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Abstract

The work presented in this thesis deals with magnetic field sensing using the
nitrogen-vacancy (NV) defect center in diamond. The NV center is a solid-state
defect in diamond with a level structure and properties that render its electron
spin state sensitive to many environmental factors including magnetic fields. The
NV center can be used for sensing even under ambient conditions, and the dia-
mond substrate is both mechanically stable and chemically inert. These properties
would represent significant advantages compared to existing quantum magnetome-
ters if the sensitivity of NV magnetometers were higher. The ultimate goal of the
presented work was thus to explore and investigate various different ways to im-
prove the sensitivity of NV magnetometry.

Ensembles of NV centers yield higher sensitivity than single NV centers, but con-
trolling an ensemble is complicated by inhomogeneous broadening of the transition
frequencies and drive field inhomogeneities. Smooth optimal control theory was
used to design shaped control pulses that are robust against inhomogeneous broad-
ening and drive amplitude variations. Furthermore, the theory was expanded to
explicitly include the hyperfine splitting of the NV center electron spin states.
The resulting optimal control pulses were found theoretically and shown experi-
mentally to yield significant improvements in the sensitivity compared to the best
equivalent standard control pulses.

The typical sensing approach based on measuring changes in the red fluorescence is
limited by the need to measure a low contrast on a bright background. These limi-
tations can be avoided by utilizing the green absorption to perform laser threshold
magnetometry. A setup where the drive-dependent change in green absorption is
used to push an external laser cavity across the lasing threshold was proposed
and theoretically investigated. The predicted sensitivity was found to reach the
pT/
√

Hz range for realistic optimal parameters. However, it was also shown that
the effect of amplified spontaneous emission near lasing threshold can significantly
reduce the achievable sensitivity.

Different sensing schemes are affected differently by inhomogeneous broadening
(IHB) and drive amplitude variations (DAV), which makes it challenging to select
the optimal scheme for a given situation. The maximum achievable sensitivity of
the three most commonly used low-frequency sensing schemes was simulated and
compared for different levels of IHB and DAV. The three schemes were continuous-
wave (CW) optically detected magnetic resonance (ODMR), π-pulse ODMR and
Ramsey interferometry. It was found that Ramsey interferometry only yields the
best sensitivity for low inhomogeneous broadening, while CW ODMR yields the
best sensitivity for large drive amplitude variations. π-pulse ODMR was found to
yield the best sensitivity when the inhomogeneous broadening is not low and the
drive amplitude variations are not large.
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Dansk resume

Det arbejde, der præsenteres i denne afhandling, omhandler måling af magnetfel-
ter ved hjælp af nitrogen-vacancy (NV) defekten i diamant. NV centeret er en
solid defekt i diamant med egenskaber og en struktur af dens energiniveauer, der
bevirker, at dens spin-tilstand er følsom over for adskillige faktorer i omgivelserne
heriblandt magnetfelter. NV centeret kan anvendes til måling selv under nor-
male omstændigheder, og diamantsubstratet er mekanisk stabilt og kemisk inak-
tivt. Disse egenskaber ville repræsentere betydelige fordele sammenlignet med
eksisterende kvante-magnetometre, hvis sensitiviteten af NV magnetometre var
højere. Det ultimative mål med det præsenterede arbejde er s̊aledes at udforske
og undersøge forskellige måder, hvorp̊a sensitiviteten af NV magnetometri kan
forbedres.

Ensembler af NV centre har højere sensitivitet end enkelte NV centre, men kon-
trollen af et ensemble kompliceres af inhomogen spredning af overgangsfrekvenserne
og inhomogeniteter i kontrolfeltet. Smooth optimal control teori blev anvendt til
at designe formede kontrolpulser, der er robuste overfor inhomogen spredning og
variationer i amplituden af kontrolfeltet. Derudover blev teorien udvidet til ek-
splicit at inkludere den hyperfine splittelse af NV center spin-tilstandene. De re-
sulterende optimal control pulser blev teoretisk og eksperimentelt vist at medføre
betydelige forbedringer af sensitiviteten sammenlignet med de bedste ækvivalente
standard kontrol-pulser.

Den typiske tilgang til målinger med NV centre, som er baseret p̊a at måle æn-
dringer i den røde fluorescens, begrænses af behovet for at måle en lille kontrast
p̊a en betydelig baggrund. Disse begrænsninger kan undg̊as ved at udnytte den
grønne absorption til at udføre laser threshold magnetometri. Et setup, hvor den
kontrol-afhængige ændring i grøn absorption anvendes til at skubbe en external
laser cavity over laser thresholdet, blev præsenteret og teoretisk undersøgt. Det
blev konstateret, at den forventede sensitivitet kunne n̊a pT/

√
Hz-niveauet for

realistiske optimale parametre. Det blev dog ogs̊a vist, at forstærket spontan
emission nær laser thresholdet kan betydeligt reducere den opn̊aelige sensitivitet.

Forskellige målingsmetoder p̊avirkes forskelligt af inhomogen spredning og vari-
ationer i amplituden af kontrolfeltet, hvilket gør det vanskeligt at vælge den op-
timale metode for en given situation. Den maksimalt opn̊aelige sensitivitet af
de tre hyppigst anvendte lavfrekvens m̊alingsmetoder blev simuleret og sammen-
lignet for forskellige niveauer af inhomogen spredning og variationer i amplituden
af kontrolfeltet. De tre metoder var continuous-wave (CW) optically detected
magnetic resonance (ODMR), π-puls ODMR og Ramsey interferometri. Det blev
vist, at Ramsey interferomtri kun opn̊ar den bedste sensitivitet for lave niveauer
af inhomogen spredning, mens CW ODMR opn̊ar den bedste sensitivitet for store
variationer i amplituden af kontrolfeltet. π-puls ODMR opn̊aede den bedste sensi-
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tivitet, n̊ar den inhomogene spredning ikke var lav, og der ikke var store variationer
i amplituden af kontrolfeltet.
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1 INTRODUCTION

1 Introduction

The ability to measure extremely weak magnetic fields with high spatial resolution
is incredibly valuable for the study and understanding of biology [1–5]. The weak
electrical signals involved in neural activity produce miniscule magnetic fields that
can be measured in order to make inferences about the neural activity. This is the
basis of magnetoencephalography (MEG), which is used to study the brain, [6, 7]
and magnetogastrography (MGG), which is used to study the stomach [8,9]. The
neural activity in muscles and other parts of the body, such as the heart, can
similarly be studied by measuring the associated magnetic fields [3,10–12]. These
techniques can all be carried out noninvasively and are an important part of mod-
ern medicine.

MEGs and MGGs are normally carried out using a superconducting quantum in-
terference device (SQUID), which is perhaps the most well-known high-sensitivity
quantum magnetometer [13–15]. These devices can reach sensitivities on the or-
der of fT/

√
Hz and have been in use for several decades. However, SQUIDs are

not without their limitations. They require cryogenic temperatures in order to
operate, which limits how close the sensor can be brought to the object to be
sensed, and makes it highly impractical to perform sensing inside living subjects.
Another well-researched high-sensitivity quantum magnetometer that can func-
tion at ambient temperatures is the atomic-vapor magnetometer [16–18]. These
devices boast potentially higher sensitivity than SQUIDs, but the sensor size is
significantly larger, and they can only operate in near-zero magnetic fields, which
can necessitate the use of magnetic shielding.

The desire to obtain a high-sensitivity quantum magnetometer without the limita-
tions of SQUID or atomic-vapor magnetometers is part of the motivation behind
the research of alternative magnetometers, such as atomic defects in diamond. In
particular, the nitrogen-vacancy (NV) defect in diamond has been the focus of a
lot of research due to its many advantageous properties. An NV magnetometer can
operate at ambient temperatures, does not require a near-zero magnetic field, and
the spatial resolution is only limited by the size of a single defect or the diamond
dimensions when an ensemble of defects is used [19–23]. Furthermore, the electron
spin state of the NV center, which is utilized for sensing, has a long coherence time
and allows for all-optical readout and initialization [24,25]. These attributes make
the NV center a very attractive quantum magnetometer. However, while NV mag-
netometers have demonstrated high sensitivity on the order of sub-pT/

√
Hz [26],

their sensitivity has yet to reach the level of SQUID and atomic-vapor magnetome-
ters. As a result, a significant portion of NV magnetometry research is currently
focused on boosting the sensitivity of NV magnetometers [23, 26, 27]. The aim
of this project is likewise to explore and investigate various different avenues for
increasing the sensitivity of NV magnetometry, primarily through numerical sim-
ulations.
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1 INTRODUCTION

This thesis is structured in the following way. The first part, chapter 2, introduces
the properties of the NV center, common sensing schemes and ensemble-specific
effects, followed by a description of the relevant theory for optimal control, mea-
surement simulations and laser threshold magnetometry. The main part of the
thesis consists of chapters 3, 4 and 5, which present the three covered projects.
Each chapter begins with a brief introduction and motivation, followed by the
research article that resulted from the study. Each paper further motivates and
provides context for the study, followed by an overview of the relevant theory, the
main approach and findings and ending with a discussion and conclusion.
Chapter 6 contains a final conclusion and outlook.
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2 THEORY

2 Theory

It is of vital importance to understand the behavior of quantum systems and their
responses to external stimuli in order to properly utilize the quantum properties.
Without a thorough understanding of the underlying theory of quantum systems,
it would be extremely challenging to predict and explain the results of experiments
or the operation of quantum devices.

For this reason, the present chapter will attempt to provide a detailed descrip-
tion of the properties of the NV center that are relevant for the three covered
projects along with the rest of the theory that was utilized in the projects. Some
of said theory has already been explained in the resulting publications, but this
chapter aims to provide more detail, such as a full derivation of the relations used
for smooth optimal control and the simulation of CW ODMR. The chapter begins
with a description of the NV properties, common sensing schemes and ensemble-
specific effects, which provide a foundation for the remaining theory, before moving
on to a description of optimal control theory. The optimal control theory is fol-
lowed by a description of the methodology used to simulate measurements, which
utilizes the same Hamiltonians as the optimal control theory. Finally, the relevant
laser threshold magnetometry theory is explained.

2.1 The NV center

The NV center is an atomic defect in diamond consisting of a substitutional nitro-
gen atom and an adjacent vacancy [22,24,25,27–29]. Due to the crystal structure
of diamond, four different orientations of the NV center are possible. The ori-
entation is typically denoted by the NV axis, which is the axis connecting the
nitrogen atom and the vacancy. For the purposes of sensing, one almost always
utilizes the negatively charged NV− center with the extra electron typically being
donated by a nitrogen defect elsewhere in the diamond. This work also focuses on
the NV− center. Throughout the remainder of this thesis, the negatively charged
NV− center will be referred to as an NV or the NV center for the sake of brevity.
The NV center is a spin-1 system with a level structure located inside the 5.47 eV
band gap of diamond [1, 29–31]. This level structure is illustrated in simplified
form in Fig. 2.1.

The level structure consists of spin triplet excited and ground states and metastable
intermediate singlet states. The zero-field splitting between the mS = 0 and the
degenerate mS = ±1 spin states is Dgs = 2.87 GHz [32] for the ground state and
Des = 1.42 GHz [33] for the excited state. The NV center can be off-resonantly
excited from the triplet ground state 3A to the triplet excited state 3E by il-
luminating it with green laser light (λ = 532 nm) [34, 35]. This transition is
spin-conserving. The excited state decays back to the ground state via either

3



2 THEORY 2.1 The NV center

Figure 2.1: Simplified sketch of the level structure of the NV center. The triplet
ground state 3A and the triplet excited state 3E both consist of mS = 0 and
degenerate mS = ±1 spin states. The zero-field splitting is Dgs = 2.87 GHz for the
ground state andDes = 1.42 GHz for the excited state. The colored arrows indicate
the spin-conserving excitation via green (λ = 532 nm) laser light illumination, the
spin-conserving (red, λ ≈ 637 nm) fluorescing decay paths from the triplet excited
states to the triplet ground states and the (infrared, λ = 1046 nm) fluorescing
decay from the singlet excited state to the singlet ground state. The black arrows
indicate non-spin-conserving non-fluorescing decay paths with relatively weaker
decays indicated by dashed arrows. The degeneracy of the mS = ±1 states can
be lifted by applying a magnetic field B parallel to the NV axis, which leads to a
splitting of 2γeB with the electron gyromagnetic ratio γe = 28 MHz/mT.

a direct spin-conserving transition that involves the emission of red fluorescence
(λ ≈ 637 nm) or via an indirect non-spin-conserving path over the singlet states
that involves the emission of infrared fluorescence (λ = 1046 nm) [36–38]. The sin-
glet ground state 1E has a significantly longer lifetime (≈ 300 ns) than the excited
states [38]. The excited mS = ±1 states have a greater probability of decaying via
the singlet states than the excited mS = 0 state. Additionally, the singlet ground
state has a greater probability of decaying to the ground mS = 0 state than the
ground mS = ±1 states. As a result, it is possible to initialize the NV center in
the mS = 0 spin state by continuously illuminating it with green laser light for a
sufficient length of time. The spin state-dependence of the decay probabilities also
makes it possible to determine the electron spin state of an NV by measuring the
red fluorescence. Due to the greater probability of decaying via the indirect path
that does not involve emission of red fluorescence, an NV in one of the mS = ±1
spin states will emit up to 30% less fluorescence than an NV in the mS = 0 spin
state [36,37,39]. These properties enable the all-optical initialization and read-out
of the NV center electron spin state.
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2 THEORY 2.1 The NV center

The degeneracy of the mS = ±1 states can be lifted by applying an external
magnetic field B parallel to the NV axis via the Zeeman effect [23, 32, 40, 41]. If
the field is applied at an angle to the NV axis, only the component that is parallel
to the NV axis will contribute to lifting the degeneracy. Each state is then shifted
in frequency by mSγeB resulting in a splitting of 2γeB, as indicated in Fig. 2.1,
with the electron gyromagnetic ratio γe = 28 MHz/mT. The mS = ±1 spin states
are also shifted in frequency by the hyperfine interaction between the NV electron
spin and the nitrogen nuclear spin, which is not depicted in Fig. 2.1. The magni-
tude of this shift depends on the nitrogen isotope and nuclear spin state mI . The
shift is mIδI with δI = 2.16 MHz for 14N with I = 1, which is the most naturally
abundant, and δI = 3.03 MHz for 15N with I = 1/2. The nitrogen nuclear spin
state can be mI = −1, 0, 1 for 14N and mI = −1/2, 1/2 for 15N. The lifetime of
the nitrogen nuclear spin state is very long compared to the lifetime of the NV
electron spin state. The hyperfine interaction will thus shift the frequency of the
mS = ±1 spin states of a single NV center by a few MHz, which is a small shift
compared to the zero-field splitting.

The transitions between electron spin states can be driven directly by applying
microwaves (MW) resonant with the transition frequency [22]. Most commonly,
either the mS = 0 ⇐⇒ mS = 1 or the mS = 0 ⇐⇒ mS = −1 transition will
be chosen and treated as an effective two-level system [39]. The mS = 0 spin
state then serves as state |0〉 = (1, 0), and the mS = 1 or mS = −1 spin state
serves as state |1〉 = (0, 1). This is the basis of most NV magnetometry schemes,
which typically involve applying a static external magnetic field, also called a bias
field, parallel to the NV axis in order to lift the degeneracy and then utilizing the
effective two-level system to measure any additional external magnetic fields. The
state of the effective two-level system can be visualized on the Bloch sphere as
illustrated in Fig. 2.2.

The driving can be performed either continuously with constant application of
fixed amplitude microwaves and green laser power, or in a pulsed manner with
finite pulses of microwaves and green laser light. The most commonly used MW
pulses are so-called flat pulses that have a constant amplitude and a duration
chosen so that they accomplish a desired operation. Two frequently used MW
pulses are π-pulses and π/2-pulses. A π-pulse causes a π-rotation around an axis
in the xy-plane of the Bloch sphere, typically the x- or y-axis, and can be used to
invert the electron spin state population from |0〉 to |1〉 or vice-versa. A π/2-pulse
similarly causes a π/2-rotation around an axis in the xy-plane of the Bloch sphere
and can be used to transfer the electron spin state population from |0〉 to a super-
position of |0〉 and |1〉. In order to determine the pulse duration that is required
to achieve a flat π- or π/2-pulse, it is necessary to perform a Rabi measurement.
Such a measurement involves initializing the NV spin in state |0〉, applying con-
stant amplitude resonant microwaves for a duration τ and then measuring the NV

5



2 THEORY 2.2 Common sensing schemes

Figure 2.2: Bloch sphere representation of three possible states of the NV two-
level system. The state |0〉 (red arrow) can be achieved via optical initialization.
The state |1〉 (blue arrow) can be achieved by applying a π-pulse to state |0〉. The
state 1√

2(|0〉+ |1〉) (black arrow) can be achieved by applying a π/2-pulse to state
|0〉.

fluorescence. This sequence is repeated for varying values of τ , which yields an
oscillation in the measured fluorescence as a function of τ . The frequency of this
oscillation is referred to as the Rabi frequency ΩR and is indicative of how strongly
the |0〉 ⇐⇒ |1〉 transition is being driven. Increasing the applied MW power will
also increase the Rabi frequency. The duration of a π− or π/2-pulse can then
be determined as the time it takes to complete half or a quarter of a full Rabi
oscillation, respectively. For instance, if the Rabi frequency is ΩR = 2π · 1 MHz,
the duration of a π-pulse will be 0.5µs, and the duration of a π/2-pulse will be
0.25µs.

2.2 Common sensing schemes

Three of the most commonly used sensing schemes for NV magnetometry are
continuous-wave (CW) optically detected magnetic resonance (ODMR) [27,42–44],
π-pulse ODMR [26,27,44–46] and Ramsey interferometry [23,27]. The sequences
of laser power and MW application that make up each of these schemes are illus-
trated in Fig. 2.3. CW ODMR is the simplest of these three schemes and involves
the constant application of MW and laser power while scanning the MW driving

6



2 THEORY 2.2 Common sensing schemes

Figure 2.3: Simple sketch illustrating the application of laser light and MW for CW
ODMR, π-pulse ODMR and Ramsey interferometry. CW ODMR is a continuous
sensing scheme with constant application of MW and laser power, while the other
two are pulsed schemes.

frequency. The constant laser illumination will continuously excite the NV center,
leading to continuous emission of red fluorescence. The microwaves will drive the
|0〉 ⇐⇒ |1〉 transition when they are resonant with the transition frequency. By
plotting the measured fluorescence as a function of MW driving frequency, one will
thus observe a drop in the fluorescence at the transition frequency. An example of
a simulated CW ODMR spectrum where the transition frequency was 2.83 GHz is
shown in Fig. 2.4.

In this way, the scheme can be used to determine the transition frequency for
an arbitrary magnetic field. In both CW ODMR and the two other mentioned
schemes, it is also common to consider the contrast between the fluorescence ob-
tained from a given measurement and the fluorescence obtained when the MW
drive is far off-resonance. This is due to the fact that the true quantity of inter-
est is the relative change in fluorescence caused by the driving, rather than the
absolute value of the fluorescence. A contrast plot will behave as the inverse of
the corresponding fluorescence plot, peaking where the fluorescence drops, but the
same measurement principles still apply. When using the CW ODMR scheme to
perform magnetometry, the MW driving frequency is fixed at the position of the
largest slope in fluorescence/contrast. Any additional external magnetic field will
then shift the transition frequency by mSγeB, which effectively shifts the entire
ODMR feature up or down in frequency, leading to a measurable change in the
fluorescence/contrast. The larger the slope in fluorescence/contrast at the fixed
frequency, the greater the change in fluorescence/contrast caused by the addition
of a particular external magnetic field. For a CW ODMR scheme, the maximum
slope in fluorescence/contrast as a function of MW driving frequency is thus di-
rectly linked to the maximum achievable sensitivity.

The π-pulse ODMR scheme is the pulsed counterpart to the CW ODMR scheme.
As illustrated in Fig. 2.3, it involves applying a laser pulse to initialize the NV
center in state |0〉, followed by the application of a MW π-pulse at a certain driving

7



2 THEORY 2.2 Common sensing schemes
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Figure 2.4: An example of a simulated CW ODMR spectrum where the transition
frequency is 2.83 GHz. The fluorescence has been normalized to be 1 in the off-
resonant case.

frequency, before using a second laser pulse to measure the resulting spin state-
dependent fluorescence. This is repeated while varying the MW driving frequency.
The π-pulse will only properly invert the electron spin state population to |1〉 if it
is applied on-resonance. When plotting the measured fluorescence as a function
of the driving frequency, one will thus observe a drop in the fluorescence at the
transition frequency, as was the case for CW ODMR. Conversely, the contrast will
be observed to peak at the transition frequency. The principles of magnetometry
with π-pulse ODMR are the same as those for CW ODMR.

Ramsey interferometry utilizes somewhat different principles than the ODMR
schemes. As is illustrated in Fig. 2.3, the scheme involves applying a laser pulse
to initialize the NV center in state |0〉, followed by the application of a slightly off-
resonant MW π/2-pulse then turning off both MW and laser for a time τ , before
applying another MW π/2-pulse and finally using a second laser pulse to measure
the resulting fluorescence/contrast. This is repeated while varying the time τ ,
which is called the free precession time in this context. The first π/2-pulse trans-
fers the initialized spin state to the superposition 1√

2(|0〉+ |1〉). The spin state will

8



2 THEORY 2.2 Common sensing schemes

then undergo precession around the z-axis of the Bloch sphere at a frequency equal
to the transition frequency for the duration of the free precession time τ , hence the
name. The precession leads to the acquisition of a phase φ(τ), transforming the
spin state into 1√

2(|0〉+ eiφ(τ) |1〉). The acquired phase is converted into a change
in spin state population by the second π/2-pulse. For instance, if φ(τ) = π, the
final spin state will be |0〉, whereas if φ(τ) = 2πn with integer n, the final spin
state will be |1〉. The resulting spin state-dependent fluorescence is measured us-
ing the second laser pulse. When plotting the measured fluorescence/contrast as
a function of the free precession time τ , one will thus observe an oscillation in the
fluorescence/contrast as a function of τ . It is common to consider these Ramsey
fringes in a rotating frame rotating at the MW driving frequency, such that the
Ramsey oscillation frequency becomes equal to the detuning between the transi-
tion frequency and the MW driving frequency. The degree of detuning used is a
compromise between the desire for multiple clear fringes, and the fact that the
performance of the π/2-pulses is degraded the further off-resonance they are.

If the total magnetic field affecting the NV center contains random noise fluctua-
tions, the phase acquisition during τ will also contain random noise fluctuations,
given that the magnetic field affects the transition frequency. This effect leads to
a dephasing of the spin precession and ultimately a loss of coherence, which causes
the Ramsey signal to decay ∝ exp

(
− (τ/T ∗2 )2

)
on a time-scale T ∗2 referred to as

the free dephasing time [28]. Dephasing also affects Rabi and ODMR measure-
ments, though it is more readily apparent in Ramsey interferometry measurements.

Performing magnetometry with Ramsey interferometry involves repeated measure-
ments with a fixed value of τ . The presence of an additional external magnetic
field will change the transition frequency and hence the detuning between transi-
tion frequency and MW driving frequency by mSγeB, which changes the Ramsey
oscillation frequency. An additional external magnetic field B will thus cause
the Ramsey fringes to become compressed or stretched in time, which leads to a
measurable oscillation in the fluorescence/contrast at a fixed τ 6= 0 as a function
of B. It is the maximum slope in this oscillation that is linked to the maximum
achievable sensitivity of Ramsey interferometry. The change in the Ramsey fringes
caused by an additional external magnetic field B is illustrated in Fig. 2.5(a), and
the Ramsey contrast oscillation as a function of B for fixed τ is illustrated in
Fig. 2.5(b).

The choice of the optimal τ for such a magnetometry scheme is a compromise
between two competing effects. The effect of dephasing causes the Ramsey signal
to decay with increasing τ , thereby causing the maximum slope as a function of
B to decrease with increasing τ . On the other hand, the change in total acquired
phase caused by an additional external magnetic field B(t) is given by

∆φ(τ) = 2πγe
∫ τ

0
B(t) dt. (2.1)
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Figure 2.5: (a) Examples of simulated Ramsey interferometry contrast values as
a function of τ for three different values of the additional external magnetic field
B. The measurements represent a situation where T ∗2 = 6µs and the detuning
between the transition frequency and the MW driving frequency is ∆ = 2π ·2 MHz
for B = 0. The contrast has been normalized to lie between 0 and 1. (b) Ramsey
interferometry contrast values as a function of B for fixed τ = 4.1µs for the same
situation as in (a).

A given static external magnetic field B will thus cause a greater change in the
acquired phase for greater τ -values, thereby causing the maximum slope as a
function of B to increase with increasing τ .

2.3 Ensemble considerations

So far, we’ve only considered the use of a single NV center for magnetometry.
In many cases, however, it is advantageous to work with a large ensemble of NV
centers because the sensitivity scales as 1/

√
N with the number of NV centers N

in the ultimately shot-noise limited regime [28]. Using an NV ensemble does yield
lower spatial resolution than a single NV center, but when this is not a concern,
ensembles are preferable. All of the previously described theory and methods still
apply when working with an NV ensemble, but several additional complications
arise due to ensemble effects.

For one, all four possible crystallographic orientations of the NV center are equally
likely, meaning that an NV ensemble will consist of an equal mixture of NVs with
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2 THEORY 2.3 Ensemble considerations

each of the possible axes. As such, it is only possible to align an external mag-
netic field along the axis of 1/4 of the NVs in an ensemble, which reduces the
effective ensemble size. Given that the four possible NV axes exhibit mathrmC3v
symmetry due to the crystal structure of diamond, the 3 axes that are not parallel
to the field will all experience the same magnitude of the magnetic field projec-
tion along their axis. The ODMR spectrum for an NV ensemble where the bias
field has been aligned along one NV axis will thus contain four features; two for
mS = 1 and mS = −1 of the NVs with the chosen axis, and two for mS = 1 and
mS = −1 of the NVs with the remaining three axes. However, the symmetric
behavior is lost if the field is not perfectly aligned with one axis, and the magnetic
field projection along the other three axes is only a fraction of the full magnetic
field. Furthermore, the presence of a significant static magnetic field component
perpendicular to their axes will introduce state mixing for the NVs with the other
three axes, which is generally undesirable [23, 40, 41]. As a result, it is common
to only work with the single NV axis that the bias field has been aligned with,
such that the effective ensemble size indeed becomes 1/4 of the total ensemble size.

Furthermore, the previously mentioned hyperfine interaction has greater signif-
icance for NV ensembles. If the nuclear spins are in a thermal state, all of the
possible nuclear spin states mI will be equally represented in the ensemble. Given
that the frequency shift caused by the hyperfine interaction is mIδI , the hyperfine
interaction will thus effectively divide the NV ensemble into three (two for 15N)
groups with their mS = 1 or mS = −1 states split in frequency by δI = 2.16 MHz
(δI = 3.03 MHz for 15N). The mS = 0 ⇐⇒ mS = 1 and mS = 0 ⇐⇒ mS = −1
transitions are thereby each split into multiple hyperfine transitions also separated
by δI . These transitions are reflected in ODMR spectra and can complicate the
dynamics of NV magnetometry schemes. The accompanying issues can be avoided
by polarizing the nitrogen nuclear spins in order to suppress the hyperfine split-
ting [47] or by using a multi-frequency MW driving scheme to drive all of the
hyperfine transitions simultaneously.

The transition frequencies of NVs in an ensemble are also affected by differences
in their local environment caused by e.g. strain variations or gradients in the bias
field [24]. If the z-axis is chosen to lie along the NV axis, the effects of strain on
the evolution of an NV center can be described by the Hamiltonian

Hstrain = Ex(S2
x − S2

y) + Ey(SxSy + SySx), (2.2)

where Ex (Ey) is the strain along the x (y) direction, and the spin matrices are
given by

Sx = ~√
2
( 0 1 0

1 0 1
0 1 0

)
, Sy = i~√

2

(
0 −1 0
1 0 −1
0 1 0

)
, Sz = ~

( 1 0 0
0 0 0
0 0 −1

)
. (2.3)

This formalism necessarily considers the NV center spin as a three-level system
with mS = 0,−1, 1 all included. Gradients in the bias field affect the transition
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frequencies via the Zeeman effect. The differences in transition frequency across
an ensemble caused by these effects are collectively referred to as inhomogeneous
broadening. The consequence of such inhomogeneous broadening is that it be-
comes challenging for a single-frequency MW drive to be on-resonance with all of
the NV centers in an ensemble. Given that the performance of flat MW pulses
degrades the further off-resonance the pulses are applied, this effectively makes
it difficult to properly control an inhomogeneously broadened ensemble, which
negatively affects the various measurement schemes and reduces the achievable
sensitivity.
In addition to the issues caused by inhomogeneous broadening, the amplitude of
the MW driving field can vary across the ensemble if the antenna used to deliver
the microwaves is not capable of providing a perfectly uniform MW field. This
effectively causes the Rabi frequency to vary between different NV centers in the
ensemble, meaning that the correct pulse duration for e.g. a π/2-pulse will differ
between different NV centers in the ensemble. Seeing as the applied pulse must
have a single duration, such drive amplitude variations will thus cause some NV
centers to undergo more or less than the desired rotation, which further degrades
the possible control over the ensemble and reduces the achievable sensitivity.

Ideally, one would simply use high-quality diamonds with low or zero inhomo-
geneous broadening and MW antennas capable of delivering uniform MW fields,
but this is not always practical. While it is possible to fabricate diamonds with
near-zero inhomogeneous broadening [43], such diamonds are complicated and ex-
pensive to fabricate and are not broadly available. The design and manufacture of
MW antennas capable of delivering uniform MW fields is also a focus of active re-
search, but the existing designs are only able to ensure field uniformity over areas
significantly smaller than a typical diamond [48, 49]. As an alternative to elimi-
nating the sources of inhomogeneous broadening and drive amplitude variations,
various methods can be used to compensate for their effects. One such method
that I explored is the use of optimal control theory [50–56] to design shaped MW
pulses that are robust against the effects of inhomogeneous broadening and drive
amplitude variations.

2.4 Optimal control theory

The general principle behind optimal control theory is relatively simple. It in-
volves defining a performance functional F that describes how well a given set
of control functions achieve the desired purpose, and then optimizing the control
functions to maximize or minimize the performance functional subject to relevant
restraints [50, 51, 53–55]. As a result, optimal control theory can be applied to
many different types of problems both classical and quantum. Furthermore, while
the derivations in this section are based on the NV center, they are, in fact, general
and could be applied to any other defect center with a similar level structure by
changing the defect-specific parameters. In the case of quantum optimal control
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of NV electron spin states, the control functions describe the shaped MW pulse,
and two different performance functionals are commonly considered. Note that
these functionals and all of the expressions to be derived only relate to a single
NV, denoted i. The approach used to consider an ensemble and achieve robust-
ness against inhomogeneous broadening and drive amplitude variations will be
explained once the relevant single NV expressions have been derived.

The two most commonly considered performance functionals are the state transfer
functional Fst, which describes how well the shaped MW pulse transfers the NV
electron spin state from a certain initial state |ψinit〉 to a targeted final state |ψf〉,
and the operator functional Fop, which describes how well the shaped MW pulse
implements a desired unitary operation Ûf on the NV electron spin state [52–54].
The functionals are defined as

Fst =
∣∣∣〈ψf | Û(tp) |ψinit〉

∣∣∣
2
, (2.4)

Fop = Re
[
Tr
(
Û(tp)Û †f

)]
/2, (2.5)

where Û(tp) is a unitary time evolution operator describing the influence of the
shaped MW pulse, and tp is the pulse duration. Note that the states used for the
calculation of Fst should obey the standard normalization 〈ψ|ψ〉 = 1. The value of
these functionals is also referred to as the fidelity and will at most be 1 when the
shaped MW pulse perfectly achieves its intended purpose. The closer the fidelity
is to 1, the better the shaped MW pulse achieves the intended purpose. Shaped
MW pulses obtained using Fst are typically called state transfer pulses, and pulses
obtained using Fop are typically called unitary rotation pulses. The design and use
of state transfer pulses will naturally only work as intended for situations where
the initial state |ψinit〉 is known, e.g. after initialization of the NV electron spin
state. Unitary rotation pulses, on the other hand, are designed with the goal of
implementing the desired rotation regardless of the initial state. However, when
they are applicable, state transfer pulses generally perform better than equivalent
unitary rotation pulses [53,54]. I primarily consider state transfer pulses.

The goal of the optimization procedure is to find the MW pulse-shape, as de-
scribed by the control functions, that maximizes the fidelity of the desired perfor-
mance functional subject to relevant restraints, such as limits on the maximum
or total MW power. However, even when subject to such restraints, the space of
all possible functions is infinite and impractical to search through. As such, it
is common to limit the MW pulse-shape to a certain basis in order to simplify
the optimization. The choice of basis and exact method of optimization charac-
terizes the many existing types of optimal control theory used for shaped pulse
design. One of the more frequently used types of optimal control theory is gra-
dient ascent pulse engineering (GRAPE) [50, 56–59], which involves the use of a
basis consisting of piecewise constant functions of time. The control parameters
to be optimized are then the amplitudes of these functions and possibly also the
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total pulse duration. The optimization is performed by calculating the gradient of
the used functional with respect to the control parameters and then updating the
parameters by stepping along the gradient. This is repeated until convergence is
achieved. The basis used for GRAPE allows for efficient calculation of the neces-
sary gradients, which leads to fast and effective optimization procedures, but the
resulting pulse-shapes often contain high-frequency components [52,53].
In my work, I chose to focus on a different type of optimal control theory known
as smooth optimal control [52–54,56], which involves the use of a basis consisting
of sine functions with a fundamental frequency given by the pulse duration. The
resulting smooth MW pulses have the general form

S(t) = I(t) cos(ωMW t) +Q(t) sin(ωMW t), (2.6)

where the in-phase and quadrature components are given by

I(t) =
Nf∑

j=1
2ajx sin(jΩf t), Q(t) =

Nf∑

j=1
2ajy sin(jΩf t), (2.7)

ωMW is the central driving frequency, Nf is the number of frequency components,
and Ωf = 2π

2tp is the fundamental frequency. It has been previously shown [53]
that the performance of smooth MW pulses improves with increasing Nf until it
saturates for Nf ≥ 7. I chose to work with Nf = 10 for all of my pulses in order to
ensure that they were in the saturated regime. The control parameters to be op-
timized are then the 20 amplitudes ajk of the individual sine functions, which are
given in units of radial frequency. As with GRAPE, the optimization is performed
by calculating the gradient of the functional with respect to the control parameters
and updating the parameters by stepping along the gradient. Given that there are
20 control parameters, the optimization thus involves stepping along the gradient
in a 20-dimensional space, which can be hard to visualize. The main benefits to
using smooth optimal control are that the resulting MW pulses are smooth, hence
the name, and their bandwidth and frequency components are known in advance
so long as the pulse duration is kept fixed as an input. The frequency components
will be fj = jΩf for j = 1..Nf , and the bandwidth will be NfΩf . These aspects
ease the experimental implementation of smooth optimal control pulses.

