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Abstract

The successful isolation in 2004 of the first 2D material graphene, a single layer of carbon
atoms, has opened up new pathways for both fundamental research into condensed matter
at the nanoscale and the development of entirely new technologies. Among these new
possibilities is the option of transferring information using a degree of freedom other than
the electron charge, and in this manner redefining conventional electronics. In graphene
such a degree of freedom exists in the form of distinct momentum states of electrons in
two unique ”valleys” of the electronic band structure. Electrons in graphene can thus be
distinguished by their so-called valley index. Storing and transferring information can be
accomplished by selective manipulation of electrons based on their valley index, setting
up currents, not of charge, but of valley polarization. Such currents are expected to be
protected from the effects of most common sources of disorder in the nanoscale system, a
major advantage over conventional charge-based electronics.

In this thesis we consider how the valley degree of freedom can be manipulated in graphene
through engineering of the nanoscale system. We suggest an approach to inducing currents
of valley polarization in the graphene sheet which can be controlled by an external po-
tential, and demonstrate how such tunability of the resulting tunable filtering of electrons
based on their valley index predicts a clear signature in experiment. We go on to discuss
the effects of disorder in realistic nanostructured systems, outlining both the robustness of
our results to moderate levels of imperfections and the possibility of new regimes of valley
filtering in the strongly disordered system.

Furthermore, we extend our studies of disorder to include impurities on the surface of the
high-temperature superconductor FeSe, wherein recent experimental evidence indicates
that local magnetism can be nucleated around defect sites. We model such impurity-
induced magnetism in a microscopic model of FeSe and predict the formation and un-
derlying symmetries of the local magnetism. Finally, we derive the expected signature of
these symmetries in experiment and compare our findings with recent scanning tunneling
microscopy measurements.
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Resumé

I 2004 blev det første 2D materiale, grafen, isoleret som et enkelt lag af karbon atomer.
Dette har åbnet nye muligheder for b̊ade grundforskning i faststoffysik p̊a nanoskala, og
forbedring af eksisterende eller opfindelse af helt nye teknologier. Blandt disse muligheder
er en metode til at overføre information ved brug af en frihedsgrad forskellig fra elektronens
ladning, og p̊a denne m̊ade redefinere konventionel elektronik. I grafen eksisterer en s̊adan
frihedsgrad i form af forskellige impuls-tilstande i to unikke dale eller ”valleys” i den
elektroniske b̊andstruktur. Elektroner i grafen kan derfor opdeles efter deres s̊akaldte
valley-indeks. Opbevaring og overførsel af information kan opn̊as inden for denne teknologi
ved selektiv manipulation af elektroner baseret p̊a deres valley-indeks, hvorved der opn̊as
strømme, ikke af ladning, men af valley polarisering. Disse strømme forventes at være
beskyttede over for effekterne af de mest almindelige kilder til uorden i nano-systemer -
en stor fordel over traditionel ladnings-baseret elektronik.

I første del af denne afhandling undersøger vi hvordan valley-frihedsgraden kan manip-
uleres i grafen gennem nano-strukturering af det omkringliggende system. Vi foresl̊ar
en fremgangsm̊ade til at inducere strømme af valley-polarisering i et grafen lag, hvor
strømmen kan kontrolleres af et eksternt potentiale. Denne kontrol over valley-filtrering i
grafen-laget gør os i stand til at forudsige en tydelig signatur af effekten i eksperimenter.
Derudover diskuterer vi indflydelsen af uorden i realistiske nanostrukturerede systemer,
og demonstrerer b̊ade stabiliteten af vores resultater i disse systemer samt muligheden for
at opn̊a nye regimer af valley filtrering i det stærkt uordnede system.

I anden del af afhandlingen udvider vi vores studier af uorden til ogs̊a at inkludere uren-
heder p̊a overfladen af højtemperatur-superlederen FeSe, hvor nylig eksperimentel evidens
indikerer at lokal magnetisme kan opst̊a omkring defekter i krystallen. Vi modellerer
denne urenheds-inducerede magnetisme ved hjælp af en mikroskopisk model for FeSe, og
forudsiger formations-mekanismen for, samt den underliggende symmetri af, den lokale
magnetisme. Til slut udleder vi den forventede signatur af disse symmetrier i eksperi-
menter, og sammenligner vores teoretiske slutninger med nylige m̊alinger foretaget ved
skannings-tunnelerings-mikroskopi.
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Chapter 1

Introduction

The historic quest for control over the structure of materials on the scale of the individual
atom, so as to engineer their properties, has found a new pathway with the discovery of
2D materials [1–4]. Starting with the successful isolation of graphene in 2004 by Novoselov
et al. [5] as a freestanding monolayer of carbon atoms, a multitude of 2D materials have
been shown to be stable in atmospheric conditions [3, 6, 7]. Such ”designer” materials
open the door on a world where materials are created directly for a specific application,
be it within high-performance electronics [8, 9], sensor development [10–12], or solar cells
[13–15]. In this chapter we introduce the basic properties of graphene and pay special
attention to the specific application of this material within modern electronics. We focus
here entirely on graphene, and leave a corresponding introduction to our investigations of
impurity effects in the iron-based superconductor FeSe to Chapter 6.

1.1 Graphene electronics
Low dimensional carbon structures exist in many forms, as evident in Fig. 1.1(a-d) where
we show (a) monolayer graphene, (b) the layered structure of the parent compound
graphite, (c) a carbon nanotube, and (d) the ”buckyball” C60 fullerene. Mono and few-
layer graphene samples were initially extracted as individual flakes by application of com-
mon adhesive tape to the parent compound graphite [5], but has since seen a dramatic
development in modern methods for constructing both high-quality and well-isolated sin-
gle flakes [17–19] and large-scale sheets suitable for industrial applications [20–22]. In
addition, concurrent progress have been made in using another 2D material, hexagonal
Boron Nitride (hBN), as either a substrate or for full encapsulation of graphene [17, 23].
This insulating material consisting of alternating Boron and Nitrogen atoms [as shown in
the inset of Fig. 1.1(e)] has an almost perfectly matching lattice structure to graphene,
and has allowed researchers to isolate graphene from the environment. Being all surface,
the properties of graphene are highly susceptible to the effects of, e.g., charged impurities,
and hence complete encapsulation is important if the intrinsic properties of graphene are
to be probed [9]. The unique properties of graphene include high mechanical strength,
exceptional carrier mobility, and outstanding thermal conductivity, making it an ideal
candidate for use in future electronics [9, 24, 25] in applications such as high-frequency
transistors [26] or Hall-effect based sensors [27].

A further development within the world of 2D materials is the inclusion of graphene
and other 2D materials in stacked heterostructures, allowing for a ”LEGO-like” control
over material properties as shown schematically in Fig. 1.1(e). This stacking allows the
construction of entirely new meta-materials, and opens pathways for further control using

Chapter 1. Introduction 1



Figure 1.1: Carbon structures, showing (a) monolayer graphene, (b) the layered struc-
ture of the parent compound graphite, (c) a carbon nanotube, and (d) the ”buckyball”
C60 fullerene. Reproduced from Castro Neto et al. [16]. (e) Schematic of 2D material
heterostructures where individual layers are stacked like LEGO blocks to create designer
materials with fine-tuned properties. Reproduced from Geim and Grigorieva [3].

nanostructuring techniques [28].

1.2 Valleytronics
Conventional electronics are defined by the electron charge degree of freedom, the control
of which is accomplished through the application of electric fields to nanostructures. These
charge-based electronics are inherently dissipative, causing an increase in power consump-
tion and the possible loss of transferred information [29]. The energy dissipation is a major
challenge within integrated electronics, limiting the performance of devices ranging from
small mobile devices to large data centers [30].

A possible solution to this problem lies in utilizing a degree of freedom different from the
electron charge for information processing, with an end goal of achieving almost dissipa-
tionless electronics. Spin electronics or spintronics have been a subject of intense study
within this field [31]. Here, information is stored and transferred in the spin states of elec-
trons. Nearly dissipationless currents of net spin polarization are induced through the spin
Hall effect, in which an in-plane electric field induces a transverse spin current through
extrinsic spin-dependent scattering on impurities or the intrinsic spin-orbit interaction in
the sample [32–34]. Readout of the signal generated by such spin currents can be achieved
through the inverse effect where the spin current generates a transverse electric field.

The electronic structure of graphene, hosting valleys which are degenerate in energy yet
separated by a long distance in momentum space, suggests an entirely different approach
using valley electronics or valleytronics. At low energies these valleys define a new degree
of freedom through the valley polarization of a given state, essentially replacing the spin
up or down labels of spintronics by the valley indexes K and K ′. The huge momentum
transfer required to scatter an electron between individual valleys indicates that this valley
degree of freedom is protected from most sources of disorder unless the associated disorder
potential is atomically sharp. Dissipationless currents of valley polarization can be induced
through the valley Hall effect where an in-plane electric field drives a transverse valley
current, thereby transferring a signal in the valley polarization. As we discuss in detail
below, this valley-filtering effect appears in systems when inversion symmetry is broken
in the lattice. The effect is is linked to the topology of the electronic bands through
the electronic Berry curvatures which adds a correction to the usual band velocity of
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Figure 1.2: Examples of direct and indirect nanostructuring of graphene. (a) Direct
nanostructuring of the graphene monolayer. (b) Resistivity spectra measured at a range
of temperatures indicate that a band gap of 2∆ ≈ 78 meV is formed. Adapted from
Jessen et al. [28]. (c) Indirect nanostructuring of the electronic properties of graphene.
The graphene monolayer is pristine but is placed above a nanostructured dielectric (here:
SiO2). The electronic density of the graphene sheet on top of the nanostructured region
can be tuned by varying the bottom gate potential as shown in (d). This thesis includes a
study of a similar system but considers a different shape of the induced potentials which
locally breaks inversion symmetry. Adapted from Forsythe et al. [41].

the electronic state depending explicitly on the valley index [35]. While the study of
valleytronics is not strictly limited to the world of 2D materials [36, 37], the high quality
of available samples and the many ways of engineering their properties suggest them as
natural platforms for such technology [38–40]. We outline the concept of band structure
engineering in more detail in the following section.

1.3 Nanostructuring graphene for novel applications
While the properties of pristine graphene outlined above are interesting in their own right,
a unique advantage of 2D materials over 3D materials is how these material properties
can be selectively engineered for new applications. Techniques which would only provide
a minor surface effect in layered bulk materials can instead dramatically change the elec-
tronic structure in the monolayer limit [28]. Examples of such engineering in graphene
include approaches based on, e.g., strain [42–44], substrate-induced superlattice Moire
effects [45–47], and top-down nanostructuring [28, 41, 48–51]. The latter approach can
be loosely divided into two classes: (i) Direct nanostructuring where the graphene sheet
itself is perturbed in a regular pattern, and (ii) indirect nanostructuring where the di-
electric environment is modified instead [28]. An example of direct nanostructuring (i) is
shown in Fig. 1.2(a) where a regular array holes have been created by Jessen et al. [28]
in a graphene sheet by nanolithography, forming a so-called antidot lattice. The effects of
quantum confinement in such structures have been suggested to induce the formation of
band gaps in the initially metallic graphene [48, 52], an effect indicated when the thermal
variation of the resistivity is compared in pristine and nanostructured parts of the sample
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as shown in Fig. 1.2(b). While such direct nanostructuring provides a strong control over
material properties, a major drawback in terms of valleytronic engineering lies in the cre-
ating of edge disorder by the lithographic procedure, which provides an additional source
of intervalley scattering to the system.

Indirect nanostructuring, on the other hand, does not naturally lead to the formation
of atomically sharp disorder detrimental to applications in valleytronics. Forsythe et al.
[41] recently demonstrated a method for creating tunable band structure engineering in
graphene. A schematic of their setup is displayed in Fig. 1.2(c), showing a hBN en-
capsulated graphene sheet placed on top of nanostructured dielectric consisting of SiO2

with cylindrical indentations. A superlattice is defined in the graphene layer by the reg-
ular structure of the induced potential through the nanostructured dielectric, a potential
which can be tuned by the applied voltage to the bottom gate (VSL in Fig. 1.2(c)). The
result of a simulation of the density modulation underneath the superlattice potential is
shown in Fig. 1.2(d), demonstrating the partial depletion of the density as the voltage
controlling the superlattice potential is increased. The lack of intervalley scattering in
this setup combined with an all-electrical method for tuning the superlattice potential
suggests that this nanostructuring approach might be very well suited for applications
in valleytronics. In the following chapters we investigate a similar system as a platform
for tunable valleytronics where a reduction in the symmetry of the superlattice potential,
removing the inversion center of the above disk-shapes, leads directly to the valley Hall
effect.

1.4 Using disorder to probe the clean system
The work included in this thesis is multifaceted, but a unifying theme running throughout
the chapters will be how the inclusion of disorder, be it single atomic vacancies, extended
crystal boundaries, or imperfections in nanostructured samples, can be used to probe the
properties of pristine system itself. Here, the inclusion of disorder can reveal information
not available to measurement of the pristine sample, or even induce novel phenomena
and suggest entirely new applications. Throughout the following chapters we will pay
special attention to these effects and point out the potential benefits of such disorder to
our understanding of the underlying systems.

1.5 Thesis outline
We have in the current chapter provided an introduction to the world of 2D materials
and graphene in particular, with a strong focus on how the properties of graphene can be
engineering through nanostructuring of the material itself or its dielectric environment.
Following this, we present in Chapter 2 the theoretical background needed to under-
stand the interplay of topology and transport in graphene, including a simple picture of
the valley Hall effect derived within the formalism of wave-packet dynamics. We also
discuss the expected signature in transport measurement which will help guide our later
investigations. In Chapter 3 we provide an overview of the shared numerical methods em-
ployed throughout this thesis, including the calculation of the electronic Berry curvature
describing the valley Hall effect within the tight-binding model, and a large-scale method
based on polynomial expansion of the electronic Green’s function. This large-scale method
serves double duty, providing both disorder corrections to the conductivity in our investi-
gations of the valley Hall effect in graphene, and a way of performing self-consistent mean
field calculations of impurity-induced magnetism in a later study of the high-temperature
superconductor FeSe.

With the motivation, theoretical framework, and numerical methods so established, we
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proceed in Chapter 4 with our investigations into the nanostructuring of graphene for
valleytronics and the intrinsic contributions to the valley Hall effect. Chapter 5 extends
this investigation to include also extrinsic contributions from disorder by employing the
large-scale polynomial expansion method.

Finally, in Chapter 6 we shift our focus away from 2D materials and detail our investiga-
tions of impurity effects in the iron-based superconductor FeSe. We cover both our initial
theoretical study of the formation of impurity-induced resonant states and the appearance
of local magnetic order, and our contributions to a recent experimental paper where the
signatures of such local magnetism in scanning tunneling microscopy (STM) have been
investigated.

1.5. Thesis outline 5
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Chapter 2

Topology and transport in
graphene

Historically, phase transitions in condensed matter systems were characterized in terms
of the symmetries they spontaneously break [53]. Starting with the unexpected result of
exactly quantized conductance in the quantum Hall effect [54], recent developments within
the field have brought to light new phases of matter related to the concept of topological
order, wherein band insulators can be classified as topologically equivalent only if they
can be changed into each other by slowly changing the underlying Hamiltonian. The
interplay between such topological ordering of the electronic ground state and the resulting
unconventional transport phenomena appearing in nanostructures is a research topic of
considerable interest in modern condensed matter physics [55–57].

In this chapter we introduce the basic theory underlying the phenomena investigated
in the rest of the thesis. We begin by introducing the Berry phase and the framework
of wave-packet dynamics, wherein superpositions of Bloch states allow us to formulate
a simple equation of motion describing the so-called anomalous velocity contribution to
electron dynamics. Using the concepts of this formalism, we then provide an outline of the
family of Hall effects and their characteristics in electronic transport, culminating with
the definition of the valley Hall effect studied in the first part of this thesis. Providing
a short derivation of the low energy model of graphene, we study this effect within the
massive Dirac model where simple analytical results can be obtained. This investigation
will serve as a useful comparison point of our later studies of more complicated models.
Finally, we cover the expected experimental signature of the valley Hall effect in nonlocal
resistance measurements, and, based on the symmetry properties of the valley Hall effect,
detail guidelines for nanostructuring graphene for valleytronics.

2.1 The Berry phase and wavepacket dynamics
In this section we cover definition of the Berry phase and associated Berry curvature, and
examine their effects on the dynamics of wavepackets. Starting from the single-particle
picture of quantum mechanics, we move onto the specific application of these concepts
within crystalline solids described by periodic Bloch Hamiltonians. Our analysis is by
necessity limited to the concepts relevant to our later studies of the valley Hall effect, and
we refer the interested reader to the excellent reviews of Xiao et al. [35], Kane [53], and
(from a large-scale modeling point of view) Gradhand et al. [58].

Consider a physical system described by a time dependent Hamiltonian H(R), where the
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Figure 2.1: (a) A closed path in the three dimensional parameter space defined by
{λi}3i=1. Adapted from Gradhand et al. [58]. (b) Illustration of a wave-packet constructed
from a superposition of Bloch states. The wave-packet has a well-defined wavevector kc
and center of mass rc. Adapted from Xiao et al. [35].

time dependence is absorbed into the variables Ri(t). This Hamiltonian has associated
instantaneous eigenstates at each time t given as the solution of the eigenvalue equation
[35]

H |n(R)〉 = εn(R) |n(R)〉 . (2.1)

These states are not uniquely defined by the above equation, as we can multiply by an
arbitrary R dependent phase factor (i.e. a choice of gauge). If the energy spectrum
is non-degenerate the adiabatic theorem tells us that a system originally in an eigenstate
|n(R(t = 0))〉 will stay as an instantaneous eigenstate of H(R(t)) for all times t. A critical
fact is that, during adiabatic evolution along a closed path C in the parameter space (as
indicated in Fig. 2.1(a)), the state not only picks up the conventional dynamic phase, but
also acquires a geometric phase. This is the so-called Berry phase

γn =

∮

C
dR ·An(R), (2.2)

where

An(R) = i 〈n(R)| ∇R |n(R)〉 , (2.3)

defines the Berry connection. Note that while this connection is gauge-dependent, the
Berry phase itself becomes a gauge-independent (i.e. physical) quantity up to an integer
multiple 2πn specifically when the path C is chosen closed.

We can rewrite the problem in terms of a local gauge-invariant quantity by defining the
Berry curvature

Ωn(R) = ∇R × i 〈n(R)| ∇R |n(R)〉 , (2.4)

which (using Stokes theorem) yields the Berry phase as a surface integral

γn =

∫

S
dS ·Ωn(R), (2.5)
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with S the surface enclosed by the closed path C in Fig. 2.1(a). Using the useful relation
(n 6= m, for a derivation see Ralph [59])

〈n(R)|∇R|m(R)〉 =
〈n(R)|∇RH(R)|m(R)〉

εn(R)− εm(R
(2.6)

the Berry curvature can also be written in an expanded form

Ωn(R) = Im
∑

m6=n

〈n(R)|∇RH(R)|m(R)〉× 〈m(R)|∇RH(R)|n(R)〉
(εn(R)− εm(R))2

, (2.7)

where we have shifted the derivative from the eigenstates to the Hamiltonian itself. This
way of rewriting our earlier expression of Eq. (2.4) will turn out to be an important step
when we turn to our numerical implementations. There, the phases of the Hamiltonian
eigenstates are in general made discontinuous by the numerical diagonalization procedure,
precluding the taking of finite-element methods for the derivative. In contrast, the deriva-
tive of the Hamiltonian itself often can be obtained analytically, paving the way for a
stable numerical procedure.

In a crystalline solid the eigenstates of the periodic Hamiltonian are Bloch states [53]

|ψnk〉 = eik·r |unk〉 , (2.8)

where |unk〉 is the cell-periodic part of the Bloch state. The periodic part is itself an
eigenstate of the Bloch Hamiltonian Hk = e−ik·rHeik·r. The Bloch state can pick up a
Berry phase when the wavevector k is varied in a closed orbit in reciprocal space, something
which can have a profound effect on, e.g., the anomalous form of graphene Landau levels
and the experimental signature thereof in magnetotransport [60]. A Berry curvature in
momentum space can be defined in similar fashion to the above

Ωn(k) = ∇k × i 〈unk|∇k|unk〉 . (2.9)

The Berry curvature is an intrinsic property of the crystal band structure since it only
depends on the (periodic part) of the Bloch state itself, and is finite in a range of crystals
with broken time-reversal or inversion symmetries [35]. Critically, the gauge invariance of
this quantity implies that it can have an impact on electron dynamics even when electrons
do not follow a closed path in momentum space, a fact which we shall elaborate in more
detail when we investigate the consequences of nonzero local Berry curvature on transport
properties.

Note that we have so far written the general 3D result - in the case of a 2D system the
surface has normal n = ẑ, in which case it turns out that we only need to consider the
Ωz component of the Berry curvature to understand the dynamics of the system. This
component is often written Ωxy within the literature, in analogy with the Hall conductivity
σxy, since it involves the x, y components of the Berry connection. We adopt this notation
in the following.

2.1.1 Equation of motion in wavepacket dynamics
The interplay between an applied E-field and the effects of finite Berry curvature can
be captured in a semi-classical approach of wavepacket dynamics. The wave packet is
constructed in the band in question as a superposition of Bloch states [35]

|W 〉 =

∫
dkw(k, t) |ψnk〉 , (2.10)
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with w(k, t) the envelope function which is chosen such that the wavepacket can be said
to have a definite wavevector (center of momentum) kc, while still retaining a well-defined
center of mass rc. An illustration of such a wavepacket is shown in Fig. 2.1(b). The
equations of motion of the wavepacket can be constructed by linearizing the perturbation
around the wavepacket center rc. In the presence of an electric field, we obtain a modified
version of the wavepacket velocity in the presence of finite Berry curvature [61]

ṙ =
1

~
∂kεn(k)− eE ×Ωn(k) (2.11)

≡ v0
n(k) + δvn(k), (2.12)

with r the wave-packet center in Fig. 2.1(b). Here, we recognize the usual band velocity
as the first term, and defined the anomalous velocity δv as the contribution relating to the
electronic Berry curvature. If we consider a 2D material where Ωn(k) = Ωxy,n(k)ẑ and
assume an in-plane E-field E = Ex̂, we find the anomalous velocity to be perpendicular
to the applied field

δvn(k) = eEΩxy,n(k)ŷ. (2.13)

We see that electron dynamics under the application of the in-plane electric field depend
explicitly on the Berry curvature. As we show in the following section, this anomalous
contribution can be used to characterize the multitude of different Hall effects. We note
that the above wavepacket construction and the derived equation of motion is defined
for a single band, and that if the wavepacket is constructed as superposition of Bloch
states in multiple bands a generalized (non-Abelian) form of the Berry curvature enters
the equation of motion instead [62].

For later use we also consider the symmetry properties of the Berry curvature. The above
definitions lead to the following relations [35, 59]

TR : Ωxy(k) = −Ωxy(−k), (2.14a)

I : Ωxy(k) = Ωxy(−k), (2.14b)

i.e., the Berry curvature is odd in the presence of time-reversal symmetry, and even in the
presence of inversion symmetry. In the presence of both symmetries the Berry curvature
thus vanishes almost everywhere (k = 0 being the possible exception, as we shall see in
pristine graphene).
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Figure 2.2: Transport phenomena and their dates of discovery. (a) The well-known Hall
effect and its quantized counterpart of (b) the quantum Hall effect describing edge states
in strong B-fields, have been supplemented by the discovery of (c) the anomalous Hall
effect in ferromagnetic metals (M denoting the magnetization) and (d) its quantized form.
Similar effect manifest for the electron spin in (e) the spin-orbit interaction driven spin
Hall effect and (f) its quantized counterpart. Adapted from Chang and Li [63].

2.2 2D Transport phenomena
In Fig. 2.2 we show some of the members of the Hall effect family. The conventional Hall
effect, where a voltage builds up across a sample under the application of an out of plane
B-field, has a quantized counterpart in high B-fields in the quantum Hall effect. Here, the
electronic density of states is split into distinct Landau levels related to quantized electron
cyclotron orbits, yielding characteristic exactly quantized steps in the Hall conductivity
as each level is filled. The formation of the quantum Hall effect can be understood using
the concepts of band topology derived above. Constructing hybrid magneto-Bloch bands
in a unit cell extended to include a magnetic flux quantum, it is possible to consider
the system simply as two dimensional band insulator with nontrivial topology [53]. In
particular, the quantized Hall conductivity follows from an integration of the anomalous
velocity component of Eq. (2.13) summed over the number of filled bands [64]

σQHExy =
e2

~
∑

n filled

∫

BZ

d2k

2π
Ωxy,n(k) (2.15)

≡ e2

~
∑

n filled

Cn, (2.16)

where we defined in the second line the so-called Chern number

Cn =
1

2π

∫

BZ
d2kΩxy,n(k), (2.17)

which is an integer describing the topology of the given band. Nonzero Chern numbers
typically arise from the application of an external magnetic field breaking the time-reversal
symmetry, but the quantum Hall effect can also occur in the absence of external fields in,
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e.g., the Haldane model on the honeycomb lattice [65]. Since the insulating quantum Hall
state is topologically nontrivial, it cannot be adiabatically deformed to a topologically
trivial state without closing the band gap. This fact leads to the prediction of protected
edge states at the interface to a trivial region as illustrated in Fig. 2.2(b), in the so-called
bulk-boundary correspondence. The topological protection of these edge states towards lo-
calization is responsible for the robustness of the conductance quantization in the quantum
Hall effect.

A non-quantized version of the quantum Hall effect can occur in systems with trivial band
topology. Such a situation arises in the presence of spin-orbit coupling in ferromagnetic
metals in the so-called anomalous Hall effect illustrated in Fig. 2.2(c). This effect arises
from the presence of a locally nonzero Berry curvature in the partially filled band, yielding
the intrinsic anomalous Hall conductivity

σAHExy =
e2

~

∫

BZ

d2k

2π
fnkΩxy,n(k), (2.18)

where fnk = [e(Enk−EF )/kBT + 1]−1 is the Fermi Dirac distribution describing the occu-
pation of the partially filled band, with EF the Fermi level. As we cover in more detail
in Chapter 5, extrinsic contributions to the anomalous Hall effect related to impurity
scattering often mask the presence of the intrinsic contribution [66]. For nontrivial band
topologies a quantized version of this result can also occur as illustrated in Fig. 2.2(d),
the edge state now being spin polarized.

The above expressions for the quantum Hall and anomalous Hall effect have been used to
model a variety of other transport phenomena. In the spin Hall effect, a similar expression
to the anomalous Hall conductivity of Eq. (2.18) can be extracted, but now selective in
the spin state. In short, the anomalous velocity becomes opposite for the two spin states,
causing an effective filtering of electrons to the left and right parts of the Hall bar sample
as illustrated in Fig. 2.2(d). The quantized counterpart shown in Fig. 2.2(f) supports pairs
of counter-propagating edge states of opposite spin, defining a quantized spin current. As
we shall see in the following, the valley Hall effect studied in the first part of this thesis can
be described in a similar fashion. Before we turn to the derivation of this effect, however,
we need to consider first the band structure and low energy model of graphene in more
detail.

2.3 The low energy model of graphene
The hexagonal structure of the graphene lattice is shown in Fig. 2.3(a), with a unit cell
consisting of two inequivalent carbons on the A (black disks) and B (white disks) sublattice
sites. The conventional Brillouin zone of graphene is shown in Fig. 2.3(b), with several
high-symmetry points labeled including the two inequivalent ”valleys” K and K ′. The
electronic properties of graphene are exceptionally well-described by a simple tight-binding
model containing nearest-neighbour couplings between the π-bonded 2pz orbital of each
carbon site [67]

H = −t
∑

〈ij〉,σ
c†iσcjσ +H.c., (2.19)

where 〈ij〉 indicate summation over nearest neighbors only, and t = 3.033 eV sets the
energy scale of the problem. The band structure is shown in Fig. 2.3(c) along the linecut
through the symmetry points of Fig. 2.3(b) (orange dashed line). Two distinct ”valleys”
in the band structure can be observed at the K and K ′ points, with linear bands touching
at the Fermi level in the center of each valley.
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Figure 2.3: Graphene in the full tight-binding model and approximated by the Dirac
model. (a) The graphene lattice, constructed from the A and B sublattices, with the unit
cell indicated. (b) The graphene Brillouin zone with the high-symmetry points marked.
(c) Band structure of graphene in the tight-binding model with (dashed lines) and without
(full lines) an A/B staggered potential. The utilized linecut is shown in (a) by the dashed
orange line. (d) Zoom of the band structure near the K point, showing also the Dirac
model result with (dashed blue lines) and without (full blue lines) a mass term.

Fourier transforming the tight-binding model and considering the low energy limit for
wavevectors close to the valley regions q = k −Kτ (Kτ ≡ {K,K ′}), we obtain the Dirac
model

Hτ (q) = ~vF (τqxσx + qyσy), (2.20)

where we defined the Fermi velocity vF =
√

3at/2~ ≈ 1× 106 m/s. Diagonalization of
this low energy Hamiltonian yields the valence and conduction bands of the Dirac model
E±(q) = ±~vF q, with q = |q|. In Fig. 2.3(d) we show these linear bands (blue full lines)
compared with the tight-binding result in the K valley, demonstrating the close fit at low
energies with a visible discrepancy only developing as the energy scale of the hopping t is
reached.

Turning to the topology of these bands, we find that the Berry curvature has a monopole
form in the symmetry points where the bands meet. Integrating the Berry curvature
over a sphere containing this monopole, a Berry phase of ±π is found in the Dirac model
[35]. We can gain an intuitive understanding of this result by viewing the Dirac model
as a specific limit result of the so-called massive Dirac model which we consider in the
following section.

2.4 Valley Hall effect in the massive Dirac model
Graphene is a semi-metal with a vanishing density of states at the Fermi level in the
undoped system. Much attention has peen paid to engineering a gap in graphene [28, 50,

2.4. Valley Hall effect in the massive Dirac model 13



Figure 2.4: Schematic of the valley Hall effect. Under the effects of an in-plane electric
field electrons in the K and K ′ valleys acquire opposite (anomalous) transverse velocities,
causing a valley polarization to build up at the edges of the sample. Reproduced from
Xiao et al. [61]

68], ideally creating a semiconductor which inherits the high mobility of graphene. Within
the tight-binding model of graphene a band gap can be opened by breaking the sublattice
symmetry,

H = −t
∑

〈ij〉

(
a†ibj +H.c.

)
+ VAB

∑

i

(
a†iai − b

†
ibi

)
, (2.21)

where we defined the creation and annihilation operators of the A/B sites, and VAB is the
magnitude of a sublattice asymmetric potential. The perfectly precise A/B asymmetry of
this potential is of course an artificial construct which does not translate into something
which can be engineered in the laboratory, although some suggestions do exist for inducing
such a potential on graphene via, e.g., sublattice selective nitrogen doping [69, 70], and the
model is often employed to describe the low energy band structure of the transition metal
dichalcogenides where different atoms occupy the A/B sites of the honeycomb structure
[71, 72]. The model is interesting for our purposes in the low energy limit where it serves
as the generic model when perturbations break the sublattice symmetry in graphene. In
this limit we obtain the so-called massive Dirac model

Hτ (q) = ~vF (τqxσx + qyσy) + ∆σz, (2.22)

with mass term ∆ = VAB, and eigenenergies in the valence and conduction bands

E±(q) = ±
√

~2v2
F q

2 + ∆2. (2.23)

The resulting band gap of 2∆ is shown in Fig. 2.3(d) where we also compare this result with
the tight-binding model including the A/B staggered potential. The bands are perturbed
near the band edge, but recover their linear Dirac character as we move away from the
band gap.

The Berry curvature can be calculated from the analytical eigenstates of the massive Dirac
model, where we obtain

Ω±xy(q) = ∓τ ∆v2
F~2

2(∆2 + ~2v2
F q

2)3/2
, (2.24)
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with τ the valley index. We see that the Berry curvature peaks exactly at the symmetry
points (q = 0) with the width of the distribution determined by the mass. The presence
of a finite Berry curvature of opposite sign in the valleys (K and K ′ = −K), as required
by the presence of time-reversal symmetry [see Eq. (2.14a)], indicates that electrons in
each valley acquire opposite anomalous velocity components under the application of an
in-plane E-field. The resulting valley Hall effect is shown schematically in Fig. 2.4, with
a filtering of electrons diverting left or right based on the valley index taking place. In
a finite sample this valley Hall effect will cause a buildup of polarization at the edges as
indicated by shifted chemical potentials in each valley.

The resulting Hall conductivity of electrons in, e.g., the K valley can be found by inte-
grating the anomalous velocity component of the single-valley Dirac model. We present
this quantity here with the Fermi level placed in the conduction band

σ0,K
xy =

e2∆

2h
√

(vF~kF )2 + ∆2
, (2.25)

where the 0 superscript implies that this is an intrinsic contribution not related to impurity
scattering effects, as we expand upon in Chapter 5. Inside the band gap (here: kF → 0) we
find σ0,K

xy = ∓ sgn(∆)e2/h (including spin degeneracy) corresponding to a so-called half
quantized valley Chern number, CK = ∓ sgn(∆)1/2, of conduction and valence bands.
The half quantized nature of this number is due to the decoupling of the graphene band
into two distinct regions, and bulk-boundary correspondence implies that valley polarized
edge states are expected when the sign of the mass term changes across an interface leading
to an integer change in band topology [35]. The total Chern number of the graphene band
decoupled in this fashion is C = CK + CK′ = 0 as required by time-reversal symmetry
[Eq. (2.14a)].

The previous mass-less Dirac model can be viewed as the limit of this model as ∆ → 0,
causing a vanishing of the Berry curvature except at the K,K ′ points where it diverges
towards ±∞ depending on the sign of the mass term

Ω±τ (q)→ ∓τ sgn(∆)

{
0 q 6= 0

∞ q = 0
. (2.26)

A signature of the resulting finite Berry phase in pristine graphene is seen in, e.g., the
presence of a zeroth Landau in magnetotransport [60, 73]. For our purposes within val-
leytronics, however, pristine graphene is not of much use since the Berry curvature is
finite only exactly at the Dirac point where the conduction and valence bands meet. This
causes a cancellation of the anomalous velocity components at this filling and precludes
any observation of valley filtering. Studies of the valley Hall effect in graphene thus play
out in modified systems where perturbations break the inversion symmetry of the pristine
graphene.

2.5 Experimental signature of valley physics
While the measurement of charge currents is well-developed, and spin currents can be
accessed by coupling ferromagnetic leads to the sample [33], detecting valley currents in a
simple fashion remains elusive [29]. Although valley filters do exists which could potentially
be used to read out the incoming valley polarization [74], these filters rely on specific and
complicated geometries themselves and are thus not yet mature enough as a technology
to be used in this manner. In this section we are primarily concerned with the signature
of the valley Hall effect in nonlocal resistance measurements where an all-electrical setup
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Figure 2.5: An experimental signature of valley physics. (a) Nonlocal resistance mea-
surement schematic. A charge current between the A and D induces a transverse valley
current which propagates to the C and B terminal side. The inverse valley Hall effect
then creates a (nonlocal) voltage between terminals B and C. Adapted from Yamamoto
et al. [29]. (b) Expected scaling of the normalized nonlocal resistivity with the valley Hall
conductivity for varying values of σxx ∈ [0.01, 5] e2/h (blue to red curves). The dashed flat
and cubic curves show the limiting behavior for σxx � σvxy and σxx � σvxy, respectively.

provides a convenient framework for extracting also additional transport characteristics
such as the intervalley scattering length. We note that valley polarization may also be
detected by optical means through valley-selective excitation rules [71, 75, 76], and as
the formation of topological boundary states between regions of opposite mass terms as
predicted by bulk-boundary correspondence [77].

2.5.1 Nonlocal resistance
Using nonlocal resistance measurements to detect valley currents in a Hall bar geometry
is a technique originally borrowed from spintronics [29]. A key advantage of this technique
is an all-electrical setup for the measurement, promising straightforward integration into
conventional electronics. We show the generic setup in Fig. 2.5(a). The technique relies
on the generation of a transverse valley current through the valley Hall effect generated by
a charge current between one pair of terminals, and the inverse effect occurring between
a different set of terminals - the inverse valley Hall effect.

We can obtain a simple form of expected nonlocal signal using a heuristic argument [29]:
An applied local voltage between terminal A and D induces a local electric field EL. This
is related to the local (between these terminals) current density through the longitudinal
conductivity jLc = σxxEL. The electric field in the presence of Berry curvature induces a
transverse valley current along the Hall bar

jv = σvxyEL (2.27)

with the valley Hall conductivity σvxy = σKxy − σK
′

xy as the proportionality constant. The
valley current induces a valley gradient along the Hall bar. We associate a ”valley field”
to this gradient

Ev =
1

2e
∂xδµv (2.28)

with δµv = µK−µK′ the ”valley potential” given by the accumulation of valley polarization
across the Hall bar. Between a different set of terminals in the right-hand side of the Hall

16 2.5. Experimental signature of valley physics



bar [B and C in Fig. 2.5(a)], a conductance matrix relates the ”nonlocal” (NL) charge and
the transverse valley current to the electric and valley fields

(
jNLc
jv

)
=

(
σxx −σvxy
σvxy σxx

)(
ENL
Ev

)
, (2.29)

or, inversely,
(
ENL
Ev

)
=

1

(σxx)2 + (σvxy)
2

(
σxx σvxy
−σvxy σxx

)(
jNLc
jv

)
. (2.30)

Setting jNLc = 0 in this expression, as expected if stray currents are negligible, we find the
nonlocal electric field between the distant pair of terminals [C and B in Fig. 2.5(a)]

ENL =
σvxy

(σxx)2 + (σvxy)
2
jv (2.31)

=
σvxy

(σxx)2 + (σvxy)
2
σvxyEL (2.32)

=
(σvxy)

2

(σxx)2 + (σvxy)
2

1

σxx
jc,L (2.33)

≡ ρNLjc,L, (2.34)

where we have defined the nonlocal resistivity as the proportionality between the nonlocal
E-field and the applied charge current

ρNL =
(σvxy)

2

(σxx)2 + (σvxy)
2
ρxx. (2.35)

The nonlocal resistance, proportional to the above resistivity, then has the following lim-
iting behavior

RNL ∝ ρNL ≈
{

(σvxy)
2ρ3
xx, for σxx � σvxy

(σvxy)
0ρ1
xx, for σxx � σvxy

, (2.36)

which we show as dashed lines in Fig. 2.5(b). The clearest signature of a nonzero valley Hall
conductivity is found in the first of these regimes where the cubic scaling is retained, and
consequently this expression has been used to fit a multitude of nonlocal measurements
[38, 39, 78]. In the other regime a finite nonlocal current is still measured, but this
is (nearly) independent of the valley Hall conductance corresponding to the upper blue
curve in Fig. 2.5(b).

Beconcini et al. [79] obtained a similar result to the above by studying a diffusion equation
in a strip geometry of width W . The nonlocal response is in this case written in terms of
the valley Hall angle

tan θv =
σvxy
σxx

, (2.37)

which is often used as a figure of merit for the magnitude of the induced response in both
valley and spin Hall effects [80]. In a sample with a long intervalley scattering length
(lv � W ) the expected nonlocal resistance measured at some distance d from the source
of the local current is then found to be

∆RNL(d)

ρxx
=

W

2Lv

tan2 θv
1 + tan2 θv

e−|d|/Lv (2.38)
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with Lv = lv
√

1 + tan2 θv a renormalized valley diffusion length, and ∆RNL(d) the con-
tribution to the nonlocal resistance not related to conventional stray current effects. Note
that, apart from the geometrical factors related to the strip geometry and the addition
of valley diffusion, this expression reproduces the result of our earlier heuristic argument
[Eq. (2.35)].

2.5.2 Nonlocal resistance in the transport gap
The arguments given above for the expected signature of the valley Hall effect in nonlocal
resistance measurements rely on the picture of bulk valley currents carried by subgap
states through the bulk of the sample [79, 81], and is the usual interpretation given in
measurements of nonlocal resistance peaks near the gapped region of perturbed graphene
systems. This picture is well-defined for Fermi levels within, e.g., the valence band where
current carrying states at the Fermi level coexist with the presence of finite and valley-
dependent Berry curvature. The situation is, however, markedly different inside the bulk
band gap. Landauer-Büttiker calculations with the Fermi level placed in the band gap do
not find any such valley-Hall induced contributions to a nonlocal resistance [82], and these
contributions only reappear as edge currents when detailed modeling of both electronic
structure and edge geometry is included [83].

As pointed out recently by Shan and Xiao [84] this inconsistency stems from the artificial
decoupling of the valleys of graphene under the assumption of vanishing intervalley scatter-
ing. This decoupling does not capture the global topology of the graphene band structure
and allows for a possibly misleading interpretation of the valley Hall effect in terms of two
copies of the anomalous Hall effects with opposite mass terms. Within this interpretation
the Hall conductivity in the clean sample is given by an integration over the anomalous
velocity of occupied states, which can be divided into two parts: (i) metallic edge states
leading to quantized contributions to the Hall conductivity, and (ii) non-quantized contri-
butions from partially filled bands which can be seen as Fermi surface property [85]. The
graphene bands are topologically trivial, by which the in-gap quantized contribution (i)
must be absent. The second contribution is trivially zero inside the band gap, leading to
the vanishing of bulk valley currents when the Fermi level is placed in the gap, in contrast
to the result of the decoupled (Dirac) model where the valley Hall conductivity peaks
inside the gap. We note that metallic edge states may be recovered when the interaction
between local edge geometry and substrate interactions are included [45].

Keeping this discussion in mind we thus limit our initial predictions (in Chapter 4) of the
nonlocal response to the band edges where the picture of bulk valley currents is valid. We
do however consider how a nonlocal response can be induced in an extended regions when
the effects of disorder are considered in Chapter 5. Here, a lifting of the band gap can
extend the Fermi surface contribution to cover an extended energy interval, providing a
clear signature of the valley Hall effect in the measurement.
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Chapter 3

Numerical methods

In this chapter we introduce the numerical methods which will be used throughout this
thesis. This includes electronic structure calculations within the tight-binding approxima-
tion, as well as the two approaches to calculating the valley Hall conductivity: (i) from
the electronic Berry curvature, which we met when discussing the anomalous velocity
component of wavepackets in Section 2.1, and (ii) by the direct calculation of the linear
response conductivity using an expansion of the Kubo-Bastin formula. As we will show
in Chapter 4 and Chapter 5, these two methods lead to similar results yet each have their
own advantages and drawbacks.

3.1 Electronic structure
We study tight-binding Hamiltonians on the form

H =
∑

〈ij〉,σ
tijc
†
iσcjσ, (3.1)

where i and j denote orbitals φ in the given system, and tij are the tight-binding param-
eters. When studying graphene in the following chapters we restrict ourselves predomi-
nately to the nearest neighbor interaction tij = −tδ〈ij〉, with t = 3.033 eV. When we study
iron-based superconductors in a later chapter the above model will be extended to include
the multi-orbital structure explicitly.

We define Bloch states as expansions of these local orbitals [86]

|ψnk〉 =
∑

i

Cink |χik〉 (3.2)

=
∑

iR

Cinke
ik·(R+τi) |φiR〉 , (3.3)

describing localized orbitals |φiR〉 at reciprocal lattice vectors R with relative positions
τi = 〈φi0|r̂|φi0〉 in the unit cell. In the following we adopt the convenient shorthand
notation where states are labeled by their indices only, e.g., |ψnk〉 ≡ |nk〉. The elements
of the Bloch Hamiltonian are then

(Hk)ij ≡ 〈ik|Ĥ|jk〉 =
∑

R

eik·(R−τi+τj) 〈iR|Ĥ|jR〉 . (3.4)

The expansion coefficients of the Bloch state Cink can be obtained by diagonalization of
the Bloch Hamiltonian alongside the eigenvalues Enk defining the band structure of the
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tight-binding model. Another quantity of interest will be the the band velocity [66]

vnk =
1

~
〈nk|∇kHk|nk〉 , (3.5)

where ∇k is the gradient operator with respect to the wavevector, and the derivative is
calculated analytically from the definition of the Bloch Hamiltonian

(∇kHk)ij = i
∑

R

(R− τi + τj)e
ik·(R−τi+τj) 〈iR|Ĥ|jR〉 . (3.6)

As we shall see in the following section, these matrix elements are also used in the calcu-
lation of the Berry curvature.

3.2 Berry curvature in the tight-binding model
In an earlier section we derived the semiclassical equation of motion of wavepackets [see
Section 2.1.1], and found that several transport phenomena were linked to the electronic
Berry curvature

Ωn(k) = ∇k × i 〈unk|∇k|unk〉 , (3.7)

defined in terms of the periodic part of the Bloch state, |unk〉 = e−ikr |nk〉. Several
approaches to calculating this quantity exist within the literature [58, 87]. We outline
here the calculation from the periodic part of the Bloch states. Direct evaluation of
Eq. (3.7) using finite element methods for the derivative of the periodic part of the Bloch
state suffers from issues due to the uncontrolled numerical phase of the eigenvectors in the
diagonalization of the Hamiltonian. We instead insert a complete basis

∑
m |umk〉〈umk| in

Eq. (3.7) and apply the identity [66]

〈unk|∇k|umk〉 =
〈unk|∇kHk|umk〉
Emk − Enk

, (3.8)

which shifts the derivative to the Hamiltonian, as previously computed analytically in
Eq. (3.6). We obtain an expression for the Berry curvature of the analytical derivatives
and numerical eigenvalues of the Hamiltonian

Ωxy,n(k) = i
∑

m6=n

〈unk| ∇xHk |umk〉〈umk| ∇yHk |unk〉
(Emk − Enk)2

, (3.9)

with ∇x ≡ ∂kx . Making the diagonal approximation for the positions rijR ≡ 〈i0|r̂|jR〉 =
δ0Rδijτi, the somewhat complicated full result for the matrix elements appearing in
Eq. (3.9) simplifies to [86]

〈unk|∇kHk|umk〉 =
∑

ij

C∗imkCjnk(∇kHk)ij , (3.10)

allowing for the numerical evaluation of the Berry curvature.

