = v2 + 〈(s̃1 ·∇)ṽ1〉, for r ∈ ∂Ω. (2.22c)

From Eq. (2.22b), it is seen that the driving mechanism for the steady acoustic streaming
is the convergence of the time-averaged momentum flux density tensor ρ0〈ṽ1ṽ1〉 which
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gives rise to the time-averaged body force fac evaluated in Eqs. (2.16). Acoustic stream-
ing is often classified into three types listed below together with the corresponding driving
mechanism:

Boundary-layer streaming, also called “Schlichting streaming” [99], or “inner stream-
ing” [73], is the short-range acoustic streaming rolls inside the viscous boundary layer,
that are driven by the boundary-layer body force,

f δac = −ρ0∇· 〈ṽδ1ṽδ1 + ṽδ1ṽ
d
1 + ṽd1 ṽ

δ
1〉, for r ∈ Ω. (2.23a)

This streaming decays away from the wall with the boundary-layer length scale δ.

Boundary-driven streaming, also called “Rayleigh streaming” [70], or “outer stream-
ing” [73] is the long-range acoustic streaming that results from the boundary-layer stream-
ing but varies on a length scale d much longer than the boundary-layer length scale δ. For
d� δ, this streaming may be thought of as driven by a slip boundary condition,

vd2 = vslip
2 , for r ∈ ∂Ω. (2.23b)

Here, the slip boundary condition vslip
2 can be approximated by vRayleigh

2 from Eq. (2.21)
in the special case of a standing 1D wave over a flat wall, but take a more complicated
form in the general case of a curved oscillating wall as described in Chapter 3. The slip ve-
locity also takes into account the Lagrangian no-slip condition (2.22c), although streaming

driven by this effect is not caused by the body force f δac of Eq. (2.23a) in boundary layer.
Acoustic streaming caused by the Lagrangian no-slip condition is sometimes referred to
as “McIntyre streaming” [75, 100], but here, it is classified as “boundary-driven streaming”.

Bulk-driven streaming, also called “Eckart streaming” or “Quartz wind” [101], is the
long-range acoustic streaming outside the viscous boundary layer driven by the body force
derived in Eq. (2.16b),

fdac =
Γ0ω

c2
0

Sdac, for r ∈ Ω. (2.23c)

Whereas this expression applies for the homogeneous fluids considered in this thesis, it
should be noted that recent studies by Karlsen and Bruus [102, 103] shows that inhomo-
geneities in the fluid compressibility κ0 and density ρ0 induce the non-dissipative body
force −1

4 |p1|2∇κ0− 1
4 |v

d
1 |2∇ρ0 which should be added on the right-hand side of Eq. (2.23c)

in the case of inhomogeneous fluids.

This thesis: Bulk-driven streaming at the wavelength scale

Bulk-driven acoustic streaming is often ignored in microfluidic devices of length scale much
smaller than the attenuation length scale, which is e.g. the case for a single standing-half-
wave resonance. It is however shown in Chapter 4 and in Paper III [3], that the body

force fdac in Eq. (2.23c) is significant in such systems if the acoustic resonance is rotating.
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2.7 Acoustophoresis in microsystems

Acoustophoresis is the migration of particles due to sound waves and the applications
of this phenomenon are numerous as described in Chapter 1. One great advantage in
microfluidics is the smallness of the channel dimension leading to a laminar flow. This
is often also the case for the acoustic streaming, since the streaming Reynolds number
Restr = ρ0Lstr

η0
|v2| in water (see Table 2.1) with speed |v2| . 1 mm/s and streaming length

scale Lstr . 1 mm is around unity or smaller. In acoustofluidics, the main forces on
a suspended spherical particle of radius ap, volume Vp = 4

3πa
3
p, mass mp, and velocity

vp, are the Stokes drag force Fdrag = 6πη0ap(v2 − vp) and the radiation force Frad from
Eq. (2.18), resulting in the following equation of motion for the particle,

(
mp +

1

2
ρ0Vp

)dvp

dt
= 6πη0ap(v2 − vp) + Frad, (2.24a)

where other forces, such as the gravitational body force Fg = mpg, are omitted for simplic-
ity. In Eq. (2.24a), 1

2ρ0Vp on the left-hand side is the added mass which is dragged along

with the particle [104]. Inertial forces are neglected since their size are ∼ (ρ0a
3
p)|v2|2/Lstr,

which is smaller than the viscous forces of size ∼ η0|v2|ap by a factor (
ap

Lstr
)2Restr � 1, see

e.g. Maxey and Riley [104] for further details. Typical additions of the right-hand side of
Eq. (2.24a) include the Oseen correction 3

8Rep 6πη0ap(v2 − vp) to account for higher par-

ticle Reynolds number Rep =
ρ0ap

η0
|v2− vp| [104, 105], or the Faxén correction πη0a

3
p∇2v2

[104, 106] to account for curvature in the streaming flow. These corrections are neglected
in this work.

It is noted from Eq. (2.24a) that the particle will reach a terminal velocity on the time

scale
mp+ 1

2
ρ0Vp

6πη0ap
, which is around 9 µs for a neutrally buoyant particle with mp = ρ0Vp of

radius ap = 5 µm in water. With a typical particle velocity of |vp| . 1 mm/s, the distance
travelled in this time is less than 9 nm and a good approximation for the particle velocity
in microfluidic acoustophoresis is therefore to use the terminal velocity,

vp ≈ v2 +
1

6πη0ap
Frad. (2.24b)

In the simple case of a 1D standing wave shown in Fig. 2.2 this equation may be used with
Eq. (2.20) for Frad and Eq. (2.21) for the slip velocity vRayleigh

2 to estimate the maximum

particle speeds vrad
p and vdrag

p , resulting from the radiation force and from the drag force,
respectively,

vrad
p ∼ 8Φ

9

a2
p

δ2

3

2ρ0c0
Ēac. vdrag

p ∼ 3

2ρ0c0
Ēac, (2.25)

where Ēac = 1
4κ0|pa|2 is the average acoustic energy density. For an average energy density

of Ēac = 1 Pa in water, we obtain 3
2ρ0c0

Ēac ≈ 1 µm
s , and thus the rule thump about the

typical streaming speed, “1 µm
s per Pa”. In experiments, the acoustic energy density

Ēac may be obtained by balancing the radiation force on a single particle with either
gravitational [107] or electrical [108] forces, or by tracing the particle motion and fitting
to Eq. (2.24b) [109, 110].
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Focusing of small particles using acoustophoresis

As seen from Eq. (2.25), the particle motion of sufficiently small particles will be dominated
by the acoustic streaming. The theoretical cross-over radius acrit

p where the drag force and
radiation force are equal is found by equating the two expressions in Eq. (2.25) giving [66,
67],

acrit
p =

√
9

8Φ
δ ⇒ acrit

p ≈ 1 µm for polystyrene particles in water at 2 MHz,

(2.26)
where the numerical value is obtained by using Eqs. (2.19) and (2.20) for Φ (note that Φ
depends on ap) and the parameters for polystyrene particles listed in Table 2.2. This limit

can be reduced by increasing the frequency since δ =
√

2η0
ρ0ω

as done by Collins et al. [111]

and Wu et al. [53] who used surface-acoustic waves (SAW) at a high frequency of around
30-50 MHz to separate polystyrene particles of diameters 0.5 µm and 0.3 µm. Another
successful method to handle small particles is developed by Hammarström et al. [42] who
used a larger seed particle trapped acoustically in a capillary tube to attract smaller
particles yielding an up-concentration of particles of diameter 0.1 µm at 4 MHz. Antfolk
et al. [54] and Mao et al. [112] used a rotating acoustic field in a square capillary tube
to change the streaming pattern allowing for focusing of particles of diameter 0.6 µm
at 3 MHz. Also pulsed ultrasound has been investigated [113, 114] in order to suppress
the acoustic streaming. A recent development which is promising for future focusing of
nanoparticles is the observation by Karlsen, Qui, Augustsson, and Bruus [102, 103, 115]
that acoustic streaming can be suppressed in inhomogeneous fluids.

This thesis: Shape-optimization for suppression of streaming

This thesis contributes to the above development towards handling of sub-micron par-
ticles. In Paper V [5] we demonstrate numerically that the acoustic streaming can be
suppressed by two orders of magnitude by optimizing the shape of the resonating cavity.
It is theoretically shown that this approach allows for focusing of particles with diameter
down to 0.3 µm in a standing wave at 3 MHz.



Chapter 3

The viscous boundary layer at a
curved oscillating surface

This chapter is devoted to the starting point of the research done in this PhD project,
namely the theoretical analysis of the viscous boundary layer at a curved oscillating surface
as shown in Fig. 3.1. I will not give the full details of the analysis, which can be found
in Paper I [1], but instead provide some of the key steps and results. There will be some
overlap with my Master Thesis [116], but the results and derivations are significantly
improved. The analysis leads to effective boundary conditions on the long-range acoustic
pressure and streaming, which analytically take into account all the physical effects from
the viscous boundary layer.

Figure 3.1: Sketch of the fluid-solid interface as in Fig. 2.1 but with the viscous boundary
layer added. The local curvilinear coordinate system on the interface is given by the
tangent vectors eξ and eη and the normal vector eζ . By the Helmholtz decomposition

in Eq. (2.10), the first-order acoustic fluid velocity v1 = vd1 + vδ1 is written as the sum

of a long-range compressible part vd1 (blue) extending into the bulk and a short-range

incompressible part vδ1 (red) with a decay length equal to the boundary-layer width δ. At

ζ = 0, Eq. (2.6c) dictates that vδ01 + vd0
1 = V 0

1 . Adapted from Fig. 1 in Paper I [1].

19
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3.1 Length scales of acoustic fields in microsystems

There are several length scales involved in the boundary-layer analysis of the acoustic
fields close to a curved oscillating boundary as sketched in Fig. 3.1. Some of these length
scales are plotted against frequency in Fig. 3.2 and will be referred to throughout this
chapter and Chapter 4.

For an oscillating solid, the displacement amplitude |s1| is usually around 0.1-10

nm [117], and therefore much smaller than the boundary-layer width δ =
√

2η0
ρ0ω

as seen

in Fig. 3.2. This justifies the Taylor expansion ṽ
[
s̃(s0, t), t

]
≈ ṽ(s0, t) +

(
s̃1 · ∇

)
ṽ in

Eq. (2.6b), which is only valid when the following conditions are satisfied,

|s1⊥| � δ, |s1‖| � d. (3.1a)

The variation length scale of the acoustic fields close to the wall is denoted d and is set by
the smallest of the three following length scales: The acoustic wave length scale k−1

0 = λ
2π ,

the variation length scale ∼ |V 0
1 |/|∇V 0

1 | of the surface velocity, or the cavity length scale
L which is either the width of the fluid domain or the curvature radius of the wall. The
central assumption in the boundary-layer analysis is that the boundary-layer length scale
δ is much shorter than the acoustic length scale d,

δ � d, ε =
δ

d
� 1. (3.1b)

As seen in Fig. 3.2, the condition δ � λ is usually satisfied and therefore, it is only the

Figure 3.2: Phase diagram of the region of validity of the boundary-layer theory for
water with parameters given in Table 2.1. The dashed lines are the boundary-layer length

scale δ =
√

2η0
ρω (red), the acoustic wavelength λ = c0

f (black), the length scale δ
Γ0

,where

bulk-dissipation and boundary-dissipation are equal (blue, see Eq. (3.9)), and the bulk
dissipation length scale 1

k0Γ0
(brown). Microscale acoustofluidics typically spans length

scales from 50 µm to 1 cm and frequencies from 0.1 MHz up to several GHz.
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cavity length scale L that may violate condition (3.1b). In the green region of Fig. 3.2,
Eq. (3.1b) is satisfied and the boundary-layer theory is valid.

If the conditions (3.1) are satisfied, it is possible to significantly simplify the vector
equations for the acoustic fields and streaming in the boundary layer. The reason is that
the boundary-layer velocity vδ, denoted by superscript “δ” varies on the length scale δ
in the perpendicular ζ-direction (see Fig. 3.1) but on the length scale d in the parallel
directions. One central example is the Laplacian ∇2 of a boundary-layer field, which
simplifies to,

∇2vδ = ∂2
ζv

δ +O(ε). (3.2)

3.2 The first-order boundary layer and the boundary con-
dition on the acoustic pressure

The viscous boundary layer of the first-order acoustic fields is sketched in Fig. 3.1, and is
described by the shear velocity field vδ1, satisfying the Helmholtz equation ∇2vδ1 +k2

sv
δ
1 = 0

in Eq. (2.11a), and the incompressibility condition 0 = ∇ · vδ1 in Eq. (2.10). With the
approximation of the Laplacian in Eq. (3.2), the solution that decays away from the
boundary ζ →∞ is,

vδ1 ≈ vδ01 eiksζ , vδ01 = V 0
1 − vd0

1 , (3.3)

where the superscript “0” denote evaluation at the surface equilibrium position s0 where
ζ = 0. Here, vδ01 is chosen to satisfy the boundary condition (2.6c), namely vδ01 +vd0

1 = V 0
1

at ζ = 0. The incompressibility condition 0 = ∇ · vδ1 from Eq. (2.10) gives a relation

between the perpendicular component vδ01ζ and the divergence ∇· vδ01 of the surface field

vδ01 ,

0 = ∇· vδ1 = ∇· (vδ01 eiksζ
)

=
(

iksv
δ0
1ζ + ∇· vδ01

)
eiksζ (3.4a)

⇒ vδ01ζ =
i

ks
∇· vδ01 . (3.4b)

The standard procedure in pressure-acoustics calculations [71, 72, 75] is to insist that
the perpendicular component V 0

1ζ of the wall velocity acts directly on the perpendicular

component vd0
1ζ of the pressure-related velocity giving the condition vd0

1ζ = V 0
1ζ at the wall.

Here, it is found that the perpendicular pressure-related velocity vd0
1ζ depends on both

the wall velocity V 0
1ζ and the boundary-layer velocity vδ01⊥, giving instead vd0

1ζ = V 0
1ζ − vδ01ζ .

Therefore, by use of Eq. (3.3), the boundary condition on the pressure-induced velocity

vd1ζ is,

vd0
1ζ = V 0

1ζ − vδ01ζ = V 0
1ζ −

i

ks
∇·
(
V 0

1 − vd0
1

)
. (3.5)

Hence, a parallel compression of the fluid close to the boundary induces a perpendicular
velocity due to the viscous incompressible boundary layer. Using that vd1 = −i(1−iΓ0)

ωρ0
∇p1,
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Figure 3.3: Comparison between the acoustic velocity obtained numerically by using
the full boundary-layer resolved model (left, black arrows, v1) and the effective model

without the boundary layers resolved (right, blue arrows, vd1) in a rectangular cavity at
the resonance frequency f = 1.9481 MHz and side-wall actuation V 0

1 = −iωd0ey (magenta
arrows) with d0 = 0.1 nm. The color plot ranges from from 0 (black) to 0.68 m/s (light
yellow).

Eq. (2.11b), this may be expressed as a boundary condition on the acoustic pressure,

∂ζp1 +
i

ks

[
k2

cp1 + ∂2
ζp1

]
=

iωρ0

1− iΓ0

[
V 0

1ζ −
i

ks
∇· V 0

1

]
. (3.6)

As thoroughly verified in Paper I [1] this boundary condition for p1 takes into account
all the effects of the viscous boundary layer analytically. Since this approach avoids the
numerical resolving of the boundary layer, it is called an “effective model”. In Fig. 3.3 is
shown a comparison between the acoustic velocity obtained from the full boundary-layer
resolved model, Eq. (2.7), and obtained by calculating p1 with the boundary condition

(3.6) and then using vd1 = −i(1−iΓ0)
ωρ0

∇p1.

Input and power loss for acoustic fields with boundary layers

When calculating the acoustic pressure p1 with the effective boundary-layer boundary
condition (3.6) it is relevant to ask how the viscous energy loss in the boundary layer
is taken into account. Physically, the energy dissipates due to velocity gradients which
are particularly large in the boundary layer, as calculated from P̄diss in Eq. (2.13). In
the effective model, this energy loss is taken into account through an energy flux at the
boundary. To see this, consider the local energy balance of the long-range fields vd1 and
p1, which is obtained in Section B.2 of Appendix B,

−∇· 〈p̃1ṽ
d
1

〉
=

1

2
Γ0ωρ0

∣∣vd1
∣∣2, (3.7)

expressing the balance between the convergence of energy flux 〈p̃1ṽ
d
1〉 and the power loss

1
2Γ0ωρ0

∣∣vd1
∣∣2 due to both viscous energy transport and dissipation. The global energy
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balance is found by integrating this equation over the entire domain Ω and using Gauss’s
law. In conventional pressure acoustics, the energy flux

〈
p̃1ṽ

d
1ζ

〉
at the boundary is given

purely by the power
〈
p̃1Ṽ

0
1ζ

〉
delivered by the wall. When the boundary layer is included,

Eq. (3.5) gives the additional contribution −
〈
p̃1ṽ

δ0
1ζ

〉
to this boundary energy flux, leading

to the global energy balance between input and loss, see Appendix B for details,

∮

∂Ω

1

2
Re
[
p∗1
(
V 0

1ζ −
i

ks
∇‖ ·V 0

1‖
)]

dA =

∫

Ω

1

2
Γ0ρ0ω

∣∣vd1
∣∣2 dV +

∮

∂Ω

1

4
δρ0ω

∣∣vd0
1‖
∣∣2 dA. (3.8)

Here, the inclusion of the viscous boundary layer is represented by the second term on
each side. Note that the additional power

∮
∂Ω−1

2Re
[
p∗1

i
ks
∇‖ ·V 0

1‖
]

dA delivered by the

wall is usually negligible since 1
ks
∇‖ ·V 0

1‖ ∼ δ
d |V

0
1‖| which is usually much smaller than

the perpendicular velocity |V 0
1ζ |. In contrast, the power-loss term

∮
∂Ω

1
4δρ0ω

∣∣vd0
1‖
∣∣2 dA on

the right-hand side due to the viscous boundary layer is usually much larger than the
conventional bulk power-loss term

∫
Ω

1
2Γ0ρ0ω

∣∣vd1
∣∣2 dV . For a fluid cavity of length scale

L, fluid-solid interface area L2, and fluid volume L3, the ratio between the boundary-layer
power loss and the bulk power loss is,

∮
∂Ω

1
4δρ0ω

∣∣vd0
1‖
∣∣2 dA

∫
Ω

1
2Γ0ρ0ω

∣∣vd1
∣∣2 dV

∼ δ

Γ0L
. (3.9)

Hence, the boundary layer is important for the loss calculations in systems of length
scale L . δ

Γ0
which is plotted with blue dashed line in Fig. 3.2. For water at 2 MHz

frequency, this length is 4.7 cm or 62 λ. For systems much larger than this size, the bulk
dissipation dominates and the boundary layer may be ignored in the calculation of the
acoustic pressure.

Effective stress on the wall

The presence of the shear field in the boundary layer introduces a viscous stress on the
wall in addition to the acoustic pressure. The dominating part of the shear stress tensor
τ1 at the wall is η0∂ζv

δ
1 = η0iksv

δ0
1 , and the total stress on the wall is approximately,

σ1 · eζ ≈ −p1eζ + iksη0v
δ0
1 . (3.10)

Note that the second term is usually ε smaller than the pressure term, but may be signif-
icant for a large parallel wall motion.

3.3 The second-order streaming and the slip boundary con-
dition

The steady acoustic streaming is governed by Eq. (2.22), which contain the two driv-
ing mechanisms: (1) the body force fac = −∇· 〈ρ0ṽ1ṽ1〉 and (2) the Lagrangian no-slip
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Figure 3.4: Sketch of two different approaches to the second-order boundary-layer anal-
ysis. The boundary condition on the fluid velocity is v2 = v0

2 at the boundary equilibrium
position ζ = 0 with v0

2 = 0 in Refs. [70–72, 75] and v0
2 = −〈(s̃1 ·∇)ṽ1〉 in Ref. [74] and in

this work. (a) In the limiting-velocity approach [70–72, 74, 75], the fluid domain is divided

into the boundary-layer region where v2 = vδ2 (red) and the bulk region where v2 = vd2
(blue), and the streaming velocity is matched by the limiting velocity vlim

2 (purple) at
the edge of the boundary layer. (b) In the slip-velocity approach used in this thesis, the

boundary-layer field vδ2 (red) and the bulk field vd2 (blue) coexist in the entire fluid domain

and their sum v2 = vδ2 + vd2 (black) satisfy the boundary condition v0
2 at ζ = 0.

boundary condition 0 = v2 + 〈s̃1 ·∇ṽ1〉. For the first-order fields, the boundary-layer ve-

locity vδ1 was conveniently extracted by a Helmholtz decomposition. For the second-order
fields, it is less clear how to extract the boundary-layer streaming. The classical “limiting-
velocity” approach often used in the literature [70–72, 74, 75] is sketched in Fig. 3.4(a).
Here, the inner streaming is first calculated to obtain the so-called “limiting velocity” in
the limit ζ → ∞, which become the boundary condition on the outer streaming. How-
ever, this approach makes it inconvenient to implement the no-slip boundary condition,
v2 = −〈(s̃1 ·∇)ṽ1〉 at the wall1. In this thesis, a slightly different approach is used, called
the “slip-velocity” approach as sketched in Fig. 3.4(b). Here, the streaming velocity v2 is

decomposed into a short-range streaming velocity vδ2 and a long-range streaming velocity
vd2 which coexist inside the boundary layer, such that their sum is the total streaming,

v2 = vδ2 + vd2 . (3.11)

It is emphasized, that this decomposition is not a mathematical Helmholtz decomposition
but rather a physical separation of length scales. Choosing the short-range velocity to
decay outside the boundary layer, the long-range velocity vd2 must ensure the boundary
condition,

vδ2 → 0, for ζ →∞, (3.12a)

vd0
2 = −vδ02 − 〈s̃1 ·∇ṽ1〉, for ζ = 0, (3.12b)

1
Vanneste and Bühler [74] did this by solving for the Lagrangian mean flow in their Eq. (4.8).
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where it is recalled that the superscript “0” denote evaluation of a velocity field at the
surface equilibrium position. The velocity vd0

2 in Eq. (3.12b) is the slip velocity on the long-
range acoustic streaming at the wall equilibrium position ζ = 02. The following section
outlines how to obtain the short-range boundary-layer streaming vδ02 used to calculate the
boundary condition (3.12b).

The short-range boundary-layer streaming

The role of the short-range velocity vδ2 is to set up a shear stress that balances the short-
range part f δac = −ρ0∇ · 〈ṽδ1ṽd1 + ṽd1 ṽ

δ
1 + ṽδ1ṽ

δ
1〉 of the body force fac, see Eq. (2.23a).

Exploiting the thin-boundary-layer approximation (3.2) of the Laplacian yields the gov-
erning equation for the parallel boundary-layer streaming,

0 ≈ η0∂
2
ζv

δ
2‖ − ρ0

[
∇· 〈ṽδ1ṽd1 + ṽd1 ṽ

δ
1 + ṽδ1ṽ

δ
1〉
]
‖
. (3.13)

Here, the parallel part “‖” of any vector A at a surface with local unit tangent vectors eξ
and eη is A‖ = (A ·eξ)eξ +(A ·eη)eη. The great advantage of taking the parallel part “‖”
outside the divergence is to keep all derivatives in coordinate free form, thus avoiding the
curvilinear Christoffel symbols Tkji (see Eq. (11) in Paper I [1]). The perpendicular part

vδ02ζ of the short-range streaming is chosen to satisfy the short-range continuity equation
(2.22a). In summary, the short-range velocity is obtained by the straight-forward but
cumbersome integrals,

vδ2‖(ζ) =
ρ0

η0

[∫ ζ

0

∫ ζ
′

0
∇· 〈ṽδ1ṽd1 + ṽd1 ṽ

δ
1 + ṽδ1ṽ

δ
1〉dζ ′′dζ ′

]

‖
, (3.14a)

vδ2ζ(ζ) = −
∫ ζ

0

[
∇‖ ·vδ2‖ +

1

ρ0
∇· 〈ρ̃1ṽ

δ
1〉
]

dζ ′, (3.14b)

where all integration constants are chosen to vanish to ensure the condition (3.12a).

The slip boundary condition on the long-range acoustic streaming

The slip velocity vd0
2 on the long-range streaming vd2 is defined in Eq. (3.12b) and is

obtained simply by evaluating vδ2‖ in Eq. (3.14) at the wall ζ = 0. This integration is
carried out in Section V A in Paper I [1]. The final result is expressed without reference
to any coordinate system but only to the local tangent vectors eξ, eη, and the normal

2
The slip velocity is also denoted v

bc
2 in Paper II [2] and v

slip
2 in Paper III [3] and V [5]
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Figure 3.5: The second-order streaming from 0 (black) to 0.12 mm/s (yellow) from the
acoustic fields shown in Fig. 3.3 obtained from a the full boundary-layer resolved model
of Eq. (2.22) (left, black arrows, v2), and by the effective model of Eq. (3.16) (right, blue

arrows, vd2).

vector eζ
3,

vd0
2 =

(
A · eξ

)
eξ +

(
A · eη

)
eη +

(
B · eζ

)
eζ , (3.15)

A = − 1

2ω
Re

{
vδ0∗1 ·∇

(1

2
vδ01 − iV 0

1

)
− iV 0∗

1 ·∇vd1

+

[
2− i

2
∇·vδ0∗1 + i

(
∇·V 0∗

1 − ∂ζvd∗1ζ
)]
vδ01

}
,

B =
1

2ω
Re
{

ivd0∗
1 ·∇vd1

}
.

Here, the vectors A and B may be calculated in any coordinate system not necessarily
having coordinate surfaces coinciding with the wall surface. Eq. (3.15) is the slip velocity
in the general case of a curved oscillating wall which is valid for thin boundary layers,
Eq. (3.1b), and small wall displacements, Eq. (3.1a). This boundary condition constitutes

the effective model for the long-range acoustic streaming vd2 . It is to be used with the
second-order Navier Stokes equation (2.22), which can be written in the simpler form
outside the boundary layer as, (see Section V B of Paper I [1]),

0 = ∇· vd2 for r ∈ Ω, (3.16a)

0 = −∇pd2 + η0∇2vd2 + fdac, fdac =
Γ0ω

c2
0

Sdac, for r ∈ Ω, (3.16b)

vd2 = vd0
2 , for r ∈ ∂Ω, (3.16c)

In Fig. 3.5 is shown a comparison between the acoustic streaming calculated by the full
boundary-layer resolved model, Eq. (2.22), and by this effective model, Eq. (3.16). For a

3
Strictly, eζ should point towards the fluid and eξ × eη = eζ . But in this result, the sign of these

vectors is irrelevant, which makes the numerical implementation more tolerant.
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more quantitative comparison, see Fig. 4 of Paper I [1]. In the following is listed three
limits where the general slip velocity simplifies significantly.

Small wall velocity
The wall velocity V 0

1 may be ignored if it is much smaller than the fluid velocity vd1 , which
is e.g. the case for a fluid resonance with a high Q factor. Ignoring V 0

1 in Eq. (3.15) leads

to vδ01 ≈ −vd0
1 , and the slip velocity simplifies to,4

vd0
2‖ = − 1

8ω
∇‖
∣∣vd0

1‖
∣∣2 − 1

2ω
Re
[(

∇‖ ·vd0
1‖
)
vd0∗

1‖
]

+
1

4ω
Re
[
i
(

2∂ζv
d0
1⊥ −∇‖ ·vd0

1‖
)
vd0∗

1‖
]
,

(3.17a)

vd0
2⊥ = 0. (3.17b)

2D standing wave and small wall velocity
For a standing wave, only the two first terms in Eq. (3.17) contribute. For a 2-dimensional
(2D) standing wave, say in the cross section of a long straight channel, there is only a single

tangential direction and the result simplifies drastically since (∇‖ ·vd0
1‖)v

d0∗
1‖ = 1

2∇‖
∣∣vd0

1‖
∣∣2,

leading to.

vd0
2‖ = − 3

8ω
∇‖
∣∣∣vd0

1‖
∣∣∣
2
. (3.18)

Note that this is a generalized version of Rayleigh’s slip velocity stated in Eq. (2.21).

No boundary layer
In situations where there is no boundary layer, vδ1 = 0 and thus vd0

1 = V 0
1 , the slip velocity

reduces to the Stokes drift,

vd0
2 = −〈s1 ·∇vd1〉, for r ∈ s0, (3.19)

as required to fulfil the Lagrangian no-slip boundary condition (2.6c). This situation is
relevant for a soft wall (a liquid-gas interface) where both the normal stress and the shear

stress on the wall in Eq. (3.10) is set to zero implying vδ1 = 0. Another situation where
this is a good approximation is for a large flat wall oscillating in the normal direction.

4
see also Eq. (61a) of Paper I [1], and Eq. (7e) in Paper III [3] where there is a mistake in the last

term which should be (3i + 2) instead of 3i





Chapter 4

Bulk-driven streaming on the
wavelength scale

Bulk-driven acoustic streaming is a phenomenon that is often overlooked or ignored in
the field of microscale acoustofluidics [23, 43, 69, 118, 119] with the incorrect length-scale
argument, that it is only significant in devices of length scale comparable to or longer than
the attenuation length scale (Γ0k0)−1 which is much larger than the acoustic wavelength
λ, see Fig. 3.2. However, it is found in Paper III [3] of this thesis that bulk-driven acoustic
streaming can be important even for devices of length scale comparable to the acoustic
wavelength. In this chapter, bulk-driven acoustic streaming is briefly described and a
length-scale condition for ignoring bulk-driven streaming is provided. Furthermore, the
theory of Paper III [3] is set into perspective by considering three experimental observations
of acoustic streaming reported in the literature.

4.1 The governing equation for bulk-driven streaming

As described in Section 2.6 and in Eq. (2.16b), bulk-driven acoustic streaming is driven by

the body force fdac which describe the convergence of momentum flux due to attenuation
of acoustic waves [69, 74, 100, 120]. Hence, the governing equations for the bulk-driven

streaming vblk
2 are (see also Eq. (7) of Paper III [3]),

0 = ∇· vblk
2 , for r ∈ Ω, (4.1a)

0 = −∇pblk
2 + η0∇2vblk

2 + fdac, fdac =
Γ0ω

c2
0

Sdac, for r ∈ Ω, (4.1b)

vblk
2 = 0, for r ∈ ∂Ω, (4.1c)

As argued in Paper III [3], the body force fdac can only create acoustic streaming in a closed
system, if it is not a gradient force, or equivalently if the curl of the force is nonzero. Since it
was found in Eq. (2.15b) that ∇×Sdac = ω2Ld

ac with the acoustic angular momentum Ld
ac,

it is concluded that the body force can only drive acoustic streaming if the acoustic fields
are rotating. In Paper III [3] two mechanisms are pointed out to cause rotating acoustics:

29
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Wall-induced rotation where the wall itself is rotating, and geometry-induced rotation
where the geometry deviates slightly from a perfect symmetry causing two resonances to
oscillate at the same frequency but out of phase. For further details, see section V of
Paper III [3].

4.2 Bulk-driven versus boundary driven streaming

It is relevant to ask for the condition where bulk-driven streaming is significant relative
to the boundary-driven streaming and this question is answered here based on scaling
arguments. As bulk-driven streaming is strongly dependent on the phases and the shape
of the acoustic fields, each situation requires in principle a special treatment. For the most
optimal rotation of the acoustic fields, the energy flux density scales as Sdac ∼ 1

2ρ0c0(vd1)2,

where vd1 is the magnitude of the acoustic velocity field vd1 . Using that in Eq. (4.1b),

and the scaling ∇2vblk
2 ∼ vblk

2 L−2
visc with the shear length scale Lvisc of the bulk-driven

streaming, the following scaling is obtained,

vblk
2 ∼ 1

2

(
4

3
+
ηb

0

η0

)
(k0Lvisc)

2 (vd1)2

c0
. (4.2)

This result reveals the well-known observation that bulk-driven streaming is only depen-

dent on the viscosity through the ratio η
b
0
η0

[100]. The typical scaling of the boundary-driven

streaming speed is vbdr
2 ∼ 3

8
(v
d
1)

2

c0
given by the Rayleigh slip velocity in Eq. (2.21). Hence,

the ratio between bulk-driven and boundary-driven streaming is,

vblk
2

vbdr
2

∼ 4

3

(
4

3
+
ηb

0

η0

)
(k0Lvisc)

2. (4.3)

The critical viscous length scale Lcrit
visc where vblk

2 and vbdr
2 are similar is then given in terms

of the acoustic wave length λ as,

Lcrit
visc =

1

2π

[
4

3

(
4

3
+
ηb

0

η0

)]− 1
2

λ = 0.11 λ, for water. (4.4)

For the special case of two perpendicular resonance modes in the xy plane of a square-box-
shaped cavity of height Lz, a more thorough analysis is given in Eq. (40) Paper III [3],
concluding that Lcrit

visc = 0.09 λ for water,1 in good agreement with Eq. (4.4). From
Eq. (4.4), the following condition and consequence is extracted,

Lvisc � Lcrit
visc : Bulk-driven streaming can be ignored. (4.5)

In conclusion, the length-scale argument for ignoring bulk-driven streaming in micro-
cavities is that the streaming shear length Lvisc is much smaller than Lcrit

visc, which is rarely

1
Eq. (40) of Paper III [3] defines B

crit
=

lLz

L
∗ =

2Lz
λ

= 0.35 for water. Using Lvisc = 1
2
Lz yields

L
crit
visc = 0.09 λ.
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satisfied in acoustofluidic devices. The reason why bulk-driven streaming is in many cases
not important is that the acoustic fields are not rotating. Remarkably however, as shown
in the following section, acoustic rotation may be induced in experiments even though it
is not intended.

4.3 Observed examples of bulk-driven streaming on the wave-
length scale in rectangular microcavities

This section shows three examples of acoustic streaming on the wavelength scale observed
in rectangular-box-shaped cavities. In such cavities, the pressure resonance modes plmn1

are of the form [3],

plmn1 ∝ cos

(
lπ

Lx
x

)
cos

(
mπ

Ly
y

)
cos

(
nπ

Lz
z

)
, (4.6)

where Lx, Ly, and Lz are the cavity side lengths in the x, y and z direction, respectively,
and l, m, and n are integers. For an excitation of a single of these pressure modes, it
is found in Paper III [3] that the body force f lmnac created from the resonance plmn1 does
not generate significant bulk-driven streaming. However, as shown in the three examples
below, it is often possible to excite two resonance modes at the same frequency, called a

double-mode resonance and denoted pl
′
m

′
n
′

lmn = plmn1 + pl
′
m

′
n
′

1 . The corresponding body force

f l
′
m

′
n
′

lmn induced by that double mode is (see Eq. (16) of Paper III [3]),

f l
′
m

′
n
′

lmn =
Γ0ω

c2
0

〈
plmn1 vl

′
m

′
n
′

1 + pl
′
m

′
n
′

1 vlmn1

〉
. (4.7)

For each of the following three examples, this body force f l
′
m

′
n
′

lmn is plotted with suitable
mode numbers lmn and l′m′n′ and compared to the observed streaming. Furthermore, the
viscous length scale Lvisc, Eq. (4.4), of the acoustic streaming is estimated in each case and
it is found that the condition Lvisc � Lcrit

visc in Eq. (4.5) for ignoring bulk-driven streaming
is not satisfied in any of the examples.

Example 1: Cross-section streaming in a square channel

The first example is from Antfolk et al. [54], who used a long straight quadratic silicon/glass
channel of side length 230 µm, actuated at the frequency f = 3.19 MHz that excites a
half-wave resonance in both cross-section directions y and z, see Fig. 4.1(a1-a2). In this
situation, the viscous length scale used in Section 4.2 above is the half channel width
Lvisc = 115µm and the wave length is λ = c0

f = 479 µm, and thus,

Lvisc ≈ 0.24λ. (4.8)

Since this is not much smaller than Lcrit
visc = 0.11λ, see (4.5), the bulk-driven streaming

cannot be ignored. The excited pressure double mode was presumably p1 = p001
010 =
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(a1) Experiment (a2) Pressure (a3) Streamlines (b) The body force
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Figure 4.1: An acoustic resonance measured by Antfolk et al. [54] in a quadratic channel
at f = 3.19 MHz. (a) Results from the paper: (a1) Experimental setup and top-view
florescent image of focused 0.5-µm polystyrene particles (red). (a2) Simulated pressure
obtained by oscillating the side walls with a phase difference of 1

2π. (a3) Result from
a direct simulation of the particle streamlines for 0.5-µm polystyrene particles. (b) The
body force f001

010 (arrows) proposed in this thesis to cause the observed streaming shown

in (a3), and colorplot of the acoustic angular momentum Ld
ac ∝∇× f001

010 .

p010
1 + p001

1 , see Eq. (4.6), which induces the double-mode body force f001
010 as shown in

Fig. 4.1(b). In the paper, this rotating streaming pattern was obtained numerically by a
full boundary-layer resolved simulation where the side walls was actuated with a phase
difference of 1

2π as shown in Fig. 4.1(a2).

Example 2: Transducer-plane streaming in a square cavity

This example has been studied numerically and analytically in Paper II [2] and III [3].
The experiment is from Hagsäter et al. [76] who did particle image velocimetry (PIV) on
1 µm polystyrene particles in a square cavity of side lengths 2000 µm and height 200 µm,
see Fig. 4.2(a)-(b). The acoustic resonance was excited by a transducer placed below the
square cavity at the frequency f = 2.17MHz exciting 6 standing half waves in the two
horizontal directions x and y. For the acoustic streaming pattern shown in Fig. 4.2(b),
the viscous length scale used in Section 4.2 above is the half height Lvisc ≈ 100 µm of the
cavity, and the wave length is λ = c0

f = 690 µm, and hence,

Lvisc ≈ 0.15 λ. (4.9)

Since this is not much smaller than Lcrit
visc = 0.11λ, see (4.5), the bulk-driven streaming

cannot be ignored. Note that if only a single half wave was excited in each direction, the
wavelength would instead be λ ≈ 4000 µm giving Lvisc ≈ 0.025 λ and the bulk-driven
streaming could safely be ignored (see Fig. 8 of Paper III [3]). The total pressure mode in
the experiment was presumably p1 = p060

600 = p600
1 + p060

1 , see Eq. (4.6), which induces the
double-mode body force f060

600 , see Eq. (4.7), as shown in Fig. 4.2(c). Paper II [2] provides a

full-device simulation of the experimental setup, where the body force fdac in Eq. (4.1b) is
implemented, and the resulting streaming pattern is shown in Fig. 4.2(d), reproducing the
observed particle motion in Fig. 4.2(b) remarkably well. In this case, since the transducer
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(a) Experiment (b) PIV:  1 µm polystyrene particles

xy

(c) The body force

x

y

xy

(d) Simulation: Acoustic streaming

Figure 4.2: Acoustic streaming observed by Hagsäter et al. [76] in a square cavity at
the resonance f = 2.17 MHz. (a) Top-view of the microchip. (b) PIV results for 1 µm
polysterene particles mapping out the acoustic streaming. (c) The body force f006

060 (arrows)
proposed in this thesis to cause the observed streaming shown in (b), and colorplot of the

acoustic angular momentum Ld
ac ∝∇× f006

060 . (d) Simulation results from Paper III [3] of
the acoustic streaming where the body force fac is included.

is placed below the cavity, the acoustic rotation in the experiment is most likely caused
by a small asymmetry in the geometry e.g. due to the side channels. See Paper III [3] for
a further analytical treatment of the bulk-driven streaming in this device.

Example 3: Transducer-plane streaming in a long channel

The third example is another experiment from Hagsäter et al. [121] where they used
a silicon/glass channel of length Lx = 18.35 mm, width Ly = 400 µm, height Lz =
150 µm, and the actuation frequency f = 1.96 MHz corresponding to the wavelength
λ = c0

f = 764 µm. In Fig. 4.3 is shown a PIV measurement of large 5 µm polyamide
particles in a section of the long channel. These particles follow the acoustic radiation
force and their motion reveal a clear example of a resonance mode which is not just a
single standing half wave across the channel. In this figure, the green lines mark the short
axial periodicity, and the yellow lines mark the long axial periodicity as well as the width
Ly. These length scales suggest that this resonance may be described by the two modes

shown in Fig. 4.3(b): p14,0,0
1 having 14 half waves along the shown axial length, and p5,1,0

1
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(a) PIV: 5 µm particles

(b) Theory: The pressure modes 
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Figure 4.3: An acoustic resonance measured by Hagsäter et al. [121] in a long straight
silicon/glass channel of width 400 µm at the frequency 1.96 MHz. (a) Top-view PIV
meassurement of 5 µm polyamide particles in a section of the long channel. The green
and yellow bars show the observed length scales of the resonance. Adapted from Fig. 5(b)
of Ref. [121]. (b) The suggested combination of pressure eigenmodes based on the length
scales marked with green and yellow in (a).

having 5 half waves along the x directions and 1 half wave across the y direction.
The acoustic streaming pattern for the resonance mode in Fig. 4.3(a) was mapped out

in the experiment by using 1 µm polystyrene particles, and the resulting PIV measurement
is shown in Fig. 4.4(a). In this case, the viscous length scale used in Section 4.2 above is
the half height of the channel leading Lvisc ≈ 75 µm and λ = 764 µm, leading to

Lvisc ≈ 0.1 λ. (4.10)

Since this is not much smaller than Lcrit
visc = 0.11λ, see (4.5), the bulk-driven streaming

cannot be ignored. In Fig. 4.4(b) is shown the body force f5,1,0
14,0,0 which is induced by the

pressure modes p14,0,0
1 and p5,1,0

1 displayed in Fig. 4.3(b). Remarkably, this very irregular

(a) PIV: 1 µm particles

(b) Theory: The body force
x

y

x

y

Figure 4.4: Same channel and frequency as in Fig. 4.3. (a) PIV meassurement of 1 µm
polystyrene particles in a section of the channel. Adapted from Fig. 7(b) of Ref. [121].
(b) The body force f5,1,0

14,0,0 (arrows) proposed in this thesis to cause the observed streaming

shown in (a), and colorplot of the acoustic angular momentum Ld
ac ∝∇× f5,1,0

14,0,0.
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streaming pattern is well explained by the suggested body force. This observed acoustic
streaming is therefore likely to be classified as bulk-driven streaming.

4.4 Concluding remarks

In this chapter, it is argued that bulk-driven acoustic streaming should be given more
attention both in the understanding and in calculations of most acoustofluidic devices.
It is shown in Eq. (4.4) that for devices of length scale comparable to or larger than
the critical viscous length scale Lcrit

visc = 0.11 λ for water, bulk driven streaming may be
important. Bulk-driven streaming is created if the acoustic fields are rotating and as shown
in the three experimental examples above, acoustic rotation may occur unexpectedly due
to the simultaneous excitation of two pressure resonance modes at the same frequency.





Chapter 5

FEM modelling in COMSOL and
validation

In this PhD project, numerical modelling has been used for simulations of experimental
observations, for validations of analytical theories, for parametric studies, and for shape
optimizations. These simulations were carried out using the commercial softwares COM-
SOL Multiphysics [122] and MATLAB [123]. This chapter gives a brief introduction
to the Finite Element Method (FEM), see Fig. 5.1, which is used internally in COMSOL,
and the modelled equations and boundary conditions are summarized. Furthermore, the
validation of the numerical and analytical results is discussed.

5.1 The Finite Element Method

The governing equations (2.7), (2.9), and (2.22) considered in this PhD project are all
time-independent conservation equations of the form,

∇· J[g(r)
]

+ F
[
g(r)

]
= 0, (5.1)

y

z

Node
Element

Basis function

1

Figure 5.1: Sketch of a 2D domain Ω equipped with nodes, elements, and normal
vector n. A single (linear) basis function φn(r) is shown. Adapted from Ref. [124].
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where g(r) is a generalized dependent field, J is a generalized current, and F is a general-
ized forcing term. The solution g(r) that satisfy Eq. (5.1) is the so-called strong solution.
A weak formulation of Eq. (5.1) is constructed by multiplying it by a test function ψ(r)
and integrating over the domain Ω with boundary ∂Ω and using integration by parts,

∮

∂Ω
ψ(r)J

[
g(r)

]
· ndA+

∫

Ω

{
−∇ψ(r) · J

[
g(r)

]
+ ψ(r)F

[
g(r)

]}
dV = 0. (5.2)

In the FEM, the numerical discritization is done by choosing a finite number of nodes
leading to a finite number of domain elements between the nodes, see Fig. 5.1. For each
node n, a basis function φn(r) is defined to be unity at the node, smooth inside the elements
next to the node, and zero in all other elements. The solution g(r) is approximated by a
linear combination of these basis functions,

g(r) ≈
∑

n

cnφn(r), (5.3)

where the coefficients cn are to be found numerically. To obtain equations for these
coefficients, Eq. (5.3) is inserted into Eq. (5.2). Furthermore, since Eq. (5.2) is required to
hold for any test function ψ, a usual convenient choice is to chose ψ(r) = φm(r), giving,

∑

n

{∮

∂Ω
φm(r)J

[
φn(r)

]
·ndA+

∫

Ω

{
−∇φm(r)·J

[
φn(r)

]
+φm(r)F

[
φn(r)

]}
dV

}
cn = 0.

(5.4)
These equations form the matrix equation

∑
nKmncn = 0 for all m, where Kmn is known

and cn is unknown. To obtain a non-trivial solution, boundary conditions need to be
specified. In COMSOL, the module “Weak Form PDE” is used, where the integrand of
the weak formulation (5.2) is given as input, as well as boundary conditions in the form
of either “Weak contributions” or “Dirichlet boundary contributions”. Table 5.1 gives
an overview of the equations and corresponding boundary conditions simulated in this

Table 5.1: An overview of the effective and full model used in this PhD project, with
corresponding mesh size and order of the polynomial basis function φn.

Field Governing equation Boundary condition

Effective model. Mesh size: d.
p1 (4’th order) Eq. (2.9) Eq. (3.6) Neumann

vd2 (3’rd order) Eq. (3.16b) Eq. (3.15) Dirichlet

pd2 (2’nd order) Eq. (3.16a)
∫

Ω p
d
2 dV = 0 Global constraint

Full model. Mesh size: δ at the boundaries and k−1
0 in the bulk.

v1 (3’rd order) Eq. (2.7b) Eq. (2.7c) Dirichlet
p1 (2’nd order) Eq. (2.7a) – –
v2 (3’rd order) Eq. (2.22b) Eq. (2.22c) Dirichlet
p2 (2’nd order) Eq. (2.22a)

∫
Ω p2 dV = 0 Global constraint
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PhD project, as well as the chosen mesh size (see Fig. 5.2 (a1) below), and order of the
polynomial basis functions φn. In the following, each of the relevant boundary conditions
are briefly described.

The Neumann Boundary Condition (weak contribution)

To implement a Neumann boundary condition, i.e. a prescribed flux at the boundary of
the form J ·n = N(r), the feature “Weak Contribution” in COMSOL is used. Here, the
integrand of the left surface integral in Eq. (5.4) is changed by replacing J

[
g(r)

]
· n by

φm(r)N(r), giving

∑

n

{∫

Ω

{
−∇φm(r)·J

[
φn(r)

]
+φm(r)F

[
φn(r)

]}
dV

}
cn = −

∮

∂Ω
φm(r)N(r) dA, (5.5)

which form a solvable system of equations of the form
∑

nKmncn = bm. A simple example

is the inviscid Helmholtz equation for the acoustic pressure, ∇2p1 + k2
0p1 = 0 which is

formulated as Eq. (5.1) by choosing the current J [p1(r)] = ∇p1(r) and the forcing term
F [p1(r)] = k2

0p1(r). A prescribed wall motion is implemented as n ·∇p1 = iωρ0n · V 0
1

and hence N(r) = iωρ0n · V 0
1 .

The Dirichlet Boundary Condition

To implement a Direchlet boundary condition, i.e. a prescribed value at the boundary
of the form g(r) = D(r), the feature “Dirichlet Boundary Condtion” in COMSOL is
used. Since the fields are represented as the sum (5.3) and φn(r) is unity at the nodes,
this condition can be implemented by setting the coefficients cn = D(rn) for the nodes n
at the boundary n ∈ {n∂Ω

} with position rn. Hence, the matrix equation obtained from
Eq. (5.4) changes to

∑
n/∈{n∂Ω}Kmncn = −∑n∈{n∂Ω}KmnD(rn) = bm.

Global Constraint

In the time-averaged equations (2.22) and (3.16) for the acoustic streaming, the acoustic
pressure p2 only enters though its gradient and therefore there is an arbitrary constant
base level that has to be fixed. To do that, the feature “Global Contraint” in COMSOL is
used to impose

∫
Ω p2 dV = 0.

5.2 Validation of results

The numerical and analytical results obtained in this PhD project are substantiated by
comparison between different methods as summarized in Table 5.2. In Paper I [1], the
acoustic fields and streaming are calculated without resolving the boundary layer by us-
ing effective boundary conditions. This method is validated against a full boundary-layer
resolved model, which has previously been tested against experiments [93], and against
analytic solutions. An example of comparison between full, effective, and analytical solu-
tions is shown in Fig. 5.2. In Paper II [2], a full acoustofluidic device is simulated using
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Table 5.2: Overview of the research methods used in the published papers I-V. “Reduced
simulations” reefer to a simulation method, where analytical results are used to obtain
better efficiency or higher simplicity. “Full simulations” reefer to a simulation method
without the simplifications used in “Reduced simulations”. (X) denote a method that has
been used without publication.