In order to perform the optimization, it is thus necessary to obtain expressions
for the unitary time evolution operator Û(tp) and the gradient of the functional
with respect to the control parameters ∂F

∂ajk
. Given that Û(tp) is the only term

in both of the mentioned functionals that depends on the control parameters ajk,
the calculation of the functional gradient mainly involves calculating ∂Û(tp)

∂ajk
. The

functional gradients can be determined directly to be

∂Fst
∂ajk

= 2Re
(
〈ψf |

∂Û(tp)
∂ajk

|ψinit〉 〈ψinit| Û †(tp) |ψf〉
)

(2.8)
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and
∂Fop
∂ajk

= Re
[
Tr
(
∂Û(tp)
∂ajk

Û †f

)]
/2 (2.9)

via standard derivation methods.
In order to obtain an expression for the time evolution operator Û(tp), it is neces-
sary to consider how the NV electron spin state evolves under the influence of the
MW drive. The evolution of the NV spin state |ψ〉 can, in general, be described
by the Schrödinger equation

i
∂

∂t
|ψ〉 = Ĥ(t) |ψ〉 , (2.10)

where ~ has been set equal to one with the Hamiltonian

Ĥ(t) = Ĥ0 + Ĥc(t) (2.11)

consisting of a time-independent drift term Ĥ0 that describes the drive-independent
evolution of the spin state and a time-dependent control term Ĥc(t) that describes
the contribution of the MW drive to the spin state evolution. When consider-
ing the previously mentioned effective two-level system consisting of either the
mS = 0 ⇐⇒ mS = 1 or the mS = 0 ⇐⇒ mS = −1 transition, the two Hamilto-
nian terms can be written as

Ĥ0 = ω0

2 σz, Ĥc(t) = σxS(t) (2.12)

and
Ĥ(t) = ω0

2 σz + σx (I(t) cos(ωMW t) +Q(t) sin(ωMW t)) , (2.13)

where ~ = 1, ω0 is the transition frequency, S(t) is given in units of radial fre-
quency, and σx, σz are the standard Pauli spin-matrices. This representation as-
sumes that the z-direction is defined by the NV axis and that the MW field is
linearly polarized in a direction perpendicular to the NV axis, here chosen to be
the x-direction.
The later calculations can be simplified by moving to a rotating frame rotating
at the driving frequency ωMW . To this end, a unitary rotation operator R̂ is
introduced.

R̂ = eiωMW tσz/2 (2.14)
The Schrödinger equation is rewritten in the frame defined by R̂ in order to obtain

i
∂

∂t
|ψ′〉 = Ĥ′(t) |ψ′〉 , (2.15)

where |ψ′〉 = R̂ |ψ〉 and Ĥ′(t) = R̂Ĥ(t)R̂† + i∂R̂
∂t
R̂† with i∂R̂

∂t
R̂† = −ωMW

2 σz. The
first term in Ĥ′(t) can be expanded to get

R̂Ĥ(t)R̂† = R̂(Ĥ0 + Ĥc(t))R̂† = Ĥ0 + R̂Ĥc(t)R̂†

= ω0

2 σz + eiωMW tσz/2σx [I(t) cos(ωMW t) +Q(t) sin(ωMW t)] e−iωMW tσz/2

(2.16)
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by noting that σz naturally commutes with itself. The expression can be simplified
by utilizing the Baker-Campbell-Hausdorff lemma

eiωMW tσz/2σxe−iωMW tσz/2 = σx + −iωMW t

2 [σz, σx]

+
(−iωMW t

2

)2 1
2! [σz, [σz, σx]] + ...,

(2.17)

the commutators for Pauli spin matrices
[σz, σx] = 2iσy, [σz, σy] = −2iσx, (2.18)

and the Taylor expansions of sine and cosine functions around t = 0.
sin(ft) = ft− (ft)3/3! + ...; cos(ft) = 1− (ft)2/2! + ... (2.19)

Combining these relations allows one to write
eiωMW tσz/2σxe−iωMW tσz/2 = σx cos(ωMW t) + σy sin(ωMW t) (2.20)

and thus
R̂Ĥ(t)R̂† = ω0

2 σz+(σx cos(ωMW t) + σy sin(ωMW t))

· (I(t) cos(ωMW t) +Q(t) sin(ωMW t)) ,
(2.21)

which can be expanded to

R̂Ĥ(t)R̂† = ω0

2 σz + I(t)
2 σx[1 + cos(2ωMW t)] + Q(t)

2 σx sin(2ωMW t)

+ I(t)
2 σy sin(2ωMW t) + Q(t)

2 σy[1− cos(2ωMW t)]
(2.22)

via the use of trigonometric identities. Utilizing the rotating wave approximation
to get rid of the rapidly oscillating terms cos(2ωMW t), sin(2ωMW t) simplifies the
expression to

R̂Ĥ(t)R̂† = ω0

2 σz + I(t)
2 σx + Q(t)

2 σy, (2.23)

which allows the full Hamiltonian in the rotating frame to be written as

Ĥ′(t) = ∆i

2 σz + I(t)
2 σx + Q(t)

2 σy, (2.24)

where ∆i = ω0 − ωMW is the detuning between the transition frequency ω0 and
the driving frequency ωMW for a single NV. Eq. 2.24 makes it clear that the in-
phase I(t) and quadrature Q(t) components of the shaped MW pulse rotate the
NV electron spin state around the x- and y-axis of the Bloch sphere, respectively.
In the optimization algorithm, I(t) and Q(t) further represent the Rabi frequency
of the rotation around their respective axis at a given time t, which is the reason
for the radial frequency units. These observations further make it clear that a flat
MW pulse is simply a special case of an optimal control pulse where I(t) = ΩR

and Q(t) = 0 for all t during the pulse duration.
As is also clear from Eq. 2.24 and the definitions in Eq. 2.7, the choice of basis for
smooth optimal control has made the total Hamiltonian periodic with periodicity
T = 2tp, which allows us to use Floquet theory to solve the Schrödinger equation.
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2.4.1 Floquet theory for smooth optimal control

According to Floquet’s theorem [52,53,60], a time-periodic Hamiltonian will yield
a complete set of solutions to the Schrödinger equation of the form

|ψk(t)〉 = e−iεkt |Φk(t)〉 (2.25)

where |Φk(t)〉 = |Φk(t+ T )〉 is a time-periodic eigenstate of the Floquet eigenvalue
problem

K |Φk(t)〉 = εk |Φk(t)〉 , K = Ĥ(t)− i ∂
∂t

(2.26)

with the corresponding quasi-energy εk. One uses the term quasi-energy to distin-
guish from the actual energies obtained as eigenvalues of the Hamiltonian. The
actual energies have physical meaning, whereas the Floquet quasi-energies do not.
We thus need to solve the Floquet eigenvalue problem in order to obtain solutions
to the Schrödinger equation. This is easier to do in Fourier space. To this end,
the Floquet eigenstates |Φk(t)〉 are rewritten as a Fourier series

|Φk(t)〉 =
∞∑

v=−∞
eivΩf t |φkv〉 (2.27)

and the Fourier coefficients of the Hamiltonian are defined as

Ĥn = 1
T

T∫

0

e−inΩf tĤ(t) dt. (2.28)

Eq. 2.27 is inserted in Eq. 2.26, both sides are multiplied by e−iuΩf t and integrated
from t = 0 to t = T in order to obtain

1
T

T∫

0

dte−iuΩf t
(
Ĥ(t)− i ∂

∂t

) ∞∑

v=−∞
eivΩf t |φkv〉 = εk

T

T∫

0

dte−iuΩf t
∞∑

v=−∞
eivΩf t |φkv〉 .

(2.29)
By utilizing the exponential form of the Kronecker delta, δn,m = 1

2π

2π∫
0

ei(n−m)ϕdϕ,
Eq. 2.29 reduces to

∞∑

v=−∞

1
T

T∫

0

dt
(
e−i(u−v)Ωf tĤ(t) + vΩfei(v−u)Ωf t

)
|φkv〉 = εk |φku〉 , (2.30)

which further reduces to

uΩf |φku〉+
∞∑

v=−∞
Ĥu−v |φkv〉 = εk |φku〉 (2.31)

by again utilizing the exponential form of the Kronecker delta and the expression
for the Fourier coefficients of the Hamiltonian (Eq. 2.28). Finding solutions to
Eq. 2.31 is equivalent to finding solutions to the eigenvalue problem

K̃
∣∣∣φ̃k
〉

= εk
∣∣∣φ̃k
〉

(2.32)
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where
∣∣∣φ̃k
〉

= (..., |φk,−1〉 , |φk,0〉 , |φk,1〉 , ...)T , Î is the identity operator and

K̃ =




. . . . . .

. . . Ĥ0 − ÎΩf Ĥ−1 Ĥ−2
... Ĥ1 Ĥ0 Ĥ−1 ...

Ĥ2 Ĥ1 Ĥ0 + ÎΩf
. . .

. . . . . .




(2.33)

is the infinite-dimensional Floquet matrix. The main difference between Eq. 2.26
and Eq. 2.32 is that the shift to Fourier space has made the problem in Eq. 2.32
time-independent. The problem has thus been changed from solving the differen-
tial Schrödinger equation to diagonalizing the K̃ matrix. Note that the individual
Fourier coefficients Ĥn are themselves d × d matrices where d is the dimension
of the configuration space. For the effective two-level system with the Hamilto-
nian shown in Eq. 2.24, d = 2. The exact form of the Fourier coefficients can be
determined by inserting Eq. 2.24 into Eq. 2.28. Doing so yields

Ĥn = 1
T

T∫

0

e−inΩf t
(

∆i

2 σz + I(t)
2 σx + Q(t)

2 σy

)
dt, (2.34)

which can be expanded by using the definitions of I(t) and Q(t) in Eq. 2.7.

Ĥn = 1
T

T∫

0

e−inΩf t


∆i

2 σz +
Nf∑

j=1
[ajxσx + ajyσy] sin(jΩf t)


 dt (2.35)

Using the exponential form of a sine sin(ft) = 1/(2i)
[
eift − e−ift

]
and the expo-

nential form of the Kronecker delta, the expression can be rewritten as

Ĥn = ∆i

2 σzδn,0 −
i

2

Nf∑

j=1
[ajxσx + ajyσy] (δn,j − δn,−j) (2.36)

The effects of drive amplitude variations are included by multiplying the control
amplitudes ajk by the relative control amplitude αi, which represents the ratio
between the actual Rabi frequency experienced by the single NV and the intended
Rabi frequency. The final expression for the Fourier coefficients of the Hamiltonian
thus becomes

Ĥn = ∆i

2 σzδn,0 −
i

2

Nf∑

j=1
αi [ajxσx + ajyσy] (δn,j − δn,−j), (2.37)

which is used to obtain the 2× 2 matrix elements of K̃. As an example, Ĥ−1, Ĥ0,
Ĥ1 are given in Eq. 2.38 for a single NV with ∆i and αi.

Ĥ−1 =
(

0 αi
2 (ia1x + a1y)

αi
2 (ia1x − a1y) 0

)
, Ĥ0 =

(∆i

2 0
0 −∆i

2

)
,

Ĥ1 =
(

0 −αi
2 (ia1x + a1y)

−αi
2 (ia1x − a1y) 0

) (2.38)
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The K̃ matrix is infinite, but in reality one can only use a finite number of frequen-
cies to control the system. As a result, far-off diagonal elements will be negligible
compared to the diagonal elements, i.e. |K̃ii−K̃jj| � |K̃ij| for large i− j, and the
eigenvectors and eigenvalues of K̃ can be well-approximated by those of a finite
truncated version K̃trunc. By utilizing symmetry principles, it is further possi-
ble to construct all of the eigenvectors and eigenvalues from a very limited set
of eigenvalues and eigenvectors. The Floquet matrix K̃ will satisfy the relation
ŜK̃Ŝ† = K̃ + ÎΩf , where Ŝ has the effect of shifting the elements of

∣∣∣φ̃k
〉

by one.
In other words, (Ŝ

∣∣∣φ̃k
〉
)v = (

∣∣∣φ̃k
〉
)v+1. As such, the vector Ŝm

∣∣∣φ̃k
〉

will be an
eigenvector of K̃ for any integer m if

∣∣∣φ̃k
〉

is itself an eigenvector. If
∣∣∣φ̃k
〉

is an
eigenvector to the eigenvalue εk then Ŝm

∣∣∣φ̃k
〉

will be an eigenvector to the eigen-
value εk −mΩf . In this way, it is possible to construct all of the eigenvalues and
eigenvectors by translation, provided we know the right d eigenvalues that fulfil
the condition (εk − εj)/Ωf 6∈ Z, k 6= j. The interval where these eigenvalues are
found is also called a Brillouin zone, as in Bloch theory.

Having determined a way to obtain the eigenvalues and eigenvectors of K̃, it is
now possible to determine the time evolution of any state by expanding the state
in the basis of steady states, with the time evolution given by the quasi-energies
and Floquet eigenstates |Φk(t)〉. As such, the time evolution operator Û(t) can be
written as

Û(t) =
d∑

k=1
|ψk(t)〉 〈ψk(0)| =

d∑

k=1
e−iεkt |Φk(t)〉 〈Φk(0)|

=
d∑

k=1

∞∑

v=−∞
ei(vΩf−εk)t |φkv〉 〈Φk(0)| .

(2.39)

The sum over v is written as being infinite, but in reality one will only use as many
terms as are needed to ensure a negligible error in the unitarity of Û(t). The sum
is always kept symmetric around v = 0 and determines the size of the truncated
Floquet matrix.
An expression for the time evolution operator Û(t) has now been determined,
which was one of the requirements for performing the optimization with optimal
control theory. An expression for the gradient of Û(t) with respect to ajk was also
required. To this end, perturbation theory is applied to determine the gradient.

2.4.2 Perturbation theory with the Floquet operator

The derivative of Û(t) with respect to the control amplitudes ajk, which will also
be referred to as al to avoid confusion, can be directly obtained from the previously
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defined expression for Û(t).

∂Û(t)
∂al

= ∂

∂al

d∑

k=1

∞∑

v=−∞
ei(vΩf−εk)t |φkv〉 〈Φk(0)|

=
d∑

k=1

∞∑

v=−∞

(
− itei(vΩf−εk)t∂εk

∂al
|φkv〉 〈Φk(0)|

+ ei(vΩf−εk)t∂ |φkv〉
∂al

〈Φk(0)|+ ei(vΩf−εk)t |φkv〉
∞∑

u=−∞

∂ 〈φku|
∂al

(2.40)

In order to utilize Eq. 2.40, we need expressions for ∂εk
∂al

and ∂|φkv〉
∂al

. These will be
obtained via perturbation theory. In the considered case, the perturbation can be
a change in the MW driving field, and the response is a change in the NV electron
spin state dynamics. Note, however, that the perturbation δ~a is a change in the
control amplitudes ~a = (a1x, a2x, ..., aNx, a1y, a2y, ..., aNy) and is therefore a vector.
The control Hamiltonian Hc(t) is linear in the control amplitudes and thus so is
the Floquet operator K̃.

K̃(~a+ δ~a) = K̃(~a) + δ~a · K̃int, K̃int = ∇aK̃|~a=~0 (2.41)

Adding a small perturbation to the Floquet eigenvalue problem in Eq. 2.32 yields

(K̃(~a) + δ~a · K̃int)
∣∣∣φ̃k
〉

= εk(~a)
∣∣∣φ̃k
〉
. (2.42)

Furthermore, one can expand the eigenvalues εk(~a) and eigenstates
∣∣∣φ̃k
〉

in the
perturbation parameter δ~a in order to obtain

εk(~a) = ε
(0)
k (~a) + δ~a · ε(1)

k (~a) + δ~a2 · ε(2)
k (~a) + ... =

∞∑

λ=0
δ~aλ · ε(λ)

k (~a) (2.43)

∣∣∣φ̃k
〉

=
∣∣∣φ̃(0)
k

〉
+ δ~a ·

∣∣∣φ̃(1)
k

〉
+ δ~a2 ·

∣∣∣φ̃(2)
k

〉
+ ... =

∞∑

λ=0
δ~aλ ·

∣∣∣φ̃(λ)
k

〉
(2.44)

The expansions are well approximated by the sum of the zeroth and first order
terms, and the first order eigenvalue perturbations are simply given by the first
order derivative of the eigenvalue with respect to ~a.

εk(~a+ δ~a) ≈ ε
(0)
k (~a) + δ~a · ε(1)

k (~a) = ε
(0)
k (~a) + δ~a · ∇aεk(~a) (2.45)

The same is true of the higher order eigenvalue perturbations. Inserting the ex-
pansions of εk(~a) and

∣∣∣φ̃k
〉

in the perturbed Floquet eigenvalue problem (Eq. 2.42)
yields the expression

(K̃(~a) + δ~a · K̃int)
∞∑

λ=0
δ~aλ ·

∣∣∣φ̃(λ)
k

〉
=
∞∑

λ=0
δ~aλ · ε(λ)

k (~a)
∞∑

γ=0
δ~aγ ·

∣∣∣φ̃(γ)
k

〉
(2.46)

from which we collect the terms that go to first order in δ~a.

K̃(~a)
∣∣∣φ̃(1)
k

〉
+ K̃int

∣∣∣φ̃(0)
k

〉
= ε

(1)
k (~a)

∣∣∣φ̃(0)
k

〉
+ ε

(0)
k (~a)

∣∣∣φ̃(1)
k

〉
(2.47)
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Multiplying from the left with
〈
φ̃

(0)
k

∣∣∣ and utilizing the standard perturbation theory
normalization

〈
φ̃(0)
n |φ̃(m)

n

〉
= δ0m, an expression for the first order correction to the

eigenvalues is obtained. Noting that the first order correction is equivalent to the
first order derivative, the individual derivatives can be obtained similarly.

ε
(1)
k (~a) =

〈
φ̃

(0)
k

∣∣∣ K̃int
∣∣∣φ̃(0)
k

〉
⇒ ε

(1i)
k = ∂εk

∂al
=
〈
φ̃

(0)
k

∣∣∣
K̃
∂al

∣∣∣φ̃(0)
k

〉
(2.48)

So far, we have worked with the standard form of perturbation theory, which is
also known as Rayleigh-Schrödinger perturbation theory. However, the corrections
to the eigenstates are easier to determine and the calculations are faster when
using Brillouin-Wigner perturbation theory. This approach involves rewriting the
perturbed Floquet eigenvalue problem (Eq. 2.42) and setting the perturbation
constant δ~a equal to unity.

(εk(~a)− K̃(~a))
∣∣∣φ̃k
〉

= K̃int
∣∣∣φ̃k
〉

(2.49)

Next, the set of projection operators

Q̂n =
∑

k 6=n

∣∣∣φ̃(0)
k

〉 〈
φ̃

(0)
k

∣∣∣ = Î −
∣∣∣φ̃(0)
n

〉 〈
φ̃(0)
n

∣∣∣ , (2.50)

which project a state into the orthogonal space of the unperturbed state
∣∣∣φ̃(0)
k

〉
,

is introduced. These operators will commute with the Floquet operator K̃(~a))
because they have the same eigenvectors. Applying Q̂n to Eq. 2.49 yields

Q̂n(εk(~a)− K̃(~a))
∣∣∣φ̃k
〉

= (εk(~a)− K̃(~a))Q̂n

∣∣∣φ̃k
〉

= Q̂nK̃int
∣∣∣φ̃k
〉
, (2.51)

which can be rewritten as

Q̂n

∣∣∣φ̃k
〉

= (εk(~a)− K̃(~a))−1Q̂nK̃int
∣∣∣φ̃k
〉
, (2.52)

where the (pseudo-)inverse of a matrix has been used. The perturbed eigen-
states must be normalized according to standard perturbation theory normaliza-
tion, meaning that

〈
φ̃

(0)
k |φ̃k

〉
= 1, which allows the perturbed eigenstates to be

rewritten as ∣∣∣φ̃k
〉

=
∣∣∣φ̃(0)
k

〉
+ Q̂n

∣∣∣φ̃k
〉

(2.53)

Defining the operator R̂n = (εk(~a)−K̃(~a))−1Q̂n and inserting Eq. 2.52 into Eq. 2.53
yields ∣∣∣φ̃k

〉
=
∣∣∣φ̃(0)
k

〉
+ R̂nK̃int

∣∣∣φ̃k
〉
, (2.54)

which can be solved via iteration under the reasonable assumption that the per-
turbation K̃int = ∇aK̃|~a=~0 is small. The first order correction to the eigenstates
can then be calculated by using the zeroth order approximation to the eigenstates
on the right. The individual derivatives can again be obtained similarly by noting
that the first order correction is equivalent to the first order derivative.

∣∣∣φ̃(1)
k

〉
= R̂nK̃int

∣∣∣φ̃(0)
k

〉
⇒
∣∣∣φ̃(1i)
k

〉
=
∂
∣∣∣φ̃k
〉

∂al
= R̂n

∂K̃
∂al

∣∣∣φ̃(0)
k

〉
(2.55)
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Expressions for ∂εk
∂al

and ∂|φkv〉
∂al

have now been derived, which allows us to determine
∂Û(t)
∂al

, thereby fulfilling the second requirement for performing the optimization
with optimal control theory.

2.4.3 Optimization details

So far, however, we have only considered single NV with some value of ∆i and αi.
Robustness against inhomogeneous broadening and drive amplitude variations is
then achieved by averaging across a representative sample of Ns different NV with
varying ∆i and αi. The different NV electron spins are assumed to be independent
and non-interacting. In other words, we seek to maximize the averaged fidelity

Fst,avg =
Ns∑

i=1
wiFst(∆i, αi) (2.56)

by stepping along the averaged fidelity gradient
(
∂Fst
∂ajk

)

avg

=
Ns∑

i=1
wi
∂Fst
∂ajk

(∆i, αi), (2.57)

where
Ns∑
i=1

wi = 1 are normalized weights representing the expected distribution of
∆i and αi, while the used values of ∆i and αi should represent the level of inho-
mogeneous broadening and drive amplitude variations that one wishes to achieve
robustness against. The representative sample need not be anywhere near as large
as the ensemble that the resulting pulse is meant to be used on, so long as the
values of ∆i, αi and wi represent the level of inhomogeneous broadening and drive
amplitude variations sufficiently well.

A common approach that I also utilized is to use an equal number Nr of dif-
ferent ∆ and α values to cover the considered ranges, and then average across all
possible combinations of these values. The representative sample will thus have
the size Ns = Nr×Nr, and the lists of ∆i and αi will include Nr repetitions of each
distinct value. The values of ∆i are chosen to lie symmetrically around ∆ = 0, i.e.
no detuning, and are assumed to follow a Gaussian distribution centered at zero
with a full width at half maximum (FWHM) equal to the maximum value of ∆i.
A given optimization might thus, for instance, use values of ∆i between ±1 MHz
assumed to follow a Gaussian distribution centered at zero with a FWHM equal
to 1 MHz. The values of αi are chosen to lie symmetrically around α = 1, i.e.
no drive amplitude variation, and are assumed to follow a flat distribution. The
weights wi are thus purely determined by the values of ∆i and can be calculated
as

wi =
1

σ
√

2πe−
∆2
i

2σ2

Ns∑
i=1

1
σ
√

2πe−
∆2
i

2σ2

⇐⇒ wi = e−
∆2
i

2σ2

Ns∑
i=1

e−
∆2
i

2σ2

, (2.58)
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where
σ = FWHM

2
√

2 ln(2)
(2.59)

is given by the value of the FWHM.
In order to limit the maximum Rabi frequency (MW power) that is used during the
application of the shaped MW pulse, it is common to include a penalty functional

Fpenalty = −cpenaltytp~a2, (2.60)

∂Fpenalty
∂ajk

= −2cpenaltytpajk (2.61)

in the optimization, where cpenalty ≥ 0 is a penalty constant that determines how
harshly large Rabi frequencies are penalized. The final total functional value and
functional gradient used for the optimization thereby becomes

Fst,tot = −cpenaltytp~a2 +
Ns∑

i=1
wiFst(∆i, αi) (2.62)

and (
∂Fst
∂ajk

)

tot

= −2cpenaltytpajk +
Ns∑

i=1
wi
∂Fst
∂ajk

(∆i, αi). (2.63)

The total functional is not referred to as the fidelity, but the goal is still to max-
imize the total functional value by stepping along the total functional gradient.
Furthermore, the penalty constant cpenalty is not kept fixed, but is updated af-
ter every optimization step. The optimization is started with some initial value of
cpenalty and after each optimization step, the maximum Rabi frequency that occurs
during the resulting pulse is calculated and compared to the maximum allowed
Rabi frequency Rlim, i.e. the upper limit chosen for the Rabi frequency. Values
of Rlim will be given in regular frequency units. If the maximum Rabi frequency
of the pulse exceeds the upper limit Rlim, the penalty constant is increased by a
chosen step size. If the maximum Rabi frequency of the pulse does not exceed
the upper limit Rlim, the penalty constant is decreased by that same step size.
This approach serves to not only ensure that the final shaped MW pulse will not
exceed the upper limit Rlim, but also helps to prevent the optimization algorithm
from getting stuck in a local maxima. I used an initial penalty constant value of
1.0 and a penalty constant step size of 0.05 for all of the optimizations that will
be referenced in this thesis, as these values were found to yield good results.
Finally, the step size along the gradient in the optimization is determined in two
different ways depending on the number of previous optimization steps. For the
first 51 optimization steps, the gradient step size is kept constant at β = 0.007,
whereas for the later optimization steps, the optimal step size is determined via a
line search. This is done in order to speed up the optimization without compro-
mising the quality of the obtained optimal control pulses.
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2.4.4 Including the effects of hyperfine splitting

All of the necessary components in the optimization have now been explained.
However, the Hamiltonian and its related Fourier coefficients that were presented
only relate to a single hyperfine transition, as is usual for the use of optimal con-
trol theory for NV sensing. As previously mentioned, it is possible to suppress
the hyperfine splitting by polarizing the nitrogen nuclear spin, but doing so is
not straightforward and adds to the complexity of the NV sensing scheme. As a
result, it is also relevant to consider the option of expanding the optimal control
approach to include all of the hyperfine transitions, such that shaped MW pulses
capable of simultaneously driving all of the transitions might be achieved. Doing
so involves expanding the considered Hamiltonian and thus also its Fourier coef-
ficients to include all of the hyperfine transitions.

The different hyperfine transitions (two-level systems) are assumed to be indepen-
dent, which follows naturally from the previous assumption that the NV electron
spins do not interact. The total Hamiltonian describing the evolution of all of the
hyperfine transitions can thus be written as a sum over separate versions of the
single NV Hamiltonian in Eq. 2.13 with different transition frequencies ω0.

Ĥ(t) =
∑

k

ω0,k

2 σz,k + σx,k (I(t) cos(ωMW t) +Q(t) sin(ωMW t)) (2.64)

Here, σx,k, σy,k and σz,k are Pauli spin-matrices specific to transition k. The
number of hyperfine transitions is 3 when considering 14N nuclear spins and 2
when considering 15N nuclear spins. The states of the considered two-level systems
can thus be completely described by a single vector of length 6 for 14N nuclear
spins and a single vector of length 4 for 15N nuclear spins. For instance, the
states initialized in mS = 0 can be described by |ψ〉 = 1/

√
3(1, 0, 1, 0, 1, 0) for

14N nuclear spins or |ψ〉 = 1/
√

2(1, 0, 1, 0) for 15N nuclear spins. Note that these
vectors inherently describe the electron spin states of 3(2) NV centers, such that
the fidelity obtained from Eq. 2.4 becomes the average fidelity across 3(2) NV
centers. The transition-specific Pauli spin-matrices can likewise be represented by
either 6× 6 or 4× 4 matrices. To avoid confusion, the matrices are denoted 1, 2, 3
for 14N and l, r for 15N. For 14N nuclear spins, the relevant 6× 6 matrices are

σz,1 =




1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σz,2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σz,3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


 , (2.65)

σx,1 =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σx,2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σx,3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


 (2.66)

and

σy,1 =




0 −i 0 0 0 0
i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σy,2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −i 0 0
0 0 i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σy,3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −i
0 0 0 0 i 0


 . (2.67)
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For 15N nuclear spins, the relevant 4× 4 matrices are

σz,l =
( 1 0 0 0

0 −1 0 0
0 0 0 0
0 0 0 0

)
, σz,r =

( 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

)
, (2.68)

σx,l =
( 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

)
, σx,r =

( 0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

)
(2.69)

and
σy,l =

(
0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

)
, σy,r =

(
0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

)
. (2.70)

As before, the calculations can be simplified by moving to a rotating frame rotating
at the driving frequency ωMW . The unitary rotation operator when considering
multiple transitions has the form

R̂ = e
∑
k

iωMW tσz,k/2
. (2.71)

As before, the Schrödinger equation is rewritten in the frame defined by R̂ in order
to obtain i ∂

∂t
|ψ′〉 = Ĥ′(t) |ψ′〉 where |ψ′〉 = R̂ |ψ〉 and Ĥ′(t) = R̂Ĥ(t)R̂† + i∂R̂

∂t
R̂†.

Now, however, the last term in Ĥ′(t) is i∂R̂
∂t
R̂† = −∑

k

ωMW

2 σz,k. The first term in

Ĥ′(t) can be expanded to get

R̂Ĥ(t)R̂† =
∑

k

ω0,k

2 σz,k + e
∑
k

iωMW tσz,k/2∑

k

σx,k
(
I(t) cos(ωMW t)

+Q(t) sin(ωMW t)
)
e
∑
k

−iωMW tσz,k/2
(2.72)

by noting that [σz,k, σz,k′ ] = 0 for all k, k′. This expression is equivalent to the
one we obtained when considering a single transition except that it contains mul-
tiple terms. We note that the relevant commutation relations for the transition
specific Pauli spin-matrices can easily be shown to be [σz,k, σx,k′ ] = 2iσy,kδk,k′

and [σz,k, σy,k′ ] = −2iσx,kδk,k′ . Utilizing these commutation relations, the Baker-
Campbell-Hausdorff lemma and the Taylor expansions of sine and cosine functions
allows us to write

e
∑
k

iωMW tσz,k/2∑

k

σx,ke
∑
k

−iωMW tσz,k/2
=
∑

k

(
σx,k cos(ωMW t) + σy,k sin(ωMW t)

)
,

(2.73)
and thus

R̂Ĥ(t)R̂† =
∑

k

(ω0,k

2 σz,k + (σx,k cos(ωMW t) + σy,k sin(ωMW t))

· (I(t) cos(ωMW t) +Q(t) sin(ωMW t))
)
,

(2.74)
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which can be expanded to

R̂Ĥ(t)R̂† =
∑

k

(ω0,k

2 σz,k + I(t)
2 σx,k[1 + cos(2ωMW t)] + Q(t)

2 σx,k sin(2ωMW t)

+ I(t)
2 σy,k sin(2ωMW t) + Q(t)

2 σy,k[1− cos(2ωMW t)]
)

(2.75)

via the use of trigonometric identities. Once more, the rotating wave approxima-
tion is utilized to get rid of the rapidly oscillating terms cos(2ωMW t), sin(2ωMW t)
and simplify the expression to

R̂Ĥ(t)R̂† =
∑

k

(ω0,k

2 σz,k + I(t)
2 σx,k + Q(t)

2 σy,k
)
. (2.76)

Next, ∆i is defined to be the detuning between the driving frequency ωMW and the
average transition frequency ω0,avg = 1/Nt

∑
k ω0,k, where Nt is 3 when considering

14N nuclear spins and 2 when considering 15N nuclear spins. For 14N nuclear spins,
the average transition frequency is simply the transition frequency of the central
hyperfine transition due to the hyperfine splitting being symmetric. The total
Hamiltonian which includes all of the hyperfine transitions in the rotating frame
can then be written as

Ĥ′(t) =
∑

k

(∆i +mkδI
2 σz,k + I(t)

2 σx,k + Q(t)
2 σy,k

)
, (2.77)

where m1 = −1, m2 = 0, m3 = 1 and δI = 2π · 2.16 MHz for 14N nuclear spins,
while ml = −1/2, mr = 1/2 and δI = 2π ·3.03 MHz for 15N nuclear spins. Inserting
Eq. 2.77 into Eq. 2.28 yields

Ĥn =
∑

k

1
T

T∫

0

e−inΩf t
(

∆i +mkδI
2 σz,k + I(t)

2 σx,k + Q(t)
2 σy,k

)
dt, (2.78)

which can be expanded by using the definitions of I(t) and Q(t) in Eq. 2.7.