Using the Berry curvature obtained above, we calculate valley resolved conductivities as
the integral over the anomalous velocity component

σK(K′)
xy (EF ) = −2e2

h

∫

K(K′)

d2k

2π
Ωxy(k, EF ). (3.11)
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Figure 3.1: (a) The full valley regions used when calculating the valley Hall conductivity
as the integral over the unfolded Berry curvature. The dashed lines indicate the Γ ↔ M
lines where the Berry curvature vanishes in the presence of time-reversal symmetry. (b)
Schematic of the unfolding procedure. A trivial extension of the pristine system yields a
multitude of bands in the SBZ which are mapped to the original band structure in the
NBZ by the unfolding procedure. Adapted from Popescu and Zunger [88].

Here, we have included spin degeneracy explicitly, and defined the Berry curvature of
occupied states

Ωxy(k, EF ) =
∑

n

fnkΩxy,n(k), (3.12)

with fnk = [e(Enk−EF )/kBT +1]−1 the Fermi-Dirac distribution, in order to calculate valley
Hall conductivities for any filling of the bands. The valley region in Eq. (3.11) is defined
using the symmetry properties of the Berry curvature, which vanishes by symmetry on the
Γ↔M lines in the Brillouin zone, enabling a consistent definition in terms of exactly half
the Brillouin zone. This definition is illustrated in Fig. 3.1(a). An alternative definition
based on the disk-shaped regions centered on the K and K ′ points is sometimes employed
in the literature [34, 77], but then special attention must be paid to ensuring convergence
in the disk radius as the Berry curvature distribution becomes delocalized from the K(K ′)
point when the band gap widens. For this reason, we always use the full valley region in
the following.

Finally, we define the valley Hall conductivity as the difference between valley resolved
conductivities

σvxy = σKxy − σK
′

xy . (3.13)

When time-reversal symmetry is retained the valley resolved conductivities satisfy σKxy =

−σK′
xy , which follows directly from the symmetry properties of the Berry curvature [Eq. (2.14)]

[35]. Hence, apart from initial tests and convergence analysis procedures, only half the
Brillouin zone needs to be considered in the calculation since the valley Hall conductivity
follows as σvxy = 2σKxy = −2σK

′
xy .

3.2.1 Unfolding the supercell result
The technique derived above for calculating the valley Hall conductivity is based on the
integration of the Berry curvature, as obtained from the tight-binding model, over the
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valley region in the graphene Brillouin zone. If a graphene supercell is considered instead,
the band structure and Berry curvature will be folded from the normal Brillouin zone
(NBZ) into the smaller superlattice Brillouin zone (SBZ), and the definition of the valley
regions for the integration procedure becomes unclear [see Fig. 3.1(a-b)]. We solve this
issue by projecting or unfolding the Berry curvature calculated in the SBZ back into the
NBZ, followed by an integration of the unfolded result over the valley region. This proce-
dure has previously been used to study disorder contributions to both the anomalous Hall
effect in ”dirty” ferromagnetic metals [89] and to the valley Hall conductivity in transition
metal dichalcogenides [86]. The unfolding procedure itself becomes quite extensive in full
detail, and we provide here only an outline. The full calculation is included in Appendix
A.

A superlattice is defined by the relation between the sets of basis vectors of the normal-
and supercell in real space, {a}i, {A}i, and the corresponding relation between reciprocal
lattice vectors, {b}i, {B}i, [88]

(
A1

A2

)
= M ·

(
a1

a2

)
, (3.14)

(
B1

B2

)
= M−1 ·

(
b1

b2

)
, (3.15)

(3.16)

with M a matrix of integers, the determinant of which is the ratio of unit cell volumes,
det(M) = VSC/VNC . In the following we denote quantities in the supercell by capital
letters, e.g., the supercell Bloch state is |NK〉 with K ∈ SBZ. A quantity defined in
the SBZ can be unfolded using the overlap between the normal cell orbital |ik〉 and the
supercell Bloch state |NK〉,

λiNk = 〈ik|NK〉 , (3.17)

which can be derived analytically from our earlier Bloch state definitions (see Appendix
A). We illustrate this unfolding procedure for the spectral weight of the superlattice system

A(K, ε) =
∑

NK

η/π

(ε− ENK)2 + η2
, (3.18)

where η is a numerical broadening. The corresponding unfolded spectral weight is obtained
by convolution with the overlap

A(u)(K, ε) =
∑

NK

∑

i

|λiNk|2
η/π

(ε− ENK)2 + η2
, (3.19)

where the sum over i spans the orbitals of the normal cell, in this case the A,B sites of
graphene unit cell. The corresponding expression for the Berry curvature [Eq. (3.7)] is
similar, but becomes more complicated due to the presence of derivatives in the defini-
tion, leading to gauge dependence if naive repetition of the above convolution is applied.

An introduction to full result for the unfolded Berry curvature Ω
(u)
xy (EF ) is presented in

Appendix A. Once the unfolding has been performed for the Berry curvature, the valley
resolved conductivities then follow by a simple application of Eq. (3.11).

We illustrate the unfolding procedure in Fig. 3.1(b) for a simple model where a square
(normal) unit cell is repeated three times along each axis only, which in our notation is
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Figure 3.2: Components used in the calculation of the Boltzmann conductivity for a
simple test model of graphene with a staggered potential VAB = 0.1t. The band velocities
are shown (dashed lines) next to the valence and conduction bands (full lines), alongside
the Fermi window function (green line) evaluated at the Fermi level EF = 2.3 eV (indi-
cated by the gray dotted line). The velocities and the Fermi window function are shown
normalized to the same value for clarity.

captured by to the matrix

M =

(
3 0
0 3

)
, (3.20)

as defined in Eq. (3.16). The corresponding superlattice Brillouin (SBZ) zone is det{M} =
9 times smaller than the normal Brillouin zone (NBZ). In the pristine supercell the elec-
tronic bands E(k) of the NBZ are simply downfolded to the SBZ. By the reverse unfolding
procedure, the original NBZ bands are recovered.

3.3 Longitudinal conductivity from the Boltzmann equation
As we saw earlier when discussing the measurement of the valley Hall effect in Sec. 2.5, a
key figure of merit for dissipationless electronics applications of anomalous Hall effects is
the (valley) Hall angle

θv =
σvxy
σxx

. (3.21)

In addition to the valley Hall conductivity, which we calculate from the electronic Berry
curvature, evaluation of the valley Hall angle requires a result for the longitudinal con-
ductivity σxx close to the band edge of a gapped graphene system. We calculate the
longitudinal conductivity from the DC Boltzmann equation approach in the relaxation
time approximation [90]

σxx =
2e2

V
∑

nk

τkF v
2
nk,xδ(EF − Enk), (3.22)

where τkF is the relaxation time and vnk,x is the longitudinal component of the band veloc-
ity defined in Eq. (3.5). The components needed to calculate the Boltzmann conductivity
are shown in Fig. 3.2 for the graphene tight-binding model with a staggered potential
[Eq. (2.21)].
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If we assume conduction to be limited by charged impurities, we find the relaxation time
at the Fermi level [90]

τkF =
~
nci

(
e2

4ε0
)−2(
√

2 + q0)2EF (3.23)

= Cci,τEF . (3.24)

where we defined Cci,τ = ~
ndis

( e
2

4ε0
)−2(
√

2 + q0)2, and q0 = qTF /kF with

qTF = gsgνe
2kF /4πε0~vF the Thomas Fermi wave vector. In this case the relaxation time

varies linearly with the Fermi level. The conductivity can also be expressed via the mobility
as σxx = neµ where n is the carrier density. We compare this with the known analytical
result for the zero-temperature conductivity of graphene and extract the relaxation time
[73, 90]

σxx(T = 0) =
e2v2

F

2
ρ(EF )τkF = n(EF )eµ (3.25)

⇒ τkF =
n(EF )eµ

(e2v2
F /2)ρ(EF )

(3.26)

=
µ

ev2
F

EF , (3.27)

with vF ≈ 106 m/s. We can thus extract the proportionality constant as Cci,τ = µ
ev2F

by comparison with Eq. (3.24). The mobility of hBN encapsulated graphene is µ ≈
10× 105 cm2 V−1 s−1 near the charge neutrality point, by which we set Cci,τ = 10 ps/eV
in the following, corresponding to a density of charged impurities of nci = 2.3× 1010 cm−2.

We note that the longitudinal conductivity thus obtained depends directly on a fitted
parameter, an unavoidable assumption of our early studies which are limited to pristine
superlattices. The specific value of this fitted parameter is of limited import to our initial
predictions, since we are mostly interested in simply capturing the conductivity close to
a gapped region qualitatively when computing the valley Hall angle as the superlattice
potential is tuned. In a later section we will move beyond this assumption when study-
ing large scale methods, which will allow us to describe the disordered superlattice in a
quantitative manner and determine both components of the Hall angle from the same
calculation.

3.4 Large scale methods using Chebyshev expansion of the
Green’s function

The previous method, where we quantified the valley Hall effect by calculating the elec-
tronic Berry curvature from the Bloch states, is not well suited for studies of disorder
when large supercells are considered. Including disorder in the superlattice would neces-
sitate the inclusion of multiple of these already extensive supercells in the tight-binding
Hamiltonian, and the subsequent diagonalization of this matrix on a fine grid in reciprocal
space, as required to converge the valley Hall conductivity, then becomes computationally
unfeasible.

In this section we introduce instead an intrinsically real-space method based where disorder
enters naturally into the calculation. The method is based on expansions of the Green’s
functions, which enter into our expressions for the DOS and linear response conductivity,
in terms of orthogonal Chebyshev polynomials. As we shall see, this so-called kernel
polynomial method (KPM) reproduces our earlier results for the valley Hall conductivity
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Figure 3.3: (a) The first seven Chebyshev polynomials Tn used in the expansion proce-
dure. (b) Expansion of a delta function illustrating the effect of the kernel convolution for
N = 50. The Dirichlet kernel is equivalent to a truncation of the series, leading to so-called
Gibbs oscillations in the expanded quantity (dashed blue curve). Convolution of the delta
function with the Jackson kernel yields a Gaussian (orange curve), while including the
Lorentz kernel yields a Lorentzian (green curve). Reconstructed from Weiße et al. [91].

in the clean case, and the simultaneous calculation of both transverse valley-Hall and the
longitudinal conductivities allows for a good definition of the Hall angle in the disordered
case. In the following we provide a brief introduction to the KPM (we refer the interested
reader to the excellent review by Weiße et al. [91]) before turning to the expanded form of
the DOS and Kubo formulas. Note that while we initially use the method for transport
calculations in Chapters 4 and 5, we will use the expansions once more when performing
self-consistent mean field calculations in Chapter 6.

3.4.1 A short introduction to the kernel polynomial method
Consider the orthogonal family of Chebyshev polynomials of the second kind

Tn(x) = cos[n arccos(x)], (3.28)

with domain on the interval x ∈ (−1, 1). We show the first seven of these polynomials in
Fig. 3.3(a). The polynomials satisfy the useful recursion relation

T0(x) = 1, (3.29a)

T1(x) = x, (3.29b)

Tn+1(x) = 2xTn(x)− Tn−1(x), (3.29c)

which will later enable us to avoid direct diagonalization of the tight-binding Hamiltonian,
and instead use the sparsity of this matrix to perform efficient matrix-vector products
recursively.

We can expand a given function f(x) in a series [91]

f(x) =
2

π
√

1− x2

∞∑

n=0

µnTn(x), (3.30)

in terms of the expansion moments µn = 1/(δn0 + 1)
∫ 1
−1 dx f(x)Tn(x). In our numerical

evaluation we are of course forced to truncate this series at some finite order N (
∑∞

n=0 →∑N
n=0), which often lead to so-called Gibbs oscillations in the expanded function. In

Fig. 3.3(b) (blue dashed curve) we demonstrate this issue for an expansion of the Dirac-
delta function. A naive expansion to order N = 50 leads to oscillations in the expansion
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(blue dashed line), and, critically, the delta function expansion is no longer strictly positive.
This issue can be avoided by a so-called kernel convolution, which corresponds to including
modified moments in the expansion

µn → µngn, (3.31)

where gn is defined by the choice of kernel. The simplest kernel is the Dirichlet kernel,
which simply corresponds to a truncation of the series in Eq. (3.30), yielding the Gibbs
oscillations we saw in the delta function expansion in Fig. 3.3(b). In this thesis we consider
two other kernels, the Jackson and Lorentz kernels

gJn =
(N − n+ 1) cos

(
πn
N+1

)
+ sin

(
πn
N+1

)
cot
(

π
N+1

)

N + 1
, (3.32)

gLn =
sinh [λ(1− n/N)]

sinh(λ)
, (3.33)

where λ is a free parameter of the Lorentz kernel which we set to λ = 3 for now, the
meaning of which we return to in a later section. The effect of including these different
kernels is shown in Fig. 3.3(b), where we see that the expanded delta function now becomes
strictly positive in both cases. The difference between the two lies in the shape of the
expanded function, the Jackson kernel yields a Gaussian approximation, while the Lorentz
kernel yields a Lorentzian with width determined by the expansion order N and the free
parameter λ. In the following we shall primarily use the Lorentz kernel when expanding
Green’s functions since this kernel expansion retains the functions’ analytical properties.
However, the Jackson kernel will turn out to be useful when expanding the DOS since
the Gaussian approximation avoids a key issue of the Lorentz kernel: The long-tailed
Lorentzian approximation for the delta functions entering into the definition of the DOS
makes band gaps difficult to identify.

The Chebyshev expansion procedure outlined above is restricted to functions defined on
the interval (−1, 1). We can expand functions defined on domains exceeding this limit
by performing a simple rescaling, which we now demonstrate for expansions involving
the Hamiltonian. Given a Hamiltonian with either known or estimated bounds on the
spectrum Emin < Enk < Emax, we rescale

H̃ =
H − b
a

, (3.34)

ε̃ =
ε− b
a

, (3.35)

with a = (Emax − Emin)/2, and b = (Emax − Emin)/2. Since our later calculations do
not involve highly asymmetric spectra, we choose Emin = max (|Emax|, |Emin|) without
loss of generality, and we can thus set b = 0. We define several rescaled quantities in the
following by the notation Õ = O/a.

For our calculations of the linear response conductivity we require expansions of the spec-
tral representation of retarded and advanced Green’s functions, as well as the delta func-
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tion. We expand these functions in the following manner [92]

GR/A(ε̃, H̃) =
1

ε̃− H̃ ± iη (3.36)

= ∓ 2

π
√

1− ε̃2
N∑

n=0

gn
e±im arccos(ε̃)

δn0 + 1
Tn(H̃) (3.37)

δ(ε̃− H̃) =
2

π
√

1− ε̃2
N∑

n=0

gn
Tm(ε̃)

δm0 + 1
Tn(H̃), (3.38)

where we have included the kernel coefficients gn directly in the definition.

3.4.2 The Kubo-Bastin formula
We consider the linear response to a perturbation H ′ which is switched on adiabatically
from t = −∞ to the current time t [80]

H → H + lim
τφ→∞

et/τφH ′, (3.39)

where τφ is the characteristic time scale of the switching on of the perturbation.

Our starting point is the conductivity within linear response, given by the Kubo formula
presented here in the zero frequency limit

σαβ(ω = 0) = V lim
τφ→∞

∫ ∞

0
dt eitτφ/~

∫ β

0
dλTr

[
ρ̂0Ĵβ(0)Ĵα(t+ i~λ)

]
, (3.40)

written in terms of the inverse temperature β = 1/kBT and the density matrix ρ̂0 which
enters into the correlation function of the time-dependent current operators. These opera-
tors are defined in the interaction picture as Ĵα(t) = eiHt/~Ĵαe

−iHt/~. The result obtained
by Bastin et al. [93] follows within the so-called independent electron approximation where
the system is assumed noninteracting, i.e. representable by a Hamiltonian on the form
H =

∑
n εnc

†
ncn [80, 94]. We now outline the derivation of this result.

The time-dependent current operator can then be expressed in second quantized form as

Ĵα(t+ i~λ) =
∑

p,q

ei(εp−εq)(t+i~λ)/~c†pcq 〈p|Ĵα|q〉 , (3.41)

which, together with the identity [95]

Tr
[
ρ̂0c
†
mcnc

†
pcq

]
= δmnδnpf(εm)[1− f(εn)] + δmnδpqf(εm)f(εp), (3.42)

leads to the single-particle Kubo formula [94]

σαβ = i~V lim
τφ→∞

∑

m,n

f(εn)− f(εm)

(εn − εm)(εn − εm + i~/τφ)
〈m| Ĵβ |n〉〈n| Ĵα |m〉 . (3.43)

We could now directly compute the conductivity from Eq. (3.43) in terms of the tight-
binding Hamiltonian eigenvalues and eigenvectors, a procedure quite similar to our earlier
calculations of the electronic Berry curvature. The implicit diagonalization of the Hamil-
tonian severely limits the scope of such calculations, however. These calculations would
be restricted to quite small systems, precluding any studies of realistic disorder. Bastin
et al. [93] solved this issue by rewriting Eq. (3.43) in terms of the Hamiltonian directly, at
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the cost of an integration over energy. The full Kubo-Bastin result then becomes [80, 93,
94]

σαβ = i~V
∫

dε f(ε) Tr

[
Ĵαδ(ε−H)Ĵβ

dGR(ε,H)

dε
− Ĵα

dGA(ε,H)

dε
Ĵβδ(ε−H)

]
, (3.44)

written in terms of the Green’s functions defined in Eq. (3.37) with η = ~/τφ. At a
a first glance Eq. (3.44) does not provide any clear computational advantage over the
earlier expression obtained in Eq. (3.43), trading diagonalization of the Hamiltonian for
integration over the entire energy range. As we shall see, however, the sparsity of the
tight-binding Hamiltonian combined with self-averaging properties of the trace enables an
efficient computation of the both longitudinal and Hall components of the conductivity
from this expression.

We now turn to the numerical implementation of the above result. Within tight binding
we can express the current operator in terms of the analytically derived velocity operator,

Ĵ = qv̂/V = −ev̂/V, (3.45)

v̂ =
i

~

[
Ĥ, r̂

]
, (3.46)

⇒ vij = 〈ri|v̂|rj〉 = − i
~
tij(ri − rj), (3.47)

where the final expression lists the matrix elements in the tight-binding real-space basis.
We proceed by inserting the expansions of the spectral representations of the delta and
Green’s functions in the Kubo-Bastin formula of Eq. (3.44), and obtain our final result
[92]

σαβ(EF ) =
i~e2

V

∫
dε f(ε) Tr

[
v̂αδ(ε−H)v̂β

dGR

dε
− v̂α

dGA

dε
v̂βδ(ε−H)

]
(3.48)

≈ 4~e2

πV

∫ 1

−1
dε̃ f(aε̃)

N∑

m,n

Γmn(ε̃)µαβmn, (3.49)

where the dependence on the Fermi level is implicitly included through the Fermi function,
and we defined

Γmn(ε̃) =
1

a2(1− ε̃2)(δm0 + 1)(δn0 + 1)
×

[
(ε̃− in

√
1− ε̃2)ein acos(ε̃)Tm(ε̃) + (ε̃+ im

√
1− ε̃2)e−im acos(ε̃)Tn(ε̃)

]
, (3.50)

µαβmn = gngm Tr [v̂αTm(H̃)v̂βTn(H̃)] . (3.51)

Here, Γmn collects all constant terms in the sum, while µmn defines the expansion moments.
Once these moments have been computed to the necessary order in N required to resolve
all features, the full result for the conductivity for any values of filling and temperature
then follow easily from evaluation of Eq. (3.49).

The calculation of the expansion proceeds as follows. Define a basis of real-space orbital
states |i〉 = c†i |0〉, where |0〉 is the Fermi sea with all states unoccupied. We evaluate the
trace by formally splitting the moments in terms of left and right components

µαβmn = Tr [v̂αTm(H̃)v̂βTn(H̃)] (3.52)

=
∑

i

〈i|v̂αTm(H̃)v̂βTn(H̃)|i〉 (3.53)

=
∑

i

〈L, im|v̂β|R, in〉 , (3.54)
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where we defined the left- and righthand components

〈L, im| = (〈i| v̂α)Tm(H̃), (3.55)

|R, in〉 = Tn(H̃) |i〉 . (3.56)

We proceed by computing these vectors one at a time to order N and then performing
the required inner products which yield the expansion moments. Employing the recursion
relations of Eq. (3.29), we can calculate the right-hand vector for all n using only an initial
state |i〉

|R, i0〉 = |i〉 , (3.57a)

|R, i1〉 = H̃ |i〉 , (3.57b)

|R, in+1〉 = 2H̃ |R, in〉 − |R, in−1〉 , (3.57c)

which can be iterated in linear time to any order N . The left-hand vector can be computed
in a similar fashion by setting the initial state to |i′〉 = (v̂†α |i〉) and taking the Hermitian
conjugate at the end of the recursion procedure. Once both independent recursions have
been performed to order N , the expansion moments then follow from the inner product
as defined in Eq. (3.54).

3.4.3 Including the valley projector

Studies of the valley Hall effect requires a decomposition of the full Hall conductivity into
valley components, as we saw earlier when we considered the Berry curvature approach.
In the KPM we study this effect through the valley projector [44, 80]

P̂K(K′) =
∑

k∈K(K′)

|k〉〈k| , (3.58)

where the K(K ′) subscript indicate projection to the same valley regions as defined pre-

viously in Fig. 3.1(a). Defining the valley current operator as Ĵ
K(K′)
β = P̂K(K′)ĴβP̂K(K′)

and making the replacement Ĵβ → Ĵ
K(K′)
β in the Kubo-Bastin formula of Eq. (3.44), we

end up studying the valley resolved expansion moments

µαβ,K(K′)
mn = Tr

[
v̂αTm(H̃)

(
P̂K(K′)v̂βP̂K(K′)

)
Tn(H̃)

]
(3.59)

=
∑

i

〈L, im|P̂K(K′)v̂βP̂K(K′)|R, in〉 . (3.60)

Substitution of these moments in the Kubo-Bastin formula [Eq. (3.49)] allow us to compute
valley resolved conductivities, and thus to obtain the full valley Hall conductivity defined
in Eq. (3.13). Calculation of these valley resolved moments involves terms on the form∑

k∈K(K′) |k〉〈k|R, in〉, which can be efficiently computed in a three step process: (i) fast
Fourier transform (FFT) of the real space vector to its representation in reciprocal space,
(ii) projection to the valley region, and (iii) an inverse FFT back to real space before the
final inner product yielding the valley resolved moment is performed. The efficient FFT-
based approach to this projection ensures that the computational cost is neglible when
compared to the sparse-matrix-vector products of the moment calculation.

3.4.4 Stochastic evaluation of the trace

Our expanded quantities involve a trace over all orbitals of the system, which, for the
extremely large system sizes considered, can become computationally expensive. This
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issue can be avoided by using the self-averaging properties of the expansion, leading to
the following stochastic approximation to the trace [91]

Tr
[
Ô
]

=
∑

i

〈i|Ô|i〉 (3.61)

≈ 1

Nrv

∑

rv

〈rv|Ô|rv〉 , (3.62)

where Nrv is the number of random vectors. Random vectors can be constructed as
|rv〉 =

∑
i exp(2πiφi) |i〉, where {φ}Di=1 is a set of random numbers drawn from a uniform

distribution on the interval (0, 1). The error in above approximation scales inverse with the
product of the total dimension of the system (size of H) and number of random vectors,
err ∝ (

√
NrvD)−1 [91], and hence only a small number of random vectors need to be

considered when computing the trace in large systems. These random vector moments
can be computed efficiently in parallel.

3.4.5 Numerical details and convergence
We set two broadenings in the calculation of the conductivity, the thermal broadening in
the various Fermi functions, and the broadening inserted during the kernel convolution
used to damp the Gibbs oscillations in the truncated Green’s function expansion. The
broadening of the latter depends on the choice of kernel and the number of moments in
the expansion N . The broadenings are then

η̃T =
kBT

a
, (3.63a)

η̃Jφ =
π

N
, (3.63b)

η̃Lφ =
λ

N
. (3.63c)

When selecting the number of energy points Nε̃ in the trapezoidal integration over the full
scaled energy interval, we enforce the general procedure of covering the minimal broad-
ening η̃min = min(η̃T , η̃φ) with at least four points. This high number of points becomes
especially important when calculating the Fermi surface contribution at low temperatures
where the Fermi window function is sharply peaked. In terms of the reduced bandwidth
∼
W = 2 (width of the Chebyshev domain) this criterion translates into a definite number

of energy points Nε̃ = 4
∼
W/η̃min, where the result is implicitly rounded to the nearest

integer.

3.4.6 Convergence of the density of states
Having fixed a size of the real space system, the two main details to pay attention to
when performing calculations within the Chebyshev expansion method is the number of
moments in the expansion N and the number of random vectors Nrv. In Fig. 3.4(a-b) we
illustrate the convergence of the density of states with these two variables for the tight-
binding model of graphene under the A/B staggered potential introduced in Eq. (2.21),
with VAB = 0.45 eV. The system consists of the graphene unit cell tiled in a 600 × 600
grid, including 2× 6002 = 7.2× 105 orbitals in the calculation.

We consider first in Fig. 3.4(a) the calculation without the random vector approximation,
i.e., evaluating the trace in full, and different values of the expansion order N (the curves
are shown with a small offstep for clarity). We see that the expansion order effectively
sets the energy broadening of the calculation due to the inclusion of the Jackson kernel
[Eq. (3.63b)]. In Fig. 3.4(b) we consider a different situation where the expansion order
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Figure 3.4: Convergence of the DOS as obtained in the large-scale Chebyshev expan-
sion method. (a) DOS calculated for the tight-binding model of graphene with an A/B
staggered potential, shown here without the random vector approximation and varied ex-
pansion order N . (b) Repeated calculation for fixed expansion order N = 2000, and a
varied number of random vectors Nrv. Curves in both figures are shown with a small
offstep for clarity.

N = 2000 is fixed while the number of random vectors is varied. The result illustrates why
the random vector approximation must be applied with care - including too few random
vectors introduces artificial features in the result, in this case the breaking of the particle
hole symmetry of the underlying model for Nrv = 1, 3. As noted previously, however,
the random vector approximation converges quickly to the full trace for large system sizes
considered in this work.

3.5 Summary and comparison of methods
In this chapter we outlined the numerical methods which will be used throughout the
thesis. We were mostly concerned with to two different methods for the calculation of the
the valley Hall conductivity. In the first method we obtained directly the full distribution
of electronic Berry curvature, the symmetry of which will be helpful to understand our
results in later sections. In addition, the Berry curvature itself can become important in
several predicted effects, such as the Berry curvature dipole mechanism in the nonlinear
Hall effect [96] and for applications in current rectification [97]. A major drawback for
studies of superlattices using this method is the required diagonalization of the tight-
binding Hamiltonian, limiting the maximum system size.

In contrast, the second method based on Chebyshev expansion allows for the calculation
of valley-Hall and longitudinal conductivities on the same level of approximation in large
systems, leading to a well-defined expression for the valley Hall angle. A drawback is
the lack of knowledge of the electronic Berry curvature, with the conductivity obtained
directly using the valley projected current operator instead. The main advantage for our
purposes is the linear scalability, which will enable us to study disorder corrections to the
valley Hall conductivity. In addition, as we investigate in Chapter 5, an added benefit
of the Kubo formalism is the possibility of decomposing the full conductivity into Fermi
surface and Fermi sea components [80, 94, 98].
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Chapter 4

Valley Hall effect in gate-defined
graphene superlattices

This chapter contains content published in Physical Review B 00, 005400
(2019).

With the main numerical methods of the thesis developed, we now turn to the application
of these techniques for studies of valleytronics in graphene superlattices. A multitude of
solid state systems have been suggested as platforms for achieving dissipationless elec-
tronics using the valley Hall effect, including two dimensional platforms in, e.g., bilayer
graphene under a transverse electric field [38, 99] and graphene aligned precisely to an un-
derlying hBN substrate [39, 40]. In this chapter we introduce a novel system of this type,
a monolayer graphene superlattice optimized for valleytronics where the valley Hall effect
becomes directly tunable by an external potential. This allows for a smooth interpolation
between the massless and massive Dirac fermions in the nanostructured system, providing
a degree of control which enables predictions of unambiguous signatures in measurement.
Our studied system is inspired by recent developments within the nanostructuring com-
munity where dielectric nanopatterning has been used to define gate-tunable superlattice
potentials [41], as discussed in Section 1.3. In addition, as we shall see in the following
chapter (Chapter 5), the engineering of the valley Hall effect by an external potential also
provides an opportunity to study intrinsic and extrinsic contributions to the valley Hall
effect.

We start off this chapter by summarizing some of our earlier discussion on the valley Hall
effect in the well-known low energy model of massive Dirac electron we introduced in
Section 2.4. We present the analytical predictions for the valley Hall effect in this sim-
plified picture and quantify the region of validity of the model when moving beyond the
idealized system by comparing the analytical results of the low energy model with the full
tight-binding model of graphene under a staggered potential. We then turn to our study
of the valley Hall effect in graphene superlattices defined by an external potential, where
we demonstrate band gap formation as a universal feature in the superlattice system, a
result also indicated by earlier studies of perturbations of C3 symmetry in graphene [100,
101]. Moving beyond our considerations of the electronic structure of the superlattice, we
explain the symmetry and gate-tunability of the electronic Berry curvature in the super-
lattice Brillouin zone and demonstrate how the corresponding unfolded quantity indicates
the presence of the valley Hall effect. We go on to quantify this effect by calculating the
valley Hall conductivity as a function of the electronic filling in the superlattice system,
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finding characteristic plateaus of the valley Hall conductivity in the gapped region with
gate-tunable widths and positions. A figure of merit for the valley Hall effect is provided
by calculation of the valley Hall angle relating the anomalous response to the longitudinal
conductivity. Based on our results for this Hall angle we make initial qualitative predic-
tions for the experimental signature of the valley Hall effects in these systems in nonlocal
resistance experiments. Finally, the robustness of our results is demonstrated by including
repeated irregularities in the superlattice potential and external potentials which decay
realistically at the edges of the nanostructured regions.

4.1 A simple model
Prior to our analysis of the superlattice result we will investigate a simple model which has
been studied in detail analytically [61]. This will prepare us to better understand features
in the superlattice results, helping us in particular to isolate effects of the superlattice
engineering from effects of the breakdown of the low energy model, i.e., the crossover to
the full tight-binding result, with increasing potential magnitudes. We reiterate here some
of the discussion of Section 2.4.

Consider the tight-binding model of graphene under a staggered perfectly A/B antisym-
metric potential

H = −t
∑

〈ij〉

(
a†ibj +H.c.

)
+ VAB

∑

i

(
a†iai − b

†
ibi

)
, (4.1)

where we have defined the creation and annihilation operators of the graphene A and B
sites. In the low energy approximation, and in the limit of vanishing intervalley scattering,
the above model yields the massive Dirac model we studied in Section 2.4 with mass term
∆ = VAB. In that model we previously found the Berry curvature of the conduction band
in the K valley to be [Eq. (2.24)]

Ωxy(q) = − ∆v2
F~2

2(∆2 + ~2v2
F q

2)3/2
, (4.2)

with vF =
√

3at/2~, and a valley Hall conductivity of the fully filled valence band of 2e2/h.
This latter result is derived under assumption of infinitely extending linear Dirac bands
in the integration of the Berry curvature, an approximation which only applies exactly
for graphene as the mass tends to zero and the Berry curvature becomes fully localized
at the Dirac points [35]. We will now compare this idealized model with the full tight-
binding result and demonstrate that, while a close resemblance is found at low energies,
the applicability of the model is not only limited by the presence of intervalley scattering,
but also by the fact that the two valleys share the same momentum space in the graphene
Brillouin zone. The correction to the valley Hall conductivity associated with the latter
approximation becomes increasingly important in tight-binding modeling as the width of
the Berry curvature distribution increases beyond the narrowly defined valley region of
the Dirac model.

In Fig. 4.1(a) we show the tight-binding Berry curvature (full lines) compared with the
analytical result (dashed lines) evaluated on the same grid in reciprocal space for three dif-
ferent values of the staggered potential. As expected, the numerical result closely matches
the analytical expression, but has a small deviation which increases as the staggered po-
tential approaches the energy scale of the hopping t. This discrepancy is clearly expressed
at the edge of the BZ valley region, where the Berry curvature must change sign under
time-reversal symmetry (see Eq. (2.14a)). As shown in Fig. 4.1(b) this sign change is,
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Figure 4.1: Comparison of Berry curvatures in the low energy and tight-binding mod-
els. (a) Berry curvature from the tight-binding calculation (full lines) compared with the
analytical result in the low energy massive Dirac model (dashed lines). Results are shown
for a several magnitudes of the staggered potential (induced mass). (b) Same quantities
shown at the edge of the valley region [across the M → Γ symmetry line of Fig. 3.1(a)]
as indicated by the dashed lines in (a). The tight-binding Berry curvature changes sign
across the boundary as required by time-reversal symmetry. The analytical expression
shows the same behavior but becomes discontinuous across the valley region boundary
due to the assumed decoupling into separate K,K ′ massive Dirac models. The magnitude
of the discontinuity increasing with the size of the staggered potential (induced mass).

as should be the case, obeyed by the tight-binding result. The corresponding analytical
result becomes discontinuous as the valley index is exchanged across the boundary, with
the magnitude of the discontinuous jump increasing with the size of the mass term. We
clearly see the limit of applicability of the low energy model - the Berry curvature only
becomes fully localized in one valley region for small mass terms, and only in this limit
does the above expression for the valley Hall conductivity holds. For larger induced mass
terms the valleys are no longer fully decoupled, and the graphene system cannot be viewed
as two copies of a topological insulators having opposite masses, an interpretation usually
assumed in the modeling of experimental results [38–40]. We note that the assumption
of decoupling of the valleys remains a good approximation if only small perturbations are
considered as is often the case in such experiments, but exceptions do exist, e.g., within
artificial honeycomb lattices as pointed out by Qian et al. [102] wherein the implications
for the bulk-boundary principle are also discussed. As a consequence of the extension of
the Berry curvature distribution across the valley boundary, integration of the analyti-
cal result in the numerical grid yields a conductivity smaller than the quantized value
in the massive Dirac model of 2e2/h, a result consequently mirrored in the integrated
tight-binding Berry curvature. We find that limiting value of 2e2/h is approached in the
opposite limit when the staggered potential (induced mass) tends to zero.

4.2 Electronic structure of the superlattice
Our choice of superlattice geometry was inspired by the experimental work by Forsythe
et al. [41], wherein a triangular superlattice of cylindrical indentations was constructed in
the dielectric SiO2 beneath the graphene sheet and band engineering was demonstrated
as discussed in Section 1.3. Based on initial studies of this superlattice system and our
earlier symmetry arguments for the Berry curvature, we consider the effect of triangular
indentations in the dielectric corresponding to the induced potential of Fig. 4.2(a). The
full heterostructure is illustrated schematically in Fig. 4.2(c), showing the deformation
of the nanostructured regions in the dielectric (circular → triangular). According to our

4.2. Electronic structure of the superlattice 35



Figure 4.2: The gate-defined graphene superlattice. (a) The graphene superlattice con-
sidered in this chapter. The supercell, characterized by the side-length L, is outlined
(dashed black line) alongside the triangular superlattice potential (white-to-red gradient)
characterized by the length R. (b) The superlattice and normal Brillouin zones, with
the former shown enlarged (times 4) for clarity. (c) Schematic of the dielectric setup
for achieving the gate-tunable superlattice potential, showing graphene encapsulated be-
tween dielectrics with a nanostructured dielectric on beneath the graphene which enables
definition of the superlattice potential by a bottom gate.

earlier definitions [see Eq. (3.16)], we can define the superlattice geometry by the matrix

M = L

(
2 1
1 2

)
, (4.3)

with L the side-length of the supercell hexagon in units of lattice constant a as shown in
Fig. 4.2(a). A comparison of the ”normal” Brillouin zone (NBZ) of the graphene unit cell
and the superlattice Brillouin zone (SBZ) of the supercell is shown in Fig. 4.2(b).

The superlattice potential is modeled as shifts in the onsite energies in the tight-binding
model

H =
∑

i,σ

V (ri)c
†
iσciσ − t

∑

〈ij〉,σ
c†iσcjσ +H.c., (4.4)

where ri labels positions of graphene orbitals, and V (r) is defined by the geometry of the
nanostructured region. In Fig. 4.2(a) we characterize the extent of this potential by the
triangle side-length R. The second term is the conventional nearest neighbor tight-binding
model of graphene, with t = 3.033 eV. We initially consider the induced potential to have
perfectly flat edges and to be aligned to a zigzag edge in the graphene sheet, corresponding
to, e.g., the triangular defects observed in hBN nucleated selectively on a single sublattice
[103], an edge profile which minimizes the effects of intervalley scattering [104, 105]. We
return later to realistic modeling of both irregularities in the nanostructuring and the
decay of the potential towards the edges of the gated region as found in, e.g., COMSOL
simulations [77]. The C3 symmetry of the induced potential is found to guarantee the
universal formation of band gaps in the system as the superlattice potential magnitude is
increased, as previously found from a general symmetry argument by Malterre et al. [100].
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Figure 4.3: Typical electronic structure of the gate-defined superlattice. (a) Band struc-
ture of the superlattice shown in Fig. 4.2(a) [V = t/2] demonstrating a band gap at
the downfolding point of the NBZ Dirac cones, which is the SBZ Γ point in this specific
geometry. (b) Corresponding density of states.

We note that the induced band gaps are diminished upon rotation of the potential with
respect to the perfect zigzag alignment of Fig. 4.2(a), but remain robust up until large
rotation angles, with gap closing only at the critical angle φ = 60◦ where the potential
recovers A/B symmetry (as also found for a continuum model of similar systems by Jung
et al. [77]).

We show a typical band structure of the nanostructured system in Fig. 4.3(a) for the
specific geometry (L = 4, R = 3, V = 2 eV) of Fig. 4.2(a), where we have selected a large
magnitude of the potential to clearly show the general features of the band structure engi-
neering. The corresponding DOS is shown in Fig. 4.3(b). In the considered geometry, the
graphene valleys downfold to the SBZ Γ point, forming the valence and conduction bands
of the superlattice and inducing a band gap at finite potential magnitudes. These bands,
which resemble the bands of the massive Dirac close to the gap, remain nondegenerate due
to the different symmetry of the downfolded bands depending on whether they downfold
from the K or K ′ valley, and the center of the band gap is shifted up in energy by the
superlattice potential.

The band structure shown in Fig. 4.3(a) is typical in the sense that a band gap is univer-
sally formed in the described geometries as the magnitude of the superlattice potential is
increased. However, the width of the gap depends on the detailed specifics of the geometry,
a fact found generally in nanostructured graphene [48, 50, 52, 106], and the bands may
split further as the potential magnitude is increased. This important feature is shown in
Fig. 4.4(a) where we present the DOS for three different geometries with varying extents of
the superlattice potential. We characterize these band structures and related DOS by the
width of the gap ∆ and the shift in the center of the gap Es (with Es = 0 in unperturbed
graphene). The inset shows the variation with the magnitude of the superlattice potential
of the gap width (full lines, x-markers) and gap shift (dashed lines, circle markers). The
gap shift is shown to vary linearly with the magnitude of the superlattice potential in all
cases, and we find the slope of these curves to be well-fitted by a simple linear model which
considers the average potential in the supercell Vavg = V (NV /NSC) ∝ V (R2/L2), where
NV = R2 is the number of gated sites and NSC = 6L2 is the total number of sites in the
supercell.
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Figure 4.4: Band structure and Berry curvature engineering in gate-defined superlattices.
(a) Progression of the DOS as the supercell size is increased (V = 1 eV), demonstrating
the enhancement of the band gap at larger potentials, and the step-wise variation as bands
split. The inset shows the extracted band gap and shift increasing with the magnitude
of V . (b-c) Linecut of the Berry curvature for different geometries. The width of the
sign changing peak is determined by the ratio of L to R, and the superlattice potential
magnitude V .

Naive applications of similar simple models for the expected width of the band gap fail to
capture the sensitive dependence on the specific geometry and thus do not fit the tight-
binding result, a fact that has been shown previously in similar studies of both periodically
gated graphene [50] and for antidot lattices [48, 52]. In particular, such models fail to
take into account the interplay between the magnitude of the induced asymmetry for
the C3 potentials considered here and the effect on graphene of periodic potentials where
even simple disk-shaped potentials can induce band gap formation. The latter of these
mechanisms can yield extreme sensitivity to small variations in the supercell size L [106].
In our case we thus restrict ourselves to making the general prediction that the width of
the induced band gap is directly proportional to the magnitude of the potential V and the
extent of the gated region R, and inversely proportional to the supercell size L, i.e., the
distance between the nanostructured indentations in the dielectric.

4.2.1 Tuning and unfolding the Berry curvature

The band gap formation in the superlattice is accompanied by the development of Berry
curvature ”hot spots” near the band edge. In Fig. 4.4(b)-(c) we show the variation with the
superlattice geometry of the occupied Berry curvature of the fully filled valence bands, i.e.,
with the Fermi level fixed in the gap. The Berry curvature in the SBZ forms a sign changing
peak around the point to which the valleys fold (q = 0), with the width of the peak
proportional to the size of the induced band gap. This translates into a Berry curvature
distribution which can be tuned by varying the extent of the induced potential (R), as
shown in Fig. 4.4(b), or the size of the supercell (L), as shown in Fig. 4.4(c). We explore
this connection between the engineering of the band structure and the resulting Berry
curvature distribution further in Fig. 4.5, where we plot in Fig. 4.5(a) the spectral weight
in the SBZ for two values of the superlattice potential for a fixed geometry (L = 4, R = 3).
The dashed lines in the first of these plots shows the V = 0 result for comparison, i.e.,
the pristine graphene bands downfolded into the SBZ. As the superlattice potential is
increased we see the widening and shift of the gap, and in Fig. 4.5(b) we demonstrate the
corresponding effect on the Berry curvature, i.e., a widening of the peak.

With the superlattice results for the band structure and Berry curvature established, we
now turn to our quantity of interest for the valley Hall effect - the unfolded Berry curvature
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Figure 4.5: Unfolding of the spectral weight and Berry curvature. (a) Spectral weight
linecut through the ΓSC point in the SBZ for V = 1, 2 eV. The pristine graphene band
structure is indicated by the black dashed lines. (b) Occupied Berry curvature with the
Fermi level in the middle of the band gap in the SBZ, showing the sign changing peak across
the Γ point. (c) Unfolded spectral weight from (a) shown in the NBZ, here presented in
the K valley. (d) Unfolded Berry curvature from (b). The Berry curvature unfolds to form
peaks localized in the valley regions of opposite signs in the K,K ′ valleys, indicating the
presence of the valley Hall effect. (e) Full BZ results of the Berry curvature for V = 2 in
the SBZ and (f) unfolded to the NBZ, respectively. The ”flower-like” symmetry structure
of the SBZ Berry curvature arises from the downfolding of the peaks near the K,K ′ points
of the NBZ.

in the NBZ. In Fig. 4.5(c) we consider first the unfolded spectral weight from the earlier
result of Fig. 4.5(a), shown in this case in the K valley. The bands unfold into massive
Dirac model like bands albeit shifted up in energy as mentioned earlier. The corresponding
result in the K ′ valley can be found by simply rotating the above linecut around the q = 0
point. The unfolded Berry curvature is shown in Fig. 4.5(d) superimposed in both the
K (blue curve) and K ′ (red curve) valleys. The Berry curvature unfolds to peaks of
opposite signs in the two valley regions, indicating the presence of the valley Hall effect
in the superlattice. The unfolded peaks, which resemble the massive Dirac model result,
can be tuned by varying the magnitude of the superlattice potential or the geometry of
the superlattice in a similar manner to the band structure nanostructuring. Comparing
the Berry curvature distribution obtained directly in the full SBZ and unfolded to the
NBZ, as shown in Fig. 4.5(e)-(f), sheds further light on the sign changing peak we saw in
Fig. 4.5(b): The full rotational symmetry of the flower-like structure of the Berry curvature
in the SBZ in Fig. 4.5(e) is seen to correspond to the downfolding of the unfolded Berry
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Figure 4.6: Tuning the valley Hall conductivity and associated nonlocal response. (a)
Valley Hall conductivity as a function of the filling for different magnitudes of the super-
lattice potential (full lines), alongside the corresponding DOS (dashed lines). The inset
shows the plateau value (max) of the VHC as a function of V , demonstrating the con-
vergence towards the 2e2/h value of the massive Dirac model at small V , and the decay
when the bands start to flatten at V ∼ t. (b) Valley Hall angle (full lines) for two val-
ues of the superlattice potential, which closely mirrors the valley Hall conductivity. The
expected nonlocal response is shown in dashed lines, indicating peaks at the band edges,
the location of which are tuned by the superlattice potential.

curvature peaks of opposite sign in Fig. 4.5(f) with different symmetry depending on the
valley index.