Paper I Paper II Paper III Paper IV Paper V

Reduced simulations X X X X X
Full simulations X X (X)
Analytical results X X X X
Convergence tests (X) (X) (X) (X) (X)
Experiments X (X)

the effective boundary conditions, and the results are substantiated since they reproduce
the experimental observations. In Paper III [3], an analytical theory is made for the con-
ditions where bulk-driven acoustic streaming is strongest. The theory is validated against
a 3-dimensional (3D) simulation with effective boundary conditions at the walls. In Pa-
per IV [4], an analytical theory is made for the axial dependency of the acoustic fields
in long straight capillary tubes, which, as shown, can be obtained from a reduced 2D
calculation. The theory is validated against a full 3D simulation with effective boundary
conditions at the walls. In Paper V [5], the effective boundary conditions are used to
efficiently calculate the acoustic fields and streaming for many cavity shapes, in order to
optimize the shape of the cavity for suppression of acoustic streaming. The streaming in
the optimized shape has also been calculated by using a full boundary-layer with agreeing
results. Furthermore, an analytical explanation of the suppression of the acoustic stream-
ing is provided. Finally, for all published numerical simulations, a numerical convergence
test was done similar to that in Ref. [66] by Muller et al., but not shown in the papers.

Figure 5.2: Example of validation of results by comparison between full simulation
“Full”, effective simulation “Eff”, and analytical results “Ana” for the acoustic pressure
p1 at resonance fres = 1.967 MHz in a microcavity. (a1) Color plot of p1 from −1 MPa
(purple) to 1 MPa (cyan) and the used FEM mesh for the full simulation (upper half) and
for the effective simulation (lower half). (a2) Line plot of p1 along the dashed blue cut line
in (a1) at y = 1

4W for the full model (black solid line), the effective model (blue dashed
line), and the analytical results (red dashed line). Adapted from Fig. 1 in Paper I [1].



Chapter 6

Summary of results

In this chapter, the research published in the papers I-V [1–5] is summarized with the
purpose of giving the reader an overview of the work done in the PhD project, a motivation
for each paper, as well as the most significant contributions provided by each paper.

6.1 Paper I: Theory of pressure acoustics with viscous bound-
ary layers and streaming in curved elastic cavities

The acoustic fields and streaming in a fluid are strongly dependent on the viscous boundary
layer forming close to a solid wall, where the fluid motion adapts to the wall motion. In
numerical simulations, the narrow width of this boundary layer requires an extremely fine
numerical resolution. As described in Chapter 3, current boundary-layer theories [70–
72, 74, 75] offer a solution to this problem by formulating an effective slip velocity for
the acoustic streaming. The motivation for this paper was to generalize the slip-velocity
theory to apply for a curved wall that oscillates in any direction. In the process, it was
discovered that even though the acoustic pressure p1 does not vary on the boundary-layer
length scale δ, it is possible to formulate a boundary condition on p1 that takes into
account all the effects from the viscous boundary layer. This boundary-layer boundary
condition on p1 is one of the most important contributions of the thesis. It is given in
Eq. (25) of Paper I [1] and here,

∂ζp1 +
i

ks

[
k2

cp1 + ∂2
ζp1

]
=

iωρ0

1− iΓ0

[
V 0

1ζ −
i

ks
∇· V 0

1

]
. (6.1)

Another key result of the thesis is the generalization of the streaming slip velocity,
that has been extended to apply for a curved surface that oscillates in any direction. It is
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written in Eq. (55) of Paper I [1] and restated here,

vd0
2 =

(
A · eξ

)
eξ +

(
A · eη

)
eη +

(
B · eζ

)
eζ , (6.2)

A = − 1

2ω
Re

{
vδ0∗1 ·∇

(1

2
vδ01 − iV 0

1

)
− iV 0∗

1 ·∇vd1

+

[
2− i

2
∇·vδ0∗1 + i

(
∇·V 0∗

1 − ∂⊥vd∗1⊥
)]
vδ01

}
,

B =
1

2ω
Re
{

ivd0∗
1 ·∇vd1

}
.

Note that this slip velocity is formulated in terms of the local tangent vectors eξ and eη
and normal vector eη, but with no reference to any coordinate system and therefore, it
is straight-forward (but cumbersome) to implement in general geometries with no need of
calculating any curvilinear quantities of the surface.

6.2 Paper II: 3D modeling of acoustofluidics in a liquid-
filled cavity including streaming, viscous boundary lay-
ers, surrounding solids, and a piezoelectric transducer

The effective boundary conditions developed in Paper I [1]for the first-order pressure p1

and for the acoustic streaming v2, lead to drastic reductions in the computer memory
required for simulations. They were used in Paper II [2], to simulate a full experimental
setup by Hagsäter et al. [76] including the water domain, the Pyrex-glass lid, the sur-
rounding silicon, and the actuating piezoelectric transducer. The simulation reproduced
the characteristic 6-by-6 streaming pattern which was observed in the experiment, and it
was found numerically, that this streaming pattern is not driven by the slip velocity, but
instead by the body force fdac in the bulk of the fluid as described in Chapter 4. This
was further analyzed theoretically in Paper III [3]. The developed full-device simulation
allows for detailed studies of full acoustofluidic devices, and this paper demonstrates and
communicates how it can be done.

6.3 Paper III: Bulk-driven acoustic streaming at resonance
in closed microcavities

Bulk driven acoustic streaming, or Eckart streaming, is driven by the body force fac which
represent the convergence of time-averaged momentum flux from the acoustic fields. It is
derived in Eq. (50) of Paper I [1] in agreement with Eckart [101],

fdac =
Γ0ω

c2
0

Sdac, (6.3)

where Sdac = 〈p̃1ṽ
d
1〉 is the acoustic energy flux density. Bulk-driven acoustic streaming

is usually observed in the context of a propagating acoustic beam over the length scale
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of many wave lengths, and it is often ignored in resonating microfluidic cavities of size
comparable with the acoustic wave length [69, 118]. However, Hagsäter et al. [76] observed
a rotating streaming pattern at resonance which is very likely to be classified as bulk-driven
streaming as also found numerically in Paper II [2]. The motivation for Paper III [3] was
to understand the creation of this kind of streaming in resonating devices theoretically.

It was found, that when two standing waves oscillate out of phase and in perpendicular
directions, they create a rotating resonance which gives rise to a significant rotating body
force fdac on the fluid. The two key messages of this paper is that (1) the body force fdac of
Eq. (6.3) should in general not be ignored in calculations of microfluidic devices, and (2)
the bulk-driven streaming at resonance is very sensitive to small deviations in the cavity
geometry and it may occur unexpectedly even though the actuation is not itself rotating.
To reproduce bulk driven streaming in simulations, it is therefore important to check the
sensitivity to small changes in the geometry.

6.4 Paper IV: Theory of acoustic trapping of microparticles
in capillary tubes

Acoustic trapping in capillary tubes is facilitated by placing a piezoelectric transducer
under the tube and actuating at a cross-section resonance [39–41, 45]. Suspended particles
are then focused in the cross section and attracted axially towards the maximum acoustic
energy above the transducer. The motivation for this paper was to a obtain general
understanding of the axial dependency of the acoustic fields and radiation force in the
acoustic trap. This was done by calculating the acoustic pressure analytcally by using the
boundary-layer boundary condition (6.1) derived in Paper I [1].

It was found that for any tube cross section, the 3D axial dependency of the acoustic
fields can be determined from a reduced 2D calculation in the cross section of the capillary
tube, combined with the axial dependency of the actuation. This finding allows for general
statements about the axial dependency of the acoustic fields and radiation force in capillary
tubes. A significant conclusion is that there exists an optimal axial actuation length for
acoustic trapping in capillary tubes, which for typical devices is found to be a few times
the cross-section wavelength. The analytical results pave the way for further analysis in
long straight channels, e.g. of acoustic streaming.

6.5 Paper V: Suppression of acoustic streaming in shape-
optimized channels

Acoustic streaming is a key obstacle in the field of acoustofluidics for controlled handling
of sub-micron particles. For a standing-half-wave resonance in a 380 µm-wide channel,
spherical polystyrene particles of diameter smaller than around 1.8 µm cannot be focused
because of the acoustic streaming [66, 67]. The overall motivation for the theoretical
studies on acoustic streaming done in this PhD project, is to obtain insight that can be
used to overcome this obstacle. Paper V [5] presents the discovery, that acoustic streaming



44 SUMMARY OF PAPER V

(a) (b)

Figure 6.1: Comparison between the acoustic streaming (normalized cyan arrows) in
a rectangular cross section and the optimized cross section from 0 (black) to 0.11 mm/s
(yellow). The green and magenta contours mark the regions where the streaming is sup-
pressed to respectively 5 % and 1 % of the characteristic streaming velocity v0

2 which is
0.10 mm

s in this case. Adapted from Fig. 1 in Paper V [5].

can be suppressed significantly by optimising the shape of the resonance cavity as shown
in Fig. 6.1(b). Quantitatively, the acoustic streaming speed is here suppressed to less
than 5 % of that in the rectangle [Fig. 6.1(a)] in around 96 % of the cross-section area.
The shape was obtained by an iterative shape-optimization algorithm with an efficiency
ensured by the effective boundary conditions derived in Paper I [1]. This result considered
to be among the most important contributions of this thesis.



Chapter 7
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The acoustic fields and streaming in a confined fluid depend strongly on the viscous boundary layer
forming near the wall. The width of this layer is typically much smaller than the bulk length scale
set by the geometry or the acoustic wavelength, which makes direct numerical simulations chal-
lenging. Based on this separation in length scales, the classical theory of pressure acoustics is
extended by deriving a boundary condition for the acoustic pressure that takes viscous boundary-
layer effects fully into account. Using the same length-scale separation for the steady second-order
streaming, and combining it with time-averaged short-range products of first-order fields, the usual
limiting-velocity theory is replaced with an analytical slip-velocity condition on the long-range
streaming field at the wall. The derived boundary conditions are valid for oscillating cavities of
arbitrary shape and wall motion, as long as both the wall curvature and displacement amplitude are
sufficiently small. Finally, the theory is validated by comparison with direct numerical simulation
in two examples of two-dimensional water-filled cavities: The well-studied rectangular cavity with
prescribed wall actuation, and a more generic elliptical cavity embedded in an externally actuated
rectangular elastic glass block. VC 2018 Acoustical Society of America.
https://doi.org/10.1121/1.5049579

[PLM] Pages: 766–784

I. INTRODUCTION

The study of ultrasound effects in fluids in sub-millimeter
cavities and channels has intensified the past decade, as micro-
scale acoustofluidic devices are used increasingly in biology,
environmental and forensic sciences, and clinical diagnos-
tics.1,2 Examples include cell synchronization,3 enrichment of
prostate cancer cells in blood,4 size-independent sorting of
cells,5 manipulation of C. elegans,6 and single-cell patterning.7

Acoustics can also be used for non-contact microfluidic
trapping and particle enrichment8–10 as well as acoustic
tweezing.11–14

The two fundamental physical phenomena that enable
these microscale acoustofluidic applications are rooted in non-
linear acoustics. One fundamental phenomenon is the acoustic
radiation force, which tends to focus suspended particles in the
pressure nodes based on their acoustic contrast to the surround-
ing fluid.15–21 The second fundamental phenomenon is the
acoustic streaming appearing as steady flow rolls which tend
to defocus suspended particles due to the Stokes drag.22–27

Because the acoustic radiation force scales with the volume of
the suspended particle, and the Stokes drag with its radius, the
former dominates for large particles and the latter for small.
For water at room temperature and 1 MHz ultrasound, the criti-
cal particle radius for the crossover between these two regimes
has been determined to be around 2 lm.28,29

So far, the vast majority of successful microscale acous-
tofluidics applications has been for large (above 2 lm) par-
ticles, such as cells, whose dynamics is dominated by the

well-characterized, robust acoustic radiation force, which
depends on the bulk properties of the acoustic field and
material parameters of the particles and the surrounding
fluid. However, there is a strong motivation to handle also
sub-micrometer particles such as bacteria, exosomes, and
viruses, for use in contemporary lab-on-a-chip-based diag-
nostics and biomedical research.9,30–32 In contrast to large
particles, the dynamics of small (sub-micrometer) particles
is dominated by the drag force from the ill-characterized
acoustic streaming. To control the handling of such nanopar-
ticle suspensions, a deeper understanding of the often com-
plicated acoustic streaming is called for.

One important aspect of ultrasound acoustics is the large
velocity gradients in the sub-micrometer-thin viscous bound-
ary layer near rigid boundaries.22 The shear stress and the
Reynolds stress that build up in this region are responsible
for the viscous damping of the acoustic fields and for the
acoustic streaming, respectively. In water with kinematic
viscosity !0 ! 10"6 m2=s at the frequency f ¼ ð1=2pÞx ! 1
MHz, the thickness d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0=x

p
of this boundary layer is

on the order of 500 nm, while the acoustic wavelength is
around 1.5 mm. This three-orders-of-magnitude separation
of physically relevant length scales poses a severe challenge
for numerical simulations. To circumvent the problem of
resolving the thin boundary layer, we develop a theory were
analytical solutions for the boundary layers are used to for-
mulate boundary conditions for the pressure field and bulk
streaming field, which both varies on the much longer length
scale d & d.

First, we extend the classical pressure acoustics theory
by formulating a boundary condition for the acoustic pres-
sure that includes the presence of the boundary layer, whicha)Electronic mail: bruus@fysik.dtu.dk
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is otherwise neglected. Thus, our extended boundary condi-
tion takes into account important effect of the boundary
layer, such as increased viscous damping, shifts in resonance
frequencies, and shear stresses on the surrounding walls.

Second, we formulate a generalized slip-velocity bound-
ary condition for bulk acoustic streaming over curved oscillat-
ing surfaces. An important step in this direction was the
development of the limiting-velocity theory by Nyborg in
1958 for perpendicularly oscillating curved walls.33 Later
modifications of this theory comprise modifications to the
analysis in curvilinear coordinates by Lee and Wang in
1989,34 and the treatment of oscillations in any direction for
flat walls by Vanneste and B€uhler in 2011.35 Here, we extend
these theories to harmonic oscillations in any direction of an
arbitrarily shaped elastic wall, provided that both the radius of
curvature and the acoustic wavelength are much larger than
the boundary layer length-scale d, and that also the amplitude
of the perpendicular surface vibration is much smaller than d.

Notably, the theoretical description developed here
allows us to perform numerical simulations of the linear and
nonlinear acoustics in arbitrarily shaped liquid-filled cavities
embedded in oscillating elastic solids. Examples and valida-
tion of such simulations for two-dimensional (2D) systems
are presented in the final sections of this paper, while a study
of three-dimensional (3D) systems is work in progress to be
presented later.

II. WALL MOTION AND PERTURBATION THEORY

We consider a fluid domain X bounded by an elastic,
oscillating solid, see Fig. 1. All acoustic effects in the fluid
are generated by the fluid-solid interface that oscillates har-
monically around its equilibrium position, denoted s0 or @X,
with an angular frequency x. The instantaneous position
sðs0; tÞ at time t of this interface (the wall), is described by
the small complex displacement s1ðs0Þe"ixt,

sðs0; tÞ ¼ s0 þ s1ðs0Þ e"ixt: (1)

In contrast to Muller and Bruus,36 we do not study the tran-
sient phase leading to this steady oscillatory motion.

A. Fundamental conservation laws in acoustofluidics

The theory of acoustofluidics in X is derived from the
conservation of the fluid mass and momentum density,

@tq¼ "$ ( ðqvÞ; (2a)

@tðqvÞ ¼ "$ ( ðqvÞv½ * þ $ ( r; (2b)

where q is the mass density, v is the Eulerian fluid velocity,
and r is the viscous stress tensor, given by

r ¼ "p Iþ s; (2c)

s ¼ gb
0 $ ( vð ÞIþ g0

"
$vþ $vð ÞT " 2

3
$ ( vð ÞI

#
:

(2d)

Here, p is the pressure and s is the viscous part of the stress
tensor given in terms of the bulk viscosity gb

0, the dynamic
viscosity g0, the identity matrix I, and the superscript “T”
denoting matrix transpose. Thermal dissipation is neglected
throughout this work. We introduce the isentropic compress-
ibility j0 and speed of sound c0,

j0 ¼
1

q0

@q
@p

$ %

S

¼ 1

q0c2
0

; (3)

as well as the small dimensionless damping coefficient C in
terms of the viscosity ratio b,

C ¼ bþ 1ð Þg0xj0; b ¼ gb
0

g0

þ 1

3
: (4)

B. Perturbation expansion

The linear acoustic response of the system is propor-

tional to the displacement stimulus s1ðs0Þe"ixt, and the

resulting complex-valued quantities Q1ðrÞ e"ixt are called
first-order fields with subscript “1”. The physical time-

dependent quantity Qphys
1 ðr; tÞ corresponding to Q1 is given

by the real part Qphys
1 ðr; tÞ ¼ Re½Q1ðrÞ e"ixt*.

As the governing equations are nonlinear, we also encoun-
ter higher-order terms, and in the present work, we include
terms to second order in the stimulus. Moreover, since we are
only interested in the steady part of these second-order fields,
we let in the following the subscript “2” denote a time-
averaged quantity, written as Q2ðrÞ ¼ hQ2ðr; tÞi
¼ ðx=2pÞ

Ð 2p=x
0 Q2ðr; tÞ dt. Time-averages of products of

time-harmonic complex-valued first-order fields A1 and B1 are
also of second order, and for those we have
hA1B1i ¼ 1

2 Re½A1ðrÞB+1ðrÞ*, where the asterisk denote com-
plex conjugation.

Using this notation for the fluid, we expand the mass
density q, the pressure p, and the velocity v in perturbation
series of the form

q¼ q0 þ q1ðrÞe"ixt þ q2ðrÞ; (5a)

p ¼ p0 þ p1ðrÞe"ixt þ p2ðrÞ; (5b)

v ¼ 0þ v1ðrÞe"ixt þ v2ðrÞ; (5c)

FIG. 1. (Color online) Sketch of the interface between a fluid (light blue, X)
and a curved, oscillating solid (dark gray) with instantaneous position s
(dark green line) and equilibrium position s0 (black line, @X). The local cur-
vilinear coordinate system on the interface is given by the tangent vectors en

and eg and the normal vector ef. By a Helmholtz decomposition, the
first-order acoustic fluid velocity v1 ¼ vd

1 þ vd
1 is written as the sum of a

long-range compressible part vd
1 (dark blue) extending into the bulk and a

short-range incompressible part vd
1 (light red) with a decay length equal to

the boundary-layer width d. V 0
1 ¼ vd0

1 þ vd0
1 is the Lagrangian velocity of

the interface (the wall).
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where q1 , q0; p1 ¼ c2
0q1 , c2

0q0, and jv1j, c0. The sub-
scripts 1 and 2 denote the order in the small acoustic Mach
number Ma ¼ ð1=c0Þjv1j, which itself is proportional to s1.

C. No-slip boundary condition at the wall

To characterize the wall motion, we compute the time
derivative of sðs0; tÞ in Eq. (1),

@tsðs0; tÞ ¼ "ixs1ðs0Þ e"ixt ¼ V 0
1ðs0Þ e"ixt; (6)

where V 0
1ðs0Þ ¼ "ixs1ðs0Þ is the Lagrangian velocity of the

wall surface element with equilibrium position s0 and instan-
taneous position s. The no-slip boundary condition on the
Eulerian fluid velocity vðr; tÞ is imposed at the instantaneous
surface position sðtÞ,35,37

vðs0þ s1e"ixt; tÞ¼V 0
1ðs0Þe"ixt; no–slip condition: (7)

Combining Eqs. (5c) and (7) with the Taylor expansion
v1ðs0 þ s1; tÞ ! v1ðs0Þe"ixt þhðs1 ( $Þv1ijs0

, and collecting
the terms order by order, gives

v1ðs0Þ ¼ V 0
1ðs0Þ; 1st–order condition; (8a)

v2ðs0Þ ¼ "hðs1 ( $Þv1ijs0
; 2nd–order condition: (8b)

Note that the expansion, or Stokes drift, in Eq. (8b) is valid,
if the length scale over which v1 varies is much larger than
js1j. So we require js1kj, d and js1fj, d.

D. The limit of weakly curved, thin boundary layers

The crux of our work is the analytical treatment of
weakly curved, thin viscous boundary layers. This notion is
quantified using the boundary-layer length scale d and the
compressional length scale d,

d ¼
ffiffiffiffiffiffiffi
2!0

x

r
; d ¼ min k"1

0 ;R
' (

; (9)

where d is the minimum of the wavelength scale k"1
0 ¼ c0=x

and the length scale R over which the surface curves. We
express our subsequent analysis to lowest order in ", defined
as the ratio of these length scales,

" ¼ d
d
, 1; (10)

where the inequality holds in the limit of weakly curved
(d=R, 1), thin boundary layers (k0d, 1), a condition usu-
ally satisfied in microfluidic devices.

E. Local boundary-layer coordinates

The limit ", 1 allows for drastic simplifications of the
otherwise complex analytical expressions for curvilinear
derivatives of fields inside the boundary layers at distances
of order d or smaller from the wall. To see this, we introduce
the local, right-handed, orthogonal, curvilinear coordinate
system with coordinates n, g, and f. The latter measures dis-
tance away from the surface equilibrium position along the

surface unit normal vector ef, while the tangential coordi-
nates n and g increase in the respective directions of the unit
tangent vectors en and eg, but not necessarily measuring arc
length, see Fig. 1. To make the scale R of the curved surface
explicit, we use the vectorial notation for curvilinear deriva-
tives and introduce the differential-geometric symbols
employed in previous boundary-layer analyses in the
literature,33,34

hi ¼ j@irj; Tkji ¼ ~@ kej

) *
( ei; for i; j;k ¼ n;g; f;

~@ i ¼
1

hi
@i; Hk ¼ Tiki ¼ ~@ k

X

i 6¼k

log hi

" #
: (11)

Note that this is not covariant formulation, see Appendix A for
details on the differential geometry. Because f measures arc
length, we have hf ¼ 1 and consequently ~@ f ¼ @f. The surface
length scale can now be defined as R - minfT"1

kji ;H
"1
k g,

which in many situations is comparable with the surface curva-
ture radius.

F. Surface fields, boundary-layer fields, and bulk fields

For ", 1, we may separate any field A inside the
boundary layer in the perpendicular coordinate f,

Aðn; g; fÞ ¼ A0ðn; gÞ aðfÞ; f ! d, d: (12)

Here, superscript “0” defines a surface field A0ðn; gÞ
¼ Aðn; g; 0Þ, such as the wall velocity V 0

1 and the fluid veloc-
ity v0 at the equilibrium position s0 of the wall. Note that
a surface field does not have a perpendicular derivative,
although it does have a perpendicular component. This coor-
dinate separation results in the following expressions in
vectorial notation for the divergence (A6) and advective
derivative (A8) involving surface fields:

$ ( A0 ¼ $k ( A
0
k þHfA

0
f ; (13a)

ðA0 ( $ÞB0 ¼ A0
k ( ð$kB

0
i Þ ei þ A0

kB0
j Tkjiei; (13b)

Ak ¼ An en þ Ag eg; (13c)

$k ¼ en
~@n þ eg

~@g; (13d)

where subscript “k” denotes tangential components. See
Appendix A for supplemental details.

Importantly, for fluid fields, we distinguish between
bulk fields Ad that extend into the bulk with spatial variation
on the compressional length scale d and that are typically
found by numerical simulation, and boundary-layer fields Ad

that decays to zero away from the wall at the boundary-layer
length scale d, as sketched in Fig. 1,

Ad¼Ad0 n;gð Þad fð Þ; with ad fð Þ!0 for
f
d
!1: (14)

This specific property makes it possible to obtain analytical
solutions for the boundary-layer fields Ad, because the
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surface-derivative quantities $k, Tkji, and Hk, all of size d"1,
are a factor of " smaller than the perpendicular derivative @f

of size d"1, so they can be neglected. To lowest order in ", as
detailed further at the end of Appendix A, the curvilinear
derivatives of scalar and vector boundary-layer fields thus
simplify to

r2gd ! @2
f gd; (15a)

r2Ad ! Ad0@2
f aðfÞ ¼ @2

f Ad; (15b)

$ ( Ad ! $k ( A
d
k þ @fA

d
f : (15c)

With Eqs. (13) and (15), we have established to leading
order in " the expressions in vectorial form for the curvilin-
ear derivatives in the boundary layer necessary for the subse-
quent analytical treatment of the boundary layer. In
summary, the length-scale conditions for our theory to be
valid, in particular Eqs. (8) and (15), are

d, d; js1kj, d; js1fj, d: (16)

III. FIRST-ORDER TIME-HARMONIC FIELDS

Returning to the perturbation expansion (5), we write
the first-order part of the governing equations (2),

p1 ¼ c2
0q1; (17a)

"ixj0p1 ¼ "$ ( v1; (17b)

"ixq0v1 ¼ "$ p1 " bg0$ ( v1½ * þ g0r2v1; (17c)

we make a standard Helmholtz decomposition of the veloc-
ity field v1,21,33,34,37

v1 ¼ vd
1 þ v

d
1; where $.vd

1 ¼ 0 and $ ( vd
1 ¼ 0;

(18)

and insert it into Eq. (17). We separate the equations in sole-
noidal and irrotational parts and find

ixj0p1 ¼ $ ( vd
1; (19a)

"ixq0v
d
1 ¼ $ ( rd

1 ¼ "ð1" iCÞ$p1; (19b)

"ixq0v
d
1 ¼ $ ( rd

1 ¼ g0r2vd
1: (19c)

From this, we derive Helmholtz equations for the bulk fields
p1 and vd

1 as well as for the boundary-layer field vd
1,

r2p1 þ k2
c p1 ¼ 0; where kc ¼ 1þ i

C
2

$ %
k0; (20a)

r2vd
1 þ k2

cv
d
1 ¼ 0; (20b)

r2vd
1 þ k2

sv
d
1 ¼ 0; where ks ¼

1þ i

d
: (20c)

Here, we have introduced the compressional wavenumber kc

in terms of C defined in Eq. (4) and k0 ¼ x=c0, and the shear

wave number ks in terms of d. Note that C is of second
order in ",

C ¼ 1þ b
2

k0dð Þ2 - "2 , 1: (21)

From Eq. (19b) follows that the long-range velocity vd
1

is a potential flow proportional to $p1, and as such it is the
acoustic velocity of pressure acoustics. The short-range
velocity vd

1 is confined to the thin boundary layer of width d
close to the surface, and therefore it is typically not observed
in experiments and is ignored in classical pressure acoustics.
In the following we derive an analytic solution for the
boundary-layer field vd

1, which is used to determine a bound-
ary condition for p1. In this way, the viscous effects from the
boundary layer are taken into account in computations of the
long-range pressure-acoustic fields p1 and vd

1.

A. Analytical form of the first-order boundary-layer
field

By using Eq. (15b), the analytical solution vd
1 to Eq. (20c)

is found to be

vd
1 ¼ v

d0
1 ðn; gÞ e

iksf þOð"Þ; (22a)

which describes a shear wave heavily damped over a single
wave length, as it travels away from the surface with speed
csw ¼ xd, c0. To satisfy the boundary condition (8a), we
impose the following condition for vd0

1 at the equilibrium
position s0 of the wall,

vd0
1 ¼ V 0

1 " v
d0
1 ; first–order no–slip condition: (22b)

B. Boundary condition for the first-order pressure
field

We now derive a boundary condition for the first-order
pressure field p1, which takes the viscous boundary layer
effects into account without explicit reference to v1. First,
it is important to note that the incompressibility condition
$ ( vd

1 ¼ 0 used on Eq. (22a) leads to a small perpendicular
short-range velocity at s0,

vd0
1f ¼

i

ks
$ ( vd0

1 ¼
i

ks
$ ( V 0

1 "
i

ks
$ ( vd0

1 : (23)

Because k"1
s ’ d and $ ( vd0

1 ’ d"1, we find that jvd0
1f j

- "jv1j, jv1j. We repeatedly exploit this relation to neglect
terms with vd0

1f in the following analyses to lowest order in ".
Using the no-slip condition (22b), the boundary condition on
the long-range velocity becomes

vd0
1f ¼ V0

1f " vd0
1f (24a)

¼ V0
1f "

i

ks
$ ( V 0

1

$ %
þ i

ks
$ ( vd0

1 (24b)

! V0
1f "

i

ks
$k ( V

0
1k

$ %
þ i

ks
$k ( v

d0
1k; (24c)
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where the last step is written for later convenience using
ði=ksÞ$ ( ðvd0

1 " V 0
1Þ ¼ ði=ksÞ$k ( ðvd0

1k " V 0
1kÞ " ðiHf=ksÞvd0

1f
from Eqs. (13a) and (22b) and using that vd0

1f - "jv1j. This
boundary condition involves the usual expression V0

1f used
in classical pressure acoustics plus an Oð"Þ-correction term
proportional to k"1

s , due to the parallel divergence of fluid
velocity inside the boundary layer that forces a fluid flow
perpendicular to the surface to fulfil the incompressibility of
the short-range velocity vd

1. Note that this correction term is
generated partly by the external wall motion "ði=ksÞ$k ( V 0

1k
and partly by the fluid motion itself ði=ksÞ$k ( vd0

1k. Hence,
the wall can affect the long-range fields either by a perpen-
dicular component V0

1f or by a parallel divergence $k ( V 0
1k.

The correction term ði=ksÞ$k ( vd0
1k due to the fluid motion

itself gives the boundary-layer damping of the acoustic
energy, see Sec. IV.

Finally, we write Eq. (24b) in terms of the pressure p1

using $ ( vd0
1 ¼ $ ( vd

1 " @fvd
1f and Eq. (19),

@fp1 ¼
ixq0

1" iC
V0

1f "
i

ks
$ ( V 0

1

$ %
" i

ks
ðk2

c p1 þ @2
f p1Þ;

boundary condition at s0: (25)

C. Boundary condition for the first-order stress

The boundary condition for the first-order stress r1 ( ef

on the surrounding wall is found using Eqs. (2c) and (2d). In
the viscous stress s1, the divergence terms are neglected,

because (19a) leads to jg0$ ( vd
1j ! g0xj0 p1 ! Cp1 , p1.

The remaining part of s1 is dominated by the term g0@fvd
1,

and we obtain r1 ( ef ¼ "p1ef þ g0@fvd
1 at s0. Here, we

insert @fvd
1 ¼ iksvd

1 from Eq. (22a), and use Eqs. (19b) and
(22b) to express r1 ( ef in terms of the long-range pressure

p1 and wall velocity V 0
1 to lowest order in C - ðk0dÞ2,

r1 ( ef ¼ "p1ef þ iksg0 V 0
1 þ

i

xq0

$p1

$ %
;

boundary condition at s0: (26)

This is the usual pressure condition plus a correction term of
order " due to the viscous shear stress g0@fvd

1 from the
boundary layer.

Equations (20), (24), (25), and (26) constitute our main
theoretical result for the first-order acoustic fields.
Remarkably, explicit reference to the curvilinear quantities
are absent in these equations, only the notion of perpendicu-
lar and tangential directions and components are important.
In the numerical implementation of them in Sec. VII, we use
Cartesian coordinates.

IV. ACOUSTIC POWER LOSS

From the pressure p1, we derive an expression for the
acoustic power loss solely in terms of long-range fields. We
introduce the energy density Ed

ac and the energy-flux density
Sd

ac of the long-range acoustic fields,

Ed
ac r; tð Þ¼

j0

2
Re p1e"ixt
+ ,- .2þq0

2
Re vd

1e"ixt
+ ,// //2; (27a)

Sd
acðr; tÞ ¼ Reðp1e"ixtÞReðvd

1e"ixtÞ; (27b)

with the time averages

hEd
aci ¼

1

4
j0jp1j2 þ

1

4
q0jvd

1j
2; (28a)

hSd
aci ¼ hp1v

d
1i ¼ c2

0hq1v
d
1i: (28b)

In terms of real-valued physical quantities, Eqs. (19a)
and (19b) become j0@tReðp1e"ixtÞ ¼ "$ ( Reðvd

1e"ixtÞ and
q0@tReðvd

1e"ixtÞ ¼ "$ ( Re½ð1" iCÞp1e"ixt*. Taking the
scalar product of Reðvd

1e"ixtÞ with the latter leads to expres-
sions for the time derivative @tEd

ac and its time-averaged
value h@tEd

aci, which is zero due to the harmonic time
dependence,

@tE
d
ac ¼ "$ ( Sd

ac " Cq0xjReðvd
1e"ixtÞj2; (29a)

"$ ( hSd
aci ¼

1

2
Cxq0jvd

1j
2: (29b)

The latter expression describes the local balance between the
convergence of energy-flux density hSd

aci and the rate of
change of acoustic energy due to the combined effect of vis-
cous dissipation and viscous energy flux. See Appendix B
for a more detailed discussion of this point. Integrating Eq.
(29b) over the entire fluid domain X, and using Gauss’s theo-
rem with the f-direction pointing into X, leads to the global
balance of energy rates,

ð

@X
hp1vd0

1fidA ¼
ð

X

1

2
Cq0xjvd

1j
2 dV: (30)

This general result reduces to that of classical pressure
acoustics only in the special case where vd0

1f ¼ V0
1f. As seen

from Eq. (24c), vd0
1f is generated partly externally by the wall

motion, and partly internally by the fluid motion. Inserting
Eq. (24c) into Eq. (30), and separating wall-velocity terms
from fluid-velocity terms gives

þ

@X
p1 V0

1f "
i

ks
$k ( V

0
1k

$ %2 3
dA

¼
ð

X

1

2
Cq0xjvd

1j
2 dV "

þ

@X
p1

i

ks
$k ( v

d0
1k

$ %2 3
dA:

(31)

Here, the left-hand side represents the acoustic power
gain due to the wall motion, while the right-hand side
represents the acoustic power loss hPd

lossi due to the fluid
motion. Integrating the last term by parts and using thatÞ
@X$k ( hp1½ði=ksÞvd0

1k*idA ¼ 0 for any closed surface, we can
by Eq. (19b) rewrite hPd

lossi to lowest order in C as

1

x
hPd

lossi ¼
ð

X

C
2

q0jvd
1j

2 dV þ
þ

@X

d
4

q0jvd0
1kj

2 dA; (32)

which is always positive. The quality factor Q of an acoustic
cavity resonator can be calculated from the long-range fields
hEd

aci in Eq. (28a) and hPd
lossi in Eq. (32) as
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Q ¼

ð

X
hEd

aci dV

1

x
hPd

lossi
; at resonance: (33)

We emphasize that in general, hPlossi is not identical to the
viscous heat generation hPdiss

visci ¼
Ð
Xhrv1 : s1i dV, although

as discussed in Appendix B, these might be approximately
equal in many common situations.38

V. SECOND-ORDER STREAMING FIELDS

As specified in Sec. II B, we only consider the time-
averaged streaming and not time-dependent streaming as done
by Muller and Bruus.36 For notational simplicity, we therefore
drop the angled bracket h(i from the time-averaged velocity
v2, pressure p2, and stress r2. The streaming v2 is governed by
the time-averaged part of Eq. (2) to second order in
Ma ¼ ð1=c0Þjv1j, together with the boundary condition (8b),

0 ¼ $ ( ðq0v2 þ hq1v1iÞ; for r 2 X; (34a)

0 ¼ $ ( r2 " q0$ ( hv1v1i; for r 2 X; (34b)

0 ¼ v2 þ hðs1 ( $Þv1i; at s0: (34c)

For the given first-order fields q1 and v1, this is a linear
Stokes flow problem for v2 and r2. We decompose the
problem into one part driven by the long-range source terms,
$ ( hq1v

d
1i in Eq. (34a) and q0$ ( hvd

1v
d
1i in Eq. (34b),

and another part driven by the short-range source terms
$ ( hq1v

d
1i and q0$ ( hvd

1v
d
1 þ vd

1v
d
1 þ vd

1v
d
1i. The correspond-

ing responses are long-range bulk fields “d” and short-range
boundary-layer fields “d,”

v2 ¼ vd
2 þ v

d
2; (35a)

p2 ¼ pd
2 þ pd

2; (35b)

r2 ¼ rd
2 þ rd

2; (35c)

vd0
2 ¼ "v

d0
2 " hðs1 ( $Þv1i; at s0: (35d)

Given the boundary conditions Eqs. (35d) and (36d), this
length-scale-based decomposition of the linear Stokes prob-
lem is unique, see Eqs. (36) and (48), but in contrast to the
first-order decomposition (18), it is not a Helmholtz decom-
position. Nevertheless, the computational strategy remains
the same: we find analytical solutions to the short-range d-
fields, and from this we derive boundary conditions for the
long-range d-fields.

Note that our method to calculate the steady second-order
fields differs from the standard method of matching “inner”
boundary-layer solutions with “outer” bulk solutions.33–35 Our
short- and long-range fields co-exist in the boundary layer, but
are related by imposing boundary conditions at s0.

A. Short-range boundary-layer streaming

The short-range part of Eq. (34) consists of all terms
containing at least one short-range d-field,

0 ¼ $ ( ðq0v
d
2 þ hq1v

d
1iÞ; (36a)

0 ¼ "q0$ ( hvd
1v

d
1 þ v

d
1v

d
1 þ v

d
1v

d
1iþ $ ( rd

2; (36b)

$ ( rd
2 ¼ $ð"pd

2 þ bg0$ ( vd
2Þ þ g0r2vd

2; (36c)

where vd
2 ! 0 as f!1: (36d)

Notably, condition (36d) leads to a nonzero short-range
streaming velocity vd0

2 at the wall, which, due to the full
velocity boundary condition (34c), in turn implies a slip con-
dition vd0

2 (35d) on the long-range streaming velocity.
First, we investigate the scaling of pd

2 by taking the
divergence of Eq. (36b) and using Eqs. (36a) and (36c)
together with $ ( vd

1 ¼ 0 and Eq. (19),

r2pd
2 ¼ "!0ð1þ bÞr2 vd

1 ( $q1

5 6

" q0$ ( $ ( vd
1v

d
1 þ v

d
1v

d
1 þ v

d
1v

d
1

5 6) *
(37a)

¼ "q0Cr2 vd
1 ( ðiv

d
1Þ

5 6
þ 2q0k2

0 v
d
1 ( v

d
1

5 6

" q0 $ð2vd
1 þ v

d
1Þ : ð$vd

1Þ
T

D E
: (37b)

Recalling from Eq. (23) that jvd0
1f j - dd"1v1, we find

jq0ð$vd
1Þ : ð$vd

1Þ
Tj - ðddÞ"1q0v

2
1 which is the largest possi-

ble scaling of the right-hand side. Since by definition pd
2 is a

boundary-layer field, we have jr2pd
2j - d"2pd

2, and the scal-
ing of jpd

2j becomes

jpd
2j! "q0v

2
1: (38)

Thus, $pd
2 can be neglected in the parallel component of

Eq. (36b), but not necessarily in the perpendicular

one. Similarly, in Eq. (36c) we have $ðbg0$ ( vd
2Þ

¼ "b!0$hvd
1 ( $q1i which scales as bg0d"2ðv2

1=c0Þ and thus

much smaller than jg0r2vd
2j - g0d

"2ðv2
1=c0Þ.

Henceforth, using the approximation (15b) for the
boundary-layer field vd

2 in Eq. (36b), we obtain the parallel
equation to lowest order in ",

!0@
2
fv

d
2k ¼ $ ( hvd

1v
d
1 þ v

d
1v

d
1 þ v

d
1v

d
1i

h i

k
: (39a)

Combining this with Eq. (36a), and using Eqs. (15c) and
(18), leads to an equation for the perpendicular component
vd0

2f of the short-range streaming velocity,

@fvd0
2f ¼ "$k ( v

d
2k "

1

q0

vd
1 ( $q1

5 6
: (39b)

To determine the analytical solution for vd
2k in Eq. (39a), we

Taylor-expand vd
1 to first order in f in the boundary layer,

and we use the solution (22a) for vd
1,

vd
1 ¼ v

d0
1 þ ð@fv

d
1Þ

0 f; for f, d; (40a)

vd
1 ¼ v

d0
1 qðfÞ; with qðfÞ ¼ eiksf: (40b)

With these expressions, Eq. (39a) becomes
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!0@
2
fv

d
2k ¼ $ ( h½vd0

1 q*½vd0
1 1* þ ½vd0

1 q*½ð@fv
d
1Þ

0f*
n

þ ½vd0
1 1*½vd0

1 q* þ ½ð@fv
d
1Þ

0f*½vd0
1 q*

þ½vd0
1 q*½vd0

1 q*
6o

k
: (41)

In general, the divergence $ ( hA1B1i of the time-averaged
outer product of two first-order fields of the form A1

¼ A0
1ðn; gÞ aðfÞ and B1 ¼ B0

1ðn; gÞ bðfÞ, is

$ ( A0
1a

- .
B0

1b
- .5 6

¼ 1

2
Re $ ( A0

1a
+ ,

B0
1b

+ ,+h in o
(42a)

¼ 1

2
Re $ ( ab+ð Þ A0

1B0+
1

+ ,- .' (
(42b)

¼1

2
Re ab+$ ( A0

1B0+
1

+ ,
þA0

1 B0+
1 ($

+ ,
ab+ð Þ

' (
(42c)

¼ 1

2
Re ab+$ ( A0

1B0+
1

+ ,
þ A0

1B0+
1f@f ab+ð Þ

n o
: (42d)

When solving for vd0
2k in Eq. (41), we must integrate such

divergences twice and then evaluate the result at the surface
f¼ 0. The result is

ðf

df2

ðf2

df1 $ ( A0
1a f1ð Þ

+ ,
B0

1b f1ð Þ
+ ,+h i////

f¼0

¼ 1

2
Re I 2ð Þ

ab $ ( A0
1B0+

1

+ ,
þ I 1ð Þ

ab A0
1B0+

1f

n o
; (43a)

where we have defined the integrals IðnÞab as

Ið1Þab ¼
ðf

df1 aðf1Þ bðf1Þ+jf¼0; (43b)

Ið2Þab ¼
ðf

df2

ðf2

df1 aðf1Þ bðf1Þ+jf¼0; (43c)

Ið3Þab ¼
ðf

df3

ðf3

df2

ðf2

df1 aðf1Þ bðf1Þ+jf¼0: (43d)

We choose all integration constants to be zero to fulfil the
condition (36d) at infinity. From Eq. (41) we see that the
functions aðfÞ and bðfÞ in our case are either qðfÞ, f, or
unity. By straightforward integration, we find in increasing
order of d,

I 1ð Þ
qq ¼ "

1

2
d; I 1ð Þ

q1 ¼ "
1þ i

2
d;

I 2ð Þ
qq ¼

1

4
d2; I 2ð Þ

q1 ¼
i

2
d2; I 1ð Þ

qf ¼ "
i

2
d2;

I 3ð Þ
qq ¼ "

1

8
d3; I 3ð Þ

q1 ¼
1" i

4
d3; I 2ð Þ

qf ¼ "
1" i

2
d3:

(43e)

Using Eq. (43) we find vd0
2k by integration of Eq. (41) to lead-

ing order in ",

vd0
2k ¼

1

2!0
Re I 2ð Þ

qq $ ( vd0
1 v

d0+
1

) *n

þ I 2ð Þ
q1 $ ( vd0

1 v
d0+
1

) *
þ I 2ð Þ

1q $ ( vd0
1 v

d0+
1

) *

þ I 1ð Þ
qq v

d0
1 vd0+

1f þ I 1ð Þ
1q v

d0
1 vd0+

1f þ I 1ð Þ
q1 v

d0
1 vd0+

1f

þI 1ð Þ
qf v

d0
1 @fvd+

1f

o

k
: (44)

We have neglected the term ð1=2!0ÞRefIð1Þfq ð@fvd
1Þ

0vd0+
1f g, as

vd0
1f - "jvd0

1kj due to Eq. (23), and the two terms proportional

to Ið2Þfq and Ið2Þqf , as these are -d3. Remarkably, the term

Ið1Þq1 v
d0
1 vd0+

1f may scale with an extra factor ""1 compared to

all other terms, and thus may dominate the boundary-layer
velocity. However, in the computation of the long-range slip

velocity vd0
2k in Sec. V B, its contribution is canceled by the

Stokes drift hs1 ( $v1i, as also noted in Ref. 35. Using

vd0
1 ¼ V 0

1 " vd0
1 , the property ðIðnÞab Þ

+ ¼ IðnÞba , and rearranging
terms, we arrive at

vd0
2k ¼

1

2!0
Re I 2ð Þ

qq " 2ReI 2ð Þ
q1

) *
$ ( vd0

1 v
d0+
1

) *7

þ I 2ð Þ
q1 $ ( vd0

1 V 0+
1

) *
þ I 2ð Þ

1q $ ( V 0
1v

d0+
1

) *

þ I 1ð Þ
qq " 2ReI 1ð Þ

q1

) *
vd0

1 vd0+
1f þ I 1ð Þ

1q V 0
1v

d0+
1f

þI 1ð Þ
q1 v

d0
1 V0+

1f þ I 1ð Þ
qf v

d0
1 @fvd+

1f

8

k
: (45)

The perpendicular short-range velocity component vd0
2f is

found by integrating Eq. (39b) with respect to f. The integra-
tion of the $k ( vd

2k-term is carried out by simply increasing
the superscript of the IðnÞab -integrals in Eq. (45) from “(n)” to
“ðnþ 1Þ,” while the integration of the $q1-term is carried
out by using Eq. (19b) to substitute ð1=q0Þ$q1 by ixc"2

0 vd
1

and introducing the suitable IðnÞab -integral for the factor qðfÞ i,
namely, Ið1Þqi ¼ "iIð1Þq1 ,

vd0
2f¼"

1

2!0
$k (Re I 3ð Þ

qq "2ReI 3ð Þ
q1

) *
$ ( vd0

1 v
d0+
1

) *7

þI 3ð Þ
q1 $ ( vd0

1 V 0+
1

) *
þI 3ð Þ

1q $ ( V 0
1v

d0+
1

) *

þ I 2ð Þ
qq "2ReI 2ð Þ

q1

) *
vd0

1 vd0+
1f þI 2ð Þ

1q V 0
1v

d0+
1f

þI 2ð Þ
q1 v

d0
1 V0+

1fþI 2ð Þ
qf v

d0
1 @fvd+

1f

8

k

þ k0

2c0
Re iI 1ð Þ

q1 v
d0
1 (v

d0+
1

n o
: (46)

Using Eq. (43e), expressions (45) and (46) for the short-
range streaming at the surface f¼ 0 become

vd0
2k ¼

1

2x
Re

1

2
$ ( vd0

1 v
d0+
1

) *
þ i$ ( vd0

1 V 0+
1

) *7

" i$ ( V 0
1v

d0+
1

) *
þ 1

d
vd0

1 vd0+
1f " ivd0

1 @fvd+
1f

" 1" i

d
V 0

1v
d0+
1f "

1þ i

d
vd0

1 V0+
1f

8

k
(47a)

772 J. Acoust. Soc. Am. 144 (2), August 2018 Jacob S. Bach and Henrik Bruus



and

vd0
2f ¼"

d
2x

Re $k ( "
5

4
$ ( vd0

1 v
d0+
1

) *7"

þ1" i

2
$ ( vd0

1 V 0+
1

) *
þ1þ i

2
$ ( V 0

1v
d0+
1

) *

þ 1

2d
vd0

1 vd0+
1f "

i

d
V 0

1v
d0+
1f þ

i

d
vd0

1 V0+
1f

" 1" ið Þvd0
1 @fvd+

1f

8

k
" k2

0 1" ið Þvd0
1 (v

d0+
1

#

(47b)

¼ " 1

2x
Re $k ( ivd0

1kV
0+
1f

) *h i
þO "ð Þ: (47c)

B. Long-range bulk streaming

The long-range part of Eq. (34) is

0 ¼ $ ( q0v
d
2 þ hq1v

d
1i

- .
; (48a)

0 ¼ "q0$ ( hvd
1v

d
1iþ $ ( rd

2; (48b)

$ ( rd
2 ¼ "$ðpd

2 " bg0$ ( vd
2Þ þ g0r2vd

2; (48c)

vd0
2 ¼ "v

d0
2 " hðs1 ( $Þv1i; at s0: (48d)

In contrast to the limiting-velocity matching at the outer
edge of the boundary layer done by Nyborg,33 we define the
boundary condition (48d) on the long-range streaming vd

2 at
the equilibrium position s0.

To simplify Eq. (48), we investigate the products of
first-order fields. In Eq. (48a), we use Eq. (29b) and find

$ ( vd
2 ¼ "

$ ( q1v
d
1

5 6

q0

¼ "
$ ( Sd

ac

5 6

q0c2
0

¼ C
k0jvd

1j
2

2c0
: (49)

Since each term in $ ( vd
2 scales as ðk0=c0Þjvd

1j
2

& ðC=2Þðk0=c0Þ jvd
1j

2, we conclude that $ ( vd
2 ! 0 is a good

approximation, corresponding to ignoring the small viscous
dissipation in the energy balance expressed by Eq. (29b). In
Eq. (48b), the divergence of momentum flux can be rewritten
using Eq. (19b),

q0$ ( vd
1v

d
1

5 6
¼ "$ Ld

ac

5 6
" Cx

c2
0

Sd
ac

5 6
; (50)

where we introduced the long-range time-averaged acoustic
Lagrangian density,

Ld
ac

5 6
¼ 1

4
j0jp1j2 "

1

4
q0jvd

1j
2: (51)

Note that j$hLd
acij - xp2

1=q0c3
0, whereas jðCx=c2

0ÞhSd
acij

- Cxp2
1=ðq0c3

0Þ, so the first term in Eq. (50) is much larger
than the second term. However, as also noted by Riaud
et al.,39 since the first term is a gradient, it cannot drive any
rotating streaming. In practice, it is therefore advantageous
to work with the excess pressure pd

2 " hL
d
aci. Finally, in Eq.