Ĥn = 1
T

∑

k

T∫

0

e−inΩf t


∆i +mkδI

2 σz,k +
Nf∑

j=1
[ajxσx,k + ajyσy,k] sin(jΩf t)


 dt

(2.79)
The final expression for the Fourier coefficients of the Hamiltonian when all of the
hyperfine transitions are included is then obtained by utilizing the exponential
form of a sine and the exponential form of the Kronecker delta, which yields

Ĥn =
∑

k

(∆i +mkδI
2 σz,kδn,0 −

i

2

Nf∑

j=1
αi [ajxσx,k + ajyσy,k] (δn,j − δn,−j)

)
, (2.80)

where the control amplitudes have once again been multiplied by the relative con-
trol amplitude αi in order to include the effects of drive amplitude variations. The
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optimization can thus be performed while considering either a single transition or
all of the hyperfine transitions by using the relevant expression for Ĥn. When per-
forming optimizations with the hyperfine splitting included, I exclusively consider
14N nuclear spins, as this is the most naturally abundant isotope.

2.4.5 Smooth optimal pulse examples

As an example of the shaped MW pulses that might be designed by the smooth
optimal control algorithm, Fig. 2.6 shows I(t) and Q(t) in regular frequency units
for two smooth optimal pulses that were optimized to perform a state transfer
π-flip with and without hyperfine splitting included for otherwise identical param-
eters. Both of the optimizations needed approximately 150 optimization steps to
achieve convergence of the fidelity.
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Figure 2.6: Plots of I(t) and Q(t) in regular frequency units for smooth optimal
control pulses optimized to perform a state transfer π-flip for ∆i/(2π) between
±1 MHz, αi between 1 ± 0.1 and tp = 1.85 µs with an upper limit on the Rabi
frequency of Rlim = 1.9 MHz. The optimizations were performed (a) without and
(b) with hyperfine splitting included.

A common method for visualizing the performance of optimal control pulses is to
calculate and plot the single NV fidelity as a function of ∆1 and α1 in a 2D plot
called a fidelity map. Here, the subscript 1 is used to indicate that each fidelity
value is obtained using a single value of ∆ and α. Similarly, the performance when
hyperfine splitting is included can be visualized by plotting the fidelity averaged
across the hyperfine transitions as a function of ∆1 and α1. Note that the single
NV fidelity is equivalent to the fidelity of the performance on a single transition.
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Figure 2.7: State transfer π-flip fidelity maps for three different pulses with and
without hyperfine splitting included. The top row shows the single NV fidelity,
and the bottom row shows the fidelity averaged across the hyperfine transitions
as a function of ∆1 and α1 for (a, d) a flat π-pulse with ΩR = 2π · 1.9 MHz, (b,
e) the smooth optimal pulse shown in Fig. 2.6(a) and (c, f) the smooth optimal
pulse shown in Fig. 2.6(b).

As an illustration of both this method and the performance achievable with opti-
mal control pulses, Fig. 2.7 shows six different fidelity maps based on the optimal
control pulses shown in Fig. 2.6 and an equivalent flat pulse. The methods used
to obtain the flat pulse fidelity are explained in section 2.5.1. The fidelity maps
in Fig. 2.7(a, b, c) show the single NV fidelity as a function of ∆1 and α1, and the
fidelity maps in Fig. 2.7(d, e, f) show the fidelity averaged across the hyperfine
transitions as a function of ∆1 and α1. The pulse used for Fig. 2.7(a, d) was a flat
π-pulse with ΩR = 2π · 1.9 MHz, the pulse used for Fig. 2.7(b, e) was the smooth
optimal pulse shown in Fig. 2.6(a), and the pulse used for Fig. 2.7(c, f) was the
smooth optimal pulse shown in Fig. 2.6(b).

Figure 2.7 illustrates how the optimal pulse optimized without hyperfine split-
ting (Fig. 2.6(a)) achieves high single NV fidelity for a much wider range of values
of ∆1 and α1 than the flat pulse or the optimal pulse optimized with hyperfine
splitting included (Fig. 2.6(b)). This is as expected, given that said pulse was
optimized without hyperfine splitting and would thus be expected to outperform
an equivalent flat pulse under those conditions. Conversely, the optimal pulse op-
timized with hyperfine splitting (Fig. 2.6(b)) performs worse in terms of single NV
fidelity than either the flat pulse or the optimal pulse optimized without hyper-
fine splitting because it was not optimized for that situation. When considering
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the fidelity averaged across the hyperfine transitions, which is the situation that
it was optimized for, the pulse in Fig. 2.6(b) achieves significantly larger fidelity
than either of the two other considered pulses, at least in the central region of the
fidelity map. One can also note that the fidelity maps in Fig. 2.7(c) and Fig. 2.7(f)
have almost the exact same shape, which indicates that the pulse in Fig. 2.6(b)
has almost the exact same effect on all of the hyperfine transitions.

2.5 Measurement simulations

2.5.1 Pulsed measurement simulations

In addition to using the previously derived expressions to calculate the fidelity via
Eq. 2.4, it is also possible to simulate the effect of an optimal pulse by numerically
solving the Schrödinger equation. The relevant Hamiltonians describing the evo-
lution of the NV center electron spin state under influence of an optimal control
pulse have already been derived in Eqs. 2.24 and 2.77. The differential equation
to be solved thus becomes

d |ψ〉
dt

= −i
(

∆i

2 σz + αi

[
I(t)

2 σx + Q(t)
2 σy

])
|ψ〉 (2.81)

when considering a single hyperfine transition and

d |ψ〉
dt

= −i
∑

k

(∆i +mkδI
2 σz,k + αi

[
I(t)

2 σx,k + Q(t)
2 σy,k

] )
|ψ〉 (2.82)

when considering all of the hyperfine transitions. Note that Eq. 2.82 technically
describes 2 or 3 separate NV centers depending on whether one is considering
15N or 14N. The simulation can thus be performed by numerically solving either
Eq. 2.81 or Eq. 2.82 with the relevant I(t) and Q(t) for a duration equal to the
pulse duration tp using the intended initial state |ψinit〉. The resulting state is then
equal to the term Û(tp) |ψinit〉 in Eq. 2.4 for the state transfer fidelity and can be
used to compute said fidelity. Furthermore, the normalized contrast between 0
and 1 expected after application of a given pulse can be calculated as the overlap
of the resulting state with state |1〉. This is due to the fact that the contrast
will be maximal when the NV center is completely in state |1〉, i.e. mS = 1 or
mS = −1, and minimal when it is completely in state |0〉, i.e. mS = 0. In the case
of Eq. 2.82, where all of the hyperfine transitions are considered, one would use
the average overlap across the hyperfine transitions. The response of an ensemble
can also be simulated by performing a weighted average of the obtained fidelities
or normalized contrast values across different values of ∆i and αi. The average can
be performed according to Eq. 2.56, which was also used for the optimal control
approach.

The same approach can be used to simulate the effect of a flat MW pulse by
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utilizing the earlier observation that a flat MW pulse is simply a special case of
an optimal pulse where I(t) = ΩR and Q(t) = 0 for all t during the pulse duration
tp.

The contrast expected from π-pulse ODMR can thus be simulated by using the
initial state |ψinit〉 = |0〉, which corresponds to an NV center initialized in mS = 0,
and numerically solving Eq. 2.81 or Eq. 2.82 with the appropriate I(t), Q(t) and
pulse duration tp. The contrast is then obtained as the overlap of the resulting
state with state |1〉. For an optimal control pulse, the pulse duration tp will be
whatever it was designed to be, whereas it will be tp = π

ΩR for a flat MW pulse.
The effect of scanning the MW driving frequency can be included by adding a
constant term, which corresponds to the difference between the MW driving fre-
quency and the central transition frequency, to all of the considered ∆i-values.
Similarly, the effect of an additional external magnetic field B is to change the
transition frequency and thus ∆i by γeB for the mS = 0 ⇐⇒ mS = 1 transition
and −γeB for the mS = 0⇐⇒ mS = −1 transition.

The contrast expected from Ramsey interferometry can be simulated in a similar
manner, although the simulation requires three steps. First, the state resulting
from applying a π/2-pulse to the initial state |ψinit〉 = |0〉 is simulated by nu-
merically solving Eq. 2.81 or Eq. 2.82 with the appropriate I(t), Q(t) and pulse
duration tp. For a flat MW pulse, the pulse duration is tp = π/2

ΩR . This simulates
the effect of the initial π/2-pulse. The resulting output state from the first sim-
ulation is then used as the initial state for a second simulation where all αi = 0,
which corresponds to no MW drive, and the duration is τ . This simulates the ef-
fect of the free precession. The resulting output state from the second simulation
is then used as the initial state for a third simulation where I(t), Q(t) and pulse
duration tp are again chosen to match a π/2-pulse. This simulates the effect of the
final π/2-pulse. The expected contrast can then be obtained as the overlap of the
resulting state from the third simulation with state |1〉. The effect of changing the
MW driving frequency or an additional external magnetic field can be included in
the same manner as for π-pulse ODMR.

Apart from the previously mentioned simulations, it will also be relevant to sim-
ulate a three-frequency drive with flat MW pulses for comparison with optimal
control pulses optimized while considering all of the hyperfine transitions. Using
a multi-frequency drive is, after all, one of the typical ways of compensating for
the effects of hyperfine splitting. To do so, it is necessary to change the considered
Hamiltonian to reflect the three-frequency driving. This is done by replacing the
cos(ωMW t) and sin(ωMW t) terms in Eq. 2.64 with sums of three such terms with
the driving frequency split by δI .

cos(ωMW t) −→ cos(ωMW t) + cos([ωMW + δI ]t) + cos([ωMW − δI ]t) (2.83)

sin(ωMW t) −→ sin(ωMW t) + sin([ωMW + δI ]t) + sin([ωMW − δI ]t) (2.84)

30



2 THEORY 2.5 Measurement simulations

The sums can be rewritten via the use of trigonometric relations.

cos(ωMW t) + cos([ωMW + δI ]t)
+ cos([ωMW − δI ]t) = cos(ωMW t)(1 + 2 cos(δIt))

(2.85)

sin(ωMW t) + sin([ωMW + δI ]t)
+ sin([ωMW − δI ]t) = sin(ωMW t)(1 + 2 cos(δIt))

(2.86)

We have thus effectively multiplied the cos(ωMW t) and sin(ωMW t) terms in Eq. 2.64
with a factor 1 + 2 cos(δIt). This is equivalent to multiplying I(t) and Q(t) with
the same factor. As before, we now wish to move to a rotating frame rotating at
ωMW . However, we know from our previous derivation of Eq. 2.77 that the shift
to a rotating frame only changes the σx,k-factor and adds a term −∑

k

ωMW

2 σz,k.
The factor 1 + 2 cos(δIt) will thus not be affected by the shift to a rotating frame.
Similarly, the factor 1 + 2 cos(δIt) does not change what terms are removed by
utilizing the rotating wave approximation, as it only includes (relatively) slowly
oscillating terms. As such, we can conclude that the inclusion of three-frequency
driving simply adds a factor 1 + 2 cos(δIt) to I(t) and Q(t) in the total Hamilto-
nian in the rotating frame. The situation with three-frequency driving of all the
hyperfine transitions can thus be described by the Hamiltonian

Ĥ′(t) =
∑

k

(∆i +mkδI
2 σz,k +

[
I(t)

2 σx,k + Q(t)
2 σy,k

]
[1 + 2 cos(δIt)]

)
. (2.87)

The simulations can also be altered to include the effects of pure dephasing by
adopting a master equation approach [61], which involves replacing the Schrödinger
equation with the quantum master equation

dρ

dt
= −i[Ĥ′(t), ρ] + Γpure

(1
4σzρσz −

1
8σzσzρ−

1
8ρσzσz

)
, (2.88)

where ρ = |ψ〉 〈ψ| for a pure state, and the rate of pure dephasing is Γpure ≈ 1/T ∗2 .

The initial state of an NV center initialized in mS = 0 is given as ρinit =
[
1 0
0 0

]

in density matrix notation when neglecting hyperfine splitting. The overlap with
state |1〉 and hence the normalized contrast is obtained directly as the second diag-
onal element of the resulting density matrix obtained from the simulations. Aside
from these differences, the simulations are performed using the same methods that
were previously described.

2.5.2 CW measurement simulations

The approaches that have been described so far can be used to simulate both
π-pulse ODMR and Ramsey interferometry. However, they are not suited to
simulating CW ODMR, which involves continuous reinitialization of the NV cen-
ter electron spin state rather than some fixed initial state. Instead, we utilize a
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simplified five-level model for the NV center as the basis for CW ODMR simu-
lations [62]. The mS = ±1 states are considered to be a single level and so are
the singlet states. The model thus involves level 1 (ground state mS = 0), level
2 (ground state mS = ±1), level 3 (excited state mS = 0), level 4 (excited state
mS = ±1) and level 5 (singlet state). The population in level n is denoted ρnn,
and the decay rate from level n to level m is denoted knm. The laser illumination
is constant with optical pumping rate Γp, and the MW drive is constant with in-
tended Rabi frequency ΩR and detuning ∆i between the driving frequency and the
transition frequency. The evolution of the normalized population ∑5

n=1 ρnn = 1 in
the five considered levels can then be described by the rate equations

dρ11

dt
= −Γpρ11 + k31ρ33 + k41ρ44 + k51ρ55 −

k21

2 (ρ11 − ρ22)− i

2αiΩR(ρ12 − ρ21),
dρ22

dt
= −Γpρ22 + k32ρ33 + k42ρ44 + k52ρ55 −

k21

2 (ρ22 − ρ11) + i

2αiΩR(ρ12 − ρ21),
dρ33

dt
= Γpρ11 − (k35 + k31 + k32)ρ33,

dρ44

dt
= Γpρ22 − (k45 + k41 + k42)ρ44,

dρ55

dt
= k45ρ44 + k35ρ33 − (k52 + k51)ρ55,

dρ12

dt
= −(γ′2 − i∆i)ρ12 + i

2αiΩR(ρ22 − ρ11),
dρ21

dt
= −(γ′2 + i∆i)ρ21 −

i

2αiΩR(ρ22 − ρ11),
(2.89)

where γ′2 = γ2 + Γp/2 is the optical dephasing rate, and γ2 = 2π/T ∗2 + k21/2 is
the spin dephasing rate. The effect of pure dephasing is thus included in the rate
equations via the term 2π/T ∗2 and can be neglected by setting this term to zero.
In regular frequency units, the decay rates are k21 = 1/6 ms, k31 = 1/16 ns, k32 =
0.01k31, k41 = 0.01k42, k42 = 1/15 ns, k35 = 1/95 ns, k45 = 1/13 ns, k51 = 1/330 ns
and k52 = 1/380 ns [63]. We can simplify the rate equations by introducing the
total decay rates

K3 = k35 + k31 + k32, K4 = k45 + k41 + k42, K5 = k51 + k52. (2.90)

We assume that the system will rapidly reach a steady-state for any realistic
set of operating conditions, such that we need only concern ourselves with the
rate equations under steady-state conditions. Given that red fluorescence is only
emitted as part of a decay from level 3 or 4 to level 2 or 1, the CW ODMR signal
ICW can then be calculated as a linear combination of the steady-state populations
of levels 3 and 4

ICW = Rαρ
ss
3 +Rβρ

ss
4 , (2.91)
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where Rα and Rβ are the ratios of the relevant fluorescing decay rates to the total
decay rate.

Rα = k32 + k31

K3
, Rβ = k42 + k41

K4
(2.92)

We thus need to solve the rate equations for the steady-state populations in order
to obtain the CW ODMR signal. Under steady-state conditions (dρ/dt = 0), we
can rewrite the last 5 rate equations to obtain the expressions

ρss33 = Γp
K3

ρss11, ρ
ss
44 = Γp

K4
ρss22, (2.93)

ρss55 = k45ρ
ss
44 + k35ρ

ss
33

K5
= k45Γp
K4K5

ρss22 + k35Γp
K3K5

ρss11, (2.94)

ρss12 =
i
2αiΩR(ρss22 − ρss11)

γ′2 − i∆i

, ρss21 = −
i
2αiΩR(ρss22 − ρss11)

γ′2 + i∆i

. (2.95)

The expressions in Eq. 2.93 allow us to reformulate the expression for ICW in
terms of the steady-state populations of levels 1 and 2.

ICW = Rα
Γp
K3

ρss11 +Rβ
Γp
K4

ρss22 (2.96)

The expressions in Eq. 2.95 can be combined to obtain

ρss12 − ρss21 = iγ′2αiΩR(ρss22 − ρss11)
γ′22 + ∆2

i

. (2.97)

The expressions in Eqs. 2.93, 2.94 and 2.97 can be combined with the second rate
equation under steady-state conditions to obtain

ΓPρss22 = k32Γp
K3

ρss11 + k42Γp
K4

ρss22 + k45k52Γp
K4K5

ρss22 + k35k52Γp
K3K5

ρss11

− k21

2 (ρ22 − ρ11)− γ′2(αiΩR)2(ρss22 − ρss11)
2(γ′22 + ∆2

i )
,

(2.98)

which can be rewritten as

ρss22

[
ΓP −

k42Γp
K4

− k45k52Γp
K4K5

+ k21

2 + γ′2(αiΩR)2

2(γ′22 + ∆2
i )

]

= ρss11

[
k32Γp
K3

+ k35k52Γp
K3K5

+ k21

2 + γ′2(αiΩR)2

2(γ′22 + ∆2
i )

]
.

(2.99)

If we now define

Ξ =

[
k21
2 + Γp(k32K5+k52k35)

K3K5
+ (αiΩR)2γ′

2
2(γ′2

2 +∆2
i )

]

[
Γp + k21

2 −
Γp(k42K5+k52k45)

K4K5
+ (αiΩR)2γ′

2
2(γ′2

2 +∆2
i )

] , (2.100)
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we arrive at the relation
ρss22 = Ξρss11 (2.101)

between the steady-state populations of levels 1 and 2. Finally, we utilize the
normalization of the steady-state populations and Eqs. 2.93, 2.94 and 2.101 to
obtain

1 = ρss11 + ρss22 + ρss33 + ρss44 + ρss55

= ρss11

[
1 + Ξ + Γp

K3
+ ΓpΞ

K4
+ k45ΓpΞ

K4K5
+ k35Γp
K3K5

]
,

(2.102)

which gives us the final expression

ρss11 =
[
1 + Ξ + Γp

K3
+ ΓpΞ

K4
+ k45ΓpΞ

K4K5
+ k35Γp
K3K5

]−1

(2.103)

for the steady-state population in level 1. Inserting Eq. 2.103 in Eq. 2.101 gives
us the expression

ρss22 =
[
1 + 1

Ξ + Γp
K3Ξ + Γp

K4
+ k45Γp
K4K5

+ k35Γp
K3K5Ξ

]−1

(2.104)

for the steady-state population in level 2. We have now obtained analytical ex-
pressions that can be used to calculate the CW ODMR signal ICW for a given set
of parameters. As with both π-pulse ODMR and Ramsey interferometry, we can
simulate an ensemble by performing an average across different values of αi and
∆i. The scanning of the MW driving frequency can be represented by adding a
constant term to all of the ∆i-values. The CW ODMR signal can be converted to
contrast relative to the signal obtained when the MW drive is far off-resonance.
The contrast values can then be divided by the maximum contrast obtained in
the asymptotic limit where ΩR is very large in order to obtain normalized contrast
values.

2.6 Laser threshold magnetometry

As previously explained, the typical approach to NV diamond magnetometry in-
volves measuring changes in the red fluorescence caused by the presence of an
additional external magnetic field separate from the static bias field. This can be
done in several different ways via several different sensing schemes, some of which
were detailed in the previous sections. However, all of these schemes suffer from
two significant limitations that are inherent to the approach based on measuring
changes in the red fluorescence. The first of these limitations is the fact that the
signal to be measured, i.e. the fluorescence contrast, is relatively small compared
to the background, particularly when working with an ensemble of NV centers.
For single NV centers or small ensembles, the contrast can be up to 30% [39], as
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was previously mentioned, but for large ensembles, the contrast will often be no
more than a few % [64, 65]. Meanwhile, the background fluorescence and thus
the shot noise will generally increase with increasing ensemble size, given that all
of the excited NV centers will produce fluorescence, regardless of whether or not
they are being driven on-resonance. These effects serve to limit the achievable
signal-to-noise ratio (SNR) in an NV magnetometry scheme based on measuring
changes in the red fluorescence. The second limitation is related to the high re-
fractive index of diamond, which traps a significant portion of the fluorescence
inside the diamond [66]. This reduces the achievable fluorescence signal.

An alternative measurement approach that circumvents these limitations is to
use the absorption of green light (λ = 532 nm) by the NV centers to perform laser
threshold magnetometry [67]. Due to the long lifetime of the singlet ground state,
which cannot absorb green light, and the spin state-dependence of the decay paths,
an NV center will absorb less green light when the electron spin state transition is
being driven on-resonance than when the drive is off-resonance. Through proper
selection of components and parameters, it should thus be possible to engineer
a laser setup with an NV diamond where the switch from off-resonance to on-
resonance driving will cause a crossing of the lasing threshold. The switch can be
caused by the presence of an additional external magnetic field, which will shift
the NV spin resonance frequency as previously explained. Such a setup could
then be used for a measurement scheme similar to standard CW ODMR, with
the difference that one measures the green output laser power instead of the red
fluorescence from the diamond. The resulting ODMR spectrum would effectively
have zero background and a contrast of 100% due to the output laser power being
zero in the absence of on-resonance driving, at least under ideal circumstances.
This can potentially be done in several different ways given the many existing laser
devices. We chose to focus on a technically simple setup consisting of a standard
external cavity laser formed by a current driven semiconductor laser diode and
an external mirror, with the diamond included in the external cavity as an extra
source of loss. The setup is illustrated in Fig. 2.8 along with relevant parameters
such as the laser diode cavity length Lm and end-facet power reflectivities R1 and
R2, the external cavity length Lr, the external mirror power reflectivity R3, the
diamond thickness d and the effective loss due to green light absorption by the
diamond αe. The laser emission is assumed to be through R1.

The idea is then to fix the drive current for the laser diode at the threshold current
Ioff for the situation where the electron spin transitions of the NV centers in the
diamond are being driven off-resonantly. As the MW driving frequency is shifted
towards on-resonance driving, the green light absorption by the NV centers in the
diamond will decrease, thereby decreasing the threshold current and causing the
external cavity laser to cross the lasing threshold. The change ∆Ith = Ioff − Ion
in threshold current caused by the shift from the threshold current Ioff under
off-resonant driving to the threshold current Ion under on-resonant driving is then
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Figure 2.8: Sketch of the external cavity laser setup formed by a current driven
semiconductor laser diode with cavity length Lm and end-facet power reflectivities
R1 and R2 coupled to an external cavity of length Lr via an external mirror with
power reflectivity R3. Laser emission is through R1. The diamond of thickness d
is included in the external cavity as a source of additional effective loss αe.

related to the external cavity laser output power under on-resonant driving and
thus the sensitivity of such a setup. The two different threshold currents can be
determined by considering the threshold condition that the gain G must be equal
to the total cavity loss αt, which is valid when spontaneous emission is neglected.

G = αt (2.105)

The total loss can be determined as the sum of the intrinsic cavity loss αc due to
the gain medium, the loss αm from the mirrors and end facets and the effective
loss αe due to the diamond.

αt = αc + αm + αe (2.106)

The individual loss terms are more easily obtained by using the three-mirror model
[68–71] to treat the entire external cavity structure as a single cavity of length
L = Lm + Lr with the power reflectivities R2 and R3 replaced by an effective
reflectivity Re = |re|2. All of the losses are then contained within the single
cavity. The effective reflectivity Re is obtained via the expression

re = r2
1−R2

r2

∑

n

εn(−r2r3e2iΘ)n, (2.107)

where εn are the individual coupling factors from the nth reflection in the cavity,
Θ = 2πLr/λ is the phase component resulting from the external cavity, and r2, r3
are the complex field reflectivities, R2 = |r2|2, R3 = |r3|2, which can be derived
from the Fresnel equations [72]

rs = n1 cos(θi)− n2 cos(θt)
n1 cos(θi) + n2 cos(θt)

(2.108)
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and
rp = n2 cos(θi)− n1 cos(θt)

n2 cos(θi) + n1 cos(θt)
. (2.109)

The Fresnel equations describe the complex field reflectivities of s- and p-polarized
light incident on the plane of a transition from a medium with refractive index n1
to a medium with refractive index n2 at an angle θi to the normal of the plane,
with the transmitted light travelling at an angle θt to the normal of the plane.
The orthogonal linear s- and p-polarizations refer to light polarized with its elec-
tric field normal and parallel to the plane of incidence, respectively. Given that
any polarization can be decomposed into a combination of two orthogonal linear
polarizations, these equations are sufficient to describe any given polarization.

For the sake of simplicity, we assume that the green light contains a single optical
mode at a single frequency. We further assume normal incidence of the green light
on the diamond and that the reflection from the diamond facets is minimal, such
that the transmission is high. The diamond is assumed not to be in contact with
the laser diode or the external mirror, such that the interface is always to air. We
thus have θi = θ = t = 0, which allows us to simplify the Fresnel equations as

rs = n1 − n2

n1 + n2
, rp = n2 − n1

n2 + n1
. (2.110)

We assume that the length of the external cavity can be adjusted so that the
resulting phase term e2iΘ = 1. No exact analytical expression for εn exists [73],
but the values can be approximated by assuming that the near field emission spot
of the laser diode is elliptical with width 2b and height 2a. The Fresnel numbers

Fa(L) = a2

λL
, Fb(L) = b2

λL
(2.111)

can then be used to approximate the coupling factors as

εn ≈
[
1− 0.3(Fa(nLr))−3/2 − 0.3(Fb(nLr))−3/2

]1/2
for Fa, Fb � 1 (2.112)

and
εn ≈ 0.72 [Fa(nLr) · Fb(nLr)]1/2 for Fa, Fb � 1. (2.113)

Under the previously mentioned assumptions regarding the green light, the green
intensity I(z) as a function of path length z in the diamond can be described as

I(z) = I0e−αdz, (2.114)

where I0 is the green intensity without the diamond, and αd is the absorption
coefficient in the diamond. The absorption coefficient can be measured experi-
mentally or derived from a rate equation model that will be presented later. If
we assume that the losses due to the diamond are spread evenly throughout the
cavity, we can define the effective loss due to the diamond as

αe = αd
d

L
. (2.115)
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The loss from the mirrors and end facets can be defined as

αm = 1
L

ln
(

1√
R1Re

)
(2.116)

for the single cavity in the three-mirror model. The gain G can be defined phe-
nomenologically [74] as

G = Γa(N −Ntr)(1− εS), (2.117)

where Γ is the confinement factor, a is the differential gain coefficient, N is the
carrier density, Ntr is the carrier density at transparency, S is the photon density,
and ε is the gain compression factor, which serves to phenomenologically account
for spectral hole burning at high optical power and similar effects. The expres-
sion is valid for heterostructure laser diodes and certain quantum well structures
where the carrier density at threshold Nth is close to Ntr. The differential gain
coefficient a is determined by the construction of the diode and defines how well
the semiconductor can generate carriers.

The carrier density N and photon density S can be described by the standard
laser diode rate equations

dN

dt
= I

qV
− N

τN
−GS (2.118)

and
dS

dt
= GS − S

τP
+ βN

τN
, (2.119)

where I is the drive current, q is the electron charge, V is the volume of the
gain region, τN is the carrier lifetime in the diode, τP is the photon lifetime in
the cavity, and β is the spontaneous emission factor. The term GS is related
to stimulated emission in the laser diode gain medium, the term βN

τN
describes

spontaneous emission, and the term S
τP

describes the cavity loss due to the mirrors,
gain medium and diamond. The volume of the gain region can be calculated as
V = L · w · th, where w is the width and th the thickness of the laser diode active
region. Given that we are only interested in the steady-state operation of the laser
diode, we need only solve the rate equations for steady-state conditions where
dN
dt

= dS
dt

= 0. At the lasing threshold without spontaneous emission (β = 0),
where G = αt and S = 0, we can use Eq. 2.117 to derive an expression for Nth the
threshold carrier density.

Nth = Ntr + αt
Γa (2.120)

Inserting Eq. 2.120 into Eq. 2.118 under steady-state and threshold conditions
yields an expression for the threshold current Ith as

Ith = qV

ηiτN
Nth = qV

ηiτN

[
Ntr + αt

Γa

]
, (2.121)
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where the quantum efficiency ηi of the carrier to photon conversion has been
introduced. By adjusting αt to reflect the situation with either on-resonance or
off-resonance driving of the NV center electron spin transitions, we can thus use
Eq. 2.121 to obtain the threshold current for these situations. Furthermore, we
can define the output coupling efficiency η0 as the ratio between the photon loss
through R1 and the total photon loss, i.e.

η0 = αm1

αt
=

ln
(

1√
R1

)

ln
(

1√
R1Re

)
+ L(αc + αe)

, (2.122)

and use it to calculate the output laser power from R1 for a given photon density
S as

Pout = η0
hc

λτP

V

Γ S, (2.123)

where h is Planck’s constant, c is the speed of light, λ is the wavelength, and V/Γ
is the effective mode volume of the cavity. The photon density S can be obtained
by numerically solving Eqs. 2.118-2.119, which is a valid approach regardless of
whether or not the spontaneous emission is being neglected.
Eq. 2.123 can thus be used to simulate the expected ODMR spectrum, from which
the maximum ODMR slope can be extracted. The sensitivity can then be esti-
mated by dividing the background noise level by the maximum ODMR slope in
order to determine the smallest transition frequency shift that can be detected,
which can be converted to magnetic sensitivity via the electron gyromagnetic ratio
γe = 28 MHz/mT.

However, as was previously mentioned, we need to determine αt and thus αe =
αdL/d for the situations with on- and off-resonance driving of the NV center elec-
tron spin transitions in order to utilize the expressions for Ith and also Pout. To
this end, we need to model the absorption of green light by the NV centers.
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2 THEORY 2.6 Laser threshold magnetometry

Figure 2.9: Sketch of the 8-level model used to describe the green absorption by the
NV center. The model includes both the negatively charged NV− and the neutral
NV0. The rate of ionization of NV− to NV0 is Wi, the rate of recombination of
NV0 to NV− is Wr, the rate of green excitation of NV− is Wg, the rate of green
excitation of NV0 is Wg0, and the rate of MW driving of the 1⇐⇒ 2 transition is
WMW . The decay rate from state i to state j is kij.

2.6.1 Modelling the green absorption

The green absorption can be described via a model for the NV center similar to
the one depicted in Fig. 2.1. However, when considering the green absorption, it
is relevant to also include the ionization of NV− to NV0 and the recombination of
NV0 to NV−, both of which involve absorption of green light. The NV0 center has
a ground and excited state, and the ionization goes from the NV− triplet excited
states to the NV0 ground state with rate Wi. The NV0 ground state is excited
with rate Wg0, and the recombination goes from the NV0 excited state to the NV−
triplet ground states with rate Wr. The other possible transitions are the same
as those depicted in Fig. 2.1. Both the excited mS = ±1 states and the ground
mS = ±1 states are treated as single states because the mS = ±1 states have the
same properties regarding the absorption of green light. The excitation from the
triplet ground states to the triplet excited states occurs with rate Wg. The tran-
sition between the ground mS = 0 state and the ground mS = ±1 state is driven
with a rate WMW . We then consider a system of 8 states with the normalized
population densities ∑8

i=1 ni = 1, where n1 refers to the ground mS = 0 state, n2
refers to the ground mS = ±1 state, n3 refers to the excited mS = 0 state, n4
refers to the excited mS = ±1 state, n5 refers to the singlet excited state, n6 refers
to the singlet ground state, n7 refers to the NV0 ground state, and n8 refers to the
NV0 excited state. The decay rate from state i to state j is written as kij. The
model is illustrated in Fig. 2.9.
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The evolution of the normalized population densities can then be described by
the rate equations

dn1

dt
= −(Wg +WMW )n1 +WMWn2 + k31n3 + k61n6 + Wr

2 n8

dn2

dt
= WMWn1 − (Wg +WMW )n2 + k42n4 + k62n6 + Wr

2 n8

dn3

dt
= Wgn1 − (k31 + k35 +Wi)n3

dn4

dt
= Wgn2 − (k42 + k45 +Wi)n4

dn5

dt
= k35n3 + k45n4 − k56n5

dn6

dt
= k56n5 − (k61 + k62)n6

dn7

dt
= Win3 +Win4 −Wg0n7 + k87n8

dn8

dt
= Wg0n7 − (k87 +Wr)n8

(2.124)

with the rates given as Wg = σgIgλ/(hc), Wg0 = σg0Igλ/(hc), Wi = σiIgλ/(hc),
Wr = σrIgλ/(hc) and WMW = Ω2

RT
∗
2 /2, where Ig is the green intensity, and the

σβ-parameters are absorption cross-sections. The decay rates and cross-sections
are k31 = k42 = 66 µs−1, k35 = 7.9 µs−1, k45 = 53 µs−1, k61 = 1.0 µs−1,
k62 = 0.7 µs−1, k56 = 1.0 ns−1, k87 = 53 µs−1, σg = 3.0× 10−21 m2, σg0 = 1.8σg,
σi = 9.5× 10−21 m2 and σr = 9.8× 10−21 m2 [75]. The rate equations can be
solved under steady-state conditions (dni

dt
= 0) to obtain the normalized popula-

tion densities for a given set of parameters. The situation with off-resonance MW
driving can be represented by WMW = 0. In the case of off-resonance MW driving,
all of the NV centers will be off-resonantly driven, and the number density N off

i

of NV centers in a given state can be obtained by multiplying the normalized
population density of that state noffi with the total NV density NNV .

N off
i = NNV n

off
i (2.125)

In the case of on-resonance MW driving, however, we will only be able to drive 1/4
of the NV centers on-resonance due to the four different possible crystallographic
axes, as was previously mentioned. The remaining NV centers will be driven
off-resonance. The number density N off

i of NV centers in a given state during
on-resonance driving will thus be given by

N on
i = 1/4NNV n

on
i + 3/4NNV n

off
i . (2.126)
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The absorption coefficient αd for either on- or off-resonance driving can then be
calculated by multiplying the number density of NV centers in the states that can
absorb green light by the relevant absorption cross-sections.