4.3 Tunable valley Hall conductivity

The valley Hall conductivity follows for all values of the Fermi level by integration of the
unfolded Berry curvature as defined in Eq. (3.11). In Fig. 4.6(a) we show the result of
this procedure for different values of the superlattice potential (full lines), alongside the
corresponding DOS (dashed lines). Starting with the result for the smallest potential
considered (V = 1 eV, blue lines) we see the general structure of the variation with the
Fermi level: As the gap edge is approached from below states in the Berry curvature
”hot spot” are progressively filled, increasing the valley Hall conductivity to a value just
below the low energy model result of 2e2/h. At the band edge the valley Hall conductivity
saturates and remains constant in the gap until the next band edge is reached. Then,
states with Berry curvature of the opposite sign are filled and the peak in the valley Hall
conductivity decays. The peak structure resembles the massive Dirac model result [61],
with some modifications: (i) the peak is progressively shifted in energy by the superlattice
potential, (ii) the peak can occur in steps if, e.g., the nearly degenerate valence bands
split further in energy, and (iii) the peak is asymmetrical around the gap center with a
longer tail above the upper gap edge. The latter effect is due to the superlattice potential
causing a flattening of the upper bands. The inset shows the variation of the value of the
valley Hall conductivity in the gap as a function of the superlattice potential magnitude.
For weak potentials the in-gap value approaches the expected value of 2e2/h found as a
limiting value in the massive Dirac model, while flat-band formation in the opposite limit
of strong potentials approaching the hopping energy (V ∼ t) causes a decay of the valley
Hall conductivity peak. We note that while the former regime is the one most commonly
probed in nonlocal resistance measurements, the latter limit can be probed in artificial
honeycomb lattices with a clear signature in, e.g., the backscattering of interface states
[102].
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4.3.1 Valley Hall angle and expected nonlocal response in the pristine
system

With the tunability of the valley Hall conductivity demonstrated, we now move on to our
predictions of the expected experimental signature in nonlocal resistance measurements.
In Fig. 4.6(b) we show the valley Hall angle alongside the expected nonlocal response close
to the band edge based on the framework of Beconcini et al. [79], displayed here for two
distinct values of the superlattice potential. The corresponding band gaps are indicated
by the vertical dashed lines. As expected, the Hall angle quickly falls off as we move away
from the band edge where σxx � σvxy and reaches the limiting value of π/2 in the gap.
The small decay into the gap is due to the inclusion of a finite temperature of 1 K. The
expected nonlocal response (dashed lines) is shown alongside the Hall angle for a sample
of width W = 100 nm, inter-terminal distance d = 103 nm, and valley diffusion length
lv = 105 nm. The relative nonlocal response RNL/ρxx forms peaks close to the band edges
where θ = π/4, i.e., the crossover point where σxx = σvxy. As mentioned previously we
only show the nonlocal response away from the fully gapped region where the underlying
interpretation as bulk valley currents remains valid (see the discussion in Section 2.5). We
find that expected peaks in measurement can be tuned by the superlattice potential, which
broadens and shift the response in terms of electronic filling of the superlattice potential.
This mechanism enables a mapping in terms of both the backgate tuning the Fermi level
and the applied superlattice potential (bottom gate in Fig. 4.2(c)), providing a clear way
of distinguishing valleytronics induced by the dielectric nanostructuring of the superlattice
system.
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Figure 4.7: Robustness of the valley Hall effect. (a) Valley Hall conductivity for a
realistic, i.e., smoothly decaying potential, the profile of which is shown in the inset for
different values of the parametrization u. For small potentials we recover the VHC plateaus
of Fig. 4.6(a) with a small decrease in the width, while more features appear at larger V
where splitting of the conduction and valence bands lead to steps in the conductivity.
(b) Robustness of the VHC with respect to irregularities in the superlattice potential.
The VHC is shown for multiple random potentials added close to the edge (grey lines),
alongside the regular edge result from earlier (black line). The average of the VHC result
for the irregular configurations (red line) closely mirrors the regular result with a rounded
peak resembling the finite temperature result.

4.4 Robustness of results for realistic potentials and irreg-
ular gating

Having presented the electrostatic tuning of the Berry curvature and the associated valley
Hall conductivity in the pristine and optimally aligned superlattice, we now need to also
consider the effect of imperfections in the nanostructuring. In this section we include in
our modeling the effects of realistic potential profiles as well irregularities in the induced
potentials, leaving true disorder considerations to the following chapter. In Fig. 4.7(a)
we consider first the effect of having the potential decay towards the edges, as can be
expected for indentations in the dielectric of finite length [41, 50, 77]. The inset shows
the potential variation from the center of the nanostructured region towards the edge for
three values of the free parameter u, interpolating between the previous flat potential
(u � 1, full line), decay toward the edge (u = 0.2, dashed line), and the extreme case of
the linearly decreasing potential (u = 1, dashed-dotted line). More information about the
spatial profile of the potential is included in Appendix B. In the figure itself we show the
valley Hall conductivity for the representative value of u = 0.2 for the same magnitudes of
the potential as previously. The results are similar, with clear plateaus around the gapped
regions of the corresponding DOS, with the gap widths slightly diminished. A difference
is that the more complicated structure of the gated region yields split conduction bands,
causing the valley Hall conductivity to decay in steps as each band edge is reached. This
effect can be seen most clearly seen in the alignment between steps in the DOS (dashed
lines) and steps in the valley Hall conductivity (full lines) and is more pronounced for the
stronger potentials considered where the band splitting is enhanced.

In Fig. 4.7(b) we consider also the effect of irregularities in the superlattice potential
corresponding to imperfections in the dielectric nanostructuring which could affect the
valley Hall response. Most important is issues at the edges of the induced potential:
Irregularities which deform the overall inversion asymmetric shape of the induced potential
could lead to a vanishing of the valley Hall conductivity. We thus consider Anderson-like
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disorder close to the edges of the potential, i.e., we add a random potential for each site
which is a nearest neighbor to the edge

HA =
∑

i,σ

wic
†
iσciσ, (4.5)

where the potentials wi are drawn from a uniform distribution of width V/4. For the
potential of V = 2 eV (with u = 0.2) chosen for the representative results in Fig. 4.7(b),
this corresponds to wi ∈ [−0.5, 0.5] eV. The previous result with no irregularities (wi = 0)
is shown (full black line) alongside the results for several different random configurations
(gray lines) and the average (red dashed line). Variation occurs around the previous result,
but with a clear plateau or peak structure in the valley Hall conductivity in all cases. The
average of these configurations tracks the regular result with a disorder-induced broadening
which is similar to the effect of adding a finite temperature to the system, indicating that
the valley Hall effect should be robust in the irregular superlattice.

We note that taking this average of perfectly repeated superlattice results in this manner
only serves in this case as an initial indications of the stability of the valleytronic response
in these systems with respect to real disorder in the nanostructuring, and we leave the full
study for the following chapter (Chapter 5) where the important effect of disorder can be
captured directly in the calculation in a consistent manner.

4.5 Summary and outlook
In this chapter we demonstrated a tunable valley Hall effect in graphene superlattices de-
fined by periodic potentials with broken inversion symmetry. We quantified the emergence
of tunable band gaps with associated Berry curvature hot spots near the band edges, and
how the Berry curvature unfolds to peaks of opposite sign in each valley of the graphene
Brillouin zone. When integrated, these peaks yield plateaus of finite valley Hall conduc-
tivity as a function of the electronic filling, plateaus which can be tuned by varying the
superlattice potential which also shifts the expected experimental signature in nonlocal
transport measurements.

We have considered the robustness of these effects with respect to realistic induced poten-
tial shapes, and found only minor modifications to the valley Hall response. Our initial
considerations of irregularities in the nanostructuring and thus in the induced potential
also indicated this robustness. These considerations were by computational necessity lim-
ited to simple repeated irregularities from the perfectly aligned system, and we thus require
further techniques to study true disorder effects. In the following chapter (Chapter 5) we
present the application of such methods to this problem when we use large-scale real-space
calculations to study the valley Hall conductivity in the disordered system.
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Chapter 5

Valley Hall effect in the disordered
superlattice

This chapter contains content which is in preparation for publication in collab-
oration with J. H. Garcia and S. Roche (Paper VI)

We have in the preceding chapter presented a demonstration of the valley Hall effect in
graphene superlattices with broken inversion symmetry. The superlattice potentials con-
sidered were in all cases perfectly periodic allowing for a calculation of the Berry curvature
based on the diagonalization of the tight-binding Hamiltonian of a single supercell with
period boundary conditions. The inclusion of disorder in the calculation modifies this
simple picture. Previously, the dominant contribution to the valley Hall conductivity has
been intrinsic - related to the formation of Berry curvature ”hot spots” at the band edges
near the induced band gap in the perfectly ordered superlattice.

In this chapter we move beyond this idealized system and consider also the extrinsic
contribution to the valley Hall effect induced by disorder such as vacancies, add-atoms,
and the like. For the indirectly nanostructured systems we considered in Chapter 4, the
most interesting type of disorder to consider is the effect of imperfections in the regular
nanostructuring of the dielectric environment. Within our modeling this corresponds
to corrections to the induced superlattice potential. The motivation for these studies
is twofold: In addition to investigating the robustness of our earlier result we are also
interested in the regime where the extrinsic contribution becomes dominant. As previously
discussed in Section 2.5.2 the usual interpretation of nonlocal transport measurements
breaks down within the gapped system, and thus only a response at the band edge is
expected in the pristine system. In the gapless disordered system, however, an extended
peak in the valley Hall conductivity driven by the Fermi surface contribution is expected
to induce a broad nonlocal response [107]. In addition, the extrinsic contributions also
allow new applications for these types of systems not possible in the pristine case as
proposed, e.g., within current rectification by Isobe et al. [97]. The work presented is still
in preparation, and while we only include figures of fully converged calculations, we do
provide some comments on other initial results and indications in these systems.

5.1 Intrinsic and extrinsic contributions to the valley Hall
effect

When considering extrinsic contributions to the valley Hall effect in the disordered system,
we are fortunate in being able to draw upon the extensive literature concerning the same
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Figure 5.1: Disorder corrections to the valley Hall conductivity. (a-b) Illustration of
the two conventional classifications of extrinsic contributions to the valley Hall conduc-
tivity: (a) Skew-scattering, and (b) side-jump. Adapted from Crépieux and Bruno [94].
(c) Transition from the topological (Fermi sea dominated) regime in graphene under a
uniform staggered potential to the Fermi surface dominated (shaded part) regime in a
”mass dots” superlattice on graphene where the staggered potential is applied in select
disk-shaped regions. Reproduced from Aktor et al. [107]. (d) Intrinsic (blue curve) and
side-jump (orange dashed curve) contributions to the valley Hall conductivity of the mas-
sive Dirac model. The side-jump contribution enhances the response near the band edge
but disappears in the band gap.

problem within the anomalous Hall effect in ferromagnetic metals [66, 108]. Here, studies
seeking to distinguish intrinsic and extrinsic contributions to the anomalous Hall conduc-
tivity are, broadly speaking, split between (i) extensions of semiclassical approaches based
on the Boltzmann equation discussed in Section 3.3, and (ii) systematic Green’s function
approaches like the Kubo formalism we considered in Section 3.4.2 [109]. The former
approach (i) has the advantage of being physically transparent but lacks a systematic
derivation within a controlled expansion. In Fig. 5.1(a-b) we show the two different ex-
trinsic contributions considered in this approach and their physical interpretation, adapted
here for the valley Hall effect. Skew-scattering, as illustrated in (a), is a valley selective
scattering of electrons upon the impurity potential related to asymmetries in higher or-
der scattering processes, and is usually classified as the part of the disorder correction
to the conductivity which depends explicitly upon the impurity concentration ndis as the
skew-scattering contribution σSKxy .

When a wavepacket interacts with a local impurity potential, the interaction is not fully
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described as a simple instantaneous change of direction [108]. Integrating over the anoma-
lous velocity during the time interval during which the wavepacket interacts with the
impurity potential, another extrinsic contribution is found which corresponds to a coordi-
nate shift or ”side-jump” of the wavepacket center as illustrated schematically in (b) with
different shifts depending on the valley index. The resulting anomalous correction to the
distribution function and the direct accumulation of coordinate shifts of the wavepacket
are classified collectively as the side-jump contribution σSJxy [110]. These contributions are
usually classified as the part of the extrinsic contribution which does not depend explicitly
on the disorder density ndis.

In contrast to the above picture, the systematic Kubo approach (ii) can be technically diffi-
cult to implement in full and lacks the same physical transparency. A comparison between
these two approaches has been undertaken by Sinitsyn et al. [109] for exactly the massive
Dirac model we considered as a simple model of the valley Hall effect in Section 2.4. Here,
the semiclassical side-jump and skew-scattering contributions were identified as distinct
sums of Feynman diagrams within the Kubo approach. Their results rely upon the de-
composition of the Kubo-Bastin formula of Eq. (3.44) into distinct Fermi sea and Fermi
surface contributions, with the latter contribution capturing all extrinsic corrections in the
weak disorder limit. Prior to presenting the analytical results for extrinsic contributions
within the massive Dirac model, we thus consider this decomposition of the Kubo-Bastin
formula and its implementation within the kernel polynomial method.

5.1.1 Fermi sea and Fermi surface contributions to the Hall conductivity
The Kubo-Bastin equation presented in Eq. (3.44) depends on the full spectrum of the
Hamiltonian through the integral over energy, in contradiction to our intuitive understand-
ing that the longitudinal conductivity should depend only on states close to the Fermi
level. We saw such a result when considering the Boltzmann result for the conductivity
in Section 3.3. The result by Streda [111], as later generalized by Crépieux and Bruno
[94], resolves this issue by demonstrating that the Kubo-Bastin equation can be split into
two components, often called the Fermi surface (FS) and Fermi sea (or topological, T)
contributions [80]

σαβ = σFSαβ + σTαβ. (5.1)

Here, the Fermi surface contribution

σFSαβ = ~V
∫

dε
df(ε)

dε
Im
(

Tr
[
δ(H − ε)ĴαGR(ε,H)Ĵβ

])
, (5.2)

only involves states near the Fermi level, and the Fermi sea contribution

σTαβ =
~V
2π

Re

(∫
dε f(ε) Tr

[(
GR(ε)Ĵα

dGR(ε)

dε
− dGR(ε)

dε
ĴαG

R(ε)

)
Ĵβ

])
, (5.3)

turns out to be responsible for, e.g., the quantized conductivity in the conventional quan-
tum Hall effect [80]. A benefit of the Kubo-Bastin approach to the conductivity is that
both of these components can be calculated independently, enabling us to study in detail
the effect of disorder scattering through the Fermi surface term.

It turns out that even when a high degree of disorder in the system closes the gap, sup-
pressing the intrinsic contribution to the valley Hall effect, a transition to a disordered
regime can occur where the Fermi surface contributions dominates. Aktor et al. [107]
recently considered the difference between a uniform staggered potential on graphene as
studied in Section 2.4 and small disk-shaped ”mass dots” where this staggered potential is
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present. In the latter case a global band gap is not formed, but the valley Hall conductivity
may remain nonzero stemming from the scattering effects on these local mass dots. The
result, as shown in Fig. 5.1(c), is a transition from the usual uniform regime with a peak
in the gap stemming from Fermi sea contribution to a different regime where the Fermi
surface contribution (shaded region) dominates. As discussed previously in Section 2.5.2
this formation of a broad peak in the valley Hall conductivity in the absence of a transport
gap should enable a unambiguous detection within nonlocal resistance measurements with
the response mediated by valley currents flowing in bulk of the sample.

We proceed within the kernel polynomial method by expanding the Fermi surface contri-
bution (for the full derivation see Appendix C) [80]

σFSαβ (EF ) =
~e2

V

∫
dε

df(ε)

dε
Im Tr

[
v̂αδ(H − ε)v̂βGR(ε,H)

]
(5.4)

=
~e2

V

∫ 1

−1
dε̃ a

df(ε)

dε
Im Tr

[
v̂α
−1

a
δ(ε̃− H̃) v̂β

1

a
GR(ε̃, H̃)

]
(5.5)

≈ 4~e2

πV

∫ 1

−1
dε̃ [−2kBT (cosh[(aε̃− EF )/kT ] + 1)]−1 Re

(
M∑

m,n

ΓFSmn(ε̃)µαβmn

)
,

(5.6)

where we have utilized the previously defined moments µαβmn of Eq. (3.51), and defined

ΓFSmn(ε̃) =
1

a(1− ε̃2)(δm0 + 1)(δn0 + 1)
ein acos(ε̃)Tm(ε̃). (5.7)

The missing Fermi sea component can either be computed independently or obtained the
earlier definition in Eq. (5.1) as σTαβ = σαβ − σFSαβ .

5.1.2 Analytical results in the massive Dirac model
Assuming a disorder modeled by random potentials following Gaussian correlations
〈V (r1)V (r2)〉 = ndisV

2
0 δ(r1 − r2), Sinitsyn et al. [98] calculated the Hall conductivity

within the massive Dirac model using the Kubo-Bastian approach outlined in Section 5.1.1
above. We present here the result adapted for the valley Hall conductivity [86]

σKxy = σ0,K
xy + σSJ,Kxy (5.8)

=
e2∆

2h
√

(vF~kF )2 + ∆2
×
[
1 +

4(vF~kF )2

4∆2 + (vF~kF )2
+

3(vF~kF )4

(4∆2 + (vF~kF )2)2

]
, (5.9)

where we recognize the first term as the intrinsic contribution studied previously in Sec-
tion 2.4 [Eq. (2.25)], and the two additional terms are classified as side-jump since they
do not depend explicitly on the impurity concentration ndis [98]. The intrinsic and side-
jump contributions are shown in Fig. 5.1(d), demonstrating that the side-jump contribu-
tions stem from the Fermi surface term [Eq. (5.2)] in the Streda decomposition of the
Kubo-Bastin formula, enhancing the valley Hall conductivity near the band edges but
disappearing in the band gap. The skew-scattering contribution is absent for the specific
choice of disorder correlations. We note that although this contribution will in general be
proportional to the often small third moment of the disorder distribution, but may diverge
even in the dilute disorder limit [98].
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Figure 5.2: Schematics of the superlattice geometry. (a) Supercell of the full calculation
within the large-scale method of length Lfull. Dashed lines indicate periodic boundary
conditions. The inner cells of length L are defined by period of the superlattice potential.
(b) Zoom of the central potential-defined supercell in (a), showing the superlattice poten-
tial in the pristine and disordered cases. Imperfections in the superlattice potential are
defined by the center shift δr and the rotation δθ.

5.2 Electronic structure of the disordered superlattice
Perfectly regular superlattices, as often assumed in initial theoretical modeling, is not
available in the laboratory, and such idealized modeling can fail to account for the dramatic
effect of disorder on band structure engineering [112]. Hence, we include here a study of
the band gap formation in the disordered superlattice. We study similar superlattice
systems as the ones investigated in Chapter 4, yet with a slightly different superlattice
structure where the basis vectors of graphene are directly extended to define the supercell.
This choice for the superlattice geometry makes possible a simple application of the valley
projection method outlined in Section 3.4.3, avoiding the complicating need to involve
further unfolding techniques. In terms of our earlier geometrical definitions of Eq. (3.16),
we define the superlattice geometry of the induced potential by M = L × I2×2, width
I2×2 the identity matrix. Within the Chebyshev expansion method, the full supercell
encompasses multiple such cells tiled along each axis, thus allowing the inclusion of disorder
in the superlattice by including different perturbations in each cell. The size of this full
supercell, denoted by Lfull in the following, is chosen commensurate with the potential
periodicity so as to allow for period boundary conditions by setting Lfull = s× L, where
s is an integer counting the number of repeated potentials tiled along one axis. The
geometrical setup of the system considered in these calculations is illustrated schematically
in Fig. 5.2(a), showing a full supercell enclosing s× s = 3× 3 periods of the superlattice
potential. A zoom of the central supercell (indicated by the dot in Fig. 5.2(a)) is shown
Fig. 5.2(b), including an illustration of the superlattice potential.

A further requirement for our choice of superlattice geometry is mod(Lfull, 3) = 0 which
guarantees that we sample the exact K,K ′ points in the calculation. This requirement
becomes obsolete as the density of the numerical grid increases but is enforced to avoid
any obfuscating features caused by asymmetric sampling of the valley regions. We thus
write the supercell size as Lfull = 3mL where m is an integer, and the number of gate
potentials included is Lfull/L = 3m. A typical system size when calculating the density of
states in the following is Lfull = 696, which includes ∼ 1× 106 orbitals in the calculation.

In Fig. 5.3(a) we show a subset of the full supercell of the calculation enclosing multiple
periods of the superlattice potential (red gradient). We have here chosen a representative
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Figure 5.3: Electronic structure of clean and disordered superlattices. (a) The pristine
superlattice (L = 8, R = 6) [see Fig. 4.2(a)], with the superlattice potential magnitude
shown by the red shading (here: u = 0.1). (b) Band structure of the pristine superlattice
with V = 0.91 eV [∼ 0.3t] showing the band gap formation at the Dirac points. (c) The
strongly disordered superlattice with δθ = 60◦ and δr/L = 0.3. (d) Density of states of
the pristine (blue curve) and disordered (orange curve) superlattices.

geometry [(L = 8, R = 8, V = 0.91 eV) in our earlier notation of Fig. 4.2(a)] with gated
regions large enough so as to allow inclusion of imperfections, while still small enough to
facilitate the required number of uniquely perturbed supercells to accommodate a stable
average over disorder configurations within a single calculation. The band structure of
the pristine superlattice is shown in Fig. 5.3(b), displaying a gap formation at the SBZ
K,K ′ points with a similar magnitude to our earlier calculations. We again find a gap to
be universally formed in these geometries as the superlattice potential V is increased.

We model disorder corresponding to imperfections in the dielectric etching as random
shifts in the position δr and orientation δθ of the triangular potentials as indicated in
Fig. 5.2(b). These corrections are drawn from normal distributions with zero mean

δθ ∼ N (0, σ2
δθ), (5.10a)

δr ∼ N (0, σ2
δr), (5.10b)

where the degree of disorder is parametrized by the standard deviations σδθ/δr. We will
usually denote the shift in the position of the potential δr relative to the potential super-
cell size, i.e., as the fraction δr/L. An example of a disorderd superlattice is shown in
Fig. 5.3(c) with (δr/L = 0.3, δθ = 30◦), alongside a comparison in Fig. 5.3(d) of the DOS
in the pristine and disordered superlattices demonstrating the lifting of the band gap by
sufficiently strong disorder.
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Figure 5.4: Robustness of the band gap in the disordered superlattice. (a) DOS for
systems with increasing random rotations in the orientation of the gated regions. The gap
closes at dθ ∼ 60◦. (b) DOS for systems with increasing random shifts in the location of
the gated regions. The gap is robust at small shifts but closes at dr/L ∼ 0.3.

In Fig. 5.4 we investigate the stability of the band gap with respect to these two different
sources of disorder by calculating the DOS in the disordered superlattice. As the random
rotation in the orientation of the gated region increases, we see in (a) that the width band
gap in the DOS first decreases continuously until a critical degree of disorder lifts the gap
at dθ ∼ 60◦ degrees. A similar result applies to random shifts in the location of gated
regions as shown in (b), where the magnitude of the band gap is again decreasing until it
fully closes at a critical value of dr/L ∼ 0.3.
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Figure 5.5: Valley Hall conductivity in the pristine and disordered superlattices. (a)
Valley Hall conductivity in the pristine system (green curve), also resolved in the individual
valleys K (blue curve) and K ′ (red curve). The Fermi sea contribution (dotted line)
becomes nonzero inside the band gap, while the Fermi surface contribution (shaded part)
peaks at the band edges. (b) Valley Hall conductivity in the disordered superlattice,
demonstrating that the valley Hall effect survives the closing of the band gap with a
dominant Fermi surface contribution. Both calculations performed at a temperature of
T = 10 K to fully resolve the Fermi surface contribution.

5.3 Valley Hall conductivity in the disordered superlattice

With the effects of disorder in the nanostructuring on the stability of the band gap in
the electronic structure established, we can now move on to consider the valley Hall con-
ductivity in the disordered superlattice. As a comparison point, we consider first the
pristine case with V = 0.91 eV [∼ 0.3t], calculated here in a system size of Lfull = 600
including Nrv = 1300 random vectors. We note that this is very similar to the system
we investigated earlier in Chapter 4 through our studies of the electronic Berry curvature.
The result obtained using now the large scale Chebyshev expansion method for the valley
Hall conductivity is shown in Fig. 5.5(a), where we present both valley resolved conduc-
tivities (blue, red full lines), and the valley Hall conductivity itself (green full line). The
band gap obtained by direct diagonalization above is shown by vertical dashed lines. As
expected, the result within this new theoretical framework mirrors the earlier result of
Section 4.3 [Fig. 4.6]. Using the decomposition of the Kubo-Bastin formula, we can now
see the formation of the characteristic peak in the valley Hall conductivity. We indicate
this decomposition in Fig. 5.5(a) by a dotted line for the Fermi sea contribution, and shad-
ing indicating the Fermi surface contribution. Dual peaks are seen in the Fermi surface
contribution as the Fermi level nears the band edges around the band gap. Inside the
band gap this contribution vanishes, and the valley Hall conductivity is instead driven by
the Fermi sea contribution from the filled bands.

For the study of disordered superlattices we choose here a representative geometry with
random shifts in alignment of the superlattice potential in each supercell of δr/L = 0.300
but remark that similar results apply for imperfections in the potential alignment (δθ) as
we also found in our study of the DOS. The valley Hall conductivity in this disordered
superlattice is shown in Fig. 5.5(b), where we see a transition to a regime where the
response is dominated by the Fermi surface contribution (shaded part), with the Fermi
sea contribution only present as a narrow peak in the center of the former band gap. The
result indicates that the valley Hall effect can survive in the gapless strongly disordered
regime, providing valley currents flowing in the bulk of the sample and a well-defined
nonlocal response as discussed in Section 2.5.2. We have here presented the extreme cases
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of the purely pristine and the strongly gapless superlattices. In the intermediate regime
where disorder is present but the band gap survives we find a crossover between these two
domains, with the Fermi surface driven peaks at the band edges expanding and moving
towards the center of the band gap as the level of disorder is increased.

5.4 Summary and outlook
In this chapter we have considered the effects of disorder on our previous results for the
valley Hall effect in nanostructured graphene superlattices. We have found the predicted
band gaps in the electronic structure are stable up to a high degree of imperfections in
the regular pattern of the superlattice potential, including both shifts and rotations in
the location of nanostructured region. We have considered the valley Hall conductivity
within the expansion of the Kubo-Bastin formula, and found that our earlier results of
Chapter 4 based on the integration of the electronic Berry curvature are reproduced. The
decomposition of the Kubo-Bastin result for the conductivity into Fermi surface and Fermi
sea component has enabled us to understand formation of the band gap-centered peak in
the intrinsic valley Hall conductivity. In addition, we have presented our results for the
valley Hall conductivity in the disordered superlattice and found a transition into a regime
where the conductivity is dominated by the Fermi surface contribution. This finding
indicates that such superlattice systems can be used to induce a broad response in the
form of valley currents flowing within the bulk of the sample as required for unambiguous
detection within nonlocal resistance measurements.

Our initial results do not yet include a study of the longitudinal conductivity, which in
the Kubo-Bastin framework can be obtained in the same calculation step as the Hall con-
ductivity, enabling a solid foundation for studies of the valley Hall angle in such systems.
Comparison with similar results within the field of spintronics, where the spin Hall angle is
often considered as a figure of merit of devices, would be interesting in terms of the prac-
tical implementation of valleytronics devices. In addition, defects in the graphene sheet
itself could be included, and their effects on the intervalley scattering rate investigated.
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Chapter 6

Impurity bound states and local
magnetic order in the iron-based
superconductor FeSe

The contents of this chapter have been published in Physical Review B 99 (1),
014509 (2018) or are currently under review in Paper V (preprint: arXiv:1909.13515).

In this chapter we move beyond our studies of 2D materials by investigating bulk and sur-
face properties the iron-based superconductor FeSe, yet still retain our overarching theme
of studying the effects of disorder. In particular, the first two studies covered herein pro-
vide a clear outline for using disorder to probe the bulk system by combining theoretical
predictions with measurement: An initial theoretical study of impurity physics and bound
states in the iron-based superconductor FeSe predicts signatures of local magnetic order
nucleated near point-like Fe-centered impurities [113] - signatures later examined in scan-
ning tunneling microscopy (STM) measurements [114]. In the later study we extend our
theoretical modeling to include also magnetism on the edges of FeSe islands and impurities
centered on Se sites defining extended ”plaquette” impurity potentials in the model. We
begin this chapter by providing a brief introduction to FeSe, with special attention paid to
the possible proximity of this material to a magnetic quantum critical point. We then go
on to cover the details of our tight-binding model, where interactions are included on the
mean field level, and present a self-consistent procedure for capturing the appearance of
impurity-nucleated magnetism. For this work we apply, with some minor modifications,
the Chebyshev expansion procedure of Section 3.4, which we now use for obtaining the
mean fields in a self-consistent calculation of real space densities and magnetizations.

6.1 A brief introduction to FeSe
The unconventional properties of the family of iron-based superconductors continues to
be a field of intensive research into the complex interplay between structural, magnetic,
and superconducting phase transitions [121]. A specific member of the family of these
compounds, FeSe, is particularly interesting due to the phase transition to an extended
phase of structural distortion called the nematic phase, and the interplay thereof with both
magnetic and superconducting phases. The superconducting phase is characterized by a
highly anisotropic gap structure, and is particularly interesting due to the high degree of
tunability of the associated critical temperature Tc, which varies from the bulk value of 8 K
to values approaching 40 K upon intercalation, pressure, or doping [118, 119, 121–126]. In
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Figure 6.1: An introduction to FeSe. (a) The layered crystal structure of bulk FeSe, each
layer consisting of the central Fe lattice with surrounding upper and lower Se sublattices.
Reproduced from Si et al. [115]. (b) Top view of the crystal structure in (a) with the
shaded region indicating the unit cell composed of two Fe atoms due to the staggered Se
positions. Reconstructed from Martiny [116]. (c) Schematic phase diagram of the iron-
based superconductors showing the complicated interplay between magnetic, structural,
and superconducting transitions. In FeSe the spin density wave phase shown here is absent
at ambient pressure. Reproduced from Basov and Chubukov [117]. (d) Phase diagram of
FeSe as a function of pressure. The nematic phase extends all the way to the tail of the
superconducting dome at zero doping (Tc ≈ 9 K). The missing SDW phase can be induced
by pressure [118–120]. Reproduced from Sun et al. [119].

addition, Tc increases in the thin film limit, with monolayers of FeSe on StTiO3 reaching
values upwards of 65 K [127].

In Fig. 6.1(a) we show the layered structure of bulk FeSe, displaying the central Fe lattice
(red disks) surrounded by lower and upper Se sublattices (yellow triangles). A top-down
view is provided in Fig. 6.1(b), including the definition of the unit cell which contains
two Fe atoms due to the different local environments provided by the staggered pattern
of the Se locations. The 3d orbitals of these two inequivalent Fe sites serve as the basis of
our tight-binding modeling below. A schematic phase diagram of the family of iron-based
superconductors is shown in Fig. 6.1(c). In the undoped compound a weak structural
distortion sets in as the temperature is lowered, reducing the crystal symmetry from
tetragonal to orthorhombic and defining the nematic (thread-like) phase. Just below this
transition an antiferromagnetic (spin density wave [SDW]) phase dominates the phase
diagram down to T = 0. Superconductivity emerges upon either hole or electron doping,
forming characteristic domes in the phase diagram.

The phase diagram of FeSe itself, as shown in Fig. 6.1(d), is notably differentiated from
those of most iron-based superconductors by the absence of such magnetic ordering in
the bulk at ambient pressure. Instead, the nematic phase extends all the way to zero
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temperature. However, experimental evidence exists which indicates that FeSe is close
to a magnetic quantum critical point [128], including the observation of a transition to
an SDW phase at modest pressures indicated in Fig. 6.1(d) [119]. The influence of this
proximity to a magnetic instability has also been seen in recent inelastic neutron scattering
experiments [129–131], where, as a function of temperature, spectral weight is shifted from
(π, π) Neel-like fluctuations at high temperatures to stripe-like (π, 0) fluctuations which
dominate at low temperatures.

As we explore in this chapter, this proximity to a magnetic quantum critical point suggests
that the emergence of impurity-induced magnetism could appear from imperfections such
as twin boundaries, atomic vacancies, interstitials, and add-atoms [132]. The very high
quality of available FeSe samples [133] make such identifications difficult due to the rarity
of crystal imperfections, but some recent evidence does suggest the appearance of local
magnetic ordering in bulk probes such as magnetoconstriction [134] and µSR measure-
ments [135, 136]. In addition, a recent STM study of multilayer FeSe found evidence of
impurity induced local order in the form of charge stripes nucleated around Fe vacancy
sites [137]. This local charge order was suggested to arise from magnetic fluctuations
pinned by the vacancy sites, an interpretation mirrored in a study of FeSe films on SrTiO3

[138].

We are motivated by these observations to study impurity physics in FeSe and in particular
the formation of strongly localized local magnetic order nucleated on defect sites. In the
following sections we present first a tight-binding model applicable to the study of impurity
physics in FeSe, and then move on to study the formation of local magnetic order nucleated
around Fe-centered impurities.

6.2 Theoretical model of FeSe
The low-energy magnetic fluctuations in bulk FeSe described above have been included
by theoretical modeling within an itinerant approach which captures both the temper-
ature and momentum dependence of spin excitations [139–141]. This is only the case,
however, when the initial ”bare” model is adapted to include the effects of so-called or-
bitally selective effects: in the multi-orbital correlated system distinct orbitals experience
different renormalization of the self energy, leading to orbital-dependent mass effective
masses and quasiparticle weights [142–152]. Such renormalizations have been suggested
to be characteristic of Hund’s metals, and the inclusion of such effects explain recent STM
quasiparticle interference measurements in both the normal and superconducting states
of iron-based superconductors [153–155]. We note that a multitude of works within the
field of unconventional superconductivity have suggested similar effects of bare impurity
potentials being dressed by the effects of electronic interactions [156–164].

In this section we introduce the bare version of our model and return at a later point to
the inclusion of orbitally selective effects in a ”dressed” version of this model. The starting
point of our analysis is a tight binding model of FeSe based on initial density functional
theory (DFT) calculations later fitted to angle-resolved photoemission spectroscopy and
quantum oscillation experiments in the nematic phase of FeSe [153]

H0 =
∑

ij,µν,σ

(tµνij − δijδµνµ0)c†iµσcjνσ. (6.1)

Here, i, j are unit cell indexes and µ, ν span the 3d-orbitals of the two inequivalent iron
atoms in the unit cell of Fig. 6.1(b) [10 orbitals in total]. Note the explicit inclusion of the
chemical potential µ0 in the Hamiltonian, the value of which is set to fix the same density
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in each considered system size. Further details of this model including the band structure
and Fermi surface can be found in Kreisel et al. [153], Sprau et al. [154], and Kostin et al.
[155]. A single point-like impurity on site i′ is included as the term

Himp = V0

∑′

µ,σ

c†i′µσci′µσ, (6.2)

where the prime on the sum
∑′ indicates that only the orbitals of a single iron site are

included. Interactions are included in the multi-orbital Hubbard-Hund model

Hint = U
∑

i,µ

niµ↑niµ↓ + U ′
∑′

i,µ<ν,σ

niµσniνσ̄ + (U ′ − J)
∑′

i,µ<ν,σ

niµσniνσ (6.3)

+ J
∑′

i,µ<ν,σ

c†iµσc
†
iνσ̄ciµσ̄ciνσ + J ′

∑′

i,µ6=ν
c†iµ↑c

†
iµ↓ciν↓ciν↑,

where we set J = J ′ = U/4 and use spin-rotational invariant interactions, U ′ = U − 2J ,
and the primed sums

∑′ only include contributions where the indices µ and ν label an
orbital on the same iron atom. We include this interaction term on the mean field level
where decoupling yields

HMF
int =

∑

i,ν,σ

[
U 〈niνσ̄〉+

∑′

µ6=ν

{
U ′ 〈niµσ̄〉+ (U ′ − J) 〈niµσ〉

}]
c†iνσciνσ (6.4)

−
∑′

i,µ6=ν,σ

[
(U ′ − J) 〈c†iνσciµσ〉 − J ′ 〈c

†
iµσ̄ciνσ̄〉 − J 〈c

†
iνσ̄ciµσ̄〉

]
c†iµσciνσ

−
∑

i,ν,σ

[
U 〈c†iνσciνσ̄〉+ J

∑′

µ6=ν
〈c†iµσciµσ̄〉

]
c†iνσ̄ciνσ (6.5)

−
∑′

i,µ6=ν,σ

[
U ′ 〈c†iνσciµσ̄〉+ J ′ 〈c†iµσciνσ̄〉

]
c†iµσ̄ciνσ.

We perform self-consistent calculations of mean fields within this model by expanding the
Green’s function in a series of Chebyshev polynomials. For this purpose we use a slightly
modified version of the method introduced earlier in Section 3.4, obtaining the following
expression for the expanded Green’s function [91]

Gσσ
′

µν (i, j, ε̃) = lim
η→0

〈
ciµσ

∣∣∣ 1

ε̃+ iη − H̃
∣∣∣c†jνσ′

〉
(6.6)

=
−2i√
1− ε̃2

N−1∑

n=0

aσσ
′

µν,n(i, j) exp(−in arccos(ε̃)),

where N is the expansion order, |c†jνσ〉 = c†jνσ |0〉 denotes a single occupied state in the
Fermi sea, and we defined the expansion moments

aσσ
′

µν,n(i, j) =
1

1 + δ0,n

〈
ciµσ

∣∣∣Tn(H̃)
∣∣∣c†jνσ′

〉
. (6.7)

Here, as before, Tn is the nth Chebyshev polynomial of the first kind. Note the slight
change of notation from our earlier definitions, the expansion moments are now denoted an
instead of µn to avoid confusion with the orbital index. Calculation of the Green’s function
expansion moments follow as outlined in Section 3.4 [Eq. (3.57)], and we apply again the
Lorentz kernel of Eq. (3.33) (an → gLnan) to damp Gibbs oscillations in the expanded
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function (see Section 3.4.1). At the expansion order chosen, this kernel convolution yields
a numerical broadening in the region of interest of η ≈ 3 meV.

The mean fields, which enter into the Hamiltonian through the decoupled interaction
Hamiltonian of Eq. (6.6) and in the calculation of the self-consistently updated chemical
potential µ0, can be constructed directly from the expanded Green’s function

〈
c†iµσciνσ′

〉
=

∫ 1

−1
dε̃ ImGσσ

′
µν (i, i, ε̃)f(ε̃), (6.8)

with the Fermi function evaluated at a temperature of T = 1 K in all following calculation.
Since the integration over energy occurs at every step in the self-consistent iteration,
we require a faster method, different from the trapezoidal integration used previously in
Eq. (3.49), for performing these integrals efficiently. The solution is to calculate these
integrals by Chebyshev-Gauss quadrature where an efficient FFT-based method can be
applied [91], a method which we find to yield excellent convergence properties by selection
of a fine energy grid (here: Nε = 2N). In addition to the mean fields, we study also the
local density of states (LDOS)

ρσµ(i, ε) = − 1

π
ImGσσµµ(i, i, ε), (6.9)

which in this case is constructed directly from the imaginary part of the Green’s function.
The obtained mean fields of Eq. (6.8) are found to be fully converged within the numerical
broadening at N = 1000, and we fix this value in all following calculations except when
we need to consider the LDOS at a high energy resolution. In that case we set N = 20000.

The self-consistent procedure proceeds by (i) making an initial guess for the densities
n(ri) and magnetizations mz(ri) = n↑(ri) − n↓(ri), (ii) calculating the mean fields (e.g.
ncalc,mcalc

z ) through Eq. (6.8), and (iii) feeding the result back into the mean field Hamil-
tonian. This procedure is then iterated until convergence is reached. The convergence
criterion for this self-consistent iteration is chosen as a maximal variation of the mean
fields max(nm−1 − nm) < 10−7, nm being the mean field at iteration step m, with the
criterion being satisfied for at least 100 iteration steps before the calculation is deemed
converged. For ease of notation this criterion is defined here in terms of the density, but
we stress that we apply the criterion to the full set of mean fields obtained from Eq. (6.8).
Convergence is usually accomplished within 1500 iterations steps, the exception being cal-
culations with parameters extremely close to phase boundaries where additional iterations
must be included. In part (iii) of the self-consistent procedure we ensure numerical sta-
bility by using a ”mixing” procedure whereby the new mean field at some iteration step
nm is defined as a linear combination of the previous mean field nm−1 and the result of
the direct calculation ncalcm

nm = γnm−1 + (1− γ)ncalcm , (6.10)

where the choice of γ ∈ [0, 1] is a trade-off between stability and speed of the calculation.
We set γ = 0.7 in the following.

This implementation of the Chebyshev expansion method for self-consistent calculations
in mean field models is commonly referred to as the Chebyshev-Bogoliubov-de-Gennes
(CBdG) method in analogy with the well-known Bogoliubov-de-Gennes (BdG) method
for direct calculations of (commonly the superconducting order parameter) mean fields
from the eigenvalues and eigenstates of the diagonalized Hamiltonian [91, 165, 166]. Ap-
plying the Chebyshev expansion procedure for this problem is extremely efficient (and of
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Figure 6.2: Nucleation of local magnetic order on impurity sites in the ”bare” model. (a)
Phase diagram of local magnetic order nucleated on a point-like impurity in FeSe, shown
as a function of the Hubbard U and impurity potential V0. A pocket of local magnetic
order (blue shading) appears underneath the bulk (π, π) phase above Uc = 295 meV (red
shading). The system is most susceptible to the formation of local magnetic order at
V0 = 220 meV where the pocket extends the furthest. The black x-marker deep in this
pocket indicates the set of parameters for which we show the real space structure of the
local magnetic order in (b), [U = 280 meV, V0 = 220 meV]. As evident in the Fourier
transform of this magnetization in (c), the local order inherits the C4 structure of the
(π, π) long range magnetic order above Uc.

often necessary) for systems where large-scale Hamiltonian need to be considered, such
as the multi-orbital model considered in this chapter. The method allows for calculations
in systems where diagonalization of the Hamiltonian becomes computationally unfeasible,
and yields results consistent with conventional BdG calculations within a well-behaved ap-
proximation controlled by the linearly scaling inclusion of additional expansion moments
(increasing the expansion order N). We do note, however, that a crossover in efficiency
between conventional BdG and CBdG calculations occurs at small system sizes if very
small mean fields are considered. Here, the exact nature of constructing mean fields di-
rectly from the eigenspectrum of the Hamiltonian in the conventional BdG procedure may
before more efficient than expanding the Green’s function to a very high order within the
CBdG framework. For large Hamiltonians, however, direct diagonalization becomes com-
putationally unfeasible and the extremely sparse nature of the tight-binding Hamiltonian
allows for easy application of Chebyshev expansion.

6.3 Local magnetic order nucleated on resonant states
We begin our study of impurity physics in FeSe by mapping out the phase diagram of
bulk and local magnetic order as a function of the Hubbard U and impurity potential
V0. We choose a system large enough to ensure converged results for the transition to the
bulk magnetically ordered phase and which can accommodate extended local magnetic
order around a central impurity site. We thus choose a system size of 12 × 12 unit cells
of the 10-band model, containing 2× 122 = 288 iron sites, and enforce periodic boundary
conditions. The obtained location of phase boundaries in the parameter space is tested in
a much larger 24× 24 supercell to check for finite size effects.

In the clean system a transition to a bulk (π, π) antiferromagnetic phase is found at
critical interaction strength Uc = 295 meV, as shown by red shading in Fig. 6.2(a). This
transition is expected from earlier susceptibility calculations [153]. Including a single
central impurity in the calculations, we find underneath the bulk phase also a region where
local magnetic order is nucleated on the impurity (blue shading) for a range of impulsive
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Figure 6.3: Impurity-induced resonant states near the Fermi level (ε = 0). (a) LDOS at
the impurity site i′ with the Hubbard U chosen just below the local magnetic transition
(U = 150 meV), showing a progression of bound states for different values of V0. The
parameters for these resonant states are indicated by the colored crosses in the phase
diagram of Fig. 6.2(a), demonstrating that the local magnetic transition occurs as a local
Stoner transition when these resonant states approach the Fermi level. (b) Real (black line)
and imaginary part (red line, proportional to the LDOS) of the dz2 orbital component of
the clean system Green’s function. Bound (resonant) states are predicted by the T-matrix
argument at energies where the inverse impurity potential 1/V0 (dashed lines) crosses the
real part of the Green’s function and the LDOS is gapped (approximately gapped). (c)
Orbital components of the LDOS of the central resonant state in (a) [V0 = 220 meV],
showing that the resonant state is of almost pure dz2 character. (d) Resonant states close
to the Fermi level when self-consistency is removed from the impurity calculation and a
purely dz2 impurity is included, yielding resonant states at the positions predicted from
the T-matrix argument.

impurity potentials 70 meV ≤ V0 ≤ 560 meV. The system is seen to be most susceptible to
the formation of local magnetic order at around V0 = 220 meV where the pocket extends
the furthest. Selecting a set of parameters deep in this pocket, as indicated by the black
x-marker in the phase diagram, we investigate in Fig. 6.2(b) the real phase structure of the
induced magnetization mz(r). The local magnetic order is seen to inherits the bulk phase
(π, π) ordering, a fact which becomes clear when the Fourier transform mz(q) of the local
order is considered in Fig. 6.2(c). The local order is of almost perfect C4 symmetry, with
an imperceptible degree of anisotropy arising from the orbital order terms included in the
tight-binding model of Eq. (6.1) to capture the nematic order in FeSe at low temperatures.