(48c), we again use $ ( vd
2 ! 0. With these considerations,

Eqs. (48) become those of an incompressible Stokes flow

driven by the body force ðCx=c2
0ÞhSd

aci and the slip velocity
vd0

2 at the boundary,

0 ¼ $ ( vd
2; (52a)

0 ¼ "$ pd
2 " L

d
ac

5 6h i
þ g0r2vd

2 þ
Cx
c2

0

Sd
ac

5 6
; (52b)

vd0
2 ¼ "v

d0
2 " hðs1 ( $Þv1ijf¼0: (52c)

These equations describe acoustic streaming in general. The
classical Eckart streaming40 originates from the body force
ðCx=c2

0ÞhSd
aci, while the classical Rayleigh streaming22 is

due to the boundary condition (52c).
The Stokes drift hs1 ( $v1ijf¼0, induced by the oscillat-

ing wall, is computed from Eqs. (6), (18), and (22a),

s1 ( $v1h ijf¼0

¼ " 1

2x
Re iV 0+

1 ( $ vd
1 þ v

d0
1 q

) *h i

f¼0

¼ " 1

2x
Re iV 0+

1 ( $ vd
1 þ v

d0
1

) *
" 1þ i

d
V0+

1fv
d0
1

" #
:

(53)

From this, combined with Eqs. (47) and (52c), follows the
boundary condition vd0

2 for the long-range streaming velocity
vd

2 expressed in terms of the short-range velocity vd0
2 and the

wall velocity V 0
1. The parallel component is

vd0
2k ¼ "

1

2x
Re

7
$ ( 1

2
vd0

1 v
d0+
1 þ ivd0

1 V 0+
1 " iV 0

1v
d0+
1

$ %

þ 1

d
vd0

1 vd0+
1f " ivd0

1 @fvd+
1f "

1" i

d
V 0

1v
d0+
1f

" iV 0+
1 ( $ vd

1 þ v
d0
1

) *8

k
; (54a)

where the large terms proportional to ½ð1þ iÞ=d*V0+
1fv

d0
1k can-

celed out, as also noted by Vanneste and B€uhler.35 Similarly,
the perpendicular component becomes

vd0
2f ¼

d
2x

Re "k2
0 1" ið Þvd0

1 ( v
d0+
1 þ $k

"

( $ ( " 5

4
vd0

1 v
d0+
1 þ 1þ i

2
V 0

1v
d0+
1 þ vd0+

1 V 0
1

) *" #7

þ 1

2d
vd0+

1f þ
i

d
V0+

1f " 1" ið Þ@fvd+
1f

" #
vd0

1

" i

d
vd0+

1f V 0
1

8

k

#

þ 1

2x
Re iV 0+

1 ( $ vd
1 þ v

d0
1

) *h

"1þ i

d
V0+

1fv
d0
1

#

f
(54b)

¼ 1

2x
Re $k ( ivd0

1kV
0+
1f

) *
" 1þ i

d
V0+

1f v
d0
1f

"

þ iV 0+
1 ( $ vd

1 þ v
d0
1

) *n o

f

#
þO "ð Þ: (54c)
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Taking the divergences in Eq. (54a) and using Eq. (23), as
well as computing Eq. (54c) to lowest order in ", leads to the
final expression for the slip velocity at f¼ 0,

vd0
2 ¼ A ( enð Þen þ A ( egð Þeg þ B ( efð Þef;

A ¼ " 1

2x
Re vd0+

1 ( $ 1

2
vd0

1 " iV 0
1

$ %
" iV 0+

1 ( $v
d
1

7

þ 2" i

2
$ ( vd0+

1 þ i $ ( V 0+
1 " @fvd+

1f

) *" #
vd0

1

8
;

B ¼ 1

2x
Re ivd0+

1 ( $vd
1

' (
; (55)

where A and B are associated with the parallel and perpen-
dicular components vd0

2k and vd0
2f , respectively, and where to

simplify we used ðvd0
1k ( $kÞV

0+
1f ¼ ðvd0

1 ( $ÞV0+
1f and the rela-

tions Tfji ¼ 0, Tkjj¼ 0, and Tkji¼Tjki for the curvilinear
quantities, see Eq. (A3) in Appendix A.

Equations (52) and (55) constitute our main theoretical
result for the second-order acoustic streaming.

VI. SPECIAL CASES

In the following, we study some special cases of our
main results (20a) and (25) for the acoustic pressure p1 and
Eqs. (52) and (55) for the streaming velocity vd

2, and relate
them to previous studies in the literature.

A. Wall oscillations restricted to the perpendicular
direction

The case of a weakly curved wall oscillating only in the
perpendicular direction was studied by Nyborg33 and later
refined by Lee and Wang.34 Using our notation, the bound-
ary conditions used in these studies were

vd0
1 þ v

d0
1 ¼ V 0

1 ¼ V0
1f ef; (56)

whereby $ ( V 0
1 ¼ HfV0

1f, so that our boundary condition
(25) for p1 to lowest order in C becomes

@fp1 ¼ ixq0 1" i

ks
Hf

$ %
V0

1f "
i

ks
k2

c p1 þ @2
f p1

) *
: (57)

Similarly, for the steady streaming vd
2, Eq. (56) gives $ ( vd0

1

! "$k ( vd0
1k ¼ "ð$ ( v

d
1 " @fvd

1f "HfV0
1fÞ evaluated at f¼ 0.

Combining this expression with the derivative rule (13b) and
the index notation "n ¼ g and "g ¼ n, as well as a, b¼ n, g, the
boundary condition (55) gives to lowest order in " the tangen-
tial components

vd0
2b¼"

1

4x
Re vd0+

1a
~@avd0

1b

) *
þ vd0+

1a vd0
1"bTa"bb

n

þ2iV0
1f @fvd+

1bþvd0+
1a Tafb

) *
þ
h

2" ið Þ$ (vd+
1

" 2"3ið Þ@fvd+
1f " 2þ ið ÞHfV

0+
1f

i
vd

1b

o
: (58a)

and the perpendicular component

vd0
2f ¼

1

2x
Re ivd0+

1k
~@ kvd

1f

n o
: (58b)

When comparing our expressions with the results of Lee
and Wang,34 denoted by a superscript “LW” below, we note
the following. Neither the pressure p1 nor the steady perpen-
dicular streaming velocity vd

2f were studied by Lee and
Wang, so our results Eqs. (57) and (58b) for these fields rep-
resent an extension of their work. The slip condition (58a)
for the parallel streaming velocity vd

2b with b ¼ n; g is pre-
sented in Eqs. (19)LW and (20)LW as the limiting values uL

and vL for the two parallel components of vd
2 outside the

boundary layer. A direct comparison is obtained by (1) iden-
tifying our vd

1 with the acoustic velocity ðua0; va0;wa0ÞLW,
and our Tkji with TLW

ijk ; (2) taking the complex conjugate of
the argument of the real value in Eq. (58a), and (3) noting
that qx and qy defined in Eqs. (3)LW and (4)LW equal the first
two terms of Eq. (58a). By inspection we find agreement,
except that Lee and Wang are missing the terms
2iV0

1fð@fvd+
1b þ vd0+

1a TafbÞ, which in our calculation partly arise
from the Lagrangian velocity boundary condition (34c),
where Lee and Wang have used the no slip condition
v2 ¼ 0. For more details see Appendix C 1.

B. A flat wall oscillating in any direction

The case of a flat wall oscillating in any direction was
studied by Vanneste and B€uhler.35 In this case, we adapt
Cartesian coordinates ðn; g; fÞ ¼ ðx; y; zÞ, for which all scale
factors hi are unity, ~@ i ¼ @i, and all curvilinear quantities Tkji

and Hk are zero. The resulting boundary conditions (25) and
(55) for the pressure p1 and for the long-range streaming vd

2,
then simplify to

@fp1 ¼ ixq0V0
1f "

1þ i

2
d ixq0$k ( V

0
1k þ k2

c p1 þ @2
f p1

) *
;

(59a)

vd0
2b ¼ "

1

4x
Re 1" 2ið Þvd0+

1a @avd0
1b " 4ivd0+

1a @avd0
1b

n

þ 2þ ið Þ@avd0+
1a þ 2i @avd0+

1a " @fvd+
1f

) *h i

.vd0
1b " 2i vd+

1k@kvd
1b

o
; (59b)

vd0
2f ¼ "

1

4x
Re "2i vd+

1k@kvd
1f

n o
: (59c)

The pressure condition (59a) was not studied in Ref. 35, so it
represents an extension of the existing theory. On the other
hand, Eqs. (59b) and (59c) are in full agreement with Eq.
(4.14) in Vanneste and B€uhler.35 To see this, we identify our
first-order symbols with those used in Ref. 35 as vd

1 ¼ 2$/̂
and vd0

1k ¼ "2Ûex " 2V̂ey, and we relate our steady Eulerian
second-order long-range velocity vd

2 with their Lagrangian
mean flow "uL using the Stokes drift expression (34c) as vd

2

þð1=xÞhivd
1 ( $vd

1i ¼ "uL at the interface z¼ 0. For more
details see Appendix C 2.

C. Small surface velocity compared to the bulk
velocity

At resonance in acoustic devices with a large resonator
quality factor Q& 1, the wall velocity V 0

1 is typically a
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factor Q smaller than the bulk fluid velocity vd
1,25,36 which is

written as V0
1 - Q"1vd

1 , vd
1. In this case, as well as for rigid

walls, we use V 0
1 ¼ 0 in Eq. (55), so that vd0

1 ¼ "vd0
1 and

vd0
1 ( $v

d0
1

5 6
¼ vd0

1 ( $v
d0
1

5 6
! 1

4
$kjvd0

1kj
2: (60)

Here, vd0
1f is neglected because jvd0

1f j ! jV0
1fj, jvd0

1kj, and we
have used that $.vd

1 ¼ 0 from Eq. (18). Hence, for devices
with rigid walls V 0

1 ¼ 0, or resonant devices with
jvd0

1 j& jV 0
1j, the slip-velocity vd0

2 becomes

vd0
2k ¼

"1

8x
$kjvd0

1kj
2

"Re
2" i

4x
$k ( vd0+

1k þ
i

2x
@fvd+

1f

$ %
vd0

1k

7 8
; (61a)

vd0
2f ¼ 0: (61b)

Two important limits are parallel acoustics, where j@fvd
1fj

, j$k ( vd0
1kj, and perpendicular acoustics, where j@fvd

1fj
& j$k ( vd0

1kj. In the first limit, the pressure is mainly related

to the parallel velocity variations, and from Eqs. (19a) and

(19b) we have $k ( vd0
1k ¼ ixj0p1 and vd0

1k ¼ "ði=q0xÞ$kp1.

For parallel acoustics we can therefore write Eq. (61a) as,

vd0
2k ¼

1

8xq0

$k 2j0jp1j2"q0jvd0
1kj

2
) *

þj0

2
hSd

acki;

for parallel acoustics; j@fvd
1fj, j$k (v

d0
1kj: (62a)

The classical period-doubled Rayleigh streaming,22 which
arises from a one-dimensional parallel standing wave, results
from the gradient-term in Eq. (62a). This is seen by consider-
ing a rigid wall in the x-y plane with a standing wave above
it in the x direction of the form vd

1 ¼ v1a cosðk0xÞ ex, where
v1a is a velocity amplitude. Inserting this into Eq. (62a)
yields Rayleigh’s seminal boundary velocity vd0

2k
¼ ð3=8Þðv2

1a=c0Þ sinð2k0xÞ ex. Another equally simple exam-
ple of parallel acoustics is the boundary condition generated
by a planar travelling wave of the form vd

1 ¼ v1aeik0x ex.
Here, only the energy-flux density hSd

acki in Eq. (62a) con-
tributes to the streaming velocity which becomes the con-
stant value vd0

2k ¼ ð1=4Þðv2
1a=c0Þ ex.

The opposite limit is perpendicular acoustics, where the
pressure is mainly related to the perpendicular velocity var-
iations @fvd

1f ¼ ixj0p1. In this limit, Eq. (61a) is given by a
single term

vd0
2k ¼ "j0hSd

acki;

for perpendicular acoustics; j@fvd
1fj& j$k ( v

d0
1kj:

(62b)

We emphasize that in these two limits, the only mechanism
that can induce a streaming slip velocity, which rotates par-
allel to the surface, is the energy-flux density hSd

aci. As seen
from Eq. (52b), this mechanism also governs the force den-
sity driving streaming in the bulk. In general, hSd

aci can drive
rotating streaming, if it has a nonzero curl. This we compute

to lowest order in C using Eq. (19b) and $.vd
1 ¼ 0, and

find it to be proportional to the acoustic angular momentum
density,

$. Sd
ac

5 6
¼ x2 rd

1 . q0v
d
1

+ ,5 6
; rd

1 ¼
i

x
vd

1: (63)

VII. NUMERICAL MODELING IN COMSOL

In the following we implement our extended acoustic
pressure theory, Eqs. (20a) and (25) for p1, and streaming the-
ory, Eqs. (52) and (55) for vd

2 and p2, in the commercial finite-
element-method (FEM) software COMSOL MULTIPHYSICS.41 We
compare these simulations with a full boundary-layer-resolved
model for the acoustics, Eqs. (17) and (8a) for v1 and p1, and
for the streaming, Eqs. (34) and (8b) for v2 and p2. The full
model is based on our previous acoustofluidic modeling of
fluids-only systems28,36,42 and solid-fluid systems.43

Remarkably, our extended (effective) acoustic pressure
model makes it possible to simulate acoustofluidic systems
not accessible to the brute-force method of the full model for
three reasons: (1) In the full model, the thin boundary layers
need to be resolved with a fine FEM mesh. This is not needed
in our effective model. (2) For the first-order acoustics, the
full model is based on the vector field v1 and the scalar field
p1, whereas our effective model is only based on the scalar
field p1. (3) For the second-order streaming, the full equations
(34) contain large canceling terms, which have been removed
in the equations (52) used in the effective model. Therefore,
also in the bulk, the effective model can be computed on a
much coarser FEM mesh than the full model.

In Sec. VIII, we model a fluid domain Xfl driven by
boundary conditions applied directly on @Xfl, and in Sec. IX,
we model a fluid domain Xfl embedded in an elastic solid
domain Xsl driven by boundary conditions applied on the
outer part of the solid boundary @Xsl.

In COMSOL, we specify user-defined equations and
boundary conditions in weak form using the PDE mathemat-
ics module, and we express all vector fields in Cartesian
coordinates (x, y, z). At the boundary @Xfl, the local right-
handed orthonormal basis fen; eg; efg is implemented using
the built-in COMSOL tangent vectors t1 and t2 as well as the
normal vector n, all given in Cartesian coordinates.
Boundary-layer fields (superscript “0”), such as V 0

1; v
d0
1 , and

vd0
1 , are defined on the boundary @Xfl only, and their spatial

derivatives are computed using the built-in tangent-plane
derivative operator dtang. For example, in COMSOL we call
the Cartesian components of vd0

1 for vdX; vdY, and vdZ
and compute $ ( vd0

1 as dtangðvdX;xÞ þ dtangðvdY;yÞ
þdtangðvdZ;zÞ. The models are implemented in COMSOL

using the following two-step procedure.36

Step (1), first-order fields:42,43 For a given frequency x,
the driving first-order boundary conditions for the system are
specified; the wall velocity V 0

1 on @Xfl for the fluid-only
model, and the outer wall displacement u1 on @Xsl for the
solid-fluid model. Then, the first-order fields are solved; the
pressure p1 in Xfl using Eqs. (20a) and (25), and, if included in
the model, the solid displacement u1 in the solid domain Xsl.
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In particular, in COMSOL we implement @2
f p1 ¼ ðef ( $Þ2p1 in

Eq. (25) as nx + nx + p1xxþ 2 + nx + ny + p1xyþ ( ( ( .
Step (2), second-order fields:36,42 Time averages 1

2 Re f +gf g
are implemented using the built-in COMSOL operator realdot
as 0:5 + realdotðf;gÞ. Moreover, in the boundary condition
(55), the normal derivative of vd

1f in A is rewritten as @fvd
1f

¼ $ ( vd
1 " $ ( vd0

1 ¼ ij0xp0
1 " $ ( vd0

1 for computational
ease, and the advective derivatives in A and B, such as the
term Refvd0+

1 ( $vd0
1 g ( ex in A ( ex, are computed as

realdotðvdX; dtangðvdX; xÞÞ þ realdotðvdY;dtang
ðvdX;yÞÞ þ realdotðvdZ;dtangðvdX;zÞÞ.

All numerics were carried out on a workstation, Dell Inc
Precision T3610 Intel Xeon CPU E5–1650 v2 at 3.50 GHz
with 128 GB RAM and 6 CPU cores.

VIII. EXAMPLE I: A RECTANGULAR CAVITY

We apply our theory to a long, straight channel along
the x axis with a rectangular cross section in the vertical y-z
plane, a system intensively studied in the literature both
theoretically28,36,42 and experimentally.25,45–47 We consider

the 2D rectangular fluid domain Xfl with " 1
2 W < y < 1

2 W

and " 1
2 H < z < 1

2 H, where the top and bottom walls at

z ¼ 6 1
2 H are stationary and the vertical side walls at

y ¼ 6 1
2 W oscillate with a given velocity V0

1ywðzÞe"ixtey and

frequency f ¼ x=2p close to c0=2W, thus exciting a half-
wave resonance in the y-direction. In the simulations we

choose the wall velocity to be V0
1y ¼ d0x with a displace-

ment amplitude d0 ¼ 0:1 nm. The material parameters used
in the model are shown in Table I.

We compare the results from the effective theory with
the full boundary-layer-resolved simulation developed by
Muller et al.28 Moreover, we derive analytical expressions
for the acoustic fields, using pressure acoustics and our
extended boundary condition (25), and for the streaming
boundary condition using Eq. (55).

A. First-order pressure

To leading order in " and assuming small variations in z,
Eqs. (20a) and (25) in the fluid domain Xfl become

r2p1 þ k2
0 p1 ¼ 0; r 2 Xfl; (64a)

@yp1 ¼ ixq0V0
1yw zð Þ; y ¼ 6

1

2
W; (64b)

7@zp1 ¼ "
i

ks
k2

0 p1; z ¼ 6
1

2
H: (64c)

This problem is solved analytically by separation of varia-
bles, introducing ky and kz with k2

y þ k2
z ¼ k2

0 and choosing a
symmetric velocity envelope function wðzÞ ¼ cosðkzzÞ. The
solution is the pressure p1 ¼ A sinðkyyÞ cosðkzzÞ, where A is
found from Eq. (64b),

p1 y; zð Þ ¼
ixq0V0

1y

ky cos ky
W

2

$ % sin kyyð Þcos kzzð Þ: (65)

According to Eq. (64c), kz must satisfy

k2
0 ¼ ikskz tan kz

H

2

$ %
; (66)

and using tan kzH=2ð Þ ! kzH/2 for kzH , 1, we obtain

k2
z ¼ " 1þ ið Þ d

H
k2

0; k2
y ¼ 1þ 1þ ið Þ d

H

" #
k2

0: (67)

Note that the real part of ky becomes slightly larger than
k0 since the presence of the boundary layers introduces a
small variation in the z direction. The half-wave reso-
nance that maximizes the amplitude of p1 in Eq. (65) is
therefore found at a frequency fres slightly lower than
f 0
res ¼ c0=2W,

fres ¼ 1" 1

2
Cbl

$ %
f 0
res; with Cbl ¼

d
H
: (68)

Here, we introduced the boundary-layer damping coefficient
Cbl that shifts fres away from f 0

res. This resonance shift arises
from the extended boundary condition (25) and is thus
beyond classical pressure acoustics.

Using f ¼ fres in Eq. (65) and expanding to leading
order in Cbl, gives the resonance pressure and velocity,

pres
1

q0c0
¼ "

4V0
1y

pCbl
sin ~yð Þ þ

Cbl

2
i~y cos ~yð Þ½

7

" 1þ ið Þsin ~yð Þ*
8

Zres ~zð Þ; (69a)

vd;res
1y ¼

4iV0
1y

pCbl
cos ~yð Þ "

Cbl

2
i~y sin ~yð Þ

7 8
Zres ~zð Þ; (69b)

vd;res
1z ¼

4iV0
1y

p
1þ ið Þsin ~yð Þ ~z; (69c)

where ~y ¼ pðy=WÞ; ~z ¼ pðz=WÞ, and Zresð~zÞ ¼ 1
þ 1

2 Cblð1þ iÞ~z2. Note that at resonance, the horizontal veloc-
ity component is amplified by a factor C"1

bl relative to the

TABLE I. Material parameters at 25 /C used in the numerical modeling pre-
sented in Secs. VIII and IX.

Water (Ref. 42)

Mass density q0 997.05 kg m"3

Compressibility j0 452 TPa"1

Speed of sound c0 1496.7 m s"1

Dynamic viscosity g0 0.890 mPa s

Bulk viscosity gb
0 2.485 mPa s

Pyrex glass (Ref. 44)

Mass density qsl 2230 kg m"3

Speed of sound, longitudinal clo 5592 m s"1

Speed of sound, transverse ctr 3424 m s"1

Solid damping coefficient Csl 0.001
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wall velocity, vd;res
1y - C"1

bl vd;res
1z - C"1

bl V0
1y, while the horizon-

tal component is not.
In Fig. 2, we compare an effective (“Eff”) pressure-

acoustics simulation of p1 solving Eqs. (20a) and (25), with a
full pressure-velocity simulation of p1 and v1 from Eq. (17)
as in Muller and Bruus.28 The analytical results (“Ana”) for

pres
1 ; vd;res

1y , and vd;res
1z in Eq. (69) are also plotted along the line

y ¼ 1
4 W in Figs. 2(a2), 2(b2), and 2(c2), respectively. The rel-

ative deviation between the full and effective fields outside
the boundary layer are less than 0.1% even though the latter
was obtained using only 5000 degrees of freedom (DoF) on
the coarse mesh compared to the 600 000 DoF on the fine

mesh for the former. The effective model vd
1;Eff gives the

boundary-layer velocity vd
1 by Eq. (22), and thus by Eq. (18)

the complete velocity v1 ¼ vd
1;Eff þ vd

1 (blue dots in Fig. 2).

To study the resonance behaviour of the acoustic reso-
nator further, we compute the space- and time-averaged
energy density h "Ed

aci stored in the acoustic field for frequen-
cies f close to the resonance frequency fres. Inserting
ky ¼ ðp=WÞð1þ ði=2ÞCblÞ þ ð2p=c0Þðf " fresÞ into Eq. (65),
results in the Lorentzian line-shape for h "Ed

aci,

"E
d
ac

D E
¼ "E

d;kin
ac

D E
þ "E

d;pot
ac

D E
¼ 2 "E

d;pot
ac

D E

¼ 2

HW

ð ð

Xfl

1

2
j0 p1p1h i dydz (70a)

!

1

p2
q0 V0

1y

) *2

f

fres
" 1

$ %2

þ 1

2
Cbl

$ %2
; for f ! fres: (70b)

As shown in the graph of h "Ed
aci in Fig. 3, there is full agree-

ment between the effective pressure-acoustics model, the
full pressure-velocity model, and the analytical model. In
this figure we also show the result obtained using classical
pressure acoustics (CPA, gray curves) with @fp1 ¼ ixq0V0

1f
where we see that the boundary layer introduces both damp-
ing and shift of the resonance frequency. From the resonance
curve follows the maximum energy density at resonance,
h "Ed;res

ac i ¼ h "E
d
acðfresÞi, and the quality factor Q,

h "Ed;res
ac i ¼

1

4
q0

4V0
1y

pCbl

 !2

; Q ¼ 1

Cbl
¼ H

d
: (71)

This is also in agreement with the Q-factor in Eq. (33),

Q ¼
2

ð ð

Xfl

1

4
q0jvres

1y j
2 dydz

2

ðþW=2

"W=2

1

4
dq0jvres

1y j
2 dy

¼ H

d
; (72)

which was previously derived by Muller and Bruus36 and
by Hahn et al.38 using the approximation Ploss ! Pdiss

visc in
Eq. (33).

FIG. 2. (Color online) First-order pressure and velocity fields in the vertical rectangular cross section of a long, straight channel of width W ¼ 380 lm and
height H ¼ 160 lm at resonance fres ¼ 1:967 MHz and actuation velocity V0

1y ¼ 2pfres.0:1 nm. Color plots of the full (upper half) and effective (lower half)
model fields: (a1) the pressure p1 from "1 MPa (dark purple) to 1 MPa (light cyan) and the finite element mesh (gray), (b1) the horizontal velocity v1y from
0 m/s (black) to 0.7 m/s (white), and (c1) the vertical velocity v1z from "1 mm/s (black) to 1 mm/s (white). Line plots [Full, Eff, and Ana¼ analytics from Eq.
(69)] at y0 ¼ 1

4 W for " 1
2 H < z < " 1

2 H þ 7d (light gray dashed lines) of (a2) the relative pressure deviation p1ðy0; zÞ=p1ðy0; 0Þ " 1, (b2) the horizontal veloc-
ity v1y, and (c2) the vertical velocity v1z. Dots are the full velocity (18) v1 ¼ vd

1 þ vd
1 with vd

1 from Eq. (22) and vd
1 from either “Eff” (dark blue dots) or “Ana”

(light red dots). The insets are the corresponding plots along the entire line " 1
2 H < z < 1

2 H.
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B. Second-order streaming solution

For the full model at resonance fres, we solve Eq. (34),
while for the effective model we solve Eq. (52) with the
boundary condition on vd

2 obtained by inserting the velocity
fields from Eq. (69) into Eq. (54). At the surfaces z ¼ 6 1

2 H,
we find to lowest order in ",

vd0
2y ¼

3

8c0

4V0
1y

pCbl

 !2

sin 2~yð Þ; (73a)

vd0
2z ¼ 7 k0dð Þ 1

8c0

4V0
1y

pCbl

 !2

1þ 10 cos 2~yð Þ½ *: (73b)

The resulting fields of the two models are shown in Fig. 4.
Again, we have good quantitative agreement between the
two numerical models, now better than 1% or 3k0d, for 9000
DoF and 600 000 DoF, respectively.

Analytically, Eq. (73a) is the usual parallel-direction
boundary condition for the classical Rayleigh streaming,22

while Eq. (73b) is beyond that, being the perpendicular-

direction boundary condition on the streaming, which is a
factor k0d ! 3.10"3 smaller than the parallel one. This is
confirmed in Fig. 4(b) showing the streaming velocity close
to z ¼ " 1

2 H at y ¼ 1
4 W.

IX. EXAMPLE II: A CURVED OSCILLATING CAVITY

Next, we implement in COMSOL our boundary conditions
(25) and (55) in a system with a curved solid-fluid interface
that oscillates in any direction, as described in Sec. VII. We
consider an ellipsoidal fluid domain (water) of horizontal
major axis W ¼ 380 lm and vertical minor axis H ¼ 160 lm
surrounded by a rectangular solid domain (Pyrex) of width
Wsl ¼ 680 lm and height Hsl ¼ 460 lm, see Fig. 5. We
actuate the solid at its bottom surface using a vertical veloc-
ity amplitude Vact

z ¼ d0x sin ðpy=WslÞ with d0 ¼ 0:1 nm and
at the resonance frequency fres ¼ 2:222 MHz, which has

FIG. 3. (Color online) Resonance curves for the rectangular channel. “Ana”
refers to the analytical result from Eq. (70b) and “CPA” refers to simulations
using classical pressure acoustics with the boundary condition @fp1 ¼ ixV0

1f
at r 2 @X with different choices of bulk damping coefficient C.

FIG. 4. (Color online) Simulated second-order velocity for the rectangular
channel. (a) The full-model v2 (above) and the effictive-model vd

2 (below).
(b) Line plots near the center of the dark blue half circle in (a) at y0 ¼ 1

4 W
for " 1

2 H < z < " 1
2 H þ 7d.

FIG. 5. (Color online) Full (left) and effective (right) simulations for a
curved channel with fluid-solid coupling. (a) An elliptic fluid domain with
the acoustic pressure p1 from "0.35 MPa (dark purple) to þ0.35 MPa (light
cyan) and fluid velocity (green arrows, max 0.2 m/s) surrounded by solid
Pyrex with a displacement field usl (dark blue arrows) and displacement
magnitude juslj from 0 nm (black) to 2.7 nm (yellow). To be visible, the dis-
placement (dark blue line and dark blue arrows, max 2.7 nm) is enhanced
104 times, except at the bottom (green line, max 0.1 nm) where it is
enhanced 105 times. (b) Streaming velocity v2 (light green arrows) and mag-
nitude from 0 lm/s (black) to 7:8 lm/s (light yellow). (c) Line plots along
the light ray dashed line in (a) and (b) of p1 normalized by 0.35 MPa and v2

by 7:8 lm/s.
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been determined numerically as in Fig. 3. The linear govern-
ing equations for the displacement field usl of the solid are
those used by Ley and Bruus,48

$ ( rsl ¼ "qslx
2ð1þ iCslÞu; solid domain; (74a)

"ixusl ¼ Vact
z yð Þ ez; actuation at z ¼ " 1

2
Hsl; (74b)

nsl ( rsl ¼ 0; at solid–air interfaces; (74c)

nsl ( rsl ¼ nsl ( r1; at solid–fluid interfaces; (74d)

where rsl ¼ qslc
2
tr½$usl þ ð$uslÞT * þ qslðc2

lo " 2c2
trÞð$ ( uslÞI

is the stress tensor of the solid with mass density qsl, trans-
verse velocity ctr, longitudinal velocity clo, and damping
coefficient Csl, while nsl is the solid surface normal, and
nsl ( r1 ¼ ef ( r1 is the fluid stress on the solid, Eq. (26). The
material parameter values are listed in Table I.

We solve numerically Eqs. (20a) and (25) in first order
and Eqs. (52) and (55) in second order. The results are
shown in Fig. 5, where we compare the simulation results
from the full boundary-layer resolved simulation of Eq. (34)
with the effective model. Even for this more complex and
realistic system consisting of an elastic solid with a curved
oscillating interface coupled to a viscous fluid, we obtain
good quantitative agreement between the two numerical
models, better than 1% for 600 000 DoF and 9000 DoF,
respectively.

X. CONCLUSION

We have studied acoustic pressure and streaming in
curved elastic cavities having time-harmonic wall oscilla-
tions in any direction. Our analysis relies on the condition
that both the surface curvature and wall displacement are
sufficiently small as quantified in Eq. (16).

We have developed an extension of the conventional the-
ory of first-order pressure acoustics by including the viscous
effects of the thin viscous boundary layer. Based on this the-
ory, we have also derived a slip-velocity boundary condition
for the steady second-order acoustic streaming, which allows
for efficient computations of the resulting incompressible
Stokes flow.

The core of our theory is the decomposition of the first-
and second-order fields into long- and short-range fields
varying on the large bulk length scale d and the small
boundary-layer length scale d, respectively, see Eqs. (19) and
(35). In the physically relevant limits, this velocity decompo-
sition allows for analytical solutions of the boundary-layer
fields. We emphasize that in contrast to the conventional
second-order matching theory of inner solutions in the bound-
ary layer and outer solutions in the bulk, our long- and short-
range, second-order, time-averaged fields co-exist in the
boundary layer, but the latter die out exponentially beyond the
boundary layer leaving only the former in the bulk.

The main theoretical results of the extended pressure
acoustics in Sec. III are the boundary conditions (25) and
(26) for the pressure p1 and the stress r1 ( ef expressed in
terms of the pressure p1 and the velocity V 0

1 of the wall.

These boundary conditions are to be applied to the governing
Helmholtz equation (20a) for p1, and the gradient form (19b)
of the compressional acoustic velocity field vd

1. Furthermore,
in Sec. IV, we have used the extended pressure boundary
condition to derive an expression for the acoustic power loss
Ploss, Eq. (32), and the quality factor Q, Eq. (33), for acoustic
resonances in terms of boundary-layer and bulk loss mecha-
nisms. The main results of the streaming theory in Sec. V
are the governing incompressible Stokes equation (52) for
the streaming velocity vd

2 and the corresponding extended
boundary condition (55) for the streaming slip velocity vd0

2 .
In this context, we have developed a compact formalism
based on the IðnÞab -integrals of Eq. (43) to carry out with rela-
tive ease the integrations that lead to the analytical expres-
sion for vd0

2 . Last, in Sec. VI, we have applied our extended
pressure-acoustics theory to several special cases. We have
shown how it leads to predictions that goes beyond previous
theoretical results in the literature by Lord Rayleigh,22

Nyborg,33 Lee and Wang,34 and Vanneste and B€uhler,35

while it does agree in the appropriate limits with these
results.

The physical interpretation of our extended pressure
acoustics theory may be summarized as follows: The fluid
velocity v1 is the sum of a compressible velocity vd

1 and an
incompressible velocity vd

1, where the latter dies out beyond
the boundary layer. In general, the tangential component
V 0

1k ¼ vd0
1k þ v

d0
1k of the no-slip condition at the wall induces

a tangential compression of vd
1 due to the tangential compres-

sion of vd
1 and V 0

1. This in turn induces a perpendicular veloc-
ity component vd0

1f due to the incompressibility of vd
1. To fulfil

the perpendicular no-slip condition V0
1f ¼ vd0

1f þ vd0
1f , the per-

pendicular component vd0
1f of the acoustic velocity must there-

fore match not just the wall velocity V0
1f, as in classical

pressure acoustics, but the velocity difference V0
1f " vd0

1f . The
inclusion of vd0

1f takes into account the power delivered to the
acoustic fields by the tangential wall motion, and the power
lost from the acoustic fields due to tangential fluid motion.
Consequently, by incorporating into the boundary condition
an analytical solution of vd

1, our theory leads to the correct
acoustic fields, resonance frequencies, resonance Q-factors,
and acoustic streaming.

In Secs. VII–IX we have demonstrated the implementa-
tion of our extended acoustic pressure theory in numerical
finite-element COMSOL models, and we have presented the
results of two specific models in 2D: a water domain with a
rectangular cross section and a given velocity actuation on
the domain boundary, and a water domain with an elliptic
cross section embedded in a rectangular glass domain that is
actuated on the outer boundary. By restricting our examples
to 2D, we have been able to perform direct numerical simu-
lations of the full boundary-layer-resolved model, and to use
these results for validation of our extended acoustic pressure
and streaming theory. Remarkably, we have found that even
in 2D, our approach makes it possible to simulate acousto-
fluidic systems with a drastic nearly 100-fold reduction in
the necessary degrees of freedom, while achieving the same
quantitative accuracy, typically of order k0d, compared to
direct numerical simulations of the full boundary-layer
resolved model. We have identified three reasons for this
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reduction: (1) Neither our first-order nor our second-order
method involve the fine-mesh resolution of the boundary
layer. (2) Our first-order equations (20a) and (25) requires
only the scalar pressure p1 as an independent variable, while
the vector velocity v1 is subsequently computed from p1, Eq.
(19b). (3) Our second-order equations (52) and (55) avoid
the numerically demanding evaluation in the entire fluid
domain of large terms that nearly cancel, and therefore our
method requires a coarser mesh compared to the full model,
also in the bulk.

The results from the numerical examples in Secs. VIII
and IX show that the extended pressure acoustics theory has
the potential of becoming a versatile and very useful tool in
the field of acoustofluidics. For the fluid-only rectangular
domain in Sec. VIII, we showed how the theory not only
leads to accurate numerical results for the acoustic fields and
streaming, but also allows for analytical solutions, which cor-
rectly predict crucial details related to viscosity of the first-
order acoustic resonance, and which open up for a deeper
analysis of the physical mechanisms that lead to acoustic
streaming. For the coupled fluid-solid system in 2D of an
elliptical water domain embedded in a rectangular glass
block, we showed in Sec. IX an important example of a more
complete and realistic model of an actuated acoustofluidic
system. The extended pressure acoustics theory allowed for
calculations of acoustic fields and streaming with a relative
accuracy lower than 1%. Based on preliminary work in pro-
gress in our group, it appears that the extended pressure
acoustic theory makes 3D simulations feasible within reason-
able memory consumptions for a wide range of microscale
acoustofluidic systems such as fluid-filled cavities and chan-
nels driven by attached piezoelectric crystals as well as drop-
lets in two-phase systems and on vibrating substrates.

Currently, we have neglected thermal dissipation. It would
of course be an obvious and interesting study, to extend the
presented theory to include thermoviscous effects. Previous
studies42,49 on acoustofluidic systems with flat walls oscillating
only in the perpendicular direction, have shown that the acous-
tic streaming is unaffected for channels with a height larger
than 250 d ! 100 lm. We thus expect the predictions of this
work to hold for such “high” channels. However, for more flat
channels, a significant reduction of the acoustic streaming is
predicted, for example a reduction factor of 2 for a channel of
height 25d ! 10 lm.42 For such “flat” channels, the thermal
boundary-layer must be included in our model to ensure reli-
able predictions. Such an extension of our model seems feasi-
ble, as the thermal boundary-layer width is about 3 times
smaller than the viscous boundary-layer width for water at
2 MHz and 25 /C. Thus the basic idea of a weakly curved, thin
boundary-layer model can be maintained, but of course at the
expense of analytical complications arising from including the
heat transport equation together with temperature dependence
of the material parameters in the presented first- and second-
order perturbation theory.

Although we have developed the extended pressure-
acoustics theory and corresponding streaming theory within
the narrow scope of microscale acoustofluidics, our theories
are of general nature and may likely find a much wider use
in other branches of acoustics.

APPENDIX A: DIFFERENTIAL GEOMETRY

In the following we present the basic differential
geometry used in this work. Because our analysis is carried
out in the limit of weakly curved, thin boundary layers,
defined by ", 1 of Eq. (10) as discussed in Sec. II D,
simplifications arise so that we do not need to unfold the full
notation of differential geometry based on co- and
contravariant derivatives, the metric tensor, and the full
Christoffel symbols.50,51 Instead, we follow the tradition in
the field set by Nyborg33 and by Lee and Wang,34 and use the
vectorial notation based on the unit tangent vectors ei and the
scale factors hi at position r in the thin boundary layer,

ei ¼
1

hi
@ir; with hi ¼ j@irj for i ¼ n; g; f; (A1a)

ek ( ei ¼ dki; orthonormality by construction: (A1b)

It is natural to introduce the scaled derivatives ~@ i and the
curvilinear quantities Tkji and Hk,

~@ i ¼ h"1
i @i; so that ei ¼ ~@ ir; (A2a)

Tkji ¼ ð~@ kejÞ ( ei; for k; j; i ¼ n; g; f; (A2b)

Hk ¼ Tiki; sum over repeated index i: (A2c)

Tkji is related to, but not identical with, the celebrated
Christoffel symbols of differential geometry. The following
relations for Tkji are useful in the analysis:

Tkji ¼ Tjki; for i 6¼ j; (A3a)

Tknn ¼ Tkgg ¼ Tkff ¼ 0; (A3b)

Tfji ¼ 0: (A3c)

Equation (A3a) follows from Tkji ¼ ð1=hkÞ@kðð1=hjÞ@jrÞ ( ei

¼ ð@k@jr=hkhjÞ ( ei " ð@khj=hkhjÞej ( ei, which is symmetric
in k and j as the last term is zero for j 6¼ i, Eq. (A3b) is
proven by observing Tknn ¼ ð~@ kenÞ ( en ¼ 1

2
~@ kðen ( enÞ ¼ 0

as en ( en ¼ 1, and Eq. (A3c) arises because f is defined as
the normal direction, and as a consequence Tkji is only non-
zero for the tangential derivatives Tnji and Tgji, and
Hk ¼ Tnkn þ Tgkg. It is in this sense that the surface length
scale is set by R - minfT"1

kji ;H
"1
k g as stated in Sec. II E.

From now on, we use the index notation, where, as in
Eq. (A2c), a repeated index implies a summation. In
curvilinear coordinates, the $ operator and vector fields are
written as

$ ¼ ei
~@ i; A ¼ Ai ei; (A4)

and from this all other differential operators are calculated.
The first example is the Laplacian of a scalar,

r2g ¼ $ ( $g ¼ ðej
~@ jÞ ( ei

~@ ig

¼ ej ( ei
~@ j þ ej ( ð~@ jeiÞ

h i
~@ ig

¼ ð~@ i þ TjijÞ~@ ig ¼ ð~@ i
~@ i þHi

~@ iÞg: (A5)
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The divergence of a vector field A takes the form

$ ( A ¼ ei ( ~@ iðAkekÞ ¼ ð~@ iAkÞek þ Ak
~@ iek

h i
( ei

¼ ð~@ iAkÞdik þ AkTiki ¼ ð~@ k þHkÞAk; (A6)

while the gradient of a vector field B is

$B ¼ ek
~@ kðBjejÞ ¼ ek ð~@ kBiÞei þ Bj

~@ kej

h i

¼ ekð~@ kBi þ TkjiBjÞei: (A7)

From this follows the advective derivative ðA ( $ÞB of a
vector B with respect to a vector A,

ðA ( $ÞB ¼ Akð~@ kBi þ TkjiBjÞei; (A8)

and the Laplacian of a vector B,

r2B ¼ $ ( $B ¼ en
~@n ekð~@ kBi þ TkjiBjÞei

h i

¼ Hkð~@ kBi þ TkjiBjÞei

þ ~@ k
~@ kBi þ Bj

~@ kTkji þ Tkji
~@ kBj

h i
ei

þ ð~@ kBi þ TkjiBjÞTkimem: (A9)

In the analysis of fields in the weakly curved, thin
boundary layer, it is useful to decompose a given vector A
into parallel and perpendicular components,

A ¼ Ak þ Af ef; (A10a)

Ak ¼ An en þ Ag eg ¼ Aa ea; (A10b)

where here and in the following, repeated Greek index a
only sums over the tangential indices n and g. Likewise, the
parallel components of the $ operator (A4), the divergence
(A6), and the advective derivative (A8) are

$k ¼ ea
~@a; (A11a)

$k ( Ak ¼ ð~@a þHaÞAa; (A11b)

ðA ( $kÞB ¼ Aað~@aBi þ TajiBjÞei; (A11c)

For the short-ranged boundary-layer vector field

Ad ¼ Ad0 ðn; gÞ adðfÞ introduced in Eq. (14), and the

analogous scalar field gd ¼ gd0ðn; gÞ adðfÞ, the derivative
expressions simplifies in the weakly curved thin boundary-
layer limit ", 1. The reason is that terms containing

surface-derivative quantities $k, Tkji, and Hk, all of size d"1,

are a factor of " smaller than terms with the perpendicular

derivative ~@ f ¼ @f, which picks up a factor of d"1 due to the

factor adðfÞ that decays on the length scale d.
For r2gd in Eq. (A5), the first term ~@ i

~@ igd ¼ @2
f gd

- d"2gd is ""1 larger than the second term Hi
~@ igd

- R"1d"1gd, so thatr2gd ! @2
f gd as stated in Eq. (15a).

Similarly, for r2Ad in Eq. (A9), the only term that does
not contain at least one factor Hk or Tkji is
ð~@ k

~@ kAd
i Þ ei ! ð@2

f Ad
i Þ ei ¼ @2

f Ad as stated in Eq. (15b).
Finally, for Eq. (A6), $ ( Ad ¼ $k ( Ad

k þ ð~@ f þHfÞAd
f

! $k ( Ad
k þ @fAd

f as stated in Eq. (15c).

APPENDIX B: ACOUSTIC POWER BALANCE

The time averages hEkin
ac i; hEpot

ac i, and hEaci of the
kinetic, the potential, and the total acoustic energy density,
respectively, are given by

Ekin
ac

5 6
¼ 1

2
q0 v1 ( v1h i; (B1a)

Epot
ac

5 6
¼ 1

2
j0 p1p1h i; (B1b)

hEaci ¼ hEkin
ac iþ hE

pot
ac i: (B1c)

Using Gauss’s theorem and q0@tv1 ¼ $ ( r1, the time-
averaged total power delivered by the surrounding wall is
written as the sum of the time-averaged rate of change of the
acoustic energy and total power dissipated into heat,

þ

@X
hV 0

1 ( r1i ( n dA

¼
ð

X
$ ( hv1 ( r1i dV (B2a)

¼
ð

X
hv1 ( ð$ ( r1Þiþ hð$v1Þ : r1i½ *dV (B2b)

¼
ð

X
h@tEaciþ hð$v1Þ : s1i½ *dV: (B2c)

Solving for the time-averaged change in acoustic energyÐ
Xh@tEacidV in Eq. (B2c) gives

ð

X
h@tEacidV

¼
þ

@X
hV 0

1 (r1i (ndA"
ð

X
hð$v1Þ : s1idV (B3a)

¼
þ

@X
hV 0

1ð"p1Þi ( n dAþ
ð

X
hv1 ( ð$ ( s1Þi dV;

(B3b)

where Gauss’s theorem transforms
Ð
@XhV

0
1 ( s1i ( n dA into a

volume integral, and n ¼ "ef is the normal vector of the
fluid domain X. We may interpret the last term in Eq. (B3b)
as the rate of change of stored energy due to the viscosity-
induced power hPvisci,

hPvisci ¼ hPdiss
visciþ hP

wall
visc i: (B4)

Here, hPdiss
visci is the viscous power dissipation into heat and

hPwall
visc i is the power from the viscous part of the work

performed by the wall on the fluid,

hPvisci ¼
ð

X
hv1 ( ð$ ( s1ÞidV; (B5a)
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hPdiss
visci ¼ "

ð

X
hð$ ( v1Þ : s1i dV; (B5b)

hPwall
visc i ¼

þ

@X
hv1 ( s1i ( n dA: (B5c)

Using Eqs. (18) and (19) we evaluate hPvisci,

hPvisci ¼
ð

X
hv1 ( ð$ ( s1Þi dV (B6a)

¼
ð

X
hv1 ( ðiC$p1 " ixq0v

d
1Þi dV (B6b)

¼
ð

X
"Cxq0

2
jvd

1j
2 þ @tE

kin;d
ac

5 6
" #

dV

"
þ

@X
hp1v

d0
1 i ( n dA; (B6c)

where we used Eq. (19) and Gauss’s theorem. Inserting Eq.
(B6c) into Eq. (B3b) leads to Eq. (30). Comparing with Eq.
(32), we can relate hPlossi ¼ hPd

lossi and hPvisci,

Plossh i¼ Pvisch i"
þ

@X
p1

i

ks
$k ( V

0
1k

" #2 3
( ndA (B7a)

¼ Pdiss
visc

5 6
þ Pwall

visc

5 6
"
þ

@X
p1

i

ks
$k ( V

0
1k

" #2 3
(ndA:

(B7b)

Note that hPlossi is not in general the same as the power
hPdiss

visci dissipated into heat. These might, however, be
approximately equal if the power

þ

@X
" hp1V 0

1i ( n dA

delivered by the pressure is approximately balanced by
dissipation hPdiss

visci. This happens, if

þ

@X
" hp1V 0

1i ( n dA

is much larger than hPwall
visc i and

þ

@X
p1

i

ks
$k ( V

0
1k

" #2 3
( n dA;

which is usually satisfied.

APPENDIX C: COMPARISON WITH PREVIOUS
RESULTS IN THE LITERATURE

1. Comparison with Lee and Wang (1989)

In the following we rewrite the n-component vd0
2n of the

streaming velocity in Eq. (58a) using the notation of Lee
and Wang34 to compare it directly with uL given in their

Eq. (19)LW. First, we take the complex conjugate of the
argument of the real value, set b ¼ n, and write explicitly
the sum over the repeated index a ¼ n; g,

vd0
2n¼"

1

4x
Re vd0

1n
~@nvd0+

1n

) *
þvd0

1nv
d0+
1g Tngn

n

þvd0
1g

~@gvd0+
1n

) *
þvd0

1gv
d0+
1g Tggnþ 2þ ið Þ$ ( vd

1

-

" 2þ3ið Þ@fvd
1f" 2" ið ÞHfV

0+
1f *v

d+
1n

"2iV0+
1f @fvd

1nþvd0
1nTnfnþvd0

1gTgfn

) *o
: (C1)

This expression is rewritten using the notation of Lee and

Wang, vd
1¼ua0; ðvd0

1n;v
d0
1g;v

d0
1fÞ¼ðua0;va0;wa0Þ; ðn;g;fÞ

¼ðx;y;zÞ; Hf¼H;ð~@n; ~@g; ~@ fÞ¼ð@x1
; @x2

;@x3
Þ;Tkji¼TLW

ijk , and

V0
1f¼wa0þOð"Þ,

vd0
2n¼"

1

4x
Re ua0 @x1

u+a0þv+a0TLW
121

- .'

þva0 @x2
u+a0þv+a0TLW

122 þu+a0 2þ ið Þ$ ( ua0½
-

" 2þ 3ið Þ@zwa0" 2" ið ÞHwa0**
"2iw+a0 @zua0þua0TLW

131 þva0TLW
132

+ ,
g

¼" 1

4x
Re qxþu+a0 2þ ið Þ$ ( ua0½
'

" 2þ3ið Þ@zwa0" 2" ið ÞHwa0*
"2iw+a0 @zua0þua0TLW

131 þva0TLW
132

+ ,
g

¼uLþ
1

2x
Re iw+a0 @zua0þua0TLW

131 þva0TLW
132

+ ,' (
: (C2)

Here, we have used the definition of qx in Eq. (3)LW and the
result in Eq. (19)LW for the x-component uL of the streaming
velocity just outside the boundary layer.

Similarly, we obtain for the g-component vd0
2g in Eq. (58a),

vd0
2g ¼ vL þ

1

2x
Re iw+a0 @zva0 þ ua0TLW

231 þ va0TLW
232

+ ,' (
;

(C3)

where we have used the definition in Eq. (4)LW for qy and
the result in Eq. (20)LW for the y-component vL of the
streaming velocity. The comparison obtained in Eqs. (C2)
and (C3) is discussed in Sec. VI A.

2. Comparison with Vanneste and B€uhler (2011)

In the following we rewrite the n-component vd0
2n of the

Eulerian streaming velocity in Eq. (59b) using the notation of
Vanneste and B€uhler35 to compare it directly with the

Lagrangian streaming velocity "uL
slip given in their Eq. (4.10)VB.