αond = σg(N on
1 +N on

2 ) + σg0N
on
7 + σi(N on

3 +N on
4 ) + σrN

on
8 (2.127)

αoffd = σg(N off
1 +N off

2 ) + σg0N
off
7 + σi(N off

3 +N off
4 ) + σrN

off
8 (2.128)

We have now derived all of the necessary expressions to simulate the considered
laser threshold magnetometry setup.
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3 Optimal control of a nitrogen-vacancy spin en-
semble in diamond for sensing in the pulsed
domain

3.1 Introduction

It is desirable to work with a large ensemble of NV centers when seeking to max-
imize the sensitivity. However, the ability to control such an ensemble is nega-
tively impacted by inhomogeneous broadening of the transition frequencies and
drive field inhomogeneity. In order to address this issue, we considered the use
of optimal control theory to design shaped MW pulses that are robust against
inhomogeneous broadening and drive field amplitude variations. Furthermore, we
expanded the approach to explicitly include the effects of hyperfine splitting. The
expanded methodology could then be used to design robust pulses capable of si-
multaneously driving all of the hyperfine transitions.
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Figure 3.1: Results obtained from simulations of π-pulse ODMR on an ensem-
ble with inhomogeneous broadening between ±1 MHz and drive amplitude vari-
ations between ±10% around the intended value using optimal control π-pulses.
The optimal control pulses were optimized for the same level of inhomogeneous
broadening and drive amplitude variations as the ensemble with pulse duration
tp = 1.85µs and the listed values of the maximum allowed Rabi frequency Rlim.
The plots indicate (a) the extracted maximum contrast C and (b) the extracted
maximum slope in contrast C ′ as a function of Rlim.

We designed optimal control π-pulses optimized for reasonable inhomogeneous
broadening between±1 MHz, low drive amplitude variations between±10% around
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3.1 Introduction

the intended value and various values of the pulse duration tp and the maximum al-
lowed Rabi frequency Rlim. These pulses were then used for simulations of π-pulse
ODMR on an ensemble with the same level of inhomogeneous broadening and
drive amplitude variations. From these simulations, we extracted the maximum
ODMR slope, which is directly linked to the maximum achievable sensitivity. It
was found that pulses with durations of approximately 1.85µs yielded the largest
maximum ODMR slope. The dependence of the maximum contrast C and ODMR
slope C ′ for these pulses on the maximum allowed Rabi frequency Rlim is illus-
trated in Fig. 3.1.

As expected, the maximum contrast is observed to increase with increasing values
of Rlim. However, the maximum slope in contrast peaks at Rlim = 1.9 MHz and
then decreases with increasing Rlim. This is due to the fact that the slope, natu-
rally, represents the change in contrast, and thus the maximum slope will occur
for the simulated ODMR spectrum that features the largest change in contrast
rather than simply maximum contrast. In other words, the maximum slope in
a simulated ODMR spectrum depends on both the maximum contrast, the adja-
cent minima in the contrast and the distance in frequency between them. Even
if the maximum contrast is increased, the maximum slope might still decrease if
the minimum contrast or the distance between minima and maxima is increased.
The simulations thus indicate that the largest ODMR slope is achieved using the
optimal control π-pulse with Rlim = 1.9 MHz.

For comparison, the slope obtained from π-pulse ODMR simulations with flat
π-pulses can similarly be investigated to determine the Rabi frequency ≤ Rlim
that yields the maximum slope. It was found that a three-frequency drive with
a Rabi frequency of the individual drives equal to ΩR = 2π · 0.6 MHz yielded
the largest slope in contrast for the considered ensemble. The simulated π-pulse
ODMR spectra and associated contrast slopes for the optimal and flat drives that
achieve the largest slope in contrast are shown together in Fig. 3.2.
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Figure 3.2: (a) The simulated π-pulse ODMR spectra for an ensemble with inho-
mogeneous broadening between ±1 MHz and drive amplitude variations between
±10% around the intended value using either an optimal control π-pulse or a flat
π-pulse. The optimal control π-pulse was optimized for inhomogeneous broaden-
ing and drive amplitude variations matching the ensemble with tp = 1.85µs and
Rlim = 1.9 MHz, while the flat π-pulse was a three-frequency drive with the Rabi
frequency of the individual drives set to ΩR = 2π · 0.6 MHz. (b) The slopes in
contrast extracted from (a).

As is illustrated in Fig. 3.2(b), the simulations indicated that one can achieve a
16% increase in the maximum π-pulse ODMR slope by using a properly designed
optimal control pulse instead of an optimized three-frequency flat drive. These
results motivated a collaboration with another PhD student, Joshua Clement,
in order to experimentally demonstrate that such an improvement is possible.
Joshua Clement was responsible for the experimental implementation, while I
handled the design of the optimal control pulses. It was noted, however, that the
presence of experimental imperfections and other factors that are not included
in the simulations makes it possible that the improvement will not match the
simulations. Similarly, the flat and optimal control π-pulses that perform best
experimentally may not be the same as in the simulations. As a result, different
pulses were designed and tested experimentally. The main findings are summarized
in the publication in section 3.2, and the supplementary information is given in
section 3.3.
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Optimal control of a nitrogen-vacancy spin ensemble in diamond for sensing
in the pulsed domain

Andreas F.L. Poulsen,1, a) Joshua D. Clement,1, a) James L. Webb,1, b) Rasmus H. Jensen,1 Kirstine
Berg-Sørensen,2 Alexander Huck,1, c) and Ulrik Lund Andersen1, d)
1)Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark,
Kgs. Lyngby, Denmark
2)Department of Health Technology, Technical University of Denmark, Kgs. Lyngby,
Denmark

Defects in solid state materials provide an ideal, robust platform for quantum sensing. To deliver maximum
sensitivity, a large ensemble of non-interacting defects hosting coherent quantum states are required. Control
of such an ensemble is challenging due to the spatial variation in both the defect energy levels and in any
control field across a macroscopic sample. In this work we experimentally demonstrate that we can overcome
these challenges using Floquet theory and optimal control optimization methods to efficiently and coherently
control a large defect ensemble, suitable for sensing. We apply our methods experimentally to a spin ensemble
of up to 4 × 109 nitrogen vacancy (NV) centers in diamond. By considering the physics of the system and
explicitly including the hyperfine interaction in the optimization, we design shaped microwave control pulses
that can outperform conventional (π-) pulses when applied to sensing of temperature or magnetic field, with
a potential sensitivity improvement between 11 and 78%. Through dynamical modelling of the behaviour of
the ensemble, we shed light on the physical behaviour of the ensemble system and propose new routes for
further improvement.

I. INTRODUCTION

Solid state defects are a promising platform for quan-
tum sensing, where purely quantum mechanical proper-
ties such as superposition and entanglement can be uti-
lized to overcome classical limitations.1,2. Particularly
in semiconductors, where they can be controllably cre-
ated and manipulated, solid state defects can host quan-
tum states that are both long-lived and sensitive to the
local environment in discrete energy levels within the
bandgap. A typical and extensively used defect system
is the nitrogen-vacancy (NV) center in diamond. This
consists of a substitutional nitrogen atom and an adja-
cent lattice vacancy, having discrete electronic and nu-
clear spin states with long coherence times up to room
temperature.3 The optical properties of the negatively-
charged NV center (NV−) are highly sensitive to a
range of parameters including magnetic field4–9, electric
field5,10, temperature11,12 and pressure (strain).13 Appli-
cations include sensing using a scanning diamond tip14,15,
nanoscale nuclear magnetic resonance (NMR)/ electron
spin resonance (ESR)16,17 and in biophysics,18–21 where
robustness and high biocompatibility of diamond makes
it an ideal platform for sensing, even within biological
samples.22,23

The level structure of the NV−, illustrated schemati-
cally in Fig. 1(a) consists of spin triplet ground and ex-
cited states and metastable spin singlet states.6,9,24–26.
When green laser light is absorbed by an NV in ms=0,

a)These authors contributed equally to this work
b)Electronic mail: jaluwe@fysik.dtu.dk
c)Electronic mail: alexander.huck@fysik.dtu.dk
d)Electronic mail: ulrik.andersen@fysik.dtu.dk

red fluorescence is emitted from decay back into the
triplet ground state. However, when absorbed in the
spin-split ms=±1, decay back to ms=0 may occur
through singlet shelving states, via nonradiative and in-
frared emission. The populations of ms=0 and ±1 can
be controlled by applying resonant microwaves (f =
2.87 GHz in the absence of an external bias magnetic
field). This results in a detectable decrease in red flu-
orescence output on resonance, with contrast C of 1-
2 % for a large ensemble of defects and up to 30 % for
a single NV26. The ms=±1 states can be split in energy
e.g. via the Zeeman effect by an external magnetic field,
giving rise to multiple spectral features including addi-
tional sub-features due to hyperfine splitting introduced
by coupling to the nuclear spin of the 14N or 15N im-
purity atom27. By sweeping microwave frequency, these
resonances can be identified by the drop in fluorescence
output, a process termed optically detected magnetic res-
onance (ODMR) spectroscopy. By fixing the microwave
drive frequency on or close to a resonance, any frequency
shift resulting from the level shift of ms=±1 by magnetic
field, electric field or local temperature can be detected.

Sensing using NV centers can be performed by a sim-
ple continuous wave (CW) method, maintaining a con-
stant intensity of microwave and laser irradiation25,28.
Alternatively, laser and microwave pulses can be used
to control and read the ensemble26,29. This relies on the
NV behaving as a two-level quantized system30, with one
(bright) maximally fluorescent state, |0〉, and one (dark)
state with reduced fluorescence under illumination with
green light, |±1〉. For a single NV, these correspond to
the electron spin states ms=0 and ms=±1 respectively.
Rabi oscillations can be observed in C on application of
a microwave field resonant with the ground state split-
ting. This allows coherent control using discrete laser
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FIG. 1. Color online. (a) Simplified level diagram for a single
NV− center within the diamond bandgap, with the ground
state levels shown in detail. At zero magnetic field there is a
splitting of 2.87 GHz (ZFS) between the ms=0 and ms=±1
states. At finite field B, the Zeeman effect shifts the ms=±1
states in energy by γB. The ms=±1 states are further split
into 3 hyperfine levels (ml=0,±1) separated by δl = 2.16 MHz.
(b) Bloch sphere representation depicting this ms = {0,−1}
two-level system and the time evolution and result vector for a
shaped optimal microwave pulse applied to the initial ground
state (|0〉, black arrow). Here we show the time evolution for
each of the hyperfine resonances ml.

and microwave pulses, offering improvement over CW
methods through reduction in the power broadening of
the resonance linewidths. Techniques such as Ramsey
interferometry31,32 and Hahn echo-type sequences have
been demonstrated33,34, realizing single molecule sensi-
tivity in nanoscale diamond NMR experiments.35–37

Pulsed schemes are used extensively for quantum sens-
ing measurements using single or few-NV centers often
in a confocal microscopy setup.38–40 However, as exten-
sive nuclear magnetic- and electron spin- resonance ex-
periments have shown, a macroscopic ensemble of many
billions of electron or nuclear spins in a larger volume
can also be manipulated by microwave pulse sequences in
the same manner.41 From a quantum sensing perspective,
large ensembles are desirable for imaging applications,19

for vector sensing,42 or to maximize bulk sensitivity

where spatial resolution is not required, since the shot
noise-limited sensitivity scales as 1/

√
N , with N the

number of defect centers.4 Compared to single NV read-
out, ensemble NV sensing with flat (fixed amplitude and
phase) microwave pulses suffers from nonuniform pulse
operation. Inhomogeneous broadening due to strain and
bias field gradients spreads the distribution of resonance
frequencies of the NV centers, detuning many from a
central drive frequency. In addition, the near-field mi-
crowave drive can vary in central resonance frequency,
power, and phase across the ensemble, depending on the
antenna and microwave coupling to the diamond.43 This
makes control of a large ensemble challenging.

To overcome these issues, several approaches have been
investigated for higher frequency AC sensing (> 10 kHz),
beginning with dynamical decoupling,7,34,44,45 and with
further correction using e.g. adiabatic chirped pulses.8.
These are however unsuitable for applications that re-
quire DC to low frequency sensing, particularly for ap-
plications in biosensing20,46–48. An alternative in this
frequency range is to deliver shaped microwave pulses
(varying phase and amplitude), in order to boost fidelity
in a Ramsey or pulsed ODMR30 scheme. Such pulses can
be designed using optimal control methods.33,49–52 Opti-
mal pulses have been used with small ensembles of NV
centers for Hahn-echo33,49,53 or Carr-Purcell sequences,54

to improve the robustness and temperature sensitivity of
the D-Ramsey scheme,55 to extend the coherence time of
an NV,56 and to improve the accuracy of entanglement
operations57.

In this work, we demonstrate the use of shaped mi-
crowave pulses produced by optimal control methods
combined with Floquet theory that can deliver improved
coherent control over a large solid state defect ensem-
ble of diamond NV centers. We show improved ODMR
contrast and therefore potentially higher sensitivity when
compared to a conventional flat π-pulse sensing scheme.
Our scheme is widely adaptable to a range of solid state
systems where a two-level quantum system can be re-
alized, although we specifically test our methods using
an NV ensemble in diamond. We achieve our improve-
ment through a full consideration of the physics of the
system, including the hyperfine interaction with the nu-
clear spin of the subsitutional nitrogen in the NV center
(both 14N and 15N). We model ensemble behaviour to
further understand the physics of the system, in particu-
lar to explain the dynamics when a readout laser pulse is
applied. This is also to uncover new routes for improve-
ment for quantum sensing. We demonstrate our methods
experimentally in off-the-shelf, standard grade material
without significant processing or fabrication. Further-
more, we demonstrate operation at low Rabi frequencies,
typical of those achievable using low-power microwave
amplification e.g. in a portable sensor device.58

The paper is structured as follows. In Section II A
we outline the basic methodology we use to construct
and generate our shaped microwave pulses using opti-
mal control theory, including our derivation for explic-
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itly including the hyperfine interaction in the optimiza-
tion algorithm. We describe a number of key control pa-
rameters, the limits of which we discuss in Section II B.
In Section II C we describe in detail our experimental
setup and methodology and in Sections III A and III B
we demonstrate the use of optimized shaped pulses for
ODMR spectroscopy, compare to a conventional π-pulse
scheme using a flat microwave pulse, and analyze and
discuss the optical behaviour and how this relates to the
physical dynamics of the NV ensemble.

II. METHODS

A. Optimal Control

Our optimal control algorithm maximizes a functional
that describes the desired transfer of one quantum state
to another.25,33,49,51,52,59. We define our state transfer
functional as:

Fst =
∣∣∣
〈
ψf

∣∣∣Û(tp)
∣∣∣ψi
〉∣∣∣

2
, (1)

where Fst is the fidelity, of value between 0 and 1,
which describes how well the pulse transfers the quantum
state of a solid state defect from an initial state |ψi〉 to
a final state |ψf 〉. A fidelity of 1 represents a complete
transfer to the desired state. The influence of the pulse is
described by the unitary time evolution operator Û(tp),
where tp is the pulse duration.

To represent the state transfer of an ensemble, we cal-
culate Fst for each member of a sample of defects with a
specified range of frequency detuning ∆̂ and relative con-
trol amplitude α̂. These factors are set to be representa-
tive of the variation across a real ensemble. The relative
control amplitudes αi represent the drive field inhomo-
geneity across the ensemble, and each value is the ratio
between the Rabi frequency at which a given single defect
is driven (due to drive field inhomogeneity) and the Rabi
frequency at which the pulse is designed to drive the de-
fects. The values of αi thus vary around unity across the
representative sample. The relative control amplitude
only relates to the changes in Rabi frequency caused by
drive field inhomogeneity and does not include the effects
of frequency detuning on the Rabi frequency. These ef-
fects are included in the optimization separately via the
∆i values, which represent the inhomogenous broaden-
ing. We thus assign each defect in the representative
sample a value of αi and ∆i within the specified range
∆̂ and α̂ and seek a pulse that maximizes the average
fidelity of the entire representative ensemble. Using this
model assumes that interaction between defects is mini-
mal, such that each defect can act as as single, isolated
quantum defect in the material.

We assume our detunings ∆i follow a Gaussian distri-
bution centered at zero. The full width at half maximum
(FWHM) of this Gaussian distribution is set equal to
half of the width of the considered detuning range ∆̂.

The αi values are assumed to follow a flat distribution.
The weight of each defect in the representative ensemble
is thus equal to the weight of its ∆i value. These are nor-
malized such that the sum of the weights of all defects in
the representative ensemble is equal to 1. We therefore
also use a weighted average of the fidelity. For numer-
ical optimization, we use throughout this work a repre-
sentative ensemble of size 12x12 (12 values to cover the
ranges ∆̂ and α̂, respectively). This was based on a series
of simulations of the performance of pulses transferring
state |0〉 to |−1〉 (Fig. 1(b)) optimized using different rep-
resentative ensembles. As shown in Fig. 2, 12x12 more
than ensures convergence of the fidelity, while minimizing
computational time.

FIG. 2. Color online. The simulated weighted average fidelity
of optimal control pulses optimized with different ensemble
sizes as a function of representative ensemble size for three
values of the maximum allowed Rabi frequency Rlim. The
pulses were optimized for ∆̂ = ±1 MHz detuning, α̂ = 1±10 %
amplitude variations and a duration of tp = 1.85 µs with the
indicated values of R = Rlim.

For the design of our shaped microwave pulses, we
use smooth optimal control. Here we choose a basis of
periodic functions with the same periodicity T and dis-
cretized frequency components, resulting in the shaped
pulses becoming smooth in time.50 In this work, we use a
basis of sine functions with a fundamental frequency de-
termined by the pulse duration tp.33,49 Smooth optimal
control has experimental advantages over alternatives
such as gradient ascent pulse engineering (GRAPE)60 in
that the bandwidth and the individual frequency com-
ponents are known in advance and the number of high
frequency components in the pulse Fourier spectrum is
reduced, making modulation in experiments less techni-
cally demanding.50 Our smooth optimal control pulse has
the general form:

S(t) = I(t) cos (ωDt) +Q(t) sin (ωDt) , (2)
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FIG. 3. Color online. Plot of I(t) and Q(t) in units of Rabi
frequency for two optimal control pulses that were optimized
by including state transfer using all three hyperfine levels.
The pulses were optimized for ∆̂ = ±1 MHz detuning and
α̂ = 1 ± 10 % amplitude variations with a duration of tp =
1.85 µs and a maximum allowed Rabi frequency of (a) 1.4 MHz
and (b) 3.0 MHz.

where

I(t) =
Nf∑

j=1
2ajx sin (jΩf t) , Q(t) =

Nf∑

j=1
2ajy sin (jΩf t) .

(3)
Here, ωD is the central driving frequency, Ωf = 2π/(2tp)
is the fundamental frequency, Nf is the number of fre-
quency components and the real ajk-values are control
amplitudes. The bandwidth of such a pulse is then NfΩ.
The fundamental frequency is not related to the Rabi
frequency and purely serves to enforce the desired peri-
odicity of T = 2tp. The ajk-values are, however, defined
in units of Rabi frequency. As an example, Fig. 3 shows
the in-phase and quadrature components I(t) and Q(t)
used to modulate the microwave carrier for two of the
specific pulses that we designed. In our experiments, the
microwave carrier has a frequency ωD ≈ 2.8 GHz corre-
sponding to the splitting between the ms=0 and ms=-1
levels of the NV center ground state with an applied bias
magnetic field.

It has been previously shown53 that the performance
of smooth optimal control pulses improves with increas-
ing Nf until it saturates for Nf ≥ 7. We use Nf = 10
for all of our pulses to ensure that we are in the satu-
rated regime. This yields 20 different control amplitudes

ajk per shaped pulse, and these are the parameters that
are optimized by the control algorithm. The optimiza-
tion is carried out iteratively by stepping along the gra-
dient of the fidelity with respect to the control ampli-
tudes with a step size β. Starting with initial control
amplitudes ajk, we compute the resulting Û(tp), Fst and
∂Fst
∂ajk

, before updating the control amplitudes by adding
β ∂Fst
∂ajk

. This process is then repeated until Fst converges.
The choice of time-periodic basis functions yields a time-
periodic Hamiltonian that can be solved using Floquet
theory.50,61,62

In this work, we extend previous methods to include
the effects of hyperfine splitting during the optimization.
Although we specifically calculate for diamond NV cen-
ters here, this method is generally adaptable and appli-
cable to any such splitting for a defect ensemble. The
goal is to create a shaped pulse that performs the state
transfer |0〉 to |−1〉 simultaneously and with as high fi-
delity as possible for each of the ml hyperfine levels. For
an NV center ensemble, this results in a higher ODMR
contrast than would be otherwise achievable by acting
on only one ml. This is analogous to continuous wave
methods driving multiple hyperfine lines previously de-
scribed in the literature.63 By doing this in the pulsed
domain, we seek to achieve similar benefits, but without
the negative effects of power broadening of the resonance
linewidths. In order to explicitly account for the hyper-
fine splitting, it is necessary to modify the expression for
the Fourier components of the Hamiltonian that make
up the Floquet matrix. The Fourier components of the
Hamiltonian are generally defined as

Ĥn = 1
T

∫ T

0
exp (−inΩf t) Ĥ(t) dt, (4)

where T = 2tp is the periodicity of the Hamiltonian
and Ĥ(t) is the time-domain Hamiltonian that describes
the system to be optimized. The nitrogen in an NV can
be either 14N with I = 1 (highest natural abundance) or
15N with I = 1/2, yielding either three or two hyperfine
levels, respectively, as illustrated in Fig. 1(a). We assume
hyperfine interaction between the 14N nuclear spins and
the NV electron spins in the ensemble so that three hy-
perfine states are possible. The nuclear spins are assumed
to be in a thermal state such that all ml hyperfine states
are equally represented in the ensemble. The ODMR
spectrum then contains three resonances separated by
δl = 2.16 MHz, corresponding to the three hyperfine res-
onances ml=-1,0,1. We also assume that the different
NV electron spins do not interact and that the ms=±1
states are clearly split by a static magnetic bias field. A
single set of three NV centers that each correspond to one
of the hyperfine transitions can then be reasonably ap-
proximated as three independent two-level systems. The
drift Hamiltonian thus has the form



5

Ĥ0 =
3∑

k=1

ω0,k
2 σz,k, (5)

where ω0,k is the transition frequency of hyperfine tran-
sition k, and σz,k is a Pauli spin-z matrix that is specific
to transition k. Note that the above expression applies
to any two-level defect with three equidistant hyperfine
resonances that fulfills the underlying assumptions. The
transition frequencies are related via ω0,1 = ω0,2− δl and
ω0,3 = ω0,2 + δl. Given that the states of the three two-
level systems can be completely described by a single vec-
tor of length 6, the σz,k-matrices can also be represented
by 6-by-6 matrices. (See Appendix A). The same is true
of the σx,k- and σy,k-matrices. The control Hamiltonian
describes the interaction between the control pulse of the
form given in Eq. (2) and the three allowed transitions.

Assuming the control field is linearly polarized in the
x-direction, which is perpendicular to the defect axis, the
control Hamiltonian can be written in the form:

Ĥc =
3∑

k=1
σx,k [I(t) cos (ωDt) +Q(t) sin (ωDt)] , (6)

and the total Hamiltonian thus has the form

Ĥ(t) =
3∑

k=1

(ω0,k
2 σz,k

+σx,k [I(t) cos (ωDt) +Q(t) sin (ωDt)]) . (7)

We can simplify the rest of the calculations by working in
a rotating frame given by the unitary rotation operator

R̂ = exp
( 3∑

k=1
iωDtσz,k/2

)
, (8)

which will commute with every term in Ĥc except
for σx,k. More precisely, [σz,k, σx,k′ ] = 2iσy,kδk,k′ and
[σz,k, σy,k′ ] = −2iσx,kδk,k′ .

The Baker-Campbell-Hausdorff lemma thus allows us
to write

R̂ĤcR̂† =
3∑

k=1
(σx,k cos (ωDt) + σy,k sin (ωDt))

× [I(t) cos (ωDt) +Q(t) sin (ωDt)] . (9)

Using this expression and defining the detuning, ∆ =
ω0,2 − ωD, as the difference between the transition fre-
quency of the central hyperfine transition, ω0,2, and the
central driving frequency, ωD, we obtain the expression

Ĥ′ =
3∑

k=1

(
∆ + wkδl

2 σz,k

+ (σx,k cos (ωDt) + σy,k sin (ωDt))
× [I(t) cos (ωDt) +Q(t) sin (ωDt)]) , (10)

where w1 = −1, w2 = 0 and w3 = 1. Expanding by
using trigonometric relations, the above expression can
be simplified by using the rotating wave approximation
to eliminate the fast-oscillating terms

Ĥ′ =
3∑

k=1

(
∆ + wkδl

2 σz,k + I(t)
2 σx,k + Q(t)

2 σy,k

)
.

(11)
Combining Eq. (11) with Eq. (3) and inserted into
Eq. (4), the Fourier components of the Hamiltonian be-
come

Ĥn =
3∑

k=1

1
T

T∫

0

exp (inΩt)
(

∆ + wkδl
2 σz,k

+
Nf∑

j=1
[ajxσx,k + ajyσy,k] sin (jΩt)


 . (12)

The above expression can be further simplified by using
the exponential form of a sine and the integral form of
a Kronecker delta. Doing so yields the final expression
for the Fourier components of the Hamiltonian when the
effects of hyperfine splitting are taken into account

Ĥn =
3∑

k=1

(
∆ + wkδl

2 σz,kδn,0

+
Nf∑

j=1

1
2i [ajxσx,k + ajyσy,k] · [δn,j − δ−n,j ]


 (13)

We use Eq. (13) in the construction of the Floquet ma-
trix for the computation of Û(tp) and ∂F

∂ajk
as part of the

update step of the optimal control algorithm. We include
the corresponding derivation for two hyperfine levels (15N
for NV centers) in the Supplementary Information. Con-
trol amplitude variations are included by multiplying the
control amplitudes ajx, ajy by the αi-value for the given
defect in the representative ensemble.

In order to ensure the optimization of our control am-
plitudes converges while remaining within experimentally
achievable limits, we include a penalty functional

Fpen = −ptp
∑

j,k

a2
jk (14)

in our algorithm, applied at each update step. The
penalty functional includes a specified penalty constant
p > 0 and scales with the control amplitudes. We opti-
mize using the gradient of the sum of the penalty func-
tional and the state transfer fidelity Ftot=Fpen+Fst. Af-
ter each update step, the maximum amplitude of the
optimal control pulse is computed in units of Rabi fre-
quency, and if it exceeds the maximum allowed Rabi fre-
quency Rlim, the penalty constant is increased by a step
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size ∆p. If the maximum amplitude of the optimal con-
trol pulse does not exceed Rlim, the penalty constant is
reduced by ∆p. Rlim is one of the inputs to the algorithm
and is limited by the maximum achievable experimental
Rabi frequency Rmax. This method also prevents the
algorithm remaining in local maxima compared to opti-
mizing without a penalty functional.

As a demonstration of the effect of explicitly including
all three hyperfine levels in the optimization, Fig. 4 shows
a series of simulated fidelity maps for a single NV sub-
ject to a flat π-pulse and optimal control pulses with and
without including the hyperfine components. The fidelity
of a |0〉 to |−1〉 state transfer is directly proportional to
the resulting ODMR contrast C since the contrast will
be maximal when all NV electron spins are in the |−1〉
state and minimal in the |0〉 state. All three pulses are
in the regime Rlim < δl. It is clear that the regular
optimal control pulse has superior performance for a sin-
gle hyperfine resonance. However, when considering the
average of all three, the shaped pulse optimized while
taking the effects of hyperfine splitting into account is
significantly better, albeit within a narrower range of de-
tuning. Fig. 4(f) indicates that the optimal control pulse
including the hyperfine splitting in the optimization is ca-
pable of simultaneously performing state transfer using
all three hyperfine levels with high fidelity. The narrow
range of high fidelity dropping rapidly with detuning in-
dicates that the optimal pulse will yield high contrast
when applied with drive frequency ωD close to any one
of the three hyperfine resonances and low contrast when
applied off-resonance. This behavior naturally translates
to a high contrast and narrow resonance linewidth and
thus higher sensitivity to magnetic field. As can be seen
in Fig. 4(c,f), as α1 is increased, the |0〉 to |−1〉 fidelity
(i.e., ODMR contrast) further improves in the narrow
range of high fidelity without significantly broadening the
range of high fidelity. We therefore experimentally apply
our optimal control pulses at applied microwave power
equivalent to a higher maximum Rabi frequency than we
use for optimization, empirically chosen to maximize the
slope.

B. Optimization Details

All of our pulses were made using an initial value of
the penalty constant p = 1 and ∆p = 0.05. They were
optimized to perform a state transfer from |0〉 to |−1〉.
We used 150 update steps for all of the optimizations,
as this was found to be sufficient to achieve convergence
of Fst. For the first 51 steps, the step size along the
gradient was kept constant at β = 0.007 and for the
remaining steps, the optimal step size was determined
using a line search. This was done to speed up the op-
timization without compromising the quality of the re-
sulting optimal control pulses. We designed pulses us-
ing different values of Rlim, tp and the ranges ∆̂ and
α̂ and tested them experimentally. We determined the

maximum achievable experimental Rabi frequency, i.e.
the upper limit on the maximum allowed Rabi frequency
Rlim ≤ Rmax = 3.2 MHz through prior experimental
measurements using flat pulses on the same diamond NV
ensemble. Based on this, we defined a range of Rlim to
generate testable optimized shaped pulses for as between
Rlim = 0.8 MHz and Rlim = 3.2 MHz. The minimum
value of tp necessary to achieve improvements over a com-
parable flat pulse was limited by the need to apply suf-
ficient power to perform the desired state transfer. We
set the lower limit of tp to be at least twice the duration
of a flat π-pulse with Rabi frequency equal to Rlim. The
maximum value of tp was limited by the T2 coherence
time of a single NV. Based on this, we defined a range
of tp to generate testable optimized shaped pulses for as
between tp = 1.0 µs and tp = 5.0 µs.

Although the possible values of detuning ∆i are in
principle not limited, higher Rabi frequencies are re-
quired to compensate for higher levels of inhomogenous
broadening. Based on the considered values of Rlim, we
therefore used ∆̂ up to ±2 MHz. The possible values of
αi are similarly not limited in principle, but higher Rabi
frequencies are required to compensate for higher levels
of drive field inhomogeneity. We therefore chose to opti-
mize up to α̂ = 1± 0.2 relative control amplitude range.

Our initial ajk-values were set using pseudorandom
values within a range sufficient to yield a maximum Rabi
frequency of the corresponding initial pulse greater than
Rlim. This was done in order to ensure that the optimiza-
tion algorithm approached the region of allowed pulses
from the outside, so that pulses utilizing Rlim were con-
sidered. For this work, the initial Rabi frequency was 2.8
times greater than the maximum allowed Rabi frequency.

C. Experimental Setup

A schematic of our experimental setup is shown in
Fig. 5(a). We used an off-the-shelf, optical-grade dia-
mond (Element 6) with ∼ 0.5 ppb NV− concentration,
of dimensions 5x5x1.2 mm3. For this diamond, we mea-
sured a T ∗2 -limited linewidth of 0.75 MHz and determined
T1, T2 and T ∗2 times as 7.1 ms, 7.0 µs and 0.44 µs re-
spectively, with a maximum ensemble-averaged Rabi fre-
quency of Rmax = 3 MHz driven by our antenna (see
Supplementary Information for details). A bias field of
2.9 mT aligned along the [111] crystallographic axis was
applied by fixed permanent magnets, so as to split the
ms=±1 states. We addressed only the ms=0 −→ ms=−1
transition to use an effective two-level system within the
antenna’s resonance.

The diamond was optically pumped using a 532 nm
diode-pumped solid state laser (DPSS, Cobolt Samba
1500). The linearly polarized beam was focused to a
waist diameter of 120 µm before Brewster-angle refrac-
tion into the diamond to optically address (with at least
1/e2 the center intensity) an ensemble with a minimum
estimated size of ≈ 4× 109 NV centers in a volume of
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FIG. 4. Color online. Simulated maps of the state transfer fidelity (Eq. (1)) from |0〉 to |1〉 for a single NV (i=1) subject to
(a,d) a flat (π)-pulse, (b, e) an optimized shaped pulse and (c, f) a shaped pulse optimized while taking the fidelity of state
transfer taking all three hyperfine levels into account. The top plots (a, b, c) show the fidelity of the transfer experienced
by the central hyperfine transition while the bottom plots (d, e, f) show the average of the transfer fidelities for each of the
three hyperfine levels. Each point in the top plots is the fidelity for a single NV electron spin with the given values of α1
and ∆1. Each point in the bottom plots is the average of the fidelities for three NV electron spins with the given value of α1
and transition frequencies detuned by ∆1, ∆1 + δl and ∆1 − δl, respectively, from the driving frequency. The flat pulse has a
Rabi frequency of 1.4 MHz, and the optimal control pulses were both optimized using ∆̂ = ±1 MHz detuning, α̂ = 1 ± 10 %
amplitude variation, Rlim= 1.4 MHz and a pulse duration tp = 1.85 µs.

≈ 0.04 mm3 based on the focused waist of the pump
beam. The maximum pump laser power we delivered
to the diamond was 500 mW. This resulted in 84 µW
of red fluorescence escaping the front face of the dia-
mond, of which we collected 9.1 µW by using two con-
denser lenses (Thorlabs ACL25416U) to first collimate
to pass through a low-pass filter (FEL0550) and then fo-
cus onto an avalanche photodiode (Thorlabs APD120A),
producing an amplified analog voltage output Vfl sampled
by an analog-to-digital converter (ADC, Gage Octopus
CS8300) at 50 MHz. We optically modulated our pump
laser using an acousto-optic modulator (AOM, Isomet
532C-4) at fAOM = 2.6 MHz, allowing us to perform soft-
ware lock-in detection to minimize noise in the electronic
readout. A fraction of the pump beam was also sampled
by a second detector (Thorlabs PDA10A) to provide a
reference, Vref, for common-mode noise rejection.