We now turn to our study of how the local magnetic order is formed and how the local
magnetic transition can be predicted directly from the properties of the clean system. In
this investigation we follow previous studies which have found a connection between the
appearance of local magnetic order and the formation of impurity resonant states at the
Fermi level immediately below the local magnetic transition [167, 168], suggesting that the
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locally enhanced LDOS of the resonant state causes a local Stoner transition to a magnetic
state. We investigate this interpretation in Fig. 6.3. Fixing the Hubbard U = 150 meV
immediately below the local magnetic transition, we show in Fig. 6.3(a) the LDOS on
the impurity site for a range of impurity potentials as indicated by colored x-markers
in Fig. 6.2(a). We find a progression of resonant states shifting position from below the
Fermi level to above the Fermi level as the impurity potential is increased. The point in
the phase diagram where the system is most susceptible to the formation of local order,
i.e., the maximal extension downwards in U of the critical coupling line U localc (V0) defining
the local transition, is exactly the point where the resonant state crosses the Fermi level
(V0 ≈ 220 meV). This fact supports our interpretation of the local order formation as a
local Stoner transition.

With the above indications of the local Stoner scenario for the induction of local magnetic
order on impurity sites, we can now go one step further and in turn predict how the reso-
nant states are formed directly from the properties of the clean system Green’s function.
In the presence of a point-like impurity at a single site (here, ri′ = 0) the Green’s function
can be written [95, 169]

G(r, ε) = G0(r, ε) + G0(r − 0, ε)T(ε)G0(0− r, ε), (6.11)

with all quantities representing matrices in the spin and orbital subspaces as defined in
Eq. (6.7) (V0 = V0I being diagonal in this basis), and where we have defined the impurity
T-matrix

T(ε) =
V0

I−V0
∑

k G0(k, ε)
=

I
(V0)−1 − g0(ε)

, (6.12)

which describes successive scattering on the same impurity. Here, we introduced notation
for the local (clean) Green’s function g0(ε) = G0(0, ε) =

∑
k G0(k, ε). Following Eq. (6.11),

we see that the Green’s function, and hence also the associated LDOS, can be written as
the sum of the clean system LDOS and an impurity induced component

δρ(r, ε) = ρ(r, ε)− ρ0(r, ε) (6.13)

= − 1

π
Im [G0(r − 0, ε)T(ε)G0(0− r, ε)] .

From the structure of this component, we see that impurity induced bound states cor-
respond to poles of the T-matrix defined in Eq. (6.12). If we consider the local Green’s
function to be diagonal in the orbital basis, we find five independent criteria for the for-
mation of bound states by solving for these poles

det
[
(V0)−1 − g0(ε)

]
≈
∏

µ

(
1

V0
− gµ0 (ε)) = 0, (6.14)

which indicates that a bound state appears at some energy ξ when the two following
conditions are fulfilled for any single orbital µ:

0 = ρµ0 (0, ξ), (6.15a)

1

V0
= Re gµµ0 (ξ). (6.15b)

Exact solutions of these equations appear in the region where the LDOS is fully gapped,
and yield true bound states with a delta function profile of the impurity site LDOS
δρ(0, ε) = δ(ε − ξ). When the LDOS is only partially gapped in the given orbital, as
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is the case in our model of FeSe, these true bound states broaden into resonant states
with a Lorentzian lineshape [170], corresponding to complex solutions ξ = ξ′ + iξ′′ of the
above equations. As such, resonant states of µ-orbital character are predicted to appear
in regions where the orbitally resolved LDOS ρµ0 (0, ε) is partially gapped, with resonant
energy ξ determined by the impurity strength V0.

In Fig. 6.3(b) we show the graphical solution to these equations, with the clean sys-
tem Green’s function (solid lines) extracted by converging the supercell densities with
U = 150 meV and V0 = 0, and the inverse potentials shown as dashed lines. The LDOS
components of the three t2g orbitals all have finite weight in the region of interest around
the Fermi level, leaving the two eg orbitals dz2 , dx2−y2 as candidates for the formation of
resonant states. The dx2−y2 orbital can be discarded as a candidate since only unreal-
istically large impurity potentials would fulfill the second condition on the real part of
the Green’s function, leaving only the dz2 orbital remaining. In Fig. 6.3(c) we show the
orbital components of the LDOS of the central resonant state [the V0 = 220 meV state in
Fig. 6.3(a)] demonstrating that the LDOS is of nearly full dz2 character as predicted from
the T-matrix argument. This argument also explains the progression of resonant states
found for increasing impurity potential, since the slope of the real part of the Green’s
function (black line) is seen to shift the crossing point with the inverse potentials (dashed
lines) within the quasigapped region for the dz2 orbital LDOS (red line).

We have so far seen that the study of the impurity T-matrix correctly predicts both the
orbital character of the resonant state and the variation of the resonance energy with the
impurity potential. A major caveat to the above argument, however, is that the locations
of the predicted resonant state energies of Fig. 6.3(b), i.e., the crossing point of dashed
and full lines, does not exactly match the observed center of the Lorentzian profiles in
Fig. 6.3(a), being shifted in energy by upwards of 80 meV, a discrepancy between the
T-matrix prediction and our self-consistent numerical result. Upon further examination,
this shift between model and numerical result is seen arise from the assumptions of the
T-matrix solution which (i) does not capture the effects of self-consistent calculation of the
densities around the impurity site, and (ii) assumes implicitly a fully dz2 polarized impurity
potential of V µ

0 = δµ,z2V0. In contrast, the CBdG calculation includes the effects of self-
consistency, and a realistic impurity potential chosen equal in all orbitals (V µ

0 = V0 ∀ µ).
Repeating the CBdG calculation with these restrictions, i.e., neglecting self-consistency
and including a purely dz2 impurity of equal strength, creates resonant states which now,
within the numerical broadening, match the expected position from the T-matrix solution.
These resonant states are shown in Fig. 6.3(d), with a color scheme matching that of the
dashed lines in Fig. 6.3(b). Relaxing each of these restrictions individually reveals that
the effects of self-consistency (i) are minor, with the main shift in resonant state energy
arising from the different form of the impurity potential (ii). Combined with the local
Stoner argument presented above, the prediction of resonant states directly from the clean
system properties suggests an efficient way of predicting regions of local magnetic order
in the phase diagram. Instead of searching for this pocket by brute-force evaluation of the
phase diagram on a grid in the (U, V ) parameter space, an guideline for the calculation can
be obtained directly from a single calculation of the Green’s function in the clean system.

6.3.1 Orbital selectivity
Correlated multi-orbital models, such as the ones applicable to the FeSCs and FeSe in
particular, have been proposed to include effects of so-called orbital selectivity. Dynamical
mean field theory [142, 143] and slave-spin methods [144–147] have been used to investigate
self-energy effects on, e.g., the band structure of these materials, finding a strong orbital
dependence of the mass renormalization and splitting of quasiparticle weights Zµ. Recent
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Figure 6.4: Nucleation of local magnetic order on impurity sites in the dressed model. (a)
Phase diagram of local magnetic order nucleated on the point-like impurity when orbital
selectivity is added to the model. The bulk magnetism is now (π, 0) [stripe] ordered above
the new Uc = 560 meV (red shading). A pocket of local magnetic order (blue shading)
is again evident, with the local magnetic order, with parameters indicated by the black
x-marker, inheriting the new bulk (π, 0) ordering as shown in (b). This is more clearly
demonstrated in (c), where the Fourier transform of the local magnetic order is shown to
display peaks at (±π, 0).

experiments have found evidence of such effects in FeSe [153, 154], and we thus consider
also a ”dressed” version of our mean field model. The effect of different renormalizations
of the quasiparticle weight factors are done within second quantization by including the
orbitally selective anzats

c†iµ →
√
Zµc

†
iµ. (6.16)

This inclusion of nondegenerate quasiparticle weights Zµ for the five 3d-orbitals of iron
leads directly to a modified version of the interaction Hamiltonian Eq. (6.4) with all effects
of orbital selectivity contained in dressed interaction parameters

Uµ → Z2
µUµ, (6.17)

U ′µν → ZµZνU
′
µν , (6.18)

with similar expressions to the latter for J and J ′. Based on previous experimental
studies where such parameters have been extracted for FeSe [153], we fix the following
values of the quasiparticle weights: {Zµ} = {0.2715, 0.9717, 0.4048, 0.9236, 0.5916} for the
five Fe 3d orbitals {dxy, dx2−y2 , dxz, dyz, dz2}. We note that the tight-binding model itself
is not modified, since, being fitted directly to experiment, the hopping parameters already
contains the effects of these correlations in the multi-orbital system.

The result of recomputing the phase diagram using this dressed version of our earlier model
is shown in Fig. 6.4(a), showing again a transition to bulk magnetic order. Calculation of
the susceptibility of this dressed model in Kreisel et al. [153] found the dominant splitting of
the Zxz and Zyz quasiparticle weights to lead to a shift in the leading magnetic transition to
(π, 0) [stripe] order, a result we also find in the self-consistent mean field CBdG calculation
of the bulk phase above the new critical coupling Uc = 560 meV (red shaded region). Un-
derneath the bulk phase transition, we recover a region of impurity-induced local magnetic
order (blue shading). We show in Fig. 6.4(b) the real space structure of the magnetization
mz(r) for a point deep in this pocket of local ordering ({U = 550 meV, V0 = 120 meV},
as indicated by the black x-marker). Close to the critical coupling Uc, the local order-
ing is again found to inherit the structure of the bulk magnetic phase. This reduction
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in symmetry from the previous (π, π) ordering can be seen in the Fourier transform of
Fig. 6.4(c) where a clear reduction to C2 symmetry is observed in the formation of peaks
at (±π, 0). However, in contrast to the bare model where the local order did not vary
with the Hubbard U , we now find the structure of the local order to vary as the Hubbard
U is decreased, starting out strongly C2 symmetric but then transitioning to a nearly C4

symmetric (π, 0) + (0, π) structure when approaching the phase boundary at the lower
end of the pocket. Finally, we note that nucleation of local magnetic order can again be
understood as a local Stoner transition (by repetition of the analysis of Fig. 6.3), with
resonant states, as can be predicted from T-matrix modeling, crossing the Fermi level for
parameters just below the local magnetic transition.

6.3.2 Experimental signature of the local magnetic order

We now turn to our prediction of experimental signatures of the local magnetic order.
As introduced previously, such local pockets of finite magnetization has been suggested
previously using bulk probes of FeSe crystals [134–136]. Here, we are motivated by the high
quality of available crystals [133], making imaging of a single isolated impurity possible,
to suggest a local signature in STM experiments without adding the complication of
spin resolved imaging with a spin polarized tip. We note that our suggestion here is
purely based on a general symmetry argument for the measured STM profile, and we
leave detailed simulation of topographies and differential conductance maps for further
work. In summary, we suggest a simple way of distinguishing between the C2 and C4

local orders introduced here for the bare and dressed models, respectively, using only
information about the LDOS at the surface of a sample as measured in conventional (non
spin polarized) STM experiments.

The STM experiment probes the tunneling current between tip and sample, which is
directly proportional to the LDOS at the position of the STM tip fixed at some height
above the sample [95, 171]. The model considered here is constructed directly on the
lattice, and thus the LDOS above the sample involves a basis transform containing the
Wannier functions of the electronic states as matrix elements [172–176]. Fig. 6.5(a) shows
the positions of the atoms on a cleaved surface of FeSe, including the Fe atoms (red disks)
which define the lattice of our tight-binding model, and the upper Se sublattice observed in
STM [137, 154, 155]. A Fe centered impurity is known to lead to a dumbbell like formation
of C2 symmetry in the STM image, resulting from the tails of Wannier functions with
weights close to the two nearest (upper) Se atoms [172]. These Wannier functions above
the surface of FeSe are shown in Fig. 6.5(f), alongside a mirror plane m. The lower panels
show the symmetry properties of these functions under this operation, demonstrating
that the dxz and dyz Wannier functions have opposite chiral structures. In the bare
model local magnetic (π, π) order is of nearly perfect C4 symmetry, indicating that the
convolution of real space ordering and Wannier functions which enters into the LDOS above
the surface will simply have the symmetry of the Wannier functions themselves - leading
to the aforementioned dumbbell formation shown in Fig. 6.5(c) along the dotted line.
Importantly, the aforementioned chiral components will enter with the same weight leading
to an absence of chiral character in the predicted STM image. In contrast, the strongly
C2 symmetric (π, 0) magnetic order found for the dressed model is not symmetric under
the mirror plane as illustrated in Fig. 6.5(d) (top and bottom panels). The convolution
of Wannier functions with the asymmetric lattice LDOS of the magnetic pattern will
thus induce a chiral pattern in the predicted STM image, as indicated schematically in
Fig. 6.5(e) where the maxima of the above-surface LDOS are shifted away from the dotted
symmetry line of the Se lattice. This suggest that the symmetry of the local magnetic
order nucleated around an Fe centered impurity can be distinguished by identifying a
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Figure 6.5: Distinguishing between symmetries of the local magnetic order on the sur-
face of FeSe. (a) Schematic of the Fe atoms (red circles) and upper sublattice of Se
atoms (yellow squares). (b) The magnetic order parameter around a Fe-centered impurity
found previously in the non-orbitally-selective case (displayed here in a slightly different
colorscale), with the atomic positions superimposed alongside a mirror plane m (dashed
line). The local magnetic order (upper panel) is (approximately) symmetric under reflec-
tion in the mirror plane (lower panel). (c) Expected pattern in the LDOS as measured by
STM for this case, showing a C2 symmetric dumbbell formation along the symmetry axis
connecting the neighboring (upper) Se sites (dotted line). (d) Magnetic order parameter in
the orbitally-selective case which is now asymmetric under reflection in the mirror plane,
which is expected to shift the maxima of the LDOS away from the symmetry axis forming
a chiral dumbbell formation (e). (f) Symmetry of the five Wannier functions for FeSe at
the Fe site and their mirror image with respect to the mirror plane m. The dxz and dyz
Wannier functions exhibit a chiral structure of opposite direction.

deviation of the dumbbell maxima from the symmetry (dotted) line indicating the upper
Se sublattice. We note that similar features have been suggested in both bulk [155] and
thin films of FeSe [137].
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6.4 Recent evidence for impurity-nucleated local magnetic
order in FeSe

The experimental evidence presented previously was based on bulk probes where the
formation of local magnetic order has been suggested as a possible interpretation. In
this section we introduce a recent STM study where the system is instead probed locally,
providing evidence for the strongly localized magnetic order suggested in our theoretical
modeling. Probing magnetic order locally without the inclusion of a spin polarized STM tip
is accomplished using a novel method based on bound states within a proximity induced
superconducting gap of known symmetry. Our contributions to this work were on the
theoretical modeling side, and we provide here only a brief introduction to the experimental
details (for further information see Song et al. [114]).

6.4.1 Using in-gap states in superconductors as signatures of local mag-
netic order

The T-matrix formalism presented in Eqs. (6.12) to (6.15) provided a method for predict-
ing the formation of impurity induced states within fully gapped or quasi-gapped regions
in the non-superconducting (normal) state, yielding true bound states and resonant states,
respectively. The inclusion of conventional s-wave superconductivity in the model modifies
this result, however, predicting that no such states can be induced within the supercon-
ducting gap by non-magnetic disorder [177–180]. Instead, in-gap states appear only in the
presence of magnetic impurities. Extending the above T-matrix formalism to include also
anomalous components of the Greens function, i.e., the considering the Gorkov Green’s
function, yields a similar result for the energy of the bound state as found previously,
but now with the bound state energy determined by size of the local magnetic moment
[180, 181]. Such selective formation of in-gap states makes the appearance of a tunneling
current within the STM experiment serve as a signature of magnetic ordering at the local
point of the STM tip.

We note that this result applies only for specific symmetries of the superconducting gap
structure, the simplest case being conventional s-wave symmetry investigated here. The
gap symmetry of FeSe itself is still in dispute [182, 183], with the complicated structure of
the Fermi surface in this compound opening several possibilities of the gap structure. As
such, an analysis in the superconducting state of FeSe itself would be inconclusive as to
the formation of local magnetic moments. In Song et al. [114] this issue is circumvented
by growing a FeSe island on top of Pb, itself a well-known s-wave superconductor with
a critical temperature of Tc = 7.2 K. A topography image of the system is displayed in
Fig. 6.6(a), showing the FeSe island surrounded by regions of both (single-layer) PbSe and
bare regions of the underlying Pb. Fourier transform analysis of the image reveals that the
image captures the upper Se sublattice of a thin film of FeSe of estimated thickness cor-
responding to a trilayer. Comparing differential conductance spectra, probing the system
LDOS, on and off the FeSe island at a temperature of T = 4.3 K establishes that super-
conductivity is proximity induced from the Pb with an induced gap of 2∆pb = 2.3 meV.
Due to the inclusion of a superconducting Pb tip in the experiment, used here to en-
hance the resolution at the finite temperature, the gaps measured are twice this value
(2∆meas = 4.6 meV) [184].

Before we move on to compare our theoretical modeling and the experimental STM results,
some important limitations of this comparison are worth noting: (i) The FeSe is in the
the thin film limit and (ii) due to this thin film formation a Moire pattern is formed
at the Pb substrate/FeSe island interface, as evident by the stripes seen in on the FeSe
island in Fig. 6.6(a). However, the effects of the Moire pattern (ii) can be investigated by
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Figure 6.6: STM measurements of FeSe on a superconducting substrate. (a) Topography
of a FeSe island grown on Pb, with an inset showing the atomically resolved (zoomed)
image. (b) Topography around a single isolated defect. (c) dI/dV spectra on (red curve)
and off (black curve) a Fe-centered impurity site, showing the emergence of in-gap (YSR)
states on the defect. (d) Topography around the defect (and zoom thereof) showing the
aforementioned mirror symmetry plane of the topography oriented along the dumbbell
formation (black dashed line in zoom). The FeSe surface schematic is shown on top (legend
in (h)). (e-g) dI/dV spectra at the energies of in-gap states. The yellow dot-dashed line in
(e) indicates the axis of the magnetic pattern, which is rotated with respect to the mirror
plane (black dashed line). The measured gap (distance between the coherence peaks) is
twice that of Pb due to the use of a superconducting Pb tip. (i) The predicted symmetry
breaking induced by a local (π, 0) magnetic order and the resulting chiral pattern in the
maxima of the STM image. Adapted from Song et al. [114] (paper V).

considering samples or regions with different alignments of the Moire pattern with respect
to the FeSe island (see the supplement of Song et al. [114]), and the results discussed here,
i.e., the alignment of the symmetry axis of various impurity induced features, turn out to
be independent of this effect, showing instead universal alignment of measured features
directly to the FeSe lattice.

6.4.2 Fe-centered impurities
The first feature we investigate is the Fe-centered impurity which was the subject of
our previous theoretical study in Section 6.3. The high-quality sample of FeSe grown
has a low density of Fe-centered impurities, which are most commonly identified as Fe
vacancies [185]. As discussed previously in Section 6.3.2, these Fe-centered impurities are
distinguished by their signature in STM topography: a dumbbell formation with maxima
along the line connecting the nearest two upper Se atoms, as illustrated schematically
in Fig. 6.5(c). Such a defect is imaged in the topography of Fig. 6.6(b), showing the
characteristic dumbbell formation which appears to be centered on the crossing of the two
orthogonal Se-Se directions (dashed white lines) as fitting for an Fe-centered impurity. A
schematic of the FeSe surface is shown superimposed, including the the upper Se and the Fe
lattice [see Fig. 6.6(h)]. The differential conductance on and off the defect site is shown in
Fig. 6.6(c), showing the emergence of states inside the proximity induced superconducting
gap, indicating the presence of local magnetic moments strongly localized around the
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defect site. Zoomed real space maps of the topography and differential conductance at the
in-gap state energies, as provided in Fig. 6.6(d-g), allows us to investigate the symmetry of
the induced dumbbell formation in more detail. In the topography the dumbbell formation
is seen to have a clear mirror symmetry plane along the Se-Se direction (dashed line). In
the differential conductance maps, however, the mirror symmetry is broken at all in-gap
energies and the maxima of the dumbbell formation are rotated off the mirror symmetry
line of the topography. This is exactly the chiral scenario outlined above for the orbitally
selective model in Fig. 6.5(e), indicating that the locally nucleated magnetization is of
(π, 0) ordering. This interpretation is reiterated schematically in Fig. 6.6(i) in terms of
the experimental notation, with green circles indicating the rotated pattern of the dI/dV
maps at the in-gap state energies.

6.4.3 Se-centered ”plaquette” impurities
To widen the scope of their study of local magnetic order in FeSe beyond the rare and
isolated Fe-centered impurities studied above, Song et al. [114] induce further defect for-
mation by depositing Ag atoms onto the sample. A topography of a FeSe island after
deposition is shown in Fig. 6.7(a), and in Fig. 6.7(b) we include the height profile of the
Ag atom (through the dashed line in Fig. 6.7(a)). Fourier transform analysis demonstrates
that the Ag atoms are centered on top of the upper Se sublattice as indicated schemati-
cally in Fig. 6.7(c). Differential conductance spectra on these new impurity sites, as shown
in Fig. 6.7(d), demonstrate that in-gap states are induced selectively on the FeSe island,
being absent in the neighboring Pb region. In Fig. 6.7(e) we show a real-space zoom of
both the topography and the dI/dV spectra at energies corresponding to in-gap states.
The real-space region where in-gap states appear is again confined to the immediate sur-
roundings of the impurity, indicating that the local magnetic order is strongly localized
around the defect site. Being centered on the Se site and thus surrounded by a symmet-
rical pattern of four Fe atoms, we would naively expect the signature in STS spectra to
be of almost perfect C4 symmetry. However, this is only true for the topography, and the
all in-gap dI/dV spectra obtained show a lowering of the local symmetry. In Fig. 6.7(f)
a simple interpretation of this fact is found by comparing local collinear (π, 0) magnetic
order [shown in the the transposed coordinate system compared to our earlier definitions],
with Neel (π, π) local magnetic order. Only the (π, 0) order fits the local symmetry of
the differential conductance maps around the impurity, and the (π, π) order possesses a
mirror symmetry plane (dashed line) which is in contradiction with the obtained patterns.
We note that, as mentioned earlier, the asymmetry of Ag centered impurity in-gap STS
maps is aligned with Fe lattice independently of the direction of the Moire pattern, ruling
factor out as an alternative explanation.

In order to study this new type of impurity in more detail, we expand our previous
theoretical modeling to include also Se-centered impurities. Based on the previous evidence
for chiral patterns around Fe-centered impurities, we use the dressed version of our model
which includes the effects of orbital selectivity. We again fix U = 550 meV just below the
bulk magnetic transition, but stress that our result apply for an interval of interactions
strengths the extent of which depends on the type of impurity or disorder potential. A
Se-centered impurity, such as Ag, is included in the 10-band model as an onsite potential
on the four nearest Fe sites

HSe−imp = VSe
∑

j,µ,σ

c†jµσcjµσ, (6.19)

where the set of indices j, µ label the corresponding unit cell and associated orbitals on
the surrounding sites as shown in the plaquette formation of Fig. 6.7(c). The result of
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Figure 6.7: Investigations of Ag (nonmagnetic, Se-centered) impurities on the FeSe
island. (a) Topography of Ag atoms on the FeSe island and the surrounding Pb surface.
(b) Height profile of a single Ag impurity of FeSe along the dashed line in (a). (c) Schematic
of the Ag position above a site of the upper Se sublattice. In the theoretical model an
equal potential is included on the four nearest Fe sites (red disks), forming a ”plaquette”
impurity. (d) dI/dV comparison spectra of Ag on Pb and FeSe, respectively. In-gap
states are found only on the FeSe island. (e) Local topography and dI/dV real-space
maps around a single Ag impurity (zoomed to 9.5�A × 9.5�A). The dI/dV spectra lower
the local symmetry from C4 to C2 at the energies of the bound states. (f) Comparison of
collinear (π, 0) (rotated) and Neel (π, π) magnetic orders. Only the (π, 0) magnetic order
is expected to lower the symmetry as observed. (g) Local magnetic order nucleated on a
plaquette (Se-centered) impurity in the orbitally-selective version of the theoretical model.
(h) Fourier transform of the local magnetic order parameter displaying peaks at (±π, 0).
Panels (a-f) adapted from Song et al. [114] (paper V).

including such a plaquette impurity (VSe = 50 meV) in the previous supercell is shown in
Fig. 6.7(g) as a zoom of the real space magnetization. In agreement with the measurement
of Fig. 6.7(e), a local magnetic order is present and is found to be strongly localized around
the impurity site. The structure of the order is again inherited from the bulk phase as
seen in the Fourier transform Fig. 6.7(h). The (π, 0) local magnetic order, in contrast to
the C4 (π, π) order, reduces the symmetry of the induced magnetization and thus serves
as a possible explanation for the symmetry breaking in the dI/dV spectra of the in-gap
states as shown in Fig. 6.7(e-g). We reiterate that while the result is shown here for a
single impurity potential, we find similar results for a range of impurity strengths down
to at least VSe ≈ 25 meV (although with corresponding reduced magnitude of the induced
magnetic order).
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Figure 6.8: Indication of edge magnetism on a FeSe island (before Ag deposition). (a)
Topography of the FeSe island. (b) dI/dV spectra at the different tip locations marked in
(a). In-gap states are present at the edges (points A, C) when compared with the reference
point (R), and no such states are observed deep in the clean sample (point B). (c) Linecut
of the differential conductance dI/dV along the dashed line in (a) further demonstrating
that in-gap states only develop at the sample edges (unless impurities are included in the
bulk). Adapted from Song et al. [114] (paper V).

6.4.4 Edge magnetism

In addition to the the previous evidence for impurity-nucleated local magnetic order found
in the STM experiment, in-gap states are also observed on the edges of the sample prior
to the inclusion of Ag impurities. In Fig. 6.8(a) we show a zoomed version of the STM
topography of the FeSe island with indication of two points on different boundaries (A,
C), a point deep in the sample (B), and a reference point (R) in the surrounding PbSe.
The dI/dV spectra taken with the STM tip at these locations are shown in Fig. 6.8(b),
demonstrating that in-gap states indicating the formation of local magnetic order occur
at both boundary points, while the spectra taken at the point deep in the bulk resembles
the reference, indicating the absence of bulk magnetic ordering. The point in the PbSe is
chosen as the reference since, PbSe not being an intrinsic superconductor, there can be no
doubt about the proximity-induced nature of the observed band gap in the spectrum. A
linecut of the differential conductance as shown in Fig. 6.8(c), measured along the path of
the dashed line in Fig. 6.8(a), further demonstrates that in-gap are absent in the bulk of
the clean sample and only form at the boundary.

We study the appearance of edge magnetism within our theoretical model by substituting
the periodic boundary conditions to open (hard) boundaries at the edges of the supercell.
A suitable choice of supercell dimensions then creates FeSe islands with a given dominant
edge type, of which we study both (110), as well as (010) and (100) types. In Fig. 6.9
we show the results of the self-consistent calculation for such a FeSe island. Our general
finding is that, as the Hubbard U is increased from below, local magnetic order forms
first on the corners of the island but extend to fully cover the edges of the sample as
the bulk phase boundary is approached. We demonstrate this phenomenon in Fig. 6.9(a-
b) for geometries with dominant (100)-type edges (U = 550 meV) and (110)-type edges,
respectively. Fig. 6.9(c) shows a linecut of the magnetization in Fig. 6.9(a) as indicated
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Figure 6.9: Theoretical modeling of edge magnetism. (a) Edge-nucleated magnetism
on a FeSe island with long (100)-type edges with the Hubbard U fixed just beneath the
bulk transition (U = 550 meV . Uc). (b) Edge magnetism on a FeSe island consisting
of (110)-type edges. The magnetic order parameter peaks at every other site along the
staggered edge, with the ordering still being inherited from the bulk magnetic phase. (c)
Line-cut through the magnetic order parameter in (c) as indicated by the dashed line. The
magnetization peaks close to the edge and decays into the bulk. (d) Line-cuts through
the magnetic order parameter in (d) as indicated by the dashed and dotted lines, showing
the sign change in the magnetization along the edge as well as the decay of the edge-
magnetization into the bulk.

by the dashed line transverse to the (100) edge. The magnetization peaks directly on the
edge site, with a tail decaying into the bulk of the island. In Fig. 6.9(d) we repeat this
analysis for the island with (110)-type edges of Fig. 6.9(c), now including the two different
linecuts indicating by the dashed and dotted lines, respectively. Both linecuts are thus
taken transverse to the edge. For this type of staggered ”staircase” edge the magnetization
peaks at every other site with an oscillating tail extending into the bulk, causing the two
linecuts to become mirror images of each other when reflected in the center of the island.

6.5 Summary
We have in this chapter explored the formation of local magnetic order on nonmagnetic
impurities in a model of the iron-based superconductor FeSe. Varying the impurity po-
tential and the strength of electron-electron interactions by tuning the Hubbard U , we
found regions in the resulting phase diagram where such local order manifests. We found
the appearance of such local magnetic order to be preceded by impurity resonant states
forming close to the Fermi level, indicating a mechanism of formation similar to a local
Stoner transition. We considered the effects of orbital selectivity and found that the inclu-
sion of these effects dramatically shifts the structure of both the bulk and local magnetic
ordering. Furthermore, we predicted the signature of such local magnetic order in STM
experiments using robust symmetry arguments to differentiate between distinct structures
of the impurity-nucleated local magnetic order.
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In addition, we have discussed the results of a recent STM measurement in FeSe where
indications of these predicted effects have been observed. We have expanded our theo-
retical model to also capture other effects investigated in this experiment and found the
formation of locally nucleated magnetism on both Se-centered impurities and the edges of
FeSe islands.

The arguments for the predicted signatures of local magnetic order presented here have
entirely based on the different symmetries of predicted STS spectra arising selectively from
either local (π, π) or (π, 0) magnetic order. More detailed modeling could be performed
within a natural extension of the theoretical framework. In particular, the mean field anal-
ysis could be extended to include the proximity induced s-wave order parameter directly
in the calculation, and the LDOS at the tip position could be calculated in full detail in
order to enable direct comparison with the experimental dI/dV spectra [173].
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Chapter 7

Summary and outlook

The unique properties of graphene have motivated research into a multitude of appli-
cations. The various nanostructuring techniques possible in the world of 2D materials
expands the domain of such research, providing possibilities for combining the intrinsic
properties of graphene with controllable features induced by the nanostructuring. In the
first part of this thesis we have investigated such a phenomenon by suggesting a method
of indirectly engineering graphene for application in valleytronics. Inspired by recent
demonstrations of indirect band structure engineering, we defined a superlattice by a reg-
ular external potential with broken inversion symmetry - a prerequisite for realizing a
valley Hall effect in the time-reversal invariant system.

For the study of this phenomenon we introduced in Chapter 3 two different techniques
for the calculation of the valley Hall conductivity in the graphene superlattice system, the
semiclassical approach based on integration of the electronic Berry curvature to capture the
anomalous velocity of wavepackets, and the direct expansion of the linear response Kubo-
Bastin formula. Chapter 4 detailed our investigations of the superlattice system using
the first of these techniques. We demonstrated a tunable band structure engineering and
explored the variation of the induced band gap with both the geometry of the superlattice
and the local structure of the external potential. Turning to the study of the valley Hall
effect in these systems, we calculated the electronic Berry curvature and projected this
quantity to the graphene Brillouin zone, thereby demonstrating the emergence of valley-
selective anomalous velocities in the superlattice. The distribution of the Berry curvature
was found to be tunable by the magnitude of the superlattice potential, and we found
characteristic plateaus of the valley Hall conductivity centered on the band gap with tails of
the peaks extending into the band edges. Providing a simple prediction for the associated
signature in nonlocal transport measurements, we found that the indirect engineering
of the superlattice potential provides an external degree of control over the valley Hall
effect in these systems. Finally, we provided initial evidence that these effects remain
robust when the effects of irregularities and realistic shapes of the potentials expected
from dielectric nanostructuring are included.

The inclusion of disorder in the study of the valley Hall effect necessitated that a large-
scale method be employed. In Chapter 5 we used an expansion procedure for the Kubo-
Bastin formula to study large-scale superlattices with random shifts and rotations in the
superlattice potential. Using this method removes the intuitive understanding of the
result in terms of the electronic Berry curvature and the associated anomalous velocity
but makes efficient calculation of the conductivity possible. In addition, the large-scale
procedure enables us to study the DOS in detail in the disordered system, where we
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found the potential-induced band gap to be stable up a large degree of disorder in the
nanostructuring of the system. In our study of the valley Hall conductivity, we reproduced
our earlier result in the pristine superlattice, and were able to differentiate the different
contributions stemming from, respectively, the Fermi sea and the Fermi surface. In the
disordered system we found that the valley Hall effect could survive even when the band
gap fully closes, with a wide region of finite valley Hall conductivity arising from Fermi
surface contributions. This Fermi surface driven regime of the valley Hall effect makes a
simple interpretation of nonlocal resistance measurements possible, where valley currents
are induced in the bulk of the sample and do not rely on the details of the edge geometry.

The study of disorder contributions to the valley Hall effect, and to the anomalous Hall
effect in general, is a topic of much research interest. Nanostructured systems provide
a degree of control over such disorder, which could be used to perform detailed investi-
gations of both side-jump and skew-scattering contributions by tuning the profile of the
induced disorder. In addition, the indirectly induced nature of the valley Hall effect in the
superlattice makes it a promising platform for studying also the protection of interface
states between different domains constructed using, e.g., a split-gate setup.

In the final part of the thesis (Chapter 6) we moved beyond the field of 2D materials, and
explored the formation of impurity-induced local magnetic order on the surface of the bulk
high-temperature superconductor FeSe. Using a multi-orbital tight-binding model fitted to
experiments, and adding interactions through the Hubbard-Hund model, we mapped out
pockets of the phase diagram where a Fe-centered impurity locally induced the formation
of magnetic order centered on the defect site. We found the local magnetic order to
be preceded in the phase diagram by the formation of impurity resonant states at the
Fermi level, indicating that the local magnetism could be understood as a local form of
the conventional Stoner transition into the bulk magnetic phase. We also considered the
inclusion of so-called orbitally selective effects, which were found to change the ordering
of the local magnetism. Furthermore, we provided predictions of the signature of the
symmetry of the induced local magnetic order in STM experiments. We were able to
compare these predictions with a recent STM experiment where a novel approach enabled
a local probe of magnetic order. For this comparison we extended our theoretical study to
include also the prediction of local magnetic order on Se-centered impurities and on the
edges of finite FeSe islands.

Our enclosed predictions of the signature of local magnetic order in the local spectra of
STM measurements have been made purely from general symmetry arguments. For a
true quantitative comparison with experiment the LDOS at the tip locations should be
calculated in full detail, and the effects of the experimental substrate included directly
in the theoretical model. For our studies we considered only isolated impurities, the
selective addition of multiple Ag impurities in the sample would also allow for studies of
multi-impurity effects, such as the possible impurity-induced transition to a bulk magnetic
phase.
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Appendix A

Unfolding procedure

In this section we expand upon the unfolding procedure used to calculate the valley Hall
conductivity in the superlattice system. Throughout this section we denote quantities
defined in the normal (graphene) unit cell (NC) by uncapitalized letters and quantities
defined in the supercell (SC) by capital letters. We denote the corresponding Brillouin
zones as the normal (SBZ) and supercell (SBZ) Brillouin zones. The supercell is here an
extension of the normal cell, and the area of the SBZ is thus smaller than (or, trivially,
equal to) the NBZ. In the following discussion we assume that the definition of the supercell
is nontrivial for ease of notation, i.e., we assume that the area of the supercell is strictly
larger than that of the normal cell. We follow the similar presentation in Martiny et al.
[186] closely.

Following the definition of a supercell using the notation of Eq. (3.16), a wavevector k in
the normal Brillouin NBZ is folded into a unique K ∈ SBZ by a reciprocal lattice vector
[88]

K = k −G0, (A.1)

with G0 =
∑

i qiBi, where the qi are integers, and we define K ′(k) as the unique SBZ
wavevector K to which a given NBZ wavevector k folds. Conversely, a wavevector in the

Figure A.1: A schematic interpretation of the unfolding procedure. (a) The normal cell
with a trivial unfolding shown. (b) A disordered system where the breaking of symmetries
leads to a dense grid of downfolded bands in the SBZ. (c) Geometrical definitions in real
space. (d) Lattice vectors in reciprocal space. Reproduced from Popescu and Zunger [88].
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SBZ can be unfolded into multiple values

ki = K +Gi, (A.2)

where the number of elements Nk in the set of such reciprocal lattice vectors {Gi} given
by Nk = det M [88].

Our tight-binding calculation is defined using a set of localized orbitals |φir〉, from which
we construct the Bloch states as denoted in the main text Eq. (3.3), but now both for
normal and supercells

|nk〉 =
∑

i

Cink |ik〉 (A.3a)

=
∑

ir

Cinke
ik·(r+τi) |φir〉 , (A.3b)

|NK〉 =
∑

IR

CINKe
iK·(R+τI) |φIR〉 . (A.3c)

Here, r,R are lattice vectors in the normal and supercells, respectively. The vectors τi/I
are the corresponding internal orbital positions in these cells.

With the initial definitions in place, we are now ready to consider the unfolding of some
quantity in the supercell ONK , which could be, e.g., the LDOS defined in Eq. (6.9). We
define the corresponding unfolded quantity

O(u)
ik =

∑

NK

|〈ik|NK〉|2ONK (A.4)

≡
∑

N

λiNkONK′(k). (A.5)

We see that the unfolding procedure involves the Bloch state overlap λiNk, which we now
derive within the tight-binding formalism. Note that we initially consider unfolding of
simple quantities which do not involve any derivatives with respect to the wavevector in
their definitions and return below to the applicable procedure for, e.g., the Berry curvature.

Given the set of orbitals i in the normal cell and the corresponding set I in the supercell,
we define a unique map map I → R + r′(I), i′(I) relating positions and indexes in the
normal and supercells. The overlap between localized orbitals is then written

〈φir|φIR〉 =
〈
φir
∣∣φi′(I)R+r′(I)

〉
(A.6)

= δii′(I)δr,R+r′(I). (A.7)

Here, the final overlap follows from the choice of an orthogonal basis of normal cell orbitals.
The Bloch state overlap of Eq. (A.5) then follows as

λiNk = 〈ik|NK〉 (A.8)

=
∑

I,rR

CINKe
−ik·(r+τi)eiK·(R+τI) 〈φir|φIR〉 (A.9)

=
∑

I,R

CINKe
−ik·(R+r′(I)+τi)eiK·(R+τI)δii′(I) (A.10)

=
∑

I

CINKe
−ik·(r′(I)+τi)eiK·τI δii′(I)δK{k}. (A.11)
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The delta function defined in the final equality [Eq. (A.11)] involves the set of NBZ
wavevectors {k} which downfold to the specific SBZ wavevector K. As we saw previ-
ously, the number of elements in this set is Nk = det M. In the unfolding calculation we
can collapse any sum over K as the value K ′(k) is unique. Given the overlap calculated
in this manner, quantities can then be unfolded by application of Eq. (A.5).

A similar procedure to the above for the Berry curvature becomes gauge-dependent, and
an extended formalism must thus be applied. A gauge invariant expression for the unfolded
Berry curvature was derived in Bianco et al. [89], calculating the occupied Berry curvature
as a trace over the unfolded non-Abelian Berry curvature matrix (see Bianco et al. [89]
Eqs. (20-31)). For the specific application in the tight-binding model we refer to the
relevant appendix of Olsen and Souza [86].
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Appendix B

Profile of the superlattice
potential

In this appendix we include further information about the profile of the superlattice po-
tential, specifically the variation of this potential towards the edges of the nanostructured
region. The spatial variation is enforced using a modified Fermi distribution maximal at
the center and vanishing at the edge of the potential

V (r)/Vmax =
1

exp{(r − rmax)/u}+ 1
, (B.1)

with rmax = |redge − rcenter| the distance from the center to the edge of the potential-
defined region. The potential is plotted in Fig. B.1(a) for u = 0.2, alongside a contour
plot in (b). A linecut is included in (c) along the equivalent symmetry directions denoted
by dashed lines in (b). The continouos parameter u ∈ [0, 1] sets the scale of the variation,
with u = 0 being the perfectly flat potential initially considered and u = 1 being the
extreme case of a linearly decresing potential.
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Figure B.1: (a) The superlattice potential shown in a single supercell for u = 0.2. (b)
Contour plot of the potential showing the variation from edge to center. (c) Line cut of
the potential along the dashed lines in (b), shown here for three different values of the free
parameter u.
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Appendix C

Chebyshev expansion details and
derivations

Expansion of the Fermi surface contribution
In this subsection we provide the full expansion of the Fermi surface contribution

σFSαβ (µ) =
~e2

V

∫
dε

df(ε)

dε
Im Tr

[
v̂αδ(H − ε)v̂βGR(ε)

]
(C.1)

=
~e2

V

∫ 1

−1
dε̃ a

df(ε)

dε
Im Tr

[
v̂α
−1

a
δ(ε̃− H̃) v̂β

1

a
GR(ε̃)

]
(C.2)

≈ ~e2

V

∫ 1

−1
dε̃

df(ε)

dε
×

Im Tr

[
4i

aπ(1− ε̃2)
v̂α

M∑

m

gm
Tm(ε̃)

(δm0 + 1)
Tm(H̃)

M∑

n

ein acos(ε̃)

δn0 + 1
gnv̂βTn(H̃)

]
(C.3)

=
4~e2

πV

∫ 1

−1
dε̃

df(ε)

dε
×

Im

(
i

a(1− ε̃2)

M∑

m,n

gmgn
(δm0 + 1)(δn0 + 1)

Tm(ε̃)ein acos(ε̃) Tr [v̂αTm(H̃)v̂βTn(H̃)]

)

(C.4)

=
4~e2

πV

∫ 1

−1
dε̃ [−2kBT (cosh[(aε̃− µ)/kT ] + 1)]−1 Re

(
M∑

m,n

ΓFSmn(ε̃)µαβmn

)
. (C.5)

The expansions of the Fermi sea and the full Kubo-Bastin formula for the conductivity
follow in similar fashion, using the same calculational steps for the expressions in Eq. (5.3)
and Eq. (3.44), respectively

Comments on the random vector approximation
The stochastic evaluation of the trace we introduced in Section 3.4.4 provides a dramatic
improvement in the computational efficiency of the expansion procedure. We saw in
Section 3.4.6 how this procedure yields a well-converged DOS by including only a few
random vectors in the approximation (Nrv ∼ 10). We find this to be true for both the
DOS and for our initial results for the longitudional conductivity, but note here that care
must be taken when using this approximation for the valley Hall conductivity. Here, we
find a slower convergence of the conductivity, and thus include many more random vectors
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when presenting these results (Nrv ∼ 1300). We note here that the valley projection creates
a useful check for the convergence of results: Splitting the DOS into valley components
should yield two exactly equal components which sum to the full result, i.e., DOSK =
DOSK

′
= DOS/2. For the valley Hall conductivity the symmetry requirement σKxy =

−σK′
xy can be used in similar fashion.
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Symmetry-forbidden intervalley scattering by atomic defects in monolayer
transition-metal dichalcogenides

Kristen Kaasbjerg,1, ∗ Johannes H. J. Martiny,1 Tony Low,2 and Antti-Pekka Jauho1

1Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology,
Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

2Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, Minnesota 55455, USA

Intervalley scattering by atomic defects in monolayer transition metal dichalcogenides (TMDs;
MX2) presents a serious obstacle for applications exploiting their unique valley-contrasting prop-
erties. Here, we show that the symmetry of the atomic defects can give rise to an unconventional
protection mechanism against intervalley scattering in monolayer TMDs. The predicted defect-
dependent selection rules for intervalley scattering can be verified via Fourier transform scanning
tunneling spectroscopy (FT-STS), and provide a unique identification of, e.g., atomic vacancy de-
fects (M vs X). Our findings put the absence of the intervalley FT-STS peak in recent experiments
in a different perspective.

Introduction.—Two-dimensional (2D) monolayers of
transition metal dichalcogenides (TMDs; MX2) are
promising candidates for spin- and valleytronics appli-
cations [1]. Their hallmarks include unique valley-
contrasting properties and strong spin-valley coupling [1,
2] exemplified by, e.g., valley-selective optical pump-
ing [3–5], a valley-dependent Zeeman effect [6–9], and
the valley Hall effect [10]. Such means to control the val-
ley degree of freedom are instrumental for valleytronics
applications.

Another prerequisite for a successful realization of val-
leytronics is a sufficiently long valley lifetime [11, 12];
atomic defects are a common limiting factor which can
provide the required momentum for intervalley scattering
due to their short-range nature. However, as illustrated
in Fig. 1(a), the spin-orbit (SO) induced spin-valley cou-
pling in the K,K ′ valleys of 2D TMDs partially protects
the valley degree of freedom against relaxation via in-
tervalley scattering by nonmagnetic defects [2]. Due to
the small spin-orbit splitting in the conduction band val-
leys [13, 14], only the valence-band valleys fully benefit
from this protection. Identification of additional protec-
tion mechanisms in the conduction band would hence be
advantageous for valleytronics in 2D TMDs.

In this work, we demonstrate that besides the spin-
valley coupling, the symmetry and position of atomic
defects give rise to unconventional selection rules for in-
tervalley quasiparticle scattering in 2D TMDs. As illus-
trated in Fig. 1(b), we find that for defects with three-
fold rotational symmetry (C3), e.g., atomic vacancies, in-
tervalley K ↔ K ′ scattering in the conduction band is
forbidden for defects centered on the X site while it is
allowed for M centered defects. In the valence band,
intervalley scattering is forbidden in both cases. Anal-
ogous selection rules for the intervalley coupling due to
confinement potentials in 2D TMD based quantum dots
have previously been noted [15].