First, given the flat wall, ðn; g; fÞ ¼ ðx; y; zÞ and for all i, j, k
we have hi¼ 1, Hi ¼ 0, and Tijk¼ 0. Then, we identify our

first-order velocity fields with theirs: From Eqs. (2.6)VB and

(3.1)VB follows vd
1 ¼ 2$/̂, and from Eqs. (3.9)VB and

(3.10)VB we read that vd0
1k ¼ "2Ûex "2V̂ey. Next, we relate

our steady Eulerian second-order velocity vd
2 with their

Lagrangian mean flow "uL
slip Eq. (4.10)VB. Using ReZ ¼ 1

2 Z

þc:c: ¼ 1
2 Z+ þ c:c:, we obtain
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Here, we have used that the Lagrangian velocity uL
slip, calcu-

lated by Vanneste and B€uhler in their Eq. (4.10)VB, is related
to the Eulerian velocity uE

slip through the Stokes drift velocity
ûS ¼ ð1=xÞhivd

1 ( $vd
1i of Eq. (34c).

Similarly, for the y component vd0
2g of the streaming,

vd0
2g ¼ vL

slip " v̂S ¼ vE
slip: (C5)

The comparison obtained in Eqs. (C4) and (C5) is discussed
in Sec. VI B.
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Abstract: We present a full 3D numerical simulation of the acoustic streaming observed in full-image
micro-particle velocimetry by Hagsäter et al., Lab Chip 7, 1336 (2007) in a 2 mm by 2 mm by 0.2 mm
microcavity embedded in a 49 mm by 15 mm by 2 mm chip excited by 2-MHz ultrasound. The model
takes into account the piezo-electric transducer, the silicon base with the water-filled cavity, the viscous
boundary layers in the water, and the Pyrex lid. The model predicts well the experimental results.
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1. Introduction and definition of the model system

For the past 15 years, ultrasound-based microscale acoustofluidic devices have successfully and in
increasing numbers been used in the fields of biology, environmental and forensic sciences, and clinical
diagnostics [1–5]. However, it remains a challenge to model and optimize a given device including all
relevant acoustofluidic aspects. Steadily, good progress is being made towards this goal. Examples
of recent advances in modeling include work in two dimensions (2D) by Muller and Bruus [6, 7] on
thermoviscous and transient e↵ects of acoustic pressure, radiation force, and streaming in the fluid
domain, and work by Nama et al. [8] on acoustophoresis induced by a given surface acoustic wave in
a fluid domain capped by a PDMS lid. Examples of 3D modeling include work by Lei et al. [9, 10] on
boundary-layer induced streaming in fluid domains with hard wall and outgoing plane-wave boundary
conditions, work by Gralinski et al. [11] on the acoustic pressure fields in circular capillaries including
the fluid and glass domains and excited by a given wall vibration, a model later extended by Ley and
Bruus [12] to take into account absorption and outgoing waves, and work by Hahn and Dual [13] on the
acoustic pressure and acoustic radiation force in the fluid domain including the surrounding transducer,
silicon and glass domains, as well as bulk, boundary-layer, and thermal dissipation.
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Figure 1. (a) Top-view photograph of the original transducer-silicon-glass device studied in
2007 by Hagsäter et al. [16]. (b) A cut-open 3D sketch of the device in the red-dashed area
of panel (a) showing the Pz26 piezo-electric transducer (green), the silicon base (gray), the
water-filled cavity (blue) in the top of the silicon base, and the Pyrex lid (orange).

Table 1. The length, width, and height L⇥W ⇥H (in mm) of the six rectangular elements in
the acoustofluidic device model of Figure 1(b): The piezoelectric transducer (pz), the silicon
base (si), the Pyrex lid (py), the main cavity (ca), and the two inlet channels (c1) and (c2).

Pz26 Silicon Pyrex Cavity Channel 1 Channel 2
Lpz⇥Wpz⇥Hpz Lsi⇥Wsi⇥Hsi Lpy⇥Wpy⇥Hpy Lca⇥Wca⇥Hca Lc1⇥Wc1⇥Hc1 Lc2⇥Wc2⇥Hc2

49 ⇥ 15 ⇥ 1.0 49 ⇥ 15 ⇥ 0.5 49 ⇥ 15 ⇥ 0.5 2.02 ⇥ 2 ⇥ 0.2 11.3 ⇥ 0.4 ⇥ 0.2 12.4 ⇥ 0.4 ⇥ 0.2

In this paper, we present a 3D model and its implementation in the commercial software COMSOL
Multiphysics [14] of a prototypical acoustofluidic silicon-glass-based device that takes into account
the following physical aspects: the piezo-electric transducer driving the system, the silicon base that
contains the acoustic cavity, the fluid with bulk- and boundary-layer-driven streaming, the Pyrex lid,
and a dilute microparticle suspension filling the cavity. This work represents a synthesis of our previous
modeling of streaming in 2D [6], acoustic fields in 3D [12], and boundary-layer analysis [15] enabling
e↵ective-model computation of streaming in 3D, and it combines and extends the 3D streaming study
in the fluid domain by Lei et al. [10] and the 3D study of acoustics in the coupled transducer-sold-fluid
system by Hahn and Dual [13]. To test the presented coupled 3D model, we have, as Lei et al. [10],
chosen to model the system studied experimentally by Hagsäter et al. in 2007 [16] and shown in
Figure 1. It consists of a rectangular 0.5-mm high silicon base, into the surface of which is etched a
shallow square-shaped cavity with two inlet channels attached. The cavity is sealed with a 0.5-mm
high Pyrex lid that exactly covers the silicon base. At the bottom of the silicon base is attached a 1-mm
high rectangular Pz26 piezo-electric transducer. All three solid layers are 49 mm long and 15 mm
wide. The nearly-square cavity is 2.02 mm long and 2 mm wide and has attached two inlet channels
both 0.4 mm wide, but of unequal lengths 11.3 mm and 12.4 mm, respectively. The channels and cavity
are 0.2 mm deep. A sketch of the model device is shown in Figure 1, and its geometrical parameters
are summarized in Table 1. The transducer is grounded at the top and driven by an ac voltage '̃ of
amplitude '0 = 1 V and a frequency around 2.2 MHz applied to its bottom surface.

AIMS Mathematics Volume 4, Issue 1, 99–111.
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2. Theoretical background

We summarize the coupled equations of motion for a system driven by a time-harmonic electric
potential, '̃ = '0 e�i!t applied to selected boundaries of a piezo-electric Pz26 ceramic. Here, tilde
denotes a field with harmonic time dependency, ! is the angular frequency in the low MHz range,
and “i” is the imaginary unit. This harmonic boundary condition excites the time-harmonic fields: the
electric potential '̃(r, t) in the Pz26 ceramic, the displacement ũ(r, t) in the solids, and the acoustic
pressure p̃1(r, t) in the water,

'̃(r, t) = '(r) e�i!t, ũ(r, t) = u(r) e�i!t, p̃1(r, t) = p1(r) e�i!t. (2.1)

In our simulation, we first solve the linear equations of the amplitude fields '(r), u(r), and p1(r).
Then, based on time-averaged products (over one oscillation period) of these fields, we compute the
nonlinear acoustic radiation force F rad and the steady-state acoustic streaming velocity v2(r).

2.1. Linear acoustics in the fluid

In the fluid (water) of density ⇢fl, sound speed cfl, dynamic viscosity ⌘fl, and bulk viscosity ⌘b
fl, we

model the acoustic pressure p1 as in Ref. [12],

r2 p1 = �
!2

c2
fl

(1 + i�fl) p1, v1 = �i
1 � i�fl

!⇢fl

rp1, �fl =

✓4
3
⌘fl + ⌘

b
fl

◆
!fl. (2.2)

Here, v1 is the acoustic velocity which is proportional to the pressure gradient rp1, while �fl ⌧ 1 is a
weak absorption coe�cient, and fl = (⇢flc2

fl)�1 is the isentropic compressibility of the fluid, see Table 2
for parameter values. The time-averaged acoustic energy density Efl

ac in the fluid domain is the sum of
the time-averaged (over one oscillation period) kinetic and compressional energy densities,

Efl
ac =

1
4
⇢fl

���v1

���2 + 1
4
fl

���p1

���2. (2.3)

Table 2. Material parameters at 25 �C for isotropic Pyrex borosilicate glass [17], cubic-
symmetric silicon [18], and water [6]. Note that c12 = c11 � 2c44 for isotropic solids.

Parameter Pyrex Si Unit Parameter Water Unit

Mass density ⇢sl 2230 2329 kg m�3 Mass density ⇢fl 997.05 kg m�3

Elastic modulus c11 69.72 165.7 GPa Sound speed cfl 1496.7 m s�1

Elastic modulus c44 26.15 79.6 GPa Dyn. viscosity ⌘fl 2.485 mPa s
Elastic modulus c12 17.43 63.9 GPa Bulk viscosity ⌘b

fl 0.890 mPa s
Damping coe↵. �sl 0.0004 0.0000 1 Damping coe↵. �fl 0.00002 1

– – – – – Compressibility fl 452 TPa�1

2.2. Linear elastic motion of the solids

In the solid materials, each with a given density ⇢sl, we model the displacement field u using the
equation of motion given by [12]

� ⇢sl!
2(1 + i�sl) u =r · �, (2.4)

AIMS Mathematics Volume 4, Issue 1, 99–111.
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where �sl ⌧ 1 is a weak damping coe�cient. Here, � is the stress tensor, which is coupled to u

through a stress-strain relation depending on the material-dependent elastic moduli. The time-averaged
acoustic energy density in the solids is given by the sum of kinetic and elastic contributions,

Esl
ac =

1
4
⇢sl!

2|u|2 + 1
4

Re
⇥
(ru) : �⇤

⇤
, (2.5)

where ”Re” denotes the real value and ”*” the complex conjugate of a complex number, respectively.

2.3. Stress-strain coupling in elastic solids

For a crystal with either cubic or isotropic symmetry, the relation between the stress tensor �i j and
strain components 1

2(@iu j + @ jui) is given in the compact Voigt representation as [19]

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�xx

�yy

�zz

�yz

�xz

�xy

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0

0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

@xux

@yuy

@zuz

@yuz+@zuy

@xuz+@zux

@xuy+@yux

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, for Pyrex and silicon. (2.6)

Here, ci j are the elastic moduli which are listed for Pyrex and silicon in Table 2.

2.4. Stress-strain coupling in piezoelectric ceramics

Lead-zirconate-titanate (PZT) ceramics are piezoelectric below their Curie temperature, which
typically is 200 � 400 �C. Using Cartesian coordinates and the Voigt notation for a PZT ceramic, the
mechanical stress tensor �i j and electric displacement field Di are coupled to the mechanical strain
components 1

2(@iu j + @ jui) and the electrical potential ' through the relation [19]

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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�@y'

�@z'

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, for Pz26. (2.7)

The values of the material parameters for the PZT ceramic Pz26 are listed in Table 3. Due to the high
electric permittivity of Pz26, we only model the electric potential ' in the transducer, and since we
assume no free charges here and only low-MHz frequencies, ' must satisfy the quasi-static equation,

r ·D = 0, for Pz26. (2.8)
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Table 3. Material parameters of Ferroperm Ceramic Pz26 from Meggitt A/S [20]. Isotropy
in the x-y plane implies c66 =

1
2 (c11 � c12). The damping coe�cient is �sl = 0.02 [13].

Parameter Value Parameter Value Parameter Value
⇢sl 7700 kg/m3 "11 828 "0 "33 700 "0
c11 168 GPa c33 123 GPa e31 �2.8 C/m2

c12 110 GPa c44 30.1 GPa e33 14.7 C/m2

c13 99.9 GPa c66 29.0 GPa e15 9.86 C/m2

2.5. Boundary conditions and boundary layers in the fluid at the fluid-solid interfaces

The applied boundary conditions are the usual ones, namely that (1) the stress and the velocity
fields are continuous across all fluid-solid and solid-solid interfaces, (2) the stress is zero on all outer
boundaries facing the air, (3) the piezoelectric ceramic is driven by a given electric potential at specified
surfaces that represent the presence of infinitely thin, massless electrodes, and (4) there are no free
charges on the surface of the ceramic. The influence (A  B) on domain A from domain B with the
surface normal n pointing away from A, is given by

Pz26 domain ground electrode, top: ' = 0, (2.9a)
Pz26 domain phase electrode, bottom: ' = '0, (2.9b)

Pz26 and solid domain air: � · n = 0 and n ·D = 0, (2.9c)
Solid domain fluid: � · n = �p1 n + iks⌘fl(vsl � v1

�
, (2.9d)

Fluid domain solid: v1 · n = vsl · n +
i
ks
rk · �vsl � v1

�
k. (2.9e)

While the overall structure of these boundary conditions is the usual continuity in stress and velocity,
the details of Eqs. (2.9d) and (2.9e) are not conventional. They are the boundary conditions for the
surface stress � · n of Eq. (2.4) and the acoustic velocity v1 of Eq. (2.2) (proportional to the gradient
of the acoustic pressure p1) derived by Bach and Bruus using their recent e↵ective pressure-acoustics
theory [15]. In this theory, the viscous boundary layer of thickness � =

p
2⌘fl/(⇢fl!) (⇡ 0.35 µm at

2.3 MHz) has been taken into account analytically. As a result, terms appear in Eqs. (2.9d) and (2.9e)
that involve the shear-wave number ks = (1+ i)��1 as well as the tangential divergence of the tangential
component of the di↵erence between the solid-wall velocity vsl = �i!u and the acoustic velocity v1
at the fluid-solid interface. This boundary condition also takes into account the large dissipation in the
boundary layers, which leads to an e↵ective damping coe�cient �e↵

fl ⇡ �
H ⇡ 0.002, the ratio of the

boundary layer width � to the device height H [6,13,15]. Remarkably, this boundary-layer dissipation
dominates dissipation in the fluid domain, because �fl ⌧ �e↵

fl ⌧ 1.

2.6. The acoustic streaming

The acoustic streaming is the time-averaged (over one oscillation period), steady fluid velocity v2
that is induced by the acosutic fields. In our recent analysis [15], we have shown that the governing
equation of v2 corresponds to a steady-state, incompressible Stokes flow with a body force in the bulk
due to the time-averaged acoustic dissipation proportional to �fl. Further, at fluid-solid interfaces, the
slip velocity vbc

2 takes into account both the motion of the surrounding elastic solid and the Reynolds
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stress induced in viscous boundary layer in the fluid,

r · v2 = 0, ⌘flr2v2 =rp2 �
�fl!

2c2
fl

Re
h
p⇤1v1

i
, v2 = vbc

2 , at fluid-solid interfaces, (2.10a)

n · vbc
2 = 0, (1 � nn) · vbc

2 = �
1

8!
rk

���v1k
���2 � Re

" 
2 � i
4!

rk ·v⇤1k +
i

2!
@?v⇤1?

!
v1k

#
. (2.10b)

Here, we have used a special case of the slip velocity vbc
2 , which is only valid near acoustic resonance,

where the magnitude |v1| of the acoustic velocity in the bulk is much larger than ! |ubc
sl | of the walls.

2.7. The acoustic radiation force and streaming drag force on suspended microparticles

The response of primary interest in acoustofluidic applications, is the acoustic radiation force F rad

and the Stokes drag from the acoustic streaming v2 acting on suspended microparticles. In this work,
we consider 1- and 5-µm-diameter spherical polystyrene ”Styron 666” (ps) particles with density ⇢ps
and compressibility ps. For such large microparticle suspended in water of density ⇢fl and
compressibility fl, thermoviscous boundary layers can be neglected, and the monopole and dipole
acoustic scattering coe�cients f0 and f1 are real numbers given by [21],

f0 = 1 � ps

fl
= 0.468, f1 =

2(⇢ps � ⇢fl)

2⇢ps + ⇢fl

= 0.034. (2.11a)

Given an acoustic pressure p1 and velocity v1, a single suspended microparticle of radius a, experience
an acoustic radiation force F rad, which, since f0 and f1 are real, is given by the potential U rad [22],

F rad = �rU rad , where U rad =
4⇡
3

a3
 

f0
1
4
fl|p1|2 � f1

3
8
⇢fl|v1|2

!
. (2.11b)

The microparticle is also influenced by a Stokes drag force F drag = 6⇡⌘fla
�
v2�vps

�
, where v2 and vps

is the streaming velocity and the polystyrene particle velocity at the particle position rps(t), respectively.
In the experiments, the streaming and particle velocities are smaller than v0 = 1 mm/s, which for a
5-µm-diameter particle corresponds to a small particle-Reynolds number 1

⇢fl
⌘flav0 = 0.6. Consequently,

we can ignore the inertial e↵ects and express the particle velocity for a particle at position r from the
force balance F rad + F drag = 0, between the acoustic radiation force and streaming drag force,

vps(r) = v2(r) +
1

6⇡⌘fla
F rad(r). (2.12)

The particle trajectory rps(t) is then determined by straightforward time integration of d
dtrps = vps(rps).

2.8. Numerical implementation

Following the procedure described in Ref. [12], including mesh convergence tests, the coupled
field equations (2.2) and (2.4) for the fluid pressure p1 and elastic-solid displacement u are
implemented directly in the finite-element-method software Comsol Multiphysics 5.3a [14] using the
weak form interface “PDE Weak Form”. A COMSOL script with a PDE-weak-form implementation
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of acoustofluidics is available as supplemental material in Ref. [7]. Here, we extend the model of
Ref. [12] by including the transducer with the piezoelectric stress-strain coupling Eq. (2.6) and
implementing the governing equation (2.8) for the electric potential ' in weak form. Similarly, the
boundary conditions Eq. (2.9) are implemented in weak form. Specifically, the e↵ective-model
boundary conditions are implemented as “Weak Contributions” as follows. The stress
condition Eq. (2.9d) is given by the weak contribution

test(uX) ⇤ (�p1 ⇤ nX + i ⇤ ks ⇤ etafl ⇤ (vslX � v1X))
+ test(uY) ⇤ (�p1 ⇤ nY + i ⇤ ks ⇤ etafl ⇤ (vslY � v1Y))
+ test(uZ) ⇤ (�p1 ⇤ nZ + i ⇤ ks ⇤ etafl ⇤ (vslZ � v1Z)), (2.13)

where n = (nX, nY, nZ) is the normal vector away from the solid domain, and test(uX) is the finite-
element test function corresponding to the x-component ux of the solid displacement field u, and
similar for y and z. The velocity condition Eq. (2.9e) is given by the weak contribution

i ⇤ omega ⇤ rhofl/(1 � i ⇤ Gammafl) ⇤ test(p1) ⇤ (vslX ⇤ nX + vslY ⇤ nY + vslZ ⇤ nZ
+i/ks ⇤ (dtang(vslX � v1X, x) + dtang(vslY � v1Y, y) + dtang(vslZ � v1Z, z)), (2.14)

where n = (nX, nY, nZ) now is the normal vector away from the fluid, test(p1) is the test function for
p1, and dtang is the tangent-plane derivative operator available in COMSOL, see Ref. [15].

In a second step, we implement Eq. (2.10) for the acoustic streaming v2 in weak form. Specifically,
the e↵ective-model slip velocity condition are implemented as a “Dirichlet Boundary Condition” as
follows. We use the outward normal vector (nX, nY, nZ) as before and also the two perpendicular
tangent vectors (t1X, t1Y, t1Z) and (t2X, t2Y, t2Z), and write the x-component v2bcX of vbc

2 as,

v2bcX = (t1X ⇤ AX + t1Y ⇤ AY + t1Z ⇤ AZ) ⇤ t1X + (t2X ⇤ AX + t2Y ⇤ AY + t2Z ⇤ AZ) ⇤ t2X, (2.15)

and similarly for the y and z components. Here, (AX, AY, AZ) is a vector defined in terms of the tangent-
plane derivative rk and the parallel velocity v1k = (v1parX, v1parY, v1parZ) with the x-component
v1parX = (v1 · t1) t1x + (v1 · t2) t2x, as follows,

AX = �1/8/omega ⇤ (dtang(S1, x) + realdot((4 + 2 ⇤ i)/4 ⇤ S2 � 4 ⇤ i ⇤ S3, v1parX), (2.16a)
AY = �1/8/omega ⇤ (dtang(S1, y) + realdot((4 + 2 ⇤ i)/4 ⇤ S2 � 4 ⇤ i ⇤ S3, v1parY), (2.16b)
AZ = �1/8/omega ⇤ (dtang(S1, z) + realdot((4 + 2 ⇤ i)/4 ⇤ S2 � 4 ⇤ i ⇤ S3, v1parZ), (2.16c)
S1 = abs(v1parX)ˆ2 + abs(v1parY)ˆ2 + abs(v1parZ)ˆ2, (2.16d)
S2 = dtang(v1parX, x) + dtang(v1parY, y) + dtang(v1parZ, z), (2.16e)
S3 = i ⇤ omega/rhofl/cflˆ2 ⇤ p1 � S2. (2.16f)

Finally, the acoustic radiation force F rad acting on the particles is calculated from Eq. (2.11) using
the acoustic pressure p1 and velocity v1, and subsequently in a third step, following Ref. [23], we
compute the particle trajectories rps(t) from the time-integration of Eq. (2.12).

We optimize the mesh to obtain higher resolution in the water-filled cavity, where we need to
calculate numerical derivatives of the resulting fields to compute the streaming and radiation forces,
and less in the surrounding solids and in the transducer. We ensure having at least six nodal points per
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wave length in all domains, which for the second-order test function we use, corresponds to maximum
mesh sizes of 0.52 mm, 0.59 mm, 0.50 mm, and 0.22 mm in the domains of Pz26, silicon, Pyrex, and
water, respectively. The final implementation of the model contains 1.1 and 0.4 million degrees of
freedom for the first- and second-order fields, repsectively. On our workstation, a Dell Inc Precision
T7500 Intel Xeon CPU X5690 at 3.47 GHz with 128 GB RAM and 2 CPU cores, the model requires
45 GB RAM and takes 18 min per frequency. When running frequency sweeps of up to 70 frequency
values, we used the DTU high-performance computer cluster requiring 464 GB RAM and 11 min per
frequency.

3. Results for the transducer-glass-silicon acoustofluidic device

We apply the 3D model of Section 2 to the transducer-glass-silicon acoustofluidic device by
Hagsäter et al. [16], shown in Figure 1 and using the parameter values listed in Tables 1, 2, and 3. In
Figure 2 we compare the experimental results from Ref. [16] with our model simulations.

Figure 2. (a1) Micro-PIV measurements adapted from Ref. [16] of the particle velocity
vps after 1 ms (yellow arrows, maximum 200 µm/s) superimposed on a micrograph of the
final positions (black curved bands) of 5-µm-diameter polystyrene particles in water with
a standing ultrasound wave at 2.17 MHz. (a2) Same as panel (a1), but for 1-µm-diameter
polystyrene particles moving in a 6-by-6 flow-roll pattern without specific final positions.
(b1) Numerical 3D COMSOL modeling with actuation voltage '0 = 1 V of the acoustic
potential U rad from 0 fJ (black) to 7 fJ (orange) and the velocity (yellow arrows, maximum
170 µm/s) after 1 ms of 5-µm-diameter polystyrene particles in the horizontal center plane
of the water-filled cavity at the resonance f = 2.166 MHz. (b2) Numerical modeling at
the same conditions as in panel (b1), but at the slightly lower frequency 2.163 MHz, of the
particle velocity vps (magenta vectors) and its magnitude vps from 0 (black) to 200 µm/s
(white) of 1-µm-diameter polystyrene particles.
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In Figure 2(a1) we show the measured micro-particle image velocimetry (micro-PIV) results
obtained on a large number of 5-µm-diameter tracer particles at an excitation frequency of 2.17 MHz.
The yellow arrows indicate the velocity of the tracer particles 1 ms after the ultrasound has been
turned on, and the black bands are the tracer particles focused at the minimum of the acoustic
potential U rad after a couple of seconds of ultrasound actuation. A clear pattern of 3 wavelengths in
each direction is observed. Similarly, in Figure 2(a2) is shown the micro-PIV results for the smaller
1-µm-diameter tracer particles. It is seen that these particles, in contrast to the larger particles, are not
focused but keep moving in a 6-by-6 flow-roll pattern. This result from Ref. [16] is remarkable, as the
conventional Rayleigh streaming pattern [6, 7, 23] has four streaming rolls per wavelength oriented in
the vertical plane, but here is only seen two rolls per wavelength, and they are oriented in the
horizontal plane.

In Figure 2(b1) and (b2) we see that our model predicts the observed acoustofluidics response
qualitatively for both the larger and the smaller tracer particles at a resonance frequency slightly below
2.17 MHz. Even the uneven local amplitudes of the particle velocity vps in the 6-by-6 flow-roll pattern,
which shifts around as the frequency is changed a few kHz, is in accordance with the observations. In
Ref. [16] it is mentioned that “If the frequency is shifted slightly in the vicinity of 2.17 MHz, the same
vortex pattern will still be visible, but the strength distribution between the vortices will be altered.”.
We have chosen the 3-kHz lower frequency in Figure 2(b2) compared to (b1) to obtain a streaming
pattern similar to the observed one for the small 5-µm-diameter particles.

Quantitatively, we find the following. The acoustic resonance is located at 2.166 MHz, only 0.2 %
lower than the experimental value of 2.17 MHz. This good agreement should not be over emphasized,
as we had to assume a certain length and width of the Pz26 transducer, because its actual size was
not reported in Ref. [16]. Another source of error is that we have not modeled the coupling gel used
in the experiment between the Pz26 transducer and the silicon base. The actual actuation voltage in
the experiment has not been reported, so we have chosen '0 = 1 V, well within the range of the 20 V
peak-to-peak function generator mentioned in Ref. [16], as it results in velocities vps ⇡ 170 µm/s for
the large 5-µm-diameter, in agreement with the 200 µm/s reported in the experiment.

In Figure 3 we show another result that is in agreement with the experimental observations,
namely the particle trajectories rps(t) for suspensions of tracer particles of di↵erent size. The larger
5-µm-diameter particles are focused along the bottom of the troughs in the acoustic potential U rad ,
shown in Figure 2(b1), after a short time 1

12(2 mm)/(170 µm/s) ⇡ 1 s, forming the red wavy bands in
Figure 3(a) very similar to the observed black bands in Figure 2(a1). In contrast, the smaller
1-µm-diameter particles are caught by the 6-by-6 streaming vortex pattern and swirl around without
being focused, at least within the first 1.5 s as shown in Figure 3(b), in full agreement with the
experimental observation shown in Figure 2(a2).

4. Discussion

Our full 3D numerical model, which takes into account the piezo-electric transducer, the silicon
base with the water-filled cavity, the viscous boundary layers in the water, and the Pyrex lid, has
been tested qualitatively and quantitatively by comparing the results for the acoustic radiation force,
for the streaming velocity, and for the trajectories of tracer particles of two di↵erent sizes with the
decade-old experimental results presented by Hagsäter et al. [16]. Remarkably, as predicted by Bach

AIMS Mathematics Volume 4, Issue 1, 99–111.



108

and Bruus [15], we find that the characteristic horizontal 6-by-6 flow-roll pattern of the small 1-µm-
diameter particles is caused by the so-called Eckart bulk force, the term in (2.10a) proportional to the
acoustic energy flux density or intensity Sac =

1
2Re

⇥
p⇤1v1

⇤
. In our simulations this pattern occupies

80 % of the cavity volume stretching from 0.1 to 0.9 in units of the channel height Hca and looks as
the one in the midplane at 0.5 Hca shown in Figs. 2(b2) and 3(b). Lei et al. [10] also pointed out that
Sac could lead to the horizontal 6-by-6 flow-roll pattern in their 3D-fluid-domain model with hard-
wall and outgoing-plane-wave boundary conditions of the same device. In their model, the Eckart
bulk force was neglected, and the horizontal-flow-roll producing term Sac appears only as part of their
limiting-velocity boundary condition. As the remaining curl-free part of the boundary condition is
dominating, they found the horizontal 6-by-6 flow-roll pattern to be confined to narrow regions around
the two horizontal planes at 0.2 and 0.8 Hca and absent in the center plane at 0.5 Hca, the focal plane
in the experimental studies. As our slip-velocity condition (2.10b) also contains Sac, see Eq. (62a) in
Ref. [15], we do reproduce their findings, when we suppress the Eckart bulk force in Eq. (2.10b). This
is illustrated in Figure 3(c), where we show that the flow-roll behavior is suppressed in the center plane
and replaced by a clear divergent behavior.

Figure 3. Numerical 3D COMSOL modeling of the trajectories rps(t) (blue tracks) of 3600
polystyrene particles of radius a corresponding to the cases shown in Figure 2(b1) and (b2).
The particles start from 60 ⇥ 60 regular quadratic grid points in the horizontal center plane
of the cavity at t = 0 s when the ultrasound field is turned on, and their positions after 1.5 s
are represented by red points. (a) a = 2.5 µm at f = 2.166 MHz. (b) a = 0.5 µm at
f = 2.163 MHz with the Eckart bulk force in Eq. (2.10a) increased by a factor 4. (c) Same
as panel (b) but without the Eckart bulk force in Eq. (2.10a).

In agreement with Lei et al. [10], we find that although the determination of the first-order pressure
p1 and the acoustic potential U rad is fairly robust, the computation of the streaming velocity v2 from
the Stokes equation (2.10a) is sensitive to the exact value of the frequency and of the detailed shape
of the fluid solid interface. In Ref. [24] we have shown in a simplified 3D-rectangular-fluid-domain
model that the rotation of the acoustic intensity changes an order of magnitude when the aspect ratio
Lca/Wca changes 1 %. In this study we have increased the Eckart bulk force in Eq. (2.10a) by a
factor of 4 in order to make the rotating 6x6 pattern dominate clearly over the Rayleigh streaming in
the center plane. This amplification may reflect that the chosen aspect ratio Lca/Wca = 1.01 was not
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exactly the one realized in the experiment, an e↵ect which should be studied further in experiments
and simulations.

Our numerical study indicate that although the cavity in the Hagsäter device has a size of only three
acoustic wavelengths, the existence of in-plane flow rolls may be controlled by the Eckart bulk force.
This conclusion runs contrary to the conventional wisdom that the Eckart bulk force is only important
in systems of a size, which greatly exceeds the acoustic wave length. This phenomenon deserves a
much closer study in future work.

While our model takes many of the central aspects of acoustofluidics into account, it can still be
improved. One possible improvement would be to include the influence of heating on the material
parameters as in Ref. [6]. One big challenge in this respect is to determine the material parameters
of the solids, which may be temperature and frequency dependent. Another di�cult task is to model
the coupling between the transducer and the chip, which in experiments typically are coupled using
coupling gels or other ill-characterized adhesives. The last point we would like to raise is use of the
simple Stokes drag law on the suspended particles in the cavity. Clearly, this model may be improved
by including particle-wall e↵ects and particle-particle interactions. However, as direct simulations of
both of these e↵ects are very memory consuming their implementation would require e↵ective models.

5. Conclusion

We have described the implementation of a full 3D modeling of an acoustofluidic device taking
into account the viscous boundary layers and acoustic streaming in the fluid, the vibrations of the solid
material, and the piezoelectricity in the transducer. As such, our simulation is in many ways close to
a realistic device, which is also reflected in the agreement between the simulation and the experiment
shown in Figs. 2 and 3. Our model has correctly predicted the unusual streaming pattern observed
in the device at the 2.17-Mz resonance: a horizontal 6-by-6 flow-roll pattern in 80 % of the cavity
volume, a pattern much di↵erent form the conventional 12-by-2 Rayleigh streaming pattern in the
vertical plane. Moreover, our model has revealed the surprising importance of the Eckart bulk force in
an acoustic cavity with a size comparable to the acoustic wavelength. In future work, we must analyze
the sensitivity of the streaming velocity and improve our understanding of the amplitude of the Eckart
bulk force.

By introducing the model, we have demonstrated that simulations can be used to obtain detailed
information about the performance of an acoustofluidic device in 3D. Such simulations are likely to be
useful for studies of the basic physics of acoustofluidics as well as for engineering purposes, such as
improving existing microscale acoustofluidic devices. However, To fully exploit such modeling, more
accurate determination is needed of the acoustic parameters of the actual transducers, elastic walls, and
particle suspensions employed in a given experiment.
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Bulk-driven acoustic (Eckart) streaming is the steady flow resulting from the time-averaged acoustic energy
flux density in the bulk of a viscous fluid. In simple cases, like the one-dimensional single standing-wave
resonance, this energy flux is negligible, and therefore the bulk-driven streaming is often ignored relative to
the boundary-driven (Rayleigh) streaming in the analysis of resonating acoustofluidic devices with length scales
comparable to the acoustic wavelength. However, in closed acoustic microcavities with viscous dissipation, two
overlapping resonances may be excited at the same frequency as a double mode. In contrast to single modes,
the double modes can support a steady rotating acoustic energy flux density and thus a corresponding rotating
bulk-driven acoustic streaming. We derive analytical solutions for the double modes in a rectangular-box-shaped
cavity including the viscous boundary layers, and use them to map out possible rotating patterns of bulk-driven
acoustic streaming. Remarkably, the rotating bulk-driven streaming may be excited by a nonrotating actuation,
and we determine the optimal geometry that maximizes this excitation. In the optimal geometry, we finally
simulate a horizontal 2 × 2, 4 × 4, and 6 × 6 streaming-roll pattern in a shallow square cavity. We find that
the high-frequency 6 × 6 streaming-roll pattern is dominated by the bulk-driven streaming as opposed to the
low-frequency 2 × 2 streaming pattern, which is dominated by the boundary-driven streaming.

DOI: 10.1103/PhysRevE.100.023104

I. INTRODUCTION

Acoustophoresis, particle migration by ultrasound in a mi-
crofluidic setting, is an increasingly popular method for non-
contact and label-free handling of microparticles suspended in
a fluid. Examples include acoustic separation [1–3], trapping
[4,5], and tweezing [6–8], as well as enrichment of cancer
cells [9,10] and bacteria [11,12], and size-independent sorting
of cells [13].

The acoustic field induces the acoustic radiation force
that acts on suspended particles and scales with the particle
volume [14–18], as well as the acoustic streaming in the fluid
[19–22] that gives rise to a viscous Stokes drag force on the
particles which scales with the linear size of the particles
[23]. Consequently, the streaming-induced drag force is the
dominating acoustic force for particles smaller than a critical
size. For example, for an aqueous suspension of spherical
polystyrene particles in a 1-MHz ultrasound field, the critical
radius has been determined to be around 2 µm [24,25]. To
extend the application of acoustophoresis into the regime of
submicrometer particles, such as bacteria, viruses, and exo-
somes, a deep understanding of acoustic streaming is therefore
important.

The first theoretical analysis of acoustic streaming dates
back to Lord Rayleigh [19], who investigated the streaming
generated by the viscous boundary layers close to the walls
in planar and cylindrical systems. This analysis was later
generalized by Nyborg [22], who formulated a slip veloc-
ity condition for the acoustic streaming outside the viscous
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boundary layers at weakly curved boundaries oscillating in
the normal direction. Further extensions to this slip-velocity
theory involve curvilinear corrections for curved boundary
[26], general motion of a flat boundary [27], and general
motion of a curved boundary [28]. This kind of streaming is
caused by the velocity mismatch between the boundary and
the acoustic wave in the bulk, and we refer to it as boundary-
driven acoustic streaming.

Acoustic streaming can also be generated by attenuation of
the acoustic wave in the bulk as shown by Eckart [29], who
established the basic theory and investigated the steady flow
caused by a sound beam. This kind of streaming is generated
by a force, which is proportional to the acoustic energy flux
density (or intensity) such that, say, a sound beam generates
acoustic streaming in its direction of propagation. We refer to
this kind of streaming as bulk-driven acoustic streaming.

While bulk-driven streaming is known to have a clear effect
in systems much larger than the acoustic wavelength [30], it
is often neglected in studies of resonating devices with length
scales comparable with the acoustic wavelength. However, the
bulk-driven streaming was taken into account implicitly by
Antfolk et al. in their study of a long straight microchannel
with a nearly square cross section [11], as they made a direct
numerical simulation of the acoustofluidic properties of the
system. They showed numerically that the experimentally ob-
served single-vortex streaming pattern, which remarkably ap-
peared in their microchannel instead of the usual quadrupolar
Rayleigh-vortex pattern, could be explained if two orthogonal
acoustic resonances with nearly identical resonance frequen-
cies were excited with a quarter-period phase difference at the
same frequency.

Such orthogonal phase-shifted acoustic waves have been
used in other experiments to generate an acoustic radiation
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torque acting on suspended particles [26,31–35]. Also trav-
eling Bessel beams [36,37] as well as arrays of holographic
acoustic elements [38] have been used for this purpose, but
not for generating specific streaming patterns.

Inspired by the work of Antfolk et al. [11], we study
in this paper bulk-driven acoustic streaming at resonance in
rectangular-box-shaped cavities with acoustically hard walls
and side lengths comparable to the acoustic wavelength. The
paper is organized as follows: In Sec. II we present the
governing equations for the acoustic pressure and the acoustic
streaming at resonance, where the viscous boundary layers are
taken into account using our recent boundary-layer analysis
[28]. We apply these equations in Sec. III to derive analytical
solutions for the acoustic single-mode pressure resonances in
the rectangular cavity. We also introduce the so-called double-
mode resonances, where two overlapping single modes are
excited simultaneously at the same frequency. In Sec. IV
we establish the so-called overlap and phase conditions for
double-mode resonances that lead to a strong acoustic body
force, which causes the bulk-driven streaming. A main result
is presented in Sec. V, where we show how a weak symmetry
breaking of a perfect square cavity can lead to a rotating body
force even for a nonrotating actuation. We validate our theory
in Sec. VI by direct numerical simulation in the case of a
shallow nearly square cavity similar to the geometry studied
experimentally by Hagsäter et al. [39]. We predict that the
bulk-driven streaming in closed microcavities is enhanced by
increasing the frequency and the bulk viscosity, just as is the
case for Eckart streaming in open systems [29]. We propose
to test this prediction by replacing water with pyridine in the
microcavity. Finally, we discuss our results in Sec. VII and
present our conclusions in Sec. VIII.

II. GOVERNING EQUATIONS

The time-harmonic acoustic fields in the fluid domain !
are induced by the time-harmonic displacement field u(r, t )
of the wall at the boundary ∂! of the domain,

u(r, t ) = Re[u1(r)e−iωt ], r ∈ ∂!, (1)

where r is position, t is time, ω = 2π f is the angular fre-
quency corresponding to the driving frequency f , and “Re”
is the real part of complex-valued fields. In the quiescent and
homogeneous fluid of mass density ρfl and ambient pressure
pfl, we apply standard perturbation theory in the small Mach
number Ma = v1

cfl
∼ ρ1

ρfl
≪ 1 (see, e.g., Ref. [18]) to describe

the fluid velocity v(r, t ), pressure p(r, t ), and mass density
ρ(r, t ):

p(r, t ) = pfl + Re[p1(r)e−iωt ] + p2(r), (2a)

v(r, t ) = 0 + Re[v1(r)e−iωt ] + v2(r), (2b)

ρ(r, t ) = ρfl + Re[ρ1(r)e−iωt ] + ρ2(r). (2c)

Here, subscript “1” denotes the first-order, complex-valued,
time-harmonic acoustic fields ∝Ma1, and subscript “2” the
second-order, real-valued, time-averaged steady fields ∝Ma2.
We do not compute the oscillating second-order fields con-
taining e± i2ωt as these have zero time average. In contrast,
we do compute the oscillating first-order fields because prod-
ucts of these appear as source terms for the time-averaged

second-order fields. In Eq. (2), real-valued, physical first-
order fields Ã1(r, t ) are written in terms of their complex-
valued amplitude A1(r) as Ã1(r, t ) = Re[A1(r)e−iωt ]. The
time average of a product of two real-valued, physical
first-order fields Ã1(r, t ) and B̃1(r, t ) is then given in
terms of the complex-valued amplitudes A1(r) and B1(r) as
⟨Ã1(r, t )B̃1(r, t )⟩ = 1

2 Re [A1(r)B∗
1(r)].

A. Pressure acoustics with boundary layers

The complex-valued acoustic pressure p1(r) satisfies a
Helmholtz equation with a complex-valued compressional
wave number kc having the real part k0 = ω

cfl
. We apply the

effective boundary condition for p1(r) recently derived by
Bach and Bruus [28], which takes the viscous boundary layer
into account at the domain boundary ∂!. We introduce the
inward normal derivative ∂⊥ = −n · ∇, n being the outward-
pointing surface normal vector, and the effective inward nor-
mal displacement U1⊥ (r) of the wall in terms of the actual
displacement u1(r):

∇2 p1 + k2
c p1 = 0, kc =

(
1 + i

&fl

2

)
k0, r ∈ !, (3a)

∂⊥ p1 + i
ks

(
k2

c p1 + ∂2
⊥ p1

)
= k2

0U1⊥ (r)
κfl

, r ∈ ∂!, (3b)

U1⊥ (r) = 1
1 − i&fl

(
−n − i

ks
∇

)
· u1, r ∈ ∂!. (3c)

Here, i =
√

−1, &fl is the weak bulk damping coefficient, and
ks is the viscous boundary layer wave number, given in terms
of the viscous boundary-layer width δ, the dynamic viscosity
ηfl, the bulk viscosity ηb

fl, and the isentropic compressibility
κfl = 1

ρfl
( ∂ρ

∂ p )S = 1
ρflc2

fl
of the fluid,

&fl =
(

4
3

+ ηb
fl

ηfl

)
ηflκflω ≪ 1, ks = 1 + i

δ
, δ =

√
2ηfl

ρflω
.

(4)

Equation (3) for the acoustic pressure p1 is valid for boundary-
layer widths δ much smaller than both the acoustic length
scale k−1

0 and the geometry length cavity Lgeom, a condition
which is usually satisfied.

From the acoustic pressure p1 we directly obtain the irro-
tational acoustic velocity v1 and the acoustic mass density ρ1
in Eq. (2) through the relations [28]

v1 = − i(1 − i&fl)
ωρfl

∇p1, ∇ × v1 = 0, (5a)

ρ1 = ρflκfl p1. (5b)

Further, we define the following relevant time-averaged first-
order products: the acoustic energy density Eac, kinetic energy
density Ekin, potential energy density Epot, energy flux density
vector Sac, as well as the time-averaged acoustic angular
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momentum density Lac with respect to the unperturbed fluid
position r,1

Eac = Ekin + Epot, Ekin = 1
4ρfl|v1|2, (6a)

Sac = ⟨p̃1ṽ1⟩, Epot = 1
4κfl|p1|2, (6b)

Lac = ⟨d̃1 × (ρflṽ1)⟩, d1(r) = i
ω

v1(r). (6c)

Here, d1(r) is the fluid displacement at position r.

B. Acoustic streaming at fluid resonance

Outside the narrow viscous boundary layers of width δ !
500 nm (for water at MHz frequencies), the second-order
acoustic streaming velocity v2 is described as a Stokes flow
driven by the acoustic body force f ac in the domain ! [see
Eq. (8) in Ref. [40] and Eq. (52b) in Ref. [28]], and by the
slip velocity v

slip
2 at the domain boundary ∂! [see Eq. (A19)

in Ref. [28]]:

0 = ∇ · v2, r ∈ !, (7a)

0 = −∇p2 + ηfl∇2v2 + f ac, r ∈ !, (7b)

v2 = v
slip
2 , r ∈ ∂!. (7c)

Here, f ac in ! and v
slip
2 at ∂!, are given by

f ac = &flω

c2
fl

Sac, (7d)

v
slip
2 = 1

2
κflSac−

1
2ρflω

∇∥[Ekin−2Epot] + 3
4ω

Re[i∂⊥ v1⊥ v∗
1∥],

(7e)

where we have used the expression for the slip velocity v
slip
2

valid near a fluid resonance, in which case the magnitude |v1|
of the acoustic velocity v1 in the bulk is much larger than that
of the wall velocity |ωu1| ≪ |v1| [see Eq. (55) in Ref. [28]
for the slip velocity including the wall motion and Stokes
drift]. We use the name bulk-driven acoustic streaming for the
streaming driven by the acoustic body force f ac in Eq. (7d),
and the name boundary-driven streaming for the streaming
driven by the slip velocity v

slip
2 in Eq. (7e). Note that f ac

increases with the frequency squared, as &fl ∝ ω, whereas v
slip
2

is independent of the frequency, as ∇∥, ∂⊥ ∼ k0 = 1
cfl

ω.
One central quantity in the governing equations (7) for the

acoustic streaming is the acoustic energy flux density Sac,
which enters both in the body force f ac [Eq. (7d)] and in
the slip velocity v

slip
2 [Eq. (7e)]. This quantity is rotating (has

1The standard definition of the full angular momentum density is
L = rL[t] × {ρ[rL(t ), t]v[rL(t ), t]}, defined in terms of the instan-
taneous Lagrangian fluid position rL(t ) = r + d̃1(r, t ) + O(Ma2),
where r is the equilibrium position of the fluid. Taylor expand-
ing ρ[rL(t ), t] ≈ ρ(r, t ) + d̃1 · ∇ρ and v[rL(t ), t] ≈ v(r, t ) + d̃1 ·
∇v(r, t ), and using the expansion in Eq. (2) we obtain the time-
averaged full angular momentum density L = r × {ρfl[v2 + ⟨d̃1 ·
∇ṽ1⟩] + ⟨ρ̃1ṽ1⟩} + ⟨d̃1 × (ρflṽ1)⟩. Here, the last term is Lac from
Eq. (6c) and expresses the angular momentum density of each fluid
particle around its equilibrium position r.

a nonzero curl) if the acoustic fields are rotating, as seen
by taking the curl of Sac = ⟨p̃1ṽ1⟩ and using Eq. (5a) with
∇p1 ≈ iωρflv1 and ∇ × v1 = 0,

∇ × Sac = ω2Lac, (8a)

where Lac is the time-averaged acoustic angular momentum
density defined in Eq. (6c). Using Stokes theorem for any
closed loop shows that the energy flux density Sac, and there-
fore the body force f ac, points in a direction which rotates
around areas with high acoustic angular momentum density

∮
f ac · dl = &flω

c2
fl

∮
Sac · dl = &flω

3

c2
fl

∫
Lac · n dA. (8b)

Hence, bulk-driven streaming is a consequence of acoustic
fields with a nonzero acoustic angular momentum density Lac
defined in Eq. (6c). We refer to acoustic fields with nonzero
Lac as “rotating acoustics.”

III. ACOUSTIC RESONANCE MODES
IN A RECTANGULAR BOX WITH
VISCOUS BOUNDARY LAYERS

We consider the rectangular-box-shaped cavity of dimen-
sions Lx × Ly × Lz, where 0 ! x ! Lx, 0 ! y ! Ly, and 0 !
z ! Lz. Below, we give the solutions for the resonance modes
of the acoustic pressure p1 satisfying Eq. (3) in this ge-
ometry with viscous boundary layers. We refer the reader
to Appendix A for the detailed derivations. The resulting
expressions are valid for frequencies close to resonances of
a high Q factor Q ≫ 1 and for narrow boundary layers [see
Eq. (A3)]. We then evaluate the second-order quantities Sac,
f ac, and Lac which vanish for all single-mode resonances but
not for double-mode resonances, where two single modes are
excited simultaneously by the same frequency.

A. Single-mode resonances

First, neglecting viscosity, the resonance solution for p1 is
proportional to the eigenfunctions Rlmn(r) of the Helmholtz
equation (3a), which are the usual hard-wall standing reso-
nance modes with integer number l , m, and n half-waves in
the x, y, and z directions, respectively,

plmn
1 ∝ Rlmn(r) = cos

(
Kl

xx
)

cos
(
Km

y y
)

cos
(
Kn

z z
)
. (9a)

Here, the wave numbers Kl
x , Km

y , and Kn
z are real-valued,

purely geometrical quantities that dictate the resonance wave
numbers Klmn

0 :

Kl
x = lπ

Lx
, Km

y = mπ

Ly
, Kn

z = nπ

Lz
, (9b)

Klmn
0 =

√(
Kl

x

)2 +
(
Km

y

)2 +
(
Kn

z

)2
. (9c)

In the presence of viscosity and hence viscous boundary lay-
ers, the resonant wave numbers klmn

0 and angular frequencies
ωlmn are down-shifted slightly relative to the inviscid values
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FIG. 1. The modulus |F lmn| (left axis) and phase φlmn
F (right axis)

of the frequency-dependent factor F lmn in Eq. (12c). The double
arrow marks the full-width-at-half-maximum linewidth

√
3klmn

0 &lmn

of |F lmn|.

due to the boundary-layer damping coefficients &lmn
bl :

klmn
0 =

(
1 − 1

2
&lmn

bl

)
Klmn

0 , ωlmn = klmn
0 cfl, (10a)

&lmn
bl =

(
Kl

x

Klmn
0

)2(
δ

Lm
y

+ δ

Ln
z

)
+

( Km
y

Klmn
0

)2(
δ

Ln
z

+ δ

Ll
x

)

+
(

Kn
z

Klmn
0

)2(
δ

Ll
x

+ δ

Lm
y

)
, (10b)

where Ll
x =

∫ Lx

0 cos2(Kl
xx) dx = 1

2 (1 + δ0l )Lx and similarly
for Lm

y and Ln
z . As an example, a pure x mode will have Kl00

0 =
Kl

x and K0
y = K0

z = 0 giving &l00
bl = δ

Ly
+ δ

Lz
corresponding to

the boundary-layer damping from the four boundaries parallel
to the x axis. The total damping coefficient &lmn of the res-
onance mode lmn includes both the boundary-layer-damping
coefficients &lmn

bl and the bulk-damping coefficient &lmn
fl , given

in Eq. (4) with ω = ωlmn,

&lmn = &lmn
bl + &lmn

fl . (11)

For frequencies close to the resonance frequencies, we
have k0 ≈ klmn

0 or ω ≈ ωlmn, and the resonance pressure mode
plmn

1 satisfying Eq. (3) is the product of a complex-valued am-
plitude Plmn

1 , an internal frequency dependency F lmn(k0), and
the usual real-valued, hard-wall spatial dependency Rlmn(r)
from Eq. (9a):

plmn
1 (k0, r) = Plmn

1 F lmn(k0)Rlmn(r) for k0 ≈ klmn
0 , (12a)

Plmn
1 = ρflc2

fl

&lmn

∫
∂!

