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Abstract
This thesis introduces a new type of exchangecorrelation functional called theWeighted
Local Density Approximation (WLDA), describes the development of a variety of tools
for highthroughput studies, and finally concludes with a highthroughput study of bi
layer materials.

It is increasingly important to develop new approximation methods to handle highly
correlated materials as well as other systems that are beyond the reach of most com
monly used electronic structure methods. WLDA attempts to improve on correlation
effects by matching both the energy and the correlation hole of the homogeneous elec
tron gas. This yields a fully nonlocal functional. Different variants are proposed and
several perform comparably to the PBE functional on atomic energies, atomization en
ergies, and lattice constants. Suggestions for future development and improvement of
WLDA are also discussed.

When Density Functional Theory (DFT) methods are not sufficient for the task at hand,
methods such as manybody perturbation theory must be used. Typically such meth
ods are very computationally expensive which often prohibits the use of these methods
in highthroughput projects. In this thesis, one of the most commonly used manybody
perturbation methods, namely G0W0 , in a highthroughput context by analysing the
results of more than 60.000 individual selfenergy calculations. Problematic materials
that require careful handling in a potential highthroughput study are identified. Errors
in the quasiparticle energies stemming from the linear approximation to the quasiparti
cle equation are investigated and several errorreduction schemes are proposed. The
validity of the extrapolation of the planewave cutoff to an infinite cutoff and the scissor
operator approximation are also discussed.

As science advances, increasingly complex calculations need to be performed in order
to extract the interesting information from the material under investigation. Much of this
burden is alleviated by the various electronic structure codes that are available. These
typically implement DFT, Quantum Monte Carlo, or Dynamical Mean Field Theory, to
name a few. However, many interesting properties have to be calculated by combining
or processing the results of an electronic structure calculation, often in nontrivial ways.
This thesis dicsusses the Atomic Simulation Recipes (ASR) Python package and con
tributions made to ASR. ASR standardizes common electronic structure computational
tasks by implementing recipes to perform such tasks.

Finally, this thesis describes a highthroughput screening project for bilayer materi
als. Monolayers are extracted from the Computational 2D Materials Database and
bilayer structures are generated from a heuristic stacking algorithm. A workflow is
implemented that calculates bilayer binding energies and various electronic structure
properties of the most interesting candidate bilayers. The candidates are then anal
ysed for emergent and for switchable properties, i.e. properties that change when
going from monolayer to bilayer, and properties that change between different stack
ing orders, respectively.
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Resume
Denne afhandling introducerer en ny type exchangecorrelation funktionale ved navn
Weighted Local Density Approximation (WLDA). Ydermere beskrives udviklingen af
en mængde værktøjer til highthroughput studier, og til slut konkluderes med et high
throughput studie af atomart tynde tolags materialer.

Det er bliver fortsat vigtigere at udvikle nye approksimationsmetoder der kan beskrive
stærkt korrelerede materials så vel som andre systemer der er uden for rækkevidde
for de mest almindelige metoder indenfor udregninger af elektronisk struktur. WLDA
forsøger at forbedre beskrivelse af korrelations effektor ved at matche både energien
og korrelationshullet for den homogene gas. Dette resulterer i et fuldstændigt ikke
lokalt funktionale. Forskellige varianter af WLDA foreslås og flere af disse har samme
nøjagtighed som PBE for atomare energier, atomiserings energier for molekyler, og
for gitterkonstanter. Foreslag til fremtidig udvikling og forbedring af WLDA diskuteres
også.

Når Density Functional Theory (DFT) ikke er tilstrækkeligt for det givne problem, blivet
det nødvendigt at bruge metoder såsom mangelegeme perturbationsteori. Sådanne
metoder er typisk meget udregningsmæssigt dyre, og dette gør det ofte umuligt at
anvende metoderne i highthroughput studier. I denne afhandling analyseres en af de
mest alment anvendte mangelegeme metoder, navnligt ”G0W0 ”. Ved at analysere
mere en 60.000 selvenergiudregninger identificeres problematiske materialetyper
samt typiske fejlkilder i diverse udregningsmetoder der bruges i forbindelse med G0W0

. Resultaterne fra disse analyser udgør et skridt imod fuldtautomatiserede G0W0 
udregninger, hvilket er essentielt hvis G0W0 skal bruges i et highthroughput studie.

I takt med at videnskaben udvikler sig, er det nødvendigt at foretage udregninger med
stigende kompleksitet for at ekstrahere den interessante information for det givne
materiale man studerer. Den ekstra kompleksitet udgør en stor byrde når program
met skal udvikles og anvendes, men meget af denne byrde løftes af de forskellige
elektronstrukturkoder som er tilgængelige. Typisk implementerer disse koder enkelt
stående metoder, men ofte skal resultaterne kombineres på ikketrivielle måder for
at udregne de ønskede egenskaber. Denne afhandling diskuterer Pythonpakken
Atomic Simulation Recipes (ASR) og diverse bidrag foretaget til ASR. ASR standard
iserer en række alment anvendt analyser indenfor elektronstruktur og gør det let at
kombinere og udvide sådanne analyser.

Til slut beskrives et highthroughput projekt der omhandler atomart tynde tolags ma
terialer. Enkeltlags materialer ekstraheres fra Computational 2D Materials Database
og tolags strukturerne genereres vha. en heuristisk algoritme. Et workflow imple
menteres somudregner tolags bindingsenergier og diverse elektronstrukturegenskaber
for de mest interessante tolags materialer. Disse materialer analyseres derefter for
hvilke ændringer der forekommer når et ekstra lag tilføjes, samt hvilke ændringer der
forekommer når man sammenligner forskellige måder at stable to lag.
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1 Introduction
In the twentyfirst century devices that rely on quantum effects are ubiquitous. Such
devices can be found in technologies ranging from the transistors in your smartphone
to solar panels powering your house to the LEDs in your television to the catalysts
in your car engine. Our current scientific understanding of such materials is highly
developed and we can calculate catalytic activity or solar panel power efficiency with
high accuracy if the appropriate methods are used. Often computational methods are
employed to understand or supplement experimental methods when the experiments
are too expensive or timeconsuming, or to access information that is not directly avail
able in an experimental setup. The most commonly used computational technique
for describing solid state devices is Density Functional Theory (DFT). DFT is remark
ably accurate while still being computationally feasible and which is why it is the most
popular method in computational materials science. However, DFT has its shortcom
ings, in that calculated properties can differ in critical ways from the actual, physical
values. For example, the guitar amplifiers that enabled Jimi Hendrix’s riffs relied on
Germanium transistors [1] and the fact that Germanium is a semiconductor [2]. How
ever, according to DFT, Germanium is a metal [3] and not an semiconductor. So, if
DFT were to be believed, Hendrix’s concerts would have been a much less interesting
affair.

Science is continually improving and adding to the capabilities of stateoftheart de
vices and this calls for theoretical and computational techniques that can satisfactorily
deal with the everincreasing complexity of new materials. One option is to develop
new approximations for the central quantity in DFT, the exchangecorrelation func
tional (XC functional), which contains information about the nontrivial ways in which
electrons interact. Current commonly employed approximations to the XC functional
suffer from a number of deficits: band gaps are often underestimated, excitations are
poorly described, large systems can be hard to tackle, calculations for strongly corre
lated materials often fail in various ways, and there is no systematic way to improve
approximations to the XC functional [4], to name a few. It seems likely that not all
the problems of DFT can be solved at the same time; in fact, if it were possible to
calculate the exact XC functional efficiently, this would imply efficient solutions to the
quantum version of problems in the Nondeterministic Polynomialtime (NP) complex
ity class which is generally believed to be impossible [5]. In practice we must choose
the functional or method appropriate for the task at hand. In chapter 3 of this thesis we
describe a new type of nonlocal XC functional approximation that attempts to solve
some of these issues, most notably attempting a better description of how electrons
are displaced due to the mutual electrostatic interactions. This is done by matching
the socalled correlation hole, which is one part of the charge displacement. Hopefully,
these new functionals can also inspire new ideas for functional development.

Once accurate tools have been developed, the remaining problem becomes how to
find the structure and composition of the next generation of materials. The problem
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of designing a material when given a set of desired properties is very hard; it is much
easier to calculate the properties of a material rather designing than a material with
certain properties, not least because there may be several materials with the same
properties. A widely used technique is that of highthroughput screening where the
properties of a very large amount, sometimes on the order of thousands, of candidate
materials are calculated and evaluated. Afterwards the most promising candidates
can be extracted and trends in the data can be sought. In the past, high throughput
screening has been used, for instance, to discover new atomically thin materials [6,
7] and other twodimensional materials [8], new solar cell materials [9], materials for
watersplitting [10], and even onedimensional materials [11]. The technique is also
widely used outside of materials science, for example in the discovery of new medical
compounds [12].

In chapter 4 we discuss manybody perturbation theory calculations, in a particular ap
proximation called the G0W0 approximation, in the context of highthroughput studies.
We do this by analysing data from the Computational 2D Materials Database (C2DB),
which is a database developed at CAMD that currently contains about 4000 atomically
thin materials [6]. In chapter 5 we discuss the Atomic Simulation Recipes framework
(ASR), a new Python package for performing standard electronic structure tasks on ar
bitrary materials. ASR is intended to facilitate expertlevel calculations across a wide
selection of properties without the user necessarily being an expert in all the relevant
fields, thus extending the reach of any given researcher substantially. In chapter 6 we
detail a highthroughput screening of new bilayer materials that have potential applica
tion to atomically thin nonvolate memory devices, controllable magnetic or conductive
properties, among other relevant properties.

Before we get to any of that, we start with a general introduction to DFT in chapter 2.
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2 Theoretical Background
In this chapter we give a brief introduction to the theoretical topics that are relevant
for all the work done in this thesis. This pertains to the method used to describe in
teracting manybody quantum system, namely Density Functional Theory (DFT), and
the numerical methods used to simulate DFT. Methods beyond DFT and more details
about exchangecorrelation energy approximations will be described in later chapters
where it is relevant.

2.1 Density Functional Theory
Density Functional Theory (DFT) was developed as an attempt to provide a tractable
solution to the manybody quantum problem. It relies on a crucial theorem developed
by Hohenberg and Kohn which states that the Hamiltonian is uniquely determined by
the ground state density, up to a constant energy shift [13]. Since the density is easily
determined by the Hamiltonian, it follows that there is a onetoone correspondence
between the density and the Hamiltonian and hence every quantity associated that can
be determined from the Hamiltonian, such as the wavefunction. This is quite surprising,
since the wavefunction seems to contain so much more data than the density, as the
wavefunction is a function ofN coordinatevectors but the density is only a function of 1
coordinatevector. Proofs of the HohenbergKohn theorem are given in many standard
textbooks such as [14, 15], so the proof will not be repeated here.

In particular, the ground state energy is a functional of the density, and it can be
shown that the ground state density is the minimizer of the energy functional, sub
ject to the constraint that the total number of electrons is unchanged upon variation of
the density. Furthermore, the HohenbergKohn theorem can be applied equally well
to noninteracting and interacting systems, and it is the ”interpretation” of the interact
ing energyfunctional as the energyfunctional of a noninteracting system that affords
a tractable method for describing interacting systems in DFT. This approach is often
called KohnSham theory [16].

For a noninteracting system the energy functional may be written as

Es[n] = Ts[n] +

∫
vext(r)n(r)dr, (2.1)

where Ts is the kinetic energy functional, the subscript s denotes ”singleparticle”, and
vext is the external potential. The interacting energy functional can written as

E[n] = Ts[n] +
1

2

∫ ∫
n(r)n(r′)
|r− r′| drdr′ +

∫
vext(r)n(r) + Exc[n]. (2.2)

The first term is again the kinetic energy; the second term is the socalled Hartree
energy which is the classical electrostatic energy of an electron gas with the given
density; the third term is the energy of the electrons in the external potential; and the
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last term is the exchangecorrelation energy. The exchangecorrelation energy con
tains ”all the rest”, i.e. energy contributions from the interaction that is not accounted
for by the Hartree term. Crucially, it is a universal functional that do not depend on the
particular system (here parametrized by vext)[13].

To understand the construction of the KohnSham equations, we consider the variation
of the noninteracting energyfunctional:

δEs[n]

δn(r) =
δTs[n]

δn(r) + vext(r). (2.3)

Setting this quantity to zero and constraining the density properly determines the ground
state density uniquely

δEs[n]

δn(r) = 0, (2.4)∫
n(r)dr = N, (2.5)

⇒ n is the ground state density. (2.6)

Here N is the total number of electrons. However, we know from elementary quantum
mechanics that the ground state density is also uniquely determined by solving the
Schrödinger equation:

−1

2
∇2ψi + vextψi = Eiψi, (2.7)

⇒ n(r) =
N∑
i=1

|ψi(r)|2. (2.8)

In other words, solving the Schrödinger equation and forming the density as above is
equivalent to minimizing the energy functional.

Turning back to the interacting energy functional we again take the variation

δE[n]

δn(r) =
δTs[n]

δn(r) +

∫
n(r′)
|r− r′|dr

′ + vext(r) +
δExc[n]

δn(r) . (2.9)

The ground state density is again uniquely given by δE[n]
δn(r) = 0, but as we also saw,

this is equivalent to solving a Schrödinger equation, which for the interacting energy
functional is

−1

2
∇2ψi(r) + (vext(r) + vH [n](r) + vxc[n](r))ψi(r) = Eiψi(r), (2.10)

which gives a density of

n(r) =
N∑
i=1

|ψi(r)|2. (2.11)
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Wehave introduced two new quantities, theHartree potential and the exchangecorrelation
potential:

vH [n](r) =
∫

n(r′)
|r− r′|dr

′, (2.12)

vxc[n](r) =
δExc[n]

δn(r) . (2.13)

Because the Hamiltonian now depends on the density, we have to solve the equation
selfconsistently, i.e. start with an initial guess for the density; solve the Schrödinger
equation; calculate the new density; and repeat until the density doesn’t change.

This approach is called KohnSham theory and it allows us to calculate the ground
state density of an interacting system via an auxiliary noninteracting system, which
gives a monumental decrease in the computational complexity of the problem.

However, there are a few caveats.

The KohnSham wavefunctions are not physical, i.e. this construction in principle does
not give us any information about anything other than the density. In practice, it usually
works well to interpret the KohnSham wavefunctions as physical wavefunctions of
some quasiparticles.

Another caveat is that Exc is not known analytically, and one could speculate that com
puting the true expression is probably as computationally complex as solving the full
interacting Schrödinger equation, unless there is some hidden redundancies in the
current formulation of quantum mechanics. That is to say, the information contained
in the ”true” quantum wavefunction seems to be so much larger that what can be en
coded in a density, so the exact energy functional must somehow extract all this extra
information from the density by performing very complex computations that not only
depend on the density at each point but also the relationship between the densities at
different points. In any case, the development of better approximations to Exc is an im
portant field of research, and we give a brief description of various types of functionals
below, because it will be relevant for the development of the Weighted Local Density
Approximation, to be described in chapter 3.

2.2 Projector Augmented Wave Method
Implementing density functional theory in a numerical program requires sophisticated
methods to ensure that the computations are numerically stable, accurate and not too
time consuming.

Amajor issue is that close to the nuclei wavefunctions high in energy are forced to have
very sharp features due to the orthogonality requirement with lower energy wavefunc
tions. Numerically this poses an issues as it essentially requires a very fine grid, or
many fouriercomponents, to describe such oscillations accurately.

One method to solve this is the Projector Augmented Wave method (PAW). The dis
cussion below follows [17] to a large extent.
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PAW relies on the following idea: since the true wavefunctions, {ψi}, are highly oscilla
tory, let us try to construct an alternate basis, {ψ̃i} that is better behaved numerically.
The ψ̃ are called the smooth wavefunctions. We assume there exists a linear operator,
T , that maps between the two bases as

ψi = T ψ̃i. (2.14)

The transformed states satisfy as transformed Schrodinger equation

Hψi = Eiψi ⇒ T †HT ψ̃i = EiT †T ψ̃i. (2.15)

We cannot yet assume anything about the operator T , so in general it is nonunitary,
which means that the Schrodinger equation for ψ̃i is a generalized eigenvalue problem.

Next we attempt to construct T . A core assumption is that T only corrects the wave
functions close to the nuclei. Here ”close to” means inside a socalled augmentation
sphere. An important assumption is that the augmentation spheres do not overlap
which dramatically simplifies the resulting equations: it turns out that everything can
be written as a part operating on the smooth wavefunction plus local, atomcentered
corrections. So we write

T = 1 +
∑
a

Ta, (2.16)

where the sum over a runs over all atoms and the operators Ta only have support inside
the augmentation sphere for atom a.

To define Ta we choose a basis, {ϕai }, socalled partial waves, with which to expand
the true wavefunctions close to atom a. For physical reasons, a good basis to choose
is the atomic eigenfunctions. We also construct a set of smooth partial waves {ϕ̃ai }
and define Ta implicitly through

ϕai =(1 + Ta)ϕ̃ai (2.17)
⇒

Taϕ̃ai =ϕai − ϕ̃ai . (2.18)

where we’ve used the locality of Ta explicitly, i.e. Ta′ ϕ̃ai (r) = 0 when r is inside the
augmentation sphere of atom a and a ̸= a′. Locality of Ta also implies that

Outside of augmentation sphere: ϕai (r) = ϕ̃ai (r). (2.19)

Inside the augmentation sphere for atom a we can expand ψ̃i only in terms of the
smooth partial waves for atom a, ϕ̃ai :

ψ̃i =
∑
j

P a
ij ϕ̃

a
j . (2.20)

6 New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials



To find the expansion coefficients we need a basis, {p̃ai }, that is dual to {ϕ̃ai } and this
dual basis is called the projectors which give the name to PAW:

⟨pai |ϕ̃bj⟩ = δijδab. (2.21)

With these we get

P a
ij = ⟨paj |ψ̃i⟩. (2.22)

For this and eq. (2.20) to hold for any ψ̃i we must have that the bases {ϕ̃ai } and {p̃ai }
are complete, i.e. that ∑

i

|ϕ̃ai ⟩ ⟨p̃ai | = 1. (2.23)

This, along with eq. (2.18), allows the final definition of Ta:

Ta = Ta
∑
i

|ϕ̃ai ⟩ ⟨p̃ai | =
∑
i

(
|ϕai ⟩ − |ϕ̃ai ⟩

)
⟨p̃ai | . (2.24)

As we noted above, we could now proceed to derive expressions for e.g. operator
expectation values in terms of the smooth wavefunctions using eq. (2.24), and one
finds that everything reduces to a contribution from the smooth wavefunctions and
atomcentered corrections, which by virtue of the above construction only depend on
the smooth wavefunctions. The PAW constructions in principle maintains the full all
electron description but does in a numerically stable fashion since only smooth wave
functions are used. This is in contrast to pseudopotential methods which are not all
electron methods. In practice, however, the PAW is not perfect, for example there is
a limit to how many projectors can be constructed before the construction procedure
becomes unstable. This means the completeness relation, eq. (2.23), is sometimes
not fully satisfied which can cause problems for higherlying states. Sometimes it is
also not possible for the partial waves to be fully normalized.

The PAW method is implemented in GPAW [18, 19] which is used for all calculations
in this thesis.
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3 The Weighted Local Density
Approximation

As discussed in chapter 2 the exchangecorrelation functional is the central quantity
in density functional theory. It contains the description of all the nontrivial interac
tion effects and the exact exchangecorrelation functional is unknown and so must be
approximated.

Approximations to the exchangecorrelation functional is sometimes described as falling
on a ”Jacob’s ladder” of approximations [20]. In this metaphor ”Earth” is HartreeFock
theory while ”Heaven” refers to chemical accuracy. Each rung contains approxima
tions of increasing sophistication and complication.

The first rung consists of the local density approximation (LDA) which uses the exchange
correlation functional of a homogeneous electron gas (HEG). The HEG is a model sys
tem that can be solved exactly and so one can find an expression for the exchange
correlation functional. This is then used in inhomogeneous systems by replacing the
homogeneous density with a spatially varying one n → n(r). Clearly this will not be
a perfect approximation but one expects that it works well enough for systems where
the density is slowly varying. The second rung is the generalized gradient approxima
tion (GGA) which is the class of approximations that also include information about the
gradient of the density. The most wellknown and widely used is the socalled PBE
functional [21]. The next rung ofmeta generalized gradient approximation (metaGGA)
contains also the kinetic energy density, τ :

τσ =
∑
α

Θ(µ− ϵασ)
1

2
|∇ψασ(r)|2 (3.1)

The following rungs include additional wavefunction information, including exact ex
change, more sophiscated correlation energy expressions, or the random phase ap
proximation plus correlation corrections.

These ”rungs” are the standard categories of exchangecorrelation functionals and in
dicate the usual way in which additional information is incorporated into more elaborate
approximations.

In this chapter we describe the development of a new functional that uses a weighted
density in the LDA functional. This weighted density is in principle fully nonlocal, so
in the context of the Jacob’s Ladder metaphor we have jumped from the lowest rung
all the way to the top rung of fully nonlocal exchangecorrelation functionals. We call
this functional the Weighted Local Density Approximation (WLDA).

We find that by constructing a functional that both matches the energy of the HEG and
the correlation hole we can achieve accuracies comparable to PBE on atomic energies,
atomization energies, and lattice constants. There are still unresolved issues with
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WLDA but these first steps are promising. The work was done together with Thorbjørn
Skovhus and is still unpublished.

The motivation and the principle of the design of this functional are described in section
3.1. WLDA is inspired by a the work on the renomalized adiabatic LDA kernel in ref.
[22]. The theory behindWLDA is explained in section 3.2. We discuss several variants
of WLDA and their resulting adiabatic kernels and find that particular variation leads
an especially simple kernel. Section 3.3 deals with optimizing the remaining free pa
rameters of WLDA by matching the correlation hole in the homogeneous electron gas
as closely as possible. Section 3.4 deals with the extension to spinpolarized systems
where we propose separate ways to deal with the exchange and correlation parts. A
potential issue with the potential is highlighted in section 3.5 and we propose a solu
tion. WLDA is defined using the allelectron density but this is not always numerically
easy to describe, even though it is in principle accessible in PAW. Section 3.6 inves
tigates convergence properties of atomization energies as a function of planewave
cutoff for a set a molecular systems. Section 3.7 describes benchmark calculations for
WLDA on atomic energies, atomization energies, and lattice constants. We find a per
formance comparable to PBE for the optimal variant of WLDA. Section 3.8 discusses
the methodological differences and similarities between WLDA and other functionals
in an attempt to highlight possible future development options. Section 3.9 summa
rizes the remaining open questions in WLDA and finally section 3.10 concludes the
chapter.

3.1 Background for WLDA
Using the adiabatic connection and fluctuationdissipation theorem it is possible to
connect the energy of the fully interacting system with that of a noninteracting system.
If we denote the electronelectron interaction by v, then the correlation energy can be
written in terms of the response function, χλ, for a system where v is replaced by λv
[22]:

Ec[n] = −
∫ 1

0

dλ
∫ ∞

0

dω
2π

∫
dr
∫

dr′ v(r, r′)
[
χλ(r, r′, iω)− χKS(r, r′, iω)

]
. (3.2)

This expression connects the noninteracting λ = 0 system to the fully interacting λ = 1
where the external potential for all λ < 1 is chosen to reproduce the fully interacting
density.

The response function χλ can be expressed in terms of the KohnSham response
function, which corresponds to χλ=0, and the Hartreeexchangecorrelation kernel
fλHxc = λv + fλxc:

χλ = χKS + χKSfλHxcχ
λ. (3.3)

Exchangecorrelation kernels are in principle timedependent quantities and so should
be derived from timedependent DFT but often the adiabatic approximation is used
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where the kernel from timeindependent DFT is used with trivial timedependence:

faxc(r, r′, t− t′) =
δ2Exc[n]

δn(r)δn(r′)δ(t− t′). (3.4)

In ref. [22] and later in ref. [23] corrections to the adiabatic LDA kernel (ALDA kernel)
that improve upon the description of correlations were studied. This modification of the
ALDA kernel was termed the renormalized ALDA (rALDA) kernel and was based upon
the HEG where accurate parametrizations of the correlation energy is known. The
WLDA is based upon this modification: we have attempted to find an energy functional
which closely matches the exact kernel in the HEG limit, essentially attempting to solve
the functional differential equation eq. (3.4) for Exc, a highly nontrivial task.

To fully motivate the functional form of WLDA we first need to understand rALDA and
to that end we want to consider a quantity related Ec namely the coupling constant
averaged correlation hole. In the following all quantities are those belonging to the
HEG. The correlation hole is defined by rewriting the expression for Ec. First we re
express χλ by solving eq. (3.3):

χλ(q, ω) =
χKS(q, ω)

1− χKS(q, ω)fλHxc(q, ω)
. (3.5)

Inserting v(r, r′) = e2

|r−r′| and using the convolution theorem to express the spatial
integrals in eq. (3.2) in reciprocal space one finds that for the HEG the correlation
energy per electron is

ϵc =
Ec

N
= − e2

π2n

∫ ∞

0

dq
∫ 1

0

dλ
∫ ∞

0

dω
[χKS(q, iω)]2fλHxc(q, iω)

1− χKS(q, iω)fλHxc(q, iω)
, (3.6)

where N is the number of electrons and n is the electron density. The coupling
constant average correlation hole, gc(q), is then finally defined via

ϵc =

∫ ∞

0

ϵc(q)

2kF
dq, gc(q) = ϵc(q)

π

2e2kFn
. (3.7)

Using eq. (3.6) we find

gc(q) =
1

2πkFn2

∫ 1

0

dλ
∫ ∞

0

dω
[χKS(q, iω)]2fλHxc(q, iω)

1− χKS(q, iω)fλHxc(q, iω)
. (3.8)

Using the expression for χKS (also known as the Lindhard function) [24]

χKS(q, iω) =
mkF
2π2

(
Q2 − ω̃2 − 1

4Q
ln
(
ω̃2 + (Q+ 1)2

ω̃2 + (Q+ 1)2

)
−1 + ω̃ arctan

(
1 +Q

ω̃

)
+ ω̃ arctan

(
1−Q

ω̃

))
, (3.9)
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where

Q =
q

2kF
, (3.10)

ω̃ =
mω

qkF
, (3.11)

we can calculate various how various approximations to the kernel affects the correla
tion hole.

The exact, RPA (fxc = 0), ALDAx (fc = 0), and ALDA correlation holes are shown
in figure 3.1 for various values of the density n expressed in terms of the average
separation

rs =

(
3

4πn

)1/3

. (3.12)

The exact hole uses the parametrization from ref. [25]. The main deficit of the ALDA
kernels is the long range tail for q > 2kF where the exact kernel is close to zero. RPA,
on the other hand, matches the exact kernel poorly at intermediate q, kF ≲ q ≲ 3kF .

In [22] it was proposed to modify the ALDA Hartreeexchangecorrelation kernel so
that the match with the exact kernel was better. Specifically, they considered the ALDA
Hartreeexchange kernel and applied a hard cutoff of the kernel at q = 2kF where the
ALDAx kernel has an exact zero:

f rALDAHxc (q) = Θ(2kF − q)fALDAHx (q). (3.13)

From eq. (3.6) it is clear that this will simply set the correlation hole to zero after
q = 2kF . In ref. [22] it is shown how this improves the total correlation energy over
RPA, and the PGG functional [26] for all densities and the functional of ref. [27], and
[28] for all but high densities. In physical terms, because this renormalization brings the
kernel close to the exact kernel in the high q limit we expect that shortrange correlation
effects are better described with rALDA than with ALDA. Indeed, ref. [22] finds that
atomization energies for a small set of molecules is better described with rALDA than
in ALDA with the mean absolute error relative to experimental atomization energies
going from 19 kcal/mol with ALDA to 3.7 kcal/mol with rALDA.

In ref. [29] it was noted in the supplementary material that if we use a weighted density

n∗(r) =
∫

dr′ ϕ(r− r′)n(r′) (3.14)

in an energy functional, the kernel transforms according to

f∗[n] =
δ2E[n∗]

δn(r)n(r′) = ϕ ∗ f [n∗] ∗ ϕ, (3.15)

where ∗ denotes convolution. The hope was then that if one chooses ϕ judiciously
and applies it to the LDA functional in the above manner, one could get a kernel that

12 New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials



approximates rALDA. One benefit would be that the KohnSham response function
used in the correlation energy would be defined consistently with the kernel, instead
of using a LDA response function with the rALDA kernel, say.

This is the central idea behind the WLDA: can we use a weighted density, n∗, defined
similarly to eq. (3.14), such that we get a kernel that closely approximates the exact
kernel in HEG limit?

The form of eq. (3.14) is probably a bit too simple as the weight function ϕ should
depend on the density, so that we can capture screening effects accurately. For exam
ple, for high densities the LDA becomes more accurate so we would want the weight
function to be narrow for high densities. Thus we use the more general (and very
unspecified) form

n∗(r) =
∫

dr′ ϕ[n](r− r′)n(r′). (3.16)

When ϕ has a nontrivial dependence on n the transformation of the kernel will no
longer be as simple as eq. (3.15) and a large part of the theoretical work on WLDA is
extracting form that produces a tractable and useable transformation of the kernel.
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Figure 3.1: Comparisons of the exact, ALDA with exchange only (ALDAx), ALDA, and
RPA correlation holes. The exact correlation hole uses the parametrization from [25].
rs is defined via the density as rs =

(
3

4πn

)1/3.