Our findings can be readily verified with scanning tun-
neling spectroscopy (STS) which has provided valuable

insight to the electronic properties of 2D TMDs [16–
20]. In particular, Fourier transform STS (FT-STS) is
a powerful method for investigating atomic defects and
their scattering properties in 2D materials [21, 22]. The
measured STS map is a probe of the local density of
states (LDOS) whose real-space modulation, resembling
Friedel oscillations, originates from quasiparticle interfer-
ence (QPI) between electronic waves scattered by defects.
Hence, the Fourier transform of the STS map provides di-
rect access to the available scattering channels in q space,
and has shed important light on defect scattering in, e.g.,
graphene [23–30], monolayer TMDs [18, 19], and black
phosphorus [31].

In the above-mentioned STS experiments on TMDs,
the strong spin-valley coupling in the valence band of

C3

M

X

K K’
*

(b) Atomic vacancy(a)

K K’

FIG. 1. Symmetry-dependent defect scattering in monolayer
TMDs. (a) Sketch of the band structure near the K,K′

points. The strong spin-valley coupling in the valence band
suppresses intervalley scattering (×). In the conduction band,
the small spin-orbit splitting, in principle, allows for interval-
ley scattering (∗). However, for defects with threefold rota-
tional symmetry (C3), additional selection rules arise which
protect against intervalley scattering. (b) Atomic sulfur va-
cancy in 2D MoS2 showing the C3 symmetry of the vacancy
site. The vacancy-dependent selection rules for K ↔ K′ in-
tervalley scattering in the conduction band are illustrated in
the bottom part, showing that only M vacancies produce in-
tervalley scattering (green arrow). This allows for a unique
identification of the vacancy type with FT-STS.

ar
X

iv
:1

70
8.

08
96

1v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  3
 J

an
 2

01
8



2

WSe2 was confirmed by the missing K ↔ K ′ intervalley
peak in the FT-STS spectrum [18, 19]. Surprisingly, the
intervalley peak was also missing in the conduction band
where intervalley scattering should be allowed [18, 19]
[see Fig. 1(a)].

Here, we demonstrate the effect of symmetry on quasi-
particle scattering by atomic vacancies which are among
the most common types of defects in 2D TMDs [32–38].
For this purpose, we perform atomistic density-functional
(DFT)-based T -matrix calculations [39] of FT-STS and
QPI spectra for vacancies in two archetypal TMDs: the
direct gap [44], small SO split MoS2, and the indirect
gap [17], large SO split [13, 14] WSe2. As we show,
the K ↔ K ′ conduction-band intervalley FT-STS peak
is strongly suppressed for X vacancies while it appears
clearly for M vacancies, thus offering an appealing expla-
nation for its conspicuous absence in experiments [18, 19].
Our findings furthermore show that FT-STS allows for
a unique identification of the vacancy type, and indicate
that the valley dynamics of carriers and excitons in 2D
TMDs are not affected by disorder if M -type defects can
be avoided.
Symmetry-dependent intervalley scattering.—

We consider first the effect of symmetry on intervalley
scattering by defects in 2D TMDs. The selection rules
can be deduced within the framework of the low-energy
Hamiltonian [2],

H(k) = at (τkxσ̂x + kyσ̂y) +
∆

2
σ̂z + τλ

1̂− σ̂z
2

ŝz, (1)

describing the band structure in the K,K ′ valleys
sketched in Fig. 1(a). Here, a is the lattice constant, t is
a hopping parameter, τ = ±1 is the K,K ′ valley index,
∆ is the band gap, 2λ is the SO splitting at the top of the
valence band, and σ̂, τ̂ and ŝ are Pauli matrices in the
symmetry-adapted spinor basis, valley and spin space,
respectively. The symmetry-adapted basis is spanned by
the M d-orbitals |φvτ 〉 = 1/

√
2
(
|dx2−y2〉+ iτ |dxy〉

)
and

|φcτ 〉 = |dz2〉 which dominate the states in the valence
(v) and conduction (c) bands, respectively [45, 46].

In 2D TMDs, defects such as atomic vacancies have
C3 symmetry, i.e. V̂i = C3V̂iC

†
3 where V̂i is the scat-

tering potential for defect type i and C3 is the operator
for threefold rotations by ±2π/3 around the defect cen-
ter. The intervalley matrix element (τ 6= τ ′) between the
high-symmetry K,K ′ points can thus be written

〈nτ |V̂i|nτ ′〉 = 〈nτ |C†3C3V̂iC
†
3C3|nτ ′〉

= 〈nτ |C†3 V̂iC3|nτ ′〉 ≡ γττ
′

i,n 〈nτ |V̂i|nτ ′〉, (2)

where n is the band index (including spin) and Î = C†3C3

is the identity operator. As C3 belongs to the group of the
wave vector at the K,K ′ points (C3h), the Bloch func-
tions transform according to the irreducible representa-
tion of C3h, C3|nτ〉 = wi,nτ |nτ〉 where wi,nτ denotes the

eigenvalues of C3. The matrix element can thus be ex-
pressed in terms of the complex scalar γττ

′
i,n = w∗i,nτwi,nτ ′

as indicated in the last equality of (2). Our analysis
shows that γττ

′
i,n = 1 only if the defect is centered on an

M site and n = c [39]. In all other cases γττ
′

i,n 6= 1, and the
intervalley matrix element vanishes identically by virtue
of Eq. (2).

The symmetry argument is completely general, and
thus applies to all types of M ,X-centered defects in 2D
TMDs with C3 symmetry, e.g., complex defect struc-
tures [32, 36], adatoms, and substitutional atoms [37].
As Eq. (1) is diagonal in spin space, it furthermore holds
for intervalley spin-flip scattering by magnetic defects.
FT-STS theory.—Next, we outline a general T -

matrix based Green’s function approach for the calcula-
tion of the FT-STS spectra. In STS, the measured real-
space QPI pattern is related to the differential conduc-
tance dI/dV ∝ ρ(r, ε) [47], and hence the LDOS ρ(r, ε) =
−1/πIm[G(r, r; ε)] where G(r, r′; ε) = 〈r|Ĝ(ε)|r′〉 is the
Green’s function (GF) in real-space in the presence of
a defect. Expressing the GF in a basis of Bloch states
ψnk(r), G(r, r′; ε) =

∑
mn

∑
kk′ ψ∗nk′(r)ψmk(r′)Gmnkk′(ε),

where k is the wave vector and m,n band indices, the
FT-STS spectrum given by the 2D Fourier transform of
ρ(r, ε) can be obtained as [39]

ρ(q + G, ε) =

∫
dr e−i(q+G)·r‖ρ(r, ε)

=
1

2πi

∑

mn,k

nmnk,q(G)
[
Gmnk,k+q(ε)∗ −Gnmk+q,k(ε)

]
, (3)

where r = (r‖, z), k,q ∈ 1st Brillouin zone (BZ), G is a

reciprocal lattice vector, and Gmnkk′(ε) = 〈ψmk|Ĝ(ε)|ψnk′〉
is the Bloch function representation of the GF. The ma-
trix element nmnk,q(G) = 〈ψmk|e−i(q+G)·r̂‖ |ψnk+q〉 is im-
portant in many aspects. For example, it describes the
FT-STS Bragg peaks (G 6= 0), and hence the atomic
modulation of the LDOS inside the unit cell. It also
plays a central role in systems with (pseudo) spin tex-
ture, e.g., graphene and spin-orbit materials, as it con-
tains the spinor overlap [48]. This is less important in 2D
TMDs where the eigenstates of Eq. (1) are characterized
by predominantly polarized spinor states [49] with trivial
pseudospin, σ̂, and spin, ŝ, textures.

For a single defect, the exact GF taking into account
multiple scattering off the defect is given by the T matrix
as

Gkk′(ε) = δk,k′G0
k(ε) + G0

k(ε)Tkk′(ε)G0
k′(ε), (4)

where the boldface symbols denote matrices in band and
spin indices, and the diagonal bare GF is given by the
band energies, G0

nk(ε) = (ε− εnk + iη)−1. The last term
in Eq. (4) comprises the nondiagonal, defect-induced cor-
rection δGk,k+q to the GF. To isolate the FT-STS fea-
tures related to the defect, we substitute G → δG in
Eq. (3) in our FT-STS calculations.
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The T matrix obeys the integral equation

Tkk′(ε) = Vi
kk′ +

∑

k′′

Vi
kk′′G0

k′′(ε)Tk′′k′(ε), (5)

where V mni,kk′ are matrix elements of the defect potential
and the second term describes virtual transitions to in-
termediate states with wave vector k′′.

For nonmagnetic defects, we take V̂i = Vi(r̂)⊗ŝ0 where
ŝ0 is the identity operator in spin space. With the spin
indices written out explicitly, the defect matrix elements
can be expressed as

V mni,kk′(s, s′) = 〈mks|V̂i|nk′s′〉
=
∑

sz

〈mks; sz|Vi(r̂)|nk′s′; sz〉, (6)

with |·; sz〉 denoting the sz = ±1 spinor component of
the wave function. Here, we use a DFT method based on
an atomic supercell model for the defect site illustrated
in Fig. 1(b) to calculate the defect matrix elements [39].

As an example, Fig. 2 shows the spin-diagonal
conduction-band matrix elements for Mo and S vacan-
cies in 2D MoS2. While the Mo vacancy gives rise to in-
travalley (short arrow) and intervalley (long arrow) cou-
plings, the intervalley matrix element for the S vacancy
vanishes, thus confirming the symmetry-based predic-
tions in Eq. (2). Furthermore, we note that the matrix
element in the K,K ′ valleys is an order of magnitude
larger for Mo than for S vacancies. In a simple picture
where only K,K ′ intra- and intervalley scattering with
a constant matrix element V0 is considered, the T ma-
trix becomes T (ε) = V0/[1 − gV0Ḡ0(ε)], where Ḡ0(ε) =∫

dk
(2π)2 G

0
ck(ε) ∝ ρc, ρc ≈ 0.01 eV−1 Å−2 is the density of

states, and the valley multiplication factor g = 2 (= 1)
for M (X; only intravalley scattering) vacancies. To-
gether with the values for V0 extracted from Fig. 2, this
allows us to identify M (gρcV0 > 1) and X (gρcV0 < 1)
vacancies as strong (unitary), T (ε) ≈ −1/gḠ0(ε), and
weak, T (ε) ≈ V0, defects, respectively.

The FT-STS calculations presented below are based
on full BZ k,q-point samplings of the band structures,
defect matrix elements, and nmnk,q(G) matrix elements, all
obtained with DFT-LDA including SO interaction [39].
Our approach naturally goes beyond the low-energy de-
scription in Eq. (1), which is essential as both the K
and Q valleys are relevant for quasiparticle scattering in
2D TMDs. As intervalley scattering in the valence band
is suppressed by (i) the large spin-valley coupling, and
(ii) the C3 symmetry of the vacancies, the valence-band
FT-STS spectra are rather simple [18, 19], and we here
limit the discussion to the conduction band. We further-
more focus on features related to the symmetry-forbidden
intervalley scattering defering a complete analysis to a
forthcoming paper.
FT-STS and QPI spectra.—The calculated band

structures and FT-STS spectra for atomic vacancies in
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FIG. 2. Defect matrix elements for the conduction band in
2D MoS2 calculated with our DFT-based supercell method.
The plots show |V cc

i,kk′(s, s)| for (a) a Mo, and (b) a S vacancy

as a function of k′ with the initial state fixed to k = K. Note
the different disorder strengths (colorbar scales) for the two
types of vacancies as well as the vanishing intervalley matrix
element [long arrow in (a)] for S vacancies.

MoS2 and WSe2 are summarized in Fig. 3. The differ-
ent conduction-band structures in the two materials (K
vs Q valley alignment and magnitude of the SO split-
ting) shown in the insets in Fig. 3(a) and the vacancy-
dependent intervalley matrix element, result in markedly
different spectra between the materials as well as the va-
cancy type.

In general, the FT-STS spectra close to the band edge
(ε ≈ 0; see Ref. [39]) are characterized by featureless
spots at the points in q space corresponding to intravalley
(q = 0) and intervalley scattering [q1–5 in Fig. 3(b)]. The
spot intensities are governed by the T -matrix scattering
amplitude and valley degeneracy. For the Bragg peaks,
the intensity is reduced compared to those in the first BZ
due to the phase-factor matrix element nmnk,q(G).

In MoS2 the SO splitting in the conduction band is
small, ∼ 3 meV, thereby allowing for spin-conserving
K ↔ K ′ intervalley scattering (q1,2) near the band edge.
Hence, intervalley peaks at q = K,K′ are to be expected.
In WSe2 the Q valley is lower than the K valley and the
SO splitting is much larger (∼ 250 meV in the Q valley
and ∼ 50 meV the K valley), hence a q ≈ M peak due
to Q↔ Q′ intervalley processes (q3) will appear instead.

The above is indeed the case in the FT-STS spec-
tra for M vacancies shown in Fig. 3(c) for an energy
ε = 75 meV above the band edge [dashed lines in the
insets in Fig. 3(a)]. At this energy, the spots have devel-
oped into features (see the zoomed insets) which are dom-
inated by processes involving nesting vectors between
parallel segments of the constant energy contour being
probed. In MoS2 with almost isotropic energy contours,
ε(k) = ε, intravalley backscattering with q = 2k there-
fore produces circular features. Trigonal warping of the
constant energy surfaces gives rise to additional approx-
imate nesting vectors which produce starlike patterns
with hexagonal symmetry around the Γ point and trian-
gular symmetry near theK,K ′ points as in graphene [30].
The intervalley features are weaker than the intravalley
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feature because intravalley processes in the K and K ′

valleys add up, while the two K ↔ K ′ intervalley pro-
cesses have distinct wave vectors, q ≈ ±K. In WSe2,
both the Q and K valleys are accessible at ε = 75 meV,
and therefore intervalley features around q ≈M, q ≈ K
as well as q ≈ Q are observed. They are associated with
Q ↔ Q/K ↔ Q (q3/4), K ↔ K ′ (q1,2), and K ↔ Q
(q5) processes, respectively. The central intravalley fea-
ture in WSe2 has more structure than in MoS2 as it has
contributions from both K and Q intravalley processes.

At even higher energies (not shown), the K and Q
valleys are available in both MoS2 and WSe2, and the
FT-STS spectra become highly complex.

In contrast to the FT-STS spectra for M vacancies, the
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FIG. 4. Real-space QPI maps for 2D MoS2 showing the
defect-induced change in the LDOS δρ(r‖, ε) around (a) a
Mo, and (b) a S vacancy. The lines show the unit cells of the
lattice with lattice constant a, and the atomic positions inside
the unit cell and the position of the vacancy are indicated by
the symbols (solid circle: Mo; open circle: S; cross: vacancy).

spectra for X vacancies in Fig. 3(d) show that the antic-
ipated intervalley feature at q ≈ K (q1,2) is strongly
suppressed for both MoS2 and WSe2. This is a direct
consequence of the symmetry-forbidden K ↔ K ′ inter-
valley matrix element which suppresses intervalley scat-
tering also in the vicinity of the high-symmetry K,K ′

points [see Fig. 2(b)]. In WSe2, also the Q ↔ Q′ (q3)
and Q ↔ K (q4,5) intervalley features are much weaker
for X vacancies, which can be traced back to overall small
intervalley matrix elements.

The suppression of K ↔ K ′ intervalley scattering for
X vacancies leaves a clear fingerprint in the real-space
LDOS as demonstrated by the QPI maps in Fig. 4 for
Mo and S vacancies in MoS2. They have been obtained
by Fourier transforming the FT-STS spectra in Figs. 3(c)
and 3(d), ρ(r‖, ε) =

∑
G

∫
dq

(2π)2 e
i(q+G)·r‖ρ(q+G, ε). For

both vacancies, the LDOS modulation has a threefold
symmetry and decays away the vacancy site (marked
by crosses). The observed atomic resolution can be at-
tributed to the FT-STS Bragg peaks, and shows that
the LDOS modulation is concentrated on the Mo sites
of the lattice, in accordance with the Mo d-orbital char-
acter of the conduction-band states in the K,K ′ valleys
[cf. Eq. (1)]. Noticeably, the QPI map for the S vacancy
stands out by the absence of an intervalley-scattering-
induced cell-to-cell modulation of the LDOS in the vicin-
ity of the vacancy, which is clearly visible for the Mo
vacancy. At larger distances from the vacancy site, a
slower modulation with wave length 2π/q (≈ 10 a at
ε = 75 meV) due to intravalley backscattering, q = 2k,
emerges.
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Conclusions and outlook.—In conclusion, we have
demonstrated (i) an unconventional symmetry-induced
protection against intervalley scattering by atomic de-
fects in 2D TMDs, and (ii) its fingerprint in conduction-
band FT-STS spectra which allows for a unique iden-
tification of, e.g., the vacancy type. Our findings may
offer an explanation why the K ↔ K ′ intervalley FT-
STS peak has not been observed in experiments [18, 19],
and are also relevant for FT-STS on metallic TMDs [50].

We are convinced that our work in conjunction with
further experimental FT-STS studies can provide a com-
plete understanding of defect scattering in 2D TMDs.
In addition, FT-STS may shed important light on band-
structure issues in 2D TMDs, such as the magnitude of
SO splittings [18], the K,Q-valley ordering in the conduc-
tion band which is sensitive to the SO strength [13, 14],
and the subband structure and valley ordering in few-
layer TMDs [51, 52]. Besides our reported FT-STS signa-
tures, the suppression of intervalley scattering is expected
to have implications for a wide range of effects in disor-
dered 2D TMDs, e.g., the optical conductivity [53], mag-
netotransport [54–58], the valley Hall effect [59], Elliot-
Yafet spin relaxation [60], and disorder-induced valley
pumping [61].
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Gómez-Rodŕıguez, K. Kern, and J.-Y. Veuillen, “Role
of pseudospin in quasiparticle interferences in epitaxial
graphene probed by high-resolution scanning tunneling
microscopy,” Phys. Rev. B 86, 045444 (2012).

[29] M. Settnes, S. R. Power, D. H. Petersen, and A.-P.
Jauho, “Theoretical analysis of a dual-probe scanning
tunneling microscope setup on graphene,” Phys. Rev.
Lett. 112, 096801 (2014).

[30] D. Dombrowski, W. Jolie, M. Petrović, S. Runte,
F. Craes, J. Klinkhammer, M. Kralj, P. Lazić, E. Sela,
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S1. THEORETICAL FT-STS CALCULATIONS

Under the assumption that the density of states of the STM tip varies slowly with energy, the dI/dV characteristics
at position r and voltage eV = ε is proportional to the local density of states ρ(r, ε) of the sample1,

dI(r, ε)

dV
∝ ρ(r, ε) = − 1

2πi
[G(r, r; ε)−G∗(r, r; ε)] , (S1)

where G(r, r′; ε) = 〈r|Ĝ(ε)|r′〉, Ĝ(ε) = [ε− Ĥ + iη]−1, is the real-space Green’s function (GF) for a defect in the 2D
material.

For a numerical evalutation of the FT-STS spectrum, it is convenient to express the GF in terms of Bloch states
ψmk of the pristine lattice. By inserting the identity I =

∑
mk|ψmk〉〈ψmk|, the GF can be written as

G(r, r′; ε) = 〈r|Ĝ(ε)|r′〉 =
∑

mn

∑

kk′

〈r|ψmk〉〈ψmk|Ĝ(ε)|ψnk′〉〈ψnk′ |r′〉

=
∑

mn

∑

kk′

ψmk(r)ψ∗nk′(r′)Gmnkk′(ε), (S2)

where Gmnkk′(ε) = 〈ψmk|Ĝ(ε)|ψnk′〉 is its Bloch function representation and the k,k′ sums are over the first Brillouin
zone (BZ), here sampled with a discrete, equidistant Nk ×Nk k-point grid as illustrated in Fig. S1.

The FT-STS spectrum is given by the 2D Fourier transform (FT) of the LDOS in Eq. (S1). Here, we consider the
z-integrated LDOS, which is a reasonable approach for 2D materials. Plugging in the Bloch function expansion of
the GF and setting r = (r‖, z) where r‖ is the inplane component of the position, the z-integrated FT becomes

ρ(q + G, ε) =

∫
dr e−i(q+G)·r‖ρ(r, ε)

= − 1

2πi

∫
dr e−i(q+G)·r‖ [G(r, r; ε)−G∗(r, r; ε)]

= − 1

2πi

∑

mn

∑

kk′

∫
drψ∗mk(r)e−i(q+G)·r‖ψnk′(r′)

︸ ︷︷ ︸
δk′,k+qn

mn
k,q(G)

[
Gnmk′,k(ε)−Gmnk,k′(ε)∗

]

=
1

2πi

∑

mn

∑

k

nmnk,q(G)×
[
Gmnk,k+q(ε)∗ −Gnmk+q,k(ε)

]
, (S3)

where q ∈ 1. BZ, G is a reciprocal lattice vector, and nmnk,q(G) = 〈ψmk|e−i(q+G)·r̂‖ |ψnk+q〉 = 〈umk|e−iG·r̂‖ |unk+q〉,
where umk is the periodic part of the Bloch functions, is a phase-factor matrix element. The latter is important in
both technical and practical aspects. In numerical calculations, it cancels the arbitrary phase on the wave functions
in Gmnkk′(ε), thus leaving the expression (S3) gauge invarient as it should be. In the FT-STS spectra, it may affect the
structure of the intra- and intervalley features, and is the reason that the Bragg peaks, G 6= 0, in general, must be
expected to differ from the corresponding G = 0 peaks inside the first BZ.

All results presented in the main manuscript are based on the general expression for the FT-STS spectrum in
Eq. (S3). However, we note that simpler variants which follow from this general expression are often encountered in
the literature. For example, if we disregarding the reciprocal lattice vector and assume that the periodic parts of the
Bloch functions are orthogonal, i.e. 〈umk|unk+q〉 = δmn, the expression reduces to

ρ(q, ε) ≈ 1

2πi

∑

k

Tr [Gk,k+q(ε)∗ −Gk+q,k(ε)] . (S4)
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b1

b2

FIG. S1. Equidistant Nk × Nk grid used for the k,q-point samplings of the rhombic BZ in the numerical calculation of the
defect GF and the FT-STS spectra. The plot shows a 12× 12 BZ grid while a 75× 75 grid was used in the actual calculations
presented in this work.

Depending on the approxiation used for the defect GF, e.g., the Born approximation, this may be simplified further.
Note that since ρ(r) is real-valued, it follows that ρ(q) = ρ∗(−q) regardless of the approximation used for the defect
GF.

A. Single-defect Green’s function

For the single-defect problem, the exact GF can be expressed in terms of the T matrix as

Gkk′(ε) = δk,k′G0
k(ε) + G0

k(ε)Tkk′(ε)G0
k′(ε), (S5)

where the boldface symbols denote matrices in the band (n) and spin sz indices, k is the electronic wave vector, the
matrix G0 for the bare Green’s function is diagonal with elements G0

nk(ε) = (ε − εnk + iη)−1, and the k′′ sum is
over the BZ. Note that the sum rule

∫
dε ρ(ε) = Nk × Nb, where ρ(ε) = −1/π

∑
k Tr[ImGkk(ε)], Nk = Nk × Nk is

the number of k pointsand Nb is the number of bands, is fulfilled by the bare GF alone, and hence the trace of the
correction to the GF in the second term must integrate to zero.

The T matrix describes multiple scattering off a single defect and is given by,

Tkk′(ε) = Vkk′ +
∑

k′′

Vkk′′G0
k′′(ε)Tk′′k′(ε). (S6)

The defect matrix elements Vkk′ are given by the matrix elements of the defect-induced scattering potential with
respect to the Bloch functions of the pristine lattice (see below). Note that in contrast to Vkk′ , the T matrix is, in
general, not hermitian.

1. Numerical details

To solve for the T matrix in Eq. (S6), we recast it as a matrix equation,

[I−VG0(ε)]T(ε) = V, (S7)

where the boldface symbols now denote matrices in the band, spin and k-vector indices, and the Green’s function
matrix G0 is diagonal. Rather than solving this equation by direct inversion of the matrix [I − VG0(ε)], it is
numerically more stable and accurate to regard it as a system of coupled linear equation (one set of coupled equations
for each column in T and V) and solve it with a standard linear solver. This requires one factorization followed by a
matrix-vector multiplications and scales as O(M3) where M denotes the matrix dimension.
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The calculations presented in the main manuscript are based on 75× 75 k-point samplings of the BZ and include
the six lowest spin-orbit split conduction bands. This amounts to a matrix dimension of M = 6 × 752 = 33750.
With the matrix elements represented as 128-bit complex floating-point numbers, the memory requirement for each
of the dense complex matrices in Eq. (S7) becomes 337502 × 128/8 bytes ≈ 17 GBs. To tackle the large matrix
dimensions and memory requirements in the solution of the matrix equation (S7), we exploit the automatic openMP
multithreading of the LAPACK linear solvers and run the calculations as serial jobs on a multicore platform setting
OMP NUM THREADS=$NPROCS where NPROCS specifies the number of CPUs to be used for multithreading.

B. Details of the atomistic DFT calculations

All the quantities entering the calculation of the defect GF and the FT-STS spectra, i.e. band structures, defect
matrix elements, and phase-factor matrix elements, have been obtained on the above-mentioned k,q-point BZ grids
with the GPAW electronic-structure code2–4, using DFT-LDA within the projector augmented-wave (PAW) method,
a DZP LCAO basis, and including spin-orbit interaction5. The implementation will be made available in the GPAW
software package, and a full account including details of the PAW specific aspects will be published in a forthcoming
paper.

In the following two subsections section, we give a brief overview of: 1. the atomistic DFT-based supercell method
for the calculation of the defect matrix elements, and 2. the calculation of the phase-factor matrix elements.

1. Defect matrix elements

For nonmagnetic defects of type i, we consider a scattering potential of the form

V̂i = Vi(r̂)⊗ ŝ0 (S8)

where ŝ0 is the identity operator in spin space. For the present purpose, spin-orbit scattering, which is not included in
Eq. (S8), can be safely neglected as the spin-orbit terms are small compared to the main contribution to the scattering
potential in Eq. (S8).

The real-space part of the scattering potential is taken as the difference in the crystal potential between the lattice
with a defect site and the pristine lattice, i.e.

Vi(r) = V idis(r)− Vpris(r). (S9)

In practice, this is obtained in a large supercell constructed by repetition of the primitive cell and with the defect site
located in the center. Due to periodic boundary conditions in the inplane directions, the supercell must be chosen
large enough that defects in neighboring supercells do not interact. A common reference for the two potentials on
the right-hand side of Eq. (S9) is ensured by imposing Dirichlet boundary conditions on the cell boundaries in the
direction perpendicular to the material plane.

In the basis of the Bloch states and with the spin indices written out explicitly, the defect matrix elements can be
expressed as

V mni,kk′(s, s′) = 〈mks|V̂i|nk′s′〉 =
∑

sz

〈mks; sz|Vi(r̂)|nk′s′; sz〉, (S10)

with |·; sz〉 denoting the sz component of the wave function.

The numerical evaluation of the defect matrix element in Eq. (S10) is based on an LCAO expansions of the Bloch
functions of the pristine lattice, |mks〉 =

∑
szν

cνszmks|νksz〉, where ν = (α, µ) is a composite index for atomic site (α)
and orbital index (µ) and

|νksz〉 =
1√
N

∑

l

eik·Rl |νRl〉, (S11)

are Bloch expansions of the spin-independent LCAO basis orbitals |νRl〉, with N denoting the number of unit cells
in the lattice and Rl is the lattice vector to the l’th unit cell.
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Inserting in the expression for the matrix element in Eq. (S10), we find

V mni,kk′(s, s′) =
∑

sz

∑

νν′

(cνszmks)
∗cν

′sz
nk′s′〈νk|Vi(r̂)|ν′k′〉

=
1

N

∑

sz

∑

νν′

(cνszmks)
∗cν

′sz
nk′s′

∑

kl

ei(k
′·Rl−k·Rk)〈νRk|Vi(r̂)|ν′Rl〉, (S12)

where the factor of 1/N stems from the normalization of the Bloch sums in Eq. (S11) to the lattice area A, the
last factor in the second line is the LCAO representation of the defect potential Vi(r) in the supercell and the k, l
sums are over the lattice cells in the supercell. With this, the defect matrix elements can be calculated for arbitrary
k,k′ = k + q values.

Note that the factor of 1/N in the defect matrix element, which in the context of Eqs. (S6) and (S3) for the T
matrix and FT-STS spectra, respectively, should be associated with the number of k-points, i.e. N → Nk, ensures
that the wave-vector sums in those equations are independent of the BZ sampling.

The matrix elements shown in Fig. 2 of the main manuscript, have a different unit from the one defined in Eq. (S10)
above. Using that the lattice area can be written A = N ×Acell where Acell is the unit cell area, the matrix element
in Eq. (S10) can be expressed as

V mni,kk′(s, s′) =
NAcell

A
V mni,kk′(s, s′) ≡ 1

A
V̄ mni,kk′(s, s′) (S13)

where V̄i has units of the 2D Fourier transform of a scattering potential and is independent on N .

2. Phase-factor matrix element

The matrix element of the phase factor in Eq. (S3),

nmnk,q(G) = 〈ψmk|e−i(q+G)·r̂|ψnk+q〉 = 〈umk|e−iG·r̂|unk+q〉, (S14)

can be reduces to an integral over the primitive unit cell as both the umks and exp(−iG ·r) are cell-periodic functions,

nmnk,q(G) = N

∫

Ω

dru∗mk(r)e−iG·runk+q(r), (S15)

where Ω is the unit-cell volume.
In practice, the matrix elements are evaluated by integrating the first expression in Eq. (S14), i.e. the product of

the LCAO Bloch functions and the full phase factor exp[−i(q + G) · r]. Note that the factor of N in Eq. (S15) is
cancelled by the inverse factor originating from the normalization of the Bloch sums in Eq. (S11).

C. Calculational details

All DFT calculations presented in the main manuscript have been performed with the electronic structure code
GPAW2–4 within the projector augmented-wave method, using LDA, an LCAO double-zeta polarized basis set, and
including spin-orbit interaction5. The ground-state densities were obtained using a 21×21 k-point sampling of the BZ
with 7.5 Å vacuum to the cell boundaries in the vertical direction. The defect matrix elements were obtained using a
11× 11 supercell. The phase-factor matrix elements were obtained on a 3× 3 G-point grid with Gi = mib1 + nib2,
mi, ni = −1, 0, 1. Finally, the calculation of the T matrix and FT-STS spectra are based on 75 × 75 k,q-point
samplings of the BZ with a broadening η = 5 meV.

D. FT-STS spectra at the band edge

To support our discussion of the energy dependence of the FT-STS spectra in the main manuscript, we show here
in Fig. S2 the spectra for MoS2 at the conduction-band edge. At the conduction-band edge in MoS2, quasiparticle
scattering can only take place between the states at the bottom of the K,K ′ valleys. As a consequence, the FT-STS
features in Fig. 3(c)+(d) of the main manuscript are reduced to featureless spots at the q vectors corresponding
to intra- (q = 0) and intervalley scattering. Due to the small spin-orbit splitting in the conduction band of MoS2
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FIG. S2. FT-STS spectra for M = Mo (left) and X = S (right) vacancies in MoS2 at the band edge, ε = E − Ec = 0 meV.
The boxes show zooms of the marked regions.

(∼ 3 meV), spin-conserving intervalley scattering with q = K,K′ is possible at the band edge in the presence of a
finite linewidth broadening which in our calculations are given by the numerical η broadening of the bands. This is
indeed the case for the Mo vacancy as shown in Fig. S2. However, the intervalley peak is completely absent for the S
vacancy as the intervalley matrix element, according to our symmetry analysis below, in this case vanishes identically
between the two high-symmetry K,K ′ points.

S2. SYMMETRY ANALYSIS OF THE DEFECT MATRIX ELEMENTS

The selection rules for the matrix elements between states at high-symmetry points in the Brillouin zone can
be deduced from the symmetries of the space group which for monolayer MX2 is D3h. At the K,K ′ points, the
group of the wave vector is C3h which is formed by the space-group operations C3 (rotation by ±2π/3 around an
axis perpendicular to the plane of the monolayer) and σh (reflection in the horizontal mirror plane defined by the
monolayer). Each state at k = ±K can thus be labeled by two quantum numbers which express the phase picked up
by the Bloch wavefunction under rotations by ±2π/3 and reflections in the mirror plane, respectively.

When the perturbing defect potential is invariant under one or more of the symmetries forming the group of the
wave vector, selection rules for its matrix elements arise. Focusing here on defects with C3 symmetry, the matrix
elements in (S10) between the K,K ′-point Bloch functions labelled by a band (n = v, c) and valley (τ = ±1) index,
can be written

〈nτ |Vi|nτ ′〉 = 〈nτ |C†3C3ViC
†
3C3|nτ ′〉

= 〈nτ |C†3ViC3|nτ ′〉
≡ γττ ′

i,n 〈nτ |Vi|nτ ′〉, (S16)

where γττ
′

i,n = w∗i,nτwi,nτ ′ is given by the product of the phase factors which describe the transformation of the Bloch
functions under C3. As we shall see below, the phase factors also depend on the position of the C3 symmetry axis,
which is here fixed by the defect type indexed by i (= M,X for M and X centered defects, respectively). From

Eq. (S16), it is clear that the matrix element must vanish in case γττ
′

i,n 6= 1.

The transformation of the symmetry-adapted basis functions6 defined in the main paper under the C3 symmetry
operation can be inferred from their Bloch form,

φKnτ (r) =
1√
N

∑

l

eiτK·Rlφnτ (r− ti −Rl), (S17)

where the sum is over unit cells l, φnτ is given by the d-orbitals on M , and ti is the position of the M site in the
primitive unit cell with respect to the defect center [see Eq. (S19) below].

Operating on the Bloch functions with C3, we find
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C3φ
K
nτ (r) =

1√
N

∑

l

eiτK·Rlφnτ (C−1
3 r−Rl − ti) (S18a)

=
1√
N
e−iτK·ti

∑

l

eiτK·(Rl+ti)φnτ (C−1
3 [r− C3(Rl + ti)]) (S18b)

=
1√
N
e−iτK·ti

∑

l

eiτC3K·C3(Rl+ti)φnτ (C−1
3 [r− C3(Rl + ti)]) (S18c)

=
1√
N
e−iτK·ti

∑

l

eiτC3K·(Rl+ti)φnτ (C−1
3 [r−Rl − ti]) (S18d)

=
1√
N
eiτ(C3K−K)·ti

∑

l

eiτK·Rlwnτφnτ (r−Rl − ti) (S18e)

= eiτ(C3K−K)·tiwnτφ
K
nτ (r) ≡ wi,τwnτφKnτ (r) ≡ wi,τnφKnτ (r). (S18f)

Here we have carried out the following steps: (S18a) apply C3; (S18b) insert identity in the form of phase factor;
(S18c) inner product invariant under unitary transformation of both vectors; (S18d) summing over C3(Rl + ti) is the
same summing over Rl+ti when the rotation axis is centered on a lattice site; (S18e) C3 is an element in the group of
K ⇒ C3K and K are equivalent, and C3 element in the space group ⇒ φnτ (C−1

3 [·]) = C3φnτ (r) = wnτφnτ (r), where

wnτ = e2πi|mn|τ/3 originates from the rotation of the orbital around its own center and mn (= 0,±2 for n = c, v) is
the magnetic quantum number.

Finally, we evaluate the phase factors defined in Eq. (S18f). In terms of the primitive vectors a1,2 and b1,2 of the
direct and reciprocal lattice, respectively, the vectors in (S18f) are given by

tM = 0 or tX = 1
3a1 + 1

3a2, (S19)

and

K = − 1
3b1 + 1

3b2 (S20)

C3K = + 2
3b1 + 1

3b2. (S21)

For the C3 symmetry axis positioned at the M (X) site, we then find wM,τ = 1 (wX,τ = e2πiτ/3). The phase factors

from the rotation of the orbitals around their own centers are wvτ = e4πiτ/3 and wcτ = 1.
The γττ

′
i,n factor in Eq. (S16) can now be obtained. For the intravalley (τ = τ ′) matrix element, γττi,n = 1 in all cases

implying that the matrix element is finite. On the other hand, for the intervalley (τ 6= τ ′) matrix element we find,

γττ
′

M,c = 1 , γττ
′

X,c = e±4πi/3, (S22)

γττ
′

M,v = e±8πi/3 , γττ
′

X,v = e±4πi/3, (S23)

stating that the intervalley matrix element vanishes identically in all cases except for M -centered defects where the
matrix element in the conduction band is finite. This is in excellent agreement with our atomistic calculations of the
matrix elements in Fig. 2 of the main text.
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Experimental evidence suggests that FeSe is close to a magnetic instability, and recent scanning
tunneling microscopy (STM) measurements on FeSe multilayer films have revealed stripe order
locally pinned near defect sites. Motivated by these findings, we perform a theoretical study of
locally induced magnetic order near nonmagnetic impurities in a model relevant for FeSe. We find
that relatively weak repulsive impurities indeed are capable of generating short-range magnetism,
and explain the driving mechanism for the local order by resonant eg-orbital states. In addition, we
investigate the importance of orbital-selective self-energy effects relevant for Hund’s metals, and show
how the structure of the induced magnetization cloud gets modified by orbital selectivity. Finally,
we make concrete connection to STM measurements of iron-based superconductors by symmetry
arguments of the induced magnetic order, and the basic properties of the Fe Wannier functions
relevant for tunneling spectroscopy.

I. INTRODUCTION

The understanding of the electronic properties of the
material FeSe continues to pose an interesting challenge
to the research community of iron-based superconduc-
tors. Controversial current topics include the reasons
for its modified electronic structure (compared to DFT
calculations), the nature of the nematic phase, and the
origin of the highly anisotropic superconducting gap
structure.1 There is considerable interest in resolving
these issues both for our general understanding of cor-
related superconductors in general, and FeSe in partic-
ular due to the ability to significantly enhance its su-
perconducting transition temperature Tc by pressure, in-
tercalation, or dosing.2–8 In addition, while bulk FeSe
exhibits a Tc ∼ 9 K, a single monolayer of FeSe on STO
has been shown to superconduct up to ∼ 65 K.9 On the
other hand, thicker films suppress superconductivity and
exhibit a strong nematic phase for reasons that remain
unclear at present.10

A striking difference between FeSe and most of the
iron-based superconductors is the lack of magnetic order-
ing in FeSe. Even though the tetragonal to orthorhom-
bic transition takes place around Ts ∼ 90 K, there is no
evidence for long-range static magnetic order setting in
at lower temperatures. However, there is experimental
evidence that FeSe is close to a magnetic instability at
low temperatures, as seen by the diverging spin-lattice
relaxation rate 1/T1T versus T by NMR.11 For exam-
ple, modest pressures exceeding ∼ 0.8 GPa induce static
stripe antiferromagnetism indicating that FeSe at ambi-
ent pressure is parametrically close to the ordered mag-
netic phase.2–5 The resulting temperature-pressure phase
diagram describing the pressure dependence of nematic,
magnetic, and superconducting orders has been recently
described theoretically in terms of pressure-dependent
electronic interactions.12 The importance of low-energy
magnetic fluctuations in FeSe (at ambient pressure) has

been also pointed out by recent inelastic neutron scat-
tering experiments revealing a rich temperature and mo-
mentum dependence of the scattering intensity.13–16 As
a function of temperature, spectral weight is shifted from
Néel-like fluctuations to stripe-like (π, 0) fluctuations.
Thus at low temperatures the magnetic fluctuations at
low energies are entirely dominated by the stripe-like fluc-
tuations.

The proximity to a stripe magnetic instability sug-
gests the possibility of disorder-induced magnetism in
FeSe. Naively various imperfections such as impurities
and twin boundaries may relatively easily induce weak
local magnetic order by the presence of a nearby mag-
netic quantum critical point.17 Despite the fact that very
high quality FeSe crystals can be made18, and disorder-
generated magnetism does not appear to be widespread
in those samples, a number of recent experimental results
do find evidence of local magnetism. For example, the
close similarity in the behavior of the magnetostriction
and uniform susceptibility between BaFe2As2 and FeSe
in the nematic phase, led He et al.19 to propose that
short-range stripe magnetic order exists in FeSe. Evi-
dence of dilute static magnetism possibly arising from
impurities has also been recently put forward by µSR
measurements on high quality single crystals.20 Earlier
µSR studies of FeSe0.85 also found evidence of a dilute
and randomly distributed static magnetic signal.21 Re-
lated to these findings, an STM study of FeSe multilayer
films found clear evidence of charge stripe order centered
near Fe vacancy sites.22 This study reveals a clear exam-
ple of impurity-induced local order, and it was suggested
by the authors that the observed charge stripes are the
natural associated charge modulations induced by the
magnetic fluctuations pinned by the defect sites.22 The
presence of disorder-pinned antiferromagnetic order was
also recently suggested to be at play in parent as-grown
films of FeSe on STO.23 Finally, we point out recent NMR
studies of FeSe finding evidence of static short-range ne-
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matic order above Ts.
24,25 It remains an interesting ques-

tion if and how local magnetic order may be connected
to these NMR observations.

From a theoretical perspective, the low-energy mag-
netic fluctuations in bulk FeSe have been described
within an itinerant approach which successfully captured
the temperature and momentum dependence of the spin
excitations.26–28 However, this is only true if one includes
so-called orbital-selective effects in the theory, i.e. the
fact that distinct orbitals experience different self-energy
renormalizations leading to orbital-dependent mass en-
hancements and quasi-particle weights.29–39 These prop-
erties are characteristics of Hund’s metals, and agree
with recent STM quasi-particle interference measure-
ments both in the normal state and superconducting
phases.40–42

In terms of impurity-physics in unconventional super-
conducting materials, a number of theoretical works have
pointed out the interesting role of electronic interactions
in dressing bare impurity potentials.43–52. In addition,
there are nontrivial effects from the multi-band electronic
structure of this family of materials. For example, in
the nematic state, nonmagnetic disorder may lead to
short-range anisotropic magnetic order which has been
proposed to explain unusual transport phenomena is Co-
doped BaFe2As2.53 Regarding the superconducting state,
there are also novel suggested impurity effects includ-
ing disorder-enhanced Tc due to local density of states
(LDOS) enhancements from bound states generated in
off-Fermi level bands.54

In this paper, we combine realistic microscopic mod-
eling of FeSe with impurity studies to address the role
of local nucleated short-range magnetic order in this ma-
terial. We apply the so-called Chebyshev Bogoliubov-de
Gennes method to study large real-space systems, and
map out the phase diagram of local magnetic order as a
function of onsite Coulomb repulsion U and impurity po-
tential V0. We find a favorable impurity potential range
for induced local order. In addition, we discuss the role of
orbital selectively in the self-consistency equations, and
show how the associated self-energy effects are directly
tied to the local internal structure of the induced mag-
netization clouds surrounding impurity sites with favor-

able potentials able to generate induced order. We sug-
gest that the experimental evidence of local magnetism
in FeSe may be caused by a particular class of disorder
in this material.

II. METHOD

We start from a fitted tight binding model for the ne-
matic phase of FeSe with the Hamiltonian

H0 =
∑

ij,µν,σ

(tµνij − δijδµνµ0)c†iµσcjνσ +H.c., (1)

where µ, ν span the d-orbitals of the two inequivalent
iron atoms in the unit cell, and tµνij denote the hopping
elements detailed in Ref. 42. A point-like impurity at a
site i′ is described by the term

Himp = V0

∑

µ,σ

c†i′µσci′µσ, (2)

where the sum now spans the orbitals of a single iron
site. Interactions are initially included using the usual
multiorbital Hubbard-Hund model

Hint = U
∑

i,µ

niµ↑niµ↓ + U ′
∑′

i,µ<ν,σ

niµσniνσ̄ (3)

+ (U ′ − J)
∑′

i,µ<ν,σ

niµσniνσ

+ J
∑′

i,µ<ν,σ

c†iµσc
†
iνσ̄ciµσ̄ciνσ

+ J ′
∑′

i,µ6=ν
c†iµ↑c

†
iµ↓ciν↓ciν↑,

where we set J = J ′ = U/4 and use spin-rotational in-
variant interactions, U ′ = U −2J , and the sums

∑′
only

give a contribution when the indices µ and ν label an
orbital on the same iron atom.

The interactions are included at the mean field level,
yielding the mean field Hamiltonian

HMF
int =

∑

i,ν,σ

[
U 〈niνσ̄〉+

∑′

µ6=ν

{
U ′ 〈niµσ̄〉+ (U ′ − J) 〈niµσ〉

}]
c†iνσciνσ (4)

−
∑′

i,µ6=ν,σ

[
(U ′ − J) 〈c†iνσciµσ〉 − J ′ 〈c†iµσ̄ciνσ̄〉 − J 〈c†iνσ̄ciµσ̄〉

]
c†iµσciνσ

−
∑

i,ν,σ

[
U 〈c†iνσciνσ̄〉+ J

∑′

µ6=ν
〈c†iµσciµσ̄〉

]
c†iνσ̄ciνσ −

∑′

i,µ6=ν,σ

[
U ′ 〈c†iνσciµσ̄〉+ J ′ 〈c†iµσciνσ̄〉

]
c†iµσ̄ciνσ.

The Hamiltonian H = H0 +Himp +HMF
int defines the “bare” version of our model, where effects of orbital se-
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lectivity (discussed further below) are not included. The
results derived from this bare model will serve as a com-
parison basis for another model defined below which in-
cludes the effects of orbital selectivity.