U1⊥ Rlmn dA∫
!

(Rlmn)2 dV
=

∣∣Plmn
1

∣∣eiφlmn
act , (12b)

F lmn(k0) =
1
2 klmn

0 &lmn

(
k0 − klmn

0

)
+ i 1

2 klmn
0 &lmn

= |F lmn|eiφlmn
F .

(12c)

Here, we have also given Plmn
1 and F lmn in their polar form

and introduced the corresponding external actuation phase
φlmn

act and internal frequency-dependent phase φlmn
F . The phase

φlmn
F is plotted in Fig. 1 together with the modulus |F lmn|.

The total phase φlmn
tot of the mode lmn is the sum of these

phases:

φlmn
tot = φlmn

act + φlmn
F . (13)

B. Double-mode resonances

The bulk-driven acoustic streaming is driven by the body
force f ac, defined in Eq. (7d) and restated here solely in terms
of the pressure p1, by using v1 ≈ −i

ωρfl
∇p1 as given in Eq. (5a):

f ac = &flω

c2
fl

⟨p̃1ṽ1⟩ = &flκfl
1
2

Re[ip1∇p∗
1]. (14)

For any single-mode resonance lmn of the form of Eq. (12a),
this expression will vanish since iplmn

1 is exactly π
2 out of

phase with ∇plmn
1 . This motivates us to consider double-mode

resonances, which occur if two single modes lmn and l ′m′n′

overlap, such that they can be excited simultaneously at the
same frequency f = 1

2π
k0cfl, with klmn

0 ≈ k0 ≈ kl ′m′n′

0 . In that
case, the total pressure is the sum of two modes

p1 = plmn
l ′m′n′ = plmn

1 + pl ′m′n′

1 , (15)

and the body force f ac in Eq. (14) becomes f lmn
l ′m′n′:

f lmn
l ′m′n′ = 1

2&flκflRe
{
i
(
plmn

1 + pl ′m′n′

1

)
∇

(
plmn

1 + pl ′m′n′

1

)∗}

= 1
2&flκfl

{
Re

[
iplmn

1 ∇
(
pl ′m′n′

1

)∗] − Re
[
pl ′m′n′

1 ∇
(
iplmn

1

)∗]}
.

(16)

Inserting the resonance mode Eq. (12a) with Plmn
1 in polar

form yields

f lmn
l ′m′n′ = 1

2&flκfl
∣∣Plmn

1

∣∣∣∣Pl ′m′n′

1

∣∣ F lmn
l ′m′n′ (k0) Klmn

l ′m′n′(r), (17a)

F lmn
l ′m′n′ (k0) = Re

{
iF lmneiφlmn

act
(
F l ′m′n′

eiφl′m′n′
act

)∗}
, (17b)

Klmn
l ′m′n′ (r) = Rlmn∇Rl ′m′n′ − Rl ′m′n′∇Rlmn. (17c)

Here, F lmn
l ′m′n′ (k0) gives the essential frequency dependency (as

&fl is nearly constant over the width of the double mode),
while Klmn

l ′m′n′ (r) with the dimension of a wave vector gives the
spatial dependency and direction of the double-mode body
force. Furthermore, we obtain the double-mode energy flux
density Sl ′m′n′

lmn and acoustic angular momentum density Llmn
l ′m′n′

directly from Eq. (17a) by use of Eqs. (7d) and (8a):

Slmn
l ′m′n′ = 1

2

∣∣Plmn
1

∣∣∣∣Pl ′m′n′

1

∣∣

ρflω
F lmn

l ′m′n′ (k0)Klmn
l ′m′n′(r), (18a)

Llmn
l ′m′n′ = 1

2

∣∣Plmn
1

∣∣∣∣Pl ′m′n′

1

∣∣

ρflω3
F lmn

l ′m′n′ (k0)∇ × Klmn
l ′m′n′(r). (18b)

Note that F lmn
l ′m′n′ (k0) is normalized to be between −1 and 1,

whereas Klmn
l ′m′n′(r) and ∇ × Klmn

l ′m′n′(r) = 2∇Rlmn × ∇Rl ′m′n′
has

the maximum amplitudes k0 and 2k2
0 , respectively.

In Fig. 2 we show results for the nine lowest-frequency
double modes lm0 + ml0 in a square cavity. We plot the body
force f lm0

ml0 ∝ Klm0
ml0 and the z component of the acoustic angu-

lar momentum Llm0
ml0 ∝ ∇ × Klm0

ml0. In the Supplemental Mate-
rial [41] we show 55 examples of double-mode resonances
lm0 + l ′m′0 with l, m, l ′, m′ = 0, 1, 2, 3, 4 in rectangular
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FIG. 2. Rotating acoustics in the xy plane (Kn
z = 0) of a square cavity with Lx = Ly. (a) Kx − Ky space diagram showing the allowed

values of Kl
x and Km

y (black dots). Each quarter circle (b)–(j) corresponds to the angular frequency cfl

√
(Kl

x )2 + (Km
y )2, where the double mode

lm0 + ml0 is excited. (b)–(j) The corresponding acoustic rotation of the double mode lm0 + ml0, where the arrows represent the body force
f lm0

ml0 and the colors show the z component of the spatial dependency ∇ × Klm0
ml0 in Eq. (18b) of the acoustic angular momentum density from

−2k2
0 (light cyan) to 2k2

0 (dark magenta).

cavities with aspect ratios between 1 and 4, and we provide
a MATLAB code to compute these modes.

IV. CONDITIONS FOR OBTAINING A STRONG
ACOUSTIC BODY FORCE

The magnitude of the body force f lmn
l ′m′n′, the acoustic energy

flux density Slmn
l ′m′n′, and the acoustic angular momentum density

Llmn
l ′m′n′ are all proportional to the frequency-dependent factor

F lmn
l ′m′n′ (k0) in Eq. (17b). To study this factor, we rewrite it to

emphasize the total phase difference φl ′m′n′

tot − φlmn
tot between the

single-mode phases given in Eq. (13):

F lmn
l ′m′n′ (k0) = |F lmn||F l ′m′n′| sin

(
φl ′m′n′

tot − φlmn
tot

)
. (19)

Consequently, two conditions must be fulfilled to yield a
strong body force: (i) the overlap condition, i.e., the two
single-mode resonances must have a large overlap in fre-
quency space to ensure a large value of the amplitude
|F lmn||F l ′m′n′|, and (ii) the phase condition, i.e., the difference
φl ′m′n′

tot − φlmn
tot in phases must be close to ± π

2 to ensure a large
value of the sine factor.

A. Overlap condition: Aspect ratios

The condition that both |F lmn| and |F l ′m′n′| are large in
Eq. (19) is satisfied if the modes overlap. This occurs if
the resonance frequencies are nearly identical, klmn

0 ≈ kl ′m′n′

0 or,
equivalently,
(

lπ
Lx

)2

+
(

mπ

Ly

)2

+
(

nπ

Lz

)2

≈
(

l ′π

Lx

)2

+
(

m′π

Ly

)2

+
(

n′π

Lz

)2

,

(20)

where we have used that &lmn
bl ≪ 1 in Eq. (10a) so klmn

0 ≈
Klmn

0 . In the general case, Eq. (20) gives a myriad of possible
mode combinations. If we restrict ourselves to horizontal
modes, where n = n′ = 0, we can solve for the aspect ratio
A = Lx

Ly
in Eq. (20):

A = Lx

Ly
≈

√
l ′2 − l2

m2 − m′2 . (21)

Listing the integers l, m, l ′, m′ for which A is real, we find that
the square cavity with A ≈ 1 is the richest case having the
highest number of allowed double-mode excitations. In Fig. 2,
we show the first nine horizontal double-mode excitations in
a square cavity with A = 1 and n = n′ = 0. In this case, the
condition in Eq. (20) corresponds to two points ( lπ

Lx
, mπ

Ly
) and

( l ′π
Lx

, m′π
Ly

) both lying on the same quarter circle of radius K0, as
illustrated by the black dots in Fig. 2(a).

B. Phase condition: Rotating versus nonrotating actuation

The straightforward way to obtain rotating acoustics is to
actuate a given system with two transducers running with a
phase difference of φl ′m′n′

act − φlmn
act = ± π

2 , a technique that has
been used in many experiments to generate acoustic radiation
torques [26,31–35]. Remarkably, even in the standard case
of microfluidic ultrasound experiments driven by a single
piezoelectric transducer with a nonrotating actuation, φl ′m′n′

act −
φlmn

act = 0, a rotating acoustic field may nevertheless be gener-
ated because the total phase difference φl ′m′n′

tot − φlmn
tot = φl ′m′n′

F −
φlmn

F may be close to ± π
2 due to the internal phases φlmn

F of
the frequency-dependent factors F lmn(k0) [see Eq. (12c) and
Fig. 1].
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V. NONROTATING ACTUATION OF ROTATING
DOUBLE-MODE RESONANCES IN

A NEARLY SQUARE CAVITY

We now show how a nonrotating actuation can lead to
a rotating double-mode resonance in a nearly square cavity
characterized by the average side length L⋆ = 1

2 (Lx + Ly) and
the small symmetry breaking d = Lx − Ly:

Lx = L⋆ + 1
2 d, Ly = L⋆ − 1

2 d, with |d| ≪ L⋆. (22)

The magnitude of the resulting acoustic body force f ac de-
pends strongly on the symmetry breaking d , and for a given
double mode we determine how much the aspect ratio A =
Lx/Ly ≈ 1 + d/L⋆ should deviate from unity to maximize f ac.
Specifically, we consider the symmetric double-mode excita-
tions lm0 + ml0 in the horizontal xy plane of the type shown
in Fig. 2. For such double modes, the analysis simplifies
significantly, not only because z drops out, but also because
the damping coefficients &lm0 and &ml0 from Eqs. (10b) and
(11) are almost identical. In short, we consider the following
situation:

Nearly square cavity: Lx ≈ L⋆ ≈ Ly, (23a)

Horizontal xy modes: n = n′ = 0, (23b)

Symmetric double modes: l ′m′ = ml, (23c)

Nonrotating actuation: φlm0
act = φml0

act , (23d)

Similar damping coefficients: &lm0 ≈ &ml0. (23e)

To analyze the strength of the acoustic body force, we ex-
amine the factor Fml0

lm0 (k0) in Eq. (17b) that describes the
frequency dependency of the acoustic body force. For the
double mode lm0 + ml0, we introduce the short two-subscript
notation Flm(k0) for this quantity:

Flm(k0) = F lm0
ml0 (k0) = Re{i[F lm0][F ml0]∗}

= |F lm0||F ml0| sin
(
φml0

F − φlm0
F

)
, (24)

where the functions F lm0(k0) and F ml0(k0) behave as shown
in Fig. 1. Note that if the modes lm0 and ml0 have equal
resonance frequencies, they have full mode overlap, and the
product |F lm0||F ml0| is maximized, while sin (φml0

F − φlm0
F )

vanishes, and there is no body force. To maximize Flm(k0),
the two modes must therefore be separated sufficiently to
ensure that the phase difference φml0

F − φlm0
F deviates from

zero, but not too much, as a decreased mode overlap reduces
the modulus product |F lm0||F ml0|. Therefore, we cannot in
this case perfectly fulfill both the overlap condition, Sec. IV A,
and the phase condition, Sec. IV B, so the strongest body force
is found at a certain mode separation ,lm = klm0

0 − kml0
0 be-

tween the resonance wave numbers, which gives only partial
mode overlap and a phase difference that deviates from the
ideal ± π

2 .
The mode separation ,lm is induced by the symmetry

breaking d , and similar to Eq. (22), we introduce the cen-
ter wave number k⋆

lm = 1
2 (klm0

0 + kml0
0 ) corresponding to the

TABLE I. Overview of the damping coefficients &, the full-
width-at-half-maximum (FWHM) linewidths, and the mode separa-
tion ,.

Parameter Symbol Reference

Bulk damping &fl Eq. (4)

Boundary-layer damping &lmn
bl Eq. (10b)

Total damping &lmn Eq. (11)

FWHM of |F lmn|
√

3klmn
0 &lmn Fig. 1

FWHM of Elmn
ac ∝ |F lmn|2 klmn

0 &lmn Eqs. (6),(12)

Optimal mode separation ,
opt
lm

1√
3

k⋆
lm&⋆

lm Eq. (29b)

center frequency between the two modes and write

klm0
0 = k⋆

lm + 1
2
,lm, kml0

0 = k⋆
lm − 1

2
,lm, (25a)

k⋆
lm ≈

(
1 − 1

2
&lm0

bl

)√
l2 + m2 π

L⋆
. (25b)

The relation between the mode separation ,lm, the sym-
metry breaking d , and the aspect ratio A = Lx/Ly is found

by inserting Eq. (22) into klm0
0 =

√
( lπ

Lx
)2 + ( mπ

Ly
)2 + O(&lm0),

expanding in the small ratio d
L⋆ , and comparing with Eq. (25a),

,lm ≈ m2 − l2

√
m2 + l2

π

L⋆

d
L⋆

≈ m2 − l2

√
m2 + l2

π

L⋆
(A − 1). (26)

Since the damping coefficients are nearly identical &lm0 ≈
&⋆

lm ≈ &ml0, with &⋆
lm = 1

2 (&lm0 + &ml0) being the average
value, it is convenient to scale all wave-number quantities by
their common linewidth &⋆

lmk⋆
lm (see the overview listed in

Table I):

k̃0 = k0

k⋆
lm&⋆

lm

, k̃⋆
lm = 1

&⋆
lm

, ,̃lm = ,lm

k⋆
lm&⋆

lm

. (27)

In terms of these quantities, we write the frequency dependen-
cies F lm0(k0) and F ml0(k0) from Eq. (12c) as

F lm0(k0) = 1

2(k̃0 − k̃⋆
lm) − ,̃lm + i

, (28a)

F ml0(k0) = 1

2(k̃0 − k̃⋆
lm) + ,̃lm + i

. (28b)

In Figs. 3(a) and 3(b) we show as in Fig. 1 the modulus
and phase, respectively, of F lm0 and F ml0 for four different
mode separations ,̃lm = 0.10, 0.58, 1.50, 3.00. In Fig. 3(c)
we show for the same values of ,̃lm the frequency dependency
Flm(k0) from Eq. (24) of the acoustic body force. We note that
there exists an optimal mode separation ,̃

opt
lm that yields the

largest possible value Fopt
lm of Flm found at the optimal wave

number kopt
0 . In Eq. (B5) of Appendix B we show that

kopt
0 = k⋆

lm, (29a)

,̃
opt
lm = ± 1√

3
= ± 0.58, (29b)

Fopt
lm = ± 3

√
3

8
= ± 0.65. (29c)
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FIG. 3. Plots of |F ml0|, |F lm0|, φml0
F , φlm0

F , and Flm as a function
of k̃0 − k̃⋆

lm, each for the four values 3.00, 1.50, 0.58, and 0.10 of
the mode separation ,̃lm. (a) The modulus |F | and (b) the phase φF

of F lm0 (right, solid) and F ml0 (left, dashed) given in Eq. (28). At
the optimal mode separation ,̃

opt
lm = 1√

3
≈ 0.58 (orange), the phase

difference at the center frequency is π
3 . (c) The frequency-dependent

factor Flm(k0), from Eq. (24), which describes the strength of the
acoustic body force f ac, when the modes of same color in (a) and
(b) are combined.

This means that the optimal frequency is the center frequency
between the modes, and the optimal mode separation is 1√

3
of

the full-width at half-maximum. Inserting the optimal condi-
tions (29a) and (29b) into Eq. (28) reveals the phase difference
between the modes at the optimal conditions, a value different
from ± 1

2π ,
(
φml0

F − φlm0
F

)opt = ± 1
3 π . (29d)

By using Eq. (26), we translate the optimal mode separation
,̃

opt
lm into the optimal size of the symmetry breaking dopt

lm =
(Lx − Ly)opt

lm and the corresponding aspect ratio Aopt
lm = ( Lx

Ly
)opt
lm ,

where the acoustic body force f ac of the double mode lm0 +
ml0 is maximized:

dopt
lm = ,̃

opt
lm

l2 + m2

m2 − l2
&⋆

lmL⋆, (29e)

Aopt
lm = 1 + 1

L⋆
dopt

lm . (29f)

For all the double modes shown in Fig. 2, we have l > m, so
for a nonrotating actuation, the rotation direction of the body
force will therefore be as shown in the case of d < 0 (corre-
sponding to Lx < Ly and A < 1), and opposite for d > 0. Note
from Eq. (29e) that this asymmetry-induced rotating acoustics
is extremely sensitive to d . In practice, it may be difficult to
control this mechanism, as it requires a fabrication accuracy

TABLE II. Material parameters for water [45] and pyridine
(C5H5N) [46] at 25 ◦C used in the numerical simulations.

Parameter Symbol Water Pyridine Unit

Mass density ρfl 997.05 982 kg m−3

Compressibility κfl 448 507 TPa−1

Speed of sound cfl 1496.7 1417 m s−1

Dynamic viscosity ηfl 0.890 0.879 mPa s
Bulk viscosity ηb

fl 2.485 62.4 mPa s

much smaller than d/L⋆ ∼ &⋆
lm, which in microfluidic devices

typically is smaller than 1% [42].

VI. 3D SIMULATION OF ACOUSTIC STREAMING
IN A NEARLY SQUARE CAVITY

In this section we validate by direct numerical simulation
the theory for rotating acoustics induced by a nonrotating ac-
tuation in a weakly symmetry-broken geometry. We simulate
the acoustic pressure p1 and the acoustic streaming v2 in a
shallow, nearly square cavity in three dimensions (3D). We
choose a cavity similar to that investigated experimentally by
Hagsäter et al. [39], and simulated in 3D using the hard-wall
approximation by Lei et al. [43], and including the actuator
and elastic walls by Skov et al. [44]. The cavity has the
mean side length L⋆ = 2000 µm, Lx = L⋆ + 1

2 d , Ly = L⋆ −
1
2 d , and height Lz = 200 µm. We use Eq. (29) to optimize the
symmetry breaking d and actuation frequency f = 1

2π
k0cfl to

obtain the strongest possible rotating acoustic streaming. The
coordinate system is the same as in Sec. III, with 0 ! x ! Lx,
0 ! y ! Ly, and 0 ! z ! Lz. To mimic an actuation from a
broad piezoelectric transducer, the boundary is taken to be
stationary everywhere, except at the bottom boundary z = 0,
where we apply the nonrotating Gaussian displacement in the
normal direction z:

u1 =
{

u0
1zG1(x, y) ez for z = 0,

0 otherwise,

G1(x, y) = exp

[

−
(
x − Lx

2

)2

( Lx
2

)2 −
(
y − Ly

2

)2

( Ly

2

)2

]

. (30)

This actuation displacement has the maximum amplitude
of u0

1z in the cavity center and the minimum amplitude of
e−2u0

1z ≈ 0.14 u0
1z in the corners of the cavity. In Secs. VI C 1–

VI C 4 the fluid is water, and in Sec. VI C 6 it is pyridine. The
material parameters for these fluids are listed in Table II.

In the following simulations, we excite the double-mode
resonance l00 + 0l0 with l = 2, 4, and 6. Using our ana-
lytical expressions (17), we have in Fig. 2 shown the spatial
dependency of the acoustic body force f ac = f l00

0l0 for these
particular double modes. As seen in Eq. (7), this body force is
the source of the bulk-driven acoustic streaming, so we predict
that the numerical simulation of the bulk-driven streaming
will result in a 2 × 2 pattern as in Fig. 2(c) for l = 2, a 4 × 4
pattern as in Fig. 2(h) for l = 4, and similarly for l = 6 (not
shown in Fig. 2).
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A. Choosing the parameters

We derived in Sec. III analytical expressions for the acous-
tic resonance modes including the viscous boundary layers,
and we derived in Sec. V the conditions on the geometry of
a nearly square cavity for which the body force f ac and the
acoustic rotation are maximized for a nonrotating actuation.
Remarkably, these analytic results allow an analytical deter-
mination of the parameter values that lead to the strongest
rotating acoustic streaming in the xy plane.

For the double mode l00 + 0l0, the small damping coef-
ficients &l00

fl ≈ &0l0
fl in Eq. (4) and &l00

bl ≈ &0l0
bl in Eq. (10b)

are computed by approximating the angular frequency by the
constant value ω = cflk⋆

l0 ≈ cfl
lπ
L⋆ [see Eq. (25b)]:

&l00
fl ≈

(
4
3

+ ηb
fl

ηfl

)
ηfl

ρflcfl

lπ
L⋆

≈ &0l0
fl , (31a)

&l00
bl ≈ δ

L⋆
+ δ

Lz
≈ &0l0

bl , δ ≈

√
2ηflL⋆

lπcflρfl
. (31b)

Combining Eqs. (10a), (29a), and (25b), we obtain an ex-
pression for the boundary-layer shifted, optimal double-mode
actuation frequency, which is the center frequency of the two
single modes

f ⋆
l0 ≈ l

2

(
1 − 1

2
&l00

bl

)
cfl

L⋆
. (32)

The optimal symmetry breaking dopt
l0 and the corresponding

aspect ratio Aopt
l0 then follow from Eqs. (29e) and (29f):

dopt
l0 ≈ −1√

3

(
&l00

bl + &l00
fl

)
L⋆, (33a)

Aopt
l0 ≈ 1 − 1√

3

(
&l00

bl + &l00
fl

)
. (33b)

Finally, we set the pressure amplitudes Pl00
1 = P0l0

1 = 1 MPa
in Eq. (12b), and compute the corresponding amplitude u0

1z of
the actuation displacement in Eq. (30) as

u0
1z =

LxLyLz
(
&l00

fl + &l00
bl

)
κflPl00

1

2
∫ Lx

0

∫ Ly

0 G1(x, y) cos
( lπ

L⋆ x
)

dx dy
. (34)

For water and l = 2, 4, and 6, the values of the expressions in
Eq. (31)–(34) are listed in Table III. For pyridine, we adjust
the actuation amplitude and actuation frequency to maintain
the resonance amplitudes of Pl00

1 = P0l0
1 = 1 MPa. Note that

for pyridine, we use the same optimal symmetry breaking
dopt

l0 as used for water. Combining Eqs. (24), (28) and (29e)
with the material parameters in Table II leads to the values
Fl0 = 0.65, 0.64, and 0.63 for l = 2, 4, and 6, respectively,
which are nearly the same as the optimal value Fopt

l0 = 0.65
given in Eq. (29c).

B. Implementation in COMSOL

As in our previous work [24,44,47], the simulation is
performed in two steps using the weak form PDE module
in the finite-element-method software COMSOL MULTIPHYSICS
[48]. In the first step, we solve for the acoustic pressure p1 by
implementing Eq. (3) in weak form, and in the second step
we solve Eq. (7) for the steady streaming v2 and pressure p2.

TABLE III. Parameters used in the numerical simulations of the
double modes l00 + 0l0. The geometry parameters are optimized for
maximum acoustic rotation in water, and the resulting dependent
parameters (damping factors and mode amplitudes) are listed for
both water and pyridine.

Parameter Eq. Unit l = 2 l = 4 l = 6

Geometry (optimized for water)
dopt

l0 Eq. (33a) µm −3.922 −2.785 −2.286

Aopt
l0 Eq. (33b) 1 0.9980 0.9986 0.9989

L⋆ µm 2000 2000 2000
Lz µm 200 200 200

Dependent parameters (water)
u0

1z Eq. (34) nm 1.450 7.474 14.027

f ⋆
l0 Eq. (32) MHz 0.747 1.494 2.243

&l00
fl ≈ &0l0

fl Eq. (31a) 10−3 0.008 0.015 0.023

&l00
bl ≈ &0l0

bl Eq. (31b) 10−3 3.389 2.396 1.957

Dependent parameters (pyridine)
u0

1z Eq. (34) nm 1.757 9.665 19.617

f ⋆
l0 Eq. (32) MHz 0.707 1.415 2.123

&l00
fl ≈ &0l0

fl Eq. (31a) 10−3 0.144 0.287 0.431

&l00
bl ≈ &0l0

bl Eq. (31b) 10−3 3.488 2.467 2.014

The zero level of p2 is fixed by using the global constraint∫
!

p2 dV = 0. Excerpts of the COMSOL code that we use
are given in Ref. [44]. For numerical efficiency, we exploit
the symmetry at the vertical planes x = 1

2 Lx and y = 1
2 Ly,

where we apply the symmetry conditions n · ∇p1 = 0, n ·
v2 = 0, and n · ∇v2∥ = 0. The computational domain is thus
reduced to the quadrant 0 ! x ! 1

2 Lx and 0 ! y ! 1
2 Ly. We

use quartic-, cubic-, and quadratic-order Lagrangian shape
functions for p1, v2, and p2, respectively, and with a tetrahe-
dral finite-element mesh of mesh size 1

6 Lz, we obtain 1.3 ×
106 degrees of freedom and a relative accuracy better than
1%. The simulations were performed on a workstation with
a 3.5-GHz Intel Xeon CPU E5-1650 v2 dual-core processor,
and with a memory of 128 GB RAM.

C. Simulation results

1. Acoustic pressure

In Fig. 4, we show the simulation results pnum
1 of the

acoustic pressure p1 in water for l = 6 in 3D and line plots
for l = 2, 4, and 6. These three modes are examples of rotat-
ing double modes actuated by the wide, single, nonrotating
Gaussian actuation G1 [Eqs. (30) and (34)] at the bottom
boundary z = 0. In the Supplemental Material [41] we show
the rotating dynamics of the pressure contours similar to
Fig. 4(a) for l = 2, 4, and 6 as gif animations. In Fig. 4
we also show the analytical result pana

1 = pl00
0l0 = pl00

1 + p0l0
1 ,

which is obtained from Eqs. (12) and (15) with the optimal
mode separation kl00

0 − k0l0
0 = 1√

3
k⋆

l0&
⋆
l0 [Eq. (29b)] and mode

amplitudes Pl00
1 = P0l0

1 = 1 MPa:

pana
1 = pl00

0l0 = 1 MPa ×
[

cos
( lπx

L⋆

)

− 1√
3

+ i
+

cos
( lπy

L⋆

)

1√
3

+ i

]

. (35)

023104-8



BULK-DRIVEN ACOUSTIC STREAMING AT RESONANCE … PHYSICAL REVIEW E 100, 023104 (2019)

FIG. 4. The acoustic pressure p1 for water in the nearly square
cavity with parameters given in Tables II and III, where the double
mode l00 + 0l0 is excited by the nonrotating actuation G1 [Eqs. (30)
and (34)]. (a) Pressure contour plot for l = 6 of the analytic solu-
tion Im(pana

1 ) [Eq. (35)] (for x < 1
2 Lx), and the numerical solution

Im(pnum
1 ) (for x > 1

2 Lx). (b) Line plots of the pressure Im(pana
1 )

(solid) and Im(pnum
1 ) (dots) along the green line in (a) at y = 1

2 Ly

and z = Lz for the modes l = 2 (blue), l = 4 (orange), and l = 6
(yellow). Animations of the rotating acoustic fields are shown in the
Supplemental Material [41].

In Fig. 4(b), we compare Im (pnum
1 ) and Im (pana

1 ) and find a
quantitative agreement better than 1%. The reason for choos-
ing the imaginary part is to single out the resonant part of
the field, which is phase shifted by the factor exp (i π

2 ) = i
relative to the actuation displacement u1 at the boundary
Eq. (30). All nonresonant contributions are in phase with u1.
In the Supplemental Material [41] is shown an animated gif
file2 of the full cycle in the time domain of the line plots in
Fig. 4(b) of p1. These animations reveal that the deviation
of the analytical solution from the numerical one is ∼ 1% for
l = 2 at 0.75 MHz, ∼ 15% for l = 4 at 1.5 MHz, and ∼ 30%
for l = 6 at 2.2 MHz. The deviation increases for increasing
mode number because the wide vertical G1 actuation couples
strongly to the vertical 001 mode through the amplitude
factor P001

1 of Eq. (12b), while the frequency-dependency
factor F 001(k0) of Eq. (12c), which is very small away from
resonance, increases significantly as the actuation frequency
f = cflk0 approaches the vertical-mode resonance f 001

0 = 3.7
MHz. We can reduce the coupling P001

1 to the vertical 001
mode by reducing the width of the G1 actuation profile. This
is demonstrated in the animated gif file3 of the Supplemental
Material [41], where the width of the G1 actuation has been
reduced by a factor of 6 from 1

2 L⋆ to 1
12 L⋆. This results in a de-

creased deviation, now less than ∼ 1%, of the analytical result
from the numerical one for p1 for all three modes l = 2, 4, 6.

2“p1_246_wide_G1.gif”
3“p1_246_narrow_G1.gif”

FIG. 5. Simulation of the rotating acoustics in the x-y plane
for the double mode 200 + 020 in water for three aspect ratios
A ≈ 1.002, 1, 0.998 each for the nonrotating (G1) and rotating
(G16) actuation perpendicular to the plane. Color plots between
± 10−4 kg m−1s−1 (light cyan to dark magenta) of the z component
Lac,z of the angular momentum density Lac, and vector plots of
the acoustic body force f ac (max 2.00 N m−3). In (a)–(c) we use
the single nonrotating Gaussian actuation G1 (large red circles)
[Eqs. (30) and (34)]. In (d)–(f) we use the rotating actuation profile
G16 of four quadruples of phase shifted Gaussian profiles given in
Eq. (C1) of Appendix C [light red (up), black (0), dark blue (down),
and black (0) circles, respectively] to generate an actuation rotating
in the direction of the thick brown arrows. A ≈ 1.002 and 0.998 are
chosen to optimize the acoustic rotation for the nonrotating actuation
[see Eq. (29)].

2. Acoustic body force and angular momentum density

In Fig. 5, we validate our analysis in Sec. V of rotating
double modes induced by a nonrotating actuation. For the
double mode 200 + 020, we plot the body force f ac = f 200

020
from Eq. (17), which according to Eq. (7) is the source of
the bulk-driven acoustic streaming, and the acoustic angular
momentum density Lac = L200

020 from Eq. (18b) in the center
plane z = 1

2 Lz. We show results for three different cavity
aspect ratios A = Lx/Ly for both the nonrotating wide Gaus-
sian actuation G1(x, y), given in Eq. (30), and for the exter-
nally controlled rotating actuation G16(x, y) consisting of four
quadruples of narrow Gaussian actuations [see Eq. (C1) of
Appendix C]. As expected, the nonrotating actuation G1 used
in Figs. 5(a)–5(c) induces no acoustic rotation for a perfect
square cavity A = 1 [Fig. 5(b)], while it induces different
rotation directions for A slightly larger and smaller than unity
[see Figs. 5(a) and 5(c), respectively]. In contrast, the rotating
actuation G16 used in Figs. 5(d)–5(f) for the same three aspect
ratios, induces an acoustic rotation, which is maximized in
the perfect square cavity A = 1 [see Fig. 5(e)]. We show in
Eq. (C4) of Appendix C that this rotating actuation excites
the modes 200 and 020 with a phase difference φ020

act − φ200
act ≈

0.5π such that the factor F200
020 in Eq. (19) is positive, and

consequently the rotation pattern in Figs. 5(d)–5(f) is in the
same direction as shown in Fig. 2(c).

In Fig. 6 we investigate the strength and rotation direction
of the body force f 200

020 as a function of the mode separation
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FIG. 6. The largest possible value (positive and negative) of
F lm0

ml0 ∝ f ac versus varying mode separation ,̃lm (lower x axis) or
aspect ratio A (upper x axis), shown for nonrotating actuations (blue)
and rotating actuations (light cyan). The numerical values (dots) are
found by evaluating (F200

020 )num from Eq. (36) in the simulation of the
double mode 200 + 020 shown in Figs. 5(a)–5(c) for the nonrotating
and Figs. 5(d)–5(f) for the rotating actuation. The analytical curves
(solid) are from the expressions derived in Eq. (B4a) (nonrotating
act.), Eq. (B7a) (rotating act., corotating), and Eq. (B8a) (rotating
act., counter-rotating) of Appendix B. The black-edged circles corre-
spond to those of the same color in Fig. 3(c).

,̃20 or, equivalently, the aspect ratio A. From Eq. (17a),
this dependency is quantified through the factor F200

020 which
we obtain numerically from the simulation of the double
mode 200 + 020 in Fig. 5 by calculating the acoustic angular
momentum Lac and using Eq. (18b):

(
F200

020

)
num ≈

Lac,z
( 1

4 Lx,
1
4 Ly

)
∣∣P200

1

∣∣∣∣P020
1

∣∣(ωρflc2
0

)−1 . (36)

Here, for pressure amplitudes |P200
1 | = |P020

1 | = 1 MPa, the
denominator evaluates to 0.954 × 10−4 kg m−1 s−1, which is
indeed the maximum value found numerically in Fig. 5(e),
such that (F200

020 )num takes the maximum value of unity,
as expected. In Fig. 6 we plot the largest possible value
of (F200

020 )num both for the nonrotating actuation used in
Figs. 5(a)–5(c) and for the rotating actuation used in
Figs. 5(d)–5(f). We also plot the analytical expressions for
(F lm0

ml0 )extr
ana derived in Appendix B and find a quantitative

agreement better than 1%. For the nonrotating actuation (the
dark blue curve in Fig. 6), the acoustic rotation direction
is determined by the aspect ratio A, and it reverses as A
crosses over from A < 1 to A > 1 around the perfect square
A = 1. For the rotating actuation (the light blue curves in
Fig. 6), the rotation direction can be either corotating or
counter-rotating (at different frequencies) with respect to the
rotation direction of the actuation. However, for small mode
separations |,̃lm| < 1, which for the double mode 200 + 020
corresponds to |A − 1| < 0.34%, the rotation direction of the
acoustic field can only be corotating. For further details, see
Appendix B.

3. Acoustic streaming

In Fig. 7, we show the acoustic streaming velocity v2 in
3D resulting from the double mode 600 + 060 displayed in
Fig. 4(a), which is excited by the nonrotating actuation G1. As
mentioned above, this situation is similar to that investigated

FIG. 7. Numerical simulation of the acoustic streaming velocity
v2 (black arrows) and its magnitude from 0 (black) to 0.17 mm/s
(white) induced by the nonrotating actuation G1. The setup and the
parameters are the same as in Fig. 4 with the parameters listed in
Tables II and III. The horizontal plane at z = 1

2 Lz (dark blue edge)
and the vertical plane at y = 1

2 Ly (light green edge) are displayed in
Fig. 8.

experimentally by Hägsater et al. [39]. Remarkably, in the
optimized geometry of Fig. 7, the horizontal 6 × 6 streaming-
roll pattern at any height 0 ! z ! Lz is strongest in the center
of the cavity, z = 1

2 Lz, thus indicating its bulk-driven origin.
In the bottom plane z = 0 (shown in Fig. 7) and in the top
plane z = Lz (not shown in Fig. 7), the slip velocity v

slip
2 is

dominated by the gradient term in the expression (7e) for the
slip velocity, and has only a weak rotating component.

In Fig. 8, we compare the results for the acoustic streaming
v2 [see Eq. (7)] for the double modes l00 + 0l0 with l =
2, 4, 6. The streaming is shown in the horizontal x-y center
plane at height z = 1

2 Lz (dark blue edge in Fig. 7) and in
the vertical x-z center plane at y = 1

2 Ly (light green edge
in Fig. 7). In the first row [Figs. 8(a)–8(c)] we show the
bulk-driven streaming alone ( f ac on, v

slip
2 off); in the second

row [Figs. 8(d)–8(f)] we show the boundary-driven streaming
alone ( f ac off, v

slip
2 on); in the third row [Figs. 8(g)–8(i)] we

show the total streaming ( f ac on, v
slip
2 on). Comparing the

bottom-row and top-row panels in Fig. 8 strongly indicate
that the respective 4 × 4 and 6 × 6 streaming-roll patterns in
Figs. 8(h) and 8(i) are bulk driven. Furthermore, Figs. 8(a)–
8(c) show that the bulk-driven acoustic streaming becomes
stronger for higher mode number l and thus for higher fre-
quency f . In contrast, the boundary-driven acoustic streaming
[Figs. 8(d)–8(f)] stays almost constant in amplitude and shows
no frequency dependency. Note that the bulk-driven streaming
in Figs. 8(a)–8(c) has its maximum velocity vmax

2 in the bulk of
the fluid whereas the boundary-driven streaming in Figs. 8(d)–
8(f) has its maximum velocity vmax

2 at the boundaries.

4. Comparison with the analytical expression
for the bulk-driven streaming

When the no-slip condition on the vertical side walls is
ignored, we can derive an approximate analytical expression
for the bulk-driven streaming (vblk

2 )l0 for the double modes
l00 + 0l0. The details are given in Appendix D, where we find
(vblk

2 )l0 to be proportional to the acoustic energy flux density
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FIG. 8. Simulation of the acoustic streaming velocity v2 in water from 0 (black) to 0.17 mm/s (white) in the horizontal (x-y) center plane at
z = 1

2 Lz (dark blue edge as in Fig. 7) and the vertical (x-z) center plane at y = 1
2 Ly (light green edge as in Fig. 7). The length of the longest arrow

represents vmax
2 listed in each plot. The used parameters are listed in Tables II and III. In each column the double mode l00 + 0l0 is excited

for l = 2, 4, and 6, respectively. The first row (a)–(c) shows the bulk-driven streaming, the second row (d)–(f) shows the boundary-driven
streaming, and the third row (g)–(i) shows the total streaming. 3D results corresponding to (i) are shown in Fig. 7.

Sl0 = Sl00
0l0 of Eq. (18a):

(
vblk

2

)
l0 = 1

2

(
4
3

+ ηb
fl

ηfl

)[

1 −
cosh

( 2z−Lz√
2

k⋆
l0

)

cosh
( 1√

2
k⋆

l0Lz
)
]

κflSl0. (37)

Inserting here k⋆
l0 = lπ

L⋆ and expression (18a) for Sl0 with

Fl0 = 3
√

3
8 from Eq. (29c), we obtain the maximum value

of the bulk-driven streaming velocity in the center plane
z = 1

2 Lz:

(
vblk

2

)max
l0 =

3
√

3
[
1 − sech

( lπLz√
2L⋆

)]( 4
3 + ηb

fl
ηfl

)∣∣Pl00
1

∣∣∣∣P0l0
1

∣∣

32ρ2
flc3

fl
.

(38)

For the three cases shown in Figs. 8(a)–8(c), where we have
used Pl00

1 = P0l0
1 = 1 MPa and l = 2, 4, 6, respectively, we

calculate from Eq. (38) the maximum values 0.018, 0.060, and
0.102 mm/s, which deviate less than 7% from the correspond-
ing results 0.017, 0.060, and 0.110 mm/s from the numerical
simulation, listed in Figs. 8(a)–8(c). For l = 2, the analytical
prediction of 0.018 mm/s overestimates by 5% the numerical
value 0.017 mm/s because it neglects the significant viscous
damping from the vertical side walls in this case. For l = 6,
the analytical prediction of 0.102 mm/s underestimates

by 7% the numerical value 0.110 mm/s because the latter
includes the coupling to the vertical 001 mode through
the wide 1

2 L⋆-width vertical G1 actuation as discussed in
Sec. VI C 1. When changing to the narrow 1

12 L⋆-width vertical
G1 actuation, also discussed in Sec. VI C 1, the coupling to
the vertical 001 mode diminishes so much that the numerical
streaming amplitudes become 0.017, 0.060, and 0.103 mm/s
for l = 2, 4, 6, respectively, where the latter now deviates less
than 1% from the analytical prediction 0.102 mm/s. These
numerical results for the acoustic streaming are shown in a
pdf file4 in the Supplemental Material [41].

5. Bulk-driven versus boundary-driven streaming rolls

We address the question on whether the horizontal stream-
ing rolls in the xy plane are due to the bulk-driven streaming
or the boundary-driven streaming. We restrict the discussion
to horizontal double modes l00 + 0l0, for which we have
found the analytical expressions for the bulk-driven streaming
(vblk

2 )l0 [Eq. (37)] and the slip velocity v
slip
2 [Eq. (7e)] at the

top (z = Lz) and bottom (z = 0) boundaries.

4“fig_08_narrow_G1.pdf”
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FIG. 9. Simulation of the acoustic streaming v2 from 0 mm/s (black) to vmax
2 (white) for the exact same geometry as in Figs. 8(g)–8(i), but

with the water replaced by pyridine, having the material parameters listed in Table II and actuation amplitude u0
1z and actuation frequency f ⋆

l0
given in Table III. The maximum values in (a)–(c) are 2.8, 8.2, and 13.9 times the corresponding values in Figs. 8(g)–8(i).

According to Eq. (7e), the boundary-driven streaming ve-
locity at the double-mode resonance l00 + 0l0 is driven by
a slip velocity, which contains the term 1

2κflSac that rotates
in the direction of the acoustic energy flux density Sac, just
as the bulk-driven streaming [see Eq. (37)]. The other terms
in the slip velocity have similar magnitude, but they are
gradient terms which cannot drive a rotating streaming in
the horizontal xy plane. Therefore, as seen in Figs. 8(d)–8(f),
the boundary-driven streaming does not lead to horizontal
flow rolls as clearly as the bulk-driven streaming does [see
Figs. 8(a)–8(c)]. There may, however, exist horizontal planes
at a few specific heights z, where the horizontal flow-roll
pattern appears more clearly as suggested by Lei et al. [43]
and analyzed further by Skov et al. [44].

By using Eqs. (7e) and (37), we compute the ratio of the
horizontally rotating bulk-driven streaming |[vblk

2 (z = Lz
2 )]l0|

in the center of the cavity to the horizontally rotating
boundary-driven streaming | 1

2κflSac(z = 0)| at the bottom
boundary,
∣∣[vblk

2

(
z = Lz

2

)]
l0

∣∣
∣∣ 1

2κflSl0(z = 0)
∣∣ =

(
4
3

+ ηb
fl

ηfl

)[
1 − sech

(
lπLz√

2L⋆

)]
. (39)

This velocity ratio takes values from 0 (boundary-driven
streaming dominates) for a flat cavity lLz ≪ L⋆ to 4

3 + ηb
fl

ηfl

(bulk-driven streaming dominates) for a high cavity lLz ≫ L⋆.
For water, the velocity ratio (39) lies between 0 and 4.13, and
in the setup of Figs. 4–8 with Lz = 0.1L⋆ and water as the
fluid, we obtain the values of the velocity ratio to be 0.38, 1.22,
and 2.09 for l = 2, 4, and 6, respectively. This result indicates
that the 6 × 6 streaming roll pattern with l = 6 observed by
Hagsäter et al. [39] is predominantly bulk-driven, as also seen
by comparing Figs. 8(c) and 8(i). In contrast, for the lower
mode l = 2, the horizontal streaming rolls are predominantly
boundary driven, which is seen by comparing Figs. 8(d) and
8(g).

The crossover from boundary- to bulk-driven horizontal
streaming rolls may be characterized by the height-to-width
ratio B = lLz/L⋆: we compute the critical value Bcrit , where
the velocity ratio (39) is unity, and thus,

l
Lz

L⋆
< Bcrit, boundary-driven streaming dominates,

l
Lz

L⋆
> Bcrit, bulk-driven streaming dominates. (40)

For water, Eq. (39) leads to the ratio Bcrit
water = 0.35, and

since Lz = 0.1L⋆ in the setup of Figs. 4–8, we find that the
horizontal streaming rolls in the double modes l00 + 0l0 with
l ! 3 are predominantly boundary driven, while for l " 4
they are bulk driven.

6. Enhancement of the bulk-driven streaming velocity
by increasing the bulk viscosity

For a given resonance mode with a given acoustic pressure
amplitude in a given geometry, we obtain from Eqs. (38) and
(7e) the following scaling laws for the bulk- and boundary-
driven streaming, respectively:

vblk
2 ∝ 1

ρ2
flc3

fl

(
4
3

+ ηb
fl

ηfl

)
, (41a)

v
slip
2 ∝ 1

ρ2
flc3

fl
. (41b)

To study the consequences of these scaling laws, we have cho-
sen to compare water with the heterocyclic organic compound
pyridine having the chemical formula C5H5N. Table II reveals
that pyridine has the same material parameters (within 5%) as
water, but a bulk viscosity ηb

fl that is 25.1 times larger than
that of water. Using these parameter values in Eq. (41), we
find a large enhancement of the bulk-driven streaming, while
the boundary-driven streaming is nearly unchanged:

vblk
2,pyridine = 21.3 vblk

2,water, (42a)

v
slip
2,pyridine = 1.2 v

slip
2,water. (42b)

We test this prediction in Fig. 9, where we show simulations of
the total acoustic streaming in pyridine in the same geometry
as in Figs. 8(g)–8(i) but with adjusted actuation amplitude
u0

1z and frequency f given in Table III to maintain the same
pressure amplitudes Pl00

1 = P0l0
1 = 1 MPa. As expected, we

find that the total acoustic streaming for the three double
modes is enhanced compared to that in water shown in
Figs. 8(g)–8(i), and the enhancement factors are 2.8, 8.2, and
13.9, respectively. The increasing factors reflect the increasing
weight of bulk-driven relative to boundary-driven streaming
as the mode index l increases. The enhancement factors for
the bulk-driven streaming alone (not shown in Fig. 9) are 21.4,
21.1, and 21.2, as predicted by Eq. (42a), while they are 1.2,
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1.2, and 1.3 for boundary-driven streaming alone (also not
shown in Fig. 9) in good agreement with Eq. (42b).

For all three cases l = 2, 4, and 6, the horizontally rotating
bulk-driven streaming in the center z = 1

2 Lz is larger than the
horizontally rotating boundary-driven streaming at the top-
bottom boundaries z = 0 and z = Lz. This is also predicted
by Eq. (40) since l Lz

L⋆ = 0.2, 0.4, 0.6 > Bcrit
pyridine = 0.08 for all

three modes in pyridine.

VII. DISCUSSION

In the following, we raise a few discussion points related
to the results of the above analysis, which are based on the
single- and double-mode resonances occurring in a closed
rectangular-box-shaped cavity with narrow viscous boundary
layers. We note that the idealized, hard-wall, numerical model
for the acoustic streaming is strikingly sensitive to small
differences of only 0.1% between the cavity side lengths Lx
and Ly. Our results for the resonance frequency in Eq. (10)
and the optimal aspect ratio in Eq. (29f) are therefore crucial
in the investigation of the largest possible bulk-driven acoustic
streaming. This optimization was not taken into account in
the experimental study by Hagsäter et al. [39], and the cor-
responding numerical simulation by Skov et al. [44] of the
shallow, nearly square cavity of aspect ratio of A = 0.990. As
this aspect ratio differs from the optimal value A = 0.999 for
the hard-wall device in Fig. 8(i), it may be possible to increase
the bulk-driven acoustic streaming significantly by fine tuning
the geometry.

A priori, one may argue that it is difficult to obtain these
optimal conditions with a relative precision of the order of
0.1% in experiments. However, comparing our Fig. 7 with the
experimental results in Hagsäter et al. [39], we find good qual-
itative agreement even though none of the optimal conditions
were considered when designing the nearly square fluid cav-
ity. Another example is provided by the straight microchannel
with a square cross section and nonrotating actuation that
was studied experimentally by Antfolk et al. [11]. There, a
single large vertical streaming roll similar to Fig. 2(b) was
observed experimentally and analyzed numerically in terms
of a double-mode excitation.

There may be several reasons for why the bulk-driven
acoustic streaming can be observed experimentally in spite of
the low 0.1%-tolerance level of the aspect ratio suggested by
our simplified, hard-wall, microcavity analysis in Fig. 6. First,
there are other damping mechanisms in a real experiment [42],
aside from the bulk and boundary-layer damping considered
here, which may broaden the resonance peaks significantly
and thereby increase the change for overlapping resonances.
Second, the double-mode body force f lmn

l ′m′n′ in Eq. (17a), which
is the source of the bulk-driven acoustic streaming, depends
on the product |Plmn

1 ||Pl ′m′n′

1 | of the mode amplitudes, and
therefore one can obtain a rotating body force even if the
pressure is dominated by one of the modes, say lmn, as long
as the other mode l ′m′n′ is just weakly represented. Third, in
typical experiments, the driving frequency is scanned over a
broad span of frequencies, say 100 kHz around 2 MHz, which
increases the possibility for exciting double-mode resonances.
Fourth, unintentional asymmetries and imperfections in the
experimental setup may cause modes to overlap locally in

some regions at some frequencies and in other regions at other
frequencies, rather than the idealized homogeneous pattern
at a single frequency shown in Fig. 7. This point was also
mentioned by Hagsäter et al.: “If the frequency is shifted
slightly in the vicinity of 2.17 MHz, the same vortex pattern will
still be visible, but the strength distribution between the vortices
will be altered.” Moreover, in the 3D simulation by Skov et al.
[44], including the surrounding solid and the piezoelectric
transducer, this inhomogeneous distribution of the streaming
was indeed reproduced in their Fig. 2(b2). Revisiting the
experiment by Antfolk et al. [11] of a long straight capillary of
square cross section, this effect may also be observed because
it is likely that the aspect ratio is slightly less than unity in
some regions of the capillary and slightly above unity in other
regions, thereby causing the rotation direction to alternate
along the channel.

We have in this work mainly considered horizontal acous-
tics with n = 0 half-waves in the vertical z direction. A
similar analysis can be done for perpendicular acoustics (with
respect to the top and bottom boundaries). In Secs. VI C 1
and VI C 4, we have already briefly discussed the role of
the vertical single mode 001 for the pressure p1 and the
streaming v2. It is of course also possible to consider vertical
rotating double modes involving, say, a single half-wave in the
vertical direction lm1 + l ′m′1. For relatively shallow cavities,
a vertical excitation implies a relatively high frequency and
a correspondingly increased body force f ac. Furthermore, for
perpendicular acoustics where ∂⊥ v1⊥ ≈ ∇ · v1 = iωκfl p1, the
slip velocity v

slip
2 on the top and bottom boundaries is domi-

nated by the first and last terms in Eq. (7e), v
slip
2 ≈ 1

2κflSac +
3

4ω
Re[i∂⊥ v1⊥ v∗

1∥] ≈ −κflSac. Remarkably, this slip velocity is
in the opposite direction of the body force f ac ∝ Sac, so we
expect that the bulk- and boundary-driven streaming will be
in opposite directions, and thus the cavity could be designed
such that these streaming flows tend to cancel. A study of this
effect is left for future work.