3.2 WLDA Theory
3.2.1 Narrowing down the functional form of the weighted

density
The general form of eq. (3.16) allows for an infinite number of different, potentially
nonlocal ways that ϕ can depend on the density. To narrow it down and maintain
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computational tractability we restrict ourselves to forms where ϕ depends on the den
sity at one point. This leads us to consider two forms

n∗(r) =
∫

dr′ ϕ(r− r′, n(r))n(r′), (3.17)

and

n∗(r) =
∫

dr′ ϕ(r− r′, n(r′))n(r′). (3.18)

The form (3.17) has the benefit that it is a convolution which allows efficient evaluation
using the convolution theorem:

F
[∫

f(x− y)g(y)dy
]
(k) = F [f ](k)F [g](k), (3.19)

where F denotes the Fourier transform. Using this, convolutions can be quickly eval
uated by fourier transforming integrands, multiplying the result, and performing the
inverse fourier transform to get back to the spatial grid. This has time complexity of
O(N logN), where N is the number of points in the spatial grid, so it is vastly prefer
able to direct integration which has time complexity O(N2). However, eq. (3.17) has
the deficit that the norm of the weighted density is uncontrolled. The idea of WLDA is
to use the weighted density in a standard energy functional (specifically LDA) so if we
use a density that essentially contains an incorrect number of electrons this may lead
to problems.

If we define the weighted density via eq. (3.18) we can fix the normalization of n∗ by
required that ϕ is normalized to 1:∫

n∗(r)dr =
∫

dr
∫

dr ϕ(r− r′, n(r′))n(r′) =
∫

dr′ n(r′) (3.20)

Eq. (3.18) is not in the form of a convolution so efficient evaluation is not possible in
this form. To circumvent this we use a method developed in ref. [30] for vanderWaals
functionals. The method uses what we here call indicator functions, fα. An indicator
function, fα, is defined to be close to 1 whenever its argument is close to α. This is very
similar to how indicator functions, also know as characteristic functions, are defined in
mathematics:

fA(x) =

{
1, x ∈ A,

0, x ̸∈ A,
(3.21)

where x ∈ X for some set X and A ⊂ X is some subset of X.

The indicators used here are, however, smooth versions that go smoothly to zero. For
the set of indicators we also require that if we sum over all the indicators we should
get 1:

∑
α fα(x) = 1,∀x. We call the set of α values used to define the indicators

the anchors. There are many ways to satisfy these requirements but the simplest is
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linear interpolators. The easiest way to understand how they are defined is to see an
illustration, so consider fig. 3.2. Mathematically, suppose that αi is the closest anchor
to x. Then:

fαi
(x) =

{
x−αi−1

αi−αi−1
, x < αi,

αi+1−x
αi+1−αi

, x ≥ αi

, (3.22)

fαi−1
(x) =

{
αi−x

αi−αi−1
, x < αi,

0, otherwise
, (3.23)

fαi+1
(x) =

{
x−αi

αi+1−αi
, x > αi,

0, otherwise
, (3.24)

and the rest of the indicators are zero. It is easy to see that this fulfills the two require
ments we imposed on a set of indicator functions.

With a given set of indicator functions, we can approximate eq. (3.18) as

n∗(r) ≈
∑
α

∫
dr′ ϕ(r− r′, α)fα(n(r′))n(r′). (3.25)

Now the weighted density has the form of a convolution between ϕ and fα(n(r′))n(r′),
and we expect it to converge to eq. (3.18) in the limit of an infinitely dense grid of
indicators. In practice a few tens of indicators are sufficient.

In summary, the form of the weighted density in eq. (3.18) is both numerically tractable
and satisfy the physically relevant criterion of correct normalization. We also note that
by construction the weighted density is equal to the physical density in the HEG.
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Figure 3.2: An illustration of indicator functions defined via linear interpolation. We use
anchors 0.0, 0.2, 0.5, 0.8, and 1.0 and their location is indicated by the vertical dashed
lines.
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3.2.2 Selecting the form of the energy functional
The first idea is to define the WLDA functional via the LDA functional. Since ref. [22]
showed that it is beneficial to truncate the Hartreeexchangecorrelation kernel, we
seek to define a new Hartreeexchangecorrelation energy functional:

EWLDA
Hxc [n] = ELDA

Hxc [n
∗] =

∫
dr
∫

dr′ϵHxc(r, r′, n∗(r))n∗(r), (3.26)

where

ϵHxc(r, r′, n(r)) =
n(r′)

2|r− r′| + ϵxc(n(r′))δ(r− r′). (3.27)

Here ϵxc refers to the exchangecorrelation energy density per electron for LDA.

Since n∗ = n in the HEGEWLDA = ELDA in the HEG, which is good since LDA is correct
in this limit. The question remains whether the WLDA kernel improves on ALDA.

We start by considering the exchangecorrelation part. It is straightforward to derive
an expression for the kernel for the above functional form:

fWLDA
xc [n](r, r′) =δ

2ELDA[n
∗]

δn(r)n(r′)

=

∫
dr′′
[
∂2ϵxc
∂n2

∣∣∣∣
n=n∗(r′′)

n∗(r′′)δn
∗(r′′)
δn(r)

δn∗(r′′)
δn(r′)

+
∂ϵxc
∂n

∣∣∣∣
n=n∗(r′′)

(
2
δn∗(r′′)
δn(r)

δn∗(r′′)
δn(r′) + n∗(r′′) δ2n∗(r′′)

δn(r)δn(r′)

)

+ ϵxc (n
∗(r′′)) δ2n∗(r′′)

δn(r) δn(r′)

]
(3.28)

To compare with LDA it turns out to be useful to introduce a measure of the nontrivial
change in the weighted density:

γ(r, r′) ≡ δn∗(r)
δn(r′) − δ(r− r′)

=
∂ϕ

∂n

∣∣∣∣
|r−r′|,n(r′)

n(r′) + ϕ
(
|r− r′|, n(r′)

)
− δ(r− r′), (3.29)
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If n∗ = n then γ = 0 everywhere. With this definition the kernel becomes

fWLDA
xc [n](r, r′) = fLDAxc

(
|r− r′

∣∣, n∗(r)
)

+

(
∂2ϵxc
∂n2

∣∣∣∣
n∗(r)

n∗(r) + 2
∂ϵxc
∂n

∣∣∣∣
n∗(r)

)
γ
(
|r− r′|, n(r′)

)
+

(
∂2ϵxc
∂n2

∣∣∣∣
n∗(r′)

n∗(r′) + 2
∂ϵxc
∂n

∣∣∣∣
n∗(r′)

)
γ
(
|r− r′|, n(r)

)
+

∫
dr′′

(
∂2ϵxc
∂n2

∣∣∣∣
n∗(r′′)

n∗(r′′) + 2
∂ϵxc
∂n

∣∣∣∣
n∗(r′′)

)
× γ
(
|r′′ − r|, n(r)

)
γ
(
|r′′ − r′|, n(r′)

)
+

∫
dr′′

(
∂ϵxc
∂n

∣∣∣∣
n∗(r′′)

n∗(r′′) + ϵxc
(
n∗(r′′)

))

× ∂γ

∂n

∣∣∣∣
|r′′−r|,n(r)

δ(r− r′) (3.30)

We now turn to the Hartree part of the kernel which, with

EH [n] =

∫
dr
∫

dr′ n(r
′)n(r)

2|r− r′| , (3.31)

becomes

fWLDA
H [n](r, r′) =

∫∫
dr1dr2

[
δn∗(r1)
δn(r)

δn∗(r2)
δn(r′)

+ n∗(r1)
δ2n∗(r2)
δn(r)δn(r′)

]
1

|r1 − r2|
= fH(r− r′)

+

∫∫
dr1dr2

[
γ(r1, r)δ(r2 − r′) + δ(r1 − r)γ(r2, r′)

+ γ(r1, r)γ(r2, r′)

+ n∗(r1)
∂γ

∂n

∣∣∣∣
|r2−r′|,n(r′)

δ(r− r′)
]

1

|r1 − r2|
. (3.32)

The question now is, can we choose ϕ or γ such that fWLDA
Hxc closely approximates the

exact kernel in the HEG limit? If we knew other limits exactly, we could attempt to
match those as well. In the present case we attempt to match the exact correlation
hole of the HEG rather than the kernel as the kernel itself is not known. If we refer
back to the formula for the correlation hole, eq. (3.8), one question that we have not
considered is whether there is any ”gauge” freedom for the kernel, i.e. are there any
modifications of the kernel that do not change the correlation hole? Such degrees of
freedom, if they exist, could be used to match other exact limits.
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When we consider the form of the Hartree and XC kernels it does not seem clear at
all how to choose ϕ such that we recover something resembling a truncated version
of the ALDA kernel. The rALDA kernel has a very simple form as we saw above:

f rALDAHx [n](q) = Θ(2kF − q)fALDAHx (q), (3.33)

but the expression in eq. (3.30) contains many terms that are not directly related to
the ALDA kernel. For this reason it is hard to see how to get something like the rALDA
kernel from eq. (3.30). In an attempt to circumvent this issue we also considered two
alternative forms of the energy functional:

EWLDA1
Hxc [n] =

∫
dr
∫

dr′ϵHxc(r, r′, n(r))n∗(r), (3.34)

EWLDA2
Hxc [n] =

∫
dr
∫

dr′ϵHxc(r, r′, n∗(r))n(r), (3.35)

EWLDA3
Hxc [n] =

∫
dr
∫

dr′ϵHxc(r, r′, n∗(r))n∗(r), (3.36)

where we have repeated the original form, here named ”WLDA3”.

The kernels for WLDA1 and WLDA2 turn out to be as complicated as the WLDA3
kernel.

We start by noting that the Hartree part of the kernel is identical for WLDA1 andWLDA
2:

fWLDA1

H [n](r, r′) = fWLDA2

H [n](r, r′)

+ n(r1)
δ2n∗(r2)
δn(r)δn(r′)

]
1

|r1 − r2|
= fH(r− r′)

+
1

2

∫∫
dr1dr2

[
γ(r1, r)δ(r2 − r′) + δ(r1 − r)γ(r2, r′)

+ n(r1)
∂γ

∂n

∣∣∣∣
|r2−r′|,n(r′)

δ(r− r′)
]

1

|r1 − r2|
(3.37)

The exchangecorrelation kernel for WLDA1 is given by

fWLDA1
xc [n](r, r′) = fLDA

xc

(
|r− r′

∣∣, n(r))
+
∂2ϵxc
∂n2

∣∣∣∣
n(r)

(
n∗(r)− n(r)

)
δ(r− r′)

+
∂ϵxc
∂n

∣∣∣∣
n(r)

γ
(
|r− r′|, n(r′)

)
+
∂ϵxc
∂n

∣∣∣∣
n(r′)

γ
(
|r− r′|, n(r)

)
+

∫
dr′′ ϵxc

(
n(r′′)

) ∂γ
∂n

∣∣∣∣
|r′′−r|,n(r)

δ(r− r′). (3.38)
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For WLDA2 the exchangecorrelation kernel is

fWLDA2
xc [n](r, r′) = fLDA

xc

(
|r− r′

∣∣, n∗(r)
)

+
∂2ϵxc
∂n2

∣∣∣∣
n∗(r)

(
n(r)− n∗(r)

)
δ(r− r′)

+

(
∂2ϵxc
∂n2

∣∣∣∣
n∗(r)

n(r) + ∂ϵxc
∂n

∣∣∣∣
n∗(r)

)
γ
(
|r− r′|, n(r′)

)
+

(
∂2ϵxc
∂n2

∣∣∣∣
n∗(r′)

n(r′) + ∂ϵxc
∂n

∣∣∣∣
n∗(r′)

)
γ
(
|r− r′|, n(r)

)
+

∫
dr′′ ∂2ϵxc

∂n2

∣∣∣∣
n∗(r′′)

n(r′′)γ
(
|r′′ − r|, n(r)

)
γ
(
|r′′ − r′|, n(r′)

)
+

∫
dr′′ ∂ϵxc

∂n

∣∣∣∣
n∗(r′′)

n(r′′) ∂γ
∂n

∣∣∣∣
|r′′−r|,n(r)

δ(r− r′). (3.39)

By staring at this long enough one finds that a particular combination of the different
functional forms leads to a dramatic simplification. It is most easy to see for the Hartree
parts where

fWLDA1
H [n](r, r′)+fWLDA2

H [n](r, r′)− fWLDA3
H [n](r, r′)

=

∫
dr1
∫

dr2
[
δ(r1 − r)δ(r2 − r′)

− (n∗(r1)− n(r1))
∂γ

∂n

∣∣∣∣∣
|r2−r′|,n(r′)

δ(r− r′)

− γ(r1, r)γ(r2, r′)
]
fH(r1, r2). (3.40)

In the HEG this expression becomes even simpler since n∗ = n:

fWLDA
H [n](r, r′) =

∫
dr1
∫

dr2
[
δ(r1 − r)δ(r2 − r′)− γ(r1, r)γ(r2, r′)

]
fH(r1, r2). (3.41)

With this expression we hope to have a much simpler time trying to match the exact
correlation hole. It still remains to be seen if the exchangecorrelation kernel also
simplifies with this particular combination:
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fWLDA1
xc [n](r, r′)+fWLDA2

xc [n](r, r′)− fWLDA3
xc [n](r, r′)

= fLDA
xc

(
|r− r′

∣∣, n(r))
−

(
∂2ϵxc
∂n2

∣∣∣∣
n(r)

− ∂2ϵxc
∂n2

∣∣∣∣
n∗(r)

)
(n(r)− n∗(r)) δ(r− r′)

+

(
∂2ϵxc
∂n2

∣∣∣∣
n∗(r)

(n(r)− n∗(r))

+
∂ϵxc
∂n

∣∣∣∣
n(r)

− ∂ϵxc
∂n

∣∣∣∣
n∗(r)

)
γ (|r− r′|, n(r′))

+

(
∂2ϵxc
∂n2

∣∣∣∣
n∗(r′)

(n(r′)− n∗(r′))

+
∂ϵxc
∂n

∣∣∣∣
n(r′)

− ∂ϵxc
∂n

∣∣∣∣
n∗(r′)

)
γ
(
|r− r′|, n(r)

)
−
∫

dr′′
(
fLDA
xc

(
n∗(r′′)

)
− ∂2ϵxc

∂n2

∣∣∣∣
n∗(r′′)

n(r′′)
)

× γ
(
|r′′ − r|, n(r)

)
γ
(
|r′′ − r′|, n(r′)

)
+

∫
dr′′

(
∂ϵxc
∂n

∣∣∣∣
n∗(r′′)

(
n(r′′)− n∗(r′′)

)
+ ϵxc

(
n(r′′)

)
− ϵxc

(
n∗(r′′)

))
× ∂γ

∂n

∣∣∣∣
|r′′−r|,n(r)

δ(r− r′). (3.42)

This expression is quite complicated but it simplifies significantly in the HEG limit where,
again, n∗ = n

fWLDA1
xc [n](r− r′)+fWLDA2

xc [n](r− r′)− fWLDA3
xc [n](r− r′)

= fLDA
xc (n)δ(r− r′)

−
(
fLDA
xc (n)− ∂2ϵxc

∂n2
n

)∫
dr′′ γ

(
|r′′ − r|, n

)
, γ
(
|r′′ − r′|, n

)
(3.43)

If we Fourier transform eqs. (3.41) and (3.43) we get the Hartreeexchangecorrelation
kernel in the HEG as

fWLDA−1
Hxc (n, q) + fWLDA−2

Hxc (n, q)− fWLDA−3
Hxc (n, q)

=
[
1− γ2(q, n)

] [
fH(q) + fLDA

xc (n)
]
+ γ2(q, n)

∂2ϵxc
∂n2

n, (3.44)
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The fact that this is relatively simple and thus tractable leads us to consider the follow
ing form of the WLDA energy functional:

EWLDA[n] = EWLDA1[n] + EWLDA2[n]− EWLDA3[n]. (3.45)

It remains to be seen whether we can choose a weight function ϕ such that the WLDA
correlation hole approximates the exact one. From the form of eq. (3.44) we see that
we should probably have something like 1 − γ2(2kF , n) ≈ 0 such that the first part,
which is the ALDA kernel, approximates the rALDA kernel. The influence of the last
term remains to be seen.

3.2.3 Choice of weight function
We start by reiterating the required properties of the weight function and listing a few
new properties.

1. Normalization Theweight function should ensure the normalization of the weighted
density is the same as the physical density. This means that the weighting procedure
represents a kind of moving around of the electrons.

2. Weight function is positive definite If the weight function is not positive definite
we cannot guarantee that the weighted density is positive everywhere. Negative den
sity values would lead to undefined behaviour, at least for the LDA functional where
square roots are sometimes used.

3. Match exact correlation hole in longrange limit In the long range, or q ≈ 0
limit we should match the exact kernel. Since ALDA is exact in this limit, we see from
eq. (3.44) that we want

γ(q, n) →
q→0

0. (3.46)

4. Match exact correlation hole in the shortrange limit We also want to match
the exact kernel in the shortrange or q → ∞ limit. This means we want

1− γ(q, n)2 ≈ 0, q > 2kF . (3.47)

5. Match exact correlation hole everywhere We actually want to match the exact
hole everywhere. We will select reasonable guesses for the functional form of ϕ us
ing requirements 14 and then optimize these guesses by minimizing the difference
between the WLDA correlation hole and the exact hole for all q.

We will consider three different weight functions. There is no reason to suppose that
this selection is exhaustive but it provides a decent starting point. For all the functional
forms we assume that the weight functions are localized in space but there is no a
priori reason to do limit oneself in this way, although it may make intuitive sense.
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Exponential weight function
The first type of function we consider has exponential dependence on the radius

ϕ(r, n) = c0nexp
(
−c1rn1/3

)
. (3.48)

The prefactor of n and the factor of n1/3 in the exponential function are chosen so as
to make the parameter c0 and c1 dimensionless.

c0 is determined by the normalization requirement:

4π

∫ ∞

0

dr r2ϕ(r, n) = 8π

c31
c0 = 1. (3.49)

To investigate the limit q → 1 where we require γ(q, n) → 0 we first remind ourselves
that

γ(r, r′) = δn∗(r)
δn(r′) − δ(r− r′)

=
∂ϕ

∂n
(|r− r′|, n(r′))n(r′) + ϕ(|r− r′|, n(r′))− δ(r− r′). (3.50)

For q = 0 in the HEG we have

γ(q = 0, n) = n

∫
∂ϕ

∂n
(|r|, n)dr+ ϕ(q = 0, n)− 1. (3.51)

Since ϕ(q = 0, n) = 1 by the normalization requirement we should have that∫
∂ϕ

∂n
(|r|, n)dr = 0. (3.52)

Inserting the functional form (3.48) we find

4π

∫ ∞

0

dr r2 ∂ϕ(r, n)
∂n

=
c31
2

∫ ∞

0

dr r2
(
1− c1rn

1/3

3

)
e−c1rn

1/3

=
c31
2

(
2

c31n
− c1n

1/3

3

6

c41n
4/3

)
= 0. (3.53)

Thus the q = 0 requirement is satisfied as long as the weight function is normalized
(for this functional form, at least).

Next we want to consider the truncation of the kernel in reciprocal space in the HEG
limit. That is, we want to calculate the prefactor 1 − γ2 in eq. (3.44). To that end we
consider

Φ(r, n) := γ(r) + δ(r) =
∂ϕ(r, n)

∂n
n+ ϕ(r, n) =

(
2− c1rn

1/3

3

) (
c1n

1/3
)3

8π
e−c1rn

1/3

.

(3.54)
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By Fourier transforming we find

Φ(q, n) = 2π

∫ π

0

sin(θ)dθ
∫ ∞

0

r2dr Φ(r, n)e−i cos(θ) qr

= 4π

∫ ∞

0

r2dr Φ(r, n)sin(qr)
qr

=

(
2−

1− 1
3

[
q/
(
c1n

1/3
)]2

1 +
[
q/
(
c1n1/3

)]2
)

1(
1 +

[
q/
(
c1n1/3

)]2)2 . (3.55)

This results in the following truncation

1− γ2(q̃) = Φ(q̃)(2− Φ(q̃)), q̃ =
q

c1n1/3
. (3.56)

This function is shown in figure 3.3a. By choosing c1 we can adjust where on the curve
2kF falls, thus determining how strongly the kernel is truncated at q = 2kF . Rather than
choosing ”sensible” values we will later optimize c1 by comparing theWLDA correlation
hole with the exact hole.
Gaussian weight function
We also consider a Gaussian weight function given by

ϕ(r, n) = c0n e
−(c1rn1/3)

2

. (3.57)

c0 is again determined by normalization and it turns out the q = 0 limit is satisfied as
long as the weight function is normalized (as was also the case for the exponential
weight function).

For the truncation function we find

Φ(q, n) = 4π

∫ ∞

0

r2dr Φ(r, n)sin(qr)
qr

=

(
1 +

[
q/
(
c1n

1/3
)]2

6

)
e−

1
4 [q/(c1n

1/3)]
2

=

(
1 +

q̃2

6

)
e−q̃2/4. (3.58)

Again we illustrate the resulting truncation function Φ(q̃)(2− Φ(q̃)), in fig. 3.3b.
Lorentzian weight function
The final form for the weight function we consider is the Lorentzian:

ϕ(r, n) =
c0n(

1 +
(
c1rn1/3

)2)2 . (3.59)

c0 and the q = 0 limit are again fixed by normalization.

For the truncation we find
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Φ(q, n) = 4π

∫ ∞

0

r2dr Φ(r, n)sin(qr)
qr

=

(
1 +

1

3

q(
c1n1/3

)) e−q/(c1n1/3) =

(
1 +

q̃

3

)
e−q̃. (3.60)

The resulting truncation function is shown in figure 3.3c.
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Figure 3.3: The kernel truncation function for the a) exponential weight function, b)
Gaussian weight function, and c) Lorentzian weight function.

Choice of weight function  Summary
The weight function is a kind of ”free parameter” in WLDA and we have seen above
that it is possible to choose various kinds of weight functions that fulfill the necessary
requirements but have quite different truncations of the kernel. It remains to be seen
which choice is optimal and it is possible that better choices exist but we will not inves
tigate that here.

3.2.4 WLDA as a correction
It is possible to reformulate WLDA slightly. Recall that we can write the WLDA energy
as

EWLDA[n] = EWLDA1[n] + EWLDA2[n]− EWLDA3[n]

=

∫ ∫
dr dr′ [ϵHxc(r− r′, n(r′))n∗(r) + ϵHxc(r− r′, n∗(r′))(n(r)− n∗(r))] .

(3.61)

By adding and subtracting the LDA energy we can rewrite this as

EWLDA[n] = ELDA[n] + ∆EWLDA[n]

= ELDA[n] +

∫ ∫
dr dr′ [ϵHxc(r− r′, n∗(r′))− ϵHxc(r− r′, n(r′))] (n(r)− n∗(r)).

(3.62)
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From a numerical standpoint this is convenient for the Hartreeterm because it is now
written as

∆EWLDA
H [n] = −1

2

∫ ∫
dr dr′ ((n(r)− n∗(r)) (n(r′)− n∗(r′))

|r− r′| . (3.63)

Since n∗ has the same normalization as n, the density different n−n∗ is charge neutral:∫
dr (n(r)−n∗(r)) = 0. This allows us to evaluate∆EWLDA

H [n] using Fourier transforms
by setting the q = 0 contribution equal to zero where the Fourier transform of the
Coulomb potential has a divergence. The ”tricky” part of the Coulomb energy is then
included in ELDA

Hxc which is already implemented in GPAW.

Another reason this is convenient is that it suggests a way to interpret theWLDA energy
functional: WLDA is a correction to the LDA energy. To understand how the correction
works we divide space into regions where n > n∗ and regions where n < n∗. We then
define two quantities that we call excess localization charge,

δnexcess(r) = (n(r)− n∗(r))Θ(n(r)− n∗(r)) (3.64)

and localization charge deficit

δndeficit(r) = (n∗(r)− n(r))Θ(n∗(r)− n(r)). (3.65)

Here Θ(x) is the Heaviside stepfunction.

Since
∫
dr (n(r)−n∗(r)) =

∫
dr (δnexcess(r)− δndeficit(r)) = 0 we have that the amount

of excess and deficit charge is equal:∫
dr δnexcess(r) =

∫
dr δndeficit(r). (3.66)

In terms of the excess and deficit charges we have

∆EWLDA
Hxc [n] =

∫ ∫
dr dr′ [ϵHxc(r− r′, n∗(r′))− ϵHxc(r− r′, n(r′))] δnexcess(r)

+

∫ ∫
dr dr′ [ϵHxc(r− r′, n(r′))− ϵHxc(r− r′, n∗(r′))] δndeficit(r). (3.67)

The interpretation of WLDA is then that in regions of excess charge we take a fraction
of the physical electron density and change the amount of interaction energy it expe
riences. We do this by replacing the Hartreeexchangecorrelation energy density by
that of a less dense gas. In regions of deficit charge we add extra interaction energy.
One could hope that these changes reduce the delocalization error of LDA. Because
of condition (3.66) we can think of the excess charges as being moved to the deficit
regions which lets us think about WLDA in the following way: for the purposes of the
energy we effectively use an electron density that is more delocalized than the physi
cal density. Thus, intuitively speaking, a localized density in WLDA will have the same
energy as a delocalized density in LDA and one can (again) hope that this means de
localization is less of a problem in WLDA. However, we can’t be sure the minimum of
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the energy occurs at this localized density, so it is not a given that WLDA will fix the
delocalization error.

When formulated as a correction we also see the possible for new functional forms: to
remain exact in the HEG limit we need to include ELDA

Hxc , i.e. we need the LDA energy
for both the Hartree, the exchange, and the correlation part, but the corrections  which
go to zero in the HEG  can be applied or not at will. In the following we will consider
forms where both Hartree, exchange, and correlation energies are corrected but we
also define a new variation where the correlation correction is neglected  mirroring
rALDAx  but where both the Hartree and exchange corrections are included. We call
this form WLDAx:

EWLDAx
Hxc [n] = ELDA

Hxc [n] + ∆EWLDA
Hx [n]. (3.68)

Renormalized WLDA
We now introduce a variant of the WLDA functional based on improving the match to
the rALDA kernel. Recall that the WLDA kernel in the HEG is given by

fWLDA
Hxc (n, q) =

[
1− γ2(q, n)

] [
fH(q) + fLDAxc (n)

]
+ γ2(q, n)

∂2ϵxc
∂n2

n. (3.69)

It is clear that because we required γ → 1 as q → ∞ we will have a leftover term for
large q:

fWLDA
Hxc (n, q) −→

q→∞

∂2ϵxc
∂n2

n. (3.70)

If we for a moment focus on the exchange part, throughout using thatEWLDA
Hxc = EWLDA

H +
EWLDA

x + EWLDA
c , we see first that with ϵx = −Cxn

1/3

∂2ϵx
∂n2

n =
2

9
Cxn

−2/3. (3.71)

The exchange part of the WLDA kernel includes a term that is similar to this term and
it is given by eq. (3.43), which we restate here for convenience:

fWLDA
x (n, q) = fLDAx (n)

−
(
fLDAx (n)− ∂2ϵx

∂n2
n

)
γ (q, n)

2
. (3.72)

Now,

fLDAx (n) =
∂2ϵx
∂n2

n+ 2
∂ϵx
∂n

= −4Cx

9
n−2/3, (3.73)

fLDAx (n)− ∂2ϵx
∂n2

n = 2
∂ϵx
∂n

= −2Cx

3
n−2/3 =

3

2
fLDAx (n). (3.74)

Thus

fWLDA
x (n, q) = fLDAx (n)− 3

2
fLDAx (n)γ(q, n)2. (3.75)
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One way to get rid of the extra term in the q → ∞ limit is then by using the following
functional:

EHxc[n] = ELDA
Hxc [n] + ∆EWLDA

H [n] +
2

3
∆EWLDA

x [n] + EWLDA
c [n]. (3.76)

Here and below, quantities without a superscript such as ”WLDA” are to be understood
as preliminary quantities, i.e. quantities that we use to guide the discussion but which
are not final.