Unrestricted self-consistent calculations of the density
and magnetization mean fields for the tight binding mod-
els are performed using the Chebyshev Bogoliubov-de
Gennes (CBdG) method,55 wherein the electronic Greens
function of a Hamiltonian H is expanded in a series of
orthogonal polynomials. We will provide a brief outline
of this procedure below. The starting point of the expan-
sion procedure is the estimation of extremal eigenvalues
Emin, Emax which are obtained by explicitly diagonaliz-
ing the Hamiltonian in a small system. We can then
define the rescaled Hamiltonian

H̃ = (H− b)/a, (5)

with b = (Emax +Emin)/2 and a = (Emax−Emin)/(2−δ),
where δ = 0.001 is a small parameter introduced to avoid
divergence at the edges of the domain. The rescaled

Hamiltonian H̃ has eigenvalues in the interval (−1, 1),
which coincides with the domain of the Chebyshev poly-
nomials.

Defining the rescaled energy ω̃ = (ω − b)/a ∈ (−1, 1),
the Greens function can then be expanded as

Gσσ
′

µν (i, j, ω̃) = lim
η→0

〈
ciµσ

∣∣∣ 1

ω̃ + iη − H̃

∣∣∣c†jνσ′

〉
(6)

=
−2i√
1− ω̃2

N−1∑

n=0

aσσ
′

µν,n(i, j) exp(−in arccos(ω̃)),

with |c†jνσ〉 = c†jνσ |0〉, and expansion coefficients

aσσ
′

µν,n(i, j) =
1

1 + δ0,n

〈
ciµσ

∣∣∣Tn(H̃)
∣∣∣c†jνσ′

〉
(7)

where Tn is the nth Chebyshev polynomial of the first
kind. The problem has therefore been reduced to finding
the expansion coefficients, which are obtained using the
recursion relation of the Chebyshev polynomials. Defin-

ing the intermediate states |jn〉 = Tn(H̃) |c†jνσ′〉, we can
generate coefficients recursively starting from an initial
state

|j0〉 = |c†jνσ′〉 , (8a)

|j1〉 = H̃ |c†jνσ′〉 , (8b)

|jn+1〉 = 2H̃ |jn〉 − |jn−1〉 . (8c)

The full expansion coefficients can be then obtained
as the inner product aσσ

′
µν,n(i, j) = 〈ciµσ|jn〉. An ar-

tificial broadening of η = 1 meV is included in the
Greens function by applying the Lorentz kernel during
the expansion.55

The mean fields in Eq. (5) and the local density of

states (LDOS) then follow from

〈
c†iµσciνσ′

〉
=

∫ 1

−1

dω̃ ImGσσ
′

µν (i, i, ω̃)f(ω̃), (9)

ρσµ(i, ω) = − 1

π
ImGσσµµ(i, i, ω), (10)

with f(ω̃) the Fermi-Dirac distribution function which is
evaluated at a temperature of 1K in all following calcu-
lations. (For the study of FeSe below this implies that
we are deep within the nematic phase in the undoped
system.) The energy integrals for the mean fields can
be obtained efficiently using Chebyshev-Gauss quadra-
ture in a similar fashion as Ref. 55, leaving the sparse
matrix-vector products as the limiting part of the full cal-
culation. We find that these mean fields are converged
at N = 1000 expansion coefficients, and use this value
for all calculations apart from when we plot the LDOS
at high energy resolution (then, N = 20000). In agree-
ment with Ref. 55, we find that this procedure is ex-
tremely efficient for selfconsistent calculations in large
multi-orbital systems such as our considered ten orbital
model, while yielding results consistent with the conven-
tional BdG method. We stress that all calculations below
are fully unrestricted in all orbitals and sites.

III. RESULTS

The phase diagram of magnetization versus V0 and U
is obtained by initializing a 12×12 system with a central
impurity surrounded by a small uniformly spin polarized
region, and then converging the mean fields for given
Hubbard U and impurity potentials V0. Convergence is
defined as a maximal variation of the set of mean fields n
of Eq. (9) of max(nm−1 − nm) < 10−7 between iteration
steps m− 1 and m, for at least 100 iteration steps. This
is usually accomplished within 1500 iteration steps of the
CBdG procedure. Consistent with previous susceptibil-
ity calculations,42 we find that the homogeneous system
(V0 = 0) displays a transition to a global (π, π) antiferro-
magnetic phase at a critical Uc = 295meV. Approaching
this transition from below, we find the possibility of lo-
cal magnetic order nucleated by the impurity site for a
range of potentials V0 displayed in Fig. 1 (a). At the
phase boundary the local order sets in at V0 = 70meV,
and extends until V0 = 560meV, with only repulsive po-
tentials being able to induce local magnetic order. The
local magnetic structure inside this phase mirrors the
bulk (π, π) phase as demonstrated in Fig. 1(b-c), dis-
playing the real space magnetization (b) and its Fourier
transform (c). The orbital splitting included in H0 to
describe the nematic order of FeSe at low T , induces a
negligible degree of C4-symmetry breaking in the magne-
tization, and hence the results in Fig. 1(b-c) appear C4

symmetric even though they are, strictly speaking, only
C2 symmetric.

We now turn to the underlying reason for stabi-
lization of local magnetic order. Previous studies of



4

(a)

Local Magnetism

Bulk (π,π) Magnetism

0 100 200 300 400 500
0

50

100

150

200

250

300

V0 [meV]

U
[m

eV
]

FIG. 1. (a) Phase diagram of impurity-induced magnetiza-
tion as a function of the impurity potential strength V0 and
Hubbard U . The phase diagram shows the bulk (π, π) phase
above Uc = 295meV (red), and a region of impurity nucle-
ated local magnetic order (blue) just below the bulk order.
The system is most susceptible to the formation of local mag-
netic order for impurity potentials close to V0 ≈ 220meV. (b)
Magnetization for V0 = 220meV, U = 280meV deep in the
pocket of local magnetic order (indicated by the black cross
in the phase diagram (a)), alongside (c) the Fourier transform
showing the local (π, π) order.

impurity-induced magnetization have found a link be-
tween local magnetic order and impurity resonant states
formed at the Fermi level just below the local magnetic
transition.51,56 This suggest a mechanism of locally en-
hanced LDOS providing a local Stoner transition to a
magnetic state.57 In Fig. 2 (a) we investigate this local
Stoner scenario. We fix U = 150meV, i.e. just below
the local magnetic transition and show the LDOS near
the Fermi level for varying values of the impurity po-
tential V0, as marked by the line of colored crosses in
Fig. 1 (a). We find that the point in (U, V0)-phase space
where the system is most susceptible to local magnetic
order, i.e. where the critical coupling line Uc(V0) has
its lowest value, corresponds exactly to the impurity po-
tential where the resonant state crosses the Fermi level
(V0 ≈ 220meV). This indicates that the onset of local
magnetic order can be understood as a local Stoner tran-
sition. The role of these resonant states in inducing local
magnetism, and enhancing superconductivity, has been

recently discussed in Refs. 52 and 58.
The emergence of these resonant states can in turn be

understood from the real space Greens function in the
presence of a point-like impurity at the origin (r = 0)

G(r, ω) = G0(r, ω) +G0(r − 0, ω)T (ω)G0(0− r, ω),
(11)

where each quantity is a matrix containing the spin and
orbital components of Eq. (7), and we have defined the
impurity T-matrix

T (ω) =
V0

I− V0

∑
kG0(k, ω)

=
I

(V0)−1 − g0(ω)
, (12)

with the shortened notation g0(ω) = G0(0, ω) for the lo-
cal Greens function in the absence of impurities. The
impurity-induced change in the LDOS can then be de-
fined using Eq. (10)

δρ(r, ω) = ρ(r, ω)− ρ0(r, ω) (13)

= − 1

π
Im [G0(r − 0, ω)T (ω)G0(0− r, ω)] ,

from which we see that impurity bound states correspond
to poles of the T-matrix. If the impurity and local Greens
function are diagonal matrices, we find five independent
criteria for the formation of bound states

det
[
(V0)−1 − g0(ω)

]
=
∏

µ

(
1

V0
− gµ0 (ω)) = 0, (14)

i.e. a bound state appears at an energy ω = ξ if for any
orbital µ

0 = −πρµ0 (0, ξ), (15a)

1

V0
= Re gµµ0 (ξ). (15b)

Solutions to these equations for any energy ξ corre-
spond to true bound states with impurity site LDOS
δρ(0, ξ) ∝ δ(ξ),while resonant states are allowed as com-
plex solutions ξ = ξ′ + iξ′′ with a broadened Lorentzian
shape in the impurity site LDOS.56 If we consider a quasi-
gapped region where ρµ0 (0, ω) ≈ 0 for some orbital µ, the
T-matrix solution predicts resonant states with orbital
character µ, and the resonant state energy ξ determined
by the impurity strength V0.

Fig. 2 (b) shows the graphical solution to these equa-
tions obtained from a converged homogeneous system
(V0 = 0, U = 150meV). The three t2g orbitals all have
finite spectral weight at the Fermi level, leaving only the
two quasi-gapped eg orbitals , dz2 , dx2−y2 , as candidates
for the resonant state. Of these only the dz2 real part of
the Greens function fulfills the second condition in this
energy interval. This results in resonant states of purely
dz2 character as shown in (c) where each orbital com-
ponent of the LDOS is plotted. Since the dz2 LDOS is
quasi-gapped in an extended energy interval, the location
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FIG. 2. (a) LDOS at the impurity site i′ for U = 150meV just below the local magnetic transition, displaying a clear
progression of bound states with varying V0. As the bound state approaches the Fermi level, the local magnetic transition sets
in as a local Stoner transition. (b) Real (black line) and imaginary (red line, ∝ LDOS) part of the dz2 component of the Greens
function. Resonant states are expected at energies where the inverse impurity potential (dashed lines) matches the real part
of the Greens function while the LDOS is gapped. (c) Orbitally resolved LDOS of a single impurity potential V = 220meV,
demonstrating that the resonant state is almost purely of dz2 character due to the negligible density of states for this orbital.
(d) Removing selfconsistency and using a purely dz2 impurity in the tight binding calculation yields resonant states matching
the T-matrix solution within the broadening.

of the resonant state varies smoothly with the impurity
potential as evident in (a).

We note that while the progression of resonant state
energies matches the quasi-gapped region and the slope
of the real part of the orbital Greens function, a dis-
crepancy of ≈ 80meV in the exact position of the res-
onant state predicted from the T-matrix solution and
the result of our selfconsistent procedure exists. This
shift stems from the fact that the T-matrix solution only
applies exactly for a purely dz2 impurity V µ0 = δµ,z2V0

and neglects the effect of selfconsistent density modu-
lations, while the CBdG result includes a multiorbital
impurity and selfconsistently converged the mean fields.
Repeating the CBdG procedure without selfconsistency
and assuming a pure dz2 impurity exactly reproduces the
expected resonant state positions as seen in 2 (d). The
close correspondence between the T-matrix predictions
of resonant states and the obtained phase diagrams in-
dicate that these regions of local order can be efficiently
obtained by first considering the homogeneous Greens

function. The search of pockets of local magnetic order in
(U, V0) space is thus made much simpler as approximate
phase diagrams can be obtained from a single calculation
in the clean system.

IV. EFFECTS OF ORBITAL SELECTIVITY

The physics of orbital selectivity has been studied quite
extensively in correlated multi-orbital models relevant
for FeSCs37–39. In particular several groups have ap-
plied DMFT29,30 and slave-spin methods31,34 to investi-
gate self-energy effects on e.g. the band-structure. Such
studies have found strong orbital dependent mass renor-
malizations and quasi-particle weights Zµ. Motivated by
the recent experimental evidence for orbital selectivity in
FeSe, we construct also a “dressed” version of the above
mean-field model. This can be done most simply by the
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FIG. 3. (a) Phase diagram of the orbital-selective model
showing the transition to a bulk (π, 0) phase above Uc = 560
meV (red), and the region of local magnetic order (blue) as
a function of the impurity potential strength V0 and inter-
action U . Apart from shifting the phase boundaries, the or-
bitally selective interaction parameters also fundamentally al-
ter the bulk and local magnetic orderings. (b) Zoom of the
local magnetic structure nucleated around the impurity site
for potentials close to the bulk transition, U = 550 meV and
V = 120meV (black cross in the phase diagram). (c) Fourier
transform of the local magnetic order revealing the highly
anisotropic local (π, 0) structure.

prescription

c†iµ →
√
Zµc

†
iµ, (16)

where Zµ denotes the quasi-particle weight for the orbital
µ. The orbitally selective ansatz in Eq. (16) leads to a
modified mean-field theory where all effects of orbital se-
lectivity are contained in dressed interaction parameters

Uµ → Z2
µUµ, (17)

U ′µν → ZµZνU
′
µν , (18)

with similar expressions for J, J ′. Based on ear-
lier studies of FeSe, in the following we fix the
values of the quasi-particle weights {

√
Zµ} =

{0.2715, 0.9717, 0.4048, 0.9236, 0.5916} for the five Fe 3d
orbitals {dxy, dx2−y2 , dxz, dyz, dz2}. We note that these
values are within the confidence interval of the experi-
mentally extracted values of Zµ.28,42

Making this orbitally selective ansatz and including
the quasi-particle weights Zµ defined above changes the
magnetic phase diagram as shown in Fig. 3 (a). In
Ref. 42 the splitting of Zyz, Zxz quasiparticle weights
was shown to result in a leading (π, 0) stripe order insta-
bility, in agreement with the (π, 0) ordered bulk phase of
our selfconsistent calculations. Close to the phase tran-
sition we again find local magnetic order as displayed in
Fig. 3 (b), which inherits the bulk (π, 0) structure as
seen in the Fourier transform of the magnetization in (c)
that exhibits only a peak at (π, 0) and is strongly C2

symmetric. We find the ordering structure of this lo-
cal magnetism to vary with the Hubbard U , starting out
strongly C2-symmetric just below the bulk phase tran-
sition, and then transitioning to a nearly C4-symmetric
(π, 0) + (0, π) structure when approaching the lower lo-
cal order boundary line. This result is in sharp contrast
to the omnipresent nearly C4-symmetric magnetization
exhibited by the bare model. Similar to the results from
the bare model, we find that this region of local magnetic
order can be understood from the emergence of resonant
states just below the transition.

V. DETECTION AND DIFFERENTIATION OF
LOCAL MAGNETISM

Specifically for the material FeSe, there exists evidence
for local magnetism from bulk experimental probes as
discussed in the introduction.19–21 However, given the
high quality of the available crystals18, local probes like
STM may be more suitable for direct investigation of the
nature of the electronic state in the vicinity of impuri-
ties. For the appearance of static local magnetic order, an
obvious experimental technique would be spin-polarized
STM measurements. While such approaches have been
carried out and are developed recently, it is worth point-
ing out that also a non-spin polarized experiment can
be used to discriminate between the two scenarios of lo-
cal magnetization which we have investigated. At this
point, we do not intend to perform a quantitative sim-
ulation of topographies and conductance maps,59,60 but
instead utilize simple symmetry based arguments that
hold true also in the case of a correlated electron sys-
tem. In order to calculate the tunneling current as mea-
sured in STM experiments, one needs to consider the
LDOS at the position of the STM tip.61 If the underlying
model Hamiltonian is constructed on a lattice, as in the
present case, see Eq. (1), the connection to the relevant
quantity above the surface of the material, i.e. in the
vacuum, can be made by a basis transformation where
Wannier functions of the electronic states enter as matrix
elements.59,60 For single impurities, it has been shown
that the properties of the elementary cell have imprints
on the observed shapes in topographies and conductance
maps59,60,62–64. In Fig. 4 (a), we show the positions
of the atoms at a cleaved surface of FeSe, where the Fe
atoms form the lattice as used in our Hamiltonian, while
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FIG. 4. Symmetries of the order parameter and the Wannier
functions on the surface of FeSe. (a) Positions of the Fe atoms
(red circles) and the Se atoms (yellow squares) at the surface
of FeSe. (b) Magnetic order parameter around an impurity
for the case without orbital selectivity which exhibits an (ap-
proximate) symmetry for a mirror plane m along the diago-
nals (dashed lines). (c) Expected pattern of the local density
of states at the STM tip position for case (b). (d) Magnetic
order parameter in the orbital selective case which does not
exhibit the mirror symmetry such that the expected pattern
in an STM experiment shows deviations of the maxima from
the symmetry axis (dotted line) (e). (f) Cuts through the five
Wannier functions for FeSe59,60 (red/blue: negative/positive)
centered at one Fe atom which have definite symmetry prop-
erties with respect to mirror plane m (lower row: mirror op-
eration applied to function).

the Se atoms above the Fe plane are arranged in a rotated
lattice with larger lattice constant which is also observed
in STM experiments22,40,41. For the case of FeSe, a Fe
centered impurity, leads to the observation of a dumbbell
originating from the tails of the Wannier functions that
have weights close the positions of the Se atoms at the
surface of the material.59

Now, let us turn to the symmetries of the magnetic
order parameter as presented in Figs. 1 and 3 by con-
sidering a mirror plane m along the diagonals of the Fe
lattice, as shown by the dashed line in Fig. 4. The Wan-
nier functions of the five relevant states at one Fe atom,
of course have definite symmetry properties under this
operation which is shown explicitly in Fig. 4 (f) where
in the top row, maps of Wannier functions in FeSe above
the surface, i.e. at the STM tip are presented and in the
lower row, a mirror operation has been applied. First,

we note that the shape of the wavefunctions have lower
symmetry than the corresponding atomic wavefunctions
and second, the dxz and dyz Wannier functions exhibit
a chiral structure of opposite direction. Turning now to
the two patterns of local magnetic order, we see that for
the order of (π, π) type, Fig. 4 (b), the mirror plane
is a symmetry and therefore the expected pattern in an
STM experiment will be symmetric with respect to the
mirror plane m as well, such that one should expect that
enhancements at Se positions should be along the diag-
onal (dotted line) as presented schematically in Fig. 4
(c)65. As for the chiral components of the dxz and dyz
Wannier functions, these will enter with equal weights in
the calculation of the LDOS such that the final pattern
does not exhibit any chiral character. This situation is
different for the local magnetic order parameter of (π, 0)
type which obviously does not have a definite symmetry
under the mirror operation m, Fig. 4 (d) and therefore
should produce a pattern in the LDOS where the max-
ima are away from the dotted line in Fig. 4 (e). Similar
features have been found in bulk FeSe40 and have been
recently analyzed quantitatively in experiments report-
ing local impurity-induced magnetization in thin films of
FeSe22. The direction of the deviation depends on the de-
tails of the orbital structure of the local order parameter,
and could also switch as a function of bias voltage.

VI. CONCLUSIONS

In summary, we have explored theoretically the in-
duction of local static magnetic order by nonmagnetic
impurity potentials in a model relevant for FeSe. We
have mapped out the regions of the phase diagram where
such order is present, and investigated the role of orbital-
selectivity. The latter may strongly alter the magnetic
structure of both long-range and short-range magnetism.
Finally we discussed the detection of local magnetic order
by non-spin-polarized STM measurements and provided
simple symmetry-based arguments to illustrate how this
technique may be used to differentiate between distinct
forms of induced local magnetic order.
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18 A. E. Böhmer, F. Hardy, F. Eilers, D. Ernst, P. Adelmann,
P. Schweiss, T. Wolf, and C. Meingast, “Lack of coupling
between superconductivity and orthorhombic distortion in
stoichiometric single-crystalline FeSe,” Phys. Rev. B 87,
180505 (2013).

19 Mingquan He, Liran Wang, Frédéric Hardy, Liping Xu,
Thomas Wolf, Peter Adelmann, and Christoph Mein-
gast, “Evidence for short-range magnetic order in the ne-
matic phase of FeSe from anisotropic in-plane magne-
tostriction and susceptibility measurements,” Phys. Rev.
B 97, 104107 (2018).

20 V. Grinenko, R. Sarkar, P. Materne, S. Kamusella, A. Ya-
mamshita, Y. Takano, Y. Sun, T. Tamegai, D. V. Efre-
mov, S.-L. Drechsler, J.-C. Orain, T. Goko, R. Scheuer-
mann, H. Luetkens, and H.-H. Klauss, “Low-temperature
breakdown of antiferromagnetic quantum critical behavior
in FeSe,” Phys. Rev. B 97, 201102 (2018).

21 R. Khasanov, K. Conder, E. Pomjakushina, A. Amato,
C. Baines, Z. Bukowski, J. Karpinski, S. Katrych, H.-H.
Klauss, H. Luetkens, A. Shengelaya, and N. D. Zhigadlo,
“Evidence of nodeless superconductivity in FeSe0.85 from
a muon-spin-rotation study of the in-plane magnetic pen-
etration depth,” Phys. Rev. B 78, 220510 (2008).

22 Wei Li, Yan Zhang, Peng Deng, Zhilin Xu, S.-K. Mo, Ming
Yi, Hao Ding, M. Hashimoto, R. G. Moore, D.-H. Lu,
Xi Chen, Z.-X. Shen, and Qi-Kun Xue, “Stripes devel-
oped at the strong limit of nematicity in FeSe film,” Nat.
Phys. 13, 957 (2017).

23 Y. Zhou, L. Miao, P. Wang, F. F. Zhu, W. X. Jiang,
S. W. Jiang, Y. Zhang, B. Lei, X. H. Chen, H. F. Ding,
Hao Zheng, W. T. Zhang, Jin-feng Jia, Dong Qian, and
D. Wu, “Antiferromagnetic order in epitaxial FeSe films on
SrTiO3,” Phys. Rev. Lett. 120, 097001 (2018).

24 P. S. Wang, P. Zhou, S. S. Sun, Y. Cui, T. R. Li,
Hechang Lei, Ziqiang Wang, and Weiqiang Yu, “Robust
short-range-ordered nematicity in FeSe evidenced by high-
pressure NMR,” Phys. Rev. B 96, 094528 (2017).

25 P. Wiecki, M. Nandi, A. E. Böhmer, S. L. Bud’ko, P. C.
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We theoretically investigate gate-defined graphene superlattices with broken inversion symmetry as
a platform for realizing tunable valley dependent transport. Our analysis is motivated by recent ex-
periments [C. Forsythe et al., Nat. Nanotechnol. 13, 566 (2018)] wherein gate-tunable superlattice
potentials have been induced on graphene by nanostructuring a dielectric in the graphene/patterned-
dielectric/gate structure. We demonstrate how the electronic tight-binding structure of the super-
lattice system resembles a gapped Dirac model with associated valley dependent transport using
an unfolding procedure. In this manner we obtain the valley Hall conductivities from the Berry
curvature distribution in the superlattice Brillouin zone, and demonstrate the tunability of this
conductivity by the superlattice potential. Finally, we calculate the valley Hall angle relating the
transverse valley current and longitudinal charge current and demonstrate the robustness of the
valley currents against irregularities in the patterned dielectric.

I. INTRODUCTION

The electronic structure of graphene hosts well-
separated degenerate minima in momentum space which
are labeled as the K,K ′ valleys.1 Electrons in graphene
are thus described not only by their charge and spin but
also by their valley degree of freedom which is conserved
when intervalley scattering is absent. In recent years this
new degree of freedom has been proposed as a stable car-
rier of information in so-called valleytronics.2–6

In hexagonal materials lacking inversion symmetry,
control of the valley degree of freedom can be accom-
plished by generating opposite transverse currents of car-
riers with different valley index when applying an in-
plane electric field. This valley Hall effect is the re-
sult of a nonzero Berry curvature of opposite sign in
each valley which acts as a valley dependent magnetic
field in momentum space.7 Indirect measurements of val-
ley currents in such materials have been suggested in
e.g. bilayer graphene under transverse electric field,8–10

or in graphene superlattices defined by an underlying
hexagonal boron nitride (hBN) substrate aligned com-
mensurately with the graphene sheet.11 These observa-
tions have been made in nonlocal transport measure-
ments where a current flowing between two terminals in
a Hall bar induces a nonlocal voltage between two dif-
ferent terminals through a combination of the direct and
indirect valley Hall effects.

The valley Hall effect and the associated valley cur-
rents are absent in pristine graphene unless perturba-
tions break the sublattice symmetry of the bipartite lat-
tice. The electronic properties of graphene have previ-
ously been engineered using e.g. strain,10,12,13 substrate
effects,14–16 or lithographic etching of a periodic array
of holes in the graphene sheet.17–19 Recently, a new ap-
proach to band structure engineering has been demon-
strated where holes or indentations are made not in the
graphene sheet but in an underlying dielectric instead.20

This procedure avoids introducing any short range dis-
order to the graphene sheet, and thus limits intervalley

scattering while effectively inducing a superlattice poten-
tial on the graphene sheet by a gate under the dielectric.
As such, this nanostructuring approach seems very well
suited for valleytronic applications.

In this work we theoretically investigate the electronic
structure and valley dependent properties of a graphene
superlattice geometrically structured for valleytronics.
We define a superlattice by a periodic external poten-
tial corresponding to a graphene sheet gated through a
nanostructured dielectric with a regular array of inden-
tations or holes. Symmetry analysis of this structure
reveals that a finite valley Hall effect is possible when
these holes do not have an inversion center. Our choice
of superlattice structure is supported by earlier studies
demonstrating extremely stable band gaps with respect
to disorder when perturbations break the graphene A/B
sublattice symmetry,21,22 and by the natural formation
of such deformations in hBN.23

We study the electronic band structure of these sys-
tems within a tight-binding model and show the emer-
gence of tunable band gaps in the energy spectrum as
the superlattice potential is applied. Using an unfolding
procedure for the spectral weight and electronic Berry
curvature,24 the superlattice results are mapped to the
graphene Brillouin zone where we recover a gapped K,K ′

valley structure with Berry curvature distributions of
opposite sign in each valley. We compare these super-
cell tight-binding results with an analytical model of
graphene with sublattice asymmetry and an overall shift
in the Fermi energy, and find a close resemblance at small
superlattice potentials. We furthermore compute the
valley-resolved transverse conductivities arising from the
finite Berry curvature distributions in each valley, and
demonstrate the tunability of these conductivities with
the strength of the applied superlattice potential, as well
as the position of the Fermi energy. Finally, a Boltzmann
equation approach for the longitudinal conductivity en-
ables us to calculate the valley Hall angle at different
electronic fillings and make predictions for experimental
observations in nonlocal transport experiments.25
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FIG. 1. (a) The superlattice system considered in this work:
a graphene sheet (empty and filled circles) gated through a
patterned dielectric with triangular zigzag-edged holes yield-
ing an effective superlattice potential (red-to-black gradient).
The supercell is marked by the dashed lines (left), alongside
the normal (graphene) unit cell (right). The lack of inver-
sion center and the sublattice asymmetric structure of the
gated regions induce the valley Hall effect under in-plane elec-
tric field. The geometry is characterized by the supercell
hexagon side length L and the triangle side length R. (b)
The corresponding supercell (SBZ) and normal (NBZ) Bril-
louin zone. The SBZ is shown enlarged four times for clarity.
(c) Sketch of the considered graphene/nanostructured dielec-
tric/gate structure. Here we show nanopatterned hBN with
the naturally occurring triangular zigzag edges holes nucle-
ated on boron sites.

II. METHOD

We consider a graphene sheet under the effect of a
periodic superlattice potential, providing a model for
graphene on top of a patterned dielectric. We posit a
triangular array of holes etched into the dielectric, and
thus a similar structure for the induced superlattice po-
tential in the graphene monolayer as shown in Fig. 1.
The hexagonal unit cell of this superlattice is shown in
Fig. 1(a), with the induced gate potential indicated by
the gradient. The geometries considered can be uniquely
described by the supercell hexagon side length L, and
the triangular superlattice potential side length R. We
model the superlattice by a tight-binding Hamiltonian
which includes onsite terms arising from the gate induced
potential

H =
∑

i,σ

V (ri)c
†
iσciσ +

∑

〈ij〉,σ
tijc
†
iσcjσ (1)

where tij = −tδ〈ij〉, with t = 3.033 eV, includes near-
est neighbor hopping, and V (r) is the gate-induced
potential, defined here along a zigzag edge in the
graphene sheet since this edge profile minimizes interval-
ley scattering.26,27 The potential corresponds to a zigzag
edged triangle etched into e.g. hBN as the dielectric,
where such perforations appear naturally nucleated on a
single sublattice.23 In our calculations we consider both
perfectly sharp (flat) and smoothly varying spatial pro-
files of the potential, as well as some degree of armchair

edges caused by edge disorder in the dielectric nanostruc-
turing. In the following we ignore the possible lattice
constant mismatch between the hBN and graphene, and
the resulting moiré structure. Other inversion symme-
try breaking shapes of the induced superlattice potential
can also lead to the valley Hall effect in the superlattice.
Here we restrict ourselves to the C3 structures outlined
above, wherein stable band gaps and lack of intervalley
scattering lead directly to characteristic plateaus of finite
valley Hall conductivity.

Our main goal is to calculate the transverse conductiv-
ity arising from the valley Hall effect. This effect can be
understood from wave-packet dynamics.28,29 The equa-
tion of motion for such a wave-packet composed of states
from a single band n, can in the presence of an electric
field be written (~ = 1)

ṙn(k) = ∂kεn(k)− eE ×Ωn(k) (2)

where we recognize the first term on the right-hand side
as the conventional band velocity, while the second term
is responsible for various anomalous transport phenom-
ena, determined by the electronic Berry curvature

Ωn(k) = ∇k × i 〈unk| ∇k |unk〉 , (3)

written here in terms of the periodic part of the Bloch
state, |unk〉 = e−ik·r |ψnk〉. In particular, when an in-
plane E-field is applied to a perturbed graphene lattice
with broken inversion symmetry, electrons in each valley
have opposite Berry curvature and thus acquire trans-
verse anomalous velocity components depending on their
valley index, leading to the valley Hall effect.

Valley resolved conductivities follow from the Berry
curvature of occupied states by integrating over each val-
ley region separately

σK(K′)
xy (EF ) = −2e2

h

∫

K(K′)

d2k

2π
Ωxy(k, EF ). (4)

Here, the integration region in each case is exactly half
the Brillouin zone with the Γ → M symmetry lines as
the borders,24 and we have defined the Berry curvature
of occupied states

Ωxy(k, EF ) =
∑

n

fn(k)Ωn(k), (5)

with fn(k) = [e(Enk−EF )/kBT +1]−1 the Fermi-Dirac dis-
tribution. We fix a low temperature of T = 1 K in the
following in order to clearly distinguish the step in the
valley resolved conductivity near the band edges.

The valley Hall conductivity is then defined as the dif-
ference between the valley-resolved conductivities

σvxy = σKxy − σK
′

xy . (6)

In the presence of time-reversal symmetry only half the
Brillouin zone needs to be considered in the calculation
of the valley Hall conductivity since σKxy = −σK′

xy and

thus σvxy = 2σKxy = −2σK
′

xy .28
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A. Unfolding

We now turn to the calculation of the valley-resolved
conductivities from the tight-binding supercell results.
Diagonalization of the tight-binding Hamiltonian yields
the supercell eigenenergies and Bloch states Enk, |ψnk〉,
from which we can also obtain the spectral function

A(k, ω) =
∑

nk

η/π

(ω − Enk)2 + η2
, (7)

where η is a numerical broadening.
The valley-resolved conductivities are not immediately

available since the Berry curvature folds into the super-
lattice Brillouin zone (SBZ) in a nontrivial way, which
prohibits the direct application of Eq. (4). Our ap-
proach is thus to unfold the Berry curvature obtained in
the SBZ back into the graphene (normal) Brillouin zone
(NBZ) and recover information about the valley degree
of freedom.30 We note that the considered superlattice
potential is a perturbation clearly described in terms of
the underlying ordered graphene lattice, and that the
unfolded Berry curvature and associated valley Hall con-
ductivity thus remain well-defined.24,31 Details of this un-
folding procedure can be found in Appendix A, and we
provide here a short summary.

The central quantity in the unfolding procedure is the
overlap between a normal cell orbital |χik〉 with k ∈ NBZ
and a supercell Bloch state |ψNK〉 with K ∈ SBZ,

λiNk = 〈χik|ψNK〉 , (8)

which we can calculate directly from the tight-binding
Bloch states.

Quantities in the SBZ can then be unfolded to the NBZ
by convolution with the overlap λ, and, e.g., the unfolded
spectral function becomes

A(u)(k, ω) =
∑

i

∑

NK

|λiNk|2
η/π

(ω − ENK)2 + η2
. (9)

where the sum over i = A,B spans the sublattices of
graphene, and ENK are the band energies of the superlat-
tice. The unfolding of the Berry curvature [Eq. (3)] from
the tight-binding result follows in a similar manner but
requires a more extensive treatment, since the analogous
expression to Eq. (9) becomes gauge dependent.24,31

Once the unfolded Berry curvature Ω(u)(k, EF ) is ob-
tained by this procedure, the valley-resolved conductivi-
ties follow by a simple application of Eq. (4).

B. Valley Hall angle

We characterize the relative magnitude of the response
associated with the valley Hall effect by calculating the
valley Hall angle

tan θv =
σvxy
σxx

. (10)

This angle is finite only close to the band edges where the
valley Hall conductivity is nonzero. We obtain the longi-
tudinal conductivity σxx from a DC Boltzmann equation
approach in the relaxation time approximation32

σxx = 2e2
1

A

∑

nk

τnkv
2
nk,xδ(EF − Enk) (11)

where A is the sample area, and vnk = (1/~)∇kεnk is
the band velocity component in the x̂ direction. Here, we
calculate this analytically from the tight-binding Hamil-
tonian.

vnk =
1

~
〈nk|∇kHk|nk〉 . (12)

For numerical evaluation of the longitudinal conductivity
at low temperatures we approximate the delta function
by a Lorentzian δ(EF − Enk) → 1

π (η/2)[(EF − Enk)2 +

(η/2)2]−1 with a constant broadening η = 3 meV.
We extract the relaxation time from a typical mobility

near the charge neutrality point in hBN encapsulated
graphene µ ≈ 105 cm2 V−1 s−1 at the given temperature.
If we consider the conduction to be limited by charged
impurities, the relaxation time varies linearly with the
Fermi energy33

τkF = Cci,τEF , (13)

where the proportionality constant is Cci,τ ≈ 10 ps/eV
at the chosen mobility. For gapped systems we set τnk =
Cci,τδEnk in Eq. (11) where δEnk is the energy measured
from the band edge of the gapped region.

III. RESULTS

A. Band structure and Berry curvature in the
supercell

We first consider the electronic structure of the super-
lattice of Fig. 1(a) (L = 4, R = 3) directly in the SBZ.
For V = 0 we recover the usual graphene band struc-
ture folded into the superlattice Brillouin zone [dashed
lines in Fig. 2(a)]. For the geometry considered here the
K,K ′ points are both folded in to the superlattice ΓSC
point, resulting in nearly degenerate linear bands around
this symmetry point. The splitting of these curves at
larger |kSBZx | depends on the choice of the specific cut
in k-space. When the finite superlattice potential is ap-
plied, an effective sublattice asymmetry is obtained on
top of a constant overall shift of the bands. Thus, for
V 6= 0 a gap opens continuously in the spectrum, with
a simultaneous shift of the bands upwards in energy as
shown in Fig. 2(a)-(b). For the structures considered in
this work the sublattice asymmetry is an intrinsic fea-
ture which is not removed by smoothly varying gate po-
tentials, and we thus find these band gaps to be stable
with respect to the smoothness of the applied potential
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FIG. 2. (a)-(b) Spectral weight (gray surface, η = 3meV)
close to the SBZ Γ point for different values of the constant
superlattice potential V (ri) = 1 eV, 2 eV. The dashed lines in
(a) show the V = 0 (pristine graphene) band structure. (c)-
(d) Corresponding line-cuts of the occupied Berry curvature
when the Fermi energy is fixed in the gap at each potential.
(e) Supercell Berry curvature in the SBZ with the valence
band filled. The pristine system K and K′ valleys fold to the
SBZ Γ point, yielding a sign changing peak centered on this
symmetry point. The horizontal dotted line indicates the cut
in k-space shown above.

with only a minor decrease in the gap magnitude (see
Sec. III D. below). We note that the gap may close at
larger values of |V | ∼ t depending on the specific geome-
try of the gated region and supercell width, but the gap
formation at |V | < t considered here is universal to all
geometries, as predicted previously for potentials of C3

symmetry.22 We demonstrate this universal gap forma-
tion in Figure 3(a) where the density of states (DOS)
is shown for different extents of the superlattice poten-
tial in the supercell. The inset shows the corresponding
band gap size (∆), and the shift in the center of the band
gap (Es) as a function of the superlattice potential mag-

FIG. 3. (a) Density of states for different geometries of the
superlattice at V = 1 eV. Inset: Band gaps as a function of
the superlattice potential magnitude (full lines) for different
geometries of the gated region (L = 4). The band gap widens
as the superlattice potential is increased in all considered ge-
ometries. Dashed lines show the corresponding shift (Es) of
the center of the band gap as the superlattice potential is
increased. This shift increases linearly with increasing super-
lattice potential, with the slope determined by the size of the
gated region (R). (b) Linecut of the SBZ Berry curvature in
the gap for different geometries of the gated regions (L = 4,
V = 1 eV). The shape of the Berry curvature distribution
broadens for increasing size of the gated region R, mirroring
the broadening with increasing superlattice potential magni-
tude V . (c) The SBZ Berry curvature when the supercell size
is varied instead, demonstrating the opposite scaling in the
width.

nitude V . The effect of varying the magnitude of the
superlattice potential is similar to that of changing the
ratio between the gated region (triangle side length R)
and the supercell size (hexagon side length L), as investi-
gated further in Appendix B. Similar gap openings have
been demonstrated previously within the tight-binding
model for gated superlattices in Ref. 34, where circu-
lar potentials were considered instead. However, the gap
opening in Ref. 34 was attributed to the local sublattice
asymmetry near the edge, and thus these band gaps were
found to be quickly decaying with increasing smoothness
of the gate potential due to the disappearance of the local
edge asymmetry.
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FIG. 4. (a)-(b) Line-cuts of the unfolded spectral weight
(gray surface) close to the NBZ K point for different values
of the constant superlattice potential V (ri) = 1 eV, 2 eV.
The result at the K′ point along this same cut in k-space can
be found by reflection around the central point Kτ , and thus
has similar structure. (c)-(d) Corresponding line-cuts of the
unfolded occupied Berry curvature in the K (blue) and K′

(red) valley with the Fermi energy fixed in the gap at each
potential. (e) Unfolded Berry curvature in the NBZ demon-
strating equal peaks of opposing signs, indicating the presence
of transverse valley currents. The dotted line indicates the cut
in k-space shown above.

In Fig. 2(c)-(d) we show the supercell Berry curvature
along the same cut in k-space as in (a)-(b). The distri-
bution displays a double peaked structure, with a clear
sign change appearing exactly at the ΓSC point. As the
superlattice potential is increased, this distribution is no-
ticeably broadened but retains its shape. A similar result
is obtained if the supercell and potential geometries are
changed instead as shown in Fig. 3(b). The full threefold
symmetry of this distribution arising from the supercell
folding is shown in Fig. 2(e) where the Berry curvature
is shown in the full SBZ. The rotational symmetry of this
distribution follows from the specific folding of the NBZ

valleys into the SBZ. The same symmetrical distribution
is found when other superlattice geometries are consid-
ered, the only variation being in the width of the Berry
curvature peaks. This effect is illustrated in Fig. 3(b).

B. Unfolded Berry curvature and valley Hall
conductivity

Prior to our consideration of the unfolded result, it is
instructive to compare the superlattice tight-binding cal-
culations with results from a well-known model of the val-
ley Hall effect in graphene. For this purpose, we consider
a model which neglects confinement due to the periodic
structure of the applied potentials, and simply consid-
ers the average potential on the A and B sites of the
graphene system, leading to an effective sublattice asym-
metry. This corresponds to a gapped Dirac model,

Hτ (q) =

√
3

2
at(τqxσx + qyσy) +

∆

2
σz, (14)

with τ = ±1 the valley index, q = k−τK measured with
respect to the K,K ′ points, and a the graphene lattice
constant. The Berry curvature in the K,K ′ region close
to the gap edge can be derived analytically, e.g. for the
conduction band7

Ωxy(q) = τ
3a2t2∆

2(∆2 + 3a2t2|q|2)3/2
, (15)

with associated Berry phases approaching ±π for small
∆, and hence a quantized valley Hall conductivity fol-
lowing from Eq. (4-6) of σvxy = 2e2/h at the top of the
valence band. This simple model with Berry curvature
peaks of opposite sign in each valley and quantized val-
ley Hall conductivity will serve as the comparison point
for the superlattice results. We note that the utilized
full tight-binding model goes beyond the simple decom-
position into distinct valleys in the massive Dirac model
above, since the tight-binding model includes both val-
leys and thus the effects of intervalley scattering.35

We now turn to the unfolded quantities A(u),Ω(u),
which are shown in Fig. 4. The spectral weight of the
nearly degenerate bands in the supercell around the ΓSC
point now unfold into the NBZ K,K ′ valleys as seen from
the line-cut through the K point in (a)-(b). As such, the
unfolded spectral weight resembles the valley structure
of the massive Dirac model introduced above. Corre-
spondingly, the unfolded Berry curvature peaks exactly
at the center of each valley, but with opposite signs as
shown in Fig. 4(c)-(d). The full distribution is shown
in Fig. 4(e). Here, we observe sharp peaks around each
symmetry point with opposite signs in the entire valley
regions. It now becomes clear how the rotational symme-
try of the supercell Berry curvature arises. The unfolded
Berry curvature peaks of each valley fold into separate
regions of the SBZ around the ΓSC point, yielding the
flower structure in Fig. 2(e).
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FIG. 5. Valley Hall conductivity as a function of filling (full
lines) for varying values of the superlattice potential V , shown
alongside the density of states (dotted lines). Berry curva-
ture accumulated near the band edges causes a saturation of
the valley Hall conductivity as the gap is approached, and
for small V the quantized 2e2/h value of the massive Dirac
model is approached. The inset shows the plateau value in
the gap as the superlattice potential is tuned. The valley Hall
conductivity decays for larger superlattice potentials, as the
supercell bands flatten and the unfolded valley structure is
lost.

A finite valley Hall effect in these systems is evident
from the unfolded Berry curvature distribution, since in-
tegration of this quantity around each valley yields finite
valley-resolved conductivities of opposite signs. The re-
sult of the integration procedure [Eq. (4-6)] is shown in
Fig. 5 as a function of the Fermi energy for different val-
ues of the superlattice potential. As demonstrated above,
the band edges act as Berry curvature hot spots causing
a saturation of the valley Hall conductivity as the Fermi
energy approaches the gap from below. This plateau then
decays when states in the bands above the gap start con-
tributing Berry curvature of opposite sign. In the limit
of small V we found above that the unfolded electronic
structure and Berry curvature distribution closely resem-
bles an effective massive Dirac model, and in this case we
also find that the valley Hall conductivity approaches a
quantized plateau value of 2e2/h as predicted from Eq.
(15). When the superlattice potential is increased this
plateau widens as the gap expands and a small vari-
ation in the plateau value appears. We note that the
numbers of k points needed to converge the valley Hall
conductivity increase dramatically as the potential is de-
creased since the Berry curvature distribution becomes
more sharply peaked. All calculations in this work are
performed with Nk = 230× 230 k-points.

In the limit of larger superlattice potentials the simple
resemblance to the shifted massive Dirac model breaks
down, and the valley Hall conductivity decays from the
quantized plateau value of 2e2/h as demonstrated in Fig.
5, ultimately vanishing at V = 3.4 eV. In this limit the
superlattice potential approaches the energy scale of the
hopping t and the electronic structure is strongly per-

FIG. 6. Valley Hall angle (full lines) and expected nonlocal
resistance signal (dashed lines) close to the band edge for two
values of the superlattice potential V = 1 eV, 3 eV. The band
gap is indicated by the vertical dashed lines. The valley Hall
angle is only finite close to the band edge where σxy ∼ σxx,
and approaches π/2 in the gap. The predicted nonlocal resis-
tance close to the band edges is obtained using the expression
of Ref. 25. The peaks in the ratio RNL/ρxx occur exactly at
the θv = π/4 point, i.e. when the valley Hall and longitudi-
nal conductivities are equal, σvxy = σxx. These peaks in the
nonlocal response shift as the superlattice potential is tuned.

turbed, resulting in a Berry curvature distribution di-
verging from the simple model. In particular, the valence
and conduction bands flatten and the valley-structure of
the unfolded spectral weight is lost.

C. Valley Hall angle and associated nonlocal
response

In Fig. 6(a) we show the valley Hall angle θvH =
arctanσvxy/σxx, which is the ratio of the magnitude of
the transverse valley and longitudinal charge currents.
The angle is finite only close to the band edge where the
valley Hall conductivity peaks and exceeds the longitu-
dinal conductivity in a small interval. Following Ref. 25,
we estimate the valley Hall contribution to the nonlocal
resistance from the valley Hall angle in, e.g., a Hall bar
of width W , with inter-terminal distance d, and valley
diffusion length lv:

∆RNL/ρxx =
W

2Lv

tan2 θv
1 + tan2 θv

e−|d|/Lv , (16)

where Lv = lv
√

1 + tan2 θv is a renormalized valley dif-
fusion length.

We note that this interpretation relies on the picture of
bulk valley currents carried by subgap states,25,36 which
is but one interpretation of nonlocal measurements in val-
ley Hall systems. In particular, these currents are missing
when the Fermi energy is placed in the gap in Landauer-
Büttiker calculations,37 and only reappear as edge cur-
rents when detailed modeling of the electronic structure
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and edge profiles are considered.38 In this work we thus
restrict ourselves to making predictions close to the band
edge outside the gapped region where the interpretation
as bulk valley currents is valid.

The expected nonlocal signal for varying values of
the superlattice potential is displayed in Fig. 6(b), for
W,d, lv = 100, 103, 105 nm. The nonlocal response is
shifted as the the superlattice potential is varied, since it
peaks near the band edge where the valley Hall angle θv
approaches π/4. This tunability of the nonlocal response
with the external potential provides an unambiguous way
of separating stray current and valley Hall contributions
to the nonlocal resistance.