The bulk-driven acoustic streaming is due to the body force
f ac, which we have given in Eq. (7d) for homogeneous fluids.
As shown by Karlsen and Bruus [49], this body force contains
additional terms if the fluid is inhomogeneous. Furthermore,
the analysis by Muller and Bruus [45] showed how thermovis-
cous effects strongly influence the boundary-driven streaming.
The incorporation of inhomogeneities and thermodynamics in
future work is therefore expected to reveal a strong effect also
on the bulk-driven streaming.

VIII. CONCLUSION

We have derived analytical expressions for the single-
mode pressure resonances plmn

1 = Plmn
1 F lmnRlmn and the cor-

responding boundary-layer damping coefficients &lmn
bl for a

closed rectangular-box-shaped cavity with narrow viscous
boundary layers (see Sec. III A and Appendix A). Based on
these expressions, we have shown that the body force f ac
can drive a strong bulk-driven acoustic streaming, if two
overlapping single modes are excited simultaneously at the
same frequency, thereby forming a double-mode resonance
lmn + l ′m′n′ (see Secs. III B and IV). In contrast to the conven-
tional wisdom that the bulk-driven streaming can be ignored
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on the scale of a few acoustic wavelengths, these double
modes constitute an important example where the bulk-driven
streaming is significant.

We have shown in Eq. (8) that the appearance of bulk-
driven streaming in closed microcavities is directly related to
the amount of rotation (acoustic angular momentum density)
of the underlying acoustic fields. Whereas there is no rotation
in a single mode, we have demonstrated in Secs. IV B and
V that the double modes can be rotating not only due to an
externally controlled rotating actuation, but, remarkably, also
due to a nonrotating actuation coupled with a weak asymmetry
in the geometry of the cavity. Furthermore, in Sec. V we
have derived analytical expressions for the optimal aspect
ratios that maximize the bulk-driven streaming in a nearly
square cavity with a nonrotating actuation. We found that the
bulk-driven acoustic streaming is sensitive to small deviations
between the cavity side lengths of only 0.1%.

We have validated the theory by direct numerical simula-
tion in Sec. VI of the double modes 200 + 020, 400 + 040,
and 600 + 060 in a nearly square cavity with side lengths
Lx ≈ 2000 µm and Ly ≈ 2000 µm and height Lz = 200 µm,
similar to the device investigated experimentally by Hagsäter
et al. [39]. Using the analytically known optimal condi-
tions (29), for which the bulk-driven acoustic streaming is
maximized, we have avoided the otherwise required time-
consuming parametric sweeping in geometry and frequency to
locate these optimal conditions. The numerical results shown
in Figs. 4–6 agree with the analytical expressions with a
relative accuracy better than 1%.

In Fig. 7, the 3D simulation of the acoustic streaming of the
double mode 600 + 060 is seen to reproduce the horizontally
rotating 6 × 6 streaming-roll pattern observed by Hagsäter
et al. In Fig. 8 we showed that this streaming pattern at
the higher frequency 2.24 MHz is dominated by the bulk-
driven streaming, whereas the streaming of the double mode
200 + 020 at the lower frequency 0.75 MHz is dominated
by the boundary-driven streaming. This frequency-dependent
crossover occurs because the body force f ac increases as
frequency to the power two, whereas the slip velocity v

slip
2

depends only weakly on frequency [see Eq. (7)]. An analytical
expression for computing the crossover for the double mode
l00 + 0l0 is given in Eq. (39).

Finally, in agreement with Eckart [29], we have shown in
Eq. (37) that the bulk-driven acoustic streaming increases with
the ratio ηb

fl
ηfl

between the bulk and the dynamic viscosity. This
dependency on ηb

fl was studied numerically in Sec. VI C 6 by
exchanging the water in the microcavity with pyridine. As
shown in Fig. 9, we found that the bulk-driven streaming for
pyridine was enhanced by a factor ≃ 21 relative to water. This
prediction obviously calls for experimental validation.

In this paper we have pointed out the significance of the
bulk-driven acoustic streaming in resonating acoustic cavities
even when the geometry length scale is comparable to a few
half-wavelengths. The fundamental requirement for obtaining
this effect is the existence of two overlapping resonance
modes excited simultaneously at the same frequency. This
requirement is easily fulfilled in integrable geometries in
3D, such as rectangular, cylindrical, and spherical cavities,
or in 2D, such as rectangular and circular cross sections of

long, straight capillary channels, all of which are frequently
encountered in experiments reported in the literature. The
insight provided by our analysis is therefore relevant and
important for acoustofluidics in general, both for fundamental
studies and for technological applications.

APPENDIX A: ACOUSTIC PRESSURE IN A
RECTANGULAR BOX WITH BOUNDARY LAYERS

In this Appendix, we derive the solution for the acoustic
pressure p1 with boundary layers in a rectangular-box-shaped
cavity ! for which 0 ! x ! Lx, 0 ! y ! Ly, and 0 ! z ! Lz.
The governing equation and boundary conditions for p1 are
given in Eq. (3). We consider first an actuation U1⊥ (x, y)
which is only nonzero at the bottom boundary z = 0. The
solution for a general actuation on all six boundaries is
then finally constructed by superposition. Using separation of
variables to solve the Helmholtz equation (3a) gives p1 in the
following form:

p1 = X (x)Y (y)Z (z), k2
c = k2

x + k2
y + k2

z ,

X (x) = Cx cos(kxx) + Sx sin(kxx),

Y (y) = Cy cos(kyy) + Sy sin(kyy),

Z (z) = Cz cos(kzz) + Sz sin(kzz). (A1)

Inserting this form into boundary condition (3b) gives

[∂⊥ + α⊥ ]p1 = k2
0U1⊥

κfl
, (A2a)

α⊥ = α⊥ (k⊥ ) = 1 + i
2

δ
(
k2

c − k2
⊥
)
, ⊥ = x, y, z, (A2b)

where ⊥ is the inward direction perpendicular to the bound-
ary, and the quantity α⊥ is the boundary-layer correction
to the inward-normal derivative of p1. Note that ∂⊥ has a
sign change at two opposite boundaries, say x = 0 and Lx,
for which ∂⊥ = ∂x and −∂x, respectively, whereas α⊥ (k⊥ )
depends on k2

⊥ = k2
x , without a sign change at opposite bound-

aries. We assume in the following that the length scale intro-
duced by α⊥ is much longer than the cavity length scale L⊥ :

|α⊥ |L⊥ ≪ 1, ⊥ = x, y, z. (A3)

According to Eq. (A2), the boundary conditions at the
stationary boundaries at x = 0 and Lx are

x = 0 : Cxαx + Sxkx = 0, (A4a)

x = Lx : Cx[kx sin(kxLx ) + αx cos(kxLx )]

+ Sx[−kx cos(kxLx ) + αx sin(kxLx )] = 0, (A4b)

where α⊥ = αx in both equations, whereas ∂⊥ = ∂x in
Eq. (A4a), while ∂⊥ = −∂x in Eq. (A4b). Nontrivial solutions
with Cx and Sx different from zero must satisfy the usual
criterion for the equation determinant Dx(kx ):

Dx(kx ) = 0, with (A5a)

Dx(kx ) =
(
k2

x − α2
x

)
sin(kxLx ) + 2kxαx cos(kxLx ). (A5b)
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We write the solutions kx = kl
x to Eq. (A5a) as perturbations

away from the inviscid solutions Kl
x ,

kl
x = Kl

x + ϵl
x, Kl

x = lπ
Lx

, l = 0, 1, 2, . . . , (A6)

where ϵl
xLx ≪ 1. By inserting this into Eq. (A5b), expanding

in ϵl
x, and writing αl

x = αx(kl
x ), we find

Dx(kl
x ) = (−1)l{[(Kl

x + ϵl
x

)2 −
(
αl

x

)2]
ϵl

xLx + 2
(
Kl

x + ϵl
x

)
αl

x

}
.

(A7)

From assumption (A3), (αl
x )2ϵl

xLx = [αl
xLx]ϵl

xα
l
x is much

smaller than 2ϵl
xα

l
x, so it can be ignored. We then factorize

out Kl
x + ϵl

x = kl
x and obtain

Dx(kl
x ) ≈ (−1)l kl

x

{(
Kl

x + ϵl
x

)
ϵl

xLx + 2αl
x

}

= (−1)l kl
x

{
kl

x

(
kl

x − Kl
x

)
Lx + 2αl

x

}
. (A8)

For l = 0, we have K0
x = 0 and k0

x (k0
x − K0

x ) = (k0
x )2, while

for l > 0 we have kl
x(kl

x − Kl
x ) ≈ 1

2 (kl
x + Kl

x )(kl
x − Kl

x ) to first
order in ϵl

x. In either case, by introducing Ll
x as

Ll
x = 1

2 (1 + δ0l )Lx, (A9)

the resulting expression for Dx(kl
x ) for all l is written as

Dx
(
kl

x

)
≈ (−1)l kl

xLl
x

[(
kl

x

)2 −
(
Kl

x

)2 + 2αl
x

Ll
x

]
. (A10)

The wave numbers kl
x thus fulfill the zero-determinant crite-

rion (A5a) Dx(kl
x ) = 0 if

(
kl

x

)2 =
(
Kl

x

)2 − 2αl
x

Ll
x

, (A11)

and similarly for (km
y )2 for all l and m. From Eqs. (A1) and

(A4a) with kx = kl
x, we obtain the corresponding eigenfunc-

tions X l (x),

X l (x) = cos
(
kl

xx
)
− αl

x

kl
x

sin
(
kl

xx
)
, (A12)

where the prefactor Cl
x is absorbed into Z (z) in Eq. (A1). We

examine the ratio αl
x

kl
x

for all l using Eq. (A11):
(

α0
x

k0
x

)2

= −1
2

Lxα
0
x ≪ 1, l = 0, (A13a)

αl
x

kl
x

= 1
lπ

Lxα
l
x ≪ 1, l > 0. (A13b)

By assumption (A3), we note that even for l = 0 this ratio is
small, but not as small as for l > 0.

By inserting kl
x from Eq. (A11) into Eq. (A12) and Taylor

expanding in αl
x/kl

x, we recover the usual inviscid hard-wall
eigenfunctions cos (Kl

xx) plus a small correction of the order
αl

xLx, due to the boundary layers

X l (x) ≈ cos
(
Kl

xx
)
+ αl

xLx

⎧
⎨

⎩

x
Lx

( x
Lx

− 1
)
, l = 0,

sin(Kl
x x)

Kl
x Lx

( 2x
Lx

− 1
)
, l > 0.

(A14)

Note that (∂x + αl
x )X l |x=0 = (∂−x + αl

x )X l |x=Lx = 0 as re-
quired by the boundary condition (A2). Similar expressions
are valid for the y eigenfunctions Y m(y).

In general, the pressure is an infinite sum of the eigenfunc-
tions

p1 =
∞∑

l,m=0

X lY mZlm(z), (A15a)

Zlm(z) = Clm
z cos

(
klm

z z
)
+ Slm

z sin
(
klm

z z
)
, (A15b)

(
klm

z

)2 = k2
c −

(
kl

x

)2 −
(
km

y

)2
, (A15c)

where klm
z depends on the angular frequency ω of the actuation

through kc. At z = Lz, the sets of coefficients Clm
z and Slm

z
satisfy a condition similar to Eq. (A4b), which leads to

Slm
z =

klm
z sin

(
klm

z Lz
)
+ αlm

z cos
(
klm

z Lz
)

klm
z cos

(
klm

z Lz
)
− αlm

z sin
(
klm

z Lz
)Clm

z , (A16)

where αlm
z = αz(klm

z ). Further, at z = 0 we have a condition
similar to Eq. (A4a) with k2

0κ
−1
fl U1z(x, y) on the right-hand

side. Combined with Eqs. (A15) and (A16), the boundary
condition at z = 0 becomes

∞∑

l,m=0

X l (x)Y m(y)Dz
(
klm

z

)
Clm

z

klm
z cos

(
klm

z Lz
)
− αlm

z sin
(
klm

z Lz
) = k2

0U1z(x, y)
κfl

,

(A17)

where Dz is defined similar to Eq. (A5b). To find the coeffi-
cients Clm

z , we write the wall actuation function U1z(x, y) as
a generalized Fourier series in the functions X l (x) and Y m(y)
that form a complete basis set on the interval 0 ! x ! Lx and
0 ! y ! Ly to order αl

xLx and αm
y Ly, respectively:

U1z(x, y) =
∞∑

l,m=0

Û lm
1z X l (x)Y m(y), (A18a)

Û lm
1z =

∫ Ly

0

∫ Lx

0 U1z(x, y)X l (x)Y m(y) dA
∫ Ly

0

∫ Lx

0 [X l (x)Y m(y)]2 dA
. (A18b)

Inserting the expansion (A18a) into Eq. (A17), we obtain the
amplitudes Clm

z :

Clm
z ≈

klm
z cos

(
klm

z Lz
)
− αlm

z sin
(
klm

z Lz
)

Dz
(
klm

z

)
k2

0Û lm
1z

κfl
. (A19)

Finally, using Eq. (A16) for Slm
z and Eq. (A19) for Clm

z in
Eq. (A15) for p1, yields the expression for the pressure

p1 =
∞∑

lm=0

k2
0klm

z Û lm
1z

κflDz
(
klm

z

)X l (x)Y m(y)Zlm(z), (A20a)

Zlm(z) = cos
[
klm

z (Lz − z)
]
−

αlm
z

klm
z

sin
[
klm

z (Lz − z)
]
,

(A20b)
[
klm

z (k0)
]2 = (1 + i&fl)k2

0 −
(
kl

x

)2 −
(
km

y

)2
. (A20c)
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The infinite sum in Eq. (A20a) is general and applies to all
frequencies and actuations at the bottom boundary. For a given
actuation U1z, this solution is largest for frequencies ω = cflk0
where Dz(klm

z ) is smallest, which gives the hard-wall reso-
nances lmn studied below. In real systems, the surrounding
solid will have its own resonance properties and, therefore,
the actuation U1z will depend strongly on the frequency. In

this case, the largest value of the prefactor k2
0 klm

z Û lm
1z

κflDz (klm
z ) is not

necessarily found where Dz(klm
z ) is smallest.

1. Single-mode resonances in a rectangular box

Resonance occurs when k0 = 1
cfl

ω equals one of the values
klmn

0 that minimize Dz(klm
z ) in Eq. (A20a). We expect these

values of klmn
0 to be near the inviscid values Klmn

0 , and write,
similar to Eq. (A6),

klmn
0 = Klmn

0 + ϵlmn
0 , (A21a)

Klmn
0 =

√(
Kl

x

)2 +
(
Km

y

)2 +
(
Kn

z

)2
, (A21b)

Kl
x = lπ

Lx
, Km

y = mπ

Ly
, Kn

z = nπ

Lz
, (A21c)

where ϵlmn
0 should be chosen to minimize Dz(klm

z ). The modes
l and m in the x and y directions together with the resonance
condition k0 = klmn

0 fix the wave number klmn
z = klm

z (klmn
0 ) in

Eq. (A20c) pertaining to the z direction:
(
klmn

z

)2 = (1 + i&fl)
(
klmn

0

)2 −
(
kl

x

)2 −
(
km

y

)2
. (A22)

Combining this expression with Eq. (A11) for (kl
x )2 and (km

y )2,
we find

(klmn
z )2 =

(
Klmn

0 + ϵlmn
0

)2(1 + i&lmn
fl

)

−
[(

Kl
x

)2 − 2αl
x

Ll
x

]
−

[(
Km

y

)2 −
2αm

y

Lm
y

]

≈
(
Kn

z

)2+2Klmn
0 ϵlmn

0 + i&lmn
fl

(
klmn

0

)2 + 2αl
x

Ll
x

+
2αm

y

Lm
y

.

(A23)

To evaluate Dz(klmn
z ) in Eq. (A20a), we note that klmn

z is
close to Kn

z , so we can use Eq. (A10) with (kl
x )2 − (Kl

x )2 →
(klmn

z )2 − (Kn
z )2, which is found from Eq. (A23):

Dz
(
klmn

z

)
≈ (−1)nLn

z klmn
z

[
2Klmn

0 ϵlmn
0 + i&lmn

fl

(
klmn

0

)2

+ 2αl
x

Ll
x

+
2αm

y

Lm
y

+
2αn

z

Ln
z

]
. (A24)

The (real) value of ϵlmn
0 , which minimizes this expression and

leads to the resonance wave number klmn
0 , is then

ϵlmn
0 = −Re

[
αl

x

Klmn
0 Ll

x
+

αm
y

Klmn
0 Lm

y
+

αn
z

Klmn
0 Ln

z

]

= −1
2

Klmn
0 &lmn

bl , (A25a)

&lmn
bl = 1

(
Klmn

0

)2 Re
[

2αl
x

Ll
x

+
2αm

y

Lm
y

+
2αn

z

Ln
z

]

=
(

Kl
x

Klmn
0

)2(
δ

Lm
y

+ δ

Ln
z

)
+

( Km
y

Klmn
0

)2(
δ

Ln
z

+ δ

Ll
x

)

+
(

Kn
z

Klmn
0

)2(
δ

Ll
x

+ δ

Lm
y

)
, (A25b)

where we have inserted the expressions for αl
x, αm

y , and αn
z

defined by Eq. (A2b), and introduced the boundary-layer
damping coefficients &lmn

bl .
We are now in a position to determine the third and last

wave number klmn
z , the one in the actuation direction. Using

the value of ϵlmn
0 from Eq. (A25a) in expression (A23) for klmn

z ,
we find

(
klmn

z

)2 =
(
Kn

z

)2 + i&lmn
fl

(
klmn

0

)2

+ i Re
[

2αl
x

Ll
x

+
2αm

y

Lm
y

]
− Re

[
2αn

z

Ln
z

]

=
(
Kn

z

)2 + i&lmn
fl

(
klmn

0

)2 + i
(
Klmn

0

)2
&lmn

bl −
2αn

z

Ln
z

≈
(
Kn

z

)2 −
2αn

z

Ln
z

+ i
(
klmn

0

)2
&lmn

=
(
kn

z

)2 + i
(
klmn

0

)2
&lmn, (A26)

with kn
z defined similar to kl

x in Eq. (A11) and the total
damping coefficient given by

&lmn = &lmn
bl + &lmn

fl . (A27)

Note that in comparison with kl
x and km

y , the wave number klmn
z

has an additional dependency on &lmn. The corresponding z-
dependent functions Zlmn(z) are computed to lowest order in
the small parameters by inserting Eq. (A26) into Eq. (A20b):

Zlmn(z) ≈ (−1)n[Zn(z) + i
(
klmn

0 Lz
)2

&lmnZn
act (z)

]
, (A28a)

Zn
act (z) =

⎧
⎨

⎩

− 1
2

(
1 − z

Lz

)2
, n = 0,

1
2

sin
(

Kn
z z

)

Kn
z Lz

(
1 − z

Lz

)
, n > 0.

(A28b)

Here, Zlmn(z) is close to the eigenfunction Zn(z) for stationary
boundaries, analogous to X l (x) and Y m(y) [see Eq. (A12)],
but it contains an extra term, which satisfies the boundary
condition at the moving actuated boundary z = 0.

Finally, we evaluate Dz(klmn
z ) in Eq. (A24) at resonance

k0 = klmn
0 where ϵlmn

0 takes the value given in Eq. (A25a),

Dz
(
klmn

z

)
≈ (−1)nLn

z klmn
z i&lmn(klmn

0

)2
, (A29)

and by inserting Eqs. (A29) and (A28) into Eq. (A20a), we
find an expression for each resonance mode plmn

1 :

plmn
1 =

(
klmn

0

)2klmn
z Û lm

1z

κflDz
(
klmn

z

) X l (x)Y m(y)Zlmn(z)

=
(
klmn

0

)2Û lm
1z

κflLn
z

X l (x)Y m(y)
[

Zn(z)

i
(
klmn

0

)2
&lmn

+ L2
z Zn

act (z)
]
.

(A30)
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Note that for any l , m, and n, the product term
X l (x)Y m(y)Zn(z) only satisfies the boundary condition (A2a)
for a stationary boundary U1⊥ = 0. The actual boundary
condition is satisfied by the infinite sum (A20a) over terms
X l (x)Y m(y)Zn

act (z) because ∂zZn
act = Ln

z
(Lz )2 at z = 0 and ∂zZn

act =
0 at z = Lz.

As Eq. (A30) is only valid exactly at resonance k0 = klmn
0 ,

it must be corrected to deal with frequencies k0 ≈ klmn
0 . This is

done by adding k0 − klmn
0 to the right-hand side of Eq. (A21).

By Eq. (A24), this procedure is seen to be equivalent to the
substitution

i
(
klmn

0

)2
&lmn → 2klmn

0

(
k0 − klmn

0

)
+ i

(
klmn

0

)2
&lmn (A31)

in Eq. (A30).

2. Approximate solutions near resonance
for actuation at all boundaries

At resonance, the expression (A30) satisfies all boundary
conditions to first order in αl

xLx, αm
y Ly, and αn

z Lz. Ignoring
these first-order corrections as well as the small Zn

act term in
Eq. (A30), the eigenfunctions are approximately equal to the
usual hard-wall eigenfunctions Rlmn:

Rlmn(x, y, z) = cos
(
Kl

xx
)

cos
(
Km

y y
)

cos
(
Kn

z z
)
. (A32)

To generalize our results from an actuation acting on only the
bottom boundary z = 0 to all six boundaries, we note first that
Ln

z ≈
∫ Lz

0 [Zn(z))]2 dz, whereby Eq. (A18b) can be rewritten as

Û lm
1z

Ln
z

=
∫ Ly

0

∫ Lx

0 U1z(x, y)X l (x)Y m(y) dA

Ln
z

∫ Ly

0

∫ Lx

0 [X l (x)Y m(y)]2 dA

≈
∫ Ly

0

∫ Lx

0 U1z(x, y)Rlmn(x, y, 0) dA
∫ Lz

0

∫ Ly

0

∫ Lx

0 [Rlmn(x, y, z)]2 dV
. (A33)

Using this expression together with the substitution (A31)
valid for k0 ≈ klmn

0 , we obtain the following expression for
the resonance modes lmn in a rectangular box ! with viscous
boundary layers and an inward normal displacement U1⊥ (r)
specified on all six boundaries ∂! [Eq. (3c)]:

plmn
1 = Plmn

1 F lmn(k0)Rlmn(r), (A34a)

Plmn
1 = ρflc2

fl

&lmn

∫
∂!

U1⊥ Rlmn dA∫
!

(Rlmn)2 dV
, (A34b)

F lmn(k0) =
1
2 klmn

0 &lmn

(
k0 − klmn

0

)
+ i 1

2 klmn
0 &lmn

. (A34c)

The quality factor Qlmn for resonance mode lmn is obtained
from the linewidth of the acoustic energy density Eac in
Eq. (6), and since Eac ∝ |plmn

1 |2 ∝ |F lmn|2, we find

Qlmn ≈ 1
&lmn

, (A35)

where &lmn is given in Eq. (A27).

APPENDIX B: MAXIMUM ACOUSTIC ROTATION

In the following, we evaluate the frequency-dependent
factor F lm0

ml0 in Eq. (17b) for rotating and nonrotating

actuations of the nearly square cavity considered in Sec. V.
For convenience, we first introduce the double-mode quanti-
ties ξ̃lm and φact

lm ,

ξ̃lm = k̃0 − k̃⋆
lm, φact

lm = φml0
act − φlm0

act , (B1)

where k̃0 and k̃⋆
lm are defined in Eq. (27), and φact

lm is the
difference in the phases by which the modes lm0 and ml0
are actuated [see Eq. (12b)]. By using these quantities and the
expressions for F lm0 and F ml0 in Eq. (28), we calculate the
frequency-dependency F lm0

ml0 from Eq. (17b):

F lm0
ml0 = Re

{
ieiφact

lm F lm0[F ml0]∗
}

=
cos

(
φact

lm

)
2,̃lm + sin

(
φact

lm

)
[1 + (2ξ̃lm)2 − ,̃2

lm]

[(2ξ̃lm − ,̃lm)2 + 1][(2ξ̃lm + ,̃lm)2 + 1]
.

(B2)

This equation expresses the magnitude of the acoustic rotation
as a function of the actuation phase difference φact

lm , the actu-
ation frequency ξ̃lm, and the mode separation ,̃lm, which by
Eq. (26) is related to the aspect ratio A. In the following, we
study the nonrotating actuation with φact

lm = 0 and the rotating
actuation with φact

lm = ± 1
2π , and we determine the optimal

mode separation ,̃
opt
lm and frequency ξ̃

opt
lm , for which F lm0

ml0
takes its largest positive or negative value (F lm0

ml0 )extr.

1. Extremum values of F lm0
ml0 for a nonrotating actuation φact

lm = 0

For a nonrotating actuation, we have φact
lm = 0, and Eq. (B2)

becomes

F lm0
ml0 = 2,̃lm

[(2ξ̃lm − ,̃lm)2 + 1][(2ξ̃lm + ,̃lm)2 + 1]
. (B3)

The extremum values of this expressions are

(
F lm0

ml0

)extr =
{

2,̃lm

(,̃2
lm+1)2 , |,̃lm| < 1,

1
2,̃lm

, |,̃lm| > 1,
(B4a)

which are obtained at the frequencies ξ̃ extr
lm given by

ξ̃ extr
lm =

⎧
⎨

⎩

0, |,̃lm| < 1,

± 1
2

√
,̃2

lm − 1, |,̃lm| > 1.
(B4b)

In Fig. 6 (“nonrotating act.”), we plot the value (F lm0
ml0 )extr

from this expression as a function of ,̃lm. The optimal value
(F lm0

ml0 )opt of (F lm0
ml0 )extr is found at the optimal mode separation

,̃
opt
lm , and optimal rescaled frequency ξ̃

opt
lm :

ξ̃
opt
lm = 0, ,̃

opt
lm = ± 1√

3
,

(
F lm0

ml0

)opt = ± 3
√

3
8

. (B5)

2. Extremum values of F lm0
ml0 for a rotating actuation φact

lm = ± 1
2 π

For an externally controlled rotating actuation, we have φact
lm =

± 1
2π and Eq. (B2) becomes

F lm0
ml0 =

[
1 + (2ξ̃lm)2 − ,̃2

lm

]
sgnlm

φ

[(2ξ̃lm − ,̃lm)2 + 1][(2ξ̃lm + ,̃lm)2 + 1]
, (B6a)

sgnlm
φ = sign

(
φact

lm

)
. (B6b)
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This expression is more complicated than Eq. (B3) since
it only has one extremum for a sufficiently small mode
separation ,̃lm, namely, where the angular momentum and
the actuation are corotating, sign(F lm0

ml0 ) = sgnlm
φ . For larger

values of ,̃lm, the frequency can be tuned to two different
extremum values, namely, both the corotating and counter-
rotating cases, sign(F lm0

ml0 ) = ± sgnlm
φ . We therefore identify

two branches of extremum values. The corotating branch
(F lm0

ml0 )extr
co with subscript “co” and the counter-rotating branch

(F lm0
ml0 )extr

cntr with subscript “cntr.”
For the corotating branch, (F lm0

ml0 )extr
co is

(
F lm0

ml0

)extr
co = sgnlm

φ

⎧
⎨

⎩

1−,̃2
lm

(,̃2
lm+1)2 , |,̃lm| !

√
2 − 1,

1
4|,̃lm| , |,̃lm| "

√
2 − 1,

(B7a)

found at the frequencies ξ̃lm = ξ̃ extr
lm,co:

ξ̃ extr
lm,co =

⎧
⎨

⎩

0, |,̃lm| !
√

2 − 1,

± 1
2

√
,̃2

lm + 2,̃lm − 1, |,̃lm| "
√

2 − 1.

(B7b)

For the counter-rotating branch, (F lm0
ml0 )extr

cntr is

(
F lm0

ml0

)extr
cntr = −sgnlm

φ

⎧
⎨

⎩

,̃2
lm−1

(,̃2
lm+1)2 , 1 ! |,̃lm| !

√
2 + 1,

1
4|,̃lm| , |,̃lm| "

√
2 + 1,

(B8a)

found at the frequencies ξ̃lm = ξ̃ extr
lm,cntr:

ξ̃ extr
lm,cntr =

⎧
⎨

⎩

0, 1 ! |,̃lm| !
√

2 + 1,

± 1
2

√
,̃2

lm−2,̃lm−1, |,̃lm| "
√

2 + 1.

(B8b)

In Fig. 6 (rotating act.), we plot for φact
lm = + 1

2π both the coro-
tating and counter-rotating branches (F lm0

ml0 )extr
co and (F lm0

ml0 )extr
cntr.

From Eqs. (B7a) and (B8a), we find that the largest value
(F lm0

ml0 )opt of (F lm0
ml0 ) is the corotating double mode found at

the optimal mode separation ,̃
opt
lm , and the rescaled frequency

ξ̃
opt
lm :

ξ̃
opt
lm = 0, ,̃

opt
lm = 0, (F lm0

ml0 )opt = sgnlm
φ . (B9)

We see that in contrast to the nonrotating actuation (B5), the
rotating actuation optimizes the acoustic rotation for zero-
mode separation ,̃

opt
lm = 0.

APPENDIX C: ROTATING ACTUATION G16 OF
THE DOUBLE MODE 200 + 020

In the simulation shown in Figs. 5(d)–5(f) of Sec. VI C 2
we excite the double mode 200 + 020 by using the rotating
actuation

u1z = u0
1zG16(x, y), 0 < x < Lx, 0 < y < Ly. (C1a)

Here, G16(x, y) is constructed as the sum of 16 narrow Gaus-
sians G⊙

1 as follows. The primary narrow Gaussian G⊙
1 (x, y)

is centered around ( 1
8 Lx,

1
8 Ly) in the lower left corner of the

domain:

G⊙
1 (x, y) = exp

[

−
(
x − Lx

8

)2

( Lx
16

)2 −
(
y − Ly

8

)2

( Ly

16

)2

]

. (C1b)

Four versions of G⊙
1 , centered at ( 2± 1

8 Lx,
2± 1

8 Ly) and multi-
plied by specific phase factors in order to create a positive
rotation direction in the x-y plane, are added to form a
quadruple G4 centered around ( 1

4 Lx,
1
4 Ly):

G4(x, y) = e−i 0π
2 G⊙

1 (x, y) + e−i 1π
2 G⊙

1

(
x, y − 1

4 Ly
)

+ e−i 2π
2 G⊙

1

(
x − 1

4 Lx, y − 1
4 Ly

)

+ e−i 3π
2 G⊙

1

(
x − 1

4 Lx, y
)
. (C1c)

Finally, by mirroring the quadruple G4(x, y) across the center
lines x = 1

2 Lx and y = 1
2 Ly, G16 is formed by adding the four

resulting quadruples

G16(x, y) = G4(x, y) + G4(Lx − x, y)

+ G4(Lx − x, Ly − y) + G4(x, Ly − y). (C1d)

To obtain the complex pressure amplitudes P200
1 and P020

1
resulting from G16, we first evaluate the integral in the de-
nominator of Eq. (34), where G1 is substituted by G16:

∫ Lx

0

∫ Ly

0
G16(x, y)R200 dx

Lx

dy
Ly

= 0.0942 × ei0.250π , (C2a)

∫ Lx

0

∫ Ly

0
G16(x, y)R020 dx

Lx

dy
Ly

= 0.0942 × e−i0.250π . (C2b)

We then use Eq. (34) to compute the desired amplitudes

P200
1 =

2u0
1z

Lz
(
&200

fl + &200
bl

)
κfl

0.0942 × ei0.250π , (C3a)

P020
1 =

2u0
1z

Lz
(
&200

fl + &200
bl

)
κfl

0.0942 × e−i0.250π . (C3b)

We see that the actuation in Eq. (C1a) excites the two modes
200 and 020 with a phase difference of

φ020
act − φ200

act = 0.500π . (C4)

Finally, we use Eq. (C3) to choose the amplitude u0
1z of the

actuation such that |P200
1 | = |P020

1 | = 1 MPa,

u0
1z =

Lz
(
&200

fl + &200
bl

)
κfl

∣∣P200
1

∣∣

2 × 0.0942
= 1.614 nm, (C5)

where we used the parameters for water given in Table II.

APPENDIX D: APPROXIMATE SOLUTION
FOR THE BULK-DRIVEN STREAMING

FROM DOUBLE MODES l00 + 0l0

In this Appendix, we calculate an approximate expression
for the bulk-driven acoustic streaming velocity (vblk

2 )l00
0l0 =

(vblk
2 )l0 driven by the acoustic body force f ac = f l00

0l0 = f l0
resulting from the combination of the two perpendicular, hori-
zontal modes l00 and 0l0 in a square cavity. As in Eq. (24), the
double subscript l0 refers to the double mode l00 + 0l0. The
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bulk-driven streaming velocity (vblk
2 )l0 satisfies an equation

similar to Eq. (7) except for having no-slip at the boundaries:

0 = ∇ ·
(
vblk

2

)
l0, r ∈ !, (D1a)

∇
(
pblk

2

)
l0 = ηfl∇2(vblk

2

)
l0 + &flω

c2
fl

Sl0, r ∈ !, (D1b)

(
vblk

2

)
l0 = 0, r ∈ ∂!. (D1c)

Here, Sl0 is defined in Eq. (18a) combined with Eq. (24) for
Fl0(k0), Eq. (17c) for Kl0(r), and Eq. (9a) for Rl0(r):

Sl0(r) = 1
2

∣∣Pl00
1

∣∣∣∣P0l0
1

∣∣

ρflω
Fl0(k0)Kl0(r), (D2a)

Fl0(k0) = Re{i[F l00(k0)][F 0l0(k0)]∗}, (D2b)

Kl0(r) = k⋆
l0[sin(k⋆

l0x) cos(k⋆
l0y)ex − cos(k⋆

l0x) sin(k⋆
l0y)ey].

(D2c)

The impact on the bulk-driven streaming from the no-slip
condition at the side walls will decrease exponentially with
the length scale w away from the side walls, where w is the
minimum shear length scale, i.e., either the vertical length
scale Lz or the horizontal length scale (k⋆

l0)−1,

w = min{Lz, (k⋆
l0)−1}. (D3)

For the narrow channel considered in Sec. VI where Lz/L⋆ =
0.1, we have w/L⋆ = 0.1 for l = 2, w/L⋆ = 1

4π
= 0.08 for

l = 4, and w/L⋆ = 1
6π

= 0.05 for l = 6, and therefore the
vertical side walls can be ignored in the majority of the cavity
for these three double modes.

To compute the acoustic streaming velocity, we ignore
the side walls and assume that (vblk

2 )l0 is proportional to the
xy-dependent acoustic energy flux density Sl0(x, y) and some

z-dependent function ζ (z) to be found:
(
vblk

2

)
l0 = κflζ (z)Sl0(x, y). (D4)

By using Sl0 from Eq. (D2a), we find the three identities

∇ · Sl0 = 0, (D5a)

∇2Sl0 = −2(k⋆
l0)2Sl0, (D5b)

∇×Sl0 =
∣∣Pl00

1

∣∣∣∣P0l0
1

∣∣Fl0

ρflω
(k⋆

l0)2 sin(k⋆
l0x) sin(k⋆

l0y)ez. (D5c)

Consequently, by Eq. (D5a), the ansatz (D4) satisfies the
continuity equation (D1a). Moreover, inserting Eq. (D4) into
Eq. (D1b) using &fl = ( 4

3 + ηb
fl

ηfl
)ηflκflω from Eqs. (4) and (D5b)

we find

∇
(
pblk

2

)
l0 = ηflκfl

[
ζ ′′(z)

(
√

2k⋆
l0)2

− ζ (z) + 1
2

(
4
3

+ ηb
fl

ηfl

)]
Sl0.

(D6)

Since Sl0(x, y) has no z component, (pblk
2 )l0 on the left-hand

side is independent of z. Therefore, the square bracket on the
right-hand side must be a constant. This constant must be
zero since otherwise taking the curl of Eq. (D6) would lead
to 0 = ∇ × Sl0 in conflict with Eq. (D5c). The condition of a
vanishing square bracket in Eq. (D6) and the no-slip boundary
conditions ζ (0) = ζ (Lz ) = 0 lead to the following expression
for ζ (z):

ζ (z) = 1
2

(
4
3

+ ηb
fl

ηfl

)[
1 −

cosh
(√

2k⋆
l0

(
z − Lz

2

))

cosh
(√

2k⋆
l0

Lz
2

)
]
. (D7)

The solution for (vblk
2 )l0 is then obtained by inserting

Eqs. (D2) and (D7) in Eq. (D4).
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We present a semianalytical theory for the acoustic fields and particle-trapping forces in a viscous fluid inside
a capillary tube with arbitrary cross section and ultrasound actuation at the walls. We find that the acoustic
fields vary axially on a length scale proportional to the square root of the quality factor of the two-dimensional
(2D) cross-section resonance mode. This axial variation is determined analytically based on the numerical
solution to the eigenvalue problem in the 2D cross section. The analysis is developed in two steps: First, we
generalize a recently published expression for the 2D standing-wave resonance modes in a rectangular cross
section to arbitrary shapes, including the viscous boundary layer. Second, based on these 2D modes, we derive
analytical expressions in three dimensions for the acoustic pressure, the acoustic radiation and trapping force, as
well as the acoustic energy flux density. We validate the theory by comparison to three-dimensional numerical
simulations.
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I. INTRODUCTION

Acoustophoresis is the acoustically induced migration of
particles. During the past few decades the scientific field
of microscale acoustofluidics has emerged, where this phe-
nomenon is exploited for controlled handling of micropar-
ticles. Microscale acoustophoresis is gentle, label-free, and
contact-less, and therefore it is useful for bioanalytics in
lab-on-a-chip technologies. Examples include particle sepa-
ration [1–4], concentration of red blood cells [5], iso-acoustic
focusing of cells [6], acoustic tweezing [7–9], and cell pat-
terning [10,11]. One particularly prominent acoustofluidic
application is acoustic trapping of suspended microparticles
against an external flow in cheap, disposable glass capillary
tubes [12–17], which has been used for fast biological assays
[18,19] and for trapping of sub-micrometer particles by use
of larger trapped seed particles [20,21]. In these systems,
a piezoelectric transducer is attached to the capillary tube
and driven at MHz frequencies to generate a standing-wave
resonance mode localized inside the capillary tube above the
transducer.

The physics behind acoustophoresis is primarily described
by two time-averaged forces acting on the suspended parti-
cles. First, due to differences in density and compressibility
between the particles and the carrier fluid, the particles ex-
perience the acoustic radiation force, which scales with the
particle volume [22–27] and tends to focus particles. Sec-
ond, due to time-averaged momentum fluxes induced by the
acoustic fields, a steady acoustic streaming flow is generated,
and suspended particles therefore experience a drag force,
which scales with the particle radius and tends to mix particles
[28–30].

Both the acoustic radiation force and the acoustic stream-
ing are important in the acoustic trap. Aside from the

*jasoba@fysik.dtu.dk
†bruus@fysik.dtu.dk

one-dimensional (1D) or two-dimensional (2D) focusing in
the cross section due to the transverse acoustic radiation force,
the axial variations in the acoustic fields also give rise to
an axial acoustic radiation force, or trapping force. Further-
more, acoustic streaming in the plane parallel to the trans-
ducer surface is often observed above the edges of the trans-
ducer, strongly affecting the trapping characteristics [15,20].
The acoustic trapping in capillaries is therefore a three-
dimensional (3D) problem, see Fig. 1, which complicates both
the experimental characterization and the theoretical analysis
needed for further development. Further complications arise
from the many different 2D cross-sectional shapes that have
been employed in the experimental studies of acoustofluidics
in capillary channels: rectangular and trapezoidal shapes in
etched silicon devices [31], flat channels with quarter-circle-
shaped or tapered side walls in wet-etched glass devices [32],
circular shapes in glass tubes [17], rectangular shapes of
different aspect ratios in glass tubes such as 1:1 [16], 1:10
[14], and 1:20 [14,33], and flat glass tubes with a bulging
lid [14]. In addition, given the technique of pulling struc-
tured multimaterial fibers recently applied in microfluidics
[34], practically any cross-sectional shape of capillary tubes
for acoustofluidics can now be fabricated. This multitude of
shapes needs to be addressed theoretically.

In this work, we present a method to semianalytically
calculate the 3D acoustic pressure in a capillary tube of
arbitrary cross section actuated in an axially confined region
of length Lact at the walls, see Fig. 1. Based on the either
analytical or numerical solution to the 2D eigenvalue problem
in the cross section, we derive analytical expressions in three
dimensions for the acoustic pressure, the acoustic radiation
force, the acoustic energy flux density, and the ratio between
the axial and transverse acoustic trapping force. In particular,
we show that for a 2D resonance mode α, the axial component
of the radiation force is proportional to

√
�̄α , where �̄α is

the damping coefficient of the resonance mode α. In the
special case of a 1D standing pressure wave in the cross

2470-0045/2020/101(2)/023107(12) 023107-1 ©2020 American Physical Society
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FIG. 1. A computed pressure resonance mode (dark red and light
blue for high and low pressure) in a capillary tube of arbitrary cross
section. (a) The complex-valued pressure mode pα

1 (x, y, z) in the 3D
tube � is the product of the 2D pressure mode p̄α

1 (y, z) in the cross
section �̄ and the axial dependency χα (x). It is excited by an actua-
tion confined to a region of length Lact . The dark magenta and light
green curves represent the real part of pα

1 and the magnitude |pα
1 |,

respectively. The relevant length scales in the x direction are shown:
the wave length λα

x , the decay length dα
x , and the characteristic length

scale Lα
x ; see Eqs. (20) and (21). (b) The pressure p̄α

1 (y, z) in the 2D
cross section �̄ with the surface normal vector n and the mesh used
in the numerical simulations.

section, our results agree with Woodside et al. [35], who
obtained an analytical expression for the axial radiation force
being proportional to the axial gradient of the acoustic energy
density Eac. However, whereas they left Eac undetermined, we
calculate it analytically.

We validate our analytical results by direct 3D numerical
simulations. Recent contributions in the 3D numerical mod-
eling of capillary tubes include Gralinski et al. [17] who
modeled a circular capillary tube with fluid and glass, Lei et al.
[15], who modeled the fluid domain of a capillary tube and
found four in-plane streaming rolls, and Ley and Bruus [36],
who took into account absorption of outgoing waves in both
the glass and the fluid. Also the piezoelectric transducer may
be included in a full-device simulation as done by Skov et al.
[37]. In the numerical validation of this paper, we model the
fluid domain with a prescribed movement of the fluid-solid
interface and implement a perfectly matched layer (PML) to
absorb outgoing waves.

The paper is organized as follows: We present the gov-
erning equations in Sec. II, and in Sec. III we describe the
numerical implementation used for validation of the presented
theory. In Sec. IV, we generalize our previous analytical
results for the acoustic pressure in rectangular cross sections
[38] to arbitrary cross sections. Using the residue theorem,
we derive the axial dependency of the 3D acoustic pressure.
We proceed in Sec. V by calculating the axial dependency
of the pressure in the case of a box-shaped actuation, and in
Sec. V C we validate the analytical results by 3D numerical
simulations. In Sec. VI, we present analytical expressions for
time-averaged acoustic quantities such as the axial radiation
force and the axial energy flux density. Finally, we discuss
our results in Sec. VII and conclude in Sec. VIII.

II. GOVERNING EQUATIONS

The physical displacement u0
phys(r, t ) of the fluid-solid

interface oscillates harmonically with the angular frequency
ω = 2π f and induces the physical pressure field pphys(r, t ) in
the fluid. These fields are represented as the real part of the
complex-valued linear perturbations u0

1 and p1,

u0
phys(r, t ) = Re

[
u0

1(r)e−iωt
]
, (1a)

pphys(r, t ) = Re[p1(r)e−iωt ]. (1b)
In a fluid of dynamic viscosity ηfl, bulk viscosity ηb

fl, isentropic
compressibility κfl, and mass density ρfl, the acoustic fields
are characterized by the compressional wave number kc with
real part k0 = ω

cfl
, the bulk damping coefficient �fl, the shear

wave number ks, and the viscous boundary-layer width δs

[27,30,37],

kc =
(

1 + i
1

2
�fl

)
k0, �fl =

(
4

3
+ ηb

fl

ηfl

)
ηflκflω, (2a)

ks = 1 + i

δs
, δs =

√
2ηfl

ρflω
, (2b)

where i =
√

−1 is the imaginary unit. In this work, we assume
that the viscous boundary layer is much thinner than the
acoustic wave length, as is the case in most acoustofluidic
applications,

k0δs � 1, �fl = 1

2

(
4

3
+ ηb

fl

ηfl

)
(k0δs)2 � 1. (3)

The acoustic pressure p1 satisfies the Helmholtz equation with
the compressional wave number kc and with the boundary-
layer boundary condition recently derived in Ref. [30], valid
for walls having a curvature radius much larger than the
viscous boundary layer width δs,

∇2 p1 + k2
c p1 = 0, r ∈ �, (4a)

D⊥ p1 = k2
0U1⊥(r), r ∈ ∂�, (4b)

D⊥ = ∂⊥ + i

ks

(
k2

c + ∂2
⊥
)
, r ∈ ∂�, (4c)

U1⊥(r) = ρflc2
fl

1 − i�fl

(
−n − i

ks
∇

)
· u0

1, r ∈ ∂�. (4d)

Here, the subscript ⊥ represents the inward direction (−n)
opposite to the outward-pointing normal vector n, and U1⊥(r)
is the effective actuation function defined in terms of the
physical interface displacement u0

1 of the fluid-solid interface
∂�. Finally, we write the following standard time-averaged
acoustic quantities, all defined in terms of the pressure p1:
The acoustic potential energy density Epot, the acoustic kinetic
energy density Ekin, the acoustic mechanical energy density
Eac, the acoustic radiation potential Urad for a suspended
spherical particle of radius a, the acoustic radiation force F rad,
and the acoustic energy flux density Sac,

Epot = 1

4
κfl|p1|2, Ekin = 1

4
κflk−2

0 |∇p1|2, (5a)

Eac = Epot + Ekin, Sac = 1

2ρflω
Im(p∗

1∇p1), (5b)

F rad = −∇Urad , Urad = 4

3
πa3

[
f0Epot − 3

2
f1Ekin

]
. (5c)
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TABLE I. Parameters used in the numerical simulations of water
as the fluid medium at 25◦C [42]; see also Sec. V C.

Parameter Symbol Value Unit

Mass density ρfl 997.05 kg m−3

Compressibility κfl 448 TPa−1

Speed of sound cfl 1496.7 m s−1

Dynamic viscosity ηfl 0.890 mPa s
Bulk viscosity ηb

fl 2.485 mPa s

Actuation displacement d0 0.1 nm
Cross-section length Lcr 300 μm
Axial domain length Lnum

x 5.46 cm
PML length LPML 500 μmm
PML strength KPML 1000 –

Here, f0 and f1 are the monopole and dipole scattering co-
efficients that are real-valued because we consider particles
with radius a much larger than both the viscous and the
thermal boundary-layer thickness [22,25–27]. Furthermore, in
Eq. (5b) “Im” and “∗” denotes imaginary part and complex
conjugation, respectively.

III. NUMERICAL VALIDATION METHOD

Our key theoretical results for the pressure p1, to be
presented in Secs. IV and V, are validated by the following
direct-numerical-simulation method. We use the weak form
PDE module in COMSOL MULTIPHYSICS [39] as described in
Refs. [30,37,40], see also an example COMSOL script in the
supplemental material of Ref. [41].

This validation is carried out in both a 3D and a 2D
version solving the harmonically-driven problem (4) using the
COMSOL “Stationary study.” Moreover, as explained in
Sec. IV, a main result of this work is that we can express
the 3D pressure in terms of 2D pressure eigenmodes and
eigenvalues, which we compute numerically using the COM-
SOL “Eigenvalue study.” In the numerical simulations we
use Lagrangian shape functions of quartic order, and the
parameters listed in Table I.

For the numeric validation, we choose a capillary with the
generic cross section shown in Fig. 1. This cross section has a
linear size of around 2Lcr, and its boundary ∂�̄ is given by the
arbitrarily chosen, smooth, wavy parametric curve in the yz
cross section, [y(s), z(s)] with s ∈ [0; 2π ], defined by y(s) =
Lcrhcr (s) cos(s), z(s) = 0.9Lcrhcr (s) sin(s + 0.2), and the ra-
dius function hcr (s) = 1 + 0.15 sin(2s + 1.5) − 0.2 sin(3s).

The mesh is chosen to resolve the pressure on the relevant
length scales. It is created as a 2D triangular mesh in the
cross section with mesh size 1

3 Lcr in the bulk and 1
6 Lcr

at the boundary; see Fig. 1(b). The 3D mesh is generated
by sweeping the 2D mesh along the axial direction with a
separation distance of 1

6 Lα
x , where Lα

x is the characteristic
axial length scale of the pressure introduced in Sec. IV C and
shown in Fig. 1(a). The mesh is validated by standard mesh
convergence tests [36].

For the 3D modeling of the long capillary tube, we use
symmetry considerations to halve the computational domain
[36], and a perfectly matched layer (PML) placed at the tube

end to suppress acoustic reflections there; see Sec. II C of
Ref. [36].

This numerical implementation of the model leads to
2 × 103 degrees of freedom (DOF) for the 2D simulations
and 4 × 105 DOF for the 3D simulations. The simulations
were performed on a workstation with a 3.5 GHz Intel Xeon
CPU E5-1650 v2 dual-core processor and with a memory
of 128 GB RAM.