The above form leads to the kernel correction

∆fx(n, q) = −fLDAx (n)γ(q, n)2, (3.77)

so that the full kernel can be written

fHxc(n, q) =f
LDA
Hxc (n, q) + ∆fWLDA

H (n, q) + ∆fWLDA
x (n, q)

=
[
1− γ(q, n)2

] [
fH(q) + fLDAx (n)

]
+ fLDAc (n). (3.78)

In this form the WLDA functional leads to a kernel that is very similar to rALDA. We
call this functional the renormalized WLDA with exchange only functional or rWLDAx:

ErWLDAx
Hxc [n] = ELDA

Hxc [n] + ∆EWLDA
H [n] +

2

3
∆EWLDA

x [n]. (3.79)

We could also include the correlation correction, e.g. as

EHxc[n] = ELDA
Hxc [n] + ∆EWLDA

H [n] +
2

3
∆EWLDA

x [n] + ∆EWLDA
c [n], (3.80)

which yields the kernel

fHxc(n, q) =
[
1− γ(q, n)2

] [
fH(q) + fLDAx (n) + fLDAc (n)

]
+ γ(q, n)2

∂2ϵc
∂n2

n. (3.81)

Clearly, we can ask the same question as before: Is it possible to multiply the cor
relation correction by a prefactor such that the last term disappears? Consider the
correction to the part of the kernel coming from the correlation energy:

∆fWLDA
c (n, q) = −

(
fLDAc (n)− ∂2ϵc

∂n2
n

)
γ (q, n)

2
. (3.82)

As before we would seek a prefactor, ρ, such that

ρ

(
fLDAc (n)− ∂2ϵc

∂n2
n

)
= fLDAc (n). (3.83)

However, this is not possible as we see in figure 3.4 where we plot ρ as a function of
density for various spinpolarizations ζ; ρ depends on the density n.
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Figure 3.4: The factor ρ (see main text) as a function of density n for various spin
polarizations.

It may be possible to introduce some additional modification of the correlation energy
to get a ndependent ρ so as to exactly cancel the extra term in the kernel but we
have not pursued that. To keep things simply we define a renormalized WLDA with
correlation energy as

ErWLDA
Hxc [n] = ELDA

Hxc [n] + ∆EWLDA
H [n] +

2

3
∆EWLDA

xc [n]. (3.84)

The factor of 2/3 is included in front of both the exchange part and correlation part. This
gives full cancellation for the extra exchange part but only partial for the correlation part.
Fractionalized WLDA
The final variant of WLDA is based on the observation that the ALDAx correlation hole
has a zero at q = 2kF , contrary to the exact correlation hole as we see from figure
3.1. Because the rWLDA kernel is approximately equal to a truncated version of the
ALDA kernel (up to a small correction from the correlation energy), we expect the
rWLDA kernel to also have a zero around q = 2kF . This will be a problem because
the correlation hole will be overestimated for large q. A way to fix this is to subtract
something from the kernel. In an admittedly ad hoc fashion we define the fractionalized
WLDA (fWLDA) functional:

EfWLDA
Hxc [n] = ELDA

Hxc [n] +
2

3
∆EWLDA

H [n] +
2

3
∆EWLDA

xc [n]. (3.85)

The factor of 2/3 in front of the Hartree energy is arbitrary and simply chosen to keep
things simple. We also define the exchangeonly variant (fWLDAx):

EfWLDAx
Hxc [n] = ELDA

Hxc [n] +
2

3
∆EWLDA

H [n] +
2

3
∆EWLDA

x [n]. (3.86)
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Flavors of WLDA  Summary
In summary we have defined multiple variants of the WLDA functional, which are
shown in table 3.1.

Variant Energy functional

WLDA ELDA
xc [n] + ∆EWLDA

Hxc [n]

WLDAx ELDA
xc [n] + ∆EWLDA

Hx [n]

rWLDA ELDA
xc [n] + ∆EWLDA

H [n] + 2
3∆E

WLDA
xc [n]

rWLDAx ELDA
xc [n] + ∆EWLDA

H [n] + 2
3∆E

WLDA
x [n]

fWLDA ELDA
xc [n] + 2

3∆E
WLDA
Hxc [n]

fWLDAx ELDA
xc [n] + 2

3∆E
WLDA
Hx [n]

Table 3.1: The different variants of the WLDA functional with corresponding energy
functional.

In the next section we will calculate correlation holes for these variants and compare to
the exact correlation hole. This will let us optimize three things: 1) The type of WLDA
functional, 2) The choice of weight function (recall that we considered a Gaussian,
exponential, or Lorentzian weight function), and 3) The c1 parameter of the weight
function (which is related to the width of the weight function).

3.3 HEG Optimizations
In this section we will calculate the correlation holes for the different flavors of WLDA
and optimize the c1 parameter for the different weight function types by minimizing the
integrated difference between the WLDA and exact correlation holes.

3.3.1 WLDA and WLDAx
The first flavors we consider is WLDA and WLDAx. We start by calculating the cor
relation hole, using eq. (3.8), for the exponential weight function for various different
values of c1 and rs. To determine the optimal choice of parameters we calculate the
normalized mean absolute error (NMAE):

NMAE(c1, rs) =
∫
dq |gc(q, c1, rs,WLDA)− gc(q, rs,exact)|∫

dq |gc(q, rs,exact)|
, (3.87)

where gc(q, rs, c1,WLDA) denotes the correlation hole as a function of wavevector q,
density n = 3

4πr3s
, and c1 value.

The NMAE as a function of 1/c1 are shown in figure 3.5. The small figures show the
NMAEs for various rs values. We plot the error as a function of 1/c1 so we can see
the convergence to ALDA which happens for 1/c1 = 0 (where the weight function is a
Dirac delta). The dashed lines show the location of the c1 value that gives the lowest
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Figure 3.5: The normalized mean absolute error (NMAE, defined in main text) between
the WLDA functional using the exponential weight function for various c1 values. The
right plot shows the error averaged over all rs. The vertical dashed, red lines shown
the location of the minimum of the averaged errors in all cases. We see that the optimal
value of the average error is close to the minima in all cases. The optimal c1 value is
7.14286.

average NMAE. For WLDA with exponential weight function this value is close to the
optimal c1 value for all densities with the biggest deviations for high densities.

The next steps are to optimize the Gaussian and Lorentzian WLDA kernels as well.
Finally, we repeat the whole procedure using the exchangeonly variant (WLDAx). The
results are shown in appendix A.

For the WLDA functional the best performing weight function is the Lorentzian with
an average NMAE of 0.058. For WLDAx it is again the Lorentzian weight function
with a NMAE of 0.070. The correlation holes for the Lorentzian for these values of
c1 are shown in figure 3.6. As we can see the optimized functionals match the exact
correlation hole quite well.

3.3.2 rWLDA and rWLDAx
We now repeat this procedure for the rWLDA(x) functional. The optimization results
are shown in the appendix. The optimal weight function turns out to be theGaussian for
both rWLDA and rWLDAx with a c1 of 2.08333 and NMAE 0.081950, and c1 = 2.18023
and with NMAE 0.131995 respectively. The correlation holes are shown in figure 3.7.

3.3.3 fWLDA and fWLDAx
Finally, we consider fractionalized WLDA(x). The optimal for fWLDA turns out to be
the exponential weight function with c1 = 5.09393 and NMAE 0.035367. For fWLDAx
it is the Gaussian weight function, with c1 = 1.83824 and NMAE 0.0439024. The
correlation holes are shown in figure 3.8.
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Figure 3.6: The correlation holes for the optimized version of the Lorentzian weight
function for WLDA and WLDAx.
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Figure 3.7: The correlation holes for the optimized version of the Gaussian weight
function for rWLDA and rWLDAx.
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Figure 3.8: The correlation holes for the optimized version of the exponential (for
fWLDA) and Gaussian (for fWLDAx) weight functionx.

3.3.4 Summary: c1 Optimization
We have performed optimizations of the c1 parameter for all possible combinations
of the functional types WLDA, WLDAx, rWLDA, rWLDAx, fWLDA, fWLDAx with the
weight functions of exponential, Gaussian, and Lorentzian types. In table 3.2 we tab
ulate the results. It turns out that for both exchangeonly and exchange+correlation
fractionalized WLDA is best. Overall fWLDA with the exponential weight function per
forms best of functionals with exchange+correlation corrections and fWLDA with the
Gaussian weight function performs best of the exchangeonly functionals.

Exp. c1 Exp. NMAE Gau. c1 Gau. NMAE Lor. c1 Lor. NMAE
WLDA 7.14286 0.089473 3.02419 0.128982 5.5556 0.058134
WLDAx 6.09756 0.0725738 2.60417 0.10648 4.6875 0.070153
rWLDA 5.0 0.104596 2.08333 0.081950 4.28571 0.157958
rWLDAx 5.43478 0.1560827 2.18023 0.131995 5.17241 0.202066
fWLDA 5.09393 0.035367 2.08333 0.081950 3.48837 0.046904
fWLDAx 4.09836 0.0520419 1.83824 0.0439024 2.77778 0.0867764

Table 3.2: Optimized values of the c1 parameter and the corresponding normalized
mean absolute error (NMAE) for the various functionals and weight functions. To opti
mal values across those functionals using both exchange and correlation, and across
those using just exchange are highlighted in bold.

3.4 WLDA for SpinPolarized Systems
For magnetic systems it is essential to perform a spinpolarized calculation to obtain
accurate results. The above optimizations and derivations were all done in the spin
paired HEG so the question remains how to treat spinpolarized systems.
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For the exchange part of the energy we can use the relation

Ex[n↑, n↓] =
Ex[2n↑] + Ex[2n↓]

2
, (3.88)

which holds for the exact exchange. We use this to define the WLDA exchange cor
rection as

∆EWLDA
x [n↑, n↓] =

EWLDA
x [2n↑] + EWLDA

x [2n↓]

2
. (3.89)

It is not so clear whether the Hartree correction can be interpreted as an exchange or
a correlation energy, or even a mix. We will consider two different ways of calculating
the Hartree correction in spinpolarized systems: HartreeAseXchange (HAX) or spin
neutral Hartree correction. The HAX correction is defined similar to the exchange
correction in eq. (3.89). The spinneutral Hartree correction is calculated using the
total electron density:

∆EWLDA
H [n↑, n↓] = ∆EWLDA

H [n↑ + n↓] (3.90)

where the righthandside is defined as in eq. (3.63), i.e. exactly as in a spinpaired
system.

The correlation correction cannot be treated as simply. We need to consider how the
weighted density should be defined and there are probably many ways to do this. One
requirement is that the results reduce to the spinpaired case when n↑ = n↓. To make
some relatively reasonable choice we fix the total weighted density to be

n∗↑(r) + n∗↓(r) = n∗(r) =
∫

dr ϕ(r− r′, n(r′))n(r′), (3.91)

and we require that the unitcell averaged magnetization is the same for the weighted
density and the physical density:∫

Ω

dr (n∗↑(r)− n∗↓(r)) =
∫
Ω

dr (n↑(r)− n↓(r)). (3.92)

These requirements can be fulfilled by defining

n∗σ(r) =
∫

dr′ ϕ(r− r′, n(r′))nσ(r′). (3.93)

With this the correlation correction becomes

∆EWLDA
c [n↑, n↓] =

∫
dr
[
ϵc(n

∗
↑(r), n∗

↓(r))(n(r)− n∗(r))

−ϵc(n↑(r), n↓(r))(n(r)− n∗(r))] . (3.94)
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3.5 Potential Regularization
We discovered during our studies that there is a term in the potential that is not com
pletely regular, i.e. it seems to grow without bound as one goes into vacuum. This
phenomenon is most easily seen if we consider the part of the exchange correction to
the potential that comes from ”WLDA1”:

vWLDA1
x [n](r) =δE

WLDA1
x
δn(r) =

δ

δn(r)

∫
dr′ ϵx (n(r′))n∗(r′)

=

∫
dr′ ϵx (n(r′))

δn∗(r′)
δn(r) + ∂nϵx (n(r))n∗(r) (3.95)

Of interest here is the term

∂nϵx (n(r′))n∗(r′) ∼ ∂n (n)
1/3

n∗ ∼ n∗

n2/3
. (3.96)

The question is then how n∗/n2/3 behaves in low density regions. Intuitively, the
weighted density at a point r is given by how much density is received from other
points r′. The range of how far density is ”sent” from a point is given by the density
at that point. Thus in a low density region the weighted density will receive contribu
tions from a large region around it. We should therefore worry that n∗/n2/3 will grow
without bound as we go into vacuum regions. This does indeed seem to be the case
from studies of the weighted density on a Hydrogen 1s state and from selfconsistent
calculations on various atomic systems.

This divergence is a fundamental problem with WLDA and strictly speaking probably
requires a redefinition of the functional form that avoids the vacuum divergence. How
ever, due to time constraints it was not possible to do this.

Instead we use a more or less ad hoc regularization. We simply cutoff the divergent
term when the density is sufficiently small. On tests on small atoms and molecules the
exact value for the cutoff was not important. We also attempted another regularization
scheme which produced similar results. Generally, the regularization does not seem to
be necessary always but it does greatly improve convergence rate and in some cases
it is impossible to converge without regularization. Altogether this seems to imply that
the exact form of the regularization is not important, as one would hope, but, in my
opinion, the divergent term remains a fundamental problem for this version of WLDA.

A solution to the divergence could be to redefine the weight function such that n∗/n
does not diverge. Alternatively one could try to use the WLDA2 or WLDA3 forms
exclusively as these forms do not suffer from the divergence. How well these would
perform remain a question for future work.

3.6 Use of the AllElectron Density
WLDA is defined using the allelectron density. In most electronic structure codes this
is not directly available or it is hard to converge with respect to basis set size. GPAW
is a PAW code which means most quantities are calculated as ”smooth part + atom
centered corrections” (see sec. 2.2). Using PAW corrections is equivalent to working
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with the allelectron quantities and it renders the numerics stable. However, it is only
possible to define PAW corrections for semilocal quantities; nonlocal quantities will
in general involve terms that couple different atoms. There is therefore no way to write
PAW corrections for WLDA, at least in the standard formulation. It may be possible to
include the extra coupling terms in some expanded PAW formalism but whether it can
be made tractable remains to be seen. Not all is lost as we can use the PAW scheme
for the LDA part of WLDA and do something else for the correction part.

For the corrections we can either use the PAW pseudodensity or we can reconstruct
the allelectron density from the pseudo density + suitable PAW corrections. As men
tioned above, it can be hard to converge the allelectron density but whether or not it
will be an issue for WLDA is not certain a priori. To determine converge with respect to
planewave cutoff we calculate atomization energies for several small molecules with
the fWLDAx variant using the allelectron density for various planewave cutoffs. The
results are shown in fig. A.19 in sec. A.2. With the exception of H2 the atomization
energies are not converged even at ∼1500 eV planewave cutoff so at this stage we
conclude that it is not practical to use the allelectron density. The following results are
therefore calculated using the pseudo density for the corrections.

3.7 Benchmarks
3.7.1 Atomic Energies
We have implemented the various WLDA variants in the atomic module of GPAW.
This module can do DFT calculations for atoms using a spherically averaged density.
Utilizing the spherically symmetry allows for fast evaluation of the various quantities
involved. In this section we describe the performance of the WLDA variants on atomic
systems. We compare atomic ground state energies for WLDA, LDA, and PBEwith the
bestestimate reference energies from refs. [31, 32]. The references are calculated
from experimental energies plus a relativistic ”deperturbation” scheme. The calcula
tions were done using a spherically average density, on a radial grid with 2000 grid
points and a cutoff radius of 50 Bohr radii, and using 50 Gaussians to form a final basis
set of approx. 2025 linear combinations of Gaussians.

The performance results for the optimal version of the exchangeonly functionals, i.e.
using the Lorentzian weight function for WLDA, and the Gaussian for rWLDAx and
fWLDAx are shown in figure 3.9 and themean absolute error (MAE) andmean absolute
relative error is shown in table 3.3. With the exception of WLDAx@Lorentzian the
results all improve on LDA and are even comparable to PBE.

Next we will consider the variants that include the correlation energy correction. The
results for these are shown in figure 3.10 and the errors are tabulated in table 3.4.
Again, with the exception of WLDA with the Lorentzian weight function, WLDA per
forms comparably to PBE.
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Figure 3.9: Errors in atomic energies for the exchangeonly variants of WLDA. The
opaque points show the results using Hartreeasexchange and the transparent points
show the results when using spinneutral Hartree (see sec. 3.4).

MAE [Ha] MARE
LDA 0.482995 0.012596
PBE 0.060484 0.001326

WLDAx 1.159472(1.148340) 0.017170(0.014074)
rWLDAx 0.035884(0.034815) 0.001050(0.000765)
fWLDAx 0.023108(0.021874) 0.000981(0.001750)

Table 3.3: Atomic performance benchmarks for the exchangeonly variants of WLDA.
With the exception of WLDAx with the Lorentzian weight function, the WLDA variants
performs comparably to PBE. The results using spinneutral Hartree correction are
shown in parentheses.
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Figure 3.10: Errors in atomic energies for the variants of WLDA the include a correla
tion correction. The opaque points show the results using Hartreeasexchange and
the transparent points show the results when using spinneutral Hartree (see sec. 3.4).

MAE [Ha] MARE
LDA 0.482995 0.012596
PBE 0.060484 0.001326
WLDA 0.737114(0.730207) 0.009418(0.008936)
rWLDA 0.045518(0.046966) 0.001898(0.001482)
fWLDA 0.041321(0.040525) 0.002566(0.003283)

Table 3.4: Atomic performance benchmarks for the variants of WLDA that include the
correlation correction. The results using spinneutral Hartree correction are shown in
parentheses.

These results are quite promising as PBE is in some sense tuned to give good atomic
energies [33]. However, atomic energies in themselves are not so useful and tests
have shown that the atomic energies can be somewhat sensitive to the choice of weight
function and c1 parameter. The most striking effect is whether or not one uses the
Lorentzian weight function which seems to perform worse than other weight functions
for WLDA(x) even though it is optimal in the HEG. This can be seen in figure 3.11
where atomic energy calculations for different weight functions for WLDA are shown.
It is not known why this is; perhaps it is related to the fact that the truncation function
that follows from the Lorentzian weight has a much less sharp cutoff and a nonzero
derivative at q = 0, see fig. 3.3. It remains to be seen if the results translate to physical
properties of interest such as molecular atomization energies and lattice constants of
solids. This is the topic of the next two sections.
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Figure 3.11: Error in ground state atomic energies calculated with the LDA, PBE and
WLDA xcfunctionals. The green, red and violet points indicate c1parameters chosen
such that the truncation function Φ satisfies Φ(q = 2kF ) = 1/2. Brown and pink indi
cate the optimized c1 values. Opaque and translucent markers indicate the Hartree
correction as exchange and Spinneutral Hartree corrections respectively.

3.7.2 Molecular Atomization Energies
In this section we test the WLDA variants on molecular atomizations energies for a
subset of the G2 set of molecules from [34].

The results are shown in table 3.5. As with the atomic energies, WLDA(x) performs
very poorly compared to rWLDA and fWLDA as well as compared to LDA and PBE.
Again, this poor performance seems to stem from the Lorentzian weight function. In
table A.1 results on the G2 dataset are shown for all weight functions for all variants.
WLDA@exp and WLDA@gauss both have much lower error than WLDA@lorentz.
(r/f)WLDA is however capable of reaching an accuracy on the level of PBE.

As to the effects of exchangeonly vs. exchange + correlation corrections it is hard to
draw any definitive conclusions. For rWLDA it looks preferable to include correlation
whereas for fWLDA it looks counterproductive. To investigate this further we have
calculated the atomization energies on a smaller subset of molecules for WLDA@exp
with exchangeonly and exchange + correlation but for the same c1 value to isolate the
effects of the correlation contribution. This is shown in table 3.6. From this table we
see that adding the correlation correction only changes atomization energies by about
1% for a ”wellbehaved” weight function. In table 3.5 we see much larger difference
between, say fWLDAx and fWLDA which is therefore probably mainly caused by the
difference in c1 value and the choice of weight function but not the inclusion of the
correlation correction.
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ME MAE MARE
LDA 84.18 84.19 0.1984
PBE 26.23 26.87 0.08238
WLDAx@Lor. 261 (329.7) 261 (329.7) 0.5688 (0.7163)
WLDA@Lor. 207.9 (257.7) 207.9 (257.7) 0.4551 (0.5613)
rWLDAx@Gau. 26.8 (24.32) 28.04 (25.71) 0.07489 (0.06813)
rWLDA@Gau. 21.9 (20.74) 24.16 (23.2) 0.06555 (0.06098)
fWLDAx@Gau. 35.87 (38.77) 37.3 (40.33) 0.09261 (0.0956)
fWLDA@Exp. 50.98 (55.79) 51.35 (56.2) 0.1205 (0.1277)

Table 3.5: Subset of G2/97 atomization energies (142 molecules) in kcal / mol. The
values are calculated using the optimal c1 parameters for each functional variant, see
table 3.2. Results for spinneutral Hartree is shown in parenthesis and other results
are calculated with Hartree as exchange.

LDA LDAx PBE WLDAx@Exp. WLDA@Exp. Expt.
CO 301 267 280 287 (284) 289 (285) 259
F2 78.4 67.8 66.1 45.6 (45.4) 46.3 (46.1) 38.4
H2 113 80.9 104 112 (121) 111 (120) 110
H2O 268 216 243 268 (275) 269 (276) 233
HF 162 137 148 163 (167) 163 (168) 141
N2 266 210 243 253 (242) 255 (244) 228
O2 179 156 161 148 (143) 148 (144) 120
MAE 34 20 18 21 (21) 22 (22)
MARE 0.31 0.22 0.19 0.14 (0.14) 0.14 (0.15)

Table 3.6: Atomization energies in kcal / mol calculated with WLDA using the expo
nential weight functions. The c1 value is chosen to be c1 = 5.09393 such as to fulfill
Φ(q̃) = 1/2. These results compared with table 3.5 suggest that the correlation contri
bution is negligible compared to choice of weight function and c1 value.

3.7.3 Lattice Constant Benchmarks
To test how well WLDA describes structures we test the WLDA variants on a set of 27
cubic solids. The experimental lattice constants are adapted from [35] where they were
used to test a Bayesian DFT functional. The calculations were run with a planewave
cutoff of 800 eV and a 8x8x8 MonkhorstPack kpoint grid.

The results for the exchangeonly variants are shown in table 3.7 and the results for
exchange + correlation correction is shown in table 3.8. Remarkably, it is possible to
achieve an improvement over PBE. The WLDA functional with the Lorentzian weight
function seems to perform best, in contrast to its performance on atomic and atom
ization energies, however it also often fails to converge. For lattice constants it may
therefore be best to use the rWLDA variant with the Gaussian weight function.
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Mater. LDA PBE WLDAx rWLDAx fWLDAx Exp.
Li 3.360 3.425 3.348 3.354 3.344 3.451
Na 4.052 4.196 4.146 4.133 4.095 4.209
K 5.035 5.275 none 5.726 5.813 5.212
Rb 5.363 5.660 none 6.206 6.374 5.577
Ca 5.351 5.534 none 5.615 5.667 5.556
Sr 5.809 6.045 none 6.183 6.274 6.040
Ba 4.767 5.028 none 5.282 5.436 5.002
V 2.937 3.009 2.968 2.956 2.955 3.024
Nb 3.236 3.303 3.372 3.275 3.281 3.294
Ta 3.260 3.331 3.343 3.287 3.291 3.299
Mo 3.108 3.160 3.205 3.138 3.142 3.141
W 3.132 3.184 3.183 3.151 3.152 3.160
Fe 2.756 2.849 2.800(2.790) 2.784(2.780) 2.777(2.774) 2.853
Rh 3.761 3.839 3.793 3.782 3.773 3.793
Ir 3.805 3.868 3.844 3.827 3.820 3.831
Ni 3.436 3.529 3.442(3.442) 3.446(3.446) 3.436(3.436) 3.508
Pd 3.841 3.944 3.914 3.885 3.871 3.876
Pt 3.889 3.969 3.941 3.919 3.909 3.913
Cu 3.528 3.642 3.581 3.572 3.561 3.596
Ag 4.000 4.147 none 4.114 4.107 4.062
Au 4.072 4.174 4.266 4.144 4.134 4.062
Pb 4.868 5.023 none 5.133 5.224 4.912
Al 3.982 4.038 4.002 4.005 3.997 4.019
C 3.533 3.573 3.583 3.556 3.559 3.544
Si 5.407 5.476 5.532 5.459 5.462 5.415
Ge 5.632 5.767 none 5.826 5.872 5.639
Sn 6.458 6.640 none 6.670 6.707 6.474
MAE 0.078 0.049 0.014(0.014) 0.040(0.040) 0.051(0.051)

Table 3.7: Lattice constant results for the exchangeonly variants of WLDA. Entries
that are ”none” indicate that the calculation did not converge. Numbers in parenthesis
are the results with spinneutral Hartree correction. Most entries do not have a spin
neutral Hartree result because those calculations were spinpaired and spinneutral
Hartree and HartreeAsExchange are equivalent in that case.
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Mater. LDA PBE WLDA rWLDA fWLDA Exp.
Li 3.367 3.433 3.354 3.357 3.352 3.451
Na 4.052 4.198 4.108 4.134 4.082 4.209
K 5.038 5.277 none 5.898 5.712 5.212
Rb 5.369 5.664 none 6.397 6.219 5.577
Ca 5.351 5.534 none 5.669 5.625 5.556
Sr 5.809 6.045 none 6.264 6.221 6.040
Ba 4.771 5.028 none 5.385 5.371 5.002
V 2.926 3.001 2.946 2.948 2.940 3.024
Nb 3.243 3.304 3.329 3.288 3.283 3.294
Ta 3.247 3.316 3.304 3.280 3.276 3.299
Mo 3.106 3.157 3.170 3.142 3.136 3.141
W 3.130 3.181 3.164 3.152 3.148 3.160
Fe 2.756 2.849 2.784(2.781) 2.788(2.784) 2.774(2.769) 2.853
Rh 3.760 3.839 3.779 3.783 3.769 3.793
Ir 3.803 3.866 3.828 3.827 3.816 3.831
Ni 3.436 3.529 3.438(3.438) 3.446(3.446) 3.435(3.434) 3.508
Pd 3.840 3.942 3.882 3.888 3.863 3.876
Pt 3.889 3.969 3.920 3.922 3.905 3.913
Cu 3.530 3.645 3.563 3.579 3.551 3.596
Ag 4.002 4.146 4.185 4.134 4.086 4.062
Au 4.072 4.176 4.173 4.156 4.124 4.062
Pb 4.872 5.033 none 5.203 5.192 4.912
Al 3.984 4.041 3.996 4.010 3.994 4.019
C 3.533 3.573 3.567 3.562 3.553 3.544
Si 5.407 5.476 5.483 5.466 5.450 5.415
Ge 5.632 5.767 6.318 5.871 5.832 5.639
Sn 6.458 6.640 7.239 6.715 6.665 6.474
MAE 0.078 0.049 0.031(0.031) 0.049(0.049) 0.043(0.043)

Table 3.8: Lattice constant results for the exchange and correlation variants of WLDA.
Entries that are ”none” indicate that the calculation did not converge. Numbers in
parenthesis are the results with spinneutral Hartree correction. Most entries do not
have a spinneutral Hartree result because those calculations were spinpaired and
spinneutral Hartree and HartreeAsExchange are equivalent in that case.

3.8 Perspective: Comparison to other Functionals
It may be instructive to consider the differences between WLDA and other functional
types as this may provide some insights into possible improvements of the shortcom
ings of WLDA.

Local Functionals To my knowledge, essentially the only used local density func
tional is the Local Density Approximation. LDA simply gives the exchangecorrelation
energy density at a point as the XC energy of a HEG with the local density. Nonlocal
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correlations seem impossible to describe in LDA but it can actually be expected to
work well for a large range of systems [36].

WLDA, being defined from LDA, shares the feature of producing exact energies in the
HEG. Beyond that, WLDA also tried to match other features of the HEG, namely the
correlation hole. Thus we can expect WLDA to outperform LDA.

MetaLDA Another intriguing possibility is to combine a WLDA procedure with a
metaLDA functional [37]. MetaLDAs use the kinetic energy density to calculate an
effective HEG density, ñ(r). They therefore depend on the wavefunctions and not
just the density. The effective density is combined with the local density in the form
navg(r) = n1−x(r)ñx(r) for x ∈ [0, 1], and navg can then be used in the LDA exchange
correlation function where the energy density per electron is evaluated using navg. It
is unknown whether a ”metaWLDA” could improve on WLDA; the two types would
behave identically in the HEG since ñ = n there. The optimal x, as well as the optimal
variant of WLDA, would have to be determined some other way.

Semilocal Functionals Functionals that employ density gradient information fall in
the class of Generalized Gradient Approximations (GGA) and this class of functionals
generally improve upon LDA for properties in atoms, molecules, and solids [38]. They
have almost the same computational cost as LDA but offer significant improvements.
However, GGAs suffer from a fundamental limitation. GGA exchange can be written
as

EGGA
x [n] =

∫
dr ϵHEGx (n(r))Fx(s(r)), (3.97)

where the enhancement factor Fx depends on the density gradient through

s =
|∇n|
2kFn

. (3.98)

If the GGA is to match the HEG in the limit of a slowly varying density, s → 0, then Fx
must obey

Fx(s) →
s→0

1 + µs2, (3.99)

with µ = 10/81 [33]. However, for atoms it is found that using instead Fx(s) ≈ 1+2µs2

is necessary to get good values for atomic energies and by extension for atomization
energies[33]. Matching the exact limit is relevant for solids where the density is more
slowly varying than in atoms. Thus GGA exchange can either describe atomization
energies or solids well, but not both and a similar set of opposing constraints exist for
the correlation energy [33].