D. Robustness with respect to the dielectric
environment

In what follows we consider more realistic potentials
based on the specific dielectric environment in patterned
dielectric superlattices. In particular, we consider poten-
tials varying smoothly with the distance r from the edge
of the side of the nanostructured indentation in the di-
electric to the center, here parametrized by V (r)/Vmax =
[exp((r − 1)/u) + 1]−1− 1/2, with u ∈ [0, 1] a continuous
parameter setting the smoothness of the potential, u = 0
being the flat potential considered so far, and u = 1 the
extreme case of a linearly decreasing potential. Line pro-
files of this potential are shown in the inset of Fig. 7, and
the full 2D potential for u = 0.2 is shown in the gradient
of Fig. 1(a). Further details of the spatial profile of the
smoothly varying potential are included in Appendix C.

The valley Hall conductivity obtained for this potential
is shown in Fig. 7. The result is similar to that obtained
above for the flat potential, although with slightly nar-
rower plateau regions. Additionally, new features appear
away from the band edge since degeneracies are lifted
and thus the integrated Berry curvature varies in small
increments when each band edge is reached. For small
potentials we again approach the quantized value in the
gap.

Finally, we conclude our analysis of realistic potentials
by considering irregularities in the edge of the dielectric
etching, which modulates the potential near the edge.
We simulate this effect by adding a random potential to
the edges of the gated region in the supercell, disrupting
the perfect zigzag edges considered thus far which where
expected to minimize coupling of the valleys. At each site
which is a nearest neighbor to the gate regi on edge we
add a random potential wedge ∈ [−0.5, 0.5] eV, and con-
sider the resulting valley Hall conductivity for different
random configurations at a fixed superlattice potential
(V = 2 eV, u = 0.2). The result of this procedure is
shown in Fig. 8 (gray lines), together with the clean
limit result (full black line), and the average of the irreg-
ular configurations (red dashed line). The application of
these random edge potentials does not substantially mod-
ify the valley Hall conductivity, which displays a shifted

FIG. 7. Valley Hall conductivity as a function of filling for
different values of the superlattice potential for a smoothly
varying potential (u = 0.2), the profile of which is displayed
in the inset. The results are similar to the flat potential case,
with some additional structure in the peak structure due to
the lifting of degeneracies of bands near the band edge.

FIG. 8. Variation of the valley Hall conductivity with respect
to irregularities in the edge profile of the superlattice poten-
tial, corresponding to irregularities in the dielectric etching.
The regular limit for a smoothly varying potential (V = 2
eV, u = 0.2) is shown in the full black line, alongside the
same calculation with random edge profiles at the superlat-
tice potential boundary (gray lines). The average of all such
configurations is shown in the red dotted line. The finite val-
ley Hall conductivity does not require a perfectly symmetrical
induced potential, and is thus a general prediction in these su-
perlattices.

peak structure for all configurations with a small varia-
tion in the plateau value. The average tracks the clean
result peak, with a rounded plateau due to the different
shifts of the gapped region in different configurations.

IV. DISCUSSION AND CONCLUSIONS

We have theoretically investigated graphene superlat-
tices defined by periodic gating as a platform for val-
leytronics. For zigzag edged triangular potentials where
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inversion symmetry is broken and intervalley scattering
is suppressed, a gate-tunable valley Hall effect appears.
This effect stems from the accumulation of Berry curva-
ture near the band edge of the superlattice band struc-
ture, which unfolds to curvature of opposite sign in the K
and K ′ valleys of the graphene Brillouin zone. For small
potentials the system resembles a gapped Dirac model
with quantized valley Hall conductivity, yet when the
gate-tunable potential is increased this valley Hall con-
ductivity decreases continuously, resulting in a platform
for valleytronics where both the magnitude and width of
the valley Hall conductivity plateau can be tuned by an
external gate. Finally, we have considered experimental
signatures of the gate-tunable valley Hall effect when the
Fermi energy is tuned close to the band edge in nonlocal
transport experiments, and determined how this response
varies with the external potential.

In this work we have considered the maximum of the
externally induced potential as the tunable parameter.
In addition to this degree of freedom the effect of align-
ment between the substrate and the graphene sheet, with
a corresponding rotation and shift in the induced poten-
tial, can also have a profound impact on the valley Hall
conductivity.39 For the atomically-resolved model con-
sidered here the result will in general depend on the size
of the gated region, with sign changes in the valley Hall
conductivity when the sublattice is shifted.

Our idealized model of irregularities at the edge of the
induced potential implies a periodic structure with the
same edge profile, and as such we are limited to calculat-
ing modifications to the intrinsic part of the valley Hall
conductivity. In general the valley Hall conductivity also
has contributions from disorder, commonly classified as
the side-jump and skew scattering corrections.40 We note
that these corrections occur outside the gapped region,
and do not substantially modify tunable properties of the
valley Hall conductivity in these systems.41

The main measurable consequence of the nonzero
Berry curvature in time-reversal invariant systems, such
as the superlattice considered in this work, is a finite cor-
rection to the nonlocal resistance. Recently, additional
measurable consequences have been predicted, including
applications in current rectification,42 and direct detec-
tion via the so-called Magnus Hall effect.43 The gate-
tunable Berry curvature predicted in this work could de-
fine a controllable platform for further investigations of
these effects.
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Appendix A: Unfolding procedure

We unfold quantities calculated in the supercell Bril-
louin zone (SBZ) back into the pristine graphene, or nor-
mal, Brillouin zone (NBZ) following Ref. 30.

Real space and reciprocal lattice vectors in the normal-
and supercell are related by44

A = M · a, (A1)

B = M−1 · b, (A2)

with M a matrix of integers.
For the triangular superlattices considered here, the gen-
eral form of this matrix is45

M = L

(
2 1
1 2

)
, (A3)

with L the side length of the supercell hexagon. The
determinant of this matrix is the ratio of unit cell vol-
umes.
A given wavevector k ∈ NBZ is folded into a unique K ∈
SBZ by a reciprocal lattice vector44

K = k −G0, (A4)

with G0 =
∑
i qiBi, where the qi are integers. We define

K ′(k) as the unique K point to which a given k point
folds.
A wavevector in the SBZ unfolds into multiple values

ki = K +Gi, (A5)

with a number of elements Nk in {Gi} given by
Nk = det M.44

We employ a tight-binding calculation using localized
orbitals |φir〉, and find the Bloch states. These are char-
acterized by quantum number n and wavevector k in the
normal (pristine) cell, and by quantum number N and
wavevector K in the supercell

|nk〉 =
∑

i

Cink |ik〉 (A6)

=
∑

ir

Cinke
ik·(r+τi) |φir〉 , (A7)

|NK〉 =
∑

IR

CINKe
iK·(R+τI) |φIR〉 , (A8)

with r,R lattice vectors in the normal cell and supercell,
and τi/I the relative position of each orbital in the unit
cell and supercell, respectively.

Given an quantity ONK defined in the SBZ, we now
define the corresponding unfolded quantity in the NBZ:

O(u)
ik =

∑

NK

|〈ik|NK〉|2ONK (A9)

=
∑

N

λiNkONK′(k). (A10)
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Unfolding then boils down to finding the Bloch state over-
lap λiNk, which we will derive within a tight-binding
scheme below. Note that the unfolding becomes more
complicated for the Berry curvature since a derivative
with respect to k is included in the definition of this
quantity (see Ref. 31 eq. 31).

Define a map I → R+r′(I), i′(I) uniquely identifying a
localized orbital in the supercell (I) with a similar orbital
in the normal cell [i′(I)], where r′(I) is a normal cell
lattice vector giving the relative position between unit
cells. We can then calculate the overlap between a given
supercell and normal cell orbital:

〈φir|φIR〉 =
〈
φir
∣∣φi′(I)R+r′(I)

〉
(A11)

= δii′(I)δr,R+r′(I), (A12)

where the final equality follows from orthogonality of the
normal cell orbitals. This simple form of the orbital over-
lap enables a calculation the Bloch state overlap

λiNk = 〈ik|NK〉 (A13)

=
∑

I,rR

CINKe
−ik·(r+τi)eiK·(R+τI) 〈φir|φIR〉

(A14)

=
∑

I,R

CINKe
−ik·(R+r′(I)+τi)eiK·(R+τI)δii′(I)

(A15)

=
∑

I

CINKe
−ik·(r′(I)+τi)eiK·τI δii′(I)δK[k],

(A16)

where [k] is the set of wavevectors k which downfold to
K. Note that for a given k the value of K for which
this delta function is finite is unique. This enables us to
collapse all sums over K when unfolding, picking out
the value K ′(k).

Calculation of the unfolded Berry curvature proceeds
from this formalism using the gauge-invariant approach
of Ref. 31, and its extension to tight-binding in Ref. 24.

Appendix B: Band gap and shift for different
geometries

In this appendix we provide further information on the
evolution of the gap in the spectrum ∆ = |E1 − E0|, and
the shift in the center of this gap Es = E0 + ∆/2, where
E1,0 indicate the band edges with E1 > E0. Fig. 9 dis-
plays further calculations of these quantities for different
geometries (a)-(b), and their evolution with the superlat-
tice geometry parameters L,R (c)-(d). The shift in the
center of the gap (Es) is seen to vary linearly with the
superlattice potential, as might be expected from consid-
ering the average potential in the unit cell. Indeed, calcu-
lating this average potential as Vavg = V (NV /NSC) ∝

FIG. 9. (a)-(b) Band gap variation with the superlattice po-
tential magnitude for different geometries. (c)-(d) Band gap
(∆) and shift (Es) variation with the supercell size (L,R = 4)
and extent of the superlattice potential (L = 5, R), respec-
tively, shown here for multiple values of the superlattice po-
tential magnitude (V ). The small asterisks indicate the aver-
age potential on each site in the supercell, which matches the
numerically calculated shift (Es). The same general result is
obtained for different configurations: The band gap widens
for either greater magnitude of the superlattice potential, or
for increasing ratio between gated region and supercell size.

(R2/L2), where NV = R2 is the number of sites with
shifted onsite potentials from the superlattice potential
and NSC = 6L2 is the total number of sites in the su-
percell, we find a close match with the obtained value
of of the shift. This average potential is shown (small
asterisks) alongside the obtained shifts in Fig. 9 (c)-(d).

Similar simple models for the band gap (∆) in the elec-
tronic spectrum of a given geometry based on, e.g., the
average graphene A/B site asymmetry do not match the
calculated band gap in these systems. This follows from
the fact that band gap formation can be driven both by
the periodic structure of the superlattice potential itself,
which can result in band gaps even for circular potentials,
and effects associated with local symmetry of the poten-
tial structure such as A/B asymmetry on the edges of
the potential. The former of these mechanism can yield
extreme sensitivity to small variations in the superlattice
size L, as seen in, e.g., antidot lattices.17 For the po-
tentials of C3 symmetry considered in this work we thus
restrict ourselves to the general observations, as found
in similar superlattices,17,34 that the size of the induced
band gap is directly proportional to the magnitude of the
superlattice potential and the extent of this potential R,
and inversely proportional to the supercell size (L), i.e.,
the distance between gated regions, as demonstrated in
Fig. 9.

A full picture of a typical band gap and the minibands
closest to the gap is provided in Fig. 10 (a)-(b), alongside
the DOS in the same region. The gap formation in real
space can be observed by calculating the local density of
states (LDOS) as a projection of the spectral weight on
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FIG. 10. (a) Extended view of the band structure EN (k)
showing the gap and miniband formation of the supercell.
The symmetry points are those of the SBZ. (b) Correspond-
ing density of states, demonstrating the shifted band gap.
(c)-(d) LDOS, plotted using the radii of black (white) disks
to indicate the value at A (B) sites, sampled just above and
below the gap at ω = 0.1, 0.29 eV (dashed lines in (a)). The
superlattice potential breaks inversion symmetry and causes a
splitting of the A/B weight at these sites. (e) Local gap mag-
nitude at each site in the supercell as derived from the local
density of states (variations enhanced ×5), showing a small
variation at the potential edge. (f) Corresponding shift in the
center of this local gap (variations enhanced ×5), showing a
small difference between A/B sites in the supercell. All plots
are for a representative configuration of (L = 4, R = 3, V = 2
eV).

a given orbital φIR in the supercell

LDOS(RI , ω) =
1

NK

∑

NK

|〈φIR|NK〉|2ANK(ω). (B1)

The LDOS above and below the band edge is displayed in
Fig. 10 (c)-(d) at energies as shown by the dashed lines in
(a), and demonstrates the opposite splitting of the LDOS
on the A/B sublattices above and below the band edge
caused by the inversion-symmetry-breaking superlattice
potential. In these plots the LDOS is plotted on A (B)
sites as black (white) disks, with the radius indicating the
magnitude of the LDOS normalized to the maximal value
in the supercell. From the LDOS around the gap region
we can define the local gap and shift (∆(r), ES(r)) using
the band edges of the local gap in the LDOS at a given
site. These quantities are shown in Fig. 10 (e)-(f), using
a similar plotting scheme similar to that for the LDOS. In
these cases the maximal variation from the mean is much
smaller ( 7%, 6% for the gap and shift, respectively) than
for the LDOS, and we have thus enhanced the variation
fivefold in these plots. The local gap is almost homoge-
neous, and the only variation of the local gap magnitude
∆(r) is seen to take place close to the superlattice po-
tential edge where the potential locally breaks A/B sym-
metry. The shift Es(r) is also homogenous apart from a
minor constant A/B variation due to the different num-
ber of A/B sites enclosed by the superlattice potential.

Appendix C: Spatial profile of the superlattice
potential
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Abstract: The interplay between unconventional Cooper pairing and quantum states 
associated with atomic scale defects is a frontier of research with many open questions. So 
far, only a few of the high-temperature superconductors allow this intricate physics to be 
studied in a widely tunable way. We use scanning tunneling microscopy (STM) to image the 
electronic impact of Co atoms on the ground state of the LiFe1-xCoxAs system. We observe 
that impurities progressively suppress the global superconducting gap and introduce low 
energy states near the gap edge, with the superconductivity remaining in the strong-coupling 
limit. Unexpectedly, the fully opened gap evolves into a nodal state before the Cooper pair 
coherence is fully destroyed. Our systematic theoretical analysis shows that these new 
observations can be quantitatively understood by the nonmagnetic Born-limit scattering 
effect in a s±-wave superconductor, unveiling the driving force of the superconductor to 
metal quantum phase transition. 
 

In the research of high-Tc superconductors, chemical substitution is a powerful way to manipulate 
electronic phases [1-5]. Meanwhile, chemical substitution also creates imperfections at the atomic 
scale, which break the unconventional Cooper pairing [4,5]. Although the single atomic impurity 
pair-breaking effect has been demonstrated in certain superconducting systems [4,5], it is 
challenging to study its collective many-body manifestation (the finite-density-impurity problem) 
in a widely tunable way, due to the existence of competing orders or inhomogeneity from strong 
electron correlation [1-5]. In this regard, the LiFe1-xCoxAs is a rare case in which Co substitution 
monotonically suppresses the homogeneous superconductivity in LiFeAs without generating other 
competing orders [6-12], making it a versatile platform to quantitatively test many-body theories. 
Intriguingly, photoemission, optical and magnetic response experiments [7-11] reveal that Co 
substitution changes the Fermi surface and enhances the Fermi surface nesting along with the 
associated low-energy spin fluctuation, while the spin fluctuation is generally believed to be 
beneficial for the Cooper pairing in this material [13-15]. This contrast implies a striking, yet not 
understood de-pairing mechanism associated with Co substitution. Unexpectedly, previous STM 
experiments found no detectable local pair-breaking effects associated with a single Co impurity 
[16,17]. There is also no direct spectroscopic data measured deep in the superconducting state 
demonstrating how a finite density of Co impurities collectively suppresses Cooper pairing. 
Therefore, a systematic microscopic examination of the effect of the Co substitution on the ground 
state of LiFe1-xCoxAs across the whole superconducting phase diagram is demanded.   

LiFeAs crystallizes in a tetragonal unit cell (P4/nmm) as shown in Fig. 1(a) with a superconducting 
transition temperature TC of ~17K. In momentum space, it features hole-like Fermi surfaces at the 
Brillouin zone center and electron-like Fermi surfaces around the zone boundary, with two extra 
Dirac cones at the zone center being recently observed [12] (Figs. 1(b)). We first probe the 
superconducting ground state of the pristine material at T = 0.4K. Our atomically resolved high 
resolution STM image reveals a tetragonal lattice which is the Li-terminating surface (Fig. 1(c)). 
A line-cut of the differential conductance spectra probing the local density of state (DOS) shows 
a spatially homogenous double-gap structure, with a larger gap of 6.0meV and a smaller gap of 
3.3meV (Fig. 1(d)). Based on previous photoemission data [18] measured at 8K, the large gap 
likely arises from the electron bands and the inner hole-like band, and the smaller gap likely arises 
from the outer hole-like band. 
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As the Fe lattice is systematically substituted with Co atoms, the TC decreases linearly and reaches 
zero around x = 16% (Fig. 2(a)) [6-11]. Based on the photoemission data [12], the Fermi level can 
be systematically tuned by increasing Co concentration as illustrated in the inset of Fig. 2(a). Upon 
bulk substitution of 1% Co atoms, STM topographical scans reveal new dumbbell-like defects 
randomly scattered on the surface (Fig. 2(b)) that are different from various native defects in 
LiFeAs. The concentration of these defects is consistent with the nominal Co substitution. The 
dumbbell-like defects are also randomly aligned along two orthogonal directions, with its local 
two-fold symmetry arising from the structural geometry. The center of each such defect is located 
at the middle of two Li atoms (Fig. 2(c)), which corresponds to the position of the Co atom in the 
underlying (Fe, Co) lattice (Fig. 2(d) inset), and altogether they possess a local two-fold symmetry. 
Thus, these defects are likely caused by the atomic Co substitution [17]. Directly above these 
dumbbell defects, we observe a state near the smaller gap at the positive energy while the overall 
gap structure remains almost unchanged compared with the far away spectrum (Fig. 2(d)). The 
weak in-gap state is consistent with earlier calculations [19] based on the band structure and 
impurity potentials of Co obtained from density functional theory. We note that the observation of 
the small local electronic variation may benefit from our lower temperature (0.4K) and more dilute 
impurity concentration compared with previous STM studies [16,17]. Our observation indicates 
that the dilute Co substitution has a limited local impact on the superconducting order parameter 
or causes only very weak pair-breaking scattering.    

With increasing Co concentration, the Co induced weak in-gap states overlap spatially, making 
them difficult to be visualized individually [16,17]. On the other hand, the finite concentration of 
Co impurities collectively suppresses bulk superconductivity. To study the global effects on the 
superconducting ground state, we systematically probe the spectra away from the apparent surface 
defects for a wide range of Co concentrations at base temperature 0.4K. We observe a strong 
variation of the superconducting gap structure in the tunneling conductance which correlates 
strongly with the TC reduction (Fig. 2(e)). As the Co concentration increases, the large 
superconducting gap size decreases progressively until no gap remains at x = 16% where TC = 0. 
Meanwhile, the superconducting coherence peak grows progressively weaker. Evidently, the 
spectral bottom evolves from a U-shape to a V-shape and then gradually elevates to the normal 
state value.  

The Co induced gap reduction and scattering can also be qualitatively reflected in the vortex 
excitation. We extensively study the vortices (Fig. 3) for different Co concentrations at 0.4K with 
c-axis magnetic fields. In the pristine sample (Fig. 3 (a)), the vortices form an ordered hexagonal 
lattice under a zero-field cooling method [20,21], as can be clearly seen in the autocorrelation of 
the real-space mapping at 2T (Fig. 3(a) inset). As the Co concentration x increases, we find the 
vortex lattice symmetry to remain hexagonal like (Figs. 3(b) inset), while the vortex core size 
increases. The persistent hexagonal vortex lattice symmetry indicates that the randomly distributed 
Co dopants do not distort the vortex lattice significantly. As the core size is related with the 
coherence length which is proportional to the reverse of the gap in the BCS theory, the increment 
of the vortex core size is consistent with the aforementioned gap reduction. Moreover, measuring 
the conductance within a vortex under an applied c-axis field of 0.5T reveals sharp in-gap bound 
states at |E| ≈ 1meV (Figs. 3(b)) [20,21], in agreement with the estimate of vortex core states 
energies in the quantum limit, which should be on the order of a non-topological superconducting 
vortex state (in the energy order of ±Δ2/EF). As the doping concentration increases, these sharp 
bound states become gradually less pronounced (Figs. 3(b)), consistent with the aforementioned 
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increased scattering. For each concentration, we carefully examine at least six vortex core states, 
but do not find any that exhibits a pronounced zero-energy peak. This absence of localized zero-
energy states is consistent with the detailed band topology of LiFe1-xCoxAs. According to the 
photoemission study [12] and first-principles calculations (Fig. 1(b) and Fig. 2(a) inset), the 
surface Dirac cone (lower cone) is buried below the Fermi level in the three-dimensional bulk 
states, and hence does not form surface helical Cooper pairing and distinct Majorana bound states 
localized at the ends of the vortex line [22]. Moreover, the expected spectra of the vortex lines in 
superconductors with bulk Dirac states are not yet fully understood. Recently, there have been 
theoretical studies of the expected Majorana modes [23,24]. However, details of the vortex 
properties leave the possibility that these states are not localized at the vortex ends and the system 
might not feature zero energy bound states. These conclusions are not inconsistent with our 
experimental data, and we want to stress that it is a challenge to unambiguously distinguish the 
non-localized Majorana state by STM technique alone [23,24].  

To quantify the Co induced gap reduction and scattering, we extract two key parameters from the 
raw data: the large energy gap size ΔL and global zero-energy density of state N(E=0). Remarkably, 
we find that ΔL decreases linearly as a function of x and reaches zero around 16%, which scales 
linearly with the reducing TC (Fig. 4(a)). In other words, the coupling strength 2ΔL/kBTC remains 
a constant (inset of Fig. 4(a)). In particular, LiFe1-xCoxAs remains in the strong coupling limit for 
all x as evidenced by 2ΔL/kBTC ≈7.7, much larger than the BCS value 3.5. These results suggest 
that the superconductivity is destroyed via a mechanism which decreases the pair susceptibility 
strength, but not the coupling strength. On the other hand, the extracted zero-energy state N(E=0) 
exhibits an exponential like growth as shown in Fig. 4(b). The comparatively smaller rate of 
growth increase of N(E=0) at low concentrations is consistent with the local effect of each Co atom 
individually (Fig. 2(d)) that each Co induces weak impurity state near the superconducting gap 
edge (Fig. 2(d)). As the concentration increases, the interference of their impurity wave functions 
becomes stronger and the global impurity states spread further in energy, and their tail states 
eventually contribute to the rapid rise of the global zero-energy state.  

In our systematic first-principles calculations, we find that the Co dopants are essentially 
nonmagnetic with a relatively weak on-site potential of -0.43eV (Supplementary), consistent with 
previous experiments showing that they do not introduce a local magnetic moment [6,10,11,25]. 
According to the Anderson theorem, nonmagnetic impurities have little effect on the conventional 
s-wave superconductor. With a sign change in the order parameter, nonmagnetic impurity is then 
able to break the Cooper pairs [4,5,26-29]. Considering previous phase sensitive experiments [21] 
in this compound, the strongest pairing wave-function candidate is s± (where the sign changes 
between the ordinary hole and electron Fermi surfaces). Crucially, the variation of the gap structure 
from U-shape to V-shape due to nonmagnetic scattering in the s± pairing state has been predicted 
using the T-matrix theory [26]. Taking this two-band model from Ref. 26, we set both linear gap 
reduction and linear scattering rate enhancement with increasing x (Supplementary), and compute 
N(E=0) under the Born (weak scattering) limit and the unitary (strong scattering) limit [4,5] with 
the results shown in Fig. 4(b). We find that the experimental data is consistent with the former 
condition and deviates substantially from the latter. Figure 4(d) displays the calculated DOS in the 
Born limit, which gradually evolves from a fully opened gap to a less coherent V-shaped structure, 
in consistency with our experimental observation (Fig. 2(e)). In this model, such behavior is due 
to the impurity states residing near the gap edge (which can be qualitatively identified from the 
imaginary part of the quantum many-body self-energy, as detailed in supplementary) with their 
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tail states gradually moving towards zero-energy. Therefore, this theory offers a heuristic 
understanding of our experiment, demonstrating the Born limit nonmagnetic scattering nature of 
Co and sign reversal of the gap symmetry. 

To acquire a self-consistent and quantitative understanding of the quantum many-body effect of 
the Co dopants, we further perform real-space calculations using the Bogoliubov–de Gennes 
(BdG) approach. We first take a two-orbital effective model capturing the essence of its low energy 
multi-band structure and consider randomly distributed electron dopants with weak potential 
scattering as Co impurities in reference to first-principles calculation (Supplementary). The next-
nearest-neighbor intra-orbital attraction is considered to cause the s± wave Cooper pairing. The 
calculated DOS indeed shows a clear U-shape to a V-shape evolution as demonstrated in Fig. 4(f). 
This encourages us to further perform a fully realistic calculation with complete five-orbitals. The 
five-orbital model has successfully explained the vortex core states20 and weak Co impurity states 
in pristine LiFeAs16,19, where the s± wave Cooper pairing is self-consistently obtained within spin-
fluctuation mediated pairing. Considering similarly weak potential scattering, the calculated DOS 
and phase diagram are shown in Fig. 4(e), which reasonably agrees with the experiment in realistic 
energy units. We stress that the latter five-band theoretical study contains no free fitting parameters 
since the band, gap structure, and impurity potential are fixed by either experiment or first-
principles calculations. In this respect, it constitutes a new level of quantitative disorder modelling 
of unconventional superconductors. Therefore, these realistic self-consistent calculations capture 
the essence of the experiments and embrace the same spirit of the T-matrix calculation, 
unambiguously demonstrating the scattering nature of Co in iron-based superconductivity. Our 
systematic experimental-theoretical analysis of the impurity effect from a single impurity to the 
finite density case microscopically uncovers that the Born-limit nonmagnetic scattering is the 
driving force of the superconducting quantum phase transition in LiFe1-xCoxAs. Future 
characterization of the Co impurity effect by Bogoliubov quasi-particle interference imaging will 
be important for further exploring the orbital and band selectivity of the Born-limit nonmagnetic 
scattering. 
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Fig. 1. (a) Crystal structure of LiFeAs. (b) First-principles calculation of the band structure for 
(001) surface. The zoom-in image shows the two Dirac cones at the zone center, with the upper 
one from bulk and the lower one form the surface. (c) Atomically-resolved topographic image of 
pristine LiFeAs showing clean tetragonal lattice. (d) Line-cut differential conductance spectra on 
pristine LiFeAs, showing a spatially homogeneous double-gap structure. 
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Fig. 2. (a) Phase diagram of LiFe1-xCoxAs. The superconducting transition temperature is 
determined by the onset of zero resistivity. Inset: illustration of the Co doping effect on the bulk 
Dirac cone based on Ref. 12. (b) Atomically resolved topographic image of a sample with 1% Co 
substitution, showing randomly scattered dumbbell-like defects that do not exist in the pristine 
sample and with concentration consistent with the Co substitution level. (c) Enlarged image of 
single reproducible dumbbell-like defect. The center of the defect geometrically corresponds to a 
Co substitution atom in the Fe layer (in reference to Fig. 2D inset). (d) Differential conductance 
spectrum taken at the defect and far from the defect. Inset: crystal structure from top view. (e) Co 
concentration dependence on spatially averaged superconducting gap structure. The spectra are 
offset for clarity. The dashed lines mark the zero-intensity value for each case. 30 to 50 dI/dV 
curves taken away from apparent surface impurities with the same junction set up (V = -15mV, I= 
750pA) were averaged to obtain the dI/dV curve for each concentration. 
 
 

 
 

Fig. 3. (a) Left: real space mapping of vortices at the Fermi energy on pristine LiFeAs at B = 2T. 
Inset: auto-correlation of vortex mapping showing hexagonal lattice symmetry. (b) Spectra in the 
zero-field state (black) and at three representative vortices offset for clarity (red) for each 
concentration. The inset image in each panel shows the respective vortex lattice (the bar marks a 
length of 35nm).  
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Fig. 4.  (a) The large gap size ΔL (left axis, red) and Tc (right axis, blue) both decrease linearly as 
a function of concentration x. Inset: 2ΔL/kBTC remains constant (~7.7) as a function of Co 
concentration. (b) Differential conductance at zero energy N(E=0) as a function of Co 
concentration x in LiFe1-xCoxAs. The experimental data is normalized by the normal state value. 
The red solid and dashed lines denote N(E=0) calculated based on Born and unitary limit 
scattering, respectively. (c) Schematic showing a sign reversal s-wave pairing on two Fermi 
surfaces (lower panel, s± gap symmetry) and the nonmagnetic impurities induced interband 
scattering causing pair-breaking (upper panel). (d) Calculated density of states evolution of the s± 
pairing state with nonmagnetic scattering at the Born limit with T-matrix theory. (e) (f) Calculated 
averaged DOS evolution with increasing Co concentration by BdG theory with two-orbital and 
five-orbital models, respectively. The inset shows the phase diagram plot.  
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Supplementary Materials  
 
 

Materials and Methods 
Single crystals of LiFe1−xCoxAs grown using the self-flux method of up to 5mm × 5mm × 0.5mm 
were used in this study. All preparation work was carried out in an Ar filled glove box in order to 
protect the samples from air. Samples were cleaved mechanically in situ at 77K in ultra-high 
vacuum conditions, and then immediately inserted into the STM head, already at He4 base 
temperature (4.2K). The STM head that includes the sample was subsequently cooled to 0.4K with 
He3 cooling and stabilized, after which the magnetic field was slowly applied, with maximum 
temperature fluctuations of 0.2K during ramping. We waited for 1 h before performing 
spectroscopic imaging so that there was no noticeable vortex creep in the differential conductance 
map. This zero-field-cooling technique was adopted throughout this work. Tunneling conductance 
spectra were obtained with an Ir/Pt tip using standard lock-in amplifier techniques with a root 
mean square oscillation voltage of 100μV and a lock-in frequency of 973Hz. The conductance 
maps are taken with tunneling junction set up: V = -15mV, I = 50-150pA, while the tunneling 
spectra are taken with junction set up: V = -15mV, I = 750pA.  
 
High-quality single crystals of LiFe1−xCoxAs are grown with the self-flux method. The precursor 
of Li3As is prepared by sintering Li foil and an As lump at about 700°C for 10 h in a Ti tube filled 
with Ar atmosphere. Fe1−xCoxAs is prepared by mixing the Fe, Co, and As powders thoroughly, 
and then sealed in an evacuated quartz tube, and sintered at 700°C for 30 h. To ensure the 
homogeneity of the product, these pellets are reground and heated for a second time. The Li3As, 
Fe1−xCoxAs, and As powders are mixed according to the elemental ratio Li(Fe1−xCox)0.3As. The 
mixture is put into an alumina oxide tube and subsequently sealed in a Nb tube and placed in a 
quartz tube under vacuum. The sample is heated at 650°C for 10 h and then heated up to1000°C 
for another10 h. Finally, it is cooled down to 750°C at a rate of 2°C per hour. Crystals with a size 
up to 5 mm are obtained. The entire process of preparing the starting materials and the evaluation 
of the final products are carried out in a glove box purged with high-purity Ar gas. The molar ratio 
of Co and Fe of the LiFe1−xCoxAs single crystals is checked by energy-dispersive x-ray 
spectroscopy (EDS) at several points on one or two selected samples for each Co concentration. 
For each doping, the Co concentration measured by EDS is consistent with the nominal value. 

 

Nonmagnetic nature of Co dopants 
 
Magnetization characterization 
We measure the magnetic susceptibility of LiFe1-xCoxAs using a vibrating sample magnetometer 
with a magnetic field of 1T to study their effective magnetic moment. As shown in Fig. S1, the 
measured magnetic susceptibility for different concentrations are within the same order of 
magnitude. Their low temperature magnetization can be described by the Curie–Weiss law [31]: 

1

𝜒−𝜒0
= (𝑇 + 𝑇𝜃)/𝐶, and from the fitting parameter 𝐶 = 𝜇0𝜇𝑒𝑓𝑓

2 /3𝑘𝐵 we can extract the effective 
local magnetic moment per Fe/Co as shown in the inset of Fig. S1. We find that in contrast to the 
giant enhancement of local moment for Mn and V dopants [31,25], the local moment for LiFe1-
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xCoxAs fluctuates around 0.2µB per Fe/Co and the Co dopants do not substantially enhance the 
effective moment, thus it is more suitable to treat them as nonmagnetic impurities.  
 
 

 
Fig. S1 Temperature dependence of the dc magnetic susceptibility in a 1 T magnetic field for 
different Co concentrations. The inset shows the extracted effective local magnetic moment. 
 
First-principles calculation 
First-principles calculations were performed in the density functional theory [32,33] framework as 
implemented in the Vienna Ab initio Simulation Package (VASP) [34]. Generalized gradient 
approximation in Perdew−Burke−Ernzerhof (PBE) functional [35][36] was applied to describe 
electron exchange-correlation interaction with the projector augmented wave (PAW) potentials 
[37]. The energy cutoff was set at 500 eV.  The energies in self-consistent calculations were 
converged until 10-5 eV. Striped antiferromagnetic, ferromagnetic and non-magnetic states are 
simulated via non-collinear self-consistent calculations of √2 × √2 × 1  LiFeAs supercell for 
undoped and Co-doped, LiFe(1-x)CoxAs where x = 0.5. The Brillouin zone was sampled using a 16 
x 16 x 10 Monkhorst-Pack [38] grid.  
 
We explored the effect of Co substitution on the magnetism of LiFeAs, and investigated 
ferromagnetic (FM), striped antiferromagnetic (AFM), and nonmagnetic (NM) orientations. DFT 
calculations show that Co substitution suppresses the magnetism in LiFeAs. In Table S1, undoped 
LiFeAs have three distinct magnetic configurations – FM, AFM and NM. Striped AFM is the most 
stable magnetic orientation, with 0.156 eV and 0.167 eV per √2 supercell lower than FM and NM 
cases. The non-striped type of antiferromagnetic configuration is degenerate with the NM case. 
The system energies and magnetic moments are summarized in Table S1.  
 
However, after partial Co substitution, the system becomes unstable as the magnetic states are no 
longer distinguishable. From Table S2, we can find that the ferromagnetic states are suppressed, 
and the striped AFM states become degenerate with NM states. At concentration x = 0.5, two 
possible arrangements of Co doping arise, i.e., (i). Fe atoms with two and (ii). four nearest-
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neighbor Co atoms denoted as A1(Linear) and A2 (Alternating), respectively. The A2 
configuration is generally the preferred atomic arrangement by 0.05 eV per √2 supercell. In these 
configurations, the FM calculations converge to NM and the net magnetic moments become zero.  
 
The AFM orientations shown in Fig. S2 present two types of striped AFM, labeled as parallel and 
crossed. Parallel stripes occur when the magnetic moments are along a line of nearest-neighbor 
doped atoms having the same direction. On the other hand, in the crossed stripes orientation, the 
nearest-neighbor doped atoms have an opposite direction from each other. This is schematically 
shown in the rightmost panel of Fig. S2. Table S2 shows that the energies of both types of striped 
AFM and NM cases are degenerate.  
 
Examining the local magnetic moments, we found that Co doping reduced the magnetic moments 
of each atom as listed in Table S3. Specifically, in the linear Co doping arrangement, A1, with 
crossed stripes, the local magnetic moment of Co and Fe atoms are 0.071µB and 0.381µB, 
respectively. This is a substantial reduction as compared to the undoped LiFeAs where Fe atoms 
have a larger local magnetic moment of 1.213µB. Clearly, these results confirm that in partially 
Co-doped LiFeAs, Co dopants exhibit a non-magnetic nature. 
 
Finally, we estimate the on-site potential of Co dopants. We first calculate the orbital resolved 
DOS for LiFe0.5Co0.5As. As shown in Fig. S3, the DOS of Co 3d orbitals overlaps substantially 
with that of Fe 3d orbitals without apparent sharp bound state, indicating weak potential scattering 
nature of the Co dopants. We then calculate the "center of mass" for each partial DOS. The energy 
for the center of mass is used to estimate the on-site energy of the orbital as U=∫ 𝐷𝑂𝑆(𝐸)𝐸

+3𝑒𝑉

−6𝑒𝑉
/

∫ 𝐷𝑂𝑆(𝐸)
+3𝑒𝑉

−6𝑒𝑉
, where DOS(E) is the partial density of state as a function of E. The calculated on-

site energies for Co 3d and Fe 3d as -1.52eV and -1.09eV, respectively. The on-site potential of 
Co is then estimated by their difference to be -0.43eV, which is of the same sign and order of 
magnitude with previous on-site potential estimation [39] of Co dopants in LaOFeAs. 
 
 

Magnetic 
Orientation 

Undoped LiFeAs 

Energy (eV) Mag. (µB)  

Striped 
AFM -64.816 0.000 

FM -64.660 1.338 

NM -64.649 0.000 

   
Table S1. System energies and net magnetic moments undoped LiFeAs with different magnetic 
orientations. 
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Magnetic 
Orientation 

   Arrangement of Co and Fe atoms 

A1 - Linear A2 - Alternating 

Energy (eV) Mag. (µB) Energy  (eV) Mag.  (µB) 

FM converged to NM converged to NM 

AFM Parallel 
Stripes 

-62.812 0.000 -62.863 0.000 

AFM Crossed 
Stripes 

-62.811 0.000 -62.863 0.026 

NM -62.811 0.000 -62.863 0.000 
Table S2. System energies and net magnetic moments for partial Co substitution, x = 0.5, with 
different magnetic orientations. 
 
  

Antiferromagnetic orientation Magnetic moment per atom (µB) 

Co Concentration, 
x 

 
Fe Co 

0.0 Undoped LiFeAs 1.213 N/A 

0.5 Linear – parallel stripes 0.003 -0.003 

0.5 Linear – crossed stripes ±0.381 ±0.071 

0.5 Alternating – parallel stripes  ±0.043  0.001   

0.5 Alternating – crossed stripes    0.035 -0.022 
Table S3. Local magnetic moments of Fe and Co atoms for undoped and Co-doped LiFeAs.  
 
 
 

 
Figure S2. The non-collinear striped AFM orientations of LiFeAs with Co concentration of x = 
0.5.   The parallel and crossed AFM stripes of linearly (A1) arranged Co and Fe atoms are shown 
in (a) and (b), respectively. The 3rd and 4th panels show the alternating (A2) arrangement for (c) 
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parallel and (d) crossed AFM strips. The rightmost panel shows the schematic difference between 
crossed and parallel AFM stripes. 
 
 

 
Figure S3. Calculated orbital resolved DOS for LiFe0.5Co0.5As. 
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Theoretical simulation finite density of Co on the superconducting ground state 
T-matrix calculation  
 
We use the 𝒯-matrix approximation [26,40] generalized to the s±-wave state of the two band 
model, to study the effects of impurities on the evolution of the experimentally measured local 
DOS with a systematic Co doping. In this study we freely tuned the strength of the impurity 
potential from the weak (Born limit) to the strong (unitary limit) coupling to fit the experimental 
data. We also tested a magnetic impurity potential on the assumed s++-wave state, and found that 
the weak non-magnetic impurity scatterers on the s±-wave state can describe the experimental DOS 
𝑁(𝜔) and its evolution with Co-doping. 
 
The impurity induced self-energies are calculated with the 𝒯-matrix generalized to a two-band 
superconductivity as 
 

𝑇𝑎
𝑖(𝜔𝑛) =

𝐺𝑎
𝑖 (𝜔𝑛)

𝐷
       (𝑖 = 0,1; 𝑎 = ℎ, 𝑒)     (1) 

 
𝐷 = 𝑐2 + |𝐺ℎ

0 + 𝐺𝑒
0|

2
+ |𝐺ℎ

1 + 𝐺𝑒
1|2       (2) 

 

𝐺𝑎
0(𝜔𝑛) =

𝑁𝑎

𝑁𝑡𝑜𝑡
⟨

𝜔�̃�

√𝜔𝑛
2̃ + Δ𝑎

2̃(𝑘)

⟩       (3) 

 

𝐺𝑎
1(𝜔𝑛) =

𝑁𝑎

𝑁𝑡𝑜𝑡
⟨

Δ�̃�

√𝜔𝑛
2̃ + Δ𝑎

2̃(𝑘)

⟩      (4) 

 
 
 
where 𝜔𝑛 = 𝑇𝜋(2𝑛 + 1)  is the Matsubara frequency, and 𝑁𝑡𝑜𝑡 = 𝑁ℎ(0) + 𝑁𝑒(0)  is the total 
DOS. 𝑐 = cot 𝛿0 =

1

𝜋𝑁𝑡𝑜𝑡𝐼𝑖𝑚𝑝
 is a convenient measure of scattering strength 𝐼𝑖𝑚𝑝, with 𝑐 = 0 for 

the unitary limit and 𝑐 > 1 for the Born limit scattering. ⟨… ⟩ denotes the Fermi surface average. 
The subscript 𝑎 stands for the electron band and hole band, respectively, and the superscript 𝑖 
stands for the normal (𝑖 = 0) and anomalous (𝑖 = 1) part of Green's functions, respectively. 
 
The above four 𝒯-matrices, 𝒯𝑎

𝑖, are numerically solved and the corresponding impurity induced 
self-energies are obtained as  
 

Σℎ,𝑒
0,1(𝜔𝑛) = Γ ⋅ Tℎ,𝑒

0,1(𝜔𝑛),   Γ =
𝑛𝑖𝑚𝑝

𝜋𝑁𝑡𝑜𝑡
      (5) 
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where Γ is the impurity concentration parameter with 𝑛𝑖𝑚𝑝 the impurity density per unit cell. The 
normal/amomalous self-energy corrections to the Green's functions are then: 
 

𝜔�̃� = 𝜔𝑛 + Σℎ
0(𝜔𝑛) + Σ𝑒

0(𝜔𝑛)      (6) 
 

Δℎ,�̃� = Δℎ,𝑒 + Σℎ
1(𝜔𝑛) + Σ𝑒

1(𝜔𝑛)      (7) 
. 
The important part for an impurity bound state is 𝐷 in Eq.(2). Being a denominator of 𝒯-matrices, 
𝒯𝑎

𝑖, it signals a formation of a bound state when it goes to zero; otherwise, no bound state exists. 
The last term in 𝐷, namely, |𝐺ℎ

1 + 𝐺𝑒
1| would exactly vanish for a d-wave superconductor because 

the FS average over the d-wave order parameter becomes zero, hence a zero energy bound state 
forms when 𝑐 = 0. For the s±-wave case, a cancellation still occurs because 𝐺ℎ

1  and 𝐺𝑒
1  have 

opposite signs. However, this cancellation is never perfect unless |Δ𝑒| = |Δℎ|  and 𝑁ℎ(0) =
𝑁𝑒(0) . With an incomplete cancellation, this finite remnant |𝐺ℎ

1 + 𝐺𝑒
1|  acts as a weakening 

impurity scattering strength (increasing the effective value of 𝑐). Therefore, the impurity bound 
state in the s±-wave state forms at finite energies symmetrically split relative to the zero energy 
even with unitary impurity 𝑐 = 0. Decreasing the impurity scattering strength towards a Born 
limit, these split in-gap bound states move towards the gap edges and merge to the quasi-particle 
continuum.  
 
By fitting the experimental DOS (we use NL=Ne, and NS=Nh as in the main text), we can effectively 
determine the nature of the impurities and its coupling strength. We set realistic parameters: DOS 
ratio: NL/NS=2.5; gap size ratio: ΔS/ΔL=-0.55, with a sign reversal; the scattering rate is set to be 
proportional to the Co concentration with a small offset: /ΔL0=0.05+0.4(x/xC) where xC=16%; 
and ΔL=ΔL0(xC-x)/xC in reference to Fig. 4a. Figure S4 shows the quantum many body self-energy 
(the imaginary part) for different Co concentrations at the Born limit. 
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Figure. S4 Nonmagnetic impurity induced many-body self-energies (imaginary part) for different 
concentrations at the Born limit. The dashed lines illustrate the reduction of the two gaps. 
 
 
Bogoliubov–de Gennes self-consistent calculation 

Two-orbital model  

We adopted a two-orbital tight-binding model proposed in Ref. 28. Based on this model, there are 
many numerical results [41-44] consistent with experiments. Thus, this model may be a starting 
point to study the low-energy excitations for the iron-based superconductors. Here we also apply 
this model while considering the results from the photoemission experiment and the first-principles 
calculations in Co-doped LiFeAs.  