We generated the microwave pulses necessary for im-
plementation of the optimal control protocols using an ar-
bitrary waveform generator (AWG, Tektronix 5000), in-
phase/quadrature (IQ) modulating a Stanford SG394 RF

signal generator. The microwave output was amplified
(Mini-Circuits ZHL-16W-43-S+) and delivered to the di-
amond using a near-field antenna based on a square split-
ring resonator design64,65. This antenna was designed for
uniformity of near-field intensity in a 5x5 mm2 region cen-
tered on the diamond with a resonance at approximately
2.8 GHz. Our AWG also controlled a switch (Minicircuits
ZASWA-2-50DRA+) through which the AOM modula-
tion drive was passed, allowing the pump beam incident
on the diamond to be pulsed and modulated.

D. Pulse Sequencing and Readout

In our experimental setup, we measured contrast C,
the change in fluorescence output as a result of a control
pulse. We define C as the change in fluorescence out-
put in the initial period of a pump laser readout pulse
after application of a preceding microwave pulse30,34,66.
C was measured across an ODMR resonance feature by
varying microwave drive frequency ωD. We measured
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FIG. 5. Color online. (a) Schematic of our experimental
setup. The pump laser is modulated by the AOM, at 2.6 MHz
and controlled by the AWG. Microwave pulses are delivered to
the diamond using a near-field antenna. The AWG provides
IQ modulation to the signal generator to create the required
control pulses. An ADC, synchronized with the AWG, digi-
tizes the analog AOM modulation signal, the signal from the
APD collecting the diamond fluorescence Vfl and the signal
from an amplified photodetector that collects a small amount
of the pump laser Vref. (b) Pulsed ODMR sequence as ap-
plied in our measurements, showing the repeating sequence
of pump laser pulses Pl and microwave pulses PMW. This
sequence is repeated continuously by the AWG.

this change in fluorescence signal Vfl after application of
either a shaped or flat microwave pulse, relative to the
laser reference signal Vref. We obtained C by scaling the
reference to the size of the fluorescence signal, subtract-
ing the two, and integrating the resulting signal over a
time window tw=0.3-2.7 ms at the start of the laser pulse
(see Supplementary Information for full details). This
subtraction method allowed us to reject both DC and
higher-frequency (>kHz) common-mode noise from the
laser on the readout signal within the integration win-
dow. It also allowed us to measure a value for C from
every laser pulse (rather than measuring a reference with
no microwave pulse on every other fluorescence readout),
maximizing the bandwidth of our readout. From C we
also derived C

′ the change in contrast with microwave
drive frequency. This quantity, the slope of the ODMR
resonance, gives a measure of the strength of response
and hence sensitivity to the local environment.

Using the pulsed protocol shown in Fig. 5(b), we first
initialized the NV ensemble into the ground state using
pump laser pulse (n− 1) of duration tl. The pump laser

was then blocked by the AOM during application of mi-
crowave control pulse n of duration tp. A subsequent
laser pulse n of the same duration tl was then applied
and the state read out via diamond fluorescence emis-
sion This pulse also acted to reinitialize the system back
into the |0〉 state, allowing the next (n+1) pulses to read
and initialise. This method enabled measurements using
only a short repeating sequence in the AWG memory. We
acquired data continuously for repeated sequence sets up
to the memory limit of the ADC (n=110 pulses when
using tl=3 ms). Once this limit was reached, the data
was transferred to computer memory and processed, av-
eraging over all pulse sequence sets in the acquisition to
reduce noise, and then integrating to obtain C.

For direct comparison, we performed the same pulse se-
quence with the same readout methods for C using both
shaped microwave pulses and standard fixed amplitude
and phase (flat) pulses. We used the same method for cal-
culating C throughout our measurements, to ensure accu-
rate comparison between the different microwave pulses.
In the latter case, we used pulses with a single microwave
drive frequency of the form cos(ωt) and three-frequency
drive pulses of the form

∑
n∈{0,±1} cos((ω + nδl)t+ φn)

to drive multiple hyperfine transitions.67 The latter were
generated using the AWG with randomized phases φn for
each ADC acquisition to eliminate time-dependent arti-
facts.

III. RESULTS

A. Laser Pulse Duration

Our previous measurements68 demonstrated long opti-
cal reinitialization times, requiring many milliseconds on
an approximately exponential decay with laser pulse du-
ration to fully return the ensemble to the ground state.
For the comparably sized ensemble in these experiments,
we observed similar exponential behavior with a time
constant of of ≈1.4 ms.

Waiting tens of milliseconds per readout would severely
limit the number of pulses we could read and average in a
single ADC acquisition and thus our contrast resolution.
We therefore first performed experiments varying laser
pulse duration to determine whether we could initialize
and control the ensemble using shorter laser pulses with-
out suffering hysteresis effects, either from incomplete ini-
tialization or reionization delay across the readout laser
pulses.69–71

Fig. 6 shows the contrast C as a function of laser read-
out pulse duration tl < 20 ms as measured using an op-
timal control pulse. We observed C to be reduced for
times shorter than ≈ 3 ms, indicative that an increasing
number of NV centers in the sample were not fully reini-
tialized into the ground state. For tl=3ms and above,
we observed negligable hysteresis effects in the fluores-
cence readout. This is supported by Fig. 7, comparing
the raw fluorescence readout and relative contrast calcu-
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FIG. 6. Contrast as a function of laser pulse time tl. Be-
low 3 ms, tl is too short to sufficiently reinitialize the ensem-
ble, leaving to a reduction in contrast C with shorter read-
out/reinitilisation laser pulse length tl.

FIG. 7. Raw fluorescence readout signal Vfl,n and relative
contrast Cr,n(t) = Vfl,n − Vref,n for the first (n=1) and last
(n=110) 3 ms readout laser pulse in a single ADC acquisition
of 110 readout sequences. No difference within the readout
noise was observed at this readout duration, as would be ex-
pected from hysteresis effects arising from insufficient reini-
tialization of the ensemble.

lated from the first and last individual readout pulses in
a 110 pulse ADC acquisition using tl = 3 ms.

We note that the fact we can achieve the same
hysteresis-free contrast for a short 3 ms laser pulse as for
one much longer is somewhat surprising. We consider
that this effect primarily arises due to the Gaussian in-
tensity profile of the laser, whereby the NV centers at
the low intensity edges of the beam require more time to
reinitialize back into the ground state, but contribute far

FIG. 8. Modelled variation in laser intensity and the time
to reinitialize NV centers into the ms=0 ground state level
as a function of bean radius, relative to r0 the 1/e2 beam
width. The reinitialization time increases rapidly at the lower
intensity edges of the beam.

less to the overall fluorescence output, especially in the
first few milliseconds of the readout laser pulse where con-
trast is measured34. In order to further investigate the
physics of our NV ensemble and to determine the size
of ensemble we address, we implemented a simple phys-
ical model of the NV population dynamics. Our model
consists of a fixed NV density addressed by a radially
(Gaussian-) varying laser beam intensity, with an NV
at radius r receiving a pump intensity I(r). We then
solve a rate model for all NV centers,72,73 from which
we estimate the relative fluorescence output and ensem-
ble contrast C. We perform our microwave pulses as an
ideal π-pulse with instantaneous population transfer in
the rate model between levels ms=0 to ms=-1. Further
details of the implementation of the model are given in
Supplementary Information.

In Fig. 8, we plot the relative intensity I(r) and the
reinitialization time, the exponential decay time required
for the pump beam to return all NV centers at r into the
ms=0 ground state as a function of beam radius r/r0.
Here r0 represents the 1/e2 beam width as in our exper-
iment. From this simulation, it is clear that the time pe-
riod over which we integrate to derive the experimental
contrast (tw=0.3-2.7 ms) corresponds to near complete
reinitialization of the NV centers within r/r0 ≈ 0.5, or
25 % of the ensemble. Although this does not represent
the entire ensemble, this still corresponds to ≈ 1 billion
NV centers, based on estimated ensemble size (4 × 109)
from our experimental measurement of fluorescence emis-
sion.

The reinitilization dynamic behavior can be seen in
Fig. 9(a), plotting the time evolution of the ms=0
state population for the first 10 readout/MW pulses of
length tl = 3 ms for 4 increasing values of r/r0. Below
r/r0 = 0.5, hysteresis-free behaviour can be achieved in
our model almost immediately after the first microwave
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FIG. 9. (a) Modeled dynamics of the ms=0 population for
NV centers receiving pump beam intensity I(r) at 4 different
increasing values of r/r0. (b) The hysteresis-free behaviour
of the defects within r/r0 < 0.5 dominates the fluorescence
output (normalized to the initial output with all NV centers
in the ms=0 bright state). The NV centers at the beam edge
that are not fully reinitialized reduce the ensemble contrast
as laser pulse length is reduced, as modeled in (c).

pulse. Hysteretic behaviour is observed for NV centers
further towards the edge of the beam. For these NV
centers, the ground state occupancy decays to ≈ 50 %
within the first 10-20 pulses. These NV centers there-
fore contribute by a reduced amount to the contrast (as
measured in tw) as compared to the NV centers in the
beam centre, which exhibit the correct dynamics of full
reinitialization by the laser and full state transfer by the
microwave π-pulse. Since the outer NV centers are not
fully reinitialized into the triplet ground state, they also
act to produce a lower fluorescence emission as compared
to the level expected with all NV centers reinitialised
into the spin triplet ground state. This can be seen in
Fig. 9(b), showing the total ensemble fluorescence emis-
sion as a function of time for tl = 20 ms and tl = 3 ms
laser pulses. For the shorter pulse length, a greater num-

ber of NV centers are not fully reinitialized, reducing the
the overall fluorescence emission to approximately 90% of
the maximum reached for tl=20ms. Since the NV centers
on the beam edge are not properly reinitialised into the
ground state, they also cannot be correctly manipulated
by the microwave state transfer pulse. As laser pulse
length tl is reduced and this fraction of NV centers not
fully reinitialised increases, the effect is therefore a re-
duction in contrast C following a microwave pulse. This
modelled behaviour can be seen in Fig. 9(c) which qual-
itatively replicates our experimental data in Fig. 6.

The ability to rapidly read and reinitialize in this man-
ner is an extremely useful result, since it gives a means
to adequately control and read a large NV ensemble with
shorter laser pulses than that required to fully reini-
tialize every defect center. This significantly increases
the measurement bandwidth for pulsed quantum sensing
schemes, while still addressing a large number of defects
required to maximize sensitivity.

In order to model fluorescence behavior matching the
experimental exponential decay using a Gaussian beam
profile and associated volume, it was necessary to set
modelled pump beam intensity a factor of 6 less than the
intensity estimated experimentally. We attribute this to
two factors not included in our model: reflection loss due
to imperfect Brewster’s angle coupling into the diamond
and internal reflection within the diamond, spreading the
beam across a wider volume of NV centers. The estimates
of ensemble volume and number of defects addressed by
the pump laser thus represents a lower bound based on
the assumptions of our model. Further model develop-
ment and investigations beyond the focus of this work are
required to explore these aspects further, including ob-
serving changes in decay time for the fluorescence read-
out as a function of beam incidence angle and using a
non-Gaussian laser profile.

B. ODMR Using Shaped Optimal Control Pulses

Using our optimal control algorithm including all 3
hyperfine levels for 14N, we first calculated a series of
shaped microwave pulses spanning the parameter space
of ∆̂ and α̂, the Rabi frequency limit Rlim, and the pulse
duration tp. Their performance was then tested experi-
mentally to explore the limits of these parameters that
yield high contrast C and ODMR slope C ′ . We found
that extending ∆̂ and α̂ beyond ±1 MHz and ±10 % re-
spectively had negligible impact, likely indicating that
the real ensemble distribution in our diamond was within
these ranges. Having found that pulses in the range
of 1.1 MHz < Rlim < 2.4 MHz and 1 µs < tp < 2 µs
performed well, we experimentally searched the param-
eter space of these optimal control pulses applied by
producing ODMR spectra using the shaped pulses and
searching for the maximum slope C

′ . We found the
best-performing pulse optimized with tp = 1.85 µs and
Rlim = 1.4 MHz, with similar performance from larger
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FIG. 10. Comparison of pulsed ODMR measurements using
the most sensitive optimized shaped pulse and the flat pulse
that delivers the highest contrast using three-frequency drive.
The slope data shown in (b) is the slope of the fit to the
ODMR data in (a).

Rlim up to 2 MHz at the same Rexp. The modulation
components I(t) and Q(t) for this pulse are shown in
Fig. 3(a), and the control amplitudes are given in the
Supplementary Information.

The experimental ODMR spectrum from the best
shaped control pulse found is shown in Fig. 10(a). By
differentiating the spectrum, we also show the frequency
versus contrast slope C ′ in Fig. 10(b). Here the largest
possible slope is desired, since this produces the max-
imum response and highest sensitivity. For compari-
son, we plot in the same figure the ODMR spectrum
using a flat three-frequency drive (π-)pulse that corre-
sponds to the maximum slope for a conventional pulse
without shaping. We found the maximum slope to be
11% higher for the shaped optimal control pulse than for
this conventional flat pulse. Compared to the simplest
single-frequency flat (π-)pulses most used in literature,
we found significant improvement of up to 73%. This
corresponds directly to the same factor of improvement
in sensitivity.

We note that the length of the flat and shaped pulse
that delivered maximum slope were significantly differ-
ent. This could potentially lead to the longer shaped
pulse achieving higher performance purely by delivering
more microwave power over an extended time period. To

FIG. 11. The maximum contrast slope C
′ measured for

flat single-frequency drive pulses over the relevant parameter
space of microwave power (plotted as Rabi frequency) and
duration. The red stripe in the colorbar shows the maximum
contrast slope of the best optimal control pulse from Fig. 10.
The equivalent plot for 3 frequency drive is given in the Sup-
plementary Information.

ensure this was not the case, we compared the optimised
pulse against single and three-frequency drive flat pulses
over an extended parameter space of pulse lengths (up to
tp = 1.35 µs) and applied microwave power (up to Rabi
frequency Rmax = 3 MHz) . This data is shown in Fig. 11
for single frequency drive and Fig. 12 for three-frequency
drive. The flat pulses performed best at the length and
power that corresponded to performing a π-pulse on the
largest possible subset of NV centers (maximizing con-
trast). However, as can be seen from these figures, the
shaped microwave pulse we created using our optimal
control methods always produced an ODMR slope far
higher than any unshaped drive. This was the case for
any pulse length or microwave power, with the optimum
for the flat pulses reached well within experimental limits
of Rmax and tp.

For our setup, we can estimate shot-noise-limited sen-
sitivity using the expression derived in Appendix B:

η ≈
√

2tRtI
γeC ′τR(1− e−tR/τR)

√
R0

,

where we take into account the times for readout and
reinitialization tR, tI , the reinitialization decay constant
τR, photon collection rate at max power R0, electron gy-
romagnetic ratio γe, and measured contrast slope C ′. For
our setup, we estimate η ≈ 10 nT/

√
Hz. Although this is

lower than state of the art figures reported elsewhere for
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FIG. 12. ODMR spectrum frequency versus contrast slope C′

for the shaped optimal control pulse and for the best flat 3-
frequency drive pulses of any duration for a given microwave
power (plotted as measured Rabi frequency). Error bars and
the y-range of the optimal control pulse represent 1σ uncer-
tainty. The power used for the optimal control pulse was 0.91
of the maximum Rabi frequency Ω0. The plot covering the
full parameter space in time and Rabi frequency is given in
Supplementary Information.

magnetic field sensing with NV centers, we note that our
setup is not optimized for sensitivity due to the standard
optical grade diamond we use (rather than one materi-
ally optimized for sensing), our small APD detector area
and ADC memory limitations.

IV. CONCLUSION

In this work, we demonstrate that a large ensemble of
solid state defects in a macroscopic sample can be manip-
ulated and coherently controlled in a manner beneficial
for quantum sensing. We demonstrate this for an ensem-
ble of NV centers in diamond through the use of shaped
microwave pulses generated using Floquet theory and op-
timal control methods. Due to the scaling of sensitivity
with the number of defects, such large ensembles are key
for quantum sensing applications, either using NV cen-
ters or other solid state defects. Both our overall NV
ensemble volume within the estimated Gaussian beam
width (≈ 4 × 109 NV centers in a ≈ 0.04 mm3 volume)
and our estimated NV ensemble contributing maximally
to the contrast signal (≈ 25 % of the total) was larger
than NV ensembles previously studied and reported in
the literature using optimal control methods largely stud-
ied using confocal microscopy.33,49,50,53–56

By fully considering the physics of the defect system
and including the hyperfine interaction in our optimiza-
tion, we demonstrate an 11 % enhancement in ODMR
slope with optimized shaped pulses when compared to
the best alternative 3-frequency drive flat (fixed ampli-
tude and phase) (π-)pulses and a 78 % improvement over
standard single-frequency-drive flat (π-)pulses most com-
monly used for coherent control in the literature. These

are directly equivalent to the same factor of sensitivity
improvement when used in an applied sensing scheme.
This significant improvement offers potential for wider
impact for DC/low-frequency sensing, for example in pre-
cision measurement of slowly varying temperature where
ensemble probe bandwidth limitations imposed by the
≈ 5 µs shaped pulse length would be less constraining.

We estimate a shot noise-limited sensitivity of
10 nT/

√
Hz using our setup, while noting that neither

the diamond we use nor our apparatus was optimized to
maximize sensitivity at this time. Our method is not
specific to the apparatus we used and could be applied
equally well to a sensitivity-optimized setup, for example
using an isotopically purified diamond. By measuring
the ODMR contrast by referring to the signal from an
additional photodetector, we were able to reject more of
the laser technical noise while maximizing the number of
contrast measurements we could achieve as compared to
alternative time domain noise rejection methods34.

Through modeling of the physical dynamics of the
readout and initialization of the defect ensemble, we show
that although many tens of milliseconds are required to
fully reinitialise the whole NV ensemble, a shorter laser
pulse can address and reinitialise a large proportion of the
NV centers. By demonstrating reliable contrast measure-
ments free of hysteresis, we show that these NV centers
can be addressed and controlled reliably. Further work
is required to fully understand the dynamics of the sys-
tem and the distribution of pump light in the diamond.
However, our measurements suggest the primarily limit-
ing factor on the readout is the Gaussian shape of the
laser beam, hinting at considerable future improvement
using a non-Gaussian profile.

The shaped microwave pulses we generate in this work
almost certainly represent local maxima of performance
in a wide parameter space. We consider it very likely
that advances in methods for optimization as well as ex-
perimental improvements could provide even better so-
lutions in future. A particular flaw is the assumption of
simple Gaussian distributions for detuning and other pa-
rameters, which are a poor representation of the actual
properties of a real sample. A route forward may be to
use experimental feedback in the optimization algorithm.
This would be simplified by producing a more homoge-
neous microwave field through antenna improvements,
increasing the ensemble Rabi frequency through better
use of the microwave power, and the use of alternative
laser beam profiles to improve uniformity of initialization
and readout. Additionally, in this work we optimize for
state transfer |0〉 to |−1〉, which aims to maximize con-
trast C. By instead explicitly optimizing for the change
in contrast in response to the control field (the slope C ′

in our results above), better optimized pulses could be
generated.

Our work represents an important step in the direction
of using optimal control and other techniques widely used
in nuclear magnetic- and electron spin- resonance exper-
iments to explore the physics of new systems suitable for
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quantum sensing. These techniques, including those we
outline here, can be adapted to be widely applicable, not
only to diamond but to other defects in both bulk and
novel quantum materials, such as those in 2D materials.74

Using control pulses shaped by optimal control methods,
which could be either microwaves, optical fields or some
other means, offers the best route to reach the ultimate
T ∗2 -limited sensitivity for any suitable quantum system.
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A. SPIN MATRICES

Below are shown the 6-by-6 matrix representations of
the Pauli spin matrices that are each specific to one of
the three nitrogen-14 hyperfine transitions.

σz,1 =




1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σz,2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 (15)

σz,3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


 , σx,1 =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 (16)

σx,2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σx,3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


 (17)

σy,1 =




0 −i 0 0 0 0
i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , σy,2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −i 0 0
0 0 i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 (18)

σy,3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −i
0 0 0 0 i 0


 (19)

B. ESTIMATION OF SHOT NOISE-LIMITED
SENSITIVITY

Shot noise-limited sensitivity estimation is
typically30,67 similar to

η ≈ 1
γe
√
RC ′

with the electron gyromagnetic ratio γe, the photon de-
tection rate R and the (in this case empirically measured)

ODMR slope C ′ = dC
df . This assumes that each collected

photon adds the same amonut of information, which is
the case in a typical pulsed detection setup where the
readout time tR is much shorter than the total reinitial-
ization time tI , and the contrast barely decays during
tR. We therefore include a factor representing the mean
information collected per photon

1
tR

∫ tR

0
e−t/τRdt = τR(1− e−tR/τR)

tR

with τR ≈ 1.4 ms as the decay constant of the contrast,
making this factor about 0.5. We additionally modify R
for clarity, in terms of the maximum photon collection
rate at a peak of the modulation R0, R = R0tR/2tI ,
where the duration of the RF pulse is neglected, and the
1/2 results from the modulation. In all, we obtain

η ≈
√

2tRtI
γeC ′τR(1− e−tR/τR)

√
R0

.
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SUPPLEMENTARY INFORMATION

A. Measurement of Readout Contrast

As shown in the main text Fig. 5, we recorded lock-in demodulated fluorescence Vfl(t) and
balanced reference Vref(t) signals with each readout sequence. The balancing of the reference
signal was such that Vref was rescaled to equal the fluorescence at the end of the laser readout
pulse: Vref(tl) = Vfl(tl). We defined the readout contrast as Cr ≡

∑
t∈tw(Vref(t)−Vfl(t)) where

the difference between the curves was summed over the samples in a window of time tw,
which is bounded by the black dashed lines in Fig. 1(a). The bounds of tw were chosen to
avoid the artifacts of the AOM switching on/off combined with the lock-in demodulation.

The contrast in a pulsed NV center readout scheme is generally defined as the difference in
fluorescence output Vfl(t) with (MW on, Vfl,on(t)) or without (MW off, Vfl,off(t)) a preceding
microwave pulse (for example, see main text ref [28]). It can be reported as the area
between the fluorescence readout curves

∫
Vfl,off(t) − Vfl,on(t) dt in units that leave unclear

the fractional change in fluorescence corresponding to the spin population transferred by the
MW control pulse. The contrast can be reported in absolute units as the peak fractional
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FIG. 1: Illustration of measurement protocol using ∼10000 readout sequences averaged
after demodulation. We measure Cr as shown in (a) by summing over Vref − Vfl within the
window tw. The calibration procedure for converting Cr to C is shown in (b). Exponential
fits of Vref and Vfl are used first to define V ∗ref = lVref with l such that V ∗ref and Vfl converge

as t→∞. The fits are then used to evaluate C, the fractional difference at t = 0.



difference between the fluorescence curves Cabs ≡ maxt
(
Vfl,off(t)−Vfl,on(t)

Vfl,off(t)

)
. We converted Cr

into a quantity comparable to Cabs by a calibration procedure shown in Fig. 1 and justify
this in the following steps.

Starting in the simpler case where tl is long enough to completely reinitialize the ensemble,
we take Vref(t) = Vfl,off(t). This is justified because the ensemble spin population is already
at equilibrium at the start of the ideal Vfl,off(t = 0) and remains so throughout the readout,
so the fluorescence measured in Vfl,off(t) is linear with the small fluctuations in pump power
throughout the pulse duration: Vref(t) = kVfl,off(t). If the pump pulse is sufficiently long,
the ensemble is reinitialized into the equilibrium spin state population (see Wolf et al. 2015,
citation in main text) by the time t = tl when the reference scaling is defined: Vfl,off(tl) =
Vref(tl) ⇒ k = 1. For complete reinitialization of the ensemble as shown in Fig. 2, we can
therefore use Vref(0)−Vfl(0))

Vref(0) = Cabs.
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FIG. 2: Example measurement of reference and fluorescence readout with complete
reinitialization of the ensemble using a long laser pulse tl = 20 ms.

With microwave pulses applied, we found our fluorescence signal Vfl to be dominated by
a decay constant of τR = 1.4 ms (see Fig. 1(a)). To fully reinitialize the weakly-pumped
peripheral NV centers with slower repolarization rates, a long readout time tl = 20 ms
was necessary. These peripheral NV centers contribute a minority of the fluorescence and
contrast, corresponding to a small contribution from the slower exponential decay terms
present in Vfl in Fig. 2. With a large majority of the contrast information obtained in the
first 3 ms, we used tl = 3 ms for a substantial improvement in bandwidth and sensitivity at
the expense of a small reduction in contrast. As we argue in the main text and show again
in Fig. 4, the peripheral NV centers contribute much less to C than their minority share



of Vfl for the short tl = 3 ms and can therefore be safely neglected. Because we neglect the
peripheral NV centers, we consider only those within r < 0.5r0 to constitute the ensemble
we address experimentally.

With the short tl = 3 ms, the strongly-pumped NV ensemble within r < 0.5r0 with
τR ≈ 1.4 ms was nearly but not fully reinitialized. In this case, our argument that Vref =
kVfl,off holds, but k = 1 can no longer be justified because the spin population is not at
its equilibrium value at t = tl. To approximate Vfl,off , we therefore fit Vfl and Vref to single
exponential decays and defined V ∗ref = lVref, with l such that the long-time limit of the fit of
V ∗ref is equal to the long-time limit of the fit of Vfl as shown by the green traces in Fig. 1(b).
With the reference value of V ∗ref set to the equilibrium value that Vfl decays towards, we have
lk ≈ 1⇒ V ∗ref ≈ Vfl,off for the addressed ensemble. We defined the contrast C presented for
all contrast data in this work as the peak fractional difference between the exponential fits
of V ∗ref and Vfl

C ≡ V ∗ref(t = 0)− Vfl(t = 0)
V ∗ref(t = 0) .
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FIG. 3: (a) Calibration of scaling from Cr to C. The slope of this fit was used to scale all
Cr measurements to the presented C values. (b) Demonstration of the linear relationship
between the contrast C we present in all ODMR spectra measurements (using tl = 3 ms)
and the absolute contrast Cabs obtained with a fully reinitialized ensemble (tl = 20 ms).

We measured Cr and extracted C across a broad range of experimental contrasts achieved
by applying flat microwave pulses of varying power and length. All C values stated through-
out this work are measurements of Cr scaled by the slope of the calibration fit in Fig. 3(a).

Finally, in Fig. 3(b), we compare the contrast C for tl = 3 ms with the absolute contrast
Cabs obtained by using tl = 20 ms pulses sufficient to fully reinitialize the ensemble. We



find that our method results in a small, linear decrease of the measured contrast due to the
loss of contrast from the beam periphery, making C a reliable comparative estimate of the
absolute total ODMR contrast Cabs.

B. Modelling of Readout Dynamics

Our model follows from these physically reasonable assumptions:
1. That there is a constant, fixed NV density spread throughout the diamond.
2. That our pump beam has a Gaussian lineshape and that it remains so during passage
through the diamond.
3. That we can therefore model our incident beam intensity I(r) as a Gaussian function,
scaled to the input laser power.
4. That we can use the same incident intensity throughout the diamond, by assuming our
impurity density is sufficiently low such that absorption will not significantly reduce intensity
deeper into the diamond (intensity constant with thickness).
5. Because we are interested in readout properties, coherences in the spin manifold can
be ignored. Therefore, the preceding MW pulse can be modelled as a population transfer
between the ms=0 and ms=±1 states with fidelity F .
6. That this transfer occurs instantaneously, or on a timescale where the microwave pulse
is significantly shorter than the laser readout pulse.
7. That the bias magnetic field is uniform, that the NV detuning varies spatially on a
scale larger than the beam width, and that the MW field and therefore F does not vary
significantly throughout the beam profile (it likely varies with the distance from the antenna,
which is compatible with the model).

We modelled our ensemble by dividing the area of the pump beam cross section within
our diamond into rings of radius r and width dr, with r=0 in the center of the pump
beam profile. We then considered all NVs within the volume contained in these rings Nr to
experience a laser intensity I(r) with a Gaussian profile. We simulated the NV dynamics
using an 8-level system (main text ref [66]), which contained the populations of the NV−

ms ∈ {0, 1} optical ground (N1 and N2) and excited (N3 and N4) states, the singlet shelving
states (N5 and N6), and the NV0 optical ground (N7) and excited (N8) states. The level
model follows the differential equations:



dN1

dt = −(Wg +WMW )N1 +WMWN2 + k31N3 + k61N6 +WrN8/2
dN2

dt = WMWN1 − (Wg +WMW )N2 + k42N4 + k62N6 +WrN8/2
dN3

dt = WgN1 − (k31 + k35 +Wi)N3

dN4

dt = WgN2 − (k42 + k45 +Wi)N4

dN5

dt = k35N3 + k45N4 − k56N5

dN6

dt = k56N5 − (k61 + k62)N6

dN7

dt = WiN3 +WiN4 −Wg0N7 + k87N8

dN8

dt = Wg0N7 − (k87 +Wr)N8,

where kij are the decay rates given in the cited works. The green pump intensity Ig and
the cross-sections σj determine the rates Wj = σjIgλg/(hc) for the considered processes: Wg

green excitation of the NV−, Wg0 green excitation in the neutral charge state, Wi deioniza-
tion to the NV0 state, and Wr reionization to the NV− state. To simulate the reinitialization
dynamics of the ensemble, we first allowed the system to evolve under constant pump illumi-
nation I(r) until population equilibrium was reached, starting from the arbitrary initial con-
dition of P (N1) = 1 which did not affect the steady state. Then, relaxation was allowed to oc-
cur (N3 → N1, N4 → N2, N5 → N6, k61

k61+k62
N6 → N1, k62

k61+k62
N6 → N2, N8 → N7). To imple-

ment a microwave pulse of fidelity F , we instantaneously transferred NV spins between states
N1 and N2, with the output after the pulse N ′2 = FN1 + (1−F )N2, N

′
1 = FN2 + (1−F )N1.

We then continued to calculate the time evolution with the applied pump laser intensity, up
to a specified laser pulse length tl.

Here, we supplement the results of the simulation presented in the main text with two
findings. First, we consider how the ensemble behaves with realistic fidelity F < 1, since
we concluded from the main text Fig. 9(a) that the hysteresis of the beam periphery was
sufficiently small to be negligible in our measurements in the F = 1 case. In Fig. 4, we
compare the sequence behavior with ideal and sub-ideal fidelity. We find that for F < 1, the
NV centers in the beam periphery reach their steady-state pulse response earlier. The decay



of the deviation from the steady-state response is hastened by the loss of information with
each imperfect π-pulse, which means the results presented in the main text are a worst-case
scenario for the hysteresis.
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FIG. 4: Simulated time evolution showing the change in hysteresis effects with fidelity
F = 0.8 (a) and F = 1 (b). Ten tl = 3 ms laser pulses separated by relaxation and

microwave pulses of the respective fidelity are simulated.
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FIG. 5: Simulated charge state dynamics in intensity regime of our measurements, using
the same color-matched r/r0 values as in the main text. In (a), the charge state is

initialized, and in (b), it is observed after relaxation and an electron spin flip,
demonstrating that charge state dynamics are negligible.



The last consideration explored with our model was whether the NV charge state could
contribute to hysteresis effects. We performed two simulations and show their result in
Fig. 5. First the NV0 state population was tracked during evolution from the N1 state
towards equilibrium. Then relaxation and a F = 1 π-pulse was applied to represent the
largest possible change typical during the dark time in our measurements. From here, the
NV0 population was tracked under constant illumination. We found that the equilibrium
NV0 population was nearly independent of the intensity within the beam profile, and that
the deviations after changes in the spin state were only of the order 0.01% in amplitude. We
also note that the long timescales necessary to reach charge equilibrium under low intensity
are not predictive of slow effects in our measurements, because once the charge equilibrium
is reached, it remains near P (NV0) ≈ 0.2676 under all dynamics considered.



C. NV ensemble characterization

We report the measured decay times of our NV ensemble to be T1 = 7.1 ms, T2 = 7.0 µs,
and T ∗2 = 0.44 µs, from measurements shown in Fig. 6 and 7. The relationship between MW
power and the ensemble-averaged Rabi frequencies we obtain is shown in Fig. 8.
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FIG. 6: T1 decay rate measurement. Instead of the MW pulse in the readout sequence
(main text Fig. 5(b)), the laser was left off for a time represented by the x-axis in (b).
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FIG. 7: Ramsey and Hahn echo measurements to retrieve the coherence times of
T ∗2 = 0.44 µs and T2 = 7.0 µs. The Ramsey measurement (a) was fit to

e−τ/T
∗
2 [cos(2πf1τ + φ1) + cos(2πf2τ + φ2) + cos(2πf3τ + φ3)] + DC to account for the

possible contribution of the three hyperfine resonances. The Hahn echo measurement (b)
was fit to a single exponential decay. We note that the increase in contrast for T < 5 µs in

(b) is typical of echo measurements we perform and exclude this region from the fit.
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FIG. 8: (a) Rabi oscillation measurements from which we determine the scaling between
the set power and ensemble average Rabi frequency. (b) Fit of the time to the initial peaks
Tp for each Rexp in (a), used to estimate the scaling from the set MW power PMW to Rexp,

where Rexp = Rmax
√
PMW/PMWmax, and Tp = 1/2Rexp.