As good as GGA is in practice, it seems necessary to move beyond it to find universally
applicable functionals.

The strength of GGA is the many wellknown and well understood limits which can
be used to fix the parameters in the functional. Because of this it may be easier to
interpret what GGA is doing or predict when it will work than it seems to be for WLDA.
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Beyond GGA Introducing the kinetic energy density τ = 1
2

∑occ
i |∇ϕi|2 as a funda

mental variable leads to the class ofmetaGGAs that are no longer explicit functionals
of the density only. Another class is hybridGGAs that mix in exact exchange (a fully
nonlocal quantity and again a functional of the wavefunctions rather than the density).
Hybrid functionals are of much higher computational complexity than metaGGAs and
generally achieve greater accuracy. However, in 2016 the metaGGA ”SCAN” con
structed by matching a list of known exact limits was shown to have comparable accu
racy to hybridGGAs at metaGGA cost [39].

Beyond GGA functionals have considerable complexity but the use of the kinetic en
ergy density allows the functional to distinguish between covalent and metallic bonds
[39] and one can apply these limits to the functional form to reason about the behaviour
of the exchangecorrelation energy. Again WLDA has the shortcoming that it is not
easy to see a priori how it will behave for different types of physical systems or even
that it can distinguish them.

Nonlocal Functionals Fully nonlocal functionals have also been tried. One exam
ple is the van der Waals functional [30, 40] which includes a description of the van der
Waals interaction with a fully nonlocal energy contribution of the form

EvdW[n] =
1

2

∫ ∫
drdr′ n(r)n(r′)ϕ(n,∇n, |r− r′|). (3.100)

This functional captures van der Waals dominated physics such as the double wall
carbon nanotubes investigated in [30] or conceivably van der Waals bonded multilayer
structures.

In the late 1970s the Weighted Density Approximation (WDA) was proposed [41–43]
and it was later developed further by David Singh [44]. Despite the similarity in name,
it is quite different from WLDA. In WDA the exchangecorrelation energy is written in
terms of the exchangecorrelation hole:

Exc[n] =

∫ ∫
drdr′ n(r)n(r

′)

|r− r′| [g[n](r, r′)− 1] ,

=

∫ ∫
drdr′ n(r)nxc(r, r

′)

|r− r′| (3.101)

where g is the pairdistribution function and nxc is the xc hole. This expression is exact
but g is unknown in general, and whereas LDA corresponds to the approximation

n(r′)g[n](r, r′) → n(r)gh(n(r), |r− r′|), (3.102)

where gh is the pairdistribution function in the HEG, WDA uses the approximation

n(r′)g[n](r, r′) → n(r′)gw(n(r), |r− r′|), (3.103)

where gw is a model pairdistribution function (not necessarily equal to gh), and n is the
eponymous weighted density. n is determined such that the xc hole sum rule holds:∫

dr′ n(r′) [g(n(r), |r− r′|)− 1] = −1. (3.104)
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However, the ”weighted” density is therefore not a priori related to the physical density.
WDA improves upon LDA for lattice constants and bulk moduli [44, 45] and in some
cases can even get bandstructures that agree well with GW results [46].

Nonlocal functionals as a class has the potential to be exact since it trivially includes
all possible functionals, including the exact xc functional. The question remains how to
construct useful approximations. In the two examples above there were two philoso
phies: In the van der Waals functional a specific nonlocal physical effect (van der
Waals bonding) was identified and described, and in WDA one attempts to construct a
functional that satisfies exact constraints, similar to LDA. The philosophy of WLDA is
similar toWDA’s but whileWDA tries to satisfy a kind of ”coarsegrained” constraint (the
integral of a function is correct) for all systems, WLDA tries to satisfy a ”finegrained”
constraint (the function is correct) but just for one system (the HEG). Perhaps future
versions of WLDA can attempt to satisfy the sumrule and match the HEG correlation
hole simultaneously.

3.9 Open Questions
There remain a few open questions that we summarize here.

Performance on Other Properties It remains to be seen how well WLDA performs
on other electronic structure properties such as the band gap, determination of mag
netic state.

Reproduction of the exact density Another relevant question is how well WLDA
reproduces the exact electron density. This question is separate from the question of
the accuracy of the predicted energies [47].

Vacuum Regularization As we saw in sec. 3.5 there is a divergent term in the
potential that seems to indicate a flaw in the definition of WLDA. Future versions of
WLDA should be redefined to eliminate this divergence.

Spinpolarized Correlation Treatment To define WLDA for spinpolarized systems
we guessed a reasonable form of the correlation correction, see sec. 3.4. The correla
tion correction form could instead be chosen by matching different alternatives to the
spinpolarized HEG or by attempting to find theoretical arguments for the form of the
correlation.

HAX or no Spinneutral Hartree It is not fully resolved whether it is best to use
Hartreeasexchange or the spinneutral version of the Hartree correction. So far it
seems that there is not a huge difference in accuracy, and, barring any theoretical
justifications one way or the other, it may therefore be preferable to use the spinneutral
Hartree correction because the implementation should be slightly faster.
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WLDA Setups We have implemented WLDA in GPAW which is a PAW code and
as such uses socalled ”PAW setups” (the PAW partial waves and projectors). These
setups are typically optimized for the given exchangecorrelation functional. In this
work we have simply used the LDA setups which should be reasonable given that we
correct directly on LDA but it is possible that better convergence can be achieved with
WLDA specific setups.

Additional Constraints In this version of WLDA we have attempted to match the
HEG energy and correlation hole. In may be possible to satisfy further constraints such
as the sumrule for the exchangecorrelation hole. Matching exact constraints should
hopefully improve the performance of the functional and it is at least a systematic way
to develop a functional.

3.10 Conclusion
WLDA achieves systematic improvements over LDA and thus seems to be a promis
ing functional. However, it is clearly not the last word: WLDA is fully nonlocal yet
”only” performs at the level of PBE. More work is needed to improve the functional
and test its performance on more systems and properties. The first step is to design
a form that is free of the potential divergence perhaps by simply using the WLDA3
form. However, because WLDA is designed to have a correctly behaving kernel it
may be suitable for TDDFT calculations. Of course, at this stage, only the adiabatic
kernel is defined so properties were the timedependence is crucial will probably not
be well described by WLDA. In the future, it may also be interesting to investigate how
WLDA performs when used as a basis for manybody perturbation methods, such as
GW. If nothing else, hopefully WLDA can inspire new avenues of exchangecorrelation
functional development.
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4 HighThroughput GW
In this chapter we give an introduction to quasiparticle theory and the GW approxima
tion and detail the results of paper II which pertains to the accuracy of various approx
imations employed within typical GW calculations, and suggestions for improving the
accuracy within the context of high throughput GW calculations.

4.1 Quasiparticle Theory
In a physical systems, electrons will interact with each other. A given electron will re
pel other electrons due to the Coulomb interaction, and a picture that is often used is
that the local electron density around the given electron is depleted. Thus the elec
tron is surrounded by a ”cloud” of positive charge that moves along with it. The true
physical picture probably involves more complicated correlations. This picture is called
the quasiparticle picture because the electron + positive charge cloud behaves as if it
were a particle. Quasiparticles are only approximate eigenstates of the true Hamilto
nian both because we must use approximations to describe the quasiparticles but also
because interacting systems may not have eigenstates that are singleparticle states.

In more mathematical terms, quasiparticles arise because the Green’s function for the
electron in the interacting system is not equal to that of a particle in a noninteracting
system. The Green’s function is defined as[48, 49]

G(r, t, r′, t′) = −i⟨T Ψ(r, t)Ψ†(r′, t′)⟩T , (4.1)

where T is the timeordering operator,Ψ(r, t) is the annihilation operator for an electron
at r, t, and ⟨·⟩T is a thermal average taken at temperature T . For systems that do not
change in time the Green’s function only depends on t−t′ and the Fourier transform in
time of G will then only depend on one frequency. We recall that the Green’s function
is equivalent to the spectral function through

A(r, r′, E) = π−1|Im(G(r, r′, E)|, (4.2)

G(r, r′, E) =

∫ ∞

−∞

A(r, r′, E′)

E − E′ dE′. (4.3)

The spectral function and the Green’s function are important because these are the
quantities involvedwhenwe perform singleparticle experiments, such as photoemission
and inverse photoemission experiments which, respectively, use light to emit an elec
tron from a material and inject electrons into a material and measure the emitted
light[48]. Spectral functions also arise in tunneling spectroscopy experiments when
measuring currents through a system.

Themeaning of the spectral function can be understood by considering a noninteracting
system. Then one can show [49] that the spectral function for the Green’s function
−i⟨T Ψ(ν, t)Ψ†(ν′, t′)⟩, where ν denotes eigenstates of the system, diagonal in ν, ν′
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and the diagonal elements are Diracdelta functions in energy with the peak located at
the energy of the eigenstate. In other words

A(ν, ν′, E) = δν,ν′δ(Eν − E). (4.4)

When we consider the effect of singleparticle perturbations to the Hamiltonian the only
effect on A(ν, ν′, E) will be to shift the location of the peaks. Multiparticle perturba
tions, such as the Coulomb interaction, will however both shift the peaks and broaden
them [49]. The interpretation of the spectral function is therefore that the peaks oc
cur at singleparticle energies, or more generally speaking, the peaks occur at the
energies of the quasiparticles. One can also show that the width of the peak is pro
portional to the inverse lifetime of the quasiparticles[49]. More precisely, provided that
the quasiparticle picture is physical, the poles of the singleparticle Green’s function
occur at certain complex values of the energy, ϵQP , where the real part of ϵQP is the
quasiparticle energy and the imaginary part is the lifetime of the quasiparticle[50]. The
problem of determining the poles of the interacting singleparticle Green’s function is
then central to calculating the quasiparticle energies.

To calculate the Green’s function one defines a reference system, reexpresses eq.
4.1 in terms of a thermal average in the reference system, takes the timederivative of
G, and finally Fourier transforms, see [49]. The result is the Dyson equation [48, 49]:

G(r, r′, E) = G0(r, r′, E) +

∫ ∫
G0(r, r1, E)Σ(r1, r2, E)G(r2, r′, E)dr1dr2, (4.5)

whereG0 is the Green’s function of the noninteracting system, andΣ is the selfenergy
operator. The selfenergy contains all the information about interactions in the system.

Finding an equation for the poles ofG is most easily done by considering the Lehmann
representation of G [51]

G(z) =
∑
i

|ψQP
i ⟩ ⟨ψQP

i |
z − ϵQPi

. (4.6)

Here z ∈ C and ψQP
i are as of yet undetermined states, which we identify with the

quasiparticle wavefunctions. Writing the solution to the Dyson equation in the form
G(z) = [z − H0 − Σ(z)]−1 (neglecting spatial coordinates for brevity) and integrating
1 = [z −H0 − Σ(z)]G(z) in a small circular contour, C around ϵQPi we find∫

C

1 = 0 =

∫
C

[z −H0 − Σ(z)]G(z) = (ϵQP
i −H0 − Σ(ϵQPi )) |ψQP

i ⟩ ⟨ψQP
i | , (4.7)

which follows from the residue theorem [51]. Since the LHS is the zerooperator, we
must also have [

ϵQPi −H0 − Σ(ϵQPi )
]
|ψQP

i ⟩ = 0. (4.8)

This determines the quasiparticle energies ϵQPi .
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To make further progress one usually starts from a KohnSham wavefunction, treating
Σ− Vxc perturbatively and writing ϵQPi = ϵKSi +∆ϵi which yields

∆ϵi = ⟨ψKS
i |Σ(ϵQPi )− Vxc |ψKS

i ⟩ . (4.9)

Already one could attempt to solve this equation. It would however require evaluating
the selfenergy at multiple frequencies.

Instead one usually uses the linear approximation to this equation:

∆ϵi ≈ ⟨ψKS
i |Σ(ϵKSi ) + ∆ϵΣ′(ϵKSi )− Vxc |ψKS

i ⟩ (4.10)
⇒

ϵQPi = ϵKSi + Zi ⟨ψKS
i |Σ(ϵKSi )− Vxc |ψKS

i ⟩ , (4.11)

where

Zi = ⟨ψKS
i | 1− Σ′(ϵKSi ) |ψKS

i ⟩ . (4.12)

Below, we will be studying the solutions to this equation, including the effects of doing
the linear approximation.

4.2 Quasiparticle Weight
The quantity Z has a useful physical meaning: it is the quasiparticle weight. The
quasiparticle weight is the spectral weight of the quasiparticle state. This means that
Z must be 0 ≤ Z ≤ 1 and for a singleparticle state that is an eigenstate of the system
the quasiparticle weight will be 1. Smaller values of Z indicates that the quasiparticle
is further from being a true eigenstate as we will see below in a rigorous manner. This
derivation is based on [51].

The first step is to considerG at zero temperature assuming t > t′ (it is easily extended
to finite temperature and t′ < t):

G(r, t, r′, t′) = ⟨N, 0| eiHtΨ(r)e−iH(t−t′)Ψ†(r′)e−iHt′ |N, 0⟩ . (4.13)

Here |N, 0⟩ is the Nparticle ground state. If we denote the excited state i for N + 1
particles by |N + 1, i⟩ we get via the Lehmann representation the expression

G(r, t, r′, t′) = ⟨N, 0| eiHtΨ(r)
∑
i

|N + 1, i⟩ ⟨N + 1, i| e−iH(t−t′)Ψ†(r′)e−iHt′ |N, 0⟩

=
∑
i

⟨N, 0| eiE
N
0 tΨ(r) |N + 1, i⟩ ⟨N + 1, i| e−iEN+1

i (t−t′)Ψ†(r′)e−iEN
0 t′ |N, 0⟩

=
∑
i

e−iεQPi+(t−t′) ⟨N, 0|Ψ(r) |N + 1, i⟩ ⟨N + 1, i|Ψ†(r′) |N, 0⟩ . (4.14)

Here εQPi+ = EN+1
i − EN

0 . We also define the quasiparticle wavefunctions

ψQP
i+ (r) = ⟨N + 1, i|Ψ†(r) |N, 0⟩ , (4.15)
ψQP
i− (r) = ⟨N − 1, i|Ψ(r) |N, 0⟩ , (4.16)
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where the second quasiparticle wavefunction would arise from considering t′ < t and
it has the associated energy εQPi− = EN

0 −EN−1
i . From the definitions we see that εQPi±

are related to electron addition (+) and removal () energies and with µ the chemical
potential we have

εQPi+ > µ (4.17)

and

εQPi− ≤ µ. (4.18)

If we now take G and Fourier transform with respect to t− t′ and switch to basisfree
notation we arrive again at eq. (4.6):

G(z) =
∑
i

|ψQP
i ⟩ ⟨ψQP

i |
z − ϵQPi

, (4.19)

where it is now understood that ϵQPi = εQPi+ if ϵQPi > µ and ϵQPi = εQPi− otherwise. We have
both rederived eq. (4.6) and derived an expression for the quasiparticle wavefunctions,
which we will use below.

We now turn to the meaning of the quasiparticle wavefunctions. First we consider the
overlap of the quasiparticle wavefunction with an arbitrary singleparticle orbital ϕ:

⟨ϕ|ψQP
i+ ⟩ =

∫
dr ϕ(r)∗ ⟨N + 1, i|Ψ†(r) |N, 0⟩ = ⟨N + 1, i| c†ϕ |N, 0⟩ , (4.20)

where c†ϕ creates a particle in the state ϕ, c†ϕ =
∫
dr ϕ∗(r)Ψ†(r).

We next use the fact that the norm, defined as ||f || =
√
⟨f |f⟩, is also given by

||f || = max
φ

{⟨φ|f⟩, ||φ|| = 1}. (4.21)

Thus the norm of the quasiparticle wavefunction can be expressed as

||ψQP
i+ || = max

φ
{⟨N + 1, i| c†φ |N, 0⟩ , ||φ|| = 1}. (4.22)

That is, the norm of the quasiparticle wavefunction is the maximal overlap between a
singleparticle state added to the ground state and the true excited state. The interpre
tation is that it measures how close the quasiparticle state is to a true eigenstate.

We now seek an expression for the quasiparticle norm in terms of the selfenergy.

The first step is to consider the defining equation for the Green’s function at a general
complex energy z:

[z −H0 − Σ(z)]G = 1. (4.23)
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We can form a representation of G using this equation by considering the eigenstates
of the, generally nonhermitian, operator H0 +Σ(z) at some complex energy z:

[H0 +Σ(z)] |ψn(z)⟩ = ϵn(z) |ψn(z)⟩ . (4.24)

In terms of these states, G has the spectral representation

G(z) =
∑
n

|ψn(z)⟩ ⟨ψn(z)|
z − ϵn(z)

. (4.25)

Here ψn(z) is the dual element of ψn(z) satisfying ⟨ψm(z)|ψn(z)⟩ = δmn (we don’t
necessarily have ⟨ψn| = ⟨ψn| because the operator is nonHermitian). The correctness
of this expression can be seen by multiplying G(z) by z − H0 − Σ(z) and using the
(assumed) completeness of the states ψn(z).

The two spectral representations of G must of course coincide for all z and in general
this means there is no relation between ψQP

i and ψn(z).

However, at z = ϵQPi we must have

|ψQP
i ⟩ ∝ |ψi(ϵ

QP
i )⟩ , (4.26)

as can be readily seen from the defining equations. If we chooseψi(z) to be normalized
we get

|ψi(ϵ
QP
i )⟩ = |ψQP

i ⟩
||ψQP

i ||
. (4.27)

If we now consider the matrix element ⟨ψi(z)|G(z) |ψi(z)⟩ in the two different spectral
representations we get

⟨ψi(z)|G(z) |ψi(z)⟩ =
∑
n

⟨ψi(z)|ψQP
n ⟩⟨ψQP

n |ψi(z)⟩
z − ϵQPn

=
∑
n

⟨ψi(z)|ψn(z)⟩⟨ψn(z)|ψi(z)⟩
z − ϵn(z)

.

(4.28)

Integrating in a contour around ϵQPi and using the orthogonality relations and the residue
theorem we get

⟨ψi(ϵQPi )|ψQP
i ⟩⟨ψQP

i |ψi(ϵ
QP
i )⟩ = 1

1− ϵ′i(z)
, (4.29)

with ϵ′i(z) = d
dz ϵi(z).

From eq. (4.27) we then find an expression for the norm of the quasiparticle wavefunc
tion

||ψQP
i ||2 =

1

1− ϵ′i(z)
. (4.30)
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Expressed in terms of the selfenergy we have

||ψQP
i ||2 =

[
⟨ψi(ϵ

QP
i )| 1− Σ′(ϵQPi ) |ψi(ϵ

QP
i )⟩

]−1

(4.31)

Comparing with eq. (4.12) we see that

Z ≈ ||ψQP
i ||2, (4.32)

if ϵKSi ≈ ϵQPi and ψi(ϵ
QP
i ) ≈ ψKS

i . We will generally refer to Z as the quasiparticle weight,
even though, as we saw here, it is only an approximation.

4.2.1 Restrictions on Z
Eq. (4.32) imposes some consistency requirements on calculated values of Z. Since
Z is (approximately) a state norm we must have Z ≥ 0. Also, as noted above, the
quasiparticle weight is the integral of the quasiparticle peak of the spectral function.
Because the spectral function is normalized we also should have Z ≤ 1. Other than
that, there are no hard requirements. Because of the assumptionsmade, Z should only
be used for relatively weakly correlated systems, i.e. systems that are welldescribed
by KohnSham theory.

4.3 Hedin’s Equations and the GW Approximation
The remaining problem ofmanybody perturbation theory is then to find approximations
to Σ that are accurate and tractable. One choice is simply to expand Σ diagrammat
ically in terms of the bare Coulomb interaction, v, however, it is well known that this
expansion is divergent in metals and generally the convergence is poor.

An alternate approach was developed by Hedin [52], which expands instead in the
screened Coulomb interaction, W . The screened interaction is not only expected to
be smaller, thus leading generally to faster convergence, but one can also use var
ious approximation schemes for the screened interaction, such as model dielectric
approaches or plasmonpole models [48]. Additionally, one can also calculate the
screened interaction using density functional perturbation theory which effectively in
cludes the most relevant parts of the dielectric function without calculating it explicitly
[53–55].

Hedin’s equations will not be derived here but they may be written in the form [48, 52]

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3)d(4, 5, 6, 7), (4.33)

P (1, 2) = −i
∫
G(2, 3)G(4, 2)Γ(3, 4; 1)d(3, 4), (4.34)

W (1, 2) = v(1, 2) +

∫
W (1, 3)P (3, 4)v(4, 2)d(3, 4), (4.35)

Σ(1, 2) = i

∫
G(1, 4)W (1+, 3)Γ(4, 2; 3)d(3, 4), (4.36)

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2)d(3, 4). (4.37)
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Here the notation 1 stands for all the coordinates of particle 1 (e.g. space, spin, time),
and we have introduced the vertex correction Γ and the polarizability P . These equa
tions are to be solved selfconsistently, so that we start with a guess for G, typically
one starts with G0, then calculates Γ, then P ,W , Σ and finally G again.

A common approximation is to fix Γ = 1. This is called the GW Approximation because
the selfenergy reduces to ΣGW = GW . Furthermore, one can also neglect to iterate
to selfconsistency and instead just use the first iteration of the selfconsistency cycle.
This leads to the socalled G0W0 approximation so named because G andW from the
noninteracting system are used. This is approximation used in paper II.

The GW approximation is generally much more accurate than LDA or GGA methods.
Compared to LDA it usually significantly improves the bandgap [48]. The GW approx
imation is also qualitatively correct in certain limiting cases and satisfies important
conservation criteria [48, 56]. Furthermore, GGA is generally designed to improve to
tal energies but not the description of quasiparticles, so for properties derived from
quasiparticle physics, something like GW is probably needed [56].

4.4 Results of GW Paper
A few years ago, a database of computational 2D materials was developed by the
CAMD group and compiled into the Computational 2D materials Database (C2DB) [6].
A wide variety of properties were calculated, ranging from bandstructure to effective
masses and polarizabilities. For 370 of these materials, the G0W0 eigenvalues and
Z values were also calculated and these calculations made up a trove of G0W0 data
much larger than most other published databases. Even though G0W0 is empirically
better than LDA/GGA the desirability of doing G0W0 calculations is offset by the large
computational cost and the unknown factor of how often such calculations produce
unphysical or inaccurate results. For the purposes of highthroughput studies, which
are becoming increasingly more important as computational power increases, it is ben
eficial to study these questions. Highthroughput studies have a tendency to bring out
all sorts of bugs and edge cases you did not expect. The G0W0 data in the C2DB
had not been studied in a statistical fashion and because the size of the dataset one
would expect that useful information was waiting to be found. In paper II we studied
this G0W0 data and in this section we will go through the main results.
Calculation Details
A few details about the implementation of G0W0 in GPAW is relevant insofar as it
informs us of possible errors sources.

The G0W0 data in the C2DB is based on DFT calculations with the PBE functional,
using a 800 eV planewave cutoff and including spinorbit coupling by diagonalizing
the spinorbit Hamiltonian for each kpoint using the states from PBE.

The implementation follows that described in [57]. Three different energy cutoffs for
the screened interaction were used and the results were extrapolated to infinite cut
off. Furthermore, full frequency integration of the screened interaction is used, and
truncations for the exchange and correlation parts of the selfenergy are used to avoid
spurious effects from artificially repeated layers [58]. These truncations lead to slower
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kpoint convergence which is counteracted by handling integration around q = 0 ana
lytically.

The main point of interest for us is the planewave extrapolation scheme, the validity
of which we will attempt to analyse below.

4.4.1 The data
G0W0 eigenvalues were only calculated for materials with a gap greater than 0.2 eV
and less than 5 atoms in the unit cell. In the end, this compromises 370 materials, 14
crystal structures and 52 elements. The distribution of elements is shown in figure 4.1.

Figure 4.1: The distribution of elements in the G0W0 dataset. Source: paper II.

For each material we only selected the 3 topmost valence bands and 3 lowest con
duction bands, reasoning that other bands would be harder to describe numerically,
and thus, e.g. less likely to be fully converged in the automated workflow of the C2DB.
Additionally, for most purposes the bands closest to the Fermi level are the most rele
vant.

Restricting the data in this way leads to 61716 physically distinct eigenvalues and Z
energies, i.e. corresponding to 61716 different IBZ kpoints.

4.4.2 Distribution of Z values
Referring back to the section on quasiparticle theory, sec. 4.1, one of the most perti
nent questions is the distribution ofZ values that can be expected in a typical G0W0 cal
culation. The distribution of the 61716 Z values are shown in figure 4.2. We introduce
two classes in the figure: Quasiparticleconsistent (QPc) Z values and Quasiparticle
inconsistent (QPic). QPc values range from 0.5 to 1.0, and QPic values are anything
outside this range. QPc values are intended to denote states where a quasiparticle
description is ”good”, in the sense that quasiparticle eigenstates are not far from the
true manybody eigenstates. This range is chosen heuristically, and generally there is
no hard cutoff for when a quasiparticle description becomes bad. 97.5 % of Z values
are QPc.
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Figure 4.2: The observed distribution of quasiparticle weights, Z, in the C2DB G0W0

dataset. Source: paper II.

We also see that some fraction of the Z values are strictly unphysical, in the sense that
they cannot correspond to a quasiparticle norm. Z < 0 implies a wavefunction norm
less than zero, which is mathematically impossible and Z > 1 implies that more than
all the spectral weight is in quasiparticle peak. Hence we denote a Z with Z > 1 or
Z < 0 as unphysical. It is a relatively small fraction of points that are unphysical: less
than 0.3% are outside the physical range.

In summary, most Z values are ”good” in the sense of being physical and QPc. The
fraction of such states will most likely depend on the materials studied; strongly corre
lated systems should generally have lower quasiparticle weights. Knowing the typical
distribution of Z values is still relevant for future highthroughput studies, and we can
already suggest some important considerations for screening workflows. We saw that
QPic states do form a notinsignificant fraction (2.5 %) of all states. From the physical
reasoning described in sec. 4.1 alone, G0W0 might not be adequate for such states
and perhaps some form of selfconsistent is needed. Furthermore, we show below that
the largest errors in the solution of the Quasiparticle equation are associated with QP
ic states. Both physical reasoning and empirical data suggests that QPic eigenvalues
are probably not accurate.

The next question is then what causes QPic or unphysical Z values. In general, we
found no correlation between the Z values and obvious quantities such as the PBE
energies or the G0W0 correction. Furthermore, while we generally see a higher per
centage of magnetic materials having QPic states see fig. 4.3, there are no other
obvious patterns. A previous study had found that unphysical Z values could stem
from a poor PAW basis set [59–61], but we found no such correlation either.
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Figure 4.3: The percentages of QPic Z values for the indicated elements. Source:
paper II.

In general then, we cannot say when QPic Z will occur, except that it is more likely
for magnetic materials and in general occurs in about 3% of calculations.

The final thing we note is that while a QPic Z probably implies that the G0W0 eigen
value is less trustworthy, a QPc Z does not necessarily imply that the G0W0 eigen
value is correct as we will see below.

4.4.3 Frequencydependent SelfEnergies

To try to investigate when G0W0 with the linear approximation to the quasiparticle equa
tion might fail, we have calculated full frequency dependent selfenergies for 12 of the
370 materials. This was done with a simple adaption of the current G0W0 implemen
tation in GPAW which follows [57]. Two of these materials were chosen because they
had unphysical Z (Z ̸∈ [0, 1]) and the remaining 10 were chosen because all Z were
physical (Z ∈ [0, 1]). In this way, we hope to get a somewhat representative sample.
More data is always nice, but practical considerations restricted us to calculate the
frequency dependent selfenergy for only a few materials. The chosen materials are
summarized in table 4.1.

In figure 4.4 and 4.5, a few selfenergies are plotted.
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Material Prototype Mag. state PBE gap [eV] G0W0 gap [eV]
HfBrI MoSSe NM 0.71 1.61
HfClI MoSSe NM 0.81 1.78
ZrBrCl MoSSe NM 0.91 1.88
ZrClI MoSSe NM 0.88 1.74
FeCl2 MoS2 FM 0.35 0.00
MnBr2 MoS2 FM 1.59 2.02
MoS2 MoS2 NM 1.58 2.53
PdSe2 CdI2 NM 0.56 1.61
Al2Se2 Ga2S2 NM 1.99 3.54
Ga2S2 Ga2S2 NM 2.32 4.08
Ga2Se2 Ga2S2 NM 1.76 3.44
In2S2 Ga2S2 NM 1.67 3.15

Table 4.1: A summary of the materials for which frequencydependent selfenergies
have been calculated. Adapted from paper II.
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Figure 4.4: Splineinterpolated calculations of the frequency dependent selfenergies
for a few example states. The Z for each are indicated in the inset box.
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Figure 4.5: A set of frequency dependent selfenergies that exemplify cases where
the linear approximation is good.