This model is given by 

𝐻 = − ∑ (𝑡𝑖𝜇𝑗𝜈𝑐𝑖𝜇𝜎
† 𝑐𝑗𝜈𝜎 + 𝐻. 𝑐. ) − 𝜇𝑐 ∑ 𝑐𝑖𝜇𝜎

† 𝑐𝑖𝜇𝜎

𝑖𝜇𝜎𝑖𝜇𝑗𝜈𝜎

+ ∑ (𝛥𝑖𝜇𝑗𝜈 𝑐𝑖𝜇𝜎
† 𝑐𝑗𝜈�̅� 

† + 𝐻. 𝑐. ) + 𝑈 ∑ 〈𝑛𝑖𝜇𝜎〉𝑛𝑖𝜇𝜎

𝑖𝜇𝜎≠𝜎

+ 𝑈′ ∑ 〈𝑛𝑖𝜇𝜎〉

𝑖,𝜇≠𝜈,𝜎≠𝜎𝑖𝜇𝑗𝜈𝜎

𝑛𝑖𝜈𝜎

+ (𝑈′ − 𝐽𝐻) ∑ 〈𝑛𝑖𝜇𝜎〉𝑛𝑖𝜈𝜎

𝑖,𝜇≠𝜈,𝜎

+ ∑ 𝑉𝑖𝑚𝑝

𝑖𝑚𝜇𝜎

𝑐𝑖𝑚𝜇𝜎
† 𝑐𝑖𝑚𝜇𝜎 

(8) 
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Where 𝑖 = (𝑖𝑥, 𝑖𝑦), 𝑗 = (𝑗𝑥, 𝑗𝑦) are the site indices in two-dimensional plane,  𝜇, 𝜈 = 1, 2 are the 
orbital indices, and 𝑛𝑖𝜇𝜎  is the density operator at site 𝑖  and orbital 𝜇 , 𝑈 (𝑈′)  is the on-site 
intraorbital (interorbital) Coulomb interaction and 𝐽𝐻 is the Hund’s rule coupling. The quantity 𝑈′ 
is taken to be 𝑈 − 2 𝐽𝐻, assuming the orbital rotation symmetry [43]. For a nonmagnetic impurity 
located at site 𝑖𝑚, we consider the intra-orbital scattering with the strength 𝑉𝑖𝑚𝑝. In addition, 𝜇𝑐 is 
the chemical potential, which is determined by the electron filling, corresponding to different 
doping level 𝑥.  Considering the two-orbital tight-binding model here, 𝑥 is related to the band 
filling as  𝑛 = 2 + 𝑥. The hopping constants 𝑡𝑖𝜇𝑗𝜈 are chosen as follows:  

𝑡𝑖1,𝑖±�̂�1 =  𝑡𝑖2,𝑖±�̂�2 = 𝑡1, 

𝑡𝑖1,𝑖±�̂�1 =  𝑡𝑖2,𝑖±�̂�2 = 𝑡2, 

𝑡𝑖𝜇,𝑖±(�̂�+�̂�)𝜇 =  
1 + (−1)𝑖

2
𝑡3 +

1 − (−1)𝑖

2
𝑡4, (9) 

𝑡𝑖𝜇,𝑖±(�̂�−�̂�)𝜇 =  
1 + (−1)𝑖

2
𝑡4 +

1 − (−1)𝑖

2
𝑡3, 

𝑡𝑖𝜇,𝑖±�̂�±�̂�𝜈 =  𝑡5, (𝜇 ≠ 𝜈 ) 

The mean-field Hamiltonian can be diagonalized by solving the Bogoliubov-de-Gennes (BdG) 
equations,  

𝐻 = ∑ ∑ (
𝐻𝑖𝜇𝑗𝜈𝜎       𝛥𝑖𝜇𝑗𝜈 

 𝛥𝑖𝜇𝑗𝜈
∗     − 𝐻𝑖𝜇𝑗𝜈𝜎

∗ ) (
𝑢𝑗𝜈𝜎

𝑛

𝑣𝑗𝜈𝜎
𝑛 )

𝜈

= 𝐸𝑛 (
𝑢𝑖𝜇𝜎

𝑛

𝑣𝑖𝜇𝜎
𝑛 )

𝑗

(10) 

where  

𝐻𝑖𝜇𝑗𝜈𝜎 = −𝑡𝑖𝜇𝑗𝜈 + (𝑈 〈𝑛𝑖𝜇𝜎〉 + (𝑈 − 2 𝐽𝐻)〈𝑛𝑖𝜇 𝜎〉 + (𝑈 − 3 𝐽𝐻)〈𝑛𝑖𝜇𝜎〉 + 𝑉𝑖𝑚𝑝𝛿𝑖,𝑖𝑚
− 𝜇𝑐)𝛿𝑖𝑗𝛿𝜇𝜈 (11) 

and  

𝛥𝑖𝜇𝑗𝜈 =
𝑉𝑖𝜇𝑗𝜈

4
∑(𝑢𝑖𝜇↑

𝑛 𝑣𝑗𝜈↓
𝑛∗ + 𝑢𝑗𝜈↑

𝑛 𝑣𝑖𝜇↓
𝑛∗ ) tanh (

𝐸𝑛

2𝑘𝐵𝑇
)

𝑛

(12) 

〈𝑛𝑖𝜇↑〉 =  ∑|𝑢𝑖𝜇↑
𝑛 |

2
𝑓(𝐸𝑛)

𝑛

(13) 

〈𝑛𝑖𝜇↓〉 =  ∑|𝑣𝑖𝜇↓
𝑛 |

2
(1 − 𝑓(𝐸𝑛))

𝑛

(14) 

〈𝑛𝑖𝜇〉 = 〈𝑛𝑖𝜇↑〉 + 〈𝑛𝑖𝜇↓〉 (15) 
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here, 𝑓(𝐸𝑛) is the Fermi-Dirac distribution function, and 𝑉𝑖𝜇𝑗𝜈 is the pairing strength.  Here we 
consider the 𝑠±- wave symmetry (see main text) and choose the next-nearest-neighbor (NNN) 
intraorbital pairing with strength 𝑉𝑖𝜇𝑗𝜈 = 𝑉𝑖𝑗 = 𝑉𝑁𝑁𝑁 as a constant [21-26, 44]. In addition, we 
define the local magnetization and 𝑠±- wave projection of the superconductivity order parameter 
at each site 𝑖, respectively as: 𝑚𝑖 =

1

2
∑ (〈𝑛𝑖𝜇↑〉 − 〈𝑛𝑖𝜇↓〉)𝜇 , Δ𝑖 =

1

8
∑ Δ𝑖𝜇,𝑖+𝛿𝜇 𝜇𝛿 , where 𝛿 =  ±�̂� ±

�̂�. When determining the strength of the pairing symmetry for a given different doping level 𝑥, we 
take an average over the whole lattice positions and disorder configurations for each local pairing 
amplitude shown in Eq. (12).  

Throughout this work, the energies are measured in units of 𝑡1, the temperature is set to be 𝑇 =
0.0001, the hopping constants are chosen as 𝑡1−5 = (1, 0.7, 0.5, −2.0, 0.16). The band energy and 
fermi surface without interaction has been depicted in Fig. S5. With electron doping the Fermi 
surface nesting condition is enhanced, consistent with the photoemission data in Ref. 9. The 
intraorbital Coulomb interaction 𝑈  and the pairing strength 𝑉𝑁𝑁𝑁  are set to be 3.4  and 1.4 , 
respectively, the Hund’s rule coupling 𝐽𝐻 = 𝑈/4 . Based on our first-principles calculation 
mentioned above, the on-site potential of Co is estimated to be as weak as -0.43eV. In model 
calculation, a further renormalization factor around 2 is often used to taking the correlations into 
account [19]. Thus here  𝑉𝑖𝑚𝑝 is set to be -2 (which amounts to ~ -0.2eV much smaller than the 
total bandwidth ~1.2eV in the model). With these realistic parameters, we calculated the BdG 
equations self-consistently with different doping level. The numerical calculations are performed 
on a 28 × 28  square lattice with periodic boundary conditions. At each doping level, the 
calculations are performed on 25 different configurations, in each of which Co dopants are 
distributed randomly and homogeneously. Co dopants not only provide the onsite scattering, but 
also contribute extra electrons into the system. With these considerations, we obtain the linear 
decreasing trend of the superconductivity order parameter with increasing Co concentration, as 
shown in Fig. 4. To investigate the local dopant effect, we calculate the local DOS at 𝑥 = 1% 
around the Co dopant, and compare the results with that far away from the dopant (Fig. S6). The 
LDOS can be expressed as 

𝜌𝑖(𝜔) = ∑ [|𝑢𝑖𝜇𝜎
𝑛 |

2
𝛿(𝐸𝑛 − 𝜔) + |𝑣𝑖𝜇𝜎

𝑛 |
2

𝛿(𝐸𝑛 + 𝜔)]

𝑛,𝜇

 (16) 

where the 𝛿  function is taken as Γ/𝜋(𝑥2 + Γ2), with the quasiparticle damping Γ = 0.003. In 
addition, the averaged DOS at each doping level are calculated. A 32 × 32 supercell is used to 
calculate the averaged DOS. 
 
In the presence of a magnetic field 𝐵 perpendicular to the plane, the hopping integral can be 
expressed as 𝑡𝑖𝜇𝑗𝜈

′ = 𝑡𝑖𝜇𝑗𝜈 exp [𝑖(𝜋/Φ0) ∫ 𝐴(𝑟) ⋅ 𝑑𝑟
𝑗

𝑖
], where Φ0 = ℎ𝑐/2𝑒 is the superconducting 

flux quantum, and 𝐴(𝑟) = (−𝐵𝑦, 0, 0)  is the vector potential in the Landau gauge. In our 
calculation, magnetic unit cells are introduced where each unit cell accommodates two 
superconducting flux quantum and the linear dimension is 𝑁𝑥 × 𝑁𝑦 = 64 × 32 . A 16 × 32 
supercell is used to calculate the local density of states. The vortex core state is shown in Fig. S6 
inset.   
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Figure S5. The two-orbital model calculated band structure (left) and Fermi surface (right) for 
LiFeAs. 
 

 
Figure S6. The two-orbital model calculated single Co impurity effect and vortex core states. 
 
 
Five-orbital model  

We use the tight binding model as deduced earlier from spectral positions of the band structure as 
measured in photoemission [45]. This model was obtained by fitting the symmetry allowed 
hoppings [46] at short ranges such that the orbital content at the Fermi level matches experimental 
evidences as well. The band structure and the Fermi surface of that model for the pristine LiFeAs 
is presented in Fig. S7. The superconducting order parameter has been obtained self-consistently 
using a real space implementation of the BdG approach using pairing interactions in real space 
(where the pairing has been cut at a distance of three lattice spacings in x and y direction) that have 
been calculated from a modified spin-fluctuation approach [47] within the same tight binding 
model. Upon Co doping, the pairing interaction itself is kept constant. For the homogeneous case 
one obtains a superconducting order parameter with a structure as shown in Fig. S8 (where the real 
space structure, its Fourier transform and the corresponding projection to the Fermi surface is 
presented). Next, random impurity configurations are taken to simulate Co substituting for Fe in 
the system. The impurity potential is chosen to be V imp = −0.15eV, which is in agreement with 
the value as found from ab initio calculations by taking into account a 
quasiparticle renormalization factor of Z=1/2 [19]. 
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Figure S7. Bands along high symmetry directions together with the orbital character (left) and 
Fermi surface of the 2D version of the electronic structure (middle) and gap structure (right) for 
LiFeAs. Color code: red dxz, green dyz, blue dxy, black (other).  

 

 

Figure S8. Plot of the mean fields as obtained in the self-consistent calculation of a homogeneous 
system. Structure of gap for all combinations of the orbitals in the real space (a) and in momentum 
space (b). Projection of the order parameter in band space shown on the Fermi surface.  

 

Further discussion of pairing on the bulk Dirac bands 
 
In addition, the electron doping also causes the system’s Fermi level to cross the bulk Dirac cone 
(Fig. 2a inset) and there will be two corresponding spherical Fermi surfaces along the Γ-Z direction 
[12]. Due to the intrinsic orbit-momentum locking in such Fermi surfaces [48,49], its gap function 
can be either nodeless or nodal. When we assume its pairing is induced from the s± state of the 
ordinary bands, the most natural pairing on the bulk Dirac bands should be spin-singlet and intra-
orbital, which is a s-wave gap. In principle, the spin triplet inter-orbital pairing is also allowed for 
the bulk Dirac Fermi surfaces, and the associated gap function has point nodes along the kZ axis 
[48,49], which is incompatible with the s± gap function. The frustration in pairing symmetry, in 
this case, can suppress the Cooper pairing, and its impact can be non-monotonic when the Fermi 
level systematically crosses the bulk Dirac cone via Co doping. However, experimentally both the 
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gap and TC are linearly suppressed, which does not directly support the latter case. Therefore, we 
conclude that the main source of the linear TC reduction may still come from a finite density of 
nonmagnetic scatters in a s± superconductor. 
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Abstract 

Understanding the origin of the magnetism of high temperature 

superconductors is crucial for establishing their unconventional pairing 

mechanism. Recently, theory predicts that FeSe is close to a magnetic 

quantum critical point, and thus weak perturbations such as impurities could 

induce local magnetic moments. To elucidate such quantum instability, we 

have employed scanning tunneling microscopy and spectroscopy. In 

particular, we have grown FeSe film on superconducting Pb(111) using 

molecular beam epitaxy and investigated magnetic excitation caused by 

impurities in the proximity-induced superconducting gap of FeSe. Our study 

provides a deep insight into the origin of the magnetic ordering of FeSe by 

showing the way local magnetic moments develop in response to impurities 

near the magnetic quantum critical point. 

 

PACS number: 74.25.Dw, 07.79.Cz, 68.35.Rh 
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FeSe presents intriguing properties in terms of the interplay among the lattice, 

charge, and spin degree of freedom. Its nematic phase transition occurs at TS = 90 K, 

below which the C4 lattice symmetry is reduced to C2 symmetry [1-3]. Unlike other 

iron-based superconductors, however, the long-range magnetic ordering is absent in 

FeSe down to the superconducting transition temperature Tc = 8 K for bulk material, 

making the degree of freedom that drives the nematic order ambiguous among 

lattice, charge, and spin [3-10]. 

 

Although long-range magnetic ordering is absent in FeSe, there are experiments that 

suggest the ground state of FeSe is close to the magnetic quantum phase transition 

point. First of all, the hydrostatic pressure of ~1 GPa readily induces static stripe 

antiferromagnetic (AFM) orders in FeSe which are typically observed in other iron-

based superconductors [11-14]. There is also evidence of local magnetism in FeSe. 

For example, a muon spin resonance (SR) study of FeSe0.85 measured an 

exponential decay of the muon polarization, which might hint at the presence of 

randomly oriented local magnetic moments [15]. The magnetostriction and 

susceptibility experiment shows strong in-plane anisotropy in FeSe, inferring the 

coupling of the local magnetic ordering and spin-orbit coupling [16]. Recently, a 

scanning tunneling microscopy (STM) study observed a signature of local spin 

fluctuations near the Fe defect in multi-layer FeSe on SrTiO3 substrate [17]. Such 

magnetic instability, as pointed out in recent theory papers, suggests the possibility 

that the magnetism can be triggered by impurities in FeSe [18,19].  

 

Despite intensive efforts in understanding the magnetism in FeSe, the direct 

observation of local magnetic moments emerging from impurities, which results from 
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the quantum instability, has been challenging mostly owing to the lack of spatial 

magnetic resolution in the experiments. Here, we use a novel experimental approach 

to investigate the impurity-induced local magnetic moments in FeSe. Using 

molecular beam epitaxy (MBE), we grow FeSe film on Pb(111) substrate which is 

known to be an s-wave superconductor. We have observed a clear signature of the 

s-wave superconducting gap on the FeSe film, which is proximity-induced from the 

Pb substrate. When local magnetic moments develop near crystalline imperfections, 

they respond to the s-wave superconductivity giving rise to Cooper pair breaking. 

This leads to a strong bound state known as Yu-Shiba-Rusinov (YSR) excitation 

within the superconducting gap [20-24]. We used these YSR excitations as probes of 

induced magnetic moments in FeSe. Thanks to the extreme sensitivity of 

superconductivity to magnetism, the energy and spatial resolutions in our study for 

observing the local magnetic moments are unprecedented. All data are taken at the 

temperature of 4.3 K in the experiment. 

 

In the growth of FeSe, we first grew a single layer (SL) of PbSe on Pb(111). We then 

deposited Fe atoms on the PbSe at 490 K, which resulted in the formation of FeSe 

islands on Pb(111) (see Supplemental Material for detail). Figure 1a shows a typical 

STM image of the FeSe island grown on Pb(111). The FeSe island is surrounded by 

the PbSe layer and several bare Pb patches whose identity is confirmed by scanning 

tunneling spectroscopy (STS). The hexagonal-shaped defects in the island and near 

the island are Ar gas bubbles trapped inside the Pb substrate, which are introduced 

during the Ar gas sputtering process for cleaning the substrate [25]. The inset shows 

the atomic structure of FeSe. A rectangular lattice structure is clearly resolved and is 

distinguished from the crystal structure of Pb(111).  
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Figure 1b shows the Fourier transform (FT) of the topography of the FeSe. The 

strong lattice peaks are present at the position of (kx, ky) = (±1.2, ±1.2) Å-1, whose 

numbers translate into the lattice constant of 3.7 Å. Figure 1c depicts the atomic 

model of FeSe forming tri-layer (TL) structure. The blue-filled circles, the red-filled 

circles, and the blue open circles represent the Se atoms in the top layer, the Fe 

atoms in the middle layer and the Se atoms in the bottom layer, respectively. As 

STM mostly measures the top-most Se atoms [26], the obtained lattice structure 

should conform to the Se lattice in the top layer (sold box in Fig. 1c). For bulk FeSe, 

the Se lattice constant is known to be ~ 3.75 Å [27-29], which agrees well with the 

measured value. 

 

The apparent height of FeSe islands with respect to the Pb substrate is found to be ~ 

1.7 Å (Fig. 1d). This is smaller than the 1 TL of bulk FeSe (~ 5.33 Å), indicating that 

most of the FeSe is embedded inside Pb. Similar growth has been reported when 

FeSe film is grown on soft substrates [30-32]. The lattice modeling of FeSe and Pb 

estimates the thickness of our FeSe is 3 TL (see Supplemental Material) although it 

cannot be precisely determined by STM. A Moiré pattern found in the FeSe (Fig. 1a), 

which is due to the lattice mismatch between FeSe and Pb(111), confirms that the 

FeSe is in the thin film limit. 

 

To study the electronic property of the FeSe, we performed a differential 

conductance (dI/dV) spectroscopy using a standard lock-in technique [25]. To 

maximize the energy resolution in measuring dI/dV spectrum at our experiment 

temperature, we used a Pb-coated superconducting tip [21,25]. Figure 1e shows the 
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dI/dV spectra measured in the FeSe and Pb. For the FeSe spectrum, there is a 

characteristic peak near the bias voltage (Vbias) of -0.3 V, which is consistent with the 

spectra of FeSe in literature [29,33].  

 

When the spectrum is zoomed in around the Fermi energy, a superconducting gap is 

found (the inset of Fig. 1e). According to following three facts, we conclude that the 

superconductivity of our FeSe is proximity-induced from the Pb substrate. First, the 

superconducting coherence length (ξ) of Pb (~ 830 Å) is much larger than the 

thickness of the FeSe (~ 16 Å for 3 TL). Second, the gap is fully developed revealing 

the s-wave nature in superconductivity. Third, the phonon peaks associated with Pb 

superconductivity are clearly seen in the spectrum of FeSe (marked by arrows in the 

inset of Fig. 1e) [34,35]. No hint of unconventional superconductivity is observed. 

The gap size (4.6 meV) is twice that of the Pb superconducting gap (2Δ ≈ 2.3 meV) 

because the tip is coated with Pb. Under the Tc of Pb superconductivity (~ 7.2 K), all 

electrons of FeSe are forced to participate in the proximity-induced s-wave pairing. 

Any electron pairs which are not in a time reversal symmetry (TRS) relationship will 

form YSR excitation states within the superconducting gap [20,21,36].  

 

We have investigated the response of FeSe to proximity-induced s-wave 

superconductivity. Figure 2b shows spectra measured at different FeSe sites marked 

with A, B, C, and R in Fig. 2a. The spectrum on PbSe (Position R) is first measured 

as a reference because PbSe is not an intrinsic superconductor and thus its 

superconductivity is undoubtedly induced by proximity to the Pb. Remarkably, the 

spectrum measured inside the FeSe island (Position B) exhibits no YSR excitation, 

indicating that the expected magnetic moment 〈M𝑖〉 is zero for the ground state, 
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where 𝑖 is the site index for Fe atoms. This is direct microscopic evidence of the 

absence of static magnetic ordering in FeSe. In contrast to the spectrum at B, the 

spectra measured at the boundary of the FeSe island (Position A and C) show 

strong YSR excitation states, suggesting local magnetic moments are developed 

along the boundary. Therefore, it should be remarked that FeSe itself is far from non-

magnetic although its ground state preserves TRS [9,12,13,37-39]. Figure 2c 

displays the dI/dV plot along the dashed line marked in Fig. 2a. We barely observed 

a variation in superconductivity inside the FeSe island. 

 

To study the impurity-induced quantum instability in FeSe, we have deposited Ag 

atoms onto the sample at 20 K (Fig. 3a). The height of Ag atoms is ~ 0.7 Å on the 

FeSe (Fig. 3b). By careful FT analysis, we determined that the Ag atoms are located 

on the center of top Se lattice in the FeSe (Fig. 3c and also see Supplemental 

Material). Non-magnetic atoms, such as Ag, will not break TRS and thus the s-wave 

superconductivity should not respond to them. Accordingly, the dI/dV spectrum of the 

Ag atom on the Pb surface exhibits no YSR excitation (Fig. 3d). We only observed a 

slight variation in gap size, which might be related to the double Fermi surface of Pb 

but is not caused by magnetism [40]. By contrast, when we measured the dI/dV 

spectrum on the Ag atom placed on the FeSe, strong YSR excitation is detected, 

showing that local magnetic moments are developed (also see Supplemental 

Material). It is remarkable that such non-magnetic atoms induce local magnetism in 

FeSe. This supports the assertion that the ground state of FeSe is near a magnetic 

quantum critical point. 
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To understand the pattern of local magnetic moments, we measured dI/dV maps at 

the various energies (E = eVbias) of YSR states. Figure 3e shows the topography of 

the Ag atom and simultaneously obtained dI/dV maps. The most striking feature in 

the dI/dV maps is the splitting of the dI/dV patterns. The dI/dV patterns at E = -1.85 

meV and E = -1.3 meV are split along up-and-down. The dI/dV pattern at E = 1.48 

meV is slightly tilted from the up-and-down splitting. These are representative 

magnetic patterns induced by Ag atoms in FeSe (see Supplemental Material). 

 

Three notable features are present regarding the magnetic patterns. First, the 

tendency of splitting is the same among the Ag atoms placed on the FeSe in Fig. 3a. 

No Ag atom showed a splitting along the left-and-right. This symmetry breaking can 

be attributed to the nematic order in our FeSe. Second, the in-gap states are strongly 

localized near the Ag atom. We barely observed long-range magnetic ordering near 

the Ag atom, which is in contrast to the STM experiment in which Fe defects of FeSe 

are argued to pin the long-range charge oscillations associated with (, 0) spin 

fluctuations [17]. Third, the magnetic patterns only satisfy C2 symmetry. They do not 

follow the full symmetry of the crystal lattice, which implies there is a hidden rule that 

restricts the symmetry of magnetic patterns. 

 

Before proceeding further, the reliability of the C2 symmetry of the magnetic patterns 

is discussed. We have found that the direction of Moiré pattern does not match the 

splitting direction of the magnetic patterns (see Supplemental Material). This 

excludes the Moiré pattern as a possible origin of the splitting. The magnetic patterns 

varied slightly depending on the Ag atom, but the overall C2 symmetry was 
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maintained for the majority of Ag atoms we measured in the experiment (see 

Supplemental Material). 

 

Recent theory predicts that the local magnetic moments in FeSe reflect the 

momentum structure of the magnetic fluctuations in the bulk [19]. To confirm this, we 

compared the measured magnetic patterns with two bulk   models for FeSe in terms 

of symmetry. Figure 3f shows the collinear AFM (cAFM) model (left panel) and the 

Néel AFM model (right panel). The cAFM model preserves the C2 symmetry of FeSe, 

which agrees with our magnetic patterns. The Néel AFM model can be ruled out 

because it does not have C2 symmetry and it has a definite mirror symmetry plane 

(the dashed line in Fig. 3f) that contradicts the symmetry of the magnetic patterns at 

E = -1.85 meV and E = -1.3 meV. Therefore, the magnetic patterns observed in the 

experiment reflect the symmetry of the (, 0) AFM ordering. Note that the spin angle 

of 45° in our models is supported by recent SR measurement [41]. For the spin 

angle of 0° which is another high symmetry direction, however, the magnetic 

patterns are also consistent with the symmetry of the cAFM ordering (see 

Supplemental Material). 

 

Now we turn to a discussion of the origin of impurity-induced local magnetic 

moments in FeSe. Electron interactions are strong in FeSe and almost drive the 

material magnetism. A recent theoretical study, based on a multi-orbital Hubbard 

model with a band structure relevant for FeSe, mapped out the phase diagram of 

local impurity-induced magnetism [19]. Importantly, as shown in Ref. [19] the orbital-

selectivity characteristic of Hund’s metals [27,42] is directly imprinted on the local 

impurity-induced order, yielding local (, 0) AFM structure versus (, ) AFM local 
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order when orbital-selectivity is included or disregarded, respectively. These 

calculations reveal that strongly anisotropic magnetic fluctuations dictate the detailed 

structure of induced local magnetic order [19]. A similar transmutation of the 

structure of the bulk magnetic fluctuations and superconducting pairing, takes place 

when including orbital selectivity [39,43,44]. While the results from Ref. [19] focused 

on impurities centered on Fe sites, we show in Supplemental Material (Note S2) that 

Se-centered disorder (like Ag) also induce local (, 0)-structured magnetic order. In 

addition, we have applied the same theoretical machinery to sample edges, and 

found that FeSe is very susceptible to induce magnetism strongly localized near the 

edges (Note S2 in Supplemental Material), in agreement with the STM findings 

reported here.       

 

We occasionally found a dumbbell-shaped local defect in the FeSe before the 

deposition of Ag atoms (Fig. 4a). The center of the defect is located at the Fe site as 

guided by the two dashed lines depicted in Fig. 4a, suggesting it is an Fe vacancy 

[45-47]. When the dI/dV spectrum is measured off the Fe defect, no YSR excitation 

is observed. However, when it is measured on the defect, strong YSR excitation is 

observed, indicating that an Fe defect also induces local magnetic moments in FeSe.  

 

Figure 4c-f shows the topography of the Fe defect and simultaneously measured 

dI/dV maps. The dashed line depicted in Fig. 4e represents the mirror symmetry 

plane imposed by the crystal lattice. The topography is naturally symmetric with 

respect to this mirror symmetry (Fig. 4c). Interestingly, the magnetic patterns (Fig. 

4d-f) are not symmetric under the mirror operation [17,42]. Recent theory shows that 

orbital-selectivity can give rise to chiral patterns in the conductance maps from local 
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magnetic ordering near Fe defects, upon which the mirror symmetry is broken [19]. 

In fact, Fig. 4d shows the axis of the magnetic pattern (yellow dotted line) is tilted 

from the mirror symmetry axis according to the theory. We find that the observed 

magnetic patterns are again consistent with the symmetry of the cAFM model. Figure 

4g shows the cAFM model with the Fe defect. The cAFM ordering directly breaks the 

mirror symmetry of the crystal lattice. Furthermore, the cAFM ordering breaks the C2 

symmetry of FeSe when a defect exists in the Fe site, which is in contrast to the 

case of the Ag on FeSe. Two green-colored sites in Fig. 4g are then no longer 

equivalent in terms of symmetry. In the experiment, the magnetic excitation at these 

sites indeed appears at different energies as shown in Fig. 4e and 4f. 

 

Our STM experiment provides a novel method to study local magnetism in correlated 

superconductors, here exemplified through FeSe. The results lead to several 

important remarks. First, the magnetic quantum phase transition by non-magnetic 

impurities is microscopically observed in FeSe. Second, we show that the magnetic 

patterns of the local magnetic moments are consistent with the (, 0) AFM phase, 

implying that the orbital-selectivity is at play. Third, our experiment reveals the 

magnetic characteristics of impurities in FeSe. The s± superconductivity responds to 

both magnetic and non-magnetic impurities, whereas the s++ superconductivity only 

responds to magnetic impurities [24,48]. It is therefore important to characterize the 

magnetic property of impurities before they are used to probe the symmetry of 

superconductivity. Our experiment unambiguously reveals that the crystalline defects 

like crystal boundary and Fe vacancy are magnetic in FeSe. Furthermore, it should 

be noted that the local magnetism could also be induced by non-magnetic impurities 

in FeSe. 
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The data analysis described here is based on a simple and powerful symmetry 

argument. A theoretical work deserving further investigation is identifying the Fe 

orbitals responsible for each magnetic pattern observed in the experiment. This will 

reveal the origin of the local magnetism in FeSe in conjunction with the orbital-

selectivity. In future STM works, it will be interesting to study how the local 

magnetism develops into the bulk magnetism when the Ag impurities form networks, 

which can be accomplished by the STM atom manipulation. Nearby, it might be 

possible to detect strong orbital-selective spin fluctuations through inelastic tunneling 

spectroscopy (IETS), which could be in turn related to the anisotropic Cooper pairing 

in FeSe. 
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Figure 1. (a) The topography of FeSe island grown on Pb(111). Vbias = -0.1 V and I = 

50 pA. The inset shows the atomically resolved image. Vbias = -50 mV and I = 50 pA. 

b) Fourier transform of the FeSe image. (c) Atomic model of the FeSe that consists 

of tri-layer. The solid box represents the Se lattice in the top layer. (d) The height 

profile along the vertical line in (a). (e) The dI/dV spectra measured in the FeSe 

island and bare Pb. Vbias = -1 V and I = 50 pA. Lock-in modulation: frequency f = 

463.0 Hz and root-mean-square (rms) amplitude Vrms = 10 mV. The inset shows the 

spectra around the Fermi energy. Vbias = -15 mV and I = 50 pA. Lock-in modulation: f 

= 463.0 Hz and Vrms = 0.3 mV. The arrows indicate the phonon peaks derived from 

the Pb superconductivity. 
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Figure 2. (a) The topography of FeSe grown on Pb(111) substrate. Vbias = -0.1 V and 

I = 50 pA. (b) The dI/dV spectrum measured at Point B marked in (a) shows no in-

gap states excitation compared to the reference spectrum measured at point R. 

When measured at the edges of the FeSe island (Point A and C), strong in-gap 

states excitation is observed. Vbias = -3.0 mV and I = 50 pA. Lock-in modulation: f = 

463.0 Hz and Vrms = 60 µV. Because the Pb-coated superconducting tip is used in 

the experiment, the coherent peaks are located at E = ± 2Δ. The broad peak around 

Vbias = 0 mV is due to the thermal effect at 4.3 K. (c) Line dI/dV spectroscopy 

measured along the dashed line marked in (a). 
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Figure 3. (a) Topography of Ag atoms on the FeSe and Pb surfaces. The Moiré 
pattern is seen in the FeSe along diagonal direction. Vbias = -0.1 V and I = 50 pA. (b) 
The height profile along the dashed line in (a). (c) The Ag atom (orange ball) is 
placed on the center of top Se lattice. (d) The Ag atom on bare Pb surface do not 
show in-gap states excitation. By contrast, the Ag atoms on the FeSe show strong 
in-gap states excitation. Vbias = -3.0 mV and I = 50 pA. Lock-in modulation: f = 463.0 
Hz and Vrms = 60 µV. (e) Topography of the Ag atom and the dI/dV maps (size: 9.5 Å 
x 9.5 Å). (f) Two spin models; collinear AFM model preserves the C2 symmetry 
imposed by the lattice, as indicated by the dotted arrow. The Néel AFM model 
breaks the C2 symmetry while it maintains mirror symmetry marked with the dashed 
line. 
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Figure 4. (a) Topography of a dumbbell-shaped defect in the FeSe. Vbias = -30 mV 

and I = 50 pA. (b) On the defect site, strong in-gap states excitation is observed. No 

in-gap states excitation is present off the defect site. Vbias = -3.0 mV and I = 50 pA. 

Lock-in modulation: f = 463.0 Hz and Vrms = 60 µV. (c) A zoomed-in image of the Fe 

defect. The dashed line represents the mirror symmetry plane in topography. (d-f) 

The dI/dV maps at the energy of in-gap states. The yellow dashed line in (d) denotes 

the axis of the magnetic pattern. (g) The collinear AFM model breaks the C2 

symmetry around the defect as well as the mirror symmetry. 
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Note S1. Growth of FeSe on Pb(111) substrate.  
We grew the FeSe film on Pb(111) substrate in a molecular beam epitaxy (MBE) 

chamber under ultra-high vacuum (UHV) condition. First, the substrate was cleaned 

by repeated cycles of 2 kV Ar+ sputtering for 10 minutes in Ar pressure of 4.5 x 10-5 

torr and annealing at 500 K for 12 minutes (min). To form a single layer of PbSe on 

Pb(111), we evaporated Se atoms for 200 seconds (s) with the speed of ~1 Å/min 

onto the substrate at 490 K. The sample was then cooled down to 300 K. 

Subsequently, we heated the sample to 490 K again and Fe atoms were deposited 

onto the sample for 100 s with the speed of ~1 Å/min. After the Fe deposition, the 

sample was cooled down to 300 K. The examples of grown FeSe film are provided in 

Fig. S1. 

 During the growth of FeSe, Se atoms are supplied from the PbSe layer, 

which induces the exposure of Pb surface. We observed such Pb surface next to the 

grown FeSe film and near the step edges of PbSe layer.  

 

 
Figure Note S1. The exposure of Pb surface by the growth of FeSe. The growth of 

FeSe leads to exposure of Pb surface from PbSe because Se atoms needed for the 

growth are supplied from the PbSe. 
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Figure S1. Examples of FeSe islands grown on Pb(111) substrate. The size of 

the grown FeSe islands is typically less than 200 Å x 200 Å. The islands larger than 

this size was rarely found in our growth condition. (a-c) The Moiré pattern depends 

on the relative crystal angle between the FeSe layer and Pb substrate. (d) A 3-

dimensional rendered image of FeSe/PbSe/Pb(111). The growth of FeSe induced 

the exposure of Pb surface near the step edge of PbSe. 
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Figure S2. Thickness of FeSe grown on Pb(111) substrate. (a) The topography of 

FeSe grown on Pb(111) substrate. (b) The height profile along the dashed line in (a). 

The height of FeSe with respect to the Pb is found to be ~ 1.7 Å. This value 

corresponds to the height difference between FeSe film of 3 tri-layer (TL) and 5 

layered Pb, as illustrated by sketched stacking units of FeSe and Pb (Phys. Rev. B 

84, 125437 (2016); Surf. Sci. 646, 72 (2016); J. Phys.: Condens. Matter 29, 025004 

(2017)). The inter-layer distance of Pb(111) is 2.86 Å. The height of 1 TL of FeSe is 

5.33 Å. (c) The FeSe island grown near the edge of PbSe. The growth of FeSe 

induces exposure of Pb surface in the PbSe. The newly exposed Pb area is about 4 

times larger than the area of FeSe island. Taking into account the Se densities of 1 

mono-layer (ML) PbSe (0.08 atom/Å2) and 1 tri-layer (TL) FeSe (0.14 atom/Å2), we 

calculate the thickness of the grown FeSe film is approximately 3 TL. 
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Figure S3. Comparison among the dI/dV spectra of Pb, PbSe and FeSe. (a) 

Topographic image of an FeSe grown on Pb(111). Vbias = -0.1 V and I = 50 pA. The 

dI/dV spectra were taken in FeSe, PbSe and Pb surfaces. (b) The dI/dV spectra in 

the wide bias voltage range. Vbias = -1 V and I = 50 pA. (c) The dI/dV spectra in the 

superconducting gap regime. Vbias = - 3 mV and I = 50 pA. 
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Figure S4. Response of impurities to the proximity-induced superconductivity 
in PbSe. In the main text, we show the crystal imperfections induce magnetic 

moments in FeSe. In this figure, we show Ag atoms and crystal edge do not induce 

magnetic moments in PbSe. (a) dI/dV spectra measured on/off Ag atoms on PbSe. 

(b) Line spectroscopy is taken across the PbSe step. The step edge is marked by 

the vertical arrow. No in-gap excitation is observed for the Ag atoms and the PbSe 

step. Vbias = - 3 mV and I = 50 pA. 
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Figure S5. Identification of the location of Ag atoms on the FeSe. (a) 

Topography image of Ag atoms on the FeSe. The open circles represent the location 

of Ag atoms. (b) The Fourier transform image of the topography is shown in the inset. 

The orange circles show the lattice peaks of the top Se atoms in the FeSe. By the 

inverse Fourier transform of the peaks, the position of Se atoms is revealed. The 

blue filled circles denote the Ag atoms of which location are exactly copied from the 

location of the open circles in (a). The FT analysis shows the Ag atoms are located 

on the center of the Se lattice. 
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Figure S6. Magnetic patterns induced by Ag atoms on the FeSe. (a) The dI/dV 

spectra measured on FeSe (black curve) and the Ag atom (red curve). This Ag atom 

is different from the Ag atom in Fig. 4d and 4e. Inset shows the topography of the Ag 

atom. (c) The dI/dV maps for the Ag atom are displayed (the size is 8.5 Å x 8.5 Å). 

Every magnetic pattern shows the C2 symmetry. 
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Figure S7. Moiré pattern and the splitting pattern induced by Ag atoms in dI/dV 
maps. The angle between Fe lattice and Moiré pattern is 60°, 20° and 70° for (a), (b), 

and (c), respectively. (a) The dI/dV map (top-right inset) is taken for the Ag atom at 

the energy of E = -1.54 meV. The dashed line shows the splitting of dI/dV intensity. 

The atomic structure (top-left inset) is obtained by Fourier transform analysis. The 

blue balls and red balls represent the Se lattice and Fe lattice, respectively. (b) The 

dI/dV map is taken at the energy of E = -1.59 meV. (c) The dI/dV map is taken at the 

energy of E = -1.26 meV. Regardless of the Moiré pattern, the splitting in the dI/dV 

maps is aligned along the Fe lattice direction, which rules out the Moiré pattern as a 

possible origin of the splitting in the dI/dV maps. The data shown here were obtained 

using different tips in the separate experiments. 
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Figure S8. dI/dV spectra measured on Ag atoms in FeSe. (a) Ag atoms on the 

FeSe island. Imaging condition: Vbias = -0.1 V and I = 50 pA. (b) The dI/dV spectrum 

for each numbered Ag atom in (a) is displayed. The spectrum measured on the Ag 

atom show YSR excitation compared to the spectrum measured on FeSe. The 

spectroscopy condition: Vbias = 3 mV and I = 50 pA. Lock-in modulation: f = 463.0 Hz 

and Vrms = 60 µV. 
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Figure S9. Magnetic patterns for various Ag atoms on the FeSe. We measured 

dI/dV maps at E = -1.1 meV for isolated Ag atoms. The studied Ag atoms are 

indicated with numbers in the left panel. The topography and simultaneously 

obtained dI/dV map are displayed in the right panels. Most of Ag atoms exhibit the 

splitting patterns in dI/dV maps except for the Ag atom labeled with 6. The variation 

could be because the Ag atoms are not perfectly positioned at the center of Fe lattice. 
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Figure S10. Symmetry of Collinear AFM and Néel AFM models with spin angle 
of 0o. The collinear AFM model with the spin angle of 0o or 45o is fully consistent with 

the measured dI/dV maps in Fig. 3e in the main text in terms of symmetry. The Néel 

AFM model with the spin angle of 0o does not preserve C2 symmetry, which is 

inconsistent with the dI/dV maps. Furthermore, it maintains a mirror symmetry as 

indicated by the dashed line in the image, which contradicts the symmetry of the 

dI/dV map at E = 1.48 meV. Therefore, the Néel AFM model does not explain the 

symmetry of the local magnetic moments induced by the Ag impurities in the 

experiment. 
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Note S2. Theory results for local magnetic order around Se centered impurities 
and FeSe island edges  
In this section we expand the theoretical study of local magnetic order around Fe-

centered impurity bound states in Ref. S11A to also include Se-centered disorder 

and edges. These calculations are performed in a similar fashion to that described in 

detail in Ref. S11A, and therefore we provide only a brief outline here. 

We perform self-consistent mean-field calculations in the Hubbard-Hund 

model using the tight-binding parameters for FeSe derived in Ref. S11B. The 

interaction parameters are fixed in terms of the Hubbard U as 𝐽 = 𝐽′ = 𝑈/4 and 

𝑈′ = 𝑈 − 2𝐽. 

Orbital selective effects are included by a rescaling of electron creation and 

annihilation operators 𝑐𝜇 → √𝑍𝜇𝑐𝜇, with 𝑍𝜇 the quasiparticle weight factor in the 

given orbital, yielding an effective model with rescaled orbital-dependent interaction 

parameters  

    𝑈 𝜇𝜈 →  √𝑍𝜇√𝑍𝜈𝑈 𝜇𝜈,  

with similar expressions for 𝑈′, 𝐽, 𝐽′. Based on Ref. S11B. we choose these weights 

as √𝑍𝜇 =  0.2715, 0.9717, 0.4048, 0.9236, 0.5916 for the five Fe 3d orbitals𝜇 =

𝑑𝑥𝑦, 𝑑𝑥2−𝑦2 , 𝑑𝑥𝑧, 𝑑𝑦𝑧 , 𝑑𝑧2. 

In this model a phase transition to a strongly C2-symmetric magnetically 

ordered bulk phase occurs at a critical 𝑈𝑐  =  560 meV. As the Hubbard U 

approaches this transition from below, it was previously found that impurity bound 

states may facilitate local magnetic order [S11A]. In the following we thus fix 𝑈 =

 550 meV just below the critical value, but remark that our results in general apply 

to an interval of 𝑈, the width of which depends on the type of disorder or impurity 

potential.  

Finally, large-scale real-space calculations are facilitated by employing the 

Kernel Polynomial method where the electronic Greens function is expanded in a 

series of orthonormal Chebyshev polynomials [S11C, S11D]. We set the order of this 

expansion to 𝑁 = 1000, use the Lorentz kernel to damp Gibbs oscillations, and 

iterate self-consistently until convergence of the spin resolved density mean fields 

(𝑛↑, 𝑛↓) is obtained.   
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We model the Se vacancy as an effective plaquette impurity, i.e. by an onsite 

potential V on the four neighboring Fe sites of the vacancy on a given site  

𝐻𝑆𝑒−𝑖𝑚𝑝 = 𝑉𝑆𝑒 ∑ 𝑐𝑗𝜇𝜎
† 𝑐𝑗𝜇𝜎

𝑗,𝜇,𝜎

, 

where 𝑉𝑆𝑒is the potential applied to the four neighboring Fe sites indexed by 𝑗. 

Calculations of the induced local magnetic order are performed using such a 

plaquette impurity in the center of a 12 x 12 supercell.  

Our studies of edge magnetism are performed using open boundary 

conditions in the real-space system. This creates an isolated FeSe island with 

boundaries determined by the system geometry. In our calculations we modify the 

original periodic supercell structure to accommodate both (100), (010) and (110) 

edges on the islands.  

Fig. S11 (a-b) displays the result of including a single central plaquette 

impurity for 𝑈 close to the phase boundary. In Fig. S11 (a) we show a zoomed-in 

real-space plot of the magnetization centered on the impurity site, while Fig. S11 (b) 

displays the associated 2D Fourier transform.  We find that the plaquette impurity 

induces local magnetic order for a broad range of impurity potentials 𝑉𝑆𝑒. Similar to 

the point-like impurity, we find that the local magnetic order inherits the structure of 

the bulk magnetic fluctuations, yielding a strongly non-C4-symmetric structure of the 

induced magnetization, as demonstrated by the peaks in the Fourier transform at 

𝑚𝑧(𝑞)  =  (± 𝜋, 0).  

In Fig. S11 (c-f) we show results for the local magnetic order formed on FeSe 

island edges when open boundary conditions are imposed in the calculation. In 

general, we find that as U is increased from below, magnetic order forms initially on 

corners of the system, but that closer to the phase boundary magnetization is 

induced along the entire edge of the system. This is demonstrated for a geometry 

with long 100 edges in (c) and for 110-type edges in the different geometry in (d). 

We note that the included orbital selective effects also make the amplitude of the 

induced magnetization at 100 (extending along x) versus 010 (extending along y) 

edges distinct.  

Fig S11 (e) shows the linecut of the magnetization in (c) indicated by the 

dashed grey line transverse to the 100 edge. The magnetization peaks sharply 

directly on the edge, but a tail of finite magnetization extends into the bulk. In (f) we 
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show two linecuts taken transverse to the edge through the magnetization of the 

FeSe island with 110-type edges plotted in Fig. S11 (d). For the staggered 110 edge, 

the magnetization selectively forms on every second site of the edge, forming a 

chain conforming to the bulk magnetic order. The linecuts taken transverse to the 

edge at two neighboring edge sites demonstrates this feature. The linecuts are 

mirror images of each other, the dashed cut showing the peak in magnetization at 

the upper edge with an oscillating tail into the bulk, and the cut corresponding to the 

dotted line has the opposite structure with a peak at the lower edge.   

 
[S11A]  J.H.J. Martiny, A. Kreisel, and B.M. Andersen, Physical Review B 99, 
014509 (2019) 
[S11B]  A. Kreisel et al., Physical Review B 95, 174504 (2017) 
[S11C]  A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 
78, 275 (2006). 
[S11D]  L.Covaci, F.M. Peeters, and M. Berciu, Phys. Rev. Lett. 105, 167006 
(2010). 
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Figure S11. Theoretical results for local magnetic order near impurity sites and 
edges. (a) Zoom of the magnetization nucleated around a plaquette impurity 𝑉𝑆𝑒 =

50 meV. (b) Fourier transform of (a) showing the C2 structure of the local magnetic 

order. (c) Edge magnetization on a FeSe island with open boundary conditions and a 

long 100 edge. (d) Edge magnetization on a different FeSe island with 110-type 

edges. (e) Linecut of the magnetization for the 100 edge [dashed line in (c)]. (f) 

Linecuts of the magnetization for the 110 edge [dashed, dotted lines in (d)]. In both 

geometries the magnetization peaks at the edge with a tail extending into the bulk 

region.  
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