D. ODMR measurement details

In the main text, the best-performing 3fd pulse is presented for each MW power setting
(in terms of the Rabi frequency Ω). The full exploration of the measured parameter space
is shown here in Fig. 9. For each 3fd pulse attempted, a 2 MHz section of the ODMR
spectrum was measured, with an example shown in Fig. 10, where the error in the slope fit
was propagated from the error statistics we measured for repeated acquisitions. 2 MHz is
sufficient because the hyperfine resonances (separated by 2.16 MHz) are resolved, and the
region of greatest slope is the < 1 MHz range between the center resonance peak and the
adjacent dip. We fit this data to a double-Lorentzian (ignoring the low-frequency hyperfine
resonance peak outside of the measured spectral range)

C = a

1 +
(
f−f0
γ/2

)2 + b

1 +
(
f−f0−2.16MHz

γ/2

)2 + DC

and present the absolute maximum of the slope of the fit function C ′ = dC
df . The error prop-

agation is performed by numerically calculating the Jacobian relative to the fit parameters
J(C ′) =

[
∂C′
∂f0
, ∂C

′
∂γ
, ∂C

′
∂a
, ∂C

′
∂b
, ∂C

′
∂DC

]
at the frequency of the greatest slope, and multiplying by

the fit parameter covariance matrix ΣC, yielding

σ = JΣCJT .
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FIG. 10: Measurement and fits for the best 3fd flat pulse. The error bars on the ODMR
data are the standard error of the mean for the number of acquisitions we average. The
slope data are simply the discrete differential of the ODMR data with propagated error

bars and are not used in fitting.



E. Including the hyperfine transitions for 15N

The derivation of the Fourier components of the Hamiltonian for the two hyperfine levels
of 15N is similar to the one for the three hyperfine levels of 14N. We assume that the ms=±1
states are clearly split by a static magnetic bias field and no interaction between NV spins. A
single set of two NV centers that each correspond to one of the hyperfine transitions can then
be reasonably approximated as two independent two-level systems. The drift Hamiltonian
thus has the form

Ĥ0 =
∑

u

ω0,u

2 σz,u, (1)

where ω0,u is the transition frequency of hyperfine transition u, and σz,u is a Pauli spin-z
matrix that is specific to transition u. We choose to denote the transitions l and r to avoid
confusion with the terms used for the 14N hyperfine splitting. The states of the two two-level
systems can be completely described by a single vector of length 4, and the σz,k-matrices
can be represented by the following 4-by-4 matrices.

σz,l =
( 1 0 0 0

0 −1 0 0
0 0 0 0
0 0 0 0

)
, σz,r =

( 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

)
(2)

We again assume a single-frequency control field that is linearly polarized in the x-direction,
which is perpendicular to the NV axis, allowing the control Hamiltonian to be written in
the form

Ĥc =
∑

j

σx,u [I(t) cos (ωDt) +Q(t) sin (ωDt)] , (3)

where σx,u is a Pauli spin-x matrix that is specific to transition u. Similarly to the σz,u-
matrices, the σx,u-matrices can be represented by 4-by-4 matrices.

σx,l =
( 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

)
, σx,r =

( 0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

)
(4)

The σy,u matrices, which are Pauli spin-y matrices that are specific to transition j and will
be used later, can also be represented by 4-by-4 matrices.

σy,l =
(

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

)
, σy,r =

(
0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

)
(5)

The total Hamiltonian thus has the form

Ĥ(t) =
∑

u

(
ω0,u

2 σz,u + σx,u [I(t) cos (ωDt) +Q(t) sin (ωDt)]
)
. (6)



We can simplify the rest of the calculations by working in a rotating frame at ωD. This is
done via the unitary rotation operator

R̂ = exp
(∑

u

iωDtσz,u/2
)

(7)

and in this frame, the Schrödinger equation can be rewritten as i d
dt
|ψ′〉 = Ĥ′ |ψ′〉 with

|ψ′〉 = R̂ |ψ〉 and the Hamiltonian

Ĥ′ = R̂ĤR̂† + i
∂R̂

∂t
R̂†, i

∂R̂

∂t
R̂† = −ωD2

∑

j

σz,j. (8)

The drift Hamiltonian is time-independent and the σz,u matrices all commute with each
other, resulting in

R̂ĤR̂† = Ĥ0 + R̂ĤcR̂
†. (9)

The unitary rotation operator will also commute with every term in Ĥc except for σx,u.
More precisely, [σz,u, σx,u′ ] = 2iσy,uδu,u′ and [σz,u, σy,u′ ] = −2iσx,uδu,u′ . The Baker-Campbell-
Hausdorff lemma then allows us to write

R̂ĤcR̂
† =

∑

u

(σx,u cos (ωDt) + σy,u sin (ωDt)) · [I(t) cos (ωDt) +Q(t) sin (ωMW t)] . (10)

If we insert the above expression in Eq. (8) and furthermore define the detuning, ∆ =
(ω0,l + ω0,r) /2 − ωD, as the difference between the average of the two hyperfine transition
frequencies and the central driving frequency, ωD, we obtain the expression

Ĥ′ =
∑

u

(∆ +muδI/2
2 σz,u+ (σx,u cos (ωDt) + σy,u sin (ωDt))

× [I(t) cos (ωDt) +Q(t) sin (ωDt)]
)
,

(11)

where δI = 3.03 MHz is the splitting between the hyperfine transitions, ml = −1 and mr = 1.
Expanding by using the trigonometric relations

cos (ωDt)2 = 1
2 [1 + cos (2ωDt)] , (12)

sin (ωDt)2 = 1
2 [1− cos (2ωDt)] (13)

and

cos (ωDt) sin (ωDt) = 1
2 sin (2ωDt) , (14)



one finds

Ĥ′ =
∑

u

(∆ +muδI/2
2 σz,u + I(t)

[
σx,u

1
2 [1 + cos (2ωDt)] + σy,u

1
2 sin (2ωDt)

]

+Q(t)
[
σx,u

1
2 sin (2ωDt) + σy,u

1
2 [1− cos (2ωDt)]

])
,

(15)

which can be simplified by using the rotating wave approximation to eliminate the fast
oscillating terms cos (2ωDt) and sin (2ωDt).

Ĥ′ =
∑

u

(
∆ +muδI/2

2 σz,u + I(t)
2 σx,u + Q(t)

2 σy,u

)
(16)

Combining these equations with those in the main text yields:

Ĥn =
∑

u

1
T

T∫

0

exp (inΩt)

∆ +mu/2δI

2 σz,u +
Nf∑

j=1
[ajxσx,u + ajyσy,u] sin (jΩt)


 . (17)

The above expression can be further simplified by using the exponential form of a sine and
the integral form of a Kronecker delta. Doing so yields the final expression for the Fourier
components of the Hamiltonian when both of the 15N hyperfine transitions are taken into
account,

Ĥn =
∑

u


∆ +muδI/2

2 σz,uδn,0 +
Nf∑

j=1

1
2i [ajxσx,u + ajyσy,u] · [δn,j − δ−n,j]


 . (18)

F. Best Optimal Pulse Control Parameters

The control amplitudes, ajk, that define our best optimal pulse are given (in MHz) in
Table I. This pulse has a duration of 1.85 µs.



TABLE I: The ajk-values of our best optimal pulse in MHz.

a1x a2x a3x a4x a5x

0.11388948 0.09884733 -0.00809110 -0.00177604 0.00918642

a6x a7x a8x a9x a10x

-0.088628 -0.11101755 0.00940646 0.11946038 0.11709449

a1y a2y a3y a4y a5y

0.09465327 0.08214617 -0.00670811 -0.00148568 0.00772306

a6y a7y a8y a9y a10y

-0.07368535 -0.09219246 0.00782588 0.09930594 0.09733759



4 Laser threshold magnetometry using green-light
absorption by diamond nitrogen vacancies in
an external cavity laser

4.1 Introduction

Conventional NV sensing involves measuring changes in the red fluorescence under
green light illumination and resonant MW driving. However, this sensing approach
is significantly limited by the low contrast in the signal to be measured and the
high level of snot noise caused by the bright background. These limitations are
particularly significant when working with ensembles of NV centers.

We proposed a way to circumvent these limitations by using the green light ab-
sorption by the NV centers in a diamond to perform laser threshold magnetometry.
The diamond is placed in the external cavity of a standard external cavity laser
made with a semiconductor laser diode and serves as an additional source of loss.
The properties of NV centers result in the green absorption being greater when the
MW drive is off-resonance than when the drive is on-resonance. By fixing the laser
diode drive current at the threshold current for the situation where the MW drive
is off-resonance, an external field can be used to shift the MW drive on-resonance,
thereby pushing the external cavity laser across the lasing threshold. Such a setup
would theoretically have 100% contrast and zero background due to the absence
of lasing in the absence of external fields.

We theoretically simulated and investigated the performance of the proposed setup
using realistic parameters and considered the limitations. In particular, we also
considered the impact of amplified spontaneous emission near the lasing thresh-
old, which has been neglected in previous similar works. The main findings are
summarized in the publication in section 4.2, and the supplementary information
is given in section 4.3.
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Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum
sensing, promising increased sensitivity for applications ranging from geophysics to biomedicine. Conventional
sensing schemes involve monitoring the change in red fluorescence from the NV center under green laser and
microwave illumination. Due to the strong fluorescence background from emission in the NV triplet state and low
relative contrast of any change in output, sensitivity is severely restricted by a high optical shot noise level. Here,
we propose a means to avoid this issue, by using the change in green pump absorption through the diamond as
part of a semiconductor external cavity laser run close to the lasing threshold. We show that theoretical sensitivity
to the magnetic field on the pT/

√
Hz level is possible using a diamond with an optimal density of NV centers. We

discuss the physical requirements and limitations of the method, particularly the role of amplified spontaneous
emission near threshold and explore realistic implementations using current technology.

DOI: 10.1103/PhysRevA.103.062603

I. INTRODUCTION

Optical manipulation of material defects represents an
ideal method for quantum sensing, exploiting properties such
as entanglement and superposition [1]. The nitrogen-vacancy
(NV) center in diamond, possessing long quantum coher-
ence times at room temperature, has in particular drawn
considerable interest [2–4]. Diamond is an ideal material for
sensing, being mechanically hard, chemically stable, isotopi-
cally pure, as well as biocompatible [5,6]. The negatively
charged nitrogen-vacancy center (NV−) has an energy level
structure that results in optical properties that are highly sen-
sitive to temperature [7], strain (pressure) [8], electric field [9],
and, particularly, magnetic field. Sensing is conventionally
performed by detecting changes in the intensity of red fluores-
cence (≈637–750 nm) under irradiation with green light and
resonant microwaves via a process termed optically detected
magnetic resonance (ODMR) spectroscopy [4,10–12]. It can
be done using a continuous wave (cw) method [13] or by using
short laser and microwave pulses [14,15].

However, measuring via red fluorescence suffers from two
considerable physical limitations. First, the signal to be mea-
sured has a very low contrast on bright emission from decay in
the NV− triplet state. For a single NV− or for a smaller ensem-
ble where the NV centers are preferentially aligned through
growth engineering [16], spin-dependent contrast can be up
to 30% [17]. However, for bulk sensing using an ensemble of
many billions of NV centers in a region encompassing a large
volume of the diamond sensor (up to the whole diamond), the

*jaluwe@fysik.dtu.dk

contrast that is realized is often, at most, a few percent [18,19].
The sensitivity is therefore limited by this low contrast and
the high level of shot noise from the bright background rising
from triplet state fluorescence emission. The second physical
limitation is the high refractive index of diamond, which traps
the majority of the fluorescence inside the diamond. Micro-
fabrication schemes have been proposed to mitigate this issue,
but have yet to deliver significant improvements [20,21].

An alternative method is to use optical absorption of
the pump light by the NVs. Previous work has used the
change in green absorption in an optical cavity [22,23] or
by using changes in infrared (IR) absorption by the singlet
state [24]. These schemes are technically demanding, requir-
ing an optical cavity or unusual wavelength (1042 nm) laser.
A promising alternative is laser threshold sensing [25], using
changes in optical absorption resulting from the parameter
to be sensed (e.g., magnetic field or temperature) to push a
medium across the lasing threshold. This method eliminates
the bright background that limits sensitivity using conven-
tional fluorescence detection. A further attraction is the wide
applicability to any material with variable optical absorption,
including a wider range of defects in diamond, SiC, and two-
dimensional (2D) materials [26,27].

Building on the work by Dumeige et al. [28] and our own
previous work on diamond absorption magnetometry [22,23],
here we outline a scheme to use laser threshold sensing of the
magnetic field with green light in a standard external cavity
laser. We show it is possible to achieve high sensitivity in the
pT/

√
Hz range with realistic assumptions for the key phys-

ical parameters. Our proposal differs from that of previous
work by using simpler green pump absorption rather than
IR absorption and by using an ordinary current driven laser

2469-9926/2021/103(6)/062603(12) 062603-1 ©2021 American Physical Society
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FIG. 1. (a) Schematic of the external cavity setup with a Fabry-
Perot semiconductor laser diode of cavity length Lm and end facet
power reflectivities R1 and R2 coupled to an external cavity of length
Lr via mirror R3 and diamond of thickness d . Laser emission (dashed
line) is through R1. We model our external cavity laser with the
diamond as a single cavity with equivalent end reflectance Re and
the diamond absorption loss αd included in the total cavity loss
αt . (b) Simplified schematic of the laser threshold process, where
a reduction in diamond absorption through application of resonant
microwaves reduces the threshold current to Ion

th , producing lasing
output Pout when driven at Ioff

th .

diode or gain chip medium without the need for an additional
pump laser. We show that this configuration, which is highly
suitable for miniaturization, can deliver high sensitivity, and
we discuss the key physics required to reach such sensitivity
levels. Finally, we discuss and calculate limiting factors that
may prevent these levels from being reached in practice. This
includes factors that may not have been previously considered,
such as amplified spontaneous emission near to the lasing
threshold.

II. METHODS

A. External cavity laser model

We place the diamond into a standard external cavity laser
setup as described schematically in Fig. 1(a). This consists
of a Fabry-Perot semiconductor laser diode or gain chip of
length L with end facet reflectivities R1 and R2 coupled to an
external cavity formed by mirror R3 via an external cavity of
length Lr containing the diamond of thickness d . We assume
normal incidence and that transmission through the diamond

is high, with minimal reflection from the diamond facets.
For simplicity, we assume a single optical mode at a single
wavelength. We consider the optical loss due to absorption in
a diamond of thickness d . The change in laser intensity Î on a
pass through the diamond is given by

�Î = Î0 − Î0e−αd z, (1)

where Î0 is the intensity of the laser emission with no diamond
present in the external cavity, αd is the absorption coefficient
in the diamond, and z is the path length taken within the
diamond. For normal incidence, z = d and the absorption co-
efficient can be derived from the rate equation model given in
the following section or can be measured experimentally. For
the semiconductor lasing medium between mirrors 1 and 2,
we assume a total cavity loss αt , given by the sum of intrinsic
cavity loss due to the gain medium αc and losses from the
mirrors and end facets αm, giving a total loss αt ,

αt = αc + αm = αc + 1

Lm
ln

(
1√

R1R2

)
. (2)

In order to simplify the analysis of the external cavity
structure, we use the three mirror model [29–32] to treat the
complete diode and external cavity structure as a single cavity
of length L = Lm + Lr , with mirror R2 replaced by an effective
reflectivity Re, with the single cavity containing the optical
losses of the external cavity and diamond, the internal losses
of the gain medium in the laser diode, and the loss from the
cavity through the mirrors. By assuming that the losses due
to the diamond are spread evenly throughout, we redefine the
loss coefficient due to the diamond as αe = (αd/L)d , and our
total cavity loss as

αt = αc + αe + 1

L
ln

(
1√

R1Re

)
, (3)

where Re = |re|2 relates the power reflectivity to the com-
plex field reflectivity re. We use the model for the effective
reflectivity by Voumard et al. [33], detailed further in the
Supplemental Material [34]. Neglecting phase components, at
threshold, R1Ree(�g−αt )2L = 1, where g = gth is the (threshold)
gain coefficient.

For the full structure, the rate equations for photon (S) and
carrier (N) density are given by the standard equations for a
laser diode as

dN

dt
= I

qV
− N

τN
− GS (4)

and

dS

dt
= GS − S

τP
+ βN

τN
. (5)

Here, I is the drive current, V the volume of the gain region,
G the gain of the lasing medium, and q the electronic charge.
The term GS arises from stimulated emission in the laser
diode gain medium and S/τP includes the cavity loss from
the mirrors, gain medium, and diamond. Further, τP is the
photon lifetime in the cavity and τN the carrier lifetime in the
laser diode. Carriers are generated by a current I in a volume
V , where V = L × w × th, where th is the thickness and w

the width of the laser diode active region. The term βN/τN
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relates to spontaneous emission, governed by the spontaneous
emission factor β.

We can define gain G phenomenologically, in the form [35]

G = �g = �a(Nth − Ntr )(1 − εS), (6)

where � is the confinement factor and ε is the gain compres-
sion factor that phenomenologically accounts for effects such
as spectral hole burning at higher optical power. The carrier
density at transparency is given by Ntr . The rate equations
for photon and carrier density can be solved for a steady
state condition (dS/dt = 0, dN/dt = 0). For carrier density
N = Nth close to Ntr and neglecting spontaneous emission
(β = 0), the gain balances the cavity loss. The factor a is
the differential gain coefficient, a material specific property
defining how well the semiconductor can generate carriers for
population inversion. Equation (6) is valid for heterostructure
laser diodes and certain quantum well structures where the
threshold is close to the transparency carrier density. Unless
otherwise stated, we use the model of Eq. (6) in this work.

Using Eqs. (4)–(6) at lasing threshold, where S = 0, G =
1/τp, and �gth = αt , we can derive an equation for carrier
density at threshold Nth,

Nth = Ntr + αt

�a
, (7)

and inserting this result into the rate equation for carrier den-
sity [Eq. (4)] allows us to calculate the threshold current,

Ith = qV

ηiτN
Nth = qV

ηiτN

(
Ntr + αt

�a

)
. (8)

Here we introduce the quantum efficiency of the carrier to
photon conversion ηi. By using Eq. (8) in the rate equations
at I > Ith, we can calculate the photon density at any current
above the lasing threshold. We can then calculate the laser
light power that can be emitted from the left-hand side mirror
R1 using the factor ηo, the output coupling efficiency, which
is defined as the ratio of photons lost through the mirror R1 to
the total cavity loss αt = αm + αc + αe,

Pout = ηo
hc

λτp

V

�
S, (9)

where V/� is the effective mode volume of the cavity, λ the
wavelength, and h and c Plank’s constant and the speed of
light, respectively. In the limit of εS → 0 where there is no
limiting effect on the gain, the power output can be rewritten
directly in terms of the threshold current,

Pout = ηoηi
hc

qλ
(I − Ith). (10)

In both of these expressions,

ηo = αm1

αm + αc + αe
=

ln 1√
R1

ln 1√
R1Re

+ (αe + αc)L
. (11)

For larger finite values of ε well above threshold or in-
cluding finite spontaneous emission through nonzero β, we
can numerically solve the steady state rate equations [Eqs. (4)
and (5)] to calculate N , S, and the laser power output.

The total cavity absorption αt will change when mi-
crowaves are applied to the diamond at a frequency equal to

the splitting of the NV triplet ground state levels, reducing
the lasing threshold current, �Ith = Ioff

th − Ion
th , where Ion

th is the
threshold current on microwave resonance and Ioff

th the thresh-
old current off resonance. By running at drive current equal
to Ioff

th , the laser output is generated only while on microwave
resonance. This is shown schematically in Fig. 1(b).

B. Absorption model

We use the rate equation model from [36] in order to
calculate the optical absorption of green pump light by the
diamond and the maximum change in absorption when on
microwave resonance. The parameters we use for the transi-
tion rates are the same as those in [28], derived from [37–40].
We calculate the normalized occupancies of each energy level
with microwaves supplied non

i and without microwaves noff
i ,

where
∑

i ni = 1 and index i = 1–8, where i = 1 refers to the
ms = 0 ground state level, i = 2 the ms = ±1 ground state
levels, i = 3, 4 the spin triplet excited states, i = 5, 6 the spin
singlet shelving states, and i = 7, 8 the ground and excited
state of the NV0. We define a total NV− density NNV in ppm.
Off resonance, the total number density of NV− in each state
Noff

i is given by

Noff
i = NNV

noff
i∑

i noff
i

. (12)

We define a measurement axis along one of the four possi-
ble crystallographic axes for the NV. We calculate that when
microwaves are applied, we drive only the NVs aligned along
one axis such that the total number density on resonance Non

i
is given by

Non
i = 1

4
NNV

non
i∑

i non
i

+ 3

4
NNV

noff
i∑

i noff
i

. (13)

We calculate the change in intensity on a single pass when
on and off microwave resonance as

ˆIon = Î0e−αond , ˆIoff = Î0e−αoff d , (14)

where d is the thickness of the diamond, and the absorption
coefficient α on and off resonance is given by

αon = σg
(
Non

1 + Non
2

) + σg0Non
7 + σe

(
Non

3 + Non
4

) + σrNon
8 ,

(15)

αoff = σg
(
Noff

1 + Noff
2

) + σg0Noff
7 + σe

(
Noff

3 + Noff
4

)+σrNoff
8 .

(16)

Here, σg and σg0 are, respectively, the absorption cross sec-
tions of green light for NV− and NV0, and σe and σr are
the ionization cross sections for transfer between the charged
and uncharged defect states. This allows us to calculate the
change in absorption when the diamond is present without
microwaves, ˆIoff/Î0, the change when driven on microwave
resonance, ˆIon/Î0, and the change between these, which we
term the absorption contrast,

C = ( ˆIoff/Î0) − ( ˆIon/Î0). (17)
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C. Key physical parameters

The key physical parameters of the model can be divided
into those that are intrinsic to the semiconductor gain medium,
those intrinsic to the diamond, and those defined by the setup.
Examples of the latter include the mirror reflectivities R1,
R2, R3, the cavity length L, and any other losses, such as
reflection out of the cavity or from absorption by other optical
components such as lenses, included in the cavity loss factor
αc. These factors will also influence the photon lifetime in
the cavity τP. The maximum Rabi frequency �R that can be
reached also depends on the microwave power and how well
the microwaves can be coupled into the diamond.

The parameters which are intrinsic to the diamond are the
diamond thickness d , NV − density NNV , ensemble dephas-
ing time T ∗

2 defining the ODMR linewidth, and absorption
contrast C arising from changes in pump absorption on or
off microwave resonance. These factors define the diamond
absorption factor αd .

A number of these parameters are interrelated. The ODMR
linewidth is proportional to the inverse of T ∗

2 , which in turn
is dependent on NNV concentration in the limit of high ni-
trogen content and the abundance of 13C for low nitrogen
content [41]. There is also a dependence on other material
properties such as strain [42], which makes the relationship
between the parameters difficult to determine. We therefore
consider values in the experimental literature as a guide.
Figure 2 shows a plot of T ∗

2 versus NV− density NNV for a
range of diamonds from the literature [16,38,43–47]. Typical
NV− densities range from 10−4 ppm up to tens of ppm [48]. In
general, T ∗

2 < 1 μs for samples with natural (1.1%) 13C con-
tent [49,50]. Experiments typically realize Rabi frequencies
�R of 1–5 MHz, with up to 10 MHz using optimal antenna
geometries [51].

We include only the uncharged NV0 and negatively
charged NV− nitrogen vacancy centers in our model and we
do not consider the role of other types of defects in or on the
diamond, including substitutional nitrogen or other materials
that may be present (e.g., Si, boron). Furthermore, we assume
a uniform distribution of nitrogen vacancies throughout the
diamond, such that we can consider a single, fixed absorption
cross section throughout. These are simplifications introduced
due to the poorly known absorption cross sections of certain
types of defects or dopants and the experimental difficulty
in quantifying density within (or on) diamonds. We highlight
that this implies that the sensitivities estimated by our model
represent a best-case scenario, with no optical loss from the
NV− system used for sensing due to the presence of other
defects, dopants, or adsorbents in or on the diamond.

Those parameters, intrinsic to the laser diode or gain chip
that is used, are the carrier density at transparency Ntr , the
gain compression factor ε that arises from effects that limit
the gain well above threshold, the differential gain coefficient
a that relates the gain and carrier density, the threshold carrier
lifetime τN , the confinement factor �, the volume of the gain
medium V , and the spontaneous emission factor β. For our
gain medium, we take a III-V semiconductor heterostructure
device, such as the nitride compounds capable of emission
at green wavelengths (e.g., InGaN) [66]. Table I shows a
typical range of values for each of these parameters. We

FIG. 2. Dephasing time T ∗
2 vs NV− density NNV , where both val-

ues are given in other works (citations given in the main text). T ∗
2 in

those with low NV concentration are limited by interaction with 13C
spin, with the highest values given by diamonds isotropically purified
with 12C spin during growth. T ∗

2 in those with high NV concentration
are limited by dipolar interaction between defects, including other
substitutional nitrogen defects such as P1 centers. Note that the NV−

density for the work by Childress et al. is an upper estimate made
here assuming a 10% NV− fraction; total substitutional nitrogen
content for this diamond was given as � 0.1 ppm. (Both axes use
a log10 scale.)

take the typical ranges shown based on experimental results
from different structures (quantum well, vertical cavity) and
from calculations based on bulk material properties such as
effective mass. Ntr effectively defines the size of the lasing
threshold current Ith. The desired change in threshold current
on change in absorption factor αt is defined, in particular, by
� and the gain coefficient a in Eqs. (3) and (7).

TABLE I. Typical ranges for the key semiconductor gain
medium parameters. Here, Ntr , τN , and a are taken for typical III-
nitride semiconductors. The range for � is given for laser diodes
with a thin (sub-μm) active layer and is typically no more than a few
percent. The range of β is given for the literature values for a range
of laser diodes where confinement is not deliberately sought, e.g.,
microcavities, and where values several orders of magnitude higher
than the given range are possible [65].

Parameter Range Ref.

Transp. carrier density, Ntr 3 × 1018–2 × 1019 cm−3 [52–56]
Carrier lifetime, τN 1–5 ns [57,58]
Differential gain factor, a 10−17–10−22 m2 [59,60]
Confinement factor, � 0.01–0.1 [61,62]
Spont. emission factor, β 10−5–10−2 [63,64]
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FIG. 3. (a) Absorption contrast percentage calculated from the rate model for diamond D3. This is the maximum change in absorption
between on microwave resonance and off microwave resonance as a function of Rabi frequency �R and laser intensity Î in W/m2. (b)–
(d) Normalized level occupancy for the NV− triplet ground state, responsible for green absorption, the uncharged NV0 defect state, and the
NV− singlet state. At high laser intensities, population transfer to NV0 limits the achievable absorption contrast. For reference, 10 mW of laser
power with a 1-mm-diameter circular beam on the diamond gives an intensity Î = 104 W/m2. The black spot indicates the Rabi frequency and
power for calculations later in this work. (All x and y axes use a log10 scale.)

III. RESULTS

A. Absorption contrast

We first calculate, from the rate model, the fraction of
incident pump light which is absorbed by the diamond and the
change in this absorption (C) when on microwave resonance.
We choose to model three different diamonds covering differ-
ent regimes: D1, D2, and D3 with parameters (NV density
and T ∗

2 ) representative of the values seen in the literature
(Fig. 2). For diamond D1, we choose a low NV− concentra-
tion NNV = 0.001 ppm and high T ∗

2 = 5 μs, representative
of 12C enriched diamonds. For diamond D2, we choose a
medium NV− concentration NNV = 0.1 ppm and T ∗

2 = 0.75
μs, representative of chemical vapor deposition (CVD)-grown
diamond with natural 13C abundance. For diamond D3, we
choose NNV = 10 ppm and T ∗

2 = 0.1 μs, characteristic of high
nitrogen content high-pressure high-temperature (HPHT) di-
amond. We use a diamond thickness d = 500 μm for all,
representative of commercially available single-crystal plates.

Using the rate model, we can calculate the absorption of
light incident on the diamond D1: ˆIoff/Î0, where Î0 is the in-
tensity of the incident light and ˆIoff is the intensity of the light
after the diamond (without supplying microwaves). The calcu-
lated absorption for diamonds D1–D3 is 0.015%, 1.498%, and
77%, respectively, as expected from increasing NV density.
We can also calculate the change in absorption when on and
off microwave resonance. This is shown in Fig. 3 as absorp-
tion contrast C for D3 as a function of microwave drive power
(as Rabi frequency �R) and laser output (as intensity). The
equivalent plots for D1 and D2 are given in the Supplemental
Material [34]. The maximum C = 0.22% for D3 and lowest

for D1 with the lowest NV density with C = 10−4%. This
contrast is comparable to our previous absorption experiments
using a diamond with equivalent ppb-level NV− density [22].
We note that at Rabi frequencies above 100 kHz and laser
outputs above 106 W/m2, the absorption contrast begins to
drop. This results from depopulation of the triplet ground
state 3A2 [normalized occupancy in Fig. 3(b)] in favor of
the NV0 [Fig. 3(c)] and the singlet shelving state [Fig. 3(d)].
However, since we aim to operate near the lasing threshold,
laser intensity will be low in our scheme, avoiding this issue
and ensuring that we remain in the region of highest contrast.

To further validate the absorption modeling, we have
also measured diamond absorption on a high-density sample
consisting of a 1-mm-thick HPHT diamond with 200 ppm ni-
trogen content, irradiated with 10 MeV electrons and annealed
at 900 ◦C. The estimated NV content for this sample was 10–
20 ppm. The absorption contrast for this sample is shown in
Fig. 4. The sample was found to be moderately polycrystalline
and was therefore measured without an offset field to produce
a single central dip in fluorescence, with a number of satellite
features resulting from the polycrystallinity and residual mag-
netic field in the laboratory. Here, total off-resonance diamond
absorption was 90% of incident pump light and maximum ab-
sorption contrast C = 0.13%. For comparison to experiment,
we model absorption contrast with our model with NV density
of 15 ppm and T ∗

2 = 100 ns, derived from an estimate of the
resonance linewidth, an estimated Rabi frequency of 1 MHz,
and the same 100 mW laser power as used experimentally.
This gives a total off-resonance absorption of 89% of the
pump light and absorption contrast of C = 0.14%, in good
agreement with our measurements.
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FIG. 4. Experimental absorption contrast percentage as a func-
tion of microwave drive frequency and microwave power before the
amplifier (Minicircuits ZHL-16W), measuring through the diamond
with 100 mW of laser light (Î = 2.5 × 104 W/m2). The sample was
used to test the absorption model using estimates of NV density and
T ∗

2 from the observed linewidth (values in the main text). Note that
due to input loss, we remain below the maximum gain threshold of
the amplifier for all microwave powers shown, which is exceeded at
+3 dBm.

B. Change in threshold current

We first calculate the lasing threshold current Ith with the
diamond absent from the cavity. To do this, we fixed some
of the parameters of the semiconductor gain medium. We
choose a transparency carrier density of Ntr = 1 × 1025 m−3

in the range typical for InGaN laser structures [52], a gain
region volume of V = 1.25 × 10−16 m3 (25 μm × 100 nm ×
100 μm), zero total cavity absorption αt = 0, a typical differ-
ential gain factor a = 5 × 10−20 m2, a confinement factor �

of 2%, and a carrier lifetime τN = 4 ns, giving a reasonable
lasing threshold current of 50 mA [66]. We take the relation
between the gain and the carrier density to be linear, with the
carrier density close to transparency. We make the simplifying
assumption that due to the low power, running close to lasing
threshold we do not encounter gain compression effects, such
that the factor ε → 0. We also initially make the simplifying
assumption that the spontaneous emission rate is low, with
β → 0 (the importance of this second assumption will be
tested in the final section of this work). These assumptions
allow the threshold current Ith to be calculated easily from
Eq. (8). We define Lr = 10 mm, which is sufficient to include
the diamond and any necessary optics in a practical imple-
mentation. We set mirror reflectivity R3 = 0.99 and collect
laser output from transmission through mirror R1. We calcu-
late reflectivity R2 from the Fresnel equations assuming an
InxGa1−xN-air interface with refractive index n ≈ 2.6–2.9 for
InxGa1−xN [67].

We impose two feasibility limits on the threshold current
Ith. The first is that it should not exceed 300 mA, based on
the limits discussed in the technical documentation, in order
to maintain thermal stability and for practical heat sinking for

FIG. 5. (a) Threshold current as a function of differential gain
factor a and confinement factor � for diamond D3. (b) Change in
threshold current due to the diamond absorption contrast C = 0.02%
for diamond D3. Here, external cavity length Lr was 10 mm and
output mirror reflectivity R1 = 0.9. (Both the x and y axes use a log10

scale.)

a miniaturized diode or gain chip medium. The second is that
the change in the threshold caused by the diamond absorp-
tion must exceed the shot noise of the drive current. From
Fig. 5, we can see that these are mutually exclusive objectives.
Setting an absorption contrast C = 0.2% (diamond D3) and
output mirror reflectivity R1 = 0.9 in order to achieve laser
output while keeping the threshold current reasonably low, a
low confinement factor � and high differential gain coefficient
a result in the highest change in the threshold current �Ith

and thus the strongest effect for sensing, but for very high Ith.
Conversely, a higher value of � or lower a gives lower Ith, but
�Ith shifts which are too small to be resolved.

Although Ntr is a factor usually defined by the semicon-
ductor material, we note that the other parameters here which
define Ith, �, a, and total cavity loss αt including the mirror
reflectivity and cavity output through R1, are all factors which
are well understood and can be controlled and optimized at
either the semiconductor growth stage or in the external cavity
design.
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C. Simulated ODMR

Here we calculate the ODMR spectrum that would be
produced from the external cavity laser. We model a single
microwave resonance from a single ms = 0 → ms = ±1
transition using a Lorentzian line shape typical of ODMR for
diamond [18]. We center our resonance at 2.82 GHz, repli-
cating an ODMR resonance feature associated with a single
NV axis, split from resonance features from other axes by
an arbitrary weak DC offset magnetic field. The maximum
amplitude is defined by the maximum change in threshold
current between on and off microwave resonance and full
width half maximum linewidth fl . For simplicity, we assume
that we can reach the pulsed readout linewidth defined by
T ∗

2 . We calculate the external cavity laser output power using
Eq. (10). Figure 6(a) shows the simulated ODMR for diamond
D3, with a laser power output in the mW range for reasonable
values of � < 0.1 and a = 10−17–10−21 m2. The equivalent
plots for diamonds D1 and D2 are given in the Supplemental
Material [34], with maximum power outputs in the range of
nW and μW, respectively. Unlike for conventional red fluo-
rescence ODMR, the spectrum using this method is a peak
at microwave resonance with zero background, rather than a
small percentage change on a bright background.