To understand the figures, first recall the equation for the quasiparticle energy, eq.
(4.9), in the G0W0 approximation

ϵQPi − ϵKSi = ⟨ψKS
i |ΣG0W0

(ϵQPi )− Vxc |ψKS
i ⟩ . (4.38)

The solutions to this equation are given by the intersection a slope 1 line

f(ω) = ω − ϵKSi , (4.39)

and the function

Σ(ω) := ⟨ψKS
i |ΣG0W0

(ω)− Vxc |ψKS
i ⟩ . (4.40)

The slope 1 line is indicated by a red line in the plots and the blue curve denotes Σ(ω).

The true solution to eq. (4.9) is given by the intersection of the red line and the blue
curve, which is highlighted by the red circles in the various plots. As is evident from
some of the plots, sometimes multiple solutions exist. In these cases we have selected
the solution closest to the KohnSham energy. Since (4.9) rests on the assumption that
the KohnSham states are close to the quasiparticle states, this seems like the ”best
guess” and corresponds to the solution with the smallest G0W0 correction.

The solution afforded by the linear approximation, eq. (4.11), can be thought as the
intersection between the red line and another linear function, as we can see from eq.
(4.11):

ϵQPi − ϵKSi = ⟨ψKS
i |ΣG0W0

(ϵKSi ) + (ϵQPi − ϵKSi )Σ′(ϵKSi )− Vxc |ψKS
i ⟩

=Σ(ϵKSi ) + Σ′(ϵKSi )(ϵQPi − ϵKSi ). (4.41)

Looking at the last expression we see that it is simply the linear approximation at the
KohnSham energy to the full selfenergy. This line is shown in black in the figures,
and the corresponding solutions (redblack intersections) are shown with black circles.
Finally, the Z values are also shown in the plots.
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A couple of things are worth noting. First of all, sometimes, as in fig. 4.4a, the linear
approximation does very well. In other cases, the linear approximation performs poorly,
and these examples also highlight the point we made above, that a QPc Z does not
necessarily entail a good G0W0 eigenvalue (in the linear approximation). We also see
that large errors seem to occur whenever the KohnSham energy is close to a cusp in
the selfenergy.

However, these examples are handpicked both to illustrate the different cases that
can occur and to make nicelooking plots. In general, the linear solutions are quite
good as we illustrate in figure 4.5. Below we will quantify this statement and look at
the errors due to the linear approximation across the set of 12 materials.

4.4.4 Analysis of errors due to linear approximation
Let us now quantify the errors of the linear approximation. The error distribution for
QPc and QPic states are shown in figure 4.6. The distributions quantify the statement
we made above, that QPc states generally have a lower error. The mean absolute
error (MAE) for QPc and QPic is 0.04 eV and 0.27 eV respectively.
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Figure 4.6: Errors arising from the linear approximation to the QPE for QPc and QPic
states. Source: paper II.

The next question we try to answer is whether there are any simple and efficient
schemes for reducing this error.

First of all, the linear approximation can also be viewed as one iteration of the Newton
Raphson (NR) method. To find the true solution one could simply iterate NR multiple
times until the energy is converged, however it would be preferably not to do this as
it would reduce computational efficiency. We will, however, investigate the effects of
one additional iteration of NR, as this might not be too expensive.

The second method we have investigated is motivated the narrow distribution of Z
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values, see again figure 4.2. As we noted above, large errors can occur when the
KohnSham energy is at a cusp in the selfenergy. Since the Z values are narrowly
distributed, one could hope that replacing the calculated Z value with the empirical
mean of Z, namely Z0 = 0.75. A slightly more refined method is to only replace the
calculatedZ for QPic states, as these are the ones we expect to have large errors. We
have dubbed this method ”empirical Z” or ”empZ” since it uses the empirical distribution
of Z values. When only applied to QPic states we call it ”empZ@QPic”.

The final method we show here is the ”ΣdE”, which gives the correction to the linear
solution as

δ = Σ(ϵQP, lin)−
(
Σ(ϵKS) + Σ′(ϵKS)(ϵQP, lin − ϵKS)

)
. (4.42)

Here ϵQP, lin is the quasiparticle energy in the linear approximation, note that this means
we have to evaluate the selfenergy at one extra point in addition to the KohnSham
energy. The motivation for this expression is that it approximates the true solution by
essentially approximating Σ with a second order polynomial using points at ω = ϵKS

and ω = ϵQP, lin. We have also tested polynomial approximations using points near ϵKS
but none showed any systematic improvement in the solutions.

The errors after applying these methods are shown in figures 4.7 and 4.8. The plots
only show the main range, and some outliers are omitted. The single iteration Newton
Raphson (NR1), which is equivalent to the linear approximation, is shown in each plot
to facilitate comparison with the standard linear approximation.
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Figure 4.7: Error distributions after applying error correcting schemes. NRX stands for
X iterations of NewtonRaphson where NR1 corresponds to the linear approximation
to the QPE. The empirical Z (empZ) method is described in the main text. Source:
paper II.

NR2, figure 4.7a, improves the error distribution and reduces the MAE significantly, as
one would expect.

The empirical Z method, shown in figure 4.7b, despite being so simple and despite
adjusting all Z, actually works well if you consider the overall MAE. However, inside
the main range, where most points fall, it seems to produce larger errors. When we
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instead apply empZ only to the QPic states, as shown in figure 4.7c, the errors in the
main range are virtually unchanged but the overall MAE is reduced, showing that the
outliers are reduced by the empZ@QPic method. This is quite promising because
empZ requires no additional calculation and can be applied as a postprocessing step
to a regular G0W0 calculation.
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Figure 4.8: (a) Shows the distribution of the ”overshooting” factor for ΣdE, α, defined
in the main text. (b) and (c) show the error distributions of ΣdE and the corrected ΣdE.
Also shown for comparison, in blue, is the errors for the linear approximation to the
QPE. Source: paper II.

The results of the ΣdE correction scheme is shown in figure 4.8b. Errors are generally
reduced but there seem to be some systematic overcorrection, since the peak in the
main range is shifted. This motivated correcting the ΣdE by considering the empiri
cal overcorrection values α = Error(ΣdE)/True error. Note that we have one α for
each state. The distribution of these errors is shown in figure 4.8a. We fitted a gaus
sian, shown in red, to the distribution and extracted the average value, α0. Defining a
corrected ΣdE as

δcorrected = δ/α0, (4.43)

we get the errors shown in figure 4.8c, showing a significant improvement. To ver
ify that there were no systematic biases introduced by calculating α0 from the same
dataset it was applied to, we split the dataset randomly into two sets of equal size, the
”training” set and the ”test” set. We then calculated α0 from the training set and applied
it to the test set. The entire procedure was repeated multiple times and the MAE was
always in the range 0.02  0.03 eV. We also tested on dataset of varying size, whence
the error was < 0.03 eV as long as more than ∼5% of the points were used in the
training set. In the future it may be desirable to do a more statistically rigorous test.

A summary of the results are shown in table 4.2. The number of required selfenergy
evaluations plus the number of required quasiparticle weight evaluations for each
method is also shown in the table. Since Z can usually be acquired at neglible com
putational cost if one calculates Σ and the empZ@QPic just requires Σ and Z, this
method seems the most promising. One can use it to correct energies that are likely to
be large at essentially zero additional cost compared to a standard G0W0 calculation.
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Method MAE [eV] #Σ/Z evals
1st order 0.11 2
empZ 0.09 1
empZ@QPic 0.06 2
ΣdE 0.05 3
ΣdEcorr. 0.03 3

Table 4.2: Mean absolute errors (MAE) and effective number of selfenergy (Σ) evalu
ations for the various methods proposed in the main text. Adapted from paper II.

The empZ@QPic method has been implemented as part of a recipe in ASR (see paper
IV. A prominent example where G0W0 fails is MoS2 and standard G0W0 bandstructure
along the the empZ@QPic bandstructure is shown in figure 4.9.0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4.9: Standard G0W0 bandstructure for MoS2 is shown in blue. The empZ
corrected bandstructure is shown in the orange. Adapted from paper III.

4.4.5 The planewave extrapolation and scissoroperator
approximation

In paper II we also studied the effects of the planewave extrapolation and the scissor
operator approximation. We will not repeat the results here, but merely mention that
the planewave extrapolation scheme is generelly wellfounded, at least judging from
the linearity measures of the selfenergy and the derivative of the selfenergy as a
function of planewaves.

The scissoroperator approximation, where the G0W0 correction is calculated for a
single kpoint and this correction is applied to all other kpoints, is generally not valid,
unless relatively large errors on the order of an electronvolt, are acceptable.
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4.4.6 Summary of Paper II
In summary, we discovered no general trends in when quasiparticle energy calcula
tions fail, except that magnetic materials seem harder to describe. We also proposed
a postprocessing error correction method for the eigenvalues which was based on
whether the calculated Z value was quasiparticleconsistent or not. We also found
that planewave extrapolation is a valid approach but the scissoroperator approxima
tion generally produces large errors.

For the purposes of highthroughput studies, the workflow could include a postprocessing
step that applied the empirical Z method to get the most out of the calculations and cir
cumventing the need for laborious convergence studies which may not be desirable in
screening studies. It is generally not advisable to use the scissoroperator approxima
tion to cut down on calculation time, but planewave extrapolation should be used and
it might even be possible to use lower cutoffs than that used in the C2DB. In the future
it might be interesting to study whether this statement can be made rigorous. It would
also be interesting to see how the results presented here change when separating ma
terials into classes that are physically distinct. For example, it would be interesting to
look at a large set of magnetic materials compared to a large set of nonmagnetic mate
rials, or materials that are known to be strongly correlated vs. less strongly correlated
materials.
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5 Automation of Material
Simulations

Studies in material design are beginning to involve a wide range of physical properties
spanning from Raman spectra to polarizability to stiffness calculations. The large span
of properties touch a variety of areas of physics and it becomes prohibitively difficult for
any single researcher to be an expert in all these domains. One solution is to reduce
the number of properties that one investigates, but often it is desirable to get as much
out of the data as possible. Another option is to work in large collaborations so as to
include experts on every domain of interest.

A different approach, which is taken by the Atomic Simulation Recipes (ASR) python
package described in paper IV, is to formulate different property calculations as rela
tively small, isolated calculation steps called recipes which are implemented as python
modules. A recipe might, for example, perform a ground state calculation or a struc
ture optimization. The recipes are implemented by appropriate domain experts and, if
the recipes are sufficiently robust and require little userinput, endusers can leverage
the expert knowledge independently of the experts. This can greatly extend the reach
of any single researcher but also increases the utilization of the expert’s knowledge
beyond what the expert can achieve on their own with only 24 hours in day.

ASR was conceptualized, largely singlehandedly, by Morten Gjerding who also imple
mented the core functionality.

The chapter starts with an overview of the ASR infrastructure and a brief comparison to
other, similar tools. The remainder of the chapter deals with my principal contributions
to ASR, namely recipes for enhanced stability analysis and effective mass recipes.
Other contributions are also briefly mentioned but the bulk of the details are left to
other chapters to avoid needless repetition or confusing crossreferencing. The ASR
package is the subject of paper IV. Finally, the results of papers I and III, both of which
used ASR, are discussed.

5.1 Introduction to ASR
ASR is essentially a framework for organizing electronic structure calculations and
therefore it does not implement the electronic structure methods themselves but rather
interfaces with external codes that do the computations. Currently only GPAW [18] is
supported but other codes such as ABINIT [62] or Octopus [63] could in principle also
be used. The interface with external codes happens either directly with the codes or
through ASE [64]. Recipes in ASR handle setup, management, analysis, pre and post
processing in a close to fullyautomated fashion. The user accesses the recipes and
the results through various user interfaces: the command line, via python scripting, or
by using the app module of ASR. Various tools are also implemented to perform data
migration and work with databases.
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This infrastructure is shown in figure 5.1.
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Figure 5.1: The architecture of ASR. Source: paper IV.

As mentioned above, isolated property simulations are defined in socalled recipes.
Recipes are simply python modules that perform some wellspecified, generally useful
task. An example of a simplified recipe that calculates the ground state energy by
directly interfacing with GPAW is shown in the following code listing.

1 from asr.core import command , option, AtomsFile
2 from ase import Atoms
3

4 @command('asr.gs')
5 @option('-a', '--atoms', type=AtomsFile , default='structure.json')
6 def main(atoms: Atoms):
7 from gpaw import GPAW
8 calculator = GPAW(mode=PW(400), xc='LDA', txt='asr.gs.out')
9 atoms.calc = calculator

10 e = atoms.get_potential_energy()
11 return e
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Such a recipe can be run on the command line with the command

$ asr run gs

A recipe can equally well be submitted to a job scheduler such as slurm. One can for
example use myqueue [65]:

$ mq submit asr.gs -R 40:1h

which submits the asr.gs recipe to 40 cores with a maximum time limit of 1 hour.

ASR automatically intercepts the returnresult and serializes it to a jsonfile which can
subsequently be used to inspect the data. Generally, the author of a recipe is encour
aged to document the return result of a recipe by defining an ASRResult class and
returning an instance of this. This also facilitates reading and using the results in a
script.

Obviously, this is not an exhaustive explanation of the various interfaces to ASR nor
is a full description of what a recipe can do. An important thing we have neglected
in this discussion is how to write a webpanel to display the results in a web browser.
Such a webpanel can include plots, tables, and text descriptions of various elements.
Examples abound on the C2DB website [66] and we show one material in figure 5.2.

The preceding discussion is attempt to explain the strength of ASR: with the correct
formalization of a property calculation and the powerful ASR infrastructure, running and
analysing complex simulations becomes significantly easier, allowing the researcher
to focus on the science rather than the implementation. The main point of ASR is then
a strict and robust specification of how to calculate a given property. This greatly aids
reproducibility and tools that allow for data provenance tracking are also implemented
in ASR; ASR adheres to the FAIR principles [67].

Other research groups have developed tools that address similar problems.

atomate [68] has a large overlap with ASR. Like ASR, atomate defines specific calcu
lation tasks (recipes in ASR, workflows in atomate). Unlike ASR, atomate is also a job
manager that handles submission of jobs to a compute cluster. ASR is agnostic about
job management and CAMD has been using myqueue [65]. A downside of atomate is
that it relies on the licensed software VASP [68–70] whereas ASR is fully opensource.

AiiDA [71, 72] is another software package in the same space. AiiDA seems to be
more code agnostic and is more focused on workflow management, data provenance,
and data management. A weaker coupling to specific implementation (code agnosti
cism) can be a huge strength when testing and benchmarking different versions of a
method as also noted in [71]. On the other hand, if one is doing standard methods
code agnosticism may lead to additional upfront work.

In summary, there seems to be large overlap between ASR and other solutions but
scopes and approaches differ. ASR is focused only on doing, storing, and displaying
calculations whereas other packages also include a HPC job management component.
ASR is generally for doing specific, welldefined, welltested tasks in an efficient, easy
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way. This makes it less suited for methoddevelopment but ideal for almost all other
materials science tasks.

Figure 5.2: An example of an ASR webpanel. Source: paper IV.

5.2 Enhanced Stability Analysis
In computational design of new materials, robust theoretical assessments of material
stability is obviously important: if the proposed material is unstable it can be hard or
impossible to manufacture in the lab. Two approaches commonly employed are ther
modynamic and dynamic stability measures which describe whether the material is

68 New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials



energetically and structurally stable, respectively. In this section we describe a set of
recipes in ASR which allow for an additional stability assessment to be made, namely
whether the material is stable in the presence of a reservoir of other materials. The
most relevant example is an Oxygen reservoir which often occurs in Earth’s atmo
sphere wherein most labs are located.

We start with a brief review of the standard stability measures to set the stage and
introduce relevant definitions.

5.2.1 Thermodynamic Stability
One thing that is often important, is to determine whether it is energetically favorable
to form the material in question. The answer to this is given by the heat of formation
which, in C2DB and for our purposes, is the change in energy per atomwhen producing
the material from the reactants. The reactants are always the standard phases of the
given reactant. If we take MoS2 as an example, we would compare the energy of the
MoS2 crystal with those of bulk crystals of Mo and S. These energies are calculated
at zero temperature with DFT which is usually good enough. This discussion leads us
to define the heat of formation, Ehof, as

Ehof =
1

N

(
Eproduct −

∑
r∈reactants

Estandard r

)
. (5.1)

We see that a negative heat of formation implies that is energetically favorable to have
the product rather than the reactants. However, and this is a big however, in the pres
ence of other possible products stability is not implied by a negative heat of formation.
Instead we have to consider the convex hull of possible products.

A convex hull of a set of points is the smallest convex set that contains those points.
Intuitively it corresponds to taking an elastic sheet (as from a trampoline) and stretching
it as much as possible over the points, see figure 5.3. Mathematically, a convex set,
C, is a set

∀p1, p2 ∈ C : tp1 + (1− t)p2 ∈ C∀t ∈ [0, 1], (5.2)

i.e. given two points p1, p2 from C all points between them are in C as well. The hull
for a set of points, as mentioned, is the smallest such set. As illustrated in the figure it
contains the ”outermost” points.

To explain the relation of the convex hull to stability considerations, let us take as an
example Ir2S2 (https://cmrdb.fysik.dtu.dk/c2db/row/Ir2S2bf9a5b4e8e88). We want to
compare the energy of Ir2S2 to that of Ir and S, so we define an xaxis that indicates
the content of S, say. Various points on the xaxis will correspond to different mate
rials of the form Ir1−xSx. On the yaxis we plot the energy of the given material. By
definition, the reference phases Ir and S have zero heat of formation. Because, as
one can calculate, Ir2S2 has negative heat of formation it will be below the two points
corresponding to Ir and S, see figure 5.4. However, multiple other IrS compounds
exist. If we for simplicity consider only Ir4S6 located at x = 6/10 = 0.6 we see that the
lower edge of the convex hull lies below Ir2S2. This is emphasized because if we have
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Figure 5.3: An illustration of the convex hull concept. The convex hull is the smallest
convex set enclosing the data.

any material corresponding to x ∈ [0.0, 0.6] it will always be energetically favorable to
form Ir (in the reference) and Ir4S6 rather than, say, Ir2S2. This is because the lower
edge of the convex hull is the energy of a particular linear combination of Ir and Ir4S6,
refer to the definition of the convex hull. The relative amounts of Ir and Ir4S6 that is
formed is, of course, determined by x.

We see that for a 2component system, the hull is 1dimensional. In general for an
N dimensional system the hull is N − 1dimensional. In higher dimensions we are still
interested in the lower edge of the hull, where the ”lower” edge is in general defined
as the surfaces with outward normals that have a negative component in the energy
direction. In the 1D example the energy direction was along the yaxis.

Strictly speaking a material is stable when it lies on the hull. However, practically
speaking it is possible to fabricate materials that are not on the hull, i.e. metastable
materials. In C2DB a classification scheme for thermodynamic stability was defined
based on experimentally synthesizable monolayers [6]. If the material has a heat of
formation larger than 0.2 eV/atom the material is considered to have ”low” stability. A
heat of formation relative to the convex hull of less than 0.2 eV/atom is considered
to have ”high” stability. Materials that fall into neither of these classes have ”medium”
thermodynamic stability. There are several reasons to not impose the strict stability
requirements mentioned above. First of all DFT has limited accuracy so materials that
are predicted to be a little bit above the hull may in fact be on the hull. Secondly, ma
terials are often fabricated on substrates which can dramatically change the preferred
structure. Additionally, reaction barriers may be large such that a given material is
stable for practical purposes [6].
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As a final note, the stability assesment discussed above is limited by the number of
materials one compares to. It is possible that the convex hull can be lowered by adding
more references, but it can never be raised. The stability assesments are always best
guesses or, to put it another way, upper bounds.

5.2.2 Dynamical Stability
The dynamical stability is not strictly relevant for the work in this thesis but we include
a brief explanation for completeness and context.

Dynamical, or structural, stability is based on the phonon modes of the material. A full
description of phonon physics is outside the scope of this thesis but essentially one
considers various displacements of the atoms in the structure. If the forces tend to
restore the structure to its original configuration, the structure is dynamically stable.
However, if there exists a displacement mode where the forces are not restoring, the
structure is unstable. The relation to phonons is of course that phonons are oscillatory
atomic displacement modes. DFT calculations at these displacements allow one to
calculate the dynamical matrix which essentially the Hessian of the energy with respect
atomic positions.

Even though the structures in C2DB are structurally optimized, the optimal structure
may not be a minimum energy structure because imposed symmetry and limited unit
cell size may constrain the optimization such that a saddle point rather than a minimum
is found [6].

As with thermodynamic stability three different stability levels are defined. The eigen
values of dynamical matrix correspond to the squared frequencies of the phononmodes.
A negative eigenvalues will then correspond to an imaginary frequency, which indi
cates an unstable mode. However, as with the heat of formation, some experimentally
known materials would be predicted to be unstable if we just use the sign of the eigen
values. Therefore the definition of the three dynamical stability levels in C2DB are are
guided by calculations done on experimentally synthesized monolayers. Thus ”low”
stability corresponds to a minimum eigenvalue of the dynamical matrix of less then
2 eV/Å2 and ”high” corresponds to a minimum eigenvalue greater than −10−5 eV/Å2.
”Medium” are those materials that are not ”low” and not ”high” [6].

5.2.3 FERE
Accurate prediction of a materials stability is obviously of fundamental importance
when doing computational materials design but DFT is known to have certain short
comings. There are errors both when calculating the energies of the compound phase
(e.g. Ir2S2) and when calculating the energies of the reference phases (e.g. Ir, S).
When the compound and the references are of the same type (e.g. both are metals)
these errors tend to cancel. However, if the compound and references have different
character large errors in the heat of formation can occur [73, 74]. For example, metal
oxides have quite different bonding than in pure oxygen and in the pure metal [74].

In [73] a method was proposed to alleviate this problem: Fitted Elemental Reference
Energies (FERE). The idea is to adjust the energies of some or all of the reference
states by fitting certain heats of formation to experimental heats of formation. This is
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done by finding a leastsquares solution to the set of equations

Reaction 1: E1
exphof =

1

N1

(
E1

product −
∑

r∈ references

E1
r

)

Reaction 2: E2
exphof =

1

N2

(
E2

product −
∑

r∈ references

E2
r

)
...

Reaction n: E1
exphof =

1

Nn

(
En

product −
∑

r∈ references

En
r

)
(5.3)

The lefthand sides are the experimentally measured heats of formation. These are
typically done under ambient temperature and pressure which is hard to simulate in
DFT, but the difference in energy from zero temperature and pressure is usually negli
gible [73]. The righthand sides consist of calculated energies of the products, Ej

product
and the reference energies, Ej

r . The reference energies are then adjusted to match
the lefthand side. Because the same reference usually occurs in multiple reactions it
is in general not possible to exactly satisfy all equalities which is why a leastsquares
solution is sought.

The reference energies thus found are not physical, i.e. they cannot be used as accu
rate energies for the reference phases. Rather they contain a bit of the error present
in the product so as to cancel this error [73]. This procedure was shown to greatly
decrease the mean absolute error (MAE) of the heat of formation from about 250
meV/atom to 54 meV/atom [73].

As part of the work done for this thesis on enhanced stability analysis FERE was
implemented in ASR as the recipe asr.fere. The user supplies a list of elemental
references to adjust, a list of target heats of formation, and finally a ASE database
containing materials. The output is a database with FERE heats of formation. Since
the core algorithm is just leastsquares it is not of great interest to discuss furhter here
but the recipe was used in the work described below that deals with the presence of
reservoir.

5.2.4 Stability in the Presence of a Reservoir
A question that is not usually addressed in stability assessments is how stability is
affected when the material in question is placed in contact with a reservoir of some
other chemical. The most commonly encountered reservoir is the atmosphere which
besides relatively inert gasses, contains oxygen which is highly reactive. A very rele
vant question for experimental synthesis is therefore whether the material will oxidize
when exposed to the atmosphere. The question can be generalized to whether a ma
terial will, when in contact with a reservoir containing some type of particles, react
with those particles and form new compounds. This process essentially destroys the
original material, so it is generally not desirable. Besides oxygen, it could be useful to
know whether one’s material will react with other gasses if one for example is doing
chemical vapor deposition on top of an existing material.
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So far we have been dealing with fixed stoichiometries, that is, fixed amounts of the
various components (e.g. Ir, S). When dealing with a reservoir, there is an essentially
infinite amount of the reservoircompound available but the tendency of the reservoir
compound to interact with the experimentalcompound is not infinite and can be de
scribed by the chemical potential. The chemical potential essential describes the en
ergy of the reservoircompound when it is inside the reservoir . A very low chemical
potential thus qualitatively means that there is a very low reactivity between the reser
voir and the experimental system and similarly for a high chemical potential. In general,
the governing principle is that in equilibrium the total free energy, Φ = E − µrNr, is
minimized. Here µr stands for the chemical potential of the reservoir and Nr for the
amount of reservoircompound. The internal energy E can be minimized by reacting
or disintegrating different parts in the system (Ir2S2 ↔ 2Ir + 2S). However, the reac
tion paths that are available will depend on the amount of reservoircompound Nr.
This makes the problem slightly more complicated to think about, but thankfully the
convex hull construction described above can make the minimizing solution easy to
understand.

We consider again figure 5.4 but now we imagine that the amount of Ir is fixed but it is
in contact with a reservoir of sulphur gas. We now interpret the height of the sulphur
gas circle (S48 in the figure) as the value of the chemical potential and thus it is no
longer fixed to be zero but for now we assume it is still zero.

Figure 5.4: The convex hull for IrS. Adapted from [66].

For any given sulphur concentration x the minimum energy configuration is given by
the convex hull as we discussed before. However, the equilibrium state is now found
by additionally minimizing over the convex hull. To realize this we note that adding
additional sulphur atoms is essentially ”free” (because we temporarily assumed for
simplicity that the chemical potential is zero), so if we can decrease the height of the
hull by changing the sulphur concentration this will be favorable with respect to the
free energy. Thus the equilibrium state of Iridium in contact with a sulphur reservoir is
Ir8S16 as we can see from the figure.
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When the chemical potential is nonzero there is a ”cost” in free energy incurred by
changing the sulphur concentration; the cost is just the negative chemical potential,
−µS . However, we can incorporate this cost into the convex hull by simply adjusting
the height of each point on the convex hull by −µSx where x again is the sulphur
concentration. In this adjusted convex hull the free energy minimizer is again the
minimum on the hull.

The above construction obviously generalizes to any reservoircompound and the gen
eralization to higher dimensions is also straightforward. As an example, let’s go one
dimension up and consider MoTe2 in the presence of O2. The Mo to Te content is fixed
to the ratio 1:2 but the oxygen content is variable since it is sourced by a reservoir. As
we now have 3 different elements, the convex hull is twodimensional as discussed
above. One normally plots the convex hull view from above, where the edges joining
adjacent faces of the convex hull are shown as lines, see figure 5.5a. Obviously this
destroys any information about the height of the hull, i.e. the heats of formation. The
equilibrium state is then found by minimizing along the onedimensional subspace on
the convex hull that goes from pure MoTe2 to pure O2, see the dashed lines in figure
5.5b. To determine whether the material is stable in oxygen we need to determine
the height of the convex hull at the intersections between the dashed line and the hull
edges, these are shown as red crosses in figure 5.5b. We don’t need to calculate
the intermediate energies because of the way the convex hull is constructed: it is the
minimal convex set containing the points thus the surfaces that join the edges are flat
planes. If we then plot the height of the convex hull along the dashed line we get figure
5.5c. Along this line we minimize the free energy E − µNO2

and we get the point at O
content ≈ 0.75. From figure 5.5b we can see that this is a combination of Mo8O24 and
O10Te4, and we conclude that this is the equilibrium state (for this chemical potential
of O2). In other words, we predict that if you expose MoTe2 to air it will oxidize.
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Figure 5.5: (a) shows a convex hull for TeO. (b) shows a line indicating the relevant
material compositions when Mo2Te4 is in contact with an oxygen reservoir. (c) shows
the height of the convex hull when following the dashed line in (b).

It is possible to adjust the chemical potential, and the most accessible way to change
the chemical potential of a gas is to change the pressure. An obvious question is then
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how much we would have to reduce the chemical potential of O2 to make MoTe2 sta
ble. The Mo8O24  O10Te4 mixture that makes up the equilibrium state has an oxygen
percentage of ≈ 0.75, which means that the free energy of this state changes linearly
with the oxygen chemical potential with a slope of 0.75. Thus we can easily calculate
the change in chemical potential needed to stabilize MoTe2:

∆µ =
−0.3 eV/atom − (−0.7 eV/atom)

−0.75 atom−1 ≈ −0.5 eV. (5.4)

We call this the µadjustment measure which is one way to quantify how difficult it is
to make a material stable or how likely it is oxidize. Below we discuss some evidence
that this measure correlates with actual stability in experiments.

The procedure described above is implemented in ASR as the recipe asr.chc, where
”chc” stands for Convex Hull Cut which refers to the onedimensional cut along which
we minimize to find the equilibrium state.

5.2.5 Summary of results from Enhanced Stability Analysis
The work discussed above was done in collaboration with Morten Gjerding. However,
we did not find any application that we felt warranted its own publication so the results
we discuss here are not unpublished.