Finally, we use the L2-norm to numerically compute the
relative deviation E (p, pref ) of a pressure field p from a
reference pressure field pref in the 3D domain � as

E (p, pref ) =

√∫
�

|p − pref |2 dV∫
�

|pref |2 dV
. (6)

The analogous relative deviation in the 2D domain �̄ is called
Ē ( p̄, p̄ref ), where an overbar denote a 2D quantity.

IV. THE ACOUSTIC PRESSURE IN A LONG STRAIGHT
CAPILLARY TUBE OF ARBITRARY CROSS SECTION

In the following, we calculate the acoustic pressure
p1(x, y, z) satisfying Eq. (4) to lowest order in the small
parameters k0δs, Eq. (3), in a long, straight capillary tube of ar-
bitrary cross section that is invariant in the axial x direction as
shown in Fig. 1(a). Our strategy has two key steps: First, based
on our previous analysis of the 2D cross-sectional resonance
modes p̄mn

1 (x, y) in a rectangular cross section having integer
m and n half-waves in the y and z direction, and including the
viscous boundary layer [38], we write an expression for the
2D cross-sectional resonance modes p̄α

1 (x, y) in an arbitrary
cross section. Second, by using these 2D modes together with
the residue theorem, we evaluate the 3D acoustic pressure
p1(x, y, z) satisfying Eq. (4) for any frequency f = 1

2π
ω and

actuation function U1⊥ as a sum over all resonance modes
α. This approach is valuable because it provides a physical
understanding of the acoustic trapping in the axial direction
and analytical scaling laws for various length scales and trap-
ping forces in terms of the properties of the 2D cross-sectional
resonance modes for any given shape.

A. The 2D pressure resonance modes in an arbitrary
cross section

In Ref. [38], we studied the special case of a rectangular
cross section of side lengths Ly and Lz. We derived to lowest
order in the small parameter k0δs, the resonance modes p̄mn

1
with m half-waves in the y direction and n half-waves in the z
direction, valid for wave numbers k0 close to the resonance
wave number k̄mn

0 . Here, and in the following, we use the
overbar to denote a quantity defined in the cross section �̄.
With this notation, the expression for p̄mn

1 given in Eq. (12) of
Ref. [38] becomes

p̄mn
1 (k0; y, z) = P̄mn

1 Ḡmn(k0)R̄mn(y, z), for k0 ≈ k̄mn
0 , (7a)

R̄mn(y, z) = cos

(
mπy

Ly

)
cos

(
nπz

Lz

)
, (7b)

P̄mn
1 =

∮
∂�̄

Ū1⊥R̄mn dl∫
�̄

(R̄mn)2 dA
, (7c)
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Ḡmn(k0) =
1
2 k̄mn

0

k0 − k̄mn
0 + 1

2 ik̄mn
0 �̄mn

. (7d)

The quantities used here have the following meaning:
R̄mn(y, z) in Eq. (7b) is the spatial dependency of a given 2D
cross-sectional resonance mode. P̄mn

1 in Eq. (7c) is a coupling
coefficient related to the overlap between R̄mn(y, z) and the ac-
tuation function Ū1⊥(y, z) defined in Eq. (4d) on the boundary
∂�̄ of the cross section �̄. Ḡmn(k0) in Eq. (7d) is the line-shape
function of the mode defined in terms of three parameters:
the wave number k0 = ω

cfl
, the resonance wave number k̄mn

0 ,
and the minute damping coefficient �̄mn = �̄mn

bl + �fl � 1,
where the latter is defined in Eq. (10) of Ref. [38] as the sum
of the boundary-layer damping coefficient �̄mn

bl and the bulk
damping coefficient �fl of Eq. (2a).

1. Generalization to an arbitrarily shaped 2D cross section

To generalize from the rectangular cross section to an
arbitrarily shaped cross section, it is helpful to write Ḡmn as a
function not of k0 but of the complex-valued wave number kc

from Eq. (2a) for kc ≈ k̄mn
c , where k̄mn

c is the complex-valued
resonance wave number. This variable shift is obtained by
inserting �̄mn = �̄mn

bl + �fl in Eq. (7d),

Ḡmn(kc) ≈
(
k̄mn

c

)2

k2
c −

(
k̄mn

c

)2 , k̄mn
c =

(
1 − i

�̄mn
bl

2

)
k̄mn

0 . (8)

In Eqs. (7) and (8), we substitute the mode index mn by α, and
thereby introduce our main assumption, which is validated
numerically below, namely, an expression for the pressure
resonance mode p̄α

1 in an arbitrary cross section valid close to
resonance kc ≈ k̄α

c and to lowest order in the small parameter
k0δs,

p̄α
1 (kc; y, z) = P̄α

1 Ḡα (kc)R̄α (y, z), for kc ≈ k̄α
c , (9a)

P̄α
1 =

∮
∂�̄

Ū1⊥R̄α dl∫
�̄

(R̄α )2 dA
, (9b)

Ḡα (kc) =
(
k̄α

c

)2

k2
c −

(
k̄α

c

)2 , k̄α
c =

(
1 − i

�̄α
bl

2

)
k̄α

0 . (9c)

Here, the eigenvalue k̄α
c and eigenfunction R̄α are defined

through the 2D eigenvalue problem, corresponding to Eq. (4),
in the cross section �̄ without actuation,

∇2R̄α +
(
k̄α

c

)2
R̄α = 0, r ∈ �̄, (10a)

D⊥R̄α = 0, r ∈ ∂�̄. (10b)

The resonance frequency f̄ α of the 2D mode α is found from
the real part k̄α

0 = Re(k̄α
c ) of the eigenvalue k̄α

c ,

f̄ α = 1

2π
ω̄α = 1

2π
cflk̄α

0 . (11)

The damping coefficient �̄α of mode α is written as the sum of
the bulk damping coefficient �fl of Eq. (2a) and the boundary-
layer damping coefficient �̄α

bl of Eq. (9c),

�̄α = �̄α
bl + �fl, �̄α

bl = −
2Im

(
k̄α

c

)

Re
(
k̄α

c

) . (12)

FIG. 2. Comparison in the cross section �̄ (defined in the text
of Sec. III and shown in Fig. 1) between the 2D pressure mode p̄1

1

from Eqs. (9) and (10) with α = 1 plotted for z > 0, and the 2D
numerical pressure p̄num

1 from Eq. (4) plotted for z < 0, both actuated
by the actuation function Ū num

1⊥ [light cyan curve and arrows, see
Eq. (13)] at the fundamental resonance frequency f̄ 1 = 1.1341 MHz.
The relative deviation defined in Eq. (6) between p̄1

1 and p̄num
1

is Ē ( p̄1
1, p̄num

1 ) = 0.14 %. The encircled magenta point marks the
position of the line used in the 3D line plots of Sec. V C.

2. Numerical validation in the 2D cross section

In Fig. 2, we validate numerically the generalized
resonance-mode structure Eq. (9) by using the cross section �̄

and the numerical procedure described in Sec. III. We choose
the actuation function Ū num

1⊥ along the boundary ∂�̄ of �̄ to be

Ū num
1⊥ (y, z) = ρflc2

fld0 sin

(
π

Lcr
y

)
e− z

Lcr . (13)

We determine numerically the lowest eigenmode α = 1 in
terms of the eigenfunction R̄1(y, z), Eq. (10), and eigenfre-
quency f̄ 1, Eq. (11), listed in Table II together with other rele-
vant mode parameters for α = 1. Inserting this eigenmode to-
gether with Ū num

1⊥ (y, z) and kc = 2π
c0

(1 + i 1
2�fl) f̄ 1 into Eq. (9),

we compute the pressure resonance mode p̄1
1(kc; y, z) at the

resonance frequency. In Fig. 2 we compare this theoretical
result p̄1

1 with the direct numerical simulation p̄num
1 obtained

from the 2D version of Eq. (4) at the resonance frequency
f̄ 1. Qualitatively, we see a smooth transition passing from
p̄1

1 above the dashed line (z > 0) to p̄num
1 below the dashed

line (z < 0). Quantitatively, the relative difference (6) between
the semianalytical p̄1

1 and the numerical p̄num
1 is found to be

Ē ( p̄1
1, p̄num

1 ) = 0.14 %, which is satisfactory in this approx-
imation to lowest order in the small boundary-layer-width
parameter k0δs = 0.24 %.

TABLE II. Values for the fundamental mode α = 1 of the 2D
eigenvalue problem obtained by numerical simulation.

Parameter Symbol Eq. Value Unit

Eigenvalue k̄1
c Eq. (10) 4761.01 − 3.49i m−1

Eigenfrequency f̄ 1 Eq. (11) 1.1341 MHz

Damping coefficient �̄1 Eq. (12) 0.00148 –

x length scale L1
x Eq. (20) 5.46 mm
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B. The 3D pressure

Based on Eq. (9) for the 2D cross-sectional pressure
modes p̄α

1 , we now derive the pressure p1(x, y, z) satisfying
Eq. (4) in the 3D capillary tube. For any given x-dependent
function φ(x), we denote its Fourier transform by φ̂(kx ), see
Appendix A. The 3D pressure is calculated from the inverse
Fourier transform,

p1(x, y, z) =
∫ ∞

−∞
p̂1(kx; y, z) eikxx dkx

2π
. (14a)

Since the integrand p̂1(kx; y, z) eikxx is a function of the
complex-valued wave number kx, we evaluate the integral
using the residue theorem for an appropriate closed contour
γ in the complex kx plane and find

p1(x, y, z) =
∑

kα
x inside γ

i Res
(
p̂1(kx; y, z)eikxx, kα

x

)
, (14b)

summing over the residues Res( p̂1(kx; y, z)eikxx, kα
x ) of all

poles kα
x inside the closed contour γ . To obtain these residues,

we only need an expression for p̂1(kx; y, z)eikxx valid close
to kα

x . The Fourier transform p̂1(kx; y, z) satisfies the Fourier-
transformed Helmholtz problem Eq. (4),

∇2 p̂1(kx; y, z) +
(
k2

c − k2
x

)
p̂1(kx; y, z) = 0, r ∈ �̄, (15a)

D⊥ p̂1(kx; y, z) = k2
0Û1⊥(kx; y, z), r ∈ ∂�̄, (15b)

where ∂�̄ is the boundary of �̄. We note that Eq. (15)
for p̂1(kx; y, z) is similar to Eq. (4) for an x-independent
pressure p1 = p̄1(y, z) with the substitutions k2

c → k2
c − k2

x
and Ū1⊥(y, z) → Û1⊥(kx; y, z), see Appendix B for details.
Using these substitutions in Eq. (9), we obtain the result for
p̂1(kx; y, z)eikxx valid for k2

c − k2
x ≈ (k̄α

c )2 and to lowest order
in the small parameter k0δs,

p̂1(kx; y, z)eikxx ≈
−

(
k̄α

c

)2
R̄αeikxx

(kx )2 −
(
kα

x

)2

∫
∂�̄

Û1⊥(kx; y, z)R̄α dl∫
�̄

(R̄α )2 dA
,

(16a)

kα
x =

√
k2

c −
(
k̄α

c

)2
. (16b)

From Eq. (16a) we see that p̂1(y, z, kx )eikxx has simple poles in
the complex kx plane at kx = ±kα

x , and therefore the residues
Res( p̂1(kx; y, z)eikxx, kα

x ) used in the sum Eq. (14b) can be
found analytically; see Appendix C. The resulting expression
for p1(x, y, z), valid for all frequencies and to lowest order in
k0δs, is

p1(x, y, z) =
∑

α

pα
1 (x, y, z), (17a)

pα
1 (x, y, z) = Pα

1 (x)Ḡα (kc)R̄α (y, z), (17b)

Pα
1 (x) =

[∫
∂�̄

U1⊥R̄α dl∫
�̄

(R̄α )2 dA
∗ gα

]
(x), (17c)

gα (x) = −ikα
x

2
eikα

x |x|. (17d)

Here, the asterisk “∗” denotes the usual functional convolu-
tion in the x coordinate; see Eq. (A3). gα (x) is the Green’s
function in the axial direction of mode α corresponding to

a delta-function actuation at x = 0, given by U1⊥(x, y, z) =
Ū1⊥(y, z)Lactδ(x), as this actuation yields

Pα
1 (x) = P̄α

1 Lactg
α (x), (18)

where Lact is an actuation strength of dimension length, and
P̄α

1 is the 2D coupling coefficient defined in Eq. (7c).

C. The axial length scales of each mode

The axial dependency of the pressure p1(x, y, z) is given
in Eqs. (17c) and (17d) by the actuation function U1⊥ and
the Green’s function gα . The latter leads to three axial length
scales that characterize each mode α. Here the strength of our
approach become apparent, as it allows us to extract analytical
expressions for these length scales. First, by using k2

c = (1 +
i�fl)k2

0 , Eq. (2a), and (k̄α
c )2 = (1 − i�̄α

bl )(k̄
α
0 )2, Eq. (9c), as

well as the assumption �̄α � 1, we write the x wave number
kα

x in Eq. (16b) of mode α as

kα
x = k̄α

c
1

√
Ḡα

≈ k̄α
0

√
�̄α

√
�α + i, �α =

k2
0 −

(
k̄α

0

)2

(
k̄α

0

)2
�̄α

.

(19)
Here, �α is the difference between the square of the wave
number k0 = ω

cfl
and the resonance wave number k̄α

0 , Eq. (11),

of the mode α scaled by (k̄α
0 )2�̄α . From Eq. (19), we identify

the characteristic length scale Lα
x of variation of the mode α in

the x direction as

Lα
x = 1

k̄α
0

√
�̄α

. (20)

Then, by using Eqs. (19) and (20), we write the decay length
dα

x and wave length λα
x of the function gα (x) in Eq. (17d) as

dα
x = 1

Im
(
kα

x

) = Lα
x

1

Im(
√

�α + i)
, (21a)

λα
x = 2π

1

Re
(
kα

x

) = Lα
x

2π

Re(
√

�α + i)
. (21b)

In the following, a tilde is used to denote rescaling by Lα
x in

the axial direction,

x̃ = x

Lα
x

, d̃α
x = dα

x

Lα
x

, λ̃α
x = λα

x

Lα
x

, (22a)

k̃α
x = Lα

x kα
x , g̃α = Lα

x gα. (22b)

In Fig. 3(a), we plot the rescaled Green’s function g̃α (x)
for three different frequencies: above resonance (k0 = k̄α

0 +
k̄α

0 �̄α , �α = 2), where it is propagating, at resonance (k0 =
k̄α

0 , �α = 0), and below resonance (k0 = k̄α
0 − k̄α

0 �̄α , �α =
−2), where it is evanescent. In Fig. 3(b), we plot the decay
length dα

x and the wave length λα
x of Eq. (21) as a function

of the actuation frequency for frequencies close to resonance
k0 ≈ k̄α

0 . For frequencies just below resonance, dα
x is small

and λα
x is large, and vice versa for frequencies just above the

resonance frequency. The three values of �α used in Fig. 3(a)
are marked by dashed vertical lines of the same color in
Fig. 3(b).

As an example of the characteristic length scale of the
axial pressure variation Lα

x , we consider a standing vertical
half wave in a rectangular cross section of height Lz with the
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FIG. 3. Plots of the rescaled quantities of Eq. (22). (a) The
complex-valued Green’s function g̃α (x) of Eq. (17d) plotted as the
real part (solid) and modulus (dotted) for three values of �α of
Eq. (19): Below (−2), at (0), and above (2) the α resonance. (b) The
decay length d̃α

x and wave length λ̃α
x , Eq. (21), as well as |k̃α

x |−1,
Eq. (19), plotted versus �α . The three vertical dashed lines mark the
values used in (a).

wave number k̄α
0 ≈ π

Lz
, for which Eq. (20) leads to the estimate

Lα
x ≈ 1

π
√

�̄α
Lz. For realistic values of the damping coefficient,

0.001 < �̄α < 0.01 [43], we obtain 10Lz > Lα
x > 3Lz.

V. THE AXIAL DEPENDENCY OF THE PRESSURE FOR A
SEPARABLE ACTUATION

Above, we derived analytical expressions for the charac-
teristic length scales of the Green’s function gα (x) entering
in Eq. (17c) for the pressure amplitude Pα

1 (x). Now, we show
analytically that the full 3D pressure at resonance separates
into a product of the 2D resonance mode and a trivial axial de-
pendency. We first calculate the axial variation of the pressure
mode pα

1 for a given separable model-actuation U1⊥ having
the dimensionless axial dependency ψact (x),

U1⊥(x, y, z) = Ū1⊥(y, z) ψact (x). (23)

In this case, the 3D mode pα
1 (x, y, z) in Eq. (17b) becomes a

product of the 2D mode p̄α
1 (y, z) and the dimensionless axial

dependency χα (x) of the pressure,

pα
1 (x, y, z) = p̄α

1 (y, z)χα (x), (24a)

χα (x) = [ψact ∗ gα](x), (24b)

which by Eq. (17a) leads to the pressure p1(x, y, z),

p1(x, y, z) =
∑

α

p̄α
1 (y, z)χα (x), for any frequency f .

(25)

FIG. 4. The box-shaped axial dependency ψbox
act (x) (dark blue

line) of the model actuation of width Lact , as well as the resulting
traveling-wave components excited by the left step at x = − 1

2 Lact

(dark red arrows) and by the right step at x = 1
2 Lact (light green

arrows).

When actuating the system near one of the 2D resonances, say
α = α′, we obtain the simplified expression

p1(x, y, z) ≈ p̄α′

1 (y, z)χα′
(x), for f ≈ f̄ α′

. (26)

A. A box actuation with sharp steps

In capillary-tube devices used for acoustic trapping, a
piezoelectric transducer is usually placed below the capillary
tube in a confined region [14–16,20,21,44]. To mimic such
an actuation, we consider the box-shaped axial dependency
ψbox

act (x) of the actuation, which is unity in the actuation region
of length Lact and sharply steps down to zero outside this
region, as sketched in Fig. 4,

ψbox
act (x) =

{
1, |x| < 1

2 Lact,

0, |x| > 1
2 Lact.

(27a)

Using this actuation in the convolution Eq. (24b) yields the
axial dependency χα

box(x) of the pressure,

χα
box(x) =

{
1 − eikα

x
Lact

2 cos
(
kα

x x
)
, |x| < 1

2 Lact,

−i sin
(
kα

x
Lact
2

)
eikα

x |x|, |x| > 1
2 Lact.

(27b)

By writing the sine and cosine factors in terms of traveling
waves, it is found that two waves travel away from each step
at x = ± 1

2 Lact as sketched in Fig. 4.
In the limit Lact � Lα

x , where the actuation is confined to
a region much narrower than the axial pressure length scale
Lα

x of Eq. (20), the axial dependency of the pressure is well
approximated by a simplified expression χα

δ (x) as

χα
box(x) ≈ χα

δ (x) = Lactg
α (x), for Lact � Lα

x , (28)

where gα (x) is defined in Eq. (17d) and plotted in Fig. 3(a) for
different frequencies.

B. A box actuation with smooth steps

In the following numerical validation, we consider
the more realistic box-actuation function U num

1⊥ (x, y, z) =
Ū num

1⊥ (y, z)ψnum
act (x), which separates as Eq. (23) with an axial

dependency ψnum
act (x), similar to the box shape ψbox

act (x) in
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Eq. (27a), but which has smooth transistions of width dact at
the steps x = ± 1

2 Lact,

U num
1⊥ (x, y, z) = Ū num

1⊥ (y, z)ψnum
act (x), at ∂�, (29a)

ψnum
act (x) = 1

1 + e
4(x− 1

2 Lact )

dact

− 1

1 + e
4(x+ 1

2 Lact )

dact

. (29b)

Here, Ū num
1⊥ is defined in Eq. (13) and shown in Fig. 2.

C. Numerical validation of the 3D mode method

Using COMSOL Multiphysics as described in Sec. III,
we validate the semianalytical Eq. (26) for p1(x, y, z) by the
direct numerical solution pnum

1 of Eq. (4) in the capillary
tube � sketched in Fig. 1, both actuated at the resonance
frequency f = f̄ 1 of the fundamental mode α = 1 of the 2D
cross section �̄. We assume that the tube is mirror-symmetric
around the y-z plane through x = 0, and take the length
of the computational domain to be Lnum

x = 10L1
x = 5.46 cm,

see Table II. At x = 0 we impose the symmetry boundary
condition ∂x pnum

1 = 0, and at x = Lnum
x we place the perfectly

matched layer (PML) mentioned in Sec. III to remove pressure
wave reflections from the tube end. The wavy boundary ∂�̄ of
the cross section �̄ is defined in Sec. III.

Using the 2D pressure mode (9) p̄1
1(y, z) obtained from the

eigenvalue problem (10), we construct the 3D pressure mode
(24), as p1

1(x, y, z) = p̄1
1(y, z)χ1(x). In the following, we use

the analytically known axial dependencies χ1
box(x), Eq. (27b),

and χ1
δ , Eq. (18), of the pressure to estimate the pressure

obtained numerically from the actuation profile ψnum
act (x) in

Eq. (29b).
To quantify the numerical validation, we compute at the

resonance f = f̄ 1 the relative deviation E (p1
1, pnum

1 ) defined
in Eq. (6) between the semianalytical 3D pressure mode p1

1
with the box actuation ψbox

act (x) of Eq. (27a) and the direct
numerical 3D pressure pnum

1 with the smoothen-box actuation
ψnum

act (x) of Eq. (29b),

p1
1 = p̄1

1(y, z)χ1
box(x), with ψbox

act (x) at f̄ 1, (30a)

pnum
1 = p1(x, y, z), with ψnum

act (x) at f̄ 1. (30b)

In Fig. 5, we study the axial dependency of the pressure for
varying actuation step width dact and fixed actuation length of
Lact = 2L1

x , rescaled as in Eq. (22) by the characteristic length
scale L1

x ,

d̃act = dact

L1
x

, L̃act = Lact

L1
x

. (31)

In Fig. 5(b) is shown that for small dact the semianalytical
expression (30a) is a good approximation for all x̃. For large
dact it deviates significantly from the numerical solution (30b)
inside the actuation region for |x̃| < 1, whereas it remains a
good approximation outside for |x̃| < 1. This is quantified in
the inset of Fig. 5(b), showing that the deviation Ebox (solid
line) is around 1 % for a sufficiently narrow actuation step
width d̃act � 0.4.

In Fig. 6 we vary the actuation length Lact and keep
the actuation step width fixed at d̃act = 0.1. For all actua-
tion lengths L̃act, the semianalytical expression (30a) p̄1

1χ
1
box

(dashed magenta lines) approximates well the full numerical

FIG. 5. The acoustic pressure for varying actuation step width
d̃act and fixed actuation length L̃act = 2. (a) The actuation profile
ψnum

act (x) used in the full numerical simulation for d̃act = 0.0 (dark
blue) to d̃act = 2.0 (light blue). (b) Line plots of the magnitude of the
acoustic pressure along the axis parallel to the x-axis shown in Fig. 2,
with |p1

1| = | p̄1
1χ

1
box| (magenta dashed line) from Eq. (30a), and

|pnum
1 | (blue lines) from Eq. (30b) obtained from the 3D simulation

by using the actuation of same color shown in (a). The inset shows
the relative deviation (6) Ebox (solid line) of the pressure mode
p̄1

1(y, z)χ 1
box(x) from the numerical pressure pnum

1 , as well as the
deviation for the 2D calculation given in Sec. IV A, Ē = 0.14 %
(dot-dashed line).

solution pnum
1 (30b) (solid green lines), whereas p̄1

1(y, z)χ1
δ (x)

(black dotted lines), see Eq. (18), as expected is only a good
approximation in the narrow-actuation limit L̃act � 1. In the
inset of Fig. 6(b) the relative deviations of these approxi-
mations from pnum

1 are quantified by Ebox (solid line) and Eδ

(dotted line).

VI. TIME-AVERAGED ACOUSTIC QUANTITIES CLOSE
TO RESONANCE

In typical experiments on acoustofluidic devices, the MHz
oscillation of the acoustic pressure p1 is not observed directly.
We therefore study the time-averaged acoustic quantities
given in Eq. (5).

A. Time-averaged quantities for a single mode

We study a single-mode pressure resonance of the form
p1 ≈ pα

1 = p̄α
1 (y, z)χα (x), see Eq. (26). Inserting this form in

Eq. (5) together with the rescaled axial coordinate x̃ = x/Lα
x

and the corresponding derivative ∂x̃ = Lα
x ∂x, both scaled with

the characteristic axial length scale Lα
x from Eq. (20), we

obtain the time-averaged quantities,

Eα
pot = Ēα

pot|χα|2, (32a)

Eα
kin = Ēα

kin|χα|2 +
Ēα

pot

(k0Lα
x )2

|∂x̃χ
α|2 ≈ Ēα

kin|χα|2, (32b)
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FIG. 6. The acoustic pressure for varying actuation length L̃act

and fixed actuation step width d̃act = 0.1. (a) The actuation profile
ψnum

act (x) used in the full numerical simulations for L̃act = 0.1 (dark
green) to L̃act = 8.0 (light green). (b) Line plots of the magnitude of
the acoustic pressure along the axis parallel to the x axis shown in
Fig. 2. The green graphs show the pressure pnum

1 obtained from the
3D simulation by using the actuation of same color shown in (a).
The dashed magenta lines show p1

1 = p̄1
1χ

1
box from Eq. (30b), and the

dotted black lines show the pressure p̄1
1χ

1
δ valid in limit L̃act � 1,

see Eq. (18). The inset shows the deviation E from to the reference
pressure pnum

1 Eq. (6), for p̄1
1χ

1
box (Ebox, solid), for p̄1

1χ
1
δ (Eδ , dotted),

as well as the deviation for the 2D calculation given in Sec. IV A,
Ē = 0.14 % (dot-dashed line).

Eα
ac ≈ Ēα

ac|χα|2, (32c)

U α
rad ≈ Ū α

rad |χα|2, (32d)

Fα
rad ≈ F̄α

rad|χα|2 −
√

�̄α k̄α
0 Ū α

rad∂x̃|χα|2ex, (32e)

Sα
ac = S̄α

ac|χα|2 +
√

�̄αcflĒα
potIm[2(χα )∗∂x̃χ

α]ex. (32f)

Here, the overbar denote a cross-section quantity obtained by
using the cross-section resonance pressure p̄α

1 (y, z) in Eq. (5).
In Eqs. (32b)–(32e) we used that (k0Lα

x )−2 ≈ �̄α , see Eq. (20),
which is here assumed to be much smaller than unity. We
note that the time-averaged quantities listed in Eq. (32) have
three different axial dependencies: |χα|2 which is the axial
dependency of Eα

kin, Eα
pot, Eα

ac, U α
rad , (Fα

rad )yz, and (Sα
ac)yz.

∂x̃|χα|2 which is the axial dependency of the axial radiation
force Fα

rad,x. And finally Im[2(χα )∗∂x̃χ
α] which is the axial

dependency of the axial energy flux density Sα
ac,x.

B. Time-averaged quantities for the box actuation

In Fig. 7, we use the box actuation with χα = χα
box, see

Eq. (27b), to make contour plots in the L̃act-x̃ plane of the
axial dependency of the time-averaged quantities listed in
Eq. (32). For each quantity, we choose the rescaled frequency
�α ≈ f0− f α

0
1
2 f0�̄α

, see Eq. (19), to obtain the largest possible value

FIG. 7. The axial dependency of the time-averaged acoustic
quantities of Eq. (32) obtained by using χα

box from Eq. (27b) as the
axial dependency of the pressure. In each plot, the rescaled frequency
�α ≈ f0− f α

0
1
2 f0�̄α

, Eq. (19), is chosen to maximize the corresponding

physical quantity, and the maximum value is marked by yellow
points. The black dashed lines show the actuation edge x̃ = ± 1

2 L̃act .
(a) The axial dependency |χα

box|2 of the acoustic energy density Eα
ac,

and the cross-sectional radiation force (F rad )yz, where the contours
are separated by 0.1 and the thick blue lines mark the area where the
axial dependency of |χα

box|2 exceeds unity. (b) The axial dependency
∂x̃|χα

box|2 of the axial radiation force Fα
rad,x . (c) The axial dependency

Im[2(χα
box )∗∂x̃χ

α
box] of the axial energy flux density Sα

ac,x .

of that quantity, i.e. to optimize |Ḡα|2|χα
box|2, |Ḡα|2∂x̃|χα

box|2,
and |Ḡα|2Im[2(χα

box)∗∂x̃χ
α
box], respectively.

In Fig. 7(a) is shown a contour plot of the axial dependency
|χα

box(x)|2 of the acoustic energy density Eα
ac, Eq. (32c), and

cross-sectional radiation force (Fα
rad )y,z, Eq. (32e). The blue

contour delimit the region where the 3D acoustic energy
density Eα

ac is larger than the 2D acoustic energy density
Ēα

ac. The orange dot marks the maximum obtainable acoustic
energy density which is max{Eα

ac} = 1.23Ēα
ac, found at the

optimal actuation length L̃act ≈ 6.1.
In Fig. 7(b) is shown a contour plot of the axial dependency

∂x̃|χα
box(x)|2 of the axial acoustic radiation force Fα

rad,x, see
Eq. (32e). The orange dots mark the maximum obtainable
axial trapping force which is found to be max{Fα

rad,x} =
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∓0.63
√

�̄α k̄α
0 Ū α

rad , for the optimal actuation length L̃act ≈ 4.1.
For this optimal value, the force is largest at the axial position
x̃ = ±1.3, which is around 17% inside the actuation region.

Finally, in Fig. 7(c) is shown a contour plot of the axial
dependency Im[2(χα

box)∗∂x̃χ
α
box] of the axial acoustic energy

flux density Sα
ac,x; see Eq. (32f). Clearly, the energy is always

transported away from the actuation region at the edges of
the actuation domain x̃ ≈ ± 1

2 L̃act. The orange dots mark
the largest obtainable axial energy flux density which is
max{Sα

ac,x} = ±0.66
√

�̄αcflĒα
pot.

C. Example: A standing half-wave resonance in a rectangular
cross section

A standard device for acoustic trapping is the capillary
tube with the rectangular cross section 0 < y < Ly and 0 <

z < Lz, where a standing-half-wave resonance in the vertical
z direction is excited [14–16,20,21,44]. Using Eq. (7) with
k̄01

0 = π
Lz

for the 2D pressure mode p̄01
1 = P̄01

1 Ḡ01 cos (k̄01
0 z),

we evaluate the cross-sectional radiation force F 01
rad,z(x, z)

from Eq. (32e) as

F 01
rad,z(x, z)

4πa3k̄01
0

〈
Ē01

ac

〉 ≈ � sin
(
2k̄01

0 z
)
|χ01(x)|2, (33a)

where � = 1
3 f0 + 1

2 f1 is the usual acoustic contrast factor

[23,26,27], and 〈Ē01
ac 〉 = 1

4κfl|P̄01Ḡ01|2 is the spatial average
of the acoustic energy density Eq. (32c) in the cross section
�̄. Similarly, we use Eqs. (7) and (32e) to evaluate the axial
radiation force,

F 01
rad,x(x, z)

4πa3k̄01
0

〈
Ē01

ac

〉 ≈
[

1

2
f1 − � cos2

(
k̄01

0 z
)]√

�̄01∂x̃|χ01|2.

(33b)

From Eqs. (33a) and (33b), we calculate the ratio between
the maximum axial radiation force and the maximum cross
section radiation force for the single standing-wave resonance
by using max {∂x̃|χ01(x)|2} ∼ 2 max {|χ01(x)|2},

max
{
F 01

rad,x

}

max
{
F 01

rad,z

} ≈ f1

�

√
�̄01 = 2

1 + 2 f0

3 f1

√
�̄01,

≈ 0.21
√

�̄01, for polystyrene particles. (33c)

In the last step we use the scattering coefficients f0 = 0.443
and f1 = 0.034 for large polystyrene particles [26]. As exam-
ples, Ley and Bruus [36] studied numerically the pyrex-glass
capillary tubes named “C1” (used by Hammerström et al.
[20] with inner dimensions Ly = 2 mm and Lz = 0.2 mm)
and “C5” (proposed by the authors with inner dimensions
Ly = 0.5 mm and Lz = 0.2 mm). In both cases, they found
the quality factor for the standing half-wave resonance in
the z direction to be Q = 53, corresponding to the damping
coefficient �̄01 = 1

53 . Using this value in (33c) gives the ratio
1

35 , where Ley and Bruus found the ratio to be 0.44 pN
22 pN = 1

50 for

C1 (see their Fig. 6) and 0.13 pN
7 pN = 1

54 for C5 (see their Fig. 9).
Hence, even though Eq. (33c) is obtained from a hard-wall
analysis, it predicts values close to the full simulation where
the surrounding glass capillary is included.

Furthermore, for the capillary tube C1 with the experimen-
tally found resonance frequency f = 1

2π
k0cfl = 3.970 MHz

and transducer length Lact = 1160 μmm [20], we calculate
L̃act = Lactk0

√
�̄01 = 2.6. From Figs. 7(a) and 7(b) follows

the prediction that the acoustic energy density Eα
ac and trap-

ping force Fα
rad,x may be approximately doubled by doubling

Lact.

VII. DISCUSSION

The theory presented in Sec. IV relies on the main assump-
tion that the 2D resonance modes in an arbitrary cross section
can be written as in Eq. (9) for wave numbers k0 very close to
the cross-section eigenvalues k̄α

0 . Whereas this generalization
is not proven mathematically, it is physically reasonable, and
we have validated it numerically in Fig. 2 with a relative
deviation of 0.14%. We note that the eigenfunctions R̄α (y, z)
in the cross section do not exactly form a complete set,
because the eigenvalues of the eigenvalue problem Eq. (10)
has a small imaginary part. However, in the limit k0δs � 1
the viscous boundary layer introduces a minute imaginary part
to the eigenvalues, and thus Eq. (9) is a good approximation.
It may be possible to come up with a special cross section
where our theory fails, but it does apply to all capillary tube
cross sections used in the experiments that are reported in the
literature.

We have presented detailed results for the special simplify-
ing, but experimentally relevant, condition that the actuation
frequency is near a resonance characterized by a single mode
that does not overlap with other modes, such that the 3D
pressure p1 is described by only a single term of the sum
Eq. (17). We emphasize, however, that this is not a necessary
condition, as the general theory allows both for nonresonant
actuation and for multiple overlapping modes. In fact, we have
done equally successful validations for frequencies away from
resonance, where more modes are taken into account.

We have considered the actuation to have a box-shaped
axial dependency given by Eq. (27a) to mimic a piezoelectric
transducer confined in the axial direction to a length Lact. In
a realistic glass-capillary system, the motion of the wall will
be more complicated as found from the numerical simulations
by Ley and Bruus [36] and the simulations and experiments
by Reichert et al. [45]. Nevertheless, when calculating the
ratio between the axial and cross-sectional radiation force
in the end of Sec. VI C and using the damping coefficient
�̄1 = 1

53 found from the numerical simulation by Ley and

Bruus, we almost reproduce their values, namely, Frad,x

Frad,z
≈ 1

50 .
This agreement indicates that the predictions from our theory
of the axial variations of the pressure remain valid for more
complicated wall actuation, and that the important effect from
the capillary walls is well described by a change in the
damping coefficient �̄α for the mode. The probable cause for
this increased damping factor of the fluid resonance is not
dissipation in the capillary tube but instead an axial transport
of energy in the solid away from the fluid, as pointed out by
Ley and Bruus [36]. This can be seen from Eq. (32f), which
states that the axial transport (Sac)x of energy is proportional
to the speed of sound cfl, and because the speed of sound in
the capillary tube is usually larger than in the fluid, energy
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is efficiently transported away from the trapping region. For
example, the longitudinal sound speed in pyrex glass is 3.7
times larger than in water [46].

VIII. CONCLUSION AND OUTLOOK

We have presented a semianalytical method to calculate
the acoustic pressure in a long, straight capillary tube of
arbitrary cross section with a localized ultrasound actuation
at the walls. Moreover, we have analytically derived the axial
dependencies Eq. (32) of the time-averaged response and used
it to derive an expression for the key aspect in the acoustic
trap, namely, the axial acoustic radiation force Eq. (33) acting
on suspended particles. The viscous boundary layer is taken
into account through an effective boundary condition Eq. (4b),
which is valid when the width δs of the viscous boundary layer
is much smaller than both the acoustic wavelength (k0δs � 1)
and the radius of curvature of the cross section. This condition
is usually satisfied in typical experiments.

In Eq. (9), the acoustic 2D cross-section resonance mode
p̄α

1 (y, z) in an arbitrary cross section was obtained by a gener-
alization of the well-studied case Eq. (7) of a rectangular cross
section. The 2D mode p̄α

1 (y, z) can be found analytically for
integrable shapes, such as rectangles, circles and ellipses, and
otherwise numerically as shown in Fig. 1. The theory results
in the correct amplitude and phase of p̄α

1 (y, z) by combining
the eigenvalue k̄α

c and the dimensionless eigenfunction R̄α of
Eq. (10) with the actuation function Ū1⊥ of Eq. (4d) and the
inclusion of the viscous boundary layer through the boundary
operator D⊥ in Eq. (4c).

From the 2D pressure modes p̄α
1 (y, z) in the cross sec-

tion, known for frequencies near resonance, we derived in
Eq. (17b) the 3D pressure modes pα

1 (x, y, z). The sum over α

of these modes, see Eq. (17a), constitutes the full 3D pressure
p1(x, y, z) including the axial dependency and valid for all
frequencies. In Eq. (20) we extracted for 3D resonance mode
pα

1 the characteristic axial length scale Lα
x = (k̄α

0

√
�̄α )−1,

where k̄α
0 is the 2D resonance wave number and �̄α is the

2D damping coefficient. Because the axial radiation force
(Fα

rad )x and the axial energy flux density (Sα
ac)x of resonance

mode α, depend on the axial gradient of the pressure, we find
in Eqs. (32e) and (32f) that these are both proportional to√

�̄α . These analytical results constitute the main theoretical
insight obtained by our mode analysis. Furthermore, from
a purely numerical-modeling point of view, the theoretical
method implies a drastic reduction in the computer-memory
requirements and in computation times, because the full 3D
system can be obtained from a 2D simulation of the cross-
section eigenproblem combined with the analytical expres-
sions for the axial dependencies. This reduction will facilitate
any numerical parametric study of the 3D acoustic trap.

To further study the physics of the acoustic trap, we chose a
box-shaped actuation which mimics a piezoelectric transducer
attached to the capillary walls in a confined region of length
Lact, and which allows for analytic solutions. In Fig. 7 is
shown the resulting axial dependencies of the acoustic en-
ergy density Eα

ac, the cross-sectional acoustic radiation force
(F rad )yz, the axial acoustic radiation force Fα

rad,x, and the axial
energy flux density Sα

rad,x. Remarkably, we found an optimal

actuation length Lact ≈ 2-5Lα
x that maximizes these quantities.

Furthermore, whereas the maximum acoustic energy density
Eα

ac is found in the center of the channel, maximum axial ra-
diation force Fα

rad,x is located around 17% inside the actuation
region, and the maximum axial energy flux density Sα

rad,x is
located at the edge of the actuation region.

We validated numerically our theory in Figs. 5 and 6 for
the 3D system shown in Fig. 1 near the resonance α = 1, by
using the box-shaped actuation given in Eq. (27a). We found a
relative agreement around 1 % between theory and simulation,
even when the box-shaped actuation had smooth steps. This
agreement is satisfactory as the theory was developed in the
limit of a small boundary-layer width (k0δs � 1), and k0δs =
0.0024 in the numerical model.

The presented theory motivates further studies of capillary
tubes. One obvious extension of this work is to compute
the acoustic streaming, in particular the horizontal in-plane
streaming rolls observed by Hammarström, Laurell, and Nils-
son [20] and by Lei, Glynne-Jones, and Hill [15]. The stream-
ing can be computed numerically by combining the presented
theory with the recently published methods of calculating
the time-averaged streaming velocity [30,37]. Another future
study, would be to include the elastic walls in the mode
analysis. For example, by combining the wall velocity U1⊥
obtained from a full 3D numerical simulation with the solution
of the 2D eigenvalue problem Eq. (10), the coupling strength
Pα

1 for each pressure mode pα
1 can be calculated from Eq. (17).

In this way the relative importance of each pressure mode
in the acoustic trap can be characterized. A last example of
further work is to investigate the loss of acoustic energy in the
fluid into the solid as briefly discussed in the last paragraph of
Sec. VII.

We have provided theoretical predictions of the axial vari-
ation of the acoustic fields in capillary tubes and pointed out
that there is an optimal actuation length leading to a maximum
acoustic radiation force, both in the axial and cross-sectional
directions. Our analysis provides a theoretical understanding
of the complicated 3D characteristics of acoustofluidics in
capillary tubes, and in long, straight channels in general. Our
resulting expressions can be used to aid in the design of
acoustic trapping devices, and we hope that our work will
inspire further systematic experimental characterization and
optimization of acoustic traps.

APPENDIX A: THE FOURIER TRANSFORM AND THE
CONVOLUTION RELATIONS

We define the Fourier transform Fx and the inverse Fourier
transform F−1

k as

φ̂(k) = Fx[φ(x)](k) =
∫ ∞

−∞
φ(x)e−ikx dx, (A1a)

φ(x) = F−1
k [φ̂(k)](x) =

∫ ∞

−∞
φ̂(k)e+ikx dk

2π
. (A1b)

For this convention, the convolution relations are

F[φ1 ∗ φ2] = F[φ1]F [φ2], (A2a)

F[φ1φ2] = F[φ1] ∗ F[φ2], (A2b)
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where the in-line asterisk denote the convolution,

[ f ∗ g](x) =
∫ ∞

−∞
f (x′)g(x − x′) dx′. (A3)

APPENDIX B: DETAILS ABOUT THE USE OF THE
BOUNDARY OPERATOR D⊥ IN Eq. (15)

The boundary operator D⊥ defined in Eq. (4c) takes into
account the viscous boundary layer. To be able to compare
Eq. (15) for p̂1 to Eq. (4) for p̄1, we need to express D⊥ in
terms of k2

c − k2
x . This is achieved by subtracting and adding

k2
x as D⊥ = ∂⊥ + i

ks
[(k2

c − k2
x ) + k2

x + ∂2
⊥]. Close to the poles

we have kx ≈ kα
x , and thus Eq. (16b) gives k2

c − k2
x ≈ (k̄α

c )2,
whereby D⊥ ≈ ∂⊥ + i

ks
[(k̄α

c )2 + (kα
x )2 + ∂2

⊥]. If we assume

(k̄α
c )2 � (kα

x )2, then we may ignore (kα
x )2. Later, this assump-

tion is proven correct by noticing that Eq. (19) yields (kα
x )2 ∼

�̄α (k̄α
c )2 with �̄α � 1. Consequently, Eq. (16) for the Fourier

transform p̂1 at kx-values close to the complex poles kα
x is valid

to O(�̄α ).

APPENDIX C: DETAILS IN APPLYING
THE RESIDUE THEOREM

To obtain the residues Res( p̂1(kx; y, z)eikxx, kα
x ) used

in Eq. (14b), we first rewrite Eq. (16a) by inserting
Û1⊥(kx; y, z) =

∫ ∞
−∞ U1⊥(x′, y, z)e−ikxx′

dx′,

p̂1(kx; y, z) eikxx

≈
−

(
k̄α

c

)2
R̄α

(kx )2 −
(
kα

x

)2

∫
∂�̄

∫ ∞
−∞ U1⊥(x′, y, z)eikx (x−x′ ) dx′R̄α dl

∫
�̄

(R̄α )2 dA
.

(C1)

This expression is valid for kx close to the simple poles given
by ±kα

x = ±
√

k2
c − (k̄α

c )2; see Eq. (16b). Based on Eq. (C1),
the integral in Eq. (14a) is calculated using the residue theo-
rem over a closed contour γ in the complex kx-plane chosen
as follows: (1) For x − x′ > 0, the integrand Eq. (C1) vanishes
for kx → i∞, and we choose the closed contour γ to be the
counterclockwise contour consisting of the real Re(kx ) axis
connected to a semicircle of radius |kx| → ∞ in the upper
complex kx plane. This contour encloses the residues at kx =
+kα

x = +
√

k2
c − (k̄α

c )2 having positive imaginary part. (2) For
x − x′ < 0, the integrand Eq. (C1) vanishes for kx → −i∞,
and we choose the closed contour γ to be the clock-wise
contour consisting of the real Re(kx )-axis connected to a semi-
circle of radius |kx| → ∞ in the lower complex kx-plane. This
contour encloses the residues at kx = −kα

x = −
√

k2
c − (k̄α

c )2

having negative imaginary part. In either case (1) or (2), the
residues inside the closed contour γ are

Res
(
p̂1(kx; y, z)eikxx, kα

x

)

=
−

(
k̄α

c

)2
R̄α

2kα
x

∫
∂�̄

∫ ∞
−∞ U1⊥(x′, y, z)eikα

x |x−x′| dx′R̄α dl
∫
�̄

(R̄α )2 dA

= −iḠα (kc)R̄α

∫
∂�̄

∫ ∞
−∞ U1⊥(x′, y, z)g(x − x′) dx′R̄α dl

∫
�̄

(R̄α )2 dA
,

(C2)

where we inserted Ḡα (kc) from Eq. (9c) and introduced the
normalized function gα (x) given by Eq. (17d). Finally, using
the residues Eq. (C2) in the sum Eq. (14b), we obtain Eq. (17)
for the acoustic pressure p1.
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Acoustic streaming is an ubiquitous phenomenon resulting from time-averaged nonlinear dynamics
in oscillating fluids. In this theoretical study, we show that acoustic streaming can be suppressed by
two orders of magnitude in major regions of a fluid by optimizing the shape of its confining walls.
Remarkably, the acoustic pressure is not suppressed in this shape-optimized cavity, and neither is the
acoustic radiation force on suspended particles. This basic insight may lead to applications, such as
acoustophoretic handling of nm-sized particles, which is otherwise impaired by acoustic streaming.

When a fluid executes oscillatory motion due to an im-
posed acoustic field or a vibrating boundary, the inher-
ent fluid-dynamical nonlinearities spawn a steady flow
adding to the oscillatory motion. This phenomenon,
called acoustic streaming, has a rich, 200 year old his-
tory. Early observations by Ørsted (1809) and Savart
(1827) of the difference in the motion of coarse and fine
grained powders over vibrating Chladni plates, were in
1831 conclusively attributed to acoustic streaming in the
air by Faraday in his seminal experiments on Chladni
plates placed in a partial vacuum [1]. In 1876, Dvořák
observed acoustic streaming caused by standing sound
waves in a Kundt’s tube [2]. A theoretical explanation of
this boundary-induced streaming in various geometries
was provided in 1884 by Lord Rayleigh in terms of an
oscillatory boundary layer flow, which by time-averaging
induces a steady slip velocity near the boundary that
drives the steady streaming [3]. A further experimental
and theoretical analysis of streaming invoking Prandtl
boundary layers was presented by Schlichting in 1932 [4],
who identified counter-rotating vortices inside the thin
viscous boundary layer near the wall co-existing with the
rotating vortices outside the boundary layer. Rayleigh’s
slip-velocity formalism was later generalized to curved
surfaces moving in the normal direction [5, 6], to flat
surfaces moving in arbitrary directions [7], and to curved
surfaces with arbitrary velocity [8]. Eckart found in 1948
that acoustic streaming also can be induced by atten-
uation of sound in the bulk [9]. This effect is mainly
considered important for systems much larger than the
acoustic wavelength [10, 11], but as was pointed out re-
cently, it can also be significant on the length scale of a
single wave length for rotating acoustic fields [12].

Acoustic streaming is a truly ubiquitous phenomenon
that has been observed not only in Newtonian fluids, but
also in superfluid helium [13] and non-Newtonian vis-
coelastic liquids [14]. It has found many applications
within a wide range of topics such as thermoacoustic en-
gines [15], enhancement of electrodedeposition [16], mix-
ing in microfluidics [17], biofouling removal [18], and
lysing of vesicles [19]. Given its widespread appearance,
a fundamental question naturally arises: is it possible
to suppress acoustic streaming? Recently, Karlsen et al.

showed experimentally and theoretically that for inhomo-
geneous fluids inside a microchannel, the acoustic stream-
ing can be suppressed in the bulk of the fluid as long as
a density gradient is present there [20], an effect caused
by the acoustic body force [21].

But what about homogeneous fluids? In this work,
using the same experimentally-validated numerical mod-
eling as in Refs. [20, 21], we demonstrate that for ho-
mogeneous fluids confined in cavities or channels, the
acoustic streaming can be suppressed by more than two
orders of magnitude in large parts of the bulk by op-
timizing the shape of the confinement. This discovery
not only provides physical insight into a time-honored
fundamental phenomenon in fluid dynamics, but it is
also of considerable practical interest in the field of mi-
croscale acoustofluidics, where ultrasound fields routinely
are used to handle suspended microparticles. Such a par-
ticle of radius a is affected by two forces: the acoustic ra-
diation force that scales with a3 and tends to focus par-
ticles at the acoustic nodal planes; and the streaming-
induced drag force that scales with a and by virtue of
the streaming vortices tends to defocus particles. Con-
sequently, there exists a lower limit of a that allows for
controlled handling by the focusing radiation force, and
it has been shown to be amin ≈ 1 µm for dilute aqueous
particle solutions [22, 23]. A suppression of the acoustic
streaming would enable a desirable controlled handling
of nanoparticles, such as bacteria, viruses and exosomes.