D. Magnetic field sensitivity

We calculate the sensitivity to a magnetic field by tak-
ing the background noise level, dividing by the maximum
ODMR slope, and by assuming a maximum frequency shift
of ≈ 28 Hz–1 nT [13]. In our model, the primary sources
of noise are readout from the photodetector and the noise
on the drive current. The ultimate limit on both of these is
shot noise of the output laser light and the drive current shot
noise. We make no account for other direct sources of noise
which are difficult to quantify, such as vibration or tempera-
ture fluctuations. Figure 7 shows a plot of the sensitivity for
diamond D3 versus laser diode parameters for (a) the optical
shot noise and (b) drive current shot noise limited regimes.
We highlight that these calculated values neglect any effects
from amplified spontaneous emission near threshold, which
we explicitly include in Sec. III E. We note that in practice, the
shot noise limited operation may be experimentally difficult
to realize and we include an estimate based on a commercial
current source with ppm-level noise in the Supplemental Ma-
terial [34].

The noise limitations as a function of diode parameters are
highlighted in Fig. 8 for diamond D3. Here, regions A and
C represent where the operation is noise limited, and region
B represents the region in which the system can operate. In
region A, the change in the threshold current is less than the
shot noise of the laser drive current (�Ith < Ish). In region
C, the threshold current Ith > 300 mA exceeds a reasonable
maximum drive current in order to maintain thermal stability.
The limitations we impose mean that diamonds D1 or D2 have
no viable operating region. For completeness, their sensitivity
plots are included in the Supplemental Material [34].

By solving the rate model and calculating for laser diode
output, we can calculate the sensitivity to a magnetic field
for any valid physical parameters of the system, regardless
of whether a diamond can be created with the requisite prop-

FIG. 6. (a) Simulated ODMR for diamond D3 at a range of
differential gain factors a = 10−21 → 10−19.5 m2 (exponents given
in legend) measured by calculating the external cavity laser output
power P as a function of microwave frequency for a Lorentzian
line shape transition centered at 2.83 GHz and of linewidth defined
by fl = 1

πT ∗
2

= 3.2 MHz. (b) Maximum laser power output Pmax

on resonance as a function of gain coefficient a for confinement
factor � = 0.01, 0.05, 0.1. (c) The lasing threshold current for Ith <

300 mA, for the same three values of �. [The x axis in (b) and (c) uses
a log10 scale.]

erties. This includes whether a value of T ∗
2 can be realized

for a corresponding NNV , making no assumption regarding the
relation between these parameters or whether NNV can be re-
alized experimentally. Here we choose parameters R1, �, T ∗

2 ,
a, and NV− density NNV as the optimization variables, while
fixing the diamond thickness (d = 500 μm), Rabi frequency
(�R = 1 MHz), laser beam width (0.5 mm), power (200 mW),
and mirror reflectivities. We limit our laser power to 200 mW
based on our rate model calculations to ensure that the major-
ity of light is absorbed by the NV− defects. We optimize using
standard gradient descent methods. Figure 9 shows a plot of
optical shot noise limited field sensitivity as a function of T ∗

2
and NV density. Sensitivity increased with higher T ∗

2 as would
be expected, with maximum sensitivity at NV density of
10 ppm, above which high overall absorption by the diamond
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FIG. 7. (a) Optical shot noise limited sensitivity for diamond D3
within a viable range for diode parameters a and �. Sensitivity is in
the picotesla range, enabled by the elimination of the high noise from
the background in the conventional fluorescence detection scheme.
(b) The ultimate sensitivity limit imposed by shot noise on the laser
drive current, worse by up to two orders of magnitude. These plots
do not consider practical viability, with threshold currents >4 A at
low �. Zoomed-in plots in the low-�, low-a range are included in
the Supplemental Material [34] for clarity. (Both the x and y axes use
a log10 scale.)

acted to excessively reduce laser output. Subpicotesla level
sensitivity is predicted for T ∗

2 > 1 μs (0.3–0.02 pT/
√

Hz for
T ∗

2 = 1–10 μs). Here the optimal parameters were a = 1.6 ×
10−20 m2, R1 = 0.154, and � = 0.025. These are parameters
within the achievable range for a semiconductor gain medium
(see Table I). We note that current demonstrations show that
achieving long T ∗

2 times (e.g., 10 μs) becomes impractical for
high NV densities (e.g., 10 ppm), as detailed by Fig. 2, due to
the impact of N-N interaction.

We note that in general, the highest sensitivity is realized
for the lowest differential gain factor a. A standard laser diode
demands a large a, maximizing gain vs carrier density (steeper
output power vs drive current slope). Our scheme requires the
reverse: that a small change in gain produced by the diamond
on-off microwave resonance results in a large change in Nth

and Ith. In this respect, a quantum well structure with a flatter

FIG. 8. Regions where the sensor can and cannot operate due to
imposed limitations. In regions A and C, operation is constrained by
having a change in threshold that is less than the shot noise of the
drive current and Ith > 300 mA, respectively. In region B, operation
is possible. (Both the x and y axes use a log10 scale.)

logarithmic relation between gain and carrier density would
seem preferable. However, as we demonstrate in Fig. 10,
using our model, with modifications to the phenomenological

FIG. 9. Best field sensitivity optimizing variables listed in the
main text as a function of (a) NV− density and (b) T ∗

2 in μs, with
the inset showing a zoomed plot at the highest simulated values of
T ∗

2 . The best sensitivity was observed at the highest T ∗
2 , for NV−

density of 10 ppm. Above this, the total absorption for the diamond
was too high, limiting laser output and sensitivity. [The x and y axes
in (a) and x axis in (b) use a log10 scale.]
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FIG. 10. Calculated magnetic field sensitivity (left y axis) and
laser diode threshold current (right y axis, dashed) as a function of
differential gain factor a using an empirical model for a quantum
well laser diode. The lasing threshold current increases such that
subpicotesla sensitivity is not reached at a feasible threshold current
(<300 mA). Here we take confinement factor � = 0.01 as an exam-
ple of the low values that are typical of a quantum well laser diode.
(The x and y axes use a log10 scale.)

description of the medium gain (detailed in the Supplemental
Material [34]) and with the same optimization methodology as
above results in the threshold current exponentially exceed-
ing drive current feasibility limits before subpicotesla/

√
Hz

sensitivity is reached, for any typical value for � in the low
percentage range.

E. Effect of spontaneous emission

In the previous sections and past literature, the physi-
cal role of spontaneous emission in the semiconductor gain
medium that was used was not considered. In order to max-
imize sensitivity, it is necessary to operate at or close to the
off-resonance lasing threshold. Without spontaneous emis-
sion, this can be treated as a step cut-on, with zero or near-zero
emission before lasing begins at Ith. With spontaneous emis-
sion included, modeled by finite β in Eqs. (4) and (5) above,
the power-current relationship close to threshold instead fol-
lows a shallow curve, resulting from weak amplification of
spontaneous emission near threshold producing light emission
below Ith. Figure 11(a) shows this effect for varying β. This
acts to severely limit sensitivity [Fig. 11(b)] by reducing the
contrast and adding background shot noise. Typical values of
β range from 10−3 to 10−5, depending on the laser diode
structure. We estimate approximately an order of magnitude
worse sensitivity at the low end of this range than with β = 0.

IV. CONCLUSION

In this work, we propose a scheme for laser threshold sens-
ing using an external cavity laser configuration with a current
driven semiconductor lasing medium. Using the change in
lasing threshold, light emission only occurs on microwave
resonance. This eliminates the bright background that lim-
its sensitivity using conventional red fluorescence emission.
Predicted sensitivities (summarized in Table II) for magne-
tometry with realistic cavity parameters and intrinsic material
parameters are in the pT/

√
Hz range, offering a route to

FIG. 11. (a) External cavity laser output P as a function of
semiconductor laser medium drive current I , varying spontaneous
emission factor β. The result of increasing β is that there is no longer
a sharp lasing cut-on at the threshold. (b) The effect on the achievable
sensitivity of this effect, with sensitivity considerably reduced by up
to two orders of magnitude for β = 10−2.

improvement over existing methods. We find that these sensi-
tivities may be reachable at far lower laser power (< 200 mW)
than realized in equivalent fluorescence-based diamond bulk
sensing schemes, including our recent experimental work
which utilized up to 2 W of green pump laser to obtain equiv-
alent sensitivities in the tens of pT range [68]. This significant
decrease of laser power may facilitate sensor miniaturization
and thus the implementation of portable sensing schemes.

Our model has limitations: we base our calculations on
emission into a single laser mode and do not calculate the
dynamics of the system, such as rapid switching in a pulsed
operation scheme. Although beyond the focus of this work,
we note that the latter may be a promising route for future
investigation. A scheme where the laser medium could be
initially pumped and then the pump shut off while retaining
population inversion during sensing, typical of a Q-switched
setup, would only be limited by the optical shot noise of any
emitted laser light. This is, however, challenging to achieve for
a semiconductor laser due to the short excited state (carrier)
lifetime.

A key physical limitation of any laser threshold scheme
is the role of amplified spontaneous emission. This blurs the
sharp lasing transition, giving nonzero light emission even
below threshold and compromising sensitivity. A broad tran-
sition can be avoided by minimizing gain factor β, although
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TABLE II. Summary of key values from our calculations for modeled diamonds D1–D3 and an optimal (ideal) diamond, including the
assumed NV density, T ∗

2 , maximum shift in threshold current, and best calculated sensitivities within the modeled parameter ranges of a, �,
with and without spontaneous emission (SE) taken into account. We present the best sensitivity within the modeled range limited by either the
optical shot noise (SN) of the laser emission or limited by the shot noise of the drive current (brackets). For D1 and D2, * denotes not viable,
as the drive current shot noise exceeds the change in threshold �Ith.

NV density T ∗
2 Maximum threshold Best sensitivity, without SE, Best sensitivity, including SE,

Diamond (ppm) (μs) shift (μA) optical (current) SN limit pT/
√

Hz optical SN limit, β = 10−5 → 10−3 pT/
√

Hz

D1 10−3 5 0.00122 4.6 (1834*)
D2 0.1 0.75 41.4 3.1 (124*)
D3 10 0.1 6.2 × 103 4.3 (53) 22–73
Ideal 10 1–10 7.3 × 103–8.4 × 103 0.3–0.02 (-)

this is difficult for a semiconductor laser, particularly since
β can scale inversely with the size of the gain medium [69].
Obtaining a gain chip or antireflective coated laser diode with
the right parameters is challenging, especially for green wave-
lengths. This problem also exists for infrared absorption since
the laser emission must match the 1042 nm gap in the singlet
state. In our scheme, running in the infrared could be achieved
by extending the external cavity design proposed here using a
diffraction grating in a Littrow and Littman-Metcalf configu-
ration to create a tunable system.

We consider, in this work, a normal incidence beam path
through a fixed diamond thickness d = 500 μm. We note that
a higher sensitivity within feasible limits of threshold current
could potentially be reached with a thinner diamond with
a very high NV density. However, in the limit of d → 0,
other effects not considered in our model may act to limit
performance, such as variation in NV density and the role of
other types of defects. Measurements of absorption and T ∗

2 as
a function of diamond thickness would be extremely useful
in determining behavior in this regime. We also consider that
it may be possible to reach higher sensitivity in the low NV
density regime using an extended beam path achieved through
internal reflection in a thicker diamond. This again requires
new experimental measurements to precisely quantify the
losses (due to reflection or absorption) in such a geometry.

We note that the fundamental limit for the scheme is the
level of contrast C generated between the on-off microwave
resonance states, which is very low for a large diamond en-
semble. However, the scheme is not specifically limited to
diamond and is broadly applicable for any material where
a large enough, controllable difference in optical absorption
could be generated. The advantage of using diamond is the
ability to coherently manipulate the desired states in a quan-
tum sensing scheme. Our calculations indicate the scheme
will likely only work for diamonds with a high (> 1 ppm)
NV− density. Such diamonds have a worse ensemble T ∗

2 time,
limited by nitrogen spin interaction. A developing solution
here may be to use optimal control methods in order to better
control the ensemble. Such methods are widely implemented
for nuclear magnetic resonance and electron spin resonance
on bulk samples, but have yet to be fully developed for sensing
using diamond defects [70].
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I. MODEL FOR EFFECTIVE REFLECTIVITY

FIG. 1. We assume a rectangular laser diode with active volume V=WxLxth, with a near field

emission spot at the end facet of size 2ax2b,

We calculate the effective reflectivity using the equation:

re = r2 −
1−R2

r2

∑

n

εn(−r2r3e2iθ)n (1)

where ri are the mirror complex reflectivities derived from the Fresnel equations where

Ri = |ri|2. We assume that the diamond is not in contact with the diode or the reflector

mirror (interface is always to air). The phase angle θ = 2πLr/λ is the phase component

arising from the external cavity and εn are the individual coupling factors from the nth

reflection in the cavity. We assume that we can adjust our external cavity length such that

the phase term e2iθ=1. An approximate expression for εn is given in the work by Voumard

et al. (citation in main text) using the dimensions a and b of the radii of the near field spot

size of the laser emission from the diode. (See Supplementary Figure 1)

2



II. QUANTUM WELL GAIN

We can also modify this model for quantum well structures to follow a logarithmic rela-

tion, such that:

G = ΓaNtr ln (Nth/Ntr)(1− εS) (2)

We use the above expression in calculating the estimated sensitivity and threshold cur-

rents for a quantum well structure in the main text.

3



III. ABSORPTION CONTRAST FOR DIAMOND D1 AND D2

FIG. 2. Absorption contrast percentage calculated from the rate model for Diamond D1 and D2.

The 1x10−4 level percentage absorption contrast matches the level observed experimentally in our

previous work for a diamond with ppb-level NV density (Ahmadi et al., citation in the main text)

4



IV. CALCULATED ODMR FOR DIAMOND D1 AND D2

FIG. 3. Calculated ODMR from laser emission on resonance for a) Diamond D1 and b) Diamond

D2

Supplementary Figure 3 gives the calculated ODMR for Diamond D1 and Diamond D2.

Despite the reduced linewidth for both D1 and D2 as compared to D3, the small change in

threshold current and the low output power makes best possible sensitivity worse than for

D3 (see below).
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V. MAGNETIC FIELD SENSITIVITY FOR DIAMOND D1 AND D2

FIG. 4. Calculated magnetic field sensitivity in the optical (right) and gain medium drive current

(left) shot noise limited regimes for Diamond D1, as a function of a and Γ

FIG. 5. Threshold current Ith and change in threshold current ∆Ith for Diamond D1

Supplementary Figure 5, left gives the calculated threshold current Ith for Diamond

D1. These are not significantly different from D2 and D3 as they are primarily defined

by the semiconductor laser gain medium and associated parameters. However, the change

in threshold (Supplementary Figure 5, right) is significantly smaller (pA) due to the lower

absorption contrast of D1. This makes the drive current limited sensitivity much worse than

6



FIG. 6. Calculated magnetic field sensitivity in the optical (right) and gain medium drive current

(left) shot noise limited regimes for Diamond D2, as a function of a and Γ

FIG. 7. Threshold current Ith and change in threshold current ∆Ith for Diamond D2

for D3 (nT/
√

Hz, see Supplementary Figure 4). D2 represents the middle case between D1

and D3, with a higher ∆Ith, but still severely limited by drive current shot noise.
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VI. ESTIMATED LIMITATIONS DUE TO CURRENT SOURCE NOISE

FIG. 8. Estimated sensitivity limit for Diamond D3 assuming a realistic 30nA/
√

Hz noise current

source. The dark blue area covers the region where the change in threshold current is below the

noise floor and therefore sensitivity is set to be zero. Best achievable sensitivity within this region

is approximately 235nT/
√

Hz

Where operation is not intrinsically limited in region B, we must also consider what

level of noise can be reached by a realistic current source. From examples in literature,

we consider drive current stability of 1ppm of full range as achievable. This is ≈1µA on a

500mA max output range with 1kHz bandwidth (30nA/
√

Hz). We assume this limit can be

reached through feedback control from the laser output. Imposing such a limit on the sensor

gives a sensitivity in the nT/
√

Hz range (Figure 8). We note that the limit on drive current

stability and maximum threshold current is purely technical, rather than a limit imposed

by the physics of the system.
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VII. EXPERIMENTAL CONTRAST VERSUS MICROWAVE POWER

FIG. 9. Maximum experimentally measured absorption contrast as a fuction of microwave power

before amplification in dBm

Supplementary Figure 9 showing the variation in absorption contrast versus microwave

power for the experimentally measured diamond. Contrast peaks at an input power before

the amplifier of -5dBm (amplifier gain 45dB).

VIII. ZOOMED PLOTS FOR LOW-Γ AND a

9



FIG. 10. Zoomed in plots for Figure 7 in the main text, showing the region for low Γ and a.

10



5 Investigation and comparison of measurement
schemes in the low frequency biosensing regime
using solid-state defect centers

5.1 Introduction

The low-frequency sensing regime is of particular importance to studies of biology,
as many signals of interest are found in this regime. Several different NV sensing
schemes can be applied to perform sensing in the low-frequency regime. However,
choosing the optimal sensing scheme for a given task is made challenging by the
differing properties of the various schemes. In particular, the impact of inhomo-
geneous broadening and drive amplitude variations on the achievable sensitivity
differs from scheme to scheme.

In order to address this issue, we theoretically investigated and compared the
achievable sensitivity of the three most commonly used low-frequency sensing
schemes for varying levels of inhomogeneous broadening and drive amplitude vari-
ations. The considered schemes were CW ODMR, π-pulse ODMR and Ramsey
interferometry. The schemes were compared in terms of the maximum achievable
slope in contrast, which is directly linked to the sensitivity.

The maximum achievable contrast slope for each scheme was simulated for varying
levels of inhomogeneous broadening and drive amplitude variations. The resulting
values were compared in order to determine the region(s) where each scheme was
preferable. Simultaneously, we extracted information about the impact of inhomo-
geneous broadening and drive amplitude variations on each of the three considered
schemes. The main findings are summarized in the publication in section 5.2, and
the supplementary information is given in section 5.3.
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Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers

Andreas F.L. Poulsen,1 James L. Webb,1, ∗ Kirstine Berg-Sørensen,2 Ulrik Lund Andersen,1, † and Alexander Huck1, ‡

1Center for Macroscopic Quantum States (bigQ), Department of Physics,
Technical University of Denmark, 2800 Kongens Lyngby, Denmark

2Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Ensembles of solid state defects in diamond make promising quantum sensors with high sensitiv-
ity and spatiotemporal resolution. The inhomogeneous broadening and drive amplitude variations
across such ensembles have differing impacts on the sensitivity depending on the sensing scheme used,
adding to the challenge of choosing the optimal sensing scheme for a particular sensing regime.
In this work, we numerically investigate and compare the predicted sensitivity of schemes based
on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, π-pulse
ODMR and Ramsey interferometry for sensing using nitrogen-vacancy centers in the low-frequency
(< 10 kHz) range typical for signals from biological sources. We show that inhomogeneous broad-
ening has the strongest impact on the sensitivity of Ramsey interferometry, and drive amplitude
variations least impact the sensitivity of CW ODMR, with all methods constrained by the Rabi fre-
quency. Based on our results, we can identify three different regions of interest. For inhomogeneous
broadening less than 0.3 MHz, typical of diamonds used in state of the art sensing experiments,
Ramsey interferometry yields the highest sensitivity. In the regime where inhomogeneous broadening
is greater than 0.3 MHz, such as for standard optical grade diamonds or in minaturized integrated
devices, drive amplitude variations determine the optimal protocol to use. For low to medium drive
amplitude variations, the highest sensitivity is reached using π-pulse ODMR. For high drive ampli-
tude variations, relevant for widefield microscopic imaging, CW ODMR can yield the best sensing
performance.

I. INTRODUCTION

Defect centers in diamond are promising candidates
for applications in quantum sensing due to high attain-
able sensitivity, their atomic scale dimensions, the chem-
ical stability of diamond and compatibility with biolog-
ical samples [1–4]. In particular, the negatively charged
nitrogen-vacancy center (NV) in diamond possesses sev-
eral properties advantageous for sensing including long
coherence times of the associated electron spin even at
room temperature, optical initialization and readout of
the spin state [5, 6] and the ability to coherently ma-
nipulate the spin with resonant microwaves (MW) [7].
The level structure and spin-state dependent transitions
of the NV center, illustrated in Fig. 1, render the sys-
tem sensitive to temperature [8, 9], pressure [10], electric
fields [11, 12] and magnetic fields [7], but it has received
the most focus for its potential as a magnetometer [7, 13–
16].

NV center based sensing most commonly involves ap-
plying a static magnetic field to lift the degeneracy of
the mS = ±1 spin states and addressing either the mS =
0 ↔ mS = 1 or mS = 0 ↔ mS = −1 transition as an
effective two-level system [17]. This two-level system is
then either driven continuously with constant amplitude
microwave and pump laser illumination or in a pulsed
manner according to the sensing scheme applied for the

∗ jaluwe@fysik.dtu.dk
† ulrik.andersen@fysik.dtu.dk
‡ alexander.huck@fysik.dtu.dk

specific task. Due to the spin-state dependent fluores-
cence properties of the NV center, when microwaves are
supplied at a resonance frequency matching the triplet
ground state spin transition, fluorescence emission is re-
duced due to nonradiative and infrared decay via a sin-
glet shelving state. Sensing can be performed by record-
ing this environmental-dependent change in fluorescence
while probing the spin resonance. This can be practically
achieved by many different sensing schemes, including
continuous-wave optically detected magnetic resonance
spectroscopy (CW ODMR) [18], π-pulse ODMR [19, 20],
Ramsey interferometry [21], Hahn Echo [22] and many
others[17, 23, 24].

Choosing the right scheme for the specific sensing task
is essential to achieving the best possible sensitivity.
To maximize bulk sensitivity, it is necessary to use a
large ensemble of NV centers as in the shot-noise limited
regime [13] the sensitivity is proportional to

√
N , where

N is the number of NV centers. It is also necessary to use
a large ensemble for other applications, in particular wide
field of view microscopy with high spatial resolution. The
use of an NV center ensemble introduces challenges of its
own. Variations in the local environment of NV centers,
e.g. related to varying crystal strain across the ensemble,
lead to inhomogeneous broadening (IHB) of their spin
triplet transition frequencies, making it challenging for a
single-frequency MW drive to be on-resonance with the
entire ensemble. Depending on the physical extent of the
ensemble and the used MW antenna geometry, it is also
possible for the MW drive amplitude to vary across the
ensemble. Both of these effects can have a negative im-
pact on the performance of sensing schemes. The impact
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FIG. 1. Simplified energy-level diagram of the negatively
charged nitrogen-vacancy center (NV). The diagram illus-
trates the spin-conserving excitation from ground state triplet
3A to excited state triplet 3E caused by green illumination,
the radiative (red fluorescence) decay back to the ground state
triplet and the non-radiative decay paths to and from the
metastable singlet state 1A. Dashed arrows indicate relatively
weaker decay rates. The diagram also exemplifies the split-
ting induced by the Zeeman effect when a magnetic field B is
applied. We show the zero-field splitting in the ground state,
Dgs = 2.87 GHz, and excited state, Des = 1.42 GHz, and the
splitting of the mS = ±1 states due to a magnetic field B
given by the gyromagnetic ratio γe = 28 MHz/mT.

of sample or drive scheme inhomogeneity can also vary
between different sensing schemes, which further compli-
cates the choice of the optimal sensing scheme for a given
task.

In this article, we numerically investigate and com-
pare the sensitivity of different sensing schemes for dif-
ferent levels of inhomogeneous broadening and drive am-
plitude variations. We note that for high frequency AC
field sensing, such as sensing nuclear spins using single
NV centres [25, 26], spin-echo techniques offer by far
the best sensitivity achievable. In this work, we instead
focus on the DC to low frequency (< 10 kHz) sensing
regime. This frequency range is of particular importance
for biosensing, including sensing of action potentials on
the millisecond timescale [27] and seconds to hours tem-
perature sensing using nanodiamonds within cells [3, 28].
This is a primary application for NV centers due to the
high degree of biocompatibility of diamond. We consider
three sensing schemes: Ramsey interferometry, π-pulse
ODMR and CW ODMR. These are the most commonly
used schemes for this frequency range using the NV cen-
ter platform [21]. We theoretically investigate and com-
pare the predicted relative sensitivities for these three
schemes in varying sensing regimes and discuss how these
simulations can relate to potential applications, including
widefield microscopy and microfabricated sensors.

II. METHODS

We model an ensemble of N nitrogen-vacancy centers
as the sum of independent single NV, denoted i, follow-
ing the level structure in Fig. 1 and following the state
dynamics of N independent quantum systems. This as-
sumption is valid due to the relatively low density of
NV centers in a typical sensing sample (up to parts per
million range), meaning the sum total of interaction be-
tween NV centers in the ensemble is low. We assume
zero noise, such that our sensitivity is only dependent on
the response of the ensemble, excluding difficult to quan-
tify noise sources such as time varying background mag-
netic fields from laboratory equipment or laser technical
noise. The time varying application of microwave and
laser fields to the ensemble for each of the three sens-
ing schemes considered in this article are illustrated in
Fig. 2.The exact theoretical approach of the simulations
differs between the three considered sensing schemes, but
we include the effects of inhomogeneous broadening and
MW drive amplitude variations across the ensemble in
the same way in all three protocols.

We simulate inhomogeneous broadening across our en-
semble via a distribution of transition frequencies, which
can be modelled as varying detuning, δi, from a central
transition with frequency ω0 = 2π·f0. This detuning con-
tributes to the total detuning ∆i = 2π · δi− (ωMW −ω0)
between the transition frequency and the driving fre-
quency ωMW = 2π · fMW . We define the term drive
detuning to correspond to the difference fMW − f0 be-
tween the driving frequency fMW and the central tran-
sition frequency f0. The drive detuning can be altered
without changing f0 by varying fMW . We simulate mi-
crowave drive amplitude variations as an effective Rabi
frequency αiΩR varying across the ensemble. Here, αi is
defined as the ratio between the effective Rabi frequency
and the intended Rabi frequency in the non-detuned case
ΩR, which is kept fixed [29].

The ensemble is modelled as consisting of NV centers,
each with a particular value of δi and αi, while all other
parameters are assumed to be constant across the entire
ensemble. A pump laser pulse is assumed to return ev-
ery NV center to the mS = 0 ground state |0〉 and the
readout is assumed to reflect the exact state distribu-
tion. For simplicity, we consider only NV centers aligned
along one crystallographic axis of diamond and assume
that the magnetic field is aligned along that axis. The
δi-values are considered to follow a Gaussian distribution
centered at zero with a full width at half maximum (Γ).
The values of δi are taken in the range ±Γ. In our re-
sults and discussion below, the upper limit of this range
is used to indicate the level of inhomogeneous broadening
LIHB for a given simulation, i.e. a Γ of 0.5 MHz equals
LIHB = 0.5 MHz. The αi-values follow a flat distribu-
tion between 0 and 1 to approximate a decaying MW
drive field. The range below 1 spanned by the αi-values
is used to indicate the level of MW drive amplitude vari-
ations, termed LDAV below, i.e. if αi varies between 0.9
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FIG. 2. Simple sketch illustrating the application of each of the three considered sensing schemes. Ramsey interferometry and
π-pulse ODMR are pulsed sequences while CW ODMR involves constant application of both laser power and microwaves.

and 1, LDAV = 0.1. MW drive amplitude variations can
be neglected by setting αi = 1 in all cases.

A. Ramsey interferometry

Simulations of Ramsey interferometry were performed
using a Hamiltonian representing a coherently driven sin-
gle NV two-level spin system in a rotating frame

Ĥ = ∆i

2 σ̂z + αiΩR
2 σ̂x, (1)

where σ̂x and σ̂z are Pauli spin-matrices, and ~ is equal to
one. The simulations are performed in three steps. First,
an input state representing an NV center initialized in
state ms = 0, |ψi〉 = |0〉 = (1 0)T , is allowed to evolve
under the influence of ΩR for a duration Tp = π/(2ΩR)
corresponding to and simulating the effect of a π/2-pulse.
In the second step, the resulting state is then used as the
input state for an evolution where ΩR = 0 for a duration
equal to the considered free precession time τ . In the final
and third step, the resulting output state after free pre-
cession is used as the input state for an evolution where
ΩR is again non-zero for a duration of Tp = π/(2ΩR),
accounting for the effect of the final π/2-pulse. For the
output of our simulation, we define a normalized contrast
Ci, obtained for the resulting final output state |ψf 〉 by
determining its overlap with state |1〉 = (0 1)T corre-
sponding to either ms = 1 or ms = −1,

Ci = | 〈1|ψf 〉 |2. (2)

The obtained value of Ci represents normalized fluores-
cence contrast between on and off microwave resonance,
calculated for a single NV center in the ensemble with pa-
rameters ∆i and αi. The parameter Ci is a valid measure
of the normalized contrast, given that the contrast will
be minimal when the NV center is in state |0〉 and maxi-
mal when the NV center is in state |1〉. We assume that
a normalized contrast of Ci = 1 corresponds to a fluores-
cence contrast of 30%, the maximum typically measured
in an optically detected magnetic resonance experiment

using a single NV center in bulk diamond [17]. We de-
fine a total normalized contrast for the ensemble C as
the mean normalized contrast taken by averaging across
all Ci values.

We can also include pure dephasing in the simulation
by using a quantum master equation for a two-level sys-
tem
dρ

dt
= −i

[
Ĥ, ρ

]
+Γpure

(
σ̂zρσ̂z−

1
8 σ̂zσ̂zρ−

1
8ρσ̂zσ̂z

)
, (3)

where ρ = |ψ〉〈ψ| for a pure state and the rate of pure
dephasing is given by Γpure ≈ 1/T ∗2 . Otherwise, the
simulations are performed using the exact same three-
step approach that was previously described for the case
without pure dephasing. In density matrix notation, the
input state corresponding to an NV initialized in state
ms = 0 is ρi =

[
1 0
0 0

]
, and the normalized contrast Ci

is directly obtained from the second diagonal element of
ρf , which is the output density matrix obtained from the
third and final step of the simulation.

As a demonstration of the effect of inhomogeneous
broadening, we present in Fig. 3 the ensemble-average
normalized contrast C as a function of free precession
time simulated for the Ramsey protocol for a N = 41
ensemble with ΩR = 2π · 5 MHz, no pure dephasing, a
drive detuning equal to 1.2 MHz, no drive amplitude vari-
ations and three different values of LIHB . As expected,
we observe Ramsey fringes where the contrast is seen to
oscillate at a frequency equal to the detuning between the
drive and the central transition frequency. The Ramsey
interference fringes seen in Fig. 3, are observed to de-
cay within a time constant that roughly corresponds to
1/LIHB . The observed decay caused by inhomogeneous
broadening is thus similar in effect to a decay of the con-
trast value caused by pure dephasing.

In order to provide a quantitative measure of the pres-
ence of Ramsey fringes and their relative strength, we
define a figure of merit q that is equal to the difference
in normalized contrast between the second-highest fringe
maximum and the second-lowest minimum, as indicated
in Fig. 3. This ensures the presence of at least two clear
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FIG. 3. Color online. Simulated Ramsey measurement for
ΩR = 2π · 5 MHz, no pure dephasing, a drive detuning equal
to 1.2 MHz and three different values of LIHB . The quantity
q indicated on the plot for LIHB = 0.3 MHz is a self-defined
figure of merit used to judge the relative strength of the Ram-
sey fringes.

fringes for large q, separating a genuine Ramsey interfer-
ence measurement from relaxation or ensemble π-pulse
rotation effects that might resemble a single fringe. For
each value of ΩR that we consider in the simulations, we
then determine q for different values of the drive detun-
ing and LIHB . For each set of LIHB , we then extract
the drive detuning that yields the maximum value qmax
and hence the most pronounced Ramsey fringes. The ex-
tracted drive detuning value is used for the estimation of
the maximum achievable slope in normalized contrast for
the set values of ΩR and LIHB .

For direct comparison with CW and π-pulse ODMR,
it was necessary to convert the change in normalized con-
trast as a function of the target sensing parameter into
the equivalent normalized contrast change (slope) as a
function of variation in microwave drive frequency fMW ,
C

′=dC/dfMW . Unlike CW or π-pulse ODMR, where
sensing is simply dependent on the change in microwave
resonance frequency of the ODMR features caused by a
change in the parameter to be sensed, e.g. magnetic field
or temperature, the sensitivity of the Ramsey scheme ap-
proach is not directly related to the maximum slope of
the Ramsey fringes. Instead, a change in the param-
eter to be sensed will change the resonance frequency,
thereby changing the total detuning ∆i and thus the os-
cillation frequency of the Ramsey fringes. This causes
the Ramsey fringes to be compressed or stretched in free
precession time τ and leads to a measurable oscillation
in the contrast for a fixed τ 6= 0 as a function of the
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FIG. 4. (a) Ramsey interferometry contrast versus τ for
LIHB = 0.3 MHz, ΩR = 2π · 10 MHz, no pure dephasing and
a drive detuning of 1.8 MHz with three different values of B.
(b) Ramsey interferometry contrast versus B for τ = 1.25µs
and otherwise identical parameters to (a). Position of maxi-
mum slope dC/dB indicated by vertical line.

sensing parameter. This is exemplified in Fig. 4 for the
case of magnetic field sensing. Here, the addition of a
magnetic field B shifts the resonance frequency and thus
the total detuning by msγeB, with γe = 28 MHz/mT
the gyromagnetic ratio of an electron spin. Figure 4(a)
shows how the Ramsey fringes are shifted by a change
in the magnetic field B while Fig. 4(b) illustrates how
the contrast at a fixed τ oscillates as a function of the
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magnetic field B. The maximum slope of this oscillation
dC/dB, shown in Fig. 4(b) for τ = 1.25µs, is the point
of maximum attainable sensitivity ηB of Ramsey sens-
ing of magnetic fields. The maximum achievable slope is
dependent on the fixed value of τ due to the effects of
inhomogeneous broadening and/or pure dephasing.