The first question we tried to address was whether the µadjustment actually correlates
with realworld stability. One would certainly expect that the measure as defined is
relevant for stability, since it is simply related to the free energy gain a mixture can
get by reacting with Oxygen or whatever the reservoir material is. In this way it is on a
similar basis as the other, standard stability measures as there is, as far as I am aware,
no systematic comparison of these vs. experimental stability.

One reason for this could be that materials are never fabricated in an ”ideal” way, mean
ing, first of all, that materials may have defects or consist of an uncontrolled mixture of
competing states due to technical limitations. Secondly, materials are often fabricated
on a substrate which can greatly influence stability. Thirdly, that a material has been
synthesized and measurements have been performed does not necessarily mean that
it is stable: it may rapidly degenerate or it may necessitate special protection and infor
mation like this is not always reported in literature (because it is ”common” knowledge
for experimentalists). Finally, even if a material is ”unstable” it may degenerate only
over many hours, days or months and it such cases it is not clear what demarcates
stable materials from unstable ones.

Nevertheless, we attempted to go through the literature and determine if there was
a correlation between the µadjustment and the reported stability. The results are
reported in table 5.1. Note that it is not always known which structure has been syn
thesized. In those cases and where we have multiple theoretical structures we report a
high/low for the µadjustment. Recall that higher is better (more stable) and a negative
µadjustment means the material is strictly speaking unstable. The table thus shows
best and worst case ∆µ, predicted stability based on ∆µ, experimentally reported sta
bility, and references.
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Before discussing the results we will go through each item and list the reasons for
the reported experimental stability as it is not always completely clear how one should
interpret the experimental report.

• PtSe2: Stable

[75]: does not mention anything about oxidation or special synthesis require
ments such as ultrahigh vacuum. This is not in itself conclusive.

[76]: reports ”airstable” PtSe2.

• hBN: Stable.

[77]: reports ”strong oxidiation resistance” of BN nanosheets.

• GaN: Stable

[78]: ”evident upon ... exposure of 2D GaN to air, where no detectable
oxidation ... is observed”.

[79]: A study of oxidation of GaN where they have to use high temperatures
(7001000◦ C) to oxidize the material which suggest stability at room tempera
ture.

• Ge: Unstable

[80]: First principles study reporting a low barrier and exothermic reaction
with O2.

[81]: Uses synthesis methods similar to silicene, i.e. ultrahigh vacuum
which suggests instability in air.

• MoS2: Stable

[80]: ”MoS2 shows good stability in air at room temperature...”.

[82]: Oxidation of MoS2 edges occur rapidly but long exposure times are
required for oxidation beyond that.

• P4: Unstable

[83]: Black phosphorous ”tends to be oxidized in the atmosphere”.

[84]: Study of oxidation mechanisms of P4.

• Si2: Unstable

[81]: reports that Si2 requires ultrahigh vacuum to synthesize.

[85]: ”A dramatic change in the silicene composition can be deduced already
after 3 min exposure to air.” However exposure to pure oxygen showed little
reactivity so perhaps the picture is unclear, e.g. water could play a significant
role.

• VS2: Stable

[86]: Synthesization of VS2 with no explicit preventation of oxidation.
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Mater. ∆µ Pred. Stab. Exp. Stab.
PtSe2 0.3/1.0 Unstable Stable
hBN 0.7 Unstable Stable
GaN 2.15 Unstable Stable
MoS2 0.55 Unstable Stable
VS2 0.79/1.47 Unstable Stable
Ge 3.19 Unstable Unstable
P4 2.71 Unstable Unstable
Si2 5.09 Unstable Unstable

Table 5.1: Reference materials with predicted stability from the convex hull cut and
experimentally found stability. See main text for experimental references.

[87]: Another study reporting synthesization of VS2 with no explicit preven
tation of oxidation.

As we can see it is not always clear from an experimental report whether the material
is stable or not. Additionally, from table 5.1 we see that basically all materials are
predicted to be unstable, a point we will see repeated later. The reason is probably
that oxygen is highly reactive and most things will react with oxygen given the chance.
However, reaction barrier heights are also relevant for determining whether a material
will react on short timescales and our measure does not provide any information on
the reaction barrier height.

We do see a rough, qualitative correspondence between low |∆µ| and stable materials,
and high |∆µ| and unstable materials. For example one could choose |∆µ| < 2.5 or
∆µ > 0 as likely indicating stability. Of course the dataset is quite small so it is hard to
form a strong conclusion, but these results combined with the strong theoretical basis
for the ∆µmeasure (it is just basic thermodynamics) suggests that it could be useful,
at least to separate candidate materials into groups that are likely/unlikely to oxidize.

Next we will consider the ∆µ for oxygen calculated for the materials in C2DB. A his
togram is shown in figure 5.6 which shows the distributions using the uncorrected ref
erences (blue) and the FERE corrected references (orange). The picture is largely the
same: most materials are striclty speaking unstable which is probably to be expected
given oxygens high reactivity. If we use the cutoff of 2.5 instead we see that, using
FERE, around half of materials are stable.

In general the differences between the uncorrected and FERE distributions show how
important it can be to use accurate reference energies. The work presented here,
implemented as ASR recipes, can be used as supplementary stability information or
in cases where information about reactivity with external materials is critical.
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Figure 5.6: Distribution of required chemical potential adjustments for O2 in order for
the materials in C2DB to be stable. The blue distribution shows the uncorrected refer
ences while the orange distribution shows the results after applying FERE.

5.3 Effective Masses
A free electron, that is, an electron that is not subject to any forces, has an energy
given by

E(p) = p2

2m0
, (5.5)

where m0 is the electron mass and p is the momentum quantum number. In periodic
systems the momentum is no longer a good quantum number but following Bloch’s the
orem one can define a crystal momentum k [14]. The crystal momentum is essentially
defined through the eigenvalues of the translation operator

T̂ (a) = exp (ip̂ · a) , (5.6)

where a is the translation vector. If the system is periodic with respect to translations of
the form Rn = n1a1 + n2a2 + n3a3, then we can simultaneously diagonalize T̂ and the
Hamiltonian. These simultaneous eigenstates are typically written as ψkn where k is
the aforementioned crystal momentum which defines the eigenvalue of the translation
operator through

T̂ (Rn)ψkn = exp (ik · Rn)ψkn. (5.7)

The energy, ⟨ψkn|H|ψkn⟩ = Ekn, can be thought of as a function of crystal momentum
and this is what defines the bands or bandstructure in periodic systems:

En(k) = ⟨ψkn|H|ψkn⟩. (5.8)
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There is a superficial similarity between E(p) and E(k) but in general the bandstruc
ture for a periodic system is a very complicated function of k whereas the free electron
”bandstructure” is very simple. However, for semiconductors at low temperatures or
low doping there is a useful analogy to draw. When the system is gapped and the
temperature is zero, the lowest conduction band is completely unfilled. However, if we
introduce a finite but small temperature or a little bit of electron doping, the lowest con
duction band will become partially filled. Since we are assuming that the temperature
or doping is small only the bandstructure around the conduction band minimum will
be probed because other regions are energetically prohibited. This suggests that low
doping physics can be effectively described not by the full bandstructure but just by
the bandstructures behaviour to low orders in k around the conduction band minimum.
Thus we seek a Taylor expansion (assuming for simplicity that the band minimum is at
k = 0)

E(k) ≈ E0 + d · k+
1

2
k · A · k. (5.9)

By assumption d = 0, since we consider an expansion around the conduction band
minimum. E0 is typically also irrelevant. We are left with the Hessian of the bandstruc
ture A as the lowest order relevant term of the bandstructure:

E(k) ≈ 1

2
k · A · k. (5.10)

If we write this equation in terms of the eigenvalues, λi, and eigenvectors, wi, of the
Hessian we get

k = u1w1 + u2w2 + u3w3, (5.11)

E(k) ≈ 1

2

(
λ1u

2
1w2

1 + λ2u
2
1w2

2 + λ3u
2
1w2

3

)
. (5.12)

The bandstructure now looks very similar to the free electron bandstructure and this
analogy is completed by defining the effective masses, m∗

i :

m∗
i =

1

λi
. (5.13)

If we absorb the expansion coefficients, ui, into wi the bandstructure is then takes the
form

E(k) ≈ w2
1

2m∗
1

+
w2

2

2m∗
2

+
w2

3

2m∗
3

. (5.14)

The discussion above was done for 3D materials but specialization to lower dimension
alities is straightforward.

The basic algorithm used to calculate effective masses in C2DB and improved upon
in this work is to perform a second order fit to the DFT bandstructure and from this
extract the effective masses from the Hessian as described above. In this definition
we attempt to find the Hessian exactly at the band extrema, as opposed to finding a
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mean curvature over a larger range (e.g. corresponding to room temperature). There
are other possible definitions of the effectivemass such as using k·ptheory [88] but the
approach taken here is simple and robust and can be applied to any material without
modification whereas k · ptheory relies on the symmetry of the lattice.

Since the effective masses describe lowenergy excitations they are useful for a num
ber of things. For example, it can be shown that the carrier mobility in 2D, µ2D depends
on the effective mass as [89]

µ2D ∝ 1

(m∗)2
, (5.15)

and, as another example, the Seebeck (thermopower) coefficient, S, depends on ef
fective mass as [89]

S ∝ m∗. (5.16)

5.3.1 Effective Mass Recipe
The effective mass algorithm was originally designed and implemented in connection
with the first version of C2DB. In my thesis work I adapted the implementation to ASR
and implemented it as the recipe asr.emasses, generalized the algorithm to work for
materials in any dimension, and modified the algorithm to improve robustness. I have
also implemented parabolicity estimates, that compare the quadratic fit over a large
energy range thus providing a different measure of how parabolic the band is and
allowing users of the data to find interesting outliers.

Algorithm The core algorithm is shown here and we go through a detailed explana
tion of the steps below.

1. Perform a ground state calculation

2. Determine preliminary locations of the VBM and CBM.

3. Nonselfconsistently calculate the KS eigenvalues on a denser kgrid around
the VBM and CBM.

4. Repeat step 2 based on the new grid and calculate a final kgrid.

5. Use the calculated energies on the final kgrid to fit a 2nd order polynomial. From
the fit we extract the Hessian and then the effective masses.

6. Calculate bandstructures along the Hessian eigenvectors.

7. Calculate parabolicity over a range of 25 meV for the parabolicity estimates.

In step 1 we use asr.gs to calculate the ground state density. This is used as a starting
point for the rest of the algorithm.

To fit the effective masses we need to construct a denser kgrid around the VBM/CBM
to get an accurate enough fit. The philosophy employed in asr.emasses is that the
effective masses should be defined from the best approximation to the mathematical
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curvature at VBM/CBM, as mentioned in the introduction to effective masses. This
means we need amuch denser grid than would be computionally feasible in the ground
state calculation. This is why we have steps 2 and 3: we first find the VBM/CBM
based on the ground state calculation and the determine the eigenvalues nonself
consistently on a much denser grid that is localized around the VBM/CBM. We refer
to this a gridrefinement or kgridrefinement.

In step 4 we repeat this procedure, starting from the grid from step 3 rather than the
asr.gsgrid, to define a final, highestdensity kgrid. This is then used to find the
effective masses. The final region spans approximately 1 meV. Such a small region
is chosen to approximate the mathematical curvature very closely without suffering
from numerical noise. The double gridrefinement improves effective masses in cases
where the band extremum is hard to locate, as in e.g. bands with Rasha splitting.

Step 5 simply performs a leastsquares fit to the energies. If we have N kpoints ki the
leastsquares problem can be written as the matrix equation

Ax =b, (5.17)

A =


1 k1x k21x k1y k21y k1z k21z k1xk1y k1xk1z k1yk1z
1 k2x k22x k2y k22y k2z k22z k2xk2y k2xk2z k2yk2z
...
1 kNx k2Nx kNy k2Ny kNz k2Nz kNxkNy kNxkNz kNykNz

 ,

(5.18)

x =



E0

ax
bx
ay
by
az
bz
cxy
cxz
cyz


, (5.19)

b =


ϵ1
ϵ2
...
ϵN

 , (5.20)

where kjx is the xcomponent of the jth kvector and so on, ϵj is the energy at the jth
kpoint, and the components of x define a quadratic fit given by

E(k) =E0 + axkx + ayky + azkz

+ bxk
2
x + byk

2
y + bzk

2
z + cxykxky + cxzkxkz + cyzkykz. (5.21)

Eq. (5.17) will be overdetermined and there will be no exact solution (unless the band
is exactly quadratic). It can only be solved in a leastsquares manner which is easily
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done using standard libraries. With these definitions the Hessian, A is easily seen to
be

A =

2bx cxy cxz
cxy 2by cyz
cxz cyx 2bz

 , (5.22)

and from this the effective masses are extracted. Fits performed with this method are
almost always correct, i.e. the residual is small, however if the energies are degen
erate, which happens when the band is very flat, the 1 meV fitting range can be too
small to perform a numerically stable fit. The result in those cases can be a curvature
with the wrong sign, e.g. implying that the valence band maximum is really a minimum
or saddle point. Another case where the algorithm can be faulty is when the band has
a Rashba spinorbit splitting that is in a critical region. The critical region is when the
Rashba splitting is not very small (so as to be unnoticeable) but not very large either. In
those cases the energies in the fitting range effectively have curvature with the wrong
sign which produces incorrect fits. We do not have quantitative estimates for the size
of this region. Faulty cases are the minority, as we will see below.

In step 6 GPAW is used to calculate bandstructures along the Hessian eigenvectors.

In step 7 we calculate a parabolicity measure. This is defined by first finding a energy
scale, Es, by averaging the energy variation of the band over a 25 meV window, e.g.
Es = ⟨E(k) − Evbm⟩25 meV. This defines an energy scale which is independent of
the absolute position of the band. Then the mean absolute relative error (MARE) is
calculated where the error is relative to Es, MARE = ⟨(E(k)− Evbm)/Es⟩.

Effective mass overview An illustration of the calculated quantities are shown in
figure 5.7. The plots on the left show the bandstructures (dots) for Rh2Br6 and MoS2

with the effective mass plots (red dashed line). The plots just show a single Hessian
eigenvector direction. MoS2 is an example of a bandstructure that is very parabolic,
with a MARE of 2.13% whereas Rh2Br6 showcases an asymmetric, nonparabolic
band with corresponding higher MARE. On the right side of figure 5.7 we see the dis
tribution of MAREs for the C2DB. 77.32% of bands have a MARE of less then 10%. A
small percentage have extremely large MAREs, i.e. >1000%. These materials most
likely have very flat or asymmetric bands or are in one the faulty classes discussed
above in step 5.

Outliers To get a sense for the types of errors that can occur we will investigate a
couple of outliers that have a very high MARE, i.e. higher than 100%.

The first case is BaI2 shown in figure 5.8. The conduction band in the first direction
has a very flat bottom. The resulting fit has the wrong curvature which results in a high
MARE in excess of 500% (the plotting code also breaks down).

The second case is Cl2Tl2 which is shown in figure 5.9. The band has an initially quite
flat region, as evidenced by the small energies differences seen in the plots, which
then flattens even further away from the fitting region. The result is that, since the
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Figure 5.7: Illustration of effective mass fits and parabolicity error measures, and the
distribution of these errors. Source: paper III.

initial region was flat, the 25 meV range will correspond to a large krange over which
it might be unreasonable to expect that the fit is correct.

5.4 Other Contributions to ASR
In this thesis I have also implemented other recipes. The G0W0@empiricalZ method,
described in chapter 4, is now a standard part of the asr.gw recipe.

Recipes were also developed to construct bilayers by stacking a monolayer, and op
timize the resulting bilayer structures. Several utility recipes for constructing a bilayer
database were also developed. This work is further described in chapter 6.

5.4.1 Overview of Papers IV, III, and I
In this section we will briefly go through the results of the papers that are related to the
work described in this chapter.

In paper IV the implementation and design of ASR is described. It contains a detailed
description of the architecture, exact definitions of recipes and other terminology, tech
nicalities of the caching and dependencymanagement system, information about the
various interfaces to ASR (CLI, python scripting, web browser), and a use case exam
ple, namely the updated version of C2DB. Most of the central points of this paper were
already touched upon in the introduction to this chapter, so we will not repeat them
here.
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Figure 5.8: Effective mass webpanel for BaI2. Adapted from [66].

In paper III we describe the updates that have been made to C2DB since its inception.
This includes data on more materials, improvements to various property calculations,
new properties, as well as an outlook describing projects that are currently in develop
ment that use C2DB data. There is too much to go through all of it here, and in any
case it can be found in the paper, so we will restrict ourselves to the work done in this
thesis. The effective mass recipe described here and the G0W0 empirical Z method
described in chapter 4 is part of the improved properties described in III. In chapter
6 we describe a bilayer screening project undertaken in this thesis. This consisted of
forming bilayers by stacking monolayers from the C2DB and calculating various prop
erties. One useful property that we can extract is the exfoliation energy which is slated
to be one of the new properties in C2DB. The enhanced stability analysis is not part
of the paper as it was deemed to have lower priority than other projects and so com
putational time and manhours were not dedicated to calculating e.g. oxygen reactivity
for all the materials in the C2DB. As part of the outlook is the aforementioned bilayer
screening project which we will return to in chapter 6.

In paper I we undertook a statistical study of the already calculated properties in
the C2DB, searching for materials with interesting and potentially useful anisotropies.
Anisotropic properties are interesting because they can act as a kind of filter or trans
former of incoming signals. One example is polarization filters which block light po
larized along a certain axis. Anisotropies can happen for optical response properties,
mechanical properties such as strainresponse, mobility can be different along different
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Figure 5.9: Effective mass webpanel for Cl2Tl2. Adapted from [66].
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directions, and electromagnetic response can also be anisotropic. Such effects can
have various exotic applications, see e.g. [90–92]. In the paper we studied anisotropy
measures for 4 different properties: the magnetic easy axis, elastic response, effective
masses, and polarizability.

To illustrate our results, we describe here the magnetic and effective mass anisotrop
ties. The magnetic easy axis is defined as the direction along which it takes the least
amount of energy to magnetize a material. For 2D materials the MerminWagner the
orem [93] prohibits spontaneous symmetry breaking, so some kind of asymmetry is
required for a 2D material to be magnetic. We considered the magnetic anisotropy
energy defined as

∆xy = |E(M||y)− E(M||x)|, (5.23)

i.e. the difference in ground state energies per unit cell when the magnetization is
fixed to be along the x vs. y axis. Here the xaxis is along one of the lattice vectors
and the y is perpendicular to this. It was found that those magnetic materials with a
large magnetic anisotropy energy had a markedly different distribution of point group
symmetries. The point groups mmm and 2/m comprise together more than 50% of all
materials with a magnetic anisotropy energy higher than 0.005meV / unit cell andmore
than 80% of materials with a magnetic anisotropy energy higher than 0.7 meV / unit
cell. We found one particularly interesting candidate material: V2I4 which is predicted
to be stable and has a magnetic anisotropy energy of 1.09 meV / unit cell which rivals
the highest known anisotropies [94].

For the effective masses we considered the anisotropy measures

δme =
|me

1 −me
2|

me
1 +me

2

, (5.24)

δmh =
|mh

1 −mh
2|

mh
1 +mh

2

. (5.25)

Hereme(h)
i is the effective electron (hole) mass along the ith direction at the conduction

(valence) band extremum.

To remove as many numerical outliers as possible from the analysis we removed mate
rials that had an effective masses greater thanme/h

i > 20me as well as materials with a
high ratio me/h

i /me/h
j (for any values of i, j). At the time of writing, the C2DB contained

574 materials that were both dynamically and thermodynamically stable and that were
gapped. 106 were removed according to the above criteria. Quite a large number of
materials have an anistropy factor, δme/mh, of greater than 0.7: we found 101 monolay
ers. These are reported in the paper in figure 6. We also found 3 materials that were
previously experimentally fabricated (TiS3, SnSe, GaTe, see [66] for references) and
1 material (AuSe) that was evaluated to be easily exfoliable in [7].

86 New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials



6 Highthroughput Screening of
Bilayer Materials

6.1 Introduction and Motivation
Twodimensional materials are interesting from the point of view of both fundamen
tal science and technological applications. A twodimensional material has first and
foremost significantly reduced electrostatic screening compared to threedimensional
materials which combined with the increased electron confinement leads to stronger
quantum effects. Furthermore, twodimensional materials are basically ”all surface”
which means the properties of the quantum states in a twodimensional material are
much more tunable by external gating, are more susceptible to chemical functionaliza
tion, and can interact more effectively with adjacent materials. This opens the way for
many potential technological uses that are not available in threedimensional materi
als.

With twodimensional materials as a starting point it is possible to construct layered
materials by stacking two or moremonolayer materials. By combining different types of
monolayers, exotic hybridisation effects can occur but even layered materials formed
from the same type of monolayer can show exotic behaviour. For example, bilayer
graphene at a special twist angle becomes superconducting [95]. It can also happen
that the monolayer has one magnetic state but the bilayer has another. For example,
CrI3 is ferromagnetic in the monolayer [96] but is antiferromagnetic or ferromagnetic
in the bilayer depending on how the two monolayers are stacked [97]. Other examples
include WTe2 which has a nonzero Berry curvature dipole in odd layers that can be
switched by changing the stacking configuration [98]; hexagonal Boron Nitride which
has a reversible outofplane electric dipole moment in the bilayer [99]; and famously
MoS2 which has a direct gap in the monolayer but indirect in multilayer structures [100].

It is then clear that the interlayer hybridisation that occurs in multilayer structures can
give rise to very interesting physics both from a fundamental and an applied point of
view. Given the combinatorially large space of possible multilayer structures there is
plenty to investigate.

In this thesis we look at homobilayers, i.e. bilayers formed from stacking two copies
of the same monolayer. There is still a large amount of possible stackings because
the two layers may be translated and rotated with respect to each other. For most
rotations the unit cell of the bilayer will not be the same as the monolayer and one
gets socalled Moiré effects. Here we consider the subset of rotations which ensure
that the bilayer has the same unit cell as the monolayer. This reduces the space of
possible rotations from an infinite number to a finite number and by avoiding Moiré
effects which necessitate large unit cells we can deal with more materials. We start
the chapter by describing the algorithm that generates the bilayers. Then we detail the
workflow that forms the basis for a highthroughput study of bilayer materials based on
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C2DB monolayers [6]. Finally, we analyse the data looking for interesting candidate
materials and propose further work that can be done in this field of research.

The manuscript for this project is currently in preparation so there is no associated
paper in the ”Papers” section.

6.2 Generating the Bilayers
To generate the bilayers we start from a given monolayer. The question is how to find
relevant stackings where we define a stacking as a combination of two identical layers
with some relative rotation and translation.

The first step of generating the stackings is to find all the space group operations that
preserve the unit cell of the monolayer. As mentioned above, this is to avoid overly
large unit cells and to maintain a reasonable scope for the project. Each operation is
applied to the monolayer and duplicate structures are filtered out: some operations
will result in identical atomic positions. This gives us a set of transformed monolayers
with the same unit cell.

Next, for each monolayer in this set we combine it with the untransformed seed mono
layer. The layers are placed with some arbitrary initial interlayer distance; we use a
default of 5 Å but this will be optimized later during the workflow so it is essentially
irrelevant. One layer is then given an additional inplane translation according to the
two following schemes:

1. Position matching

2. Cellspecific translations

For position matching we take each pair formed from atoms in the bottom layer and
atoms in top layer and form the set of translations, T

T = {pi − pk|i ∈ bottom layer, k ∈ top layer}. (6.1)

Here pi/k is to be understood as the inplane position. If the monolayers are oriented
such that they span the x− y plane then e.g. pi will just be the x, y components of the
ith atom in the bottom layer.

Applying the translation tik = pi − pk to the top layer will ensure that atom i in the
bottom layer and atom k in the top layer have the same x, y coordinates. Thus, we
consider all the translations that place one atom in the top layer on top of an atom in
the bottom layer.

For monolayers with only one atom in the unit cell (or all atoms at same x, y coordi
nate) this will only give a simple AA stacking. Additionally, for some materials this will
not produce experimentally known stackings such as the Bernal stacking in bilayer
graphene [101]. To alleviate this we add cellspecific translations. For hexagonal cells
we perform a translation that is equivalent to the Bernal stackings in graphene: we
translate 2/3 along one lattice vector and 1/3 along the other. For other cell types we
translate the top layer by half of each lattice vector and by half of one lattice vector
plus half of the other. A few examples of these stackings are shown in figure 6.1. Fig.
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6.1a shows a honeycomb lattice (i.e. an example of a hexagonal lattice) and the rest
show rectangular lattices.

a b

c d

Figure 6.1: Examples of the cell specific stackings. The bottom layer is shown as filled
blue circles and the top layer is shown as orange rings. a) shows a honeycomb lattice
while the rest show a rectangular lattice. These examples do no correspond to any
real material but have just been constructed for illustrative purposes.

This heuristic method generates a set of candidate stackings for the bilayers. The
next step is to optimize the structures, i.e. find the minimum energy geometry for the
bilayer.

6.3 Bilayer Structure Optimization
Once the bilayers are generated it is necessary to find the minimum energy structure.
In principle this could be done via a standard structure relaxation algorithm, e.g. one of
the algorithms implemented in ASE [64]. However, since the main layerlayer bonding
mechanism is van derWaals bonding it is possible to devise a simpler scheme. Instead
of fully relaxing the structure, it may be sufficient to only vary the interlayer distance
while keeping inplane positions fixed to find the optimal structure. If nonvan derWaals
effects are small enough, this will not affect the positions of the atoms within the layers
and this procedure will be sufficient and faster than a full relaxation.
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To capture the van der Waals physics it is not sufficient to use semilocal functionals as
they are unable to capture nonlocal effects. It would be possible to use e.g. the van der
Waals functional of [30] but since this has a relatively high computational complexity
we decided to use, instead, the DFTD3 correction [102]. This is a van der Waals
correction to the energies (and forces) of a DFT calculation based on atomic positions,
i.e. it consists of a correction, Edisp,

Edisp =
∑
a,b

∑
n=6,8

sn
Cab

n

rnab
fd,n(rab), (6.2)

where a, b range over the atoms in the system, rab is the distance between atoms a
and b, Cab

n are ab initio parameters, and fd,n is an empirical damping function (hence
the subscript d). Being based only on atomic positions this method is fast but it still
achieves an accuracy of within 10% of coupled cluster methods [102]. In the bilayer
structure optimization we use it with the PBE functional via the DFTD3 interface in
ASE.

For future reference we denote the interlayer distance optimization with PBED3 func
tional as the standard relaxation (standard within the context of this project).

After we have calculated the optimal bilayer structure we can find the binding energy
of the bilayer, Eb. This is defined as

Eb = 2EML − EBL. (6.3)

Here EML is the energy of the monolayer and EBL is the bilayer energy. It is of course
important that both are calculated with the D3 correction and the same underlying func
tional. With this definition binding energies are positive and a higher binding energy
corresponds to a more strongly bound bilayer.

6.4 Stacking and Relaxation Verification
Sincewe only change the interlayer separation the translations and rotations we started
with will remain fixed throughout the optimization. This makes it essential that the ro
tations and translations are chosen in such a way that the most stable or relevant
stackings are generated. To verify our structure generation and optimization we first
consider the effects of performing a full relaxation and comparing it with a standard
relaxation. The comparison is done by calculation the RootMeanSquareDistance
(RMSD) measure implemented in pymatgen [103]. We will not go over the RMSD al
gorithm in detail here as it is defined in their documentation but it involves attempting to
match all possible lattices and all possible positions of one structure with the other and
calculating the RMSD between the atoms. In ASR (see chapter 5), two structures are
considered equal if the RMSD is less than 0.3 Å and we adopt the same criterion here.
Figure 6.2 shows the RMSD vs. binding energy of various randomly selected bilayers
on the left side. 87% of bilayers are essentially unaffected by the full relaxation and
have a RMSD of less than 0.3 Å. Some materials have higher RMSD and are indicated
in red, green, orange and purple. Half of the outliers (RMSD > 0.3 Å), with the excep
tion of Sb2 and Cl2Cu2Se4, have that all bilayers for a given monolayer either fall above
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or below the 0.3 Å criterion. There also seems to be no tendency that a large RMSD
correlates with a large binding energy. Outliers can be caused by two things: either the
monolayer structure changes significantly when relaxed with PBE+D3, or there are in
terlayer effects not accounted for by the simple interlayerdistanceonly relaxation. We
observe that the bilayer RMSD is pseudolowerbounded by the monolayer RMSD; it
cannot be a strict bound because interlayer effects, although weak, can in principle
change things. Therefore, we may tentatively conclude that since materials with sig
nificant change in the monolayer will correspond to a high minimum bilayer RMSD.
That type of outlier can then be explained by the monolayer relaxing significantly. The
other class, where the minimum bilayer RMSD is very low but the maximum bilayer
RMSD is high, e.g. Sb2, probably have significant interlayer effects not accounted for
by the interlayerdistanceonly relaxation, at least in some stackings. On the right of
figure 6.2 the RMSDs for the monolayers after PBE+D3 relaxation vs. the exfoliation
energy is shown. Note that monolayer Au2Br2Te4 experiences a large change after
PBE+D3 relaxation and the bilayers have a correspondingly high RMSD. The same
goes for FeBr2 but interestingly the monolayer RMSD for Ag2Br2S4 is larger than for
FeBr2 whereas all Ag2Br2S4 bilayers have a low RMSD. Thus we see that the ordering
of the monolayers is not necessarily the same as the bilayers and complicated things
can happen in general.