Modeling the acoustofluidic fields.—To optimize the
shape, efficient and fast computation of the acoustofluidic
fields is required. For that, we use the method described
in Refs. [8, 24], where the thin viscous boundary layer is
taken into account analytically and therefore needs not to
be resolved numerically. We consider a domain Ω with
hard boundary walls, see Fig. 1, containing a homoge-
neous and quiescent fluid of dynamic viscosity ηfl, bulk
viscosity ηb

fl, density ρfl, and sound speed cfl at pressure
pfl. An acoustic field is created by letting the bound-
ary oscillate harmonically with the angular frequency ω
around its equilibrium position ∂Ω with a prescribed dis-
placement ubdr(r, t) expressed as the real part of the
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FIG. 1. Simulation results for MHz-acoustics at Eac = 100 Pa in straight microchannels with a rectangular and a shape-
optimized cross section. (a)-(b) The acoustic pressure p1 from −1.5 MPa (light blue) to +1.5 MPa (dark red). The shape
in (b) is defined by a spline interpolation between the colored points, where the z-coordinate of the yellow points are free in
the optimization, and the red points are fixed. (c)-(d) The radiation force Frad (black arrows) on 1-µm-diameter polystyrene
particles from 0 (white) to 0.6 pN (dark green). (e)-(f) The acoustic streaming v2 (cyan unit arrows) from 0 (black) to 0.11 mm

s

(light yellow). The two contours mark 1 % (magenta) and 5 % (green) of the characteristic streaming speed v
0
2 from Eq. (8).

complex amplitude ubdr
1 (r),

ubdr(r, t) = Re
[
ubdr

1 (r) e−iωt], (1)

where i =
√
−1. The resulting pressure p is written as a

perturbation series,

p(r, t) = pfl + Re
[
p1(r)e−iωt]+ p2(r), (2)

and likewise for the density ρ and the fluid velocity v.
All first-order fields (subscript “1”) oscillate harmonically
with the angular frequency ω, whereas all second-order
fields (subscript “2”) are steady, being averaged in time
over a full oscillation period 2π

ω .

The first-order acoustic pressure p1 satisfies the
Helmholtz equation in the bulk Ω and a boundary-layer
boundary condition at ∂Ω expressed in terms of the in-
ward normal derivative ∂⊥ = −n ·∇ and the outward-

pointing normal vector n [8],

∇2p1 + k2
cp1 = 0, inside Ω, (3a)

[
∂⊥ +

i

ks

(k2
c + ∂2

⊥)
]
p1 =

−ρflω
2

1− iΓfl

(
n +

i

ks

∇
)
·ubdr

1 ,

at the boundary ∂Ω. (3b)

Here, kc =
(
1 + 1

2 iΓfl

)
k0 is the complex-valued com-

pressional wave number having the real part k0 = ω
cfl

,

Γfl = 1
2

(
4
3 + η

b
fl

ηfl

)
(k0δ)

2 is the minute acoustic damping

coefficient with Γfl � 1, and ks = 1+i
δ is the shear wave

number related to the viscous boundary layer of thin

width δ =
√

2ηfl
ωρfl

with k0δ � 1. From p1, we obtain

the acoustic velocity v1 and density ρ1 outside the thin
viscous boundary layer [8],

v1 =
−i(1− iΓfl)

ωρfl

∇p1, ρ1 = κflp1, (4)



3

with the isentropic compressibility κfl = 1

ρflc
2
fl

. The

space-and-time-averaged acoustic energy density Eac in
Ω of volume VΩ is,

Eac =

∫

Ω

[
1

4
κfl

∣∣p1

∣∣2 +
1

4
ρfl

∣∣v1

∣∣2
]

dV

VΩ

. (5)

The second-order steady boundary-driven streaming ve-
locity v2 outside the viscous boundary layer is a Stokes
flow with the slip velocity vslip

2 at the boundary [8],

0 = −∇p2 + ηfl∇2v2, (6a)

with 0 = ∇· v2 in Ω, and v2 = vslip
2 at ∂Ω. (6b)

For the slip velocity vslip
2 , we use expression (55) of

Ref. [8] for an oscillating, curved surface with a curva-
ture radius much larger than the viscous boundary-layer
width δ.

The time-averaged forces acting on a suspended parti-
cle of radius a and velocity vpa are the Stokes drag force
Fdrag and the acoustic radiation force Frad [25],

Fdrag = 6πηfla(v2 − vpa), (7a)

Frad = −∇
[

4πa3

3

(
f0

4
κfl|p1|2 −

3f1

8
ρfl|v1|2

)]
, (7b)

where f0 and f1 are the monopole and dipole scatter-
ing coefficients for the particle. All parameter values are
given in the Supplemental Material [26].

Shape optimization for suppression of acoustic stream-
ing.—We consider straight microchannels placed along
the x axis with different y-z cross sections, see Fig. 1.
To quantify the comparison between these channels, we
revert to the classical results for a standing half-wave
resonance p1 = pa sin(k0y) in a rectangular cross sec-

tion, for which Eac = 1
4κflp

2
a, the slip velocity vslip

2 =
3Eac

2ρflcfl
sin(2k0y)ey [3], and the acoustic radiation force

Frad = −4πa3k0ΦEac sin(2k0y)ey, with the acoustic con-
trast factor Φ = 1

3f0 + 1
2f1 [27]. We then introduce the

following characteristic scaling quantities based on the
acoustic energy density Eac (5): the acoustic pressure
p0

1, the streaming speed v0
2 , and the radiation force F 0

rad,

p0
1 =

√
4Eac

κfl

, v0
2 =

3Eac

2ρflcfl
, F 0

rad = 4πa3k0ΦEac. (8)

To optimize the shape for suppression of the acoustic
streaming, we define a cost function C that penalizes large
streaming,

C =
1

v0
2

∫

Ω

∣∣v2

∣∣ dV

VΩ

. (9)

The suppression of the acoustic streaming is quantified
by the suppression parameter Sq, the volumetric fraction

in which the streaming speed |v2| is smaller than the
percentage q of v0

2 ,

Sq =

∫

Ω

Θ
( q

100
v0

2 −
∣∣v2

∣∣
) dV

VΩ

. (10)

Here, Θ(x) is Heaviside’s step function being 0 for x < 0
and 1 for x > 0.

For a given cross-section shape, we evaluate the cost
function C by the following numerical two-step simulation
in COMSOL Multiphysics [28], see e.g. Refs. [8, 22, 24]:
(1) We compute p1 from Eq. (3) in the idealized case of a
prescribed displacement d0 of the wall in the y direction,
ubdr

1 = d0ey. (2) We solve Eq. (6) for v2 with vslip
2

calculated from p1.
The cross-section shape is constrained to have width

W0 = 380 µm and height H0 = 160 µm, and to be sym-
metric in y and z, see Fig. 1(b). The upper right edge
is represented by a cubic spline interpolation through 7
points (yi, zi), i = 0, 1, . . . , 6, where the y positions yi
are fixed at [0, 1

6 ,
3
6 ,

4
6 ,

5
6 ,

9
10 , 1]W0

2 . Furthermore, the z
positions of the end points are fixed at z0 = 1

2H0 and
z6 = 1

2h0, where h0 = 10 µm is the height of the chan-
nel at the neck y6 = 1

2W0. The optimization algorithm
minimizes the cost function C (9) by varying the five free
heights z1-z5 with the constraint 1

2h0 ≤ zi ≤ 1
2H0. This

optimization is implemented in Matlab [29] using the
routine fminsearchbnd [30] that calls COMSOL. It typi-
cally requires ∼200 iterations, each taking 5 seconds on a
workstation with a 3.5-GHz Intel Xeon CPU E5-1650 v2
dual-core processor and with a memory of 128 GB RAM.

In Fig. 1, simulation results are shown for the well-
studied rectangular cross section [22] and compared to
the results for the optimized spline cross section. For
the optimized shape, the acoustic streaming is dramat-
ically suppressed, whereas the radiation force is still
present in the entire channel. Quantitatively, we ob-
tain from Eq. (10) the streaming-suppression parameters
S5 = 96 % and S1 = 63 % for the optimized shape, and
S5 = 4 % and S1 = 0.6 % for the rectangle.

In Fig. 2(a), we show the family of optimized shapes
obtained as above, but varying the maximum height as
H = [0.1, 0.2, . . . , 1.5]H0. In Fig. 2(b), we plot p1 along
the upper boundary and note that it is approximately
linear along a large part of the arc length for all the opti-
mized shapes. This may be explained by inspecting the
simplified expression for the slip velocity vslip

2 adapted
from Eq. (61) in Ref. [8] to the 2D standing-wave reso-
nance considered here,

vslip
2‖ ≈ −

3

8ω
∇‖
∣∣v1‖

∣∣2, vslip
2⊥ ≈ 0. (11)

Clearly, because v1‖ ∝ ∇‖p1, the tangential slip veloc-

ity vslip
2‖ is small when p1 is linear along the boundary.

Remarkably, as seen in Fig. 2(b), this linearity is main-
tained along nearly 90 % of the optimized boundaries,
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FIG. 2. (a) The optimized shapes, each defined by 2 fixed
(red) and 5 free (yellow) points, obtained as in Fig. 1 but
for different maximum height constraints ranging from 0.1H0

(dark blue) to 1.5H0 (light blue). The curves are labeled
by the suppression parameter S5, see Eq. (10). The thick
orange shape is the one shown in Fig. 1(f). (b) The acous-
tic pressure p1 versus arc length along the boundaries shown
in (a) using the same color scheme. The black curve shows
the pressure obtained in the rectangular cross section, where
p
rect
1 ∝ sin(πy

W
), and the dashed lines are selected tangents.

but eventually, due to the no-slip boundary condition,
the pressure gradient must tend to zero at the end-point
( 1

2W0,
1
2h0). The last 10 % of the boundary therefore

generates streaming, so by forming narrow necks there,
the streaming becomes localized in a small region.

In Fig. 3(a), we study the importance of the narrow

FIG. 3. The acoustic streaming velocity v2 (cyan arrows),
its magnitude v2 from 0 (black) to 0.05 mm

s
(light yellow), and

the 5-% (light green) and 1-% (dark magenta) contour lines
of v2 as in Fig. 1(f), but for two different hard-wall shapes.
(a) The optimized shape Fig. 1(f) (orange dashed curve) with
its necks cut off, and (b) an optimized cosine shape.

necks of the shape in Fig. 1(f) by cutting them off, leaving
90 % of the width, − 9

20 < y
W0

< 9
20 . In this case, the

streaming is still suppressed: with S5 = 63 % and S1 =
3 %, it is worse compared to Fig. 1(f) with the necks,
where S5 = 96 % and S1 = 38 %, but much better than
for the rectangle of Fig. 1(e), where S5 = 4 % and S1 =
1 %. As it might prove difficult in practice to fabricate
the exact optimized shape, we study in Fig. 3(b) a generic
shape with a narrow neck and a wide bulk given by a
cosine, z(y) = ±h2 ±

(H0

2 − h
2

)[
1
2 + 1

2 cos( 2πy
W0

)]
. Here,

the neck height h is the only free parameter. Using the
cost function C again, the optimal value is found to be
h = 3.14 µm with a fair streaming suppression of S5 =
55 % and S1 = 3 %. See Table I of the Supplemental
Material [26] for more simulation results on the channels
with prescribed hard-wall motion.

Solids and transducers.—More realistic models must
include the elastic solid surrounding the fluid and the
attached piezoelectric transducer. As shown in Fig. 4
(lower left inset), we embed the microchannel in a
straight rectangular glass block (3 mm × 1.3 mm)
mounted on a piezoelectric transducer (5 mm × 1 mm)
with a split top electrode for antisymmetric actuation by
an AC voltage ±V0 = ±1 V as in the setup of Ref. [31].
As the up-down symmetry is broken, we now allow 11 free
and 2 fixed points in the shape optimization, again using
the cost function C. The resulting streaming field shows
a fair suppression, S5 = 59 % and S1 = 2 %, compared
to the shape-optimized model with prescribed hard-wall
motion Fig. 1(f), S5 = 96 % and S1 = 38 %. See the
Supplemental Material [26] for more details.

Particle focusing.—In the conventional rectangular

FIG. 4. The streaming field (black-to-red contour plot) in
the fluid channel and the displacement field (light-to-dark-
green contour plot) in the surrounding glass in a full-device
simulation including a Pz26 transducer with split top and
grounded bottom electrode (bottom-left inset). The neck is
shown in the lower-right inset. The optimized fluid channel
shape is obtained by varying the z-coordinates of the 11 yellow
points (the 2 red being fixed), see Supplemental Material for
more details [26].
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cross section, the minimum radius amin of particles that
can be focused is estimated by equating F 0

rad and the
drag force 6πηflav

0
2 [22, 23] from Eq. (8), leading to

arect
min =

√
9ηfl

4ρflωΦ = 0.9 µm for polystyrene particles with

Φ = 0.16 in water at f = 1.95 MHz. In the opti-
mized shape, the streaming is suppressed by 95 % at
f = 3.02 MHz leading to a substantial six-fold reduction
of amin to aopt

min ≈ 0.15 µm.

Conclusion.—By exploiting effective boundary condi-
tions [8], we have implemented an optimization algorithm
that computes the shape of an acoustic cavity, which at
resonance has the remarkable property that the acoustic
streaming is dramatically suppressed relative to the con-
ventional rectangular cavity. Notably, the acoustic pres-
sure amplitude and the acoustic radiation force acting
on suspended particles are not suppressed, and therefore,
the optimized cavity shape is particularly ideal for appli-
cations within controlled handling of nm-sized particles
in acoustophoresis.

We have demonstrated how shape optimization can
be used to gain insight in fundamental acoustofluidics,
in particular how to suppress the ubiquitous acoustic
streaming by ensuring a linear acoustic pressure profile
along the wall; and how such an insight can be used for
practical applications. By applying other optimization
methods, say topology optimization [32], or other cost
functions, such as one based on acoustophoretic force
fields, our method may be extended to other fundamental
studies within nonlinear acoustics.
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via MATLAB including a MATLAB pseudo code.

Hard-wall simulation

In Table I, we list some evaluated physical quanti-
ties for each of the hard-wall shapes shown in Figs. (1)
and (3). This list includes the space-and-time-averaged
input power per area Pin delivered by the surroundings
at ∂Ω of area AΩ is,

Pin =

∫

∂Ω

1

2
Re

[
p∗1(−iωubdr

1 · n)
] dA

AΩ

. (A.1a)

In all the hard-wall simulations with the prescribed wall
displacement given in Eq. (1), we choose the frequency
to be at the resonance ω = ωres where Eac peaks. At
resonance, the input power Pin is related to the quality
factor Q of the resonance as,

Pin =
VΩ

AΩ

ωresEac

Q
, at resonance ω = ωres, (A.1b)

where the asterisk denote complex conjugation. We
choose the actuation displacement d0 such that the av-
erage acoustic energy density Eac is 100 Pa in all the
simulations.

TABLE I. Quantities of the numerical simulation of the four
hard-wall cross sections. C (the cost function) is the nor-
malized averaged streaming speed given in Eq. (9), and Sq

is the fraction of the volume where the streaming speed is
suppressed to q % of v

0
2 given in Eq. (8).

Quantity Rectangle Spline Spline cut Cosine Unit
↓ Figure → 1(e) 1(f) 3(a) 3(b)

Area 0.061 0.031 0.030 0.031 mm
2

Cicumference 1.080 0.858 0.717 0.841 mm
fres, Eq. (3) 1.95 3.20 3.39 3.21 MHz
Eac, Eq. (5) 100 100 100 100 Pa
Pin, Eq. (A.1a) 157 245 237 226 W

m
2

Q, Eq. (A.1b) 440 298 390 332 -
d0, Eq. (11) 0.92 0.77 0.57 0.98 Å
C, Eq. (9) 0.26 0.021 0.059 0.062 -
S5, Eq. (10) 3.8 95.8 62.7 55.3 %
S1, Eq. (10) 0.6 38.0 3.2 2.7 %

Full-device simulation

The numerical full-device simulation presented in
Fig. 4 of the main paper, is based directly on the method
presented by Skov et al. [1]. The material parameters for
water, Pyrex glass, the suspended polystyrene particles,
and the piezoelectric element are listed in Tables II-IV.

TABLE II. Material parameters for water at 25
◦
C [2].

Parameter Symbol Value Unit

Mass density ρfl 997.05 kg m
−3

Sound speed cfl 1496.7 m s
−1

Dyn. viscosity ηfl 0.890 mPa s

Bulk viscosity η
b
fl 2.485 mPa s

Damping coefficient Γfl 0.00002 –

Compressibility κfl 452 TPa
−1

TABLE III. Material parameters for isotropic Pyrex borosil-
icate glass at 25

◦
C for [3]. Note that the isotropy implies

that c12 = c11 − 2c44.

Parameter Symbol Value Unit

Mass density ρsl 2230 kg m
−3

Elastic modulus 11 c11 69.72 GPa
Elastic modulus 44 c44 26.15 GPa
Elastic modulus 12 c12 17.43 GPa
Damping coefficient Γsl 0.0004 –

TABLE IV. Material parameters for polystyrene particles
of diameter 2a = 2 µm in water at frequency f = 2 MHz.
The imaginary part of the dipole coefficient f1 is negligible
for standing waves [4], and the contrast factor is defined as
Φ = 1

3
Re(f0) + 1

2
Re(f2).

Parameter Symbol Value Unit

Mass density [5] ρps 1050 kg m
−3

Compressibility [6] κps 249 TPa
−1

Monopole coefficient[4] Re(f0) 0.45 –
Dipole coefficient[4] Re(f1) 0.02 –
Contrast factor[4] Φ 0.16 –



2

TABLE V. Material parameters of Ferroperm Ceramic Pz26
from Meggitt A/S [7]. Isotropy in the x-y plane implies c66 =
1
2
(c11 − c12). The damping coefficient is Γs = 0.02 [8]. ε0 =

8.854× 10
−12

is the vacuum permittivity.

Parameter Symbol Value Unit

Mass density ρpz 7700 kg/m
3

Elastic modulus 11 c11 168 GPa
Elastic modulus 12 c12 110 GPa
Elastic modulus 13 c13 99.9 GPa
Elastic modulus 33 c33 123 GPa
Elastic modulus 44 c44 30.1 GPa
Elastic modulus 66 c66 29.0 GPa
Permittivity 11 ε11 828 ε0

Permittivity 33 ε33 700 ε0

Coupling coefficient 31 e31 −2.8 C/m
2

Coupling coefficient 33 e33 14.7 C/m
2

Coupling coefficient 15 e15 9.86 C/m
2

Damping coefficient Γpz 0.02 –

In Fig. 5(a) and (b) below, we show results for
full-device simulations for the rectangular and optimized
cross section shapes of in Figs. 1(e)-(f) obtained for the
simplified hard-wall models, but here embedded in glass
without further changes in shape. For the full-device
model, the resulting streaming speed in the rectangular
cross section is still around the predicted scale v0

2 in large
parts of channel. When embedded in the full-device
model, the hard-wall optimized shape in Fig. 5(b) still
shows suppression of streaming with a streaming speed
less than 5 % of v0

2 in 59 % of the channel. However, the
streaming suppression is stronger in Fig. 5(c), where the
surrounding solid motion is included in the optimization
algorithm, giving a streaming speed less than 5 % of v0

2

in 88 % of the channel, and less than 1 % of v0
2 in 22 %

of the channel.

Full-device shape optimization

In the full-device model, the presence of the piezoelec-
tric transducer breaks the up-down symmetry of the sys-
tem. Therefore, in the shape optimization including the
surrounding solid as shown in Fig. 4 of the main paper,
we represent the shape in a slightly different way than for
the up-down-symmetric hard-wall case shown in Fig 1(b)
of the main paper. Using our insight from the symmetric
hard-wall shape, we constrain the height of the shape in
the full-device model to be monotonically decreasing as
a function of y from H0 at y = 0 to h0 at y = 1

2W0,
thus preventing any wavy shapes to be suggested by the
algorithm. As a further degree of freedom, we allow the
z-position zneck of the neck to be free within specified
bounds between Hmin < zneck < Hmax, such that

zneck = Hmin + sneck(Hmax −Hmin), 0 < sneck < 1.
(A.2)

FIG. 5. The streaming velocity v2 for three channel shapes
embedded in Pyrex glass with a piezoelectric transducer at-
tached at the bottom as shown in the lower-left insets. A
zoom of the streaming in the neck is shown the lower-right
insets. The color in the fluid represent the streaming speed v2

from 0 µm
s

(black) to the maximum value v
max
2 (yellow) given

in parenthesis in the figure, and the color in the solid repre-
sents the solid displacement u from 0 nm to the maximum
value u

max
. (a) The fixed-shape rectangle with v

max
2 = 15 µm

s
and u

max
= 3.6 nm. (b) The fixed-shape hard-wall opti-

mized shape with v
max
2 = 0.3 µm

s
and u

max
= 1.8 nm. (c)

The full-device-optimized shape with v
max
2 = 0.15 µm

s
and

u
max

= 1.8 nm.

where sneck is a free parameter. In the simulation, we
chose Hmin = − 1

2H0 and Hmax = 3
2H0. We use one

cubic spline interpolation through 7 points (yi, z
top
i ),

i = 0, 1, 2, . . . , 6 to represent the top, and another cu-
bic spline interpolation through 7 points (yi, z

bot
i ), i =

0, 1, 2, . . . , 6 to represent the bottom. The y positions yi
are fixed at [0, 1

6 ,
3
6 ,

4
6 ,

5
6 ,

9
10 , 1]W0

2 as before. The point

(y0, z
top
0 ) = (0, 1

2H0) is fixed for the top and the point
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(y0, z
bot
0 ) = (0,− 1

2H0) is fixed for the bottom.

The z-position ztop
i of the top spline interpolation are

chosen to be between its neighbouring points ztop
i−1 <

ztop
i < ztop

i+1 by introducing the parameter stop
i , such that

the z-positions at the top become

ztop
0 =

1

2
H0,

ztop
i = ztop

i−1 + stop
i (ztop

i+1 − ztop
i−1), i=1,2,. . . ,5,

ztop
6 = zneck +

h0

2
, (A.3)

where 0 < stop
i < 1 are free parameters and h0 is a fixed

height of the neck which is chosen to be 10 µm. A similar

scheme is used for the bottom heights zbot
i except for the

change zbot
6 = zneck − h0

2 . This procedure gives in total

5+5+1=11 free parameters: stop
i , sbot

i and sneck.

Matlab algoritm for shape optimization

The optimization algorithm is run in MATLAB [9] by
passing the COMSOL model to the optimization rou-
tine fminsearchbnd [10] as described in the pseudo code
(A.4) below. The algorithm builds a new geometry for
each optimization step based on the N values zi stored
in the array z, where N is the number of free parameters.
The tolerances tolX on the zi convergence and tolFun

on the cost function are set to 10−3.

% Load COMSOL model and set initial value, lower bound, and upper bound

model = mphload(’COMSOL FileName.mph’);

z init = ... % set initial value (vector of length N)

z lower = ... % set upper bound (vector of length N)

z upper = ... % set lower bound (vector of length N)

% Run optimization by passing the above to fminsearchbnd

options = optimset(’tolX’,1e-3,’tolFun’,1e-3) % set the tolerance level for fminsearchbnd

z opt = fminsearchbnd(@(z) get CostFun(model,z),z init,z lower,z upper,options)

% Define the function get CostFun that evaluates the cost function of Eq. (9) in the paper

function CostFun = get CostFun(model, z)

(1) Set the geometry of the COMSOL model “model” via MATLAB based on the input heights “z”

(2) Run the COMSOL simulation via MATLAB (find resonance frequency if needed).

(3) Calculate the cost function C defined in Eq. (9) of the main paper.

CostFun = ... % calculated value of the cost function

end (A.4)
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1. INTRODUCTION - ACOUSTIC STREAMING IN MICROCHANNELS

One of the main goals in the field of microfluidics is to scale down laboratory instruments and study mi-
croscopic biological samples precisely and efficiently. In this context, acoustofluidics offers a method to
handle microparticles in a gentle and contact-free way by the use of acoustophoresis i.e. the migration of
particles due to sound. Applications include e.g. size-independent sorting of cells,1 acoustic tweezing,2 and
acoustic trapping.3 The first central nonlinear phenomena in acoustophoresis is the acoustic radiation force
which scales with the particle volume and tends to focus particles based on their acoustic contrast. The
other is the rotating acoustic streaming, which tends to mix suspended particles due to the Stokes drag that
scales with the particle radius. Due to these scalings, acoustic streaming is insignificant for large particles
but important for small particles, where the critical particle size is around 1 µm.4 A deep understanding of
acoustic streaming is therefore important in order to control sub-micron particles using acoustophoresis.

In this work, we analyse theoretically acoustic streaming at fluid resonance, where the acoustic fluid
velocity is enhanced a quality factor Q � 1 compared to velocity of the confining wall. In particular, we
investigate the ill-characterized in-plane streaming which rotate in a plane parallel to the surrounding solid
surface. Examples from the literature of such horizontal in-plane streaming patterns are the 6-by-6 flow
roll-pattern observed in a 2 mm ⇥ 2 mm ⇥ 0.2 mm cavity in a silicon-glass chip shown in Fig. 4(b) of Ref.
[5], and the 2-by-2 flow-roll pattern observed in a cm-long glass capillary tube with a 2 mm ⇥ 0.2 mm inner
cross section in Fig. 3 of Ref. [6].

We find that this kind of streaming can be generated in closed cavities if the acoustic motion is rotat-
ing and that this rotation can be obtained spontaneously in channel geometries with small deviation from
symmetry. Acoustic streaming is partly driven by a slip-boundary condition which compensates for the
Reynolds stress in the narrow acoustic boundary layer of width � ⇠ 0.5 µm and partly by a bulk force
density which arises due to viscous dissipation in the bulk. We show in relevant limits, that both of these
non-linear driving mechanisms are closely related to the acoustic intensity vector.

2. THEORY OF ACOUSTIC FIELDS AND STREAMING NEAR ELASTIC SURFACES

The acoustic fields in microchannels arrise due to vibrations of the surrounding solid which is actuated
externally, usually by a piezoelectric transducer. We express the instantaneous position s of the confining
wall as a small harmonic displacement s1(s0) e�i!t around the equilibrium position s1,

s(s0, t) = s0 + s1(s0) e�i!t, instantaneous surface position s. (1)

Correspondingly, we expand the fluid pressure p and velocity v in perturbation series and relate the pressure
perturbation and density perturbation through the isentropic compressibility 0,

p = p0 + p1(r)e�i!t + p2(r), v = 0 + v1(r)e�i!t + v2(r), 0 =
1

⇢0

⇣@⇢
@p

⌘
S

=
1

⇢0c2
0

, (2)

with equilibrium density ⇢0 and sound speed c0. Here, superscripts indicate order of smallness in the acous-
tic Mach number Ma = |v1|

c0
⇠ |p1|0 with superscript “0” being the equilibrium value, “1” being the

amplitude of the first-order linear acoustic motion and “2” referring to a second-order time-averaged quan-
tity generated by products of first-order fields. In particular, v2 is the acoustic streaming which, away from
the acoustic boundary layer of width � ⇠ 0.5 µm, is governed by an incompressible Stokes equation with a
driving force density f str proportional to the time-averaged acoustic intensity vector

⌦
Sac

↵
=

⌦
p1v1

↵
,7

r· v2 = 0, 0 = �rp̃2 + ⌘0r2v2 + f str, f str =
⇣4

3
⌘0 + ⌘b

0

⌘
0k

2
0

⌦
Sac

↵
. (3)
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where ⌘0 is dynamic viscosity and ⌘b
0 is the bulk viscosity. To fulfil no slip at the instantaneous surface

position s(s0, t), the streaming outside the boundary-layer must take a finite slip velocity at the wall to
compensate for the inner streaming inside the boundary layer,

v2 = vslip
2 , streaming-slip velocity at the wall equilibrium position s0. (4)

In general vslip
2 involves complicated curvilinear derivatives of both the acoustic velocity v1 and the surface

velocity V 0
1 = @ts but in the special case of fluid resonance, where the fluid velocity is enhanced a quality

factor Q � 1 compared to the wall velocity, we have shown7 that this slip-boundary condition simplifies in
the two relevant limits of parallel and perpendicular acoustics,

vslip
2k ⇡ 0

2

⌦
Sack

↵
� 1

2!⇢0
rk

�
Ekin � 2Epot

�
for parallel acoustics, |r2

?p1| ⌧ |r2
kp1|, (5a)

vslip
2k ⇡ �0

⌦
Sack

↵
, for perpendicular acoustics, |r2

?p1| � |r2
kp1|, (5b)

with vslip
2? ⇡ 0 in both cases. Here Ekin = 1

4⇢0|v1|2 is the kinetic energy and Epot = 1
40|p1|2 is the

potential energy of the first order acoustic motion.

A. IN-PLANE STREAMING AND ROTATING ACOUSTICS

From Eq. (3) and Eq. (5) we see that acoustic streaming is driven partly by the bulk force density f str and
partly by a slip condition vslip

2 . Only terms with non-zero curl can drive in-plane streaming so only
⌦
Sac

↵
is

relevant if it has non-zero curl, which we find to be proportional to the acoustic angular momentum L,7

r⇥
⌦
Sac

↵
= !2

⌦
rd

1 ⇥ (⇢0v
d
1)
↵

= !2L, rd
1 =

i

!
vd

1 . (6)

Therefore, in-plane streaming at resonance is associated with rotating acoustics. As illustrated in Fig. 1,
this rotation can be obtained if two resonances are oscillating perpendicularly with phase difference of
around ⇡

2 . The geometry is similar to Fig. 4(b) in Ref. [5] with actuation from the bottom and a small
symmetry deviation where introduced by the aspect ratio � = Wx

Wy
which is slightly larger than unity.

B. IN-PLANE BULK-DRIVEN AND BOUNDARY-DRIVEN STREAMING

Bulk-driven streaming is governed by Eq. (3) and assuming r2
? ⇠ L�2

? , we can estimate the ratio of bulk-
driven to boundary-driven in-plane streaming velocity from the curl of Eqs. (3) and (5),

|(r⇥ vbulk-driven
2 )?|

|(r⇥ v
boundary-driven
2 )?|

/ (k0L?)2. (7)

In conclusion, bulk-driven in-plane streaming will dominate for sufficiently high frequency f = 1
2⇡ c0k0 or

sufficiently large height (⇠ L?), whereas boundary-driven streaming will dominate else for low frequencies
and narrow channels. This point is shown in Fig. 2 where we show that f str increases for higher frequencies
whereas vslip

2 stays almost constant. Fig. 2(c) reproduces the experimental results of 6x6 rolls shown in Fig.
5(b) of Ref. [5] and shows that the observed streaming is bulk-driven by f str rather than boundary-driven
by vslip

2 . Further, from Fig. 2(a) we expect that 2⇥2 rolls will not be clearly observable in this setup.
The investigations in Figs. 1 and 2 are examples of parallel acoustics. Increasing the frequency to obtain

a half standing wave in the z-direction will change the situation to perpendicular acoustics where we should
instead use the boundary condition (5b), which is always counteracting the bulk force.
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Figure 1: Simulation of rotating acoustics at resonance in a closed cavity of widths Wx = 2000 µm(1 +
1
2�), Wy = 2000 µm(1 � 1

2�) and height H = 200 µm for small aspect ratio � ⇡ Wx
Wy

. (a1) Absolute
pressure |p1| and the green symmetry lines used in Fig. 2. (a2) The generated rotating streaming force
f str. (b1) Temporal phase �i and (b1) the kinetic energy Ekin,i for the long (left curves) and short reso-
nances (right curves) for different aspect ratios. (a3) shows the resulting acoustic angular momentum L.

Figure 2: |p1|, f str, vslip
2 and v2 in the xy-plane of the setup and green symmetry lines shown in Fig. 1

(a1) for three different frequencies giving 1 (a), 2 (b) and 3 (c) wavelengths in each direction respectively.
Note that boundary-driven streaming generated by vslip

2 dominates for low frequencies (a) whereas bulk-
driven streaming generated by f str dominates for high frequencies (c).
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3. CONCLUSION AND OUTLOOK

We have presented driving mechanisms for in-plane acoustic streaming in a closed cavity and shown that this
kind of streaming is associated with rotating acoustics. The two fundamental driving mechanisms are the
slip velocity vslip

2 and the bulk force density f str, and these are both related to the acoustic intensity vector⌦
Sac

↵
. Rotating acoustics at resonance is obtained at small deviations from symmetry where two pressure

modes resonate at the same frequency with a relative phase shift. We introduced the limits of parallel and
perpendicular acoustics and showed that in these limits

⌦
Sac

↵
is the only physical quantity that can lead to

in-plane streaming. In a setup with parallel acoustics similar to experiments5 we found that the in-plane
streaming was bulk-driven and predicted that it would not be clearly observable for lower frequencies, since
the bulk force density fac increases with the the frequency squared.

We are currently working on a similar characterization of acoustic streaming in long open capillaries.
Here, small reflections and damping in the open direction may become important and not straight forward to
model. We believe however, that the presented principle of rotating acoustics leading to in-plane streaming
carries over in many different experimental setups.
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Chapter 8

Conclusion and outlook

In this thesis, the physics of acoustic fields and streaming in microsystems has been studied
theoretically and numerically with the overall scope of contributing to the development of
acoustofluidic devices. As stated in Chapter 1, the research carried out in the thesis has
three major parts: (1) The viscous boundary layer and effective boundary conditions, (2)
theoretical understanding of experimental observations, and (3) suppression of acoustic
streaming. A summary of the results of each individual paper is provided in Chapter 6.
This chapter presents a broader conclusion based on the three major parts, as well as a
theoretical and experimental outlook.

8.1 Broard conclusion of the thesis

(1) The viscous boundary layer and effective boundary conditions
In the context of pressure acoustics, the concept of effective modelling has been
introduced in this thesis. In this approach, the narrow viscous boundary layer is
not resolved numerically, but taken into account analytically through an effective
boundary condition. In addition, the well-known slip-velocity theory for the acous-
tic streaming has been extended to apply in the general case of a curved oscillating
wall. These effective models has been formulated generically which allows for imple-
mentation in almost any geometry with a length scale much larger than the narrow
viscous boundary-layer width. It is the hope that this calculation method will be
used for numerically efficient simulations of acoustofluidic devices in the future and
thus accelerate the further development. The effective models developed in this part
(1) of the thesis has been used throughout the research in part (2) and part (3).

(2) Theoretical understanding of experimental observations
One advantage of the effective model for acoustic streaming is that “boundary-driven
streaming”, and “bulk-driven streaming” may be calculated and understood sepa-
rately as was done in Paper III [3]. This separation simplifies the analysis of the
often complicated acoustic streaming. In contrast to common knowledge, it was
found in this thesis, that bulk-driven acoustic streaming can easily be stronger than
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the boundary-driven streaming in typical acoustofluidic devices of length scale com-
parable to the acoustic wave length. Chapter 4 provides a length-scale condition for
ignoring the bulk-driven streaming which is rarely satisfied in acoustofluidic devices.
It was found that bulk-driven streaming is excited by rotating acoustic resonances,
which can be excited in geometries, where two perpendicular resonances has close-
lying resonance frequencies. Remarkably, this rotation is very sensitive to small
geometry variations, and therefore it may be difficult to control in practice. This
thesis has taken steps towards a better understanding and control of bulk-driven
streaming at resonance.

The effective model not only eases numerical simulations but also analytical calcu-
lations. In this thesis, the acoustic pressure has been calculated in both closed and
open cavities, where the boundary layers are included. This has lead to analytical
expressions for resonance frequencies, damping coefficients, and axial length scales,
which may be used in future studies of such devices, e.g. in the study of acoustic
streaming.

(3) Suppression of acoustic streaming
Finally, the effective models has been used for efficient shape optimization. The
discovery of Paper V [5] that acoustic streaming in a cavity can be suppressed
by optimizing the shape of the cavity offers a simple solution to one of the most
important problems in the field of acoustofluidics; namely that the acoustic streaming
ruins the focusing of small particles. As such, this result is one of the most important
contributions of the thesis and represents a step towards a future where acoustic
streaming can be tailored for a specific purpose.

8.2 Theoretical outlook

The effective model has been tested in several cases by comparison to direct boundary-layer
resolved simulations. However, it is encouraged that this testing continues in the future
for different settings. This is especially true for the slip velocity on the acoustic streaming
derived in Eq. (55) of Paper I [1], which is less straight forward than the boundary condition
on the acoustic pressure in Eq. (25) of Paper I [1]. Although the confidence about the
derivation is relatively high, further testing is always useful, and any inconsistencies may
potentially lead to new insights.

An obvious extension of the boundary-layer theory is to account for the acoustic tem-
perature fluctuations and the resulting thermoviscous effects similar to that done by Red-
nikov and Sadhal [75] for a motionless wall. Another obvious extension is to allow for inho-
mogeneous fluids as done outside the viscous boundary layer by Karlsen and Bruus [103].
This should be possible for inhomogeneities varying on a length scale much longer than
the boundary-layer width δ.

The shape-optimization procedure presented in this theses for suppression of acoustic
streaming could be used with many other goals. One example is an optimization based
on both the streaming and the acoustic radiation force. A theoretically appealing exercise
regarding the shape-optimization is to derive an analytical expression for the cavity shape,
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where the acoustic streaming is minimized. Paper V [5]suggests that such a cavity should
have a pressure resonance where the pressure varies linearly along its edge. In theory, it
should be possible to suppress the acoustic streaming completely, by using a perfect shape.

The theoretical analysis in Paper IV [4] of long straight capillaries succeeded in calcu-
lating the acoustic pressure and the acoustic radiation force, but the acoustic streaming
was not calculated. An obvious continuation of that study is therefore to use the pro-
vided solutions to analyse the acoustic streaming analytically. Potentially, the peculiar
transducer-plane streaming observed in acoustic traps [42, 43] could be further understood.

8.3 Experimental outlook

The results of this thesis motivate several experimental studies of which the most promising
are listed below.

Firstly, the surprising prediction that acoustic streaming at resonance can be sup-
pressed by optimizing the shape of the resonator, is a result that calls for experimental
realization. The simulation method used in this thesis has previously been tested against
both experimental and analytical results [93] so the prediction is relatively confident. As
a first approach, an experimental validation could be done in channels made of materi-
als having a high acoustic impedance in order to replicate the ideal hard-wall-optimized
shape. The next step could be to use polymer fibers, which can be drawn with almost
any complex cross-section shape [160]. In contrast to the case of “hard” channels, the
latter situation may require a method to actuate the channel in a well-defined manner. If
the acoustic streaming is indeed two orders of magnitude smaller than in the rectangular
cross section, the suggested optimized shape could potentially be the preferred geometry
for handling of nanoparticles in the field of acoustofluidics.

Secondly, the theoretical study of capillary tubes in Paper IV [4], motivates an exper-
imental study of the influence of the actuator length used for acoustic trapping in such
devices. Potentially, the axial acoustic trapping performance could be enhanced by an
order of magnitude by choosing the right actuation length.

Thirdly, the presented study of bulk-driven streaming induced by rotating resonances
may have practical perspectives. As shown in Fig. 2 and in the supplemental material
of Paper III [3], bulk-driven streaming can take many different shapes depending on the
excited acoustic resonance in a closed cavity. By using a sufficiently controlled actua-
tion method of a fluid cavity such as Capacitive Micromachined Ultrasonic Transducers
(CMUTs) [176], one could excite sequences of different streaming patterns and ideally
be able to manipulate the fluid in a microcavity in a controlled manner. Acoustofluidics
offers a unique opportunity to apply mechanical body forces on a fluid, and potentially,
the excitation of bulk-driven streaming could be a way to exploit that.





Appendix A

Time-averaged conservation of
mass for a closed system

The Lagrangian no-slip boundary condition (2.6c) on the fluid velocity reads v1 = V 0
1 in

the first-order perturbation, and v2 + 〈s̃1 ·∇ṽ1〉 = 0 in the time-averaged second-order
perturbation. For this boundary condition to be self consistent with the second-order
continuity equation (2.22a), the total mass flux out of the fluid domain Ω must vanish.
To show this, the mass flux is evaluated in the general case of an inhomogeneous fluid by
using v2 = − 1

2ωRe
[
(iv1 ·∇)v∗1

]
at the boundary and ρ1 = − 1

ω∇· [ρ0iv1],

∮

∂Ω

[
ρ0v2 + 〈ρ̃1ṽ1〉

]
· ndA = − ρ0

2ω

∮

∂Ω
Re
[
(iv1 ·∇)v∗1 + v∗1∇· [iv1]

]
· n dA, (A.1)

=
ρ0

4ω

∮

∂Ω
Re
[
∇× (iv1 × v∗1)

]
· n dA, (A.2)

=
1

4ω

∮

∂∂Ω
Re
[
s1 × ρ0v

∗
1

]
· d`. (A.3)

In the second step, it was used that (iA)A∗ = 1
2

[
(iA)A∗ − A(iA)∗

]
and in order to apply

the vector-calculus identity ∇×(A×B) = −
[
(A ·∇)B+B(∇·A)−A(∇·B)−(B ·∇)A

]

with A = iv1 and B = v∗1. Furthermore, in the last step s1 = 1
ω iv1 was inserted and

Stokes theorem was used to convert the surface integral over the surface ∂Ω of the fluid
domain to a line integral over the enclosing line ∂∂Ω of the surface ∂Ω. For a closed fluid
domain Ω, there is no enclosing line and the total time-averaged mass flux out of the
system vanishes. QED.
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Appendix B

Energy, power, and dissipation in
acoustic fields with boundary
layers

The acoustic fields in a fluid conserve mass and momentum as stated in the conservation
laws (2.1). The mechanical energy of the acoustic fields is however not conserved but
lost to heat through viscous dissipation, both inside and outside of the viscous boundary
layers. This appendix gives an overview of these details, first in general and second, in
the case of pressure acoustics with boundary layers.

B.1 The energy balance in fluids

It is useful to write the stress tensor σ̃ in terms of the pressure p̃ and the viscous part τ̃ ,

σ̃ = −p̃I + τ̃ , τ̃ = 2η0ε̃+ ηb
0 (∇· ṽ)I, ε̃ =

1

2

[
∇ṽ + (∇ṽ)T

]
− 1

3
(∇· ṽ)I, (B.1)

where ε̃ is the traceless shear-rate tensor, 1
2

[∇ṽ + (∇ṽ)T] is the strain-rate tensor, and
1
3(∇· ṽ)I is the expansion-rate tensor [80]. An expression for the rate of change of kinetic
energy implied by the mass- and momentum conservation equations (2.1), is found by
taking the dot product between ṽ and the momentum equation (2.1b) and using Eq. (2.1a),

∂t

(1

2
ρ̃ṽ2
)

= ∇·
[
− p̃ṽ + ṽ · τ̃ −

(1

2
ρ̃ṽ2
)
ṽ
]

+ p̃∇· ṽ − τ̃ : (∇ṽ)T, (B.2a)

τ̃ : (∇ṽ)T = 2η0ε̃ : ε̃T + ηb
0 (∇· ṽ)2. (B.2b)

Here, the left-hand side is the local rate of change of the kinetic energy density 1
2 ρ̃ṽ

2,
and the divergence-term on the right-hand side represents the energy transport due to the
pressure, internal friction, and the kinetic energy density flux

(
1
2 ρ̃ṽ

2)ṽ, respectively. The
last two terms in Eq. (B.2a) represent the conversion of kinetic energy into internal energy,
where the very last term τ̃ : (∇ṽ)T is the viscous dissipation power density defined in
Eq. (B.2b) and seen to be always positive, as required.
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B.2 The acoustic energy balance of homogeneous fluids

Inserting the perturbation expansion of Eq. (2.4a) into Eq. (B.2) and using ∇·ṽ1 = −κ0∂tp̃1

from Eq. (2.7a), the second-order time-averaged equation for the acoustic energy balance
is obtained

〈
∂t

(1

2
ρ0ṽ

2
1 +

1

2
κ0p̃

2
1

)〉
= ∇ ·

[
− 〈p̃1ṽ1〉+ 〈ṽ1 · τ̃1〉

]
− Pdiss, (B.3a)

Pdiss = 〈τ̃1 : (∇ṽ1)T〉 = 2η0〈ε̃1 : ε̃T
1 〉+ ηb

0 〈(∇· ṽ1)2〉, (B.3b)

where the local time-averaged viscous dissipation density Pdiss
visc is introduced. Since left-

hand side of Eq. (B.3a) vanishes for time-harmonic fields, the local energy balance may
be written as ∇· 〈ṽ1 · σ̃1〉 = Pdiss and the global energy balance is obtained by taking the
integral over the entire domain Ω,

AP̄wall = VP̄diss, (B.4)

P̄wall =
1

A

∫

∂Ω
Pwall dA, Pwall = 〈Ṽ 0

1 · σ̃1〉 · n, (B.5)

P̄diss =
1

V

∫

Ω
Pdiss dV, Pdiss = 〈τ̃1 : (∇ṽ1)T〉, (B.6)

where the overbar denote a volume- or surface-averaged quantity. From the energy equa-
tion (B.3a), it is noted that viscosity leads to both a local dissipation density Pdiss and the
energy-transport term ∇· 〈ṽ1 · τ̃1〉, which together constitute the local power loss density
Ploss due to viscosity,

Ploss = Pdiss −∇· 〈ṽ1 · τ̃1〉 = −〈ṽ1 · (∇· τ̃1)〉. (B.7)

Far from the walls, the boundary layer is insignificant and v1 = vd1 may be used in Eq. (B.7)

together with ∇· τ d1 = iΓ∇p1 ≈ −Γ0ωρ0v
d
1 from Eqs. (2.7b) and (2.11b). With that, the

viscous power loss density P loss,d
visc outside the boundary layer is,

P dloss =
1

2
Γ0ωρ0

∣∣vd1
∣∣2, (B.8)

where Γ0 is the bulk damping factor defined in Eq. (2.8). This result is also obtained in
Section IV of Paper I [1]. Eq. (B.3a) may therefore be stated outside the boundary layers
as,

0 = −∇· 〈p̃1ṽ
d
1〉 − P dloss. (B.9)

A major question is now how the energy dissipation in the boundary layer is represented in
the effective model, where the boundary layer is taken into account through the boundary
condition (3.6) on the pressure p1. Here, it is important to note that the acoustic velocity

perpendicular to the wall is given by Eq. (3.5) to be vd0
1⊥ = V 0

1⊥− vδ01⊥ and therefore, there

are two contributions to the energy flux 〈p̃1ṽ
d
1〉 at the boundary: one from the wall, which

is input power and one from the boundary-layer velocity vδ01⊥, which represents the loss of
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energy in the boundary-layer. Calculating the global energy flux out of the system using
Eq. (3.4) gives,
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Here, integration by parts is used in the third line as well as Gauss’s theorem for a closed
integral causing

∮ ∇‖ ·B‖ dA to vanishes for any vector B. Furthermore, in the fourth,

line it is used that ∇‖p∗1 ≈ iωρ0v
d0
1‖ from Eq. (2.11b). Hence, the global expression for

the energy balance of the long-range fields, is found by integrating Eq. (B.9) and using
Eq. (B.10),
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where all wall-velocity terms are gathered on the left-hand side to represent the power
input and all the fluid-velocity-terms are gathered on the right-hand side to represent
power loss due to viscous effects in the bulk and in the boundary layer, respectively. In
classical pressure acoustics where the boundary layer is neglected [80], only the first term
on each side is present. Here it is seen that the boundary layer introduces an additional
input-power term on the left-hand side and an additional loss term on the right-hand side.
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[150] J. Dual, P. Hahn, I. Leibacher, D. Möller, T. Schwarz, and J. Wang, Acoustofluidics
19: ultrasonic microrobotics in cavities: devices and numerical simulation. Lab on
a chip 12(20), 4010–4021 (2012).

[151] C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko,
and P. D. Wilcox, Dexterous manipulation of microparticles using bessel-function
acoustic pressure fields. Appl. Phys. Lett. 102, 123508 (2013).

[152] D. Baresch, R. Marchiano, and J.-L. Thomas, Orbital angular momentum transfer
to stably trapped elastic particles in acoustical vortex beams. Physical Review Letters
121 (2018).

[153] P. L. Marston, Axial radiation force of a bessel beam on a sphere and direction
reversal of the force. The Journal of the Acoustical Society of America 120(6),
3518–3524 (2006).

[154] A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, and S. Subramanian,
Holographic acoustic elements for manipulation of levitated objects. Nat. Commun.
6, 8661 (2015).

[155] A. S. Dukhin and P. J. Goetz, Bulk viscosity and compressibility measurement using
acoustic spectroscopy. J Chem Phys 130(12), 124519 (2009).

[156] J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, A. Lawit, and T. J. Huang, Acoustic
tweezers: patterning cells and microparticles using standing surface acoustic waves
(SSAW). Lab Chip 9(20), 2890–2895 (2009).

[157] Z. Gong and M. Baudoin, Particle assembly with synchronized acoustic tweezers.
Phys. Rev. Applied 12, 024045 (2019).

[158] M. Evander, A. Lenshof, T. Laurell, and J. Nilsson, Acoustophoresis in wet-etched
glass chips. Analytical Chemistry 80(13), 5178–5185 (2008), pMID: 18489126.

[159] D. Carugo, T. Octon, W. Messaoudi, A. L. Fisher, M. Carboni, N. R. Harris, M. Hill,
and P. Glynne-Jones, A thin-reflector microfluidic resonator for continuous-flow
concentration of microorganisms: a new approach to water quality analysis using
acoustofluidics. Lab Chip 14(19), 3830–3842 (2014).

[160] R. Yuan, J. Lee, H.-W. Su, E. Levy, T. Khudiyev, J. Voldman, and Y. Fink, Mi-
crofluidics in structured multimaterial fibers. Proceedings of the National Academy
of Sciences 115(46), E10830–E10838 (2018).

[161] P. J. Woodside SM, Bowen BD, Measurement of ultrasonic forces for particle-liquid
separations. AIChE J. 43, 1727–1736 (1997).

[162] D. Carugo, D. N. Ankrett, P. Glynne-Jones, L. Capretto, R. J. Boltryk, X. Zhang,
P. A. Townsend, and M. Hill, Contrast agent-free sonoporation: The use of an ultra-
sonic standing wave microfluidic system for the delivery of pharmaceutical agents.
Biomicrofluidics 5(4), 044108 (2011).



BIBLIOGRAPHY 157
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