In order to determine the maximum sensitivity of the
Ramsey scheme, it was therefore necessary to simulate
the normalized contrast as a function of the sensing pa-
rameter (e.g. magnetic field B) for different fixed τ , ob-
taining a τopt that maximises ηB . The maximum achiev-
able slope as a function of the sensing parameter can
then be converted to C ′=dC/dfMW using a conversion
factor for the known change in transition frequency as
a function of a given sensing parameter for a single NV
axis (e.g. γe = 28 MHz/mT for magnetic field or −74.2
kHz/K for temperature).

In this work, we performed this conversion by de-
termining the change in ensemble average normalized
contrast in a simulated applied magnetic field between
−3.6µT and 3.6µT with varying τ up to 5µs. In each
case considered in the simulation, the driving frequency
ωMW was chosen such that the total drive detuning ∆i

without field (B = 0) maximizes the figure of merit q to
ensure clear Ramsey fringes. From these simulations we
determined the maximum dC/dB and converted this to
C ′=dC/dfMW using the above conversion factor. This
permitted direct comparison of the Ramsey interferome-
tery scheme with CW and π-pulse ODMR sensing.

B. π-pulse ODMR

For the case of simulating the π-pulse ODMR scheme,
simulations were performed using the same methods as
for simulating the Ramsey protocol, but by replacing
the three-step sequence with a single step where an
input state |ψi〉 = |0〉 was allowed to evolve under the
influence of a drive field with strength ΩR for a duration
Tp = π/ΩR equal to a π-pulse. The normalized contrast
C obtained for the resulting output state |ψf 〉 was then
calculated using Eq. 2. This approach was repeated for
varying values of the drive frequency fMW , from which
a normalized contrast spectrum and the measurable
maximum slope was extracted.

C. CW ODMR

We performed the simulation of the CW ODMR pro-
tocol using a five-level model of the NV center [30], in-
cluding spin, optical and non-radiative transitions. The
decay rates typical for an NV center in bulk diamond are
listed in [31], and the optical excitation rate is Γp.

The steady-state solutions for the ground state popu-
lations for a single NV can be obtained directly via the

expressions [30]

ρss11 =
[
1 + Ξ + Γp

K3
+ ΓpΞ

K4
+ k35Γp
K3K5

+ k45ΓpΞ
K4K5

]−1
, (4)

and

ρss22 =
[
1 + 1

Ξ + Γp
K4

+ Γp
K3Ξ + k45Γp

K4K5
+ k35Γp
K3K5Ξ

]−1
,

(5)
where

Ξ =

[
k21
2 + Γp(k32K5+k52k35)

K3K5
+ (αiΩR)2γ′

2
2(γ′2

2 +∆2
i
)

]

[
Γp + k21

2 −
Γp(k42K5+k52k45)

K4K5
+ (αiΩR)2γ′

2
2(γ′2

2 +∆2
i
)

] (6)

and

K3 = k35 + k31 + k32,

K4 = k41 + k42 + k45,

K5 = k51 + k52,

(7)

where Γp is the optical pumping rate, knm is the decay
rate from level n to level m, Kn is the total decay rate
from level n, γ′2 = γ2 +Γp/2 is the optical dephasing rate,
and γ2 = 2π/T ∗2 + k21/2 is the spin dephasing rate. The
steady-state solutions for the ground state populations
can be used to obtain the CW ODMR spectrum as

ICW = β3ρ
ss
33 + β4ρ

ss
44 = β3

Γp
K3

ρss11 + β4
Γp
K4

ρss22 (8)

where

β3 = k31 + k32
K3

, β4 = k41 + k42
K4

. (9)

We include pure dephasing via 2π/T ∗2 in the term γ′2 =
2π/T ∗2 +k21/2+Γp/2 and can neglect the influence of pure
dephasing by setting 2π/T ∗2 = 0. Eqs. (4-9) can thus be
used to obtain the CW ODMR spectrum for a single NV
center as a function of microwave drive frequency.

The spectrum values ICW were converted to contrast
relative to the value obtained when the microwave drive is
far off-resonance. These values are divided by the max-
imum contrast obtained in the asymptotic limit where
ΩR is very large in order to obtain a normalized con-
trast value Ci. By repeated simulation for all values of
∆i and αi, we then calculate the ensemble average nor-
malized contrast C as the mean of all Ci values in the
ensemble. By varying the simulated microwave drive fre-
quency fMW , we can then derive the maximum slope as
a function of drive frequency C ′=dC/dfMW . This can be
directly compared to the equivalent values obtained from
the simulation of a Ramsey or π-pulse scheme, represent-
ing a measure of the maximum achievable sensitivity for
CW ODMR sensing.
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FIG. 5. Plot of the self-defined figure of merit q as a function
of drive detuning and LIHB for ΩR = 2π · 3 MHz and no pure
dephasing or drive amplitude variations.

III. RESULTS AND DISCUSSION

A. Ramsey interferometry

We first calculated how the visibility of the Ramsey
fringes depended on the degree of drive detuning and
the inhomogenous broadening (LIHB). This was done
in terms of the figure of merit q, to give a clear picture
of how well the interferometry performs as a function of
these parameters. Figure 5 shows a plot of q as a func-
tion of drive detuning and inhomogenous broadening at
a fixed overall Rabi frequency ΩR = 2π · 3 MHz with no
pure dephasing or drive amplitude variations included.
In the Supplementary information, we include examples
of the individual Ramsey interferometry simulations that
were used to obtain this plot. It is clear that the opti-
mal drive detuning to maximize the figure of merit q and
thus the quality of the Ramsey fringes increases with in-
creasing inhomogeneous broadening. Moreover, we see
that the fringes worsen with increasing inhomogeneous
broadening. This is as expected, with an increase in
LIHB leading to a faster decay of the Ramsey fringes
and thus requiring a larger oscillation frequency (drive
detuning) in order to obtain sufficient Ramsey fringes
to perform Ramsey interferometry. Also as expected, as
LIHB reaches its upper range (> 1 MHz), it becomes in-
creasingly difficult to obtain interference fringes, as the
broadening means the fixed microwave pulse length is no
longer π/2 for an increasingly larger number of NV center
spins in the ensemble.

By the procedure outlined in Methods, we calculate
the maximum fluorescence contrast slope C ′ for Ramsey
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FIG. 6. Maximum achievable slope in normalized contrast for
Ramsey interferometry with no drive amplitude variations or
pure dephasing as a function of (a) inhomogeneous broadening
with various Rabi frequencies and (b) Rabi frequency with
various levels of inhomogeneous broadening.

interferometry. We initially focus on a particular scenario
for an ideal high sensitivity measurement with a strong,
uniform microwave field across the diamond resulting in
no ensemble drive amplitude variations and a high Rabi
frequency (ΩR > 2π · 2 MHz). We then simulate the in-
fluence of Rabi frequency and inhomogeneous broadening
on the predicted maximum slope C ′.

Figure 6(a) shows the simulated C ′ as a function of
inhomogeneous broadening for three different Rabi fre-
quencies and Fig. 6(b) shows the simulated C ′ as a func-
tion of Rabi frequency for three different LIHB-values,
with LDAV =0 (no drive amplitude variations) and no
pure dephasing. The plots in Fig. 6(b) also include
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anomalous features where the slope decreases with in-
creasing Rabi frequency. This arises because for each
value of ΩR and LIHB , we calculate the drive detuning
that yields the maximum q, rather than maximizing C ′
directly. As outlined in Methods, this is to maximize
fringe visibility to remain in the regime where we are
performing genuine Ramsey interferometry. If this were
not the case, the optimization routine might, for exam-
ple, find the maximum C ′ for zero or near-zero preces-
sion time τ , which would be indistinguishable from the
π-pulse scheme. The result of the method we choose is
that the optimized drive detuning between values of ΩR
or LIHB may reach different local maxima in q, leading
to a step change in C ′ between adjacent points. This can
lead to the anomalies we observe.

Two aspects are clear from the data shown in Fig. 6(a).
First, the achievable slope C ′ in the Ramsey scheme de-
creases in a pseudo-exponential fashion with increasing
inhomogeneous broadening. This indicates a lower sensi-
tivity for all schemes with higher inhomogeneous broad-
ening. As discussed above, this is what would be ex-
pected based on the observed effect of inhomogeneous
broadening, acting to reduce the fringe visibility and
number as illustrated in Fig. 3. Secondly, the achiev-
able slope increases only slightly with increasing Rabi
frequency, particularly at low inhomogeneous broaden-
ing. This result is somewhat surprising, as it would be
expected that by increasing the microwave power sup-
plied using a pulsed scheme resistant to power broaden-
ing, the microwave resonance should be better defined,
increasing contrast C and C ′.

The slight increase can be attributed to the relation-
ship between Rabi frequency and π/2-pulse performance.
As Rabi frequency is increased, the π/2-pulses will be
able to perform well for NV center spins with larger de-
tuning from the driving frequency. However, once the
pulses are able to perform well for most or all of the tar-
get ensemble, increasing the Rabi frequency further does
not significantly improve the overall pulse performance
and thus does not significantly improve the achievable
slope. The point where the π/2-pulses are able to af-
fect most of the ensemble correctly naturally occurs at a
lower Rabi frequency for ensembles with lower levels of
inhomogeneous broadening.

This result implies that for sensing experiments using
the Ramsey scheme, increasing microwave amplification
or enhancing antenna design to achieve a higher Rabi
frequency will not necessarily lead to significant enhance-
ment in sensitivity. This is an important result for both
benchtop systems aiming for state of the art sensitivity
and for systems with low Rabi frequency, such as mi-
crofabricated NV sensors with low available microwave
power [32, 33]. For a high quality diamond with low
LIHB = 0.1 MHz, an increase in Rabi frequency from 1
MHz to 10 MHz only increases the slope C ′ by a factor
of ≈ 1.3%, see Fig. 6. In our zero noise model, this corre-
sponds to the same factor of enhancement in sensitivity
to any target parameter using this scheme.
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FIG. 7. Maximum achievable slope in normalized contrast as
a function of inhomogeneous broadening for Ramsey measure-
ments with ΩR = 2π·5 MHz with and without pure dephasing.
The indicated T ∗2 -value is the one induced by pure dephasing
alone.

We also simulate the introduction of pure dephasing,
which additionally acts to reduce the Ramsey fringe vis-
ibility. This has an effect very similar to that of inhomo-
geneous broadening (Fig. 4), with a decay in normalized
contrast. The limit on interferometry performance will
therefore depend on both pure dephasing and inhomoge-
neous broadening and their relative strengths defined by
T ∗2 and LIHB , respectively. We illustrate this in Fig. 7
where the simulated C ′ as a function of inhomogeneous
broadening is plotted with and without pure dephasing.

The difference between the slopes obtained decreases
with higher inhomogeneous broadening. In the regime of
large values of LIHB , the maximum achievable slope is
limited by the inhomogeneous broadening. For low values
of LIHB , the maximum C ′ is constrained by pure dephas-
ing. This implies that even if long T ∗2 times are achieved,
as is often sought in sensing experiments through well
designed pulsed protocols, the inhomogeneous broaden-
ing will still act to ultimately constrain the maximum
sensitivity of the Ramsey scheme, and that increasing
the Rabi frequency (through increasing the MW power)
of the MW pulses will not necessarily overcome this is-
sue. This highlights the critical importance of material
(diamond) design to minimize IHB (e.g. by minimiz-
ing inhomogeneous non-NV diamond nitrogen content or
minimizing material strain).
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B. CW and π-pulse ODMR

Fig. 8 shows example simulated ODMR spectra in
terms of normalized ensemble contrast C as a function
of microwave drive frequency ωMW for CW and π-pulsed
schemes. We show a single resonance feature correspond-
ing to a single NV axis, split by 40 MHz by a simulated
static magnetic field with a 1.4 mT amplitude along the
NV axis. The parameters we use are Γp = 2π · 1 MHz,
ΩR = 2π · 2 MHz for the CW simulation and ΩR = 2π · 2
MHz for the π-pulse simulation. We plot the ideal spec-
tra, with zero pure dephasing, inhomogeneous broaden-
ing and no MW drive amplitude variations. The π-pulse
ODMR spectrum was obtained using a fixed π-pulse du-
ration chosen to match the on-resonance frequency. This
leads to oscillations in contrast as this fixed duration
periodically matches different Rabi frequencies obtained
at different driving frequencies. Examples of simulated
spectra varying the above parameters are shown in the
Supplementary Information.

We note that for CW and π-pulse ODMR, the relation-
ship between slope C ′ and Rabi frequency is not straight-
forward and larger Rabi frequency can result in lower
slope. This is due to the fact that while larger Rabi
frequency will result in larger achievable ODMR con-
trast, which serves to increase the slope, the additional
microwave power necessary to achieve it will broaden
the NV resonance linewidths, which acts to decrease the
slope C ′. The inverse is also true for green laser inten-
sity/pumping rate, where resonance linewidth can nar-
row with higher laser intensity [23, 34]. For the ODMR
simulations, we thus individually optimize the Rabi fre-
quency and the green pumping rate to yield the maxi-
mum slope for each LIHB and LDAV .

C. Scheme comparison

We compare the maximum sensitivity for the Ramsey
interferometry, CW and π-pulse ODMR sensing schemes.
Again, we assume zero noise such that the sensitivity is
directly proportional to the ensemble response via slope
C ′. For simplicity of comparison, we compare the best
possible Ramsey interferometry simulations using ΩR =
2π · 10 MHz with the other two schemes. We consider
that ΩR = 2π · 10 MHz is a reasonable upper limit that
can be achieved experimentally [35, 36].

We first consider only the effects of inhomogenous
broadening, while neglecting drive amplitude variations
and pure dephasing. Figure 9(a) shows the resulting sim-
ulated maximum slope as a function of LIHB for Ramsey
interferometry, CW ODMR and π-pulse ODMR while ne-
glecting drive amplitude variations and pure dephasing.
The obtained optimal Rabi frequencies for CW and π-
pulse ODMR were below 2π ·3 MHz in all cases. For ease
of comparison, the ratios between the obtained ODMR
slopes and the obtained Ramsey interferometry slopes
are shown in Fig. 9(b) with a horizontal line at unity, i.e.
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FIG. 8. Normalized contrast values for a simulated CW
ODMR spectrum for Γp = 2π · 1 MHz, ΩR = 2π · 2 MHz
and a simulated π-pulse ODMR spectrum for ΩR = 2π · 2
MHz with zero inhomogeneous broadening, no pure dephas-
ing and no MW drive amplitude variations using the five-level
model.

equal performance.
The plots in Fig. 9 illustrate how the achievable slope

decreases with increasing inhomogeneous broadening for
all three techniques, but the decrease is most significant
in the low IHB regime (< 0.2 MHz) for Ramsey inter-
ferometry. As can be seen in Fig. 9(b), the simulations
predict a larger C ′ and hence greater achievable sensi-
tivity for π−pulse ODMR than Ramsey interferometry
when LIHB ≥ 0.3 MHz. Given that π-pulse ODMR is
no more complicated to implement than Ramsey interfer-
ometry, this indicates that π-pulse ODMR should be the
preferred protocol when the inhomogeneous broadening
is in this regime. For LIHB < 0.3 MHz, the simulations
predict the largest slope for Ramsey interferometry, in-
dicating that one can gain sensitivity by implementing
Ramsey interferometry in this regime. The CW ODMR
simulations at best predict a slope that is close to 80% of
the Ramsey interferometry slope predicted for the same
LIHB .

The plots in Fig. 9(b) also include several anoma-
lous features such as the ratio decreasing with increasing
LIHB at several points and oscillations in the data for
increasing LIHB . As previously detailed, these arise due
to the chosen method of optimizing the drive detuning.
We can also perform this optimization directly in terms
of C ′ only, from which the same overall trends can be
observed. This data can be seen in the Supplementary
information.

Having investigated the behavior of the three sensing
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FIG. 9. a) Maximum achievable slope in normalized con-
trast as a function of inhomogeneous broadening for Ramsey
measurements with ΩR = 2π ·10 MHz, optimized CW ODMR
and optimized π-pulse ODMR. All values were obtained while
neglecting drive amplitude variations and pure dephasing. b)
Ratios between the ODMR and Ramsey interferometry slopes
shown in a).

schemes in the absence of variations in microwave drive
across the ensemble, we then perform the same compar-
ison with finite drive amplitude variation LDAV . Figure
10 shows plots of the ratio between the simulated maxi-
mum achievable slope for (a) CW ODMR and (b) π-pulse
ODMR and Ramsey interferometry as a function of LIHB
for MW drive amplitude variations between 10% and 90%

(LDAV = 0.1-0.). Here we see that increasing the level
of MW drive amplitude variation increases the perfor-
mance (higher C ′) of CW and π-pulse ODMR relative to
Ramsey interferometry. For π-pulse ODMR, this effect
is relatively small, with the same distinction in perfor-
mance above and below LIHB = 0.3 MHz as simulated
in Fig. 9. However, the effect is far more pronounced for
CW. When the MW drive amplitude variations exceed
50%, CW starts to outperform Ramsey measurements at
large levels of inhomogeneous broadening. As the MW
drive amplitude variations increase further, CW will out-
perform Ramsey at smaller and smaller levels of inhomo-
geneous broadening, eventually becoming preferable for
nearly all levels of inhomogeneous broadening. For MW
drive amplitude variations of around 80% or larger, CW
ODMR also outperforms π-pulse ODMR, as evidenced
by achieving a larger ratio to the Ramsey measurement
slopes. This is a surprising result, as pulsed readout
schemes are usually assumed to offer better sensitivity
(which is true in the limit of pure dephasing) [19]. Here
we instead show there can be regimes where sensitivity is
greater for a continuous wave scheme than for the pulsed
alternatives when other factors are considered.

We account for this result as arising due to the pulsed
schemes being more adversely affected by MW drive am-
plitude variations. These schemes rely on the precise
application of π and π/2 pulses of the correct length for
the maximum number of NV center spins in an ensemble.
By increasing the variation in drive amplitude across the
sample, this condition is no longer met for an increas-
ingly large fraction of NV center spins. This leads to a
reduction in both contrast and slope through broadening
effects associated with incorrect length pulse application
[12]. For CW, this problem is less apparent as the states
of the defect centers are continuously driven between the
mS = 0 to mS = ±1 levels, maintaining contrast as long
as there is sufficient pump laser power to maintain spin
polarization in the system.

We consider this result to be particularly relevant for
sensing schemes where such a wide variation in drive am-
plitude may occur. This includes two particular scenar-
ios: 1) where the diamond is relatively large with re-
spect to an antenna and the field of view of fluorescence
collection is large and 2) where the microwaves are par-
ticularly localized to maximize contrast in a particular
region. The first such scenario describes widefield imag-
ing with NV centres, where there can be considerable
variation in drive frequency across a diamond [37, 38].
The second may describe a confocal experiment, using
lithographically patterned microwave antennas.

Elements of both scenarios cover sensing experiments
looking at nanodiamonds, for example for temperature
sensing in biological tissue [39]. Here both LDAV and
LIHB can be high due to variations in microwave drive
if looking at multiple diamonds across a large single field
of view and due to large differences in IHB between very
few NV centers within each diamond, with considerable
effects of crystal strain and surface interaction due to
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FIG. 10. Ratio between the maximum achievable slope in normalized contrast for (a) optimized CW ODMR or (b) optimized
π-pulse ODMR and Ramsey measurements with ΩR = 2π · 10 MHz as a function of inhomogeneous broadening for varying
levels of MW drive amplitude variations.

their small form factor [40].
Finally, we seek to perform our simulations using ex-

perimental data from a real diamond sample, to esti-
mate the optimal sensing scheme for a real diamond. We
achieve this through widefield CW ODMR imaging to ex-
tract the variation in zero offset magnetic field microwave
resonance frequency across a 10×10 µm2 region of a di-
amond. We use a chemical vapor deposition (CVD) di-
amond overgrown with 15N with 12C purification. The
procedures and diamond details we use for the measure-
ment are the same as given in [41]. As this region is
significantly smaller than our nearfield antenna, we as-
sume that across the field of view we image there is a
homogeneous microwave field, with minimal variation in
microwave drive amplitude. We therefore assume that
all of the variation we observe is due to inhomogenous
broadening as our input δi-distribution. This experimen-
tal distribution can be seen in Appendix A. Figure 11
shows the simulated ratios between the maximum achiev-
able slope in normalized contrast for optimized CW or
π-pulse ODMR and Ramsey interferometry as a function
of the Rabi frequency ΩR used for Ramsey interferom-
etry with three different values of LDAV . We calculate
π-pulse ODMR to be the best possible scheme for all
values of microwave drive variation, particularly in the
low microwave power (low Rabi frequency) regime. Our
simulations also suggest that in this regime, CW ODMR
is close to outperforming the sensitivity of the Ramsey
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FIG. 11. Ratio between the maximum achievable slope in
normalized contrast for optimized CW or π-pulse ODMR and
Ramsey measurements as a function of the Ramsey interfer-
ometry ΩR for a measured δi-distribution with varying levels
of MW drive amplitude variations.
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scheme. This diamond has recently been used for CW
ODMR sensing of electrical current [41], but we do not
presently have the capability to perform pulsed sensing
using it. We also note that other factors such as readout
noise and measurement time can play a role in a real ex-
periment. Here we aim only to maximize the response of
the sensing medium (the NV ensemble) in terms of max-
imizing the change in fluorescence output (slope C ′) in
response to a target factor (e.g. magnetic field or tem-
perature).

IV. CONCLUSION

In this work, we compared Ramsey interferometry,
π-pulse ODMR and CW ODMR sensing schemes us-
ing nitrogen-vacancy centers and investigated the impact
of inhomogeneous broadening and MW drive amplitude
variations. We demonstrate that the achievable response
of the sensing ensemble in terms of the contrast slope
C ′, which is directly proportional to sensitivity, plateaus
with increasing Rabi frequency for Ramsey interferom-
etry. The performance of Ramsey interferometry can
therefore not necessarily be improved simply by increas-
ing the MW power. This is of considerable interest for
realization of devices with low available power, such as
microfabricated sensors with integrated semiconductor
amplification, where significant MW amplification is not
easy to realize due to e.g. heat dissipation concerns.

We demonstrate that when the inhomogeneous broad-
ening exceeds 0.3 MHz, π-pulse ODMR yields a larger
C ′ than Ramsey interferometry, indicating that π-pulse
ODMR gives higher sensitivity in this regime. This indi-
cates that Ramsey interferometry should only be consid-
ered when using a high-quality diamond with low inho-
mogeneous broadening, such as in low impurity samples
with a relatively low nitrogen content [20, 42].

The influence of MW drive amplitude variations is
demonstrated to significantly improve the relative per-
formance of CW ODMR compared to pulsed sensing
schemes and π-pulse ODMR. For MW drive amplitude
variations of around 80% or larger, CW ODMR can out-
perform both Ramsey interferometry and pulsed ODMR
for even a low level of inhomogeneous broadening. These
results are of particular significance to applications that
naturally have high levels of drive field variation, such as
wide field of view NV center imaging [37, 38] or imaging
of microwave frequency microcircuitry [41].

Finally, we apply our simulation to measurements from
a real diamond, recently used for CW imaging [41]. Our
calculations predict that sensitivity could be improved
by switching to a π-pulse sensing scheme. We however

note that other factors beyond the scope of this work may
limit sensitivity and these may vary between the schemes
considered. In particular, in this work we only consider
the maximal response of the sensing medium. We do not
consider noise, arising from electronic or optical sources,
or errors in pulse application. Further investigation be-
yond the scope of this work is required to fully examine
these aspects before confirmation of our prediction.

Our results represent an important step towards a
greater understanding of the relation between sensor ma-
terial properties, sensing regime and the ideal sensing
scheme. We consider our results of particular interest to
groups working with DC to low-frequency magnetometry
and temperature sensing, particularly from biosamples,
using diamonds both off-the-shelf or irradiated where low
inhomogeneous broadening cannot be guaranteed.

A. MEASURED δi-DISTRIBUTION

Plot of the experimentally measured δi-distribution
used for the simulations in Fig. 11. The distribution was
measured on a CVD diamond overgrown with 15N with-
out isotopic purification.
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FIG. 12. Experimentally measured δi-distribution from a
CVD diamond overgrown with 15N without isotopic purifica-
tion. The distribution was used for the simulations in Fig. 11.
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I. EXAMPLE RAMSEY SIMULATIONS

Shown here are four of the individual Ramsey simulations used to obtain the q-values
plotted in Fig. 5 in the main article. All of the simulations were performed without pure
dephasing or drive amplitude variations. The individual simulations were made using (a)
drive detuning (DD) equal to 0.3 MHz and LIHB = 0.1 MHz, (b) DD = 1.8 MHz and LIHB =
0.1 MHz, (c) DD = 1.8 MHz and LIHB = 1 MHz and (d) DD = 3.9 MHz and LIHB =
0.6 MHz.
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FIG. 1: Simulations of the Ramsey interferometry contrast C as a function of the free
precession time τ with no pure dephasing or drive amplitude variations. The parameters

were (a) DD = 0.3 MHz and LIHB = 0.1 MHz, (b) DD = 1.8 MHz and LIHB = 0.1 MHz, (c)
DD = 1.8 MHz and LIHB = 1 MHz and (d) DD = 3.9 MHz and LIHB = 0.6 MHz.



II. CW AND π-PULSE ODMR WITH VARYING PARAMETERS

Below are shown three plots illustrating the effect of varying the optical pumping rate
Γp and the Rabi frequency ΩR for the CW and π-pulse ODMR simulations. All simulations
show a single resonance feature corresponding to a single NV axis, split by 40 MHz by a
simulated static magnetic field with a 1.4 mT amplitude along the NV axis. The plotted
spectra are ideal, with zero pure dephasing, inhomogeneous broadening and no MW drive
amplitude variations. Figure 2 shows CW ODMR spectra for Γp = 2π · 1 MHz and three
values of ΩR. As expected, increasing ΩR increases the maximum contrast, but also power
broadens the resonance feature. Conversely, decreasing ΩR reduces the maximum contrast,
but also narrows the resonance feature by reducing the effect of power broadening.
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FIG. 2: Normalized contrast values for simulated CW ODMR spectra for Γp = 2π · 1 MHz
and the three indicated values of ΩR with zero inhomogeneous broadening, no pure

dephasing and no MW drive amplitude variations.



Figure 3 shows CW ODMR spectra for ΩR = 2 MHz and three different values of Γp. The
behavior is as expected. Increasing the optical pumping rate Γp can lead to an increase in the
absolute change in fluorescence at the resonance, but it also increases the background fluo-
rescence such that the contrast might decrease. Conversely, decreasing the optical pumping
rate Γp will decrease the background fluorescence, but it also decreases the rate of reini-
tialization, which leads to a lower absolute change in fluorescence at the resonance and
potentially lower contrast.
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FIG. 3: Normalized contrast values for simulated CW ODMR spectra for ΩR = 2π · 2 MHz
and the three indicated values of Γp with zero inhomogeneous broadening, no pure

dephasing and no MW drive amplitude variations.

Figure 4 shows π-pulsed ODMR spectra for three different values of ΩR. As expected, these
spectra also show a form of power broadening due to π-pulses with larger Rabi frequency
being more robust against detuning, but the broadening is noticeably less significant than for
CW ODMR. The decrease in maximum contrast with decreasing ΩR is much less significant



than for CW ODMR due to π-pulses being able to implement a π-flip for a single resonant
NV very well, even at low Rabi frequencies. The duration of a π-pulse is, however, inversely
proportional to the Rabi frequency.
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FIG. 4: Normalized contrast values for simulated π-pulse ODMR spectra for the three
indicated values of ΩR with zero inhomogeneous broadening, no pure dephasing and no

MW drive amplitude variations.



III. SLOPE COMPARISON WITH SLOPE-OPTIMIZED RAMSEY DRIVE
DETUNING

Here we show the version of Fig. 9 from the main article obtained when optimizing the
Ramsey interferometry drive detuning directly for C ′. The anomalous features observed
in Fig. 9(b) in the main article are almost entirely gone and the ratios increase almost
completely smoothly as a function of LIHB. We observe the same overall trends as in Fig. 9
in the main article.
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FIG. 5: a) Maximum achievable slope in normalized contrast as a function of
inhomogeneous broadening for Ramsey measurements with ΩR = 2π · 10 MHz, optimized

CW ODMR and optimized π-pulse ODMR. All values were obtained while neglecting drive
amplitude variations and pure dephasing. The Ramsey measurement drive detuning values

were obtained by optimizing directly for C ′. b) Ratios between the ODMR and Ramsey
interferometry slopes shown in a).



6 CONCLUSION AND OUTLOOK

6 Conclusion and outlook

This thesis covers three projects, which are all devoted to the goal of improving
the sensitivity of nitrogen-vacancy (NV) magnetometry. The ultimate goal of such
improvements is to realize the many potential applications of the mechanically sta-
ble and chemically inert NV sensor, which can function under ambient conditions,
but is limited by the currently achievable sensitivity. Said potential applications
include and exceed those of other high-sensitivity quantum magnetometers like
superconducting quantum interference devices (SQUID) and atomic-vapor mag-
netometers, which both suffer from limitations that do not affect NV magnetome-
ters. The approach taken in the projects mainly involves attempts to optimize
the utilization of the quantum properties of the NV center in order to boost the
achievable sensitivity.

The first project focuses on the use of optimal control theory to design shaped
microwave (MW) control pulses that are robust against the influence of inhomoge-
neous broadening and drive amplitude variations. The optimal control approach
using smooth optimal control was expanded to include the effects of hyperfine
splitting, such that shaped MW pulses capable of simultaneously driving all of the
hyperfine transitions could be designed. Simulations of π-pulse ODMR with ei-
ther a smooth optimal control pulse optimized for all of the hyperfine transitions
or flat MW pulses were performed. The simulations predicted that a properly
designed smooth optimal control pulse would yield major improvements in the
ODMR slope compared to an equivalent flat single-frequency pulse and significant
improvements compared to an equivalent flat three-frequency pulse. Experiments
were performed in collaboration with another PhD student in order to verify the
predictions. The experimental results yielded the same general trends as the
simulations, although the exact numbers differed. An 11% increase in the max-
imum ODMR slope compared to the best equivalent flat three-frequency pulse
was demonstrated experimentally. These results represent an important step in
the direction of utilizing optimal control theory to improve the sensitivity of NV
magnetometry schemes.

The experiments were performed using a setup that was not optimized for maxi-
mum sensitivity and thus serve mainly as a proof-of-principle. A relevant future
step would then be to implement the smooth optimal control pulses in a top-of-
the-line setup in order to push the limits of NV magnetic field sensing.

The second project focuses on the use of the green absorption by NV centers
for laser threshold magnetometry as an alternative to the standard measuring of
changes in the red fluorescence. A proposed setup where an NV diamond is in-
cluded in an external cavity laser, and the change in green absorption caused by a
shift from off- to on-resonance MW driving is used to push the setup across the las-
ing threshold was theoretically investigated. The investigation also considered the
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6 CONCLUSION AND OUTLOOK

effect of spontaneous emission, which is typically neglected in similar proposals.
The predicted sensitivities for optimal but realistic cavity and material parameters
were found to be in the pT/

√
Hz range. The approach thus represents a poten-

tial route to improved sensitivity compared to existing methods. However, the
effect of amplified spontaneous emission near the lasing threshold, which reduces
the sharp lasing cut-on to a gradual transition, significantly limits the achievable
sensitivity. For large values of the spontaneous emission factor, the sensitivity can
be reduced by up to two orders of magnitude compared to the situation without
spontaneous emission. The suppression of spontaneous emission is thus an impor-
tant consideration for laser threshold magnetometers.

The third project focuses on the theoretical investigation and comparison of CW
ODMR, π-pulse ODMR and Ramsey interferometry for low-frequency sensing.
The maximum achievable contrast slope (sensitivity) for each scheme was simu-
lated and compared for different levels of inhomogeneous broadening and MW
drive amplitude variations, with the goal of determining the optimal sensing
scheme for different conditions. It was found that Ramsey interferometry was
the most strongly impacted by inhomogeneous broadening and only yielded the
largest contrast slope for low inhomogeneous broadening. CW ODMR was the
least strongly impacted by drive amplitude variations and yielded the largest con-
trast slope for large drive amplitude variations. In the intermediate region where
the inhomogeneous broadening is not low and the drive amplitude variations are
not large, π-pulse ODMR was found to yield the largest contrast slope. The
knowledge of which sensing scheme provides the best sensitivity for a given set of
conditions can be used to more efficiently design and optimize setups and experi-
ments, thereby paving the way for further sensitivity improvements.

Going forward, one could attempt to achieve further improvements of the sen-
sitivity by combining aspects of the different projects. Optimal control theory
could potentially be used to improve the sensitivity of the pulsed measurement
schemes in the regimes where they are preferable. The laser threshold magne-
tometry setup could be considered for a π-pulse ODMR sensing scheme, which
could be combined with optimal control theory to improve the performance. It
would also be interesting to consider the potential of experimental optimization
of the control pulses. This could be done by starting with an appropriate optimal
control pulse and then making adjustments to the pulse parameters based on the
experimental response to minor changes in said parameters, repeating the process
until optimal experimental performance is achieved.
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