In summary, there will be materials where the monolayer structure changes signifi
cantly when van der Waals effects are taken into account, and there will also be ma
terials where the optimal structure is not found when doing interlayerdistanceonly
relaxation. However, both of these classes are in the minority.

We have also compared calculated exfoliation energies for a select set of materials
with those reported in [7]. The results are shown in table 6.1. The last two columns
report the results from [7] while the ”PBE+D3” are the results from this project. We
see that [7] gets a spread of the order of 2030% in the calculated exfoliation energy
of a material between different functionals. Our results match reasonably well in most
cases.

These results show the extent to which the relaxations can be relied on. For most
cases the structures are well described. Some cases, however, are not in the minimum
energy structure, likely because the source monolayer was not adequately described
with just PBE. As always in highthroughput studies, one must choose a reasonable
tradeoff between accuracy and speed so the study is both feasible and useful.

One further verification we have performed is to check whether our stacking procedure
reproduces the stackings in known, layered bulk materials. Layered bulk materials are
understood as effectivaly consisting of 2D layers that are bonded by vanderWaals
forces. To identify such structures we use the method of [104], which can identify
subcomponents in a unit cell and construct a geometric ”2D score” for each component.
3D materials that contain components with a high 2D score are classified as layered.
Starting from the lowdim database [104] we identify layered materials and the layers
of which they consist.

To begin with we remove those materials where there is a large difference between

New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials 91



0 20 40 60 80 100 120
Binding energy [meV / Å2]

0.0

0.2

0.4

0.6

0.8

1.0

RM
SD

 (1
 =

 N
o 

m
at

ch
)

Bilayer RMSD after PBE+D3 relaxation

Au2Br2Te4
Br2Fe
Sb2
Cl2Cu2Se4
Ag2Br2S4

20 40 60 80 100 120
Exfoliation energy [meV /Å2]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM
SD

 (1
 =

 N
o 

m
at

ch
)

Au2Br2Te4

Sc2I6
FeBr2

Sb2 RhLi2 ScSe2C2Y3 IrLi2

Co2Li2P2Cl2Cu2Se4

HfZr3S8

Ag2Br2S4

C3Sc4

Monolayer RMSD after PBE+D3 relaxation

Figure 6.2: (left) RMSD between the interlayerdistanceonly relaxed bilayer and the
fully relaxed bilayer vs. binding energy. (right) RMSDbetween PBErelaxedmonolayer
and PBE+D3relaxed monolayer vs. exfoliation energy.

Material PBE+D3 DF2 rVV10
MoS2 28.9 21.6 28.8
MoTe2 30.3 25.2 30.4
ZrNBr 18.5 10.5 18.5
C 18.9 20.3 25.5
P 21.9 38.4 30.7
BN 18.9 19.4 24.4

WTe2 32.0 24.7 30.0
PbTe 23.2 27.5 33.0

Table 6.1: Exfoliation energies for selected materials calculated with PBE+D3 are com
pared with the DF2 and rVV10 results from [7]. All numbers are in units of meV/Å2.
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the bulk monolayer and the freestanding monolayer. This can happen happen due
to relaxation effects and may be due e.g. strong buckling effects. For these cases it
is not meaningful to ask whether we find the correct stackings. From the remaining
layered materials we extract the bulk stackings, i.e. the possible pairs of layers within
the bulk material. In general, a freestanding monolayer cannot be directly compared
to its bulk counterpart because of deformations that are likely to occur, such as lattice
mismatches due to strains, or space groups that change (which could also be a com
putational artefact). Therefore, we only compare the relative positions of the layers
within a given bulk stacking with the relative positions of the stackings generated by
our algorithm. To do this we determine what point group operation and what transla
tion is necessary to construct the second layer from the first layer. This can be directly
compared with the output of our stacking algorithm.

In figure 6.3 we show a scatter plot where each point corresponds to one of our bilayer
stackings, and we show the difference between the stacking’s binding energy and
the binding energy of the stacking that we predict to be most stable, Emax

b −Eb, on the
vertical axis. On the horizontal axis we show the binding energy, Eb, we predict for that
stacking. Green points indicate materials where the bulk stackings are constructed by
our stacking algorithm and one of the most stable stackings (that is, materials where
Emax

b − Eb < 2 meV) is one of the bulk stackings. Red points indicate other cases
where none of the most stable stackings are in bulk, which could be because they are
predicted to be less stable or because they are not generated by the stacking algorithm.
We find that for 77.2% of the monolayers extracted from bulk the stacking algorithm
finds all of the stackings for those monolayers.

These results indicate that we are able to both construct relevant stackings and also
correctly predict them to be stable in the majority of cases.

6.5 Workflow
With these preliminaries in place we can describe the workflow used to screen for
interesting bilayer materials.

An overview is shown in figure 6.4. Initially highly stable monolayers from C2DB are
selected. For more on the stability criteria see chapter 5. Suffice to say that there are
two stability categories: thermodynamic and dynamic. We select monolayers that have
the highest stability rating in both categories. The stability criterion is to avoid as many
unrealistic materials as possible. Furthermore, we only select monolayers with less
than or equal to 8 atoms per unit cell to keep the computational cost manageable. In the
future this could expanded to include larger systems. After applying these criteria we
find 960 monolayers1. After selecting the monolayers we generate bilayer stackings
using the algorithm in sec. 6.2. This produces 8270 bilayers. Once the stackings
have been produced we relax the interlayer distance using the method described in
sec. 6.3.

We next apply two filters designed to select the most promising bilayer candidates. We
1in practice it was more, but some systems were very hard to converge for one or more properties so we

discarded them in the end.
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Figure 6.3: Scatter plot of binding energies for materials derived from bulk structures.
The green points indicate when the bulk stacking has been correctly identified and the
red points indicate when the bulk stacking was not correctly identified. The histograms
show the distribution of the green points.

Figure 6.4: An illustration of the bilayer workflow. Highly stable monolayers are ex
tracted from the C2DB. Different unique bilayer structures are then created and the
structures are optimized. Various properties are calculated for the most stable bilayer
materials.
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are mainly interested in experimentally realizable materials so the interlayer binding
should not be too large otherwise it is probably difficult to synthesize. To select a
cutoff we use the definition of potentially exfoliable materials of [7]; if the most stable
bilayer has a binding energy larger than 150meV/Å2 we discard thematerial. Secondly,
for any given monolayer there may be several stackings with a spread in energy. If
this spread is large, it may be unlikely that the weakly bound bilayer stackings will by
synthesizable. To determine what constitutes a ”large” energy difference we refer to
MoS2 where it is known that 3 stackings are significantly more stable than the others
[105]. We use our calculated spread of 1.4 meV/Å2 between these three stackings
to determine a suitable cutoff: we only include bilayers within 2 meV/Å2 of the most
stable stacking. For an illustration of this criterion see figure 6.5. After applying these
criteria we are left with 2376 bilayers.

For these bilayers we then run through a property workflow using recipes from ASR
(see paper IV). Here we calculate the bandstructure, outofplane dipole moment, ef
fective masses, magnetic moments, and ameasure of the interlayer magnetic coupling
to be detailed later.

The final results are collected into an ASE database.

Figure 6.5: A scatterplot of MoS2 binding energies and interlayer distances. The three
most stable stackings are separated from the remaining two by a relatively large gap.
The spread in energy of the three most stable stackings is 1.4 meV/Å2, and this leads
us to only consider materials within 2 meV/Å2 of the most stable stacking. This is
indicated by the dashed line; materials below this line are not included in further calcu
lations.
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6.6 Emergent and Switchable Properties
With the results of the workflow in hand we are ready to look for interesting materi
als and physics. To this end, we frame the discussion by considering two classes of
phenomena: emergent properties and switchable properties.

Emergent properties are here defined to be changes that occur in going from the mono
layer to the bilayer. Usually, emergent effects are taken to be, roughly speaking, non
anticipated or nonpredictable behaviours in complex systems, i.e. phenomena that
involve a complicated interplay of many different parts and forces in such a way as
to be very computationally complex and therefore essentially underivable from the
microscopic laws. When stacking two 2D materials the very least we can expect is
some hybridisation between the states in each layer; every band will be doubled and
there will be some splitting. We will take the liberty of calling everything beyond that
emergent. For example, if the band gap character changes from indirect to direct or
the material becomes magnetic in the bilayer, we call that an emergent effect.

By switchable properties we mean quantities that can be changed by considering dif
ferent stackings of the same bilayer. For example, if the band gap character can be
changed when going from an AA stacking to an AB stacking, we say that the band
gap character is switchable. As defined here, this includes changes across all pairs
of stackings of a given monolayer. However, it may not actually be experimentally
feasible to ”switch” between to arbitrary stackings, e.g. if the ”switch” would involve
a rotation or an inversion of one plane. Rotations and inversions are probably not
possible to do on any single device and we may wish to exclude such pairs from the
analysis. The actual mechanism for switching will probably be an external field cou
pling to a dipole moment in the bilayer as in the experiments on hBN in ref. [99], so
it will be interesting to consider only those pairs of stackings that have a ”large” differ
ence in dipole moment which would suggest they could be switched via an external
field.

Studying emergent properties can tell us what kind of changes are possible in going
frommonolayer to bilayer. It may suggest bilayers for synthesis, if for example a mono
layer is easily synthesizable but does not have good optical properties because of an
indirect bandgap while a bilayer with a direct gap exists.

Switchable properties offer opportunities for such things as topological memory de
vices, controllable magnetism, and switchable transport properties, and such bilayers
may become a part of quantum materials devices in the future.

6.6.1 Bandstructure Effects
To start with, we consider emergent bandstructure changes by comparing each bilayer
to the corresponding monolayer and classifying the change between monolayer and
bilayer. We ensure that negligible changes do not affect the statistics by applying
three cutoffs. 1) If the gap is smaller than 30 meV, then the material is classified as
metallic (or gapless). 2) If the minimum gap is within 30 meV of the direct gap, then
the material is classified as having a direct gap. 3) If the minimum gap is not within
30 meV of the direct gap but the valence band maximum is closer than 0.05 Å−1 of
the conduction band minimum then the material is also classified as having a direct
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gap. With these criteria we avoid spuriously classifying metals as having a gap and
we classify materials that ”almost” have a direct gap as having a direct gap.

With these cutoffs the distribution of changes is shown in the left side of figure 6.6.
Most bilayers are similar to their parent monolayer but some show a change. The
most common changes are when the bilayer changes from/to a direct gap to/from an
indirect gap and when a gapped material becomes metallic. Since we expect the gap
to narrow due to interlayer hybridisation, as mentioned above, the latter category can
perhaps be explained by this effect.

No change

Direct to indirect

Indirect to direct
Metallic to gapped
Gapped to metallic

1982

107
150

2
135

All Direct

All Indirect

All Metallic

Direct & Indirect

Gapped & Metallic

183
277

422

60
18

Figure 6.6: (left) The distribution of gap changes for each bilayer. (right) The distribu
tion of gap variation for each monolayer.

We then consider the amount variation that exists between different stackings for a
given monolayer. That is, for a given monolayer how much and in what way will the
bandstructure vary? This is shown in the right side of figure 6.6. For example, 277
monolayers possess an indirect gap for all possible stackings. Since most bilayer do
not change with respect to the monolayer, we have that for most monolayers there is
no variation between bilayers. However, for 8.125% of monolayers multiple types of
gaps can be found.

Materials with a direct gap are more useful for optical applications since photons
with an energy corresponding to typical band gaps essentially have zero momentum.
Therefore it is interesting to look for candidates from the class of monolayers that
change from indirect to direct. To find the most promising candidates we look for mono
layers with an indirect gap and with a energy above the convex hull of less than 50meV
(in chapter 5 we saw that the usual criterion for ”high” stability was a hull energy less
than 200 meV) where all stackings have a direct gap. It may not always be possible
to control which stacking order is achieved in an experiment so these criteria should
let us select materials that are highly stable and where it is feasible to construct a di
rectly gapped bilayer. We also apply the cutoffs for the bandgap and the VBM/CBM
locations described above. This leaves us with 24 monolayers. The full list is shown
in the appendix. We highlight here the materials with the clearest indirect to direct
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Figure 6.7: The left side shows the monolayer bandstructure for BiClSe and the right
side shows the bilayer bandstructure for the most stable stacking of BiClSe. Themono
layer has an indirect gap whereas the bilayer has a direct gap.

transition: PbI2, BiBrSe, BiClSe, BiISe, BrSbTe, ClSbSe, and ClSbTe. Besides PbI2
these are all Janus structures. In figure 6.7 we show the bandstructures of BiClSe and
its most stable stacking which is representative of the Janus structures, and in figure
6.8 we show the bandstructures of PbI2. Materials such as these would be interesting
to synthesize both to verify our calculations and to open the door to new direct gap
materials.

For the purpose of identifying interesting switchable materials we look for monolayers
that have pairs of stacking orders that are related by a translation since pure trans
lations probably have the lowest energy barrier. In ref. [99] they found that bilayer
hBN was switchable via external gating and they estimate a dipole moment of 2.25
×10−12 C/m. Assuming the dipole switching mechanism is related to the interaction
of the gates with the dipole moment of the material, this value can provide a guideline
for when a dipole moment is large enough to enable switching. We thus apply the
puretranslation and a dipole moment change of larger than 10−12 C/m as criteria for
when two stackings are switchable. We then look for bilayerpairs that are switchable
and where one member of the pair has a direct gap and the other has an indirect gap.
Such materials could be interesting in materials where controllable optical response is
desired.

Unfortunately, with these criteria we do not find any promising candidates. Even low
ering the dipole moment threshold to 10−14 C/m does not produce any promising can
didates. Perhaps a more targeted search for such materials is necessary; at present
the most obvious way forward would be to increase the scope of materials considered.

6.6.2 Dipole Moments
In this section we investigate the presence of dipole moments in bilayer materials.
We again split the discussion into emergent dipole moments and switchable dipole
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Figure 6.8: The left side shows the monolayer bandstructure of PbI2 and the right side
shows the bilayer bandstructure of the most stable stacking of PbI2. The monolayer
has an indirect gap whereas the bilayer has a direct gap.

moments. Emergent dipole moments are perhaps interesting only from a fundamental
point of view but switchable dipole moments can have applications in e.g. memory
devices or electromechanical actuators, see for example ref. [99]. We only consider
outofplane dipole moments.

First, we calculate the absolute value of the change in dipole between monolayer and
bilayer for each monolayer, ∆pz. We express it in units of log10(C/m). We also con
sider the minimum change for each monolayer, min|∆pz|, i.e. we find the bilayer with
minimal change in dipole moment. The distribution of these quantities is shown in
figure 6.9. 27% of bilayers have an increase in dipole moment greater than 10−13

C/m and 12% of monolayers have that all bilayers increase the dipole moment by at
least 10−13 C/m. Perhaps if an intrinsic dipole moment is required it is worthwhile to
consider a stacked structure.

We then, as in sec. 6.6.1, look for bilayer pairs that are related by a rigid translation of
one layer.

However, we also need to take special care to include stackings where the structure
can be effectively inverted by translating the top layer. That is, by moving the top layer
we can end up in a configuration that is equivalent to the initial configuration mirrored in
the xy plane. Such a mirroring produces two structures that are equivalent, and hence
only one structure would be included in the workflow. Such structures are relevant for
the dipole moments, because mirroring the structure in the xy plane inverts the outof
plane dipole moment. Other properties, such as the bandstructure or effective masses
are, of course, unchanged.

For the pairs we find in this way we calculate the change in dipole moment, ∆pz, and
show the distribution in figure 6.10. We may also consider restricting to bilayer pairs
that have the same bandstructure character (direct gap, metallic, etc.) such that trans
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Figure 6.9: Logarithmic changes in dipole moments in going from monolayer to bilayer.
Left side shows all changes, the right show shows the minimum change.
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Figure 6.10: Dipole changes across switchable bilayer pairs.

port and optical properties are not changed when switching the dipole moment. How
ever, the distribution is essentially the same (but the absolute counts are of course
lower). 23% of switchable bilayer pairs show a dipole change larger than 10−13 C/m
which seems quite promising for possible applications. If we restrict to those monolay
ers that are highly stable, i.e. with an energy above the convex hull of less than 50meV,
then we find 125 monolayers, 27 of which are already known in bulk and 19 which have
been synthesized in the monolayer which indicates that there is plenty of possibilities
left to explore in the lab. If we consider dipole changes larger than 10−12C/m instead
we find 28 monolayers, 5 that are known in bulk and 9 which have been synthesized
in the monolayer. We list these 28 monolayers in appendix B section B.3.

A fewmaterials that are worth highlighting is hexagonal Boron Nitride which is known to
have switchable dipole moment [99], and the wellstudied WTe2 [106, 107] and MoS2

[100].
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Figure 6.11: Change in dipole density vs. bilayer binding energy between switchable
pairs of bilayers.

To get a different view on the same data, we show in figure 6.11 a scatter plot of
dipole density changes vs. the different in binding energy between switchable pairs of
bilayers. The points at∆Eb = 0 correspond to bilayer stackings that can effectively be
inverted by rigid translation of a layer. Themost interesting candidates are those where
the dipole change is large but the change in energy, or equivalent binding energy, is
small. These are location in the upper left corner of the plot.

6.6.3 Effective Masses
The effective masses are defined as described in chapter 5 but this makes it non
trivial how to compare effective masses for two materials: the masses are defined as
essentially the inverse eigenvalues of Hessian at the band extrema which means that
it is not guaranteed that the masses of one material correspond to the same directions
as the masses in another material. To make things simple we compare the lightest
masses of one material with the lightest of the other and the heaviest with the heaviest
(there are only 2 masses since the materials are 2D). We perform this comparison
for the valence bands effective masses, henceforth termed hole masses, and for the
conduction bands masses, henceforth electron masses.

For this analysis we neglect effective masses that are larger than 100 me. Very large
masses occur for very flat bands where the effective mass is perhaps not welldefined.
We also eliminate cases where the effective mass has the wrong sign; such cases
indicate pathological fits and the results have no meaning.

The resulting changes in effective masses when going from the monolayer to the bi
layer are shown in figure 6.12. The correlation coefficient between the light mass
change and the heavy mass change, C, is also shown. In most cases the masses
are essentially unchanged but there is still a significant amount of cases where the
change is several tens ofme. There is little correlation between the light mass change
and the heavy mass change but they do have a slight tendency to have the same sign
as evidenced by C ≈ 0.23.
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Figure 6.12: Changes in effective masses when going from monolayer to bilayer. The
correlation coefficient between the light mass and heavy mass changes, C, is also
shown.

These results indicate that it may be possible to both increase and decrease transport
coefficients by constructing stacked structures.

Next, we look at switchable bilayer pairs with no restriction on dipole moment change.
We just consider the absolute values of the possible changes since there is no intrinsic
sense of directionality for two bilayer pairs. The distributions are shown in figure 6.13.

Compared to the monolayer to bilayer changes, the absolute size of the mass changes
when switching between bilayers is about an order of magnitude smaller. This corre
sponds to the intuition that the largest changes in bandstructures will occur between
monolayer and bilayer and not between different stacking orders.

If we instead consider the relative changes in effective masses with the additional
criterion that the dipole moment must change by more than 10−13 C/m we get the
distribution shown in figure 6.14. Easily switchable pairs where the mass changes
by a factor of 23 are clearly possible but they do not seem to be extremely common.
Future studies might include a more directed search for highdipole materials.

Switchable effective masses allow for devices where for example transport can be
turned on and off, offering a new type of building block for quantum devices.

Identifying switchable bilayer pairs with a dipole moment change greater than 10−13

C/m, having at least one mass that changes by more than 100%, while also having an
energy above the convex hull of less then 50meV, we find only 9 monolayers which are
shown in the appendix. Future analyses can try to identify more promising candidates
where, for example, all the valence band masses changes by a significant amount
or similarly, depending on the application. We find relatively few materials so if such
materials turn out to be especially interesting the database could be expanded with
the hope of finding more switchable effective masses.
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Figure 6.13: Changes in effective masses when going between switchable bilayer
pairs. The correlation coefficient between the light mass and heavy mass changes, C,
is also shown.
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Figure 6.14: Relative changes in effective masses when going between switchable
bilayer pairs. The correlation coefficient between the light mass and heavy mass
changes, C, is also shown. Only pairs where the outofplane dipole moment changes
by more than 10−13 C/m are considered.

6.6.4 Magnetism
Somematerials becomemagnetically ordered when stacked or themagnetic order can
depend on the number of layers and the stacking order. One example is CrI3 where
the bulk structure is ferromagnetic, the fewlayer structures display stacking dependent
magnetic ordering, and the monolayer is ferromagnetic [96, 97].

In this section we investigate emergent and switchable magnetic effects. We select
materials that have either a nonzero total magnetic moment (deemed ferromagnetic)
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or a nonzero maximummagnetic moment but a zero total magnetic moment (deemed
antiferromagnetic). For these materials we calculate the energies of two configura
tions: 1) interlayer ferromagnetic (ILFM), and 2) interlayer antiferromagnetic (ILAFM).
ILFM (ILAFM) is the configuration where the initial magnetic moments are parallel (anti
parallel) in the two layers. For the bottom layer the initial magnetic moments are cho
sen from the monolayer structure. These calculations are done using PBE+D3+U. We
use PBE+D3 to be consistent with the method used to optimize the structure and we
need the Hubbard correction to match the reported energetic orderings of the FM and
AFM states for various stackings in CrI3 and a few other materials. We use a Hubbard
U of 3 eV for the TM atoms with 3d electrons: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn.
Finally the magnetic order is determined by comparing the energies of the FM and
AFM states. We also check that the AFM state has zero total magnetic moment; if not,
we say the AFM state does not exist. For the FM state we check that the magnetic
moments have not changed direction during the SC cycle; if so, we say that the FM
state does not exist. If neither the AFM or the FM state exist the material is classified
as nonmagnetic (NM). It may be more accurate to say that the magnetic state is not
known but in this first pass over the data this analysis should suffice.

We start by looking at changes when going from monolayer to bilayer. These are
shown in figure 6.15. Similar to the other properties we have looked at, most materials
do not change their magnetic order when stacked. However, a sizable percentage
does experience some change.

No change

FM to NM FM to AFM

AFM to FM

163

15 71

7

Figure 6.15: Changes in magnetic ordering when going from monolayer to bilayer.

Moving to switchable materials without any restriction on dipole moment change we
find 50 monolayers where the magnetic state can be switched between FM and AFM.
Of these, 29 have a hull energy of less than 50 meV. If we restrict ourselves to materi
als where the dipole moment changes by more than 10−13 C/m, such that the material
might be electrically switchable, we find only 3 monolayers. 2 of these are highly stable
and these are listed in the appendix. In this project we have a relatively small sample
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of only 101 magnetic monolayers and we are able to find 230% of promising materi
als. In the future a search more directed towards magnetic materials seems promising
given these high percentages. However, the energy differences that determine the
magnetic state are of the order of meV and there is a risk of underconverged calcula
tions. Therefore any candidates one finds should probably be doublechecked if one
intends to use them for applications.

6.7 Conclusion
In this project we have developed an algorithm for generating bilayer materials as
well as a workflow to perform high throughput screening of bilayer materials. We find
several interesting materials with potential applications to optical devices, nonvolatile
memory, controllable transport properties, and switchable magnetic devices.

There are many avenues for future studies. Here, we have only included monolay
ers with 8 or less atoms in the unit cell, and this is the first obvious restriction to lift.
The stacking algorithm could also be expanded to include even more realistic stack
ings. Another option in a similar direction is to change the relaxation algorithm to opti
mize not only the interlayer distance. This would reduce dependence on the heuristic
stacking algorithm but increase computational cost. A further step would then also be
needed in the workflow to remove stackings that relaxed into the same local minimum.
If specific applications were of interest, more targeted selection or generation of source
monolayer as well as generation of potential stackings may be desirable. Finally, the
fact that many properties can change when going from one layer to two layers begs
the question of what can happen in multilayer structures. One major hurdle that has to
be overcome is the combinatorial explosion of the number of possible multilayers that
happens if one simply tries all possible multilayer stackings.
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7 Conclusions
In chapter 3 we describedwork on the development of a new type of exchangecorrelation
functional, called the Weight Local Density Approximation (WLDA). The guiding prin
ciple was to match both the energy of the HEG, as in LDA, but also the correlation
hole. The functionals that we developed are fully nonlocal and can be thought of as
a correction to LDA. They improve over LDA and it was possible to perform as well
as PBE on atomic energies, atomization energies, and lattice constants. However,
WLDA in the current formulation has a shortcoming, namely that the potential is not
strictly regular. Luckily, the divergence of the potential happens at low densities, so it
is expected that it does not affect the results too much. Nonetheless, future versions
of WLDA should be defined so they have a regular potential. It may also be possible
to defined a ”weighted density” functional with a different starting point than LDA.

Chapter 4 dealt with sources of error in G0W0 calculations in the context of high
throughput studies. We found several ways to reduce the expected error, including
the empirical Z method which only requires the quaisparticle weight, Z, and the self
energy at the KohnSham energy. It can therefore be used as a postprocessing step
in most G0W0 implementations. One can imagine doing similar work on e.g. the BSE
method. An ongoing CAMD project is to use machine learning to predict G0W0 ener
gies, so, in the future, highthroughput G0W0 may be performed very efficiently this
way. A crucial step will be to have a way to determine the confidence of the machine
learning model, so actual G0W0 calculations can be performed where necessary.

The Python package ASR was described in chapter 5. ASR consists of several recipes
that each perform a welldefined electronic structure task. ASR also has code infras
tructure to facilitate recipe versioning, database creation, and data analysis. In this
thesis several recipes were contributed and ASR was used to do studies on anisotropy,
and bilayer materials, as well as updating the Computational 2D Materials Database.
ASR can be extended with many more recipes, and work is ongoing to generalize the
interface with the underlying electronic structure code so as to make ASR usable with
almost any code the user wished to use. It may also be advisable to extend ASR to
better support method development; such tasks are inevitably part of modern materials
research. On the other hand, ASR cannot, and should not, do everything.

Finally, in chapter 6 we described a highthroughput screening project which studied
homobilayers constructed from highly stable monolayers in the C2DB. We found that
is sometimes possible to engineer better materials properties by stacking layers, for
example, bandstructures and magnetic states may change. We also found a set of
candidate switchable materials. These are materials where two closely related stack
ings have different properties, e.g. one has a direct gap and the other has an indirect
gap. At present we have restricted the workflow to run on monolayers with at most
8 atoms in the unit cell, and this should be expanded in the future. Additionally, the
most interesting candidate materials should be investigated in depth. Finding the can

New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials 107



didates that are most likely to be synthesizable and collaborating with experimentalists
to actually make these materials is another, highly interesting avenue of research.
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ABSTRACT

We analyze the occurrence of in-plane anisotropy in the electronic, magnetic, elastic, and transport properties of more than 1000 2D materi-
als from the C2DB database. We identify hundreds of anisotropic materials and classify them according to their point group symmetry and
degree of anisotropy. A statistical analysis reveals that a lower point group symmetry and a larger amount of different elements in the struc-
ture favor all types of anisotropies, which could be relevant for future material design approaches. Besides, we identify novel compounds,
predicted to be easily exfoliable from a parent bulk compound, with anisotropies that largely outscore those of already known 2D materials.
Our findings provide a comprehensive reference for future studies of anisotropic response in atomically thin crystals and point to new previ-
ously unexplored materials for the next generation of anisotropic 2D devices.
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I. INTRODUCTION

Anisotropy is the characteristic of a material whereby it dis-
plays different physical properties along different directions. It is
intrinsic to the atomic structure and can, therefore, influence the
electric, magnetic, optical, or mechanical response of a material to
an external perturbation. In fact, anisotropic materials have become
increasingly present in modern devices, finding applications in
diverse fields. One paradigmatic example of anisotropic material is
an optical polarizer, which is transparent to electromagnetic radia-
tion polarized along a well defined axis, while blocking or deviating
light that is polarized along a different direction.

Layered van der Waals (vdW) materials represent an interest-
ing class of naturally anisotropic materials. In vdW materials, the
anisotropy derives from the dispersive nature of the bonds between
the two-dimensional (2D) atomic layers, which is much weaker
than the covalent bonds existing between atoms within the 2D
layers. This intrinsic anisotropy can be exploited for various appli-
cations. For example, in certain layered materials, the interplay
between the structural and electronic properties is so strong that it

changes the iso-frequency surfaces of light from elliptic to hyper-
bolic1 with fascinating perspectives for sub-wavelength imaging
and radiative emission control.2,3

Individual 2D atomic layers are obviously anisotropic due to
the missing third dimension, but they can exhibit in-plane anisot-
ropy as well. However, the most widely studied 2D materials—
graphene,4 hexagonal boron nitride (hBN),5 and the family of
transition metal dichalcogenides (TMDCs)6—have in-plane iso-
tropic properties due their highly symmetric crystal structure.
Graphene, for instance, has a sixfold rotational symmetry and
three mirror planes, while hBN and TMDCs such as MoS2 have a
sixfold roto-inversion symmetry with two mirror planes. Such
large sets of crystal symmetries turn out to inhibit any form of
anisotropic response.

The prototypical example of in-plane anisotropic 2D material
is phosphorene.7 Phosphorene is obtained by mechanical exfolia-
tion of black phosphorus down to the monolayer limit and exhibits
a highly anisotropic puckered structure, which differs along the
zigzag and armchair direction (as shown in Fig. 1). This strong
anisotropy has motivated a large number of theoretical and
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experimental studies of phosphorene, which have revealed the
effect of the structural anisotropy on its electronic, optoelectronic,
electro-mechanical, thermal, and excitonic properties.8–17

Other notable examples of in-plane anisotropic 2D materials
are TMDCs in the distorted 1T0-phase (such as WTe2

1,18–22), tita-
nium trichalcogenides (most notably TiS3

23–28), ReS2 and
ReSe2,

16,29–32 GaTe,33 and pentagonal structures such as PdSe2.
34,35

Such materials exhibit anisotropy in their mechanical, electrical,
optical, and magnetic properties, with intriguing applications for
optical devices (such as birefringent wave plate or hyperbolic plas-
monic surfaces), high mobility transistors, ultra-thin memory
devices, and controllable magnetic devices among others.

As of today, more than 50 different 2D materials have been
identified and synthesized or exfoliated in monolayer form,36 but
they represent only a small fraction of all the possible stable 2D

materials that have been predicted by computations.36–41 It is, there-
fore, reasonable to expect that the above mentioned examples of
anisotropic 2D materials will be soon complemented by additional
atomically thin layers with highly direction-dependent properties.

Here, we take a first step in this direction by presenting an
extensive analysis of the occurrence of in-plane anisotropic features
in the magnetic, elastic, transport, and optical properties of more
than 1000 predicted stable 2D materials from the Computational
2D Materials Database (C2DB).36 We discuss trends and similari-
ties in the atomic and electronic structure of anisotropic monolayer
materials by classifying them according to their point symmetry
group and highlight the most interesting candidates for different
applications.

After introducing the C2DB database and the criteria used to
assess the stability of the materials in Sec. II, we analyze the occurrence

FIG. 1. Overview of the point group distribution of highly stable materials in C2DB, with some examples of corresponding crystal structures. Each example is accompanied
by the crystal structure prototype, which is a label of the form S–n–p with S being the stoichiometry, n being the space group number, and p being the set of occupied
Wyckoff positions. The following point groups representing less than 2% of stable materials are omitted in the figure: 2 (17%, 20 materials); �3 (0.8%, 8 materials); 3
(0.2%, 2 materials); 32 (0.2%, 2 materials); 6/mmm (0.1%, 1 material).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 105101 (2020); doi: 10.1063/5.0021237 128, 105101-2

Published under license by AIP Publishing.



of anisotropy in the magnetic easy axis direction, elastic response,
effective masses, and polarizability in four separate sub-sections of
Sec. III. We have tried to make these sections as self-contained as
possible so they can be read independently, with a separate intro-
duction to the formalism used and the relevant literature for each of
them. We conclude by summarizing the main results in Sec. IV,
where we highlight the most interesting anisotropic and potentially
exfoliable 2D materials identified in the study.

II. OVERVIEW OF THE C2DB DATABASE

The Computational 2D Materials Database (C2DB) is an open
database containing thermodynamic, elastic, electronic, magnetic,
and optical properties of 2D monolayer materials.36 All properties
were calculated with the electronic structure code GPAW42 using
additional software packages for atomic simulation and workflows
handling such as ASE,43 ASR,44 and MyQueue.45 Unless explicitly
stated, all properties reported in this work were calculated with the
PBE exchange-correlation functional.46

The latest development version of C2DB contains 4262 fully
relaxed structures at the time of writing, which are categorized in
terms of their dynamic and thermodynamic stability. The dynamic
stability determines whether a material is stable with respect to dis-
tortions of the atomic positions or the unit cell and is established
from phonon frequencies (at the Γ-point and high-symmetry points
of the Brillouin zone boundary) and the stiffness tensor. A material
is dynamically stable only if all phonon frequencies are real and the
stiffness tensor eigenvalues are positive. On the other hand, the
thermodynamic stability of a given 2D material is assessed in terms
of its heat of formation and total energy with respect to other com-
peting phases (taken as the most stable elemental and binary com-
pounds from the OQMD database47)—also known as energy above
the convex hull.36 A material’s thermodynamic stability is classified
as high if the heat of formation is negative and the energy above the
convex hull is below 0.2 eV/atom.

Materials with high thermodynamic and dynamic stability are
the most likely to be exfoliated or synthesized in the lab. Although
these criteria are not sufficient to ensure experimental realization,
we note that they have been determined from a detailed analysis of
more than 50 already synthesized monolayers.36 We will, therefore,
focus on the subset of highly stable materials (according to the cri-
teria used in the C2DB) in the remainder of this work. For further
details on the stability assessment and a complete overview of the
C2DB, we refer the reader to Ref. 36.

As shown by Neumann more than one century ago, the sym-
metries of any physical property of a material must include the sym-
metry operations of the point group to which the crystalline lattice
belongs.48 Figure 1 provides an overview of the 1198 thermodynami-
cally and dynamically stable materials in C2DB grouped according
to their point group symmetry, with the latter obtained from the
Spglib library.49 Some specific examples of materials are shown with
their point group indicated by the color of the frame. The selected
materials represent some of the most interesting anisotropic 2D
materials identified in this work and discussed in the following.

From Fig. 1, we make the following general observations:

• Materials with trigonal symmetry, that is, materials belonging to
the point groups �3m, 3m, �3, 3, 32 in the international

notation,50 are the most frequently occurring (33% of the total).
These include, among others, TMDCs in the 1T phase such as
HfS2,

51 group IV monolayers,52 hydrogenated graphene (i.e., gra-
phene53), MXY Janus structures54–56 such as ZrSSe, and mono-
layer magnetic materials such as CrI3.

57

• Monoclinic materials (groups 2, m, 2/m) account for 18% of the
total. They include TMDCs in the 1T0 phase, such as WTe2,

58

TiS3,
23,24 and the pentagonal PdSe2.

34 Of the 219 monoclinic
materials investigated in this work, 140 of them bear orthogonal
structure, while the remaining 79 have an inclined crystal system.

• The orthorhombic structures comprise 16% of the total (groups
mmm, mm2). Notable examples are the highly anisotropic puck-
ered phosphorene (that is, monolayer black phosphorus7) and
puckered arsenene.59 We also point out the magnetic ternary
compound CrSBr, which has been recently exfoliated from the
layered bulk structure60,61 and whose crystal prototype is largely
recurrent in C2DB among orthorhombic structures.

• Triclinic materials (groups 1, �1) account for 13% of the total.
This group include materials with low symmetry, such as TMDC
alloys,62,63 the topological insulator SbI,64,65 and other potentially
exfoliable materials such as AuSe.

• 11% of structures have hexagonal point group symmetry (groups
�6m2, 6/mmm). They include TMDCs in the H phase such as
HfSe2, hexagonal boron nitride (hBN), graphene (which is the
only stable representative of the point group 6/mmm), and other
less common structures possessing sixfold rotation symmetry
such as TiCl3.

• The remaining 8% correspond to tetragonal structures (groups
�42m, 4/mmm) such as ZnCl2, which is predicted to be easily
exfoliable.37

This set of 1198 known or potentially exfoliable/synthesizable
materials forms the basis for the anisotropy analysis presented in
this work.

III. RESULTS AND DISCUSSION

A. Magnetic easy axis

Magnetic anisotropy is defined in a material as the depen-
dence of its properties on the direction of its magnetization. The
main manifestation of magnetic anisotropy is the existence of an
easy axis, along which it takes the least energy to magnetize the
crystal, and a hard axis, where it takes the most. In order to quan-
tify the degree of anisotropy, the magnetic anisotropy energy
(MAE) is defined, which accounts for the energy necessary to
deflect the magnetization from the easy to the hard direction. In
general, the MAE may have contributions from different features
of a crystal such as strain or defects. In this work, we will consider
perfect crystals, wherein only the so-called magnetocrystalline
anisotropy, given by the coupling of the lattice to the spin mag-
netic moment, contributes to the MAE.

In 2D materials, magnetic anisotropy gains a special impor-
tance due to the Mermin–Wagner theorem,66 which prohibits a
broken symmetry phase at finite temperatures. This means that for
a magnetic order to emerge, the spin rotational symmetry has to be
broken explicitly by magnetic anisotropy. This has attracted a wide
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interest on the topic in the recent years, both in the light of new
fundamental questions57,67–71 and applications.72–76

In this work, we will focus on the in-plane MAE and define
the x and y axes to span the atomic plane of the material. We
define the in-plane MAE, Δxy , as

Δxy ¼ jE(~M k y)� E(~M k x)j, (1)

where E(~M k x) and E(~M k y) are the electronic energies including
spin–orbit coupling (SOC) with magnetization parallel to the x and
y axes, respectively. In the electronic structure code GPAW, SOC is
added non-self-consistently on top of a converged PBE calculation
as described in Ref. 77. This method yields very accurate results, as
evidenced, for instance, by the excellent agreement of MoS2
SOC-induced band splitting with other first-principles approaches
and with experiments,77 or by the correct description of topological
physics governed by SOC.65,78 The MAE obtained with this method
has been used in the calculation of critical temperature of magnetic
2D materials, providing good agreement with experiments.70,71

Let us note that the definition of x and y axes is of course
arbitrary. In C2DB, the x axis is systematically chosen to be paral-
lel to one of the lattice vectors, with the y axis orthogonal to it.
All properties are then calculated with respect to this reference
frame. With this choice, the anisotropy is assessed with respect to
the high symmetry axes for most of the materials in C2DB, except
only for low symmetric obliques structures such as the ones in
point group 1 and �1 (which represent only a 13% of the total).
For such cases, the degree of anisotropy for some properties
might be slightly underestimated.

In Fig. 2, we show the distribution of the magnetic materials
in the C2DB database, sorted by their point group symmetry and
the value of their in-plane magnetic anisotropy Δxy. In comparison
with Fig. 1, we find a similar landscape once we filter for ferromag-
netic (FM) or anti-ferromagnetic (AFM) materials, as shown in
Fig. 2(a). This indicates that being magnetic or not is not strongly
correlated to the point group but to the presence of magnetic
atoms in the structure. However, once anisotropy comes into play,
we do observe, in Fig. 2(b), important structural features that con-
dition it. In fact, one can expect a magnetic easy axis to appear in
the direction where magnetic atoms are packed more loosely, creat-
ing an anisotropy in the magnetic properties. For example, as we
set a very low (0.005 meV/unit cell) threshold for Δxy , all hexagonal
and tetragonal point groups vanish and only point groups not
restricting the in-plane perpendicular directions by symmetry hold
an in-plane magnetic anisotropy. Another feature we observe from
Fig. 2(c) is the prevalence of the orthorhombic (mmm) and, to a
lower degree monoclinic (2/m), systems with crystals of mmm
point group symmetry representing over 35% of the materials with
a low Δxy threshold. When we increase the Δxy threshold to
0.7 meV/unit cell, we see that the trend is enhanced: mmm domi-
nates with half of the materials and 2/m comprises a third of the
materials [Fig. 2(d)]. The materials above this threshold are classi-
fied and sorted according to their anisotropy in Fig. 2(e). We see
that both FM and AFM magnetic orders are equally represented,
indicating little influence of the type of magnetic order on the
anisotropy. In Fig. 2(e), we also show the direction of the magnetic

easy axis, indicated by a full orange marker if it lies within the
plane and an empty blue one if it is oriented out-of-plane. It is
clear that most of the selected anisotropic materials indeed present
an in-plane easy axis.

Among the 113 materials with Δxy . 0:005meV=unit cell, we
find that the ternary compound structure prototype of orthorhom-
bic symmetry ABC-59-ab36 is the most frequently occurring with
47 entries (see CrSBr in Fig. 1 for an example of this structure).
The main reason for this might be the mentioned lack of symmetry
between the x and y directions in the plane, along with the fact
that it is more likely to contain a magnetic atom due to its ternary
nature (most other crystals in C2DB are binary). To the best of our
knowledge, the only 2D material from this group that has been suc-
cessfully synthesized and exfoliated is CrSBr, whose FM order
down to the monolayer limit has been very recently confirmed in
experiments.60,61 We note that several materials bearing the very
same structure prototype are listed as easily exfoliable in Ref. 37,
e.g., CrOBr, CrOCl, FeOCl, VOBr, and VOCl. Finally, the mono-
clinic T0 phase of transition metal dichalcogenides occurs 15 times,
followed by the trigonal MoS2

79 type with 10 occurrences.
We also cross-checked the rest of our selected anisotropic

materials against the list of exfoliable 2D materials in Ref. 37. We
found, out of the 113 materials with Δxy . 0:005meV=unit cell,
over 20 materials whose stoichiometry match entries in the list of
exfoliable materials. Among these, perhaps the most promising
material with regard to a potential experimental realization is the
AFM T0 di-halide V2I4, which lies at the convex hull according to
the C2DB database.36 V2I4 shows an in-plane magnetic easy axis
and Δxy ¼ 1:09meV=unit cell, that competes with the highest
out-of-plane anisotropies known to date.70 In addition, we find
several materials that are only a few meV above the convex hull and
show remarkably high anisotropies. Among these, the AFM Ni2I4
compound stands out with an exceptional in-plane anisotropy of
over 20 meV/unit cell and an in-plane easy axis. Other materials in
the same stability category, such as Ni2Br4, Co2O4, and CrBr2, also
show large Δxy values and are listed in Table I.

B. Elastic response and auxetic effect

The elastic response of 2D materials to strains and deformations
is usually expressed in terms of the Young modulus E and the
Poisson ratio ν.80,81 The former measures the response along a direc-
tion that is parallel to the applied strain, while the latter describes
how the material reacts along orthogonal directions. For anisotropic
materials, both the Young modulus and the Poisson ratio depend on
the directions of stresses and strains. Assuming that the 2D material
lies in the xy plane, and neglecting the elastic response along the
out-of-plane axis z, we will denote the axis-dependent Young’s
modulus with Ei, i ¼ {x, y}. Similarly, the coefficient relating the
stress along the i axis to an applied strain in the perpendicular j direc-
tion will be quantified by the Poisson ratio νij, with i = j.

More generally, the elastic response of a continuous 2D medium
is quantified in terms of the 2D stiffness tensor C, which is a linear
map between the strain tensor ε and the stress tensor σ,82

σ ij ¼
X
kl

Cijklεkl: (2)
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FIG. 2. (a) Distribution of predicted stable magnetic materials (FM or AFM) from the C2DB database grouped according to their point group symmetry. The percentage of
materials represented by each point group and their number of occurrences in the database is explicitly shown, except for those point groups representing less than 3% of
materials. Panels (b) and (c) show the distribution of magnetic materials in the database with a low (0.005 meV/unit cell) in-plane magnetic anisotropy (MA) threshold. The
main chart in (b) shows the distribution of the materials above the threshold, while the orange bin in the inset represents all magnetic materials below the threshold for
comparison. Panels (d) and (e) show the distribution of the materials with a high MA (.0:7 meV=unit cell). In (e), the materials are sorted by the size of their MA and
their magnetic state is indicated by the font color (green for FM, purple for AFM). The marker color corresponds to the signs of Δzx and Δzy : empty marker with blue edge
for Δzx , 0 and Δzy , 0 (out-of-plane easy axis) and full orange if any of the two is above 0 (in-plane easy axis).
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Here, we have i ¼ {x, y}, since we restrict to in-plane stresses and
strains. A generic matrix element σ ij represents the i component of
the stress acting on a plane perpendicular to the j direction, while the
strain components εij are given by εij ¼ (@iuj þ @jui)=2 in terms of
the infinitesimal deformations ui.

Being a linear map between two 2nd rank tensors, the stiffness
tensor is naturally a 4th rank tensor. However, one can make use of
the symmetric properties of both σ and ε at equilibrium to write
both of them as one-dimensional vectors, namely,

~σ ¼ σxx , σyy , σxy
� �T

:¼ σ1, σ2, σ3ð ÞT , (3)

~ε ¼ εxx , εyy , 2εxy
� �T

:¼ ε1, ε2, ε3ð ÞT : (4)

Such a notation is often called Voigt notation. Then, the stiffness
tensor becomes a 2nd rank symmetric tensor with only six inde-
pendent components,

~σ ¼
C11 C12 C13

C12 C22 C23

C13 C23 C33

0
@

1
A~ε: (5)

We will restrict the following analysis to the class of orthotropic
materials, that is, materials having three mutually orthogonal
planes of reflection symmetry. In such a case, the stiffness tensor
takes the form

C ¼
C11 C12 0
C12 C22 0
0 0 C33

0
@

1
A: (6)

In practice, this means that we restrict attention to materials where
the shear deformations εxy are decoupled from xx and yy stresses.
This allows us to straightforwardly relate the components Cij of the
stiffness tensor to the in-plane Young modulus Ei and the in-plane
Poisson ratio νij via the following relations:

Ex ¼ C11C22 � C2
12

C22
, (7a)

Ey ¼ C11C22 � C2
12

C11
, (7b)

νxy ¼ C12

C11
, (7c)

νyx ¼ C12

C22
: (7d)

In C2DB, each component of the 2D stiffness tensor is calcu-
lated by straining a material along a given direction (x or y) and
calculating the forces acting on the unit cell after relaxing the posi-
tion of the atoms within the fixed unit cell.36 To restrict to ortho-
tropic materials only, we have discarded all materials whose
stiffness tensor components C13 or C23 exceed a certain tolerance
Cmax, which we set to Cmax ¼ 0:01N=m. With this method, we
have obtained a subset of 555 materials (roughly 50% of all the
stable materials) that we analyze in the following.

In Fig. 3(a), we show an overview of the direction-dependent
Young modulus for all orthotropic and stable materials in C2DB.
We plot max(Ex , Ey) against min(Ex , Ey), which means that all data
point lying outside the diagonal represent a material with aniso-
tropic elastic properties. Well known anisotropic structures such as
WTe2, PdSe2, TiS3, P4, and As4 are all identified by this method,
while hundreds of unexplored anisotropic materials are predicted
as well. In Fig. 3(b), we use a similar method to show the anisot-
ropy of the Poisson ratio. While this does not add much informa-
tion with respect to panel (a)—since Ex=Ey ¼ νyx=νxy , as one can
easily infer from Eqs. (7)—we notice that Poisson ratios can also
take negative values, differently from the Young modulus. In such a
case, a material stretched (or compressed) along the x direction will
also expand (shrink) along the perpendicular y direction, a quite
counterintuitive property called auxetic behavior.80,83 We will
investigate such cases in more detail in the following.

To describe elastic anisotropy in a more quantitative manner,
we define an elastic anisotropy degree (or anisotropy parameter)
for each material as

δE ¼ jEx � Eyj
Ex þ Ey

: (8)

Such a parameter will be always bounded between 0 and 1, with
δE ¼ 0 signifying a perfectly isotropic materials, while δ � 1 for an
extremely anisotropic medium.

In Fig. 3(c), we show the distribution of the elastic anisotropy
degree for all materials having δE � 0:05 (corresponding to a dif-
ference of at least 10% between x and y Young’s modulus), with the

TABLE I. Monolayers predicted stable and with the highest in-plane magnetic anisotropy in the C2DB database and in-plane magnetic easy axis, whose stoichiometry
matches that of entries in the list of easily exfoliable 2D materials in Ref. 37. The table shows the chemical formula, the space group symmetry, magnetic state, energy above
the convex hull, and in-plane magnetic anisotropy.

Sym. Mag. Ehull (meV) Lowest Ehull monolayer? Δxy (meV/unit c.)

Cr2Br4 P21/m FM 54.4 No 0.79
Co2O4 C2/m FM 7.1 No 0.94
V2I4 Pm AFM 0.0 Yes 1.09
Ni2Br4 P�3m1 AFM 8.8 No 1.55
Ni2I4 C2/m AFM 10.3 No 20.40
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inset showing the full distribution including materials with
δE , 0:05. We notice that more than one third of the selected mate-
rials (201 out of 555) show an elastic anisotropy exceeding this
threshold value, while 162 of them exceed the value δE ¼ 0:1 (signi-
fying a difference of roughly 20% or more between Ex and Ey) and
32 of them show a highly anisotropic elastic behavior with δE � 0:4.

The distribution of point groups corresponding to different
threshold values for δE is shown as a series of pie charts in Fig. 3(d).
On the left, we plot the distribution of point groups for all 555
selected materials. A comparison with Fig. 1 shows that our choice
of selecting only orthotropic materials tends to favor orthorhombic
structures (especially, group mmm) with respect to trigonal ones,
while the proportions between remaining point groups remain basi-
cally unaffected. However, when selecting all materials with at least
10% of difference between Ex and Ey (δE � 0:05, in the middle), the
proportions change drastically, with all trigonal and hexagonal
groups suppressed in favor of orthorhombic and monoclinic struc-
tures. This shows that symmetric crystal structures such as the ones
of TMDCs in the H and T phase, graphene, and hBN are generally
isotropic, with little difference in the elastic properties along x and y
directions. On the other hand, TMDCs in the distorted T0 phase

(such as WTe2), pentagonal structures (PdSe2), and puckered layers
(phosphorene) stand out for their markedly anisotropic elastic prop-
erties due to their asymmetric crystal lattice.

When restricting to highly anisotropic materials having
δE � 0:4, monoclinic and orthorhombic structures share exactly
50% of the total each. The Young moduli of these 32 structures are
plotted in the top panel of 4, sorted from the lowest to highest
value of δE . Besides known structures such as phosphorene (P4)
and puckered arsenene (As4), we find many new stable structures
with exceptionally high elastic anisotropy. Four out of the first six
materials are compounds of the form CrX2 (with X a halogen
element) in both the AFM and FM magnetic state, which also
stand out for their markedly anisotropic magnetic behavior as
described previously. These are, however, not the most stable struc-
tures with the same constituent elements, since they all have a com-
peting phase of the form CrX3 with a more favorable formation
energy (one of them is shown in Fig. 1). However, this is not the
case for the monoclinic structures AuSe and AuTe, which represent
the most stable phase of their respective elements. One of them
(AuSe, which is shown in Fig. 1 as well) has also been identified as
an easily exfoliable materials by independent work of Mounet

FIG. 3. Elastic properties of the 555 orthotropic materials in C2DB. Panels (a) and (b) show a comparison between the Young modulus and Poisson ratios along opposite
directions, respectively. In panel (a), some known anisotropic materials are highlighted in orange, while in panel (b), we use red markers for auxetic materials. Panel (c)
shows the distribution of the anisotropic degree δE for the 201 materials having δE � 0:05, with the inset showing the full distribution of all 555 materials for comparison.
Panel (d) shows the point group distributions of orthotropic materials for three different threshold values of δE (namely, 0, 0.05, and 0.4 from left to right).
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et al.,37 making this one of the most appealing material for aniso-
tropic elastic applications found in this work. We also note that
puckered compounds GeS and GeSe seem also to be easily exfoli-
able from their respective three-dimensional parent structures,
which is again confirmed in the literature.37

Finally, it is worth mentioning the presence of several entries
in the structural prototype ABC-59-ab (especially, Hf- and
Zr-based compounds), whose relevance has already been discussed
Sec. III A. We note that Ref. 37 lists HfNBr, ZrNBr, and ZrNI as
easily exfoliable layered materials. We find a relatively low elastic
anisotropy degree δE ¼ 0:07 for ZrNI, but we suggest that materials

with much higher elastic anisotropy such as HfBrX and ZrBrX
(with X = S, Se) should, in principle, be available by substitution of
nitrogen with an element from the halogen group.

Let us now come back to the subset of materials showing a
negative in-plane Poisson ratio, that is, the ones highlighted with
red markers in Fig. 3(b). The auxetic effect is not necessarily associ-
ated to anisotropy as both Poisson ratios νxy and νyx can take nega-
tive values without necessarily being different from each other.
Indeed, such an effect does not originate from the material having
a different elastic response along orthogonal axes but rather from
the presence of special re-entrant structures or rigid blocks linked

FIG. 4. Top: Materials with highly anisotropic Young modulus δE � 0:4, sorted from the lowest to highest δE. Bottom: Materials with negative Poisson ratio, sorted from
the lowest to highest value of max(�νxy , �νyx ). Green (purple) labels indicates ferromagnetic (antiferromagnetic) materials.
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by flexible hinges in the crystalline structure that can compress or
extend in counter-intuitive fashions. Nevertheless, our framework
allows for the systematic search of novel 2D materials with a nega-
tive Poisson ratio, which itself is an active field of research.83

Moreover, Poisson ratios of anisotropic materials can take arbi-
trarily large values (positive or negative), differently from ordinary
isotropic media.84

In the bottom panel of Fig. 4, we plot the Poisson ratios of the
31 stable materials in C2DB showing auxetic behavior, sorting
from the lowest to highest value of max(�νxy , �νyx). The largest
negative Poisson ratio is found for TiCl3 in the hexagonal crystal
structure (shown in Fig. 1), with both AFM and FM magnetic con-
figurations. Once again, this is not the most stable phase for such a
compound, which reaches the lowest energy configuration when
arranged in a trigonal phase, in the same crystal prototype as the
ferromagnetic insulator CrI3.

57

There are several interesting candidates among the materials
with the tetragonal structure. In particular, materials with stoi-
chiometry AB2 in point group �42m, such as the case of ZnCl2
shown in Fig. 1, represent a large majority of stable auxetic mate-
rials in C2DB. Notable examples are metal di-halides involving
Co, Mn, or Fe as the metallic element. Such materials are all exfo-
liable from a 3D parent compound with a trigonal point group,37

but their tetragonal phases generally have total energies that are
comparable or even lower than the trigonal monolayer phase
(which is also present in C2DB). A second notable example is
given by group 12 di-halides involving Zn, Cd, and Hg, for which
the tetragonal auxetic structure turns out to be the most stable
phase. Interestingly, both HgI2 and ZnCl2 are reported as easily
exfoliable materials by Mounet et al.,37 making these two materi-
als very appealing candidates for novel auxetic 2D materials. We
also note that MnTe, AgBr, and GeO2 all seem to have total ener-
gies very close to the convex hull and thus also belong to the set
of predicted stable auxetic monolayers.

Let us note that a significant majority of known auxetic 2D
structures display negative Poisson ratio in the out-of-plane
direction,85–89 while only very few materials were previously pre-
dicted to exhibit in-plane auxetic response.90,91 Reference 90
reports a negative Poisson ratio for monolayers of groups 6–7
transition-metal dichalcogenides (MX2 with M =Mo, W, Tc, Re,
and X = S, Se, Te) in the 1T-phase. We do find a negative νxy in
C2DB for all of them, but they have low dynamical and thermo-
dynamical stability and, therefore, are not identified by our
analysis.

C. Effective masses

Monolayer 2D materials with a finite bandgap can display
large anisotropies in the effective masses along two orthogonal
directions. This makes them appealing for highly directional-
dependent transport, with applications in anisotropic field-effect
transistors, polarization-sensitive detectors, and non-volatile
memory devices among others.12,26,29,30,32,33

In C2DB, effective masses for conduction and valence bands
are calculated for all materials having a finite bandgap greater than
0.01 eV at the PBE level. We define the effective mass, m, from the
curvature, a, at the band maximum (minimum) for valence

(conduction) bands as m ¼ 1=2a. To determine the curvature we
start from a self-consistent ground state calculation performed at

a k-point density of 12A
� �1

. From these k-points a preliminary
band extremum is found and a second, non-self-consistent calcu-
lation is performed with higher density of k-points centered
around the preliminary extremum. Then, from these values a final
extremum is determined and the energies for a number of
k-points spaced very closely around the extremum are calculated
non-self-consistently. The k-points used for the first refinement
step are by default chosen to lie in a sphere around the extremum
with a radius of 250 meV (for a mass of 1) and the same number
of k-points as the original calculation (but at least 19). The last
refinement uses a 1 meV sphere and 9 points. The points calcu-
lated in the final refinement step are used to determine the curva-
ture. We first do a fit to a second order polynomial to determine
a preliminary extremum. Then, we perform a fit to a third order
polynomial and find the new extremum, unless the optimization
algorithm diverges (as may happen for third order polynomials)
in which case, we revert to the original fit. We have found that the
third order polynomial fit does provide an improvement to the
description of the band extremum and in some cases is necessary,
e.g., in the presence of parabolic bands crossing as in Rashba
splitting. From the fit, we find the curvature a at the extremum
and the mass is calculated as m ¼ 1=2a.

To measure the presence of anisotropic effects in the effective
masses, we define the parameters

δme ¼
jm(e)

x �m(e)
y j

m(e)
x þm(e)

y

, (9a)

δmh ¼
jm(h)

x �m(h)
y j

m(h)
x þm(h)

y

, (9b)

where

• m(e)
i is the effective electron mass calculated along the i direction

around the conduction band minimum and
• m(h)

i is the effective hole mass calculated along the i direction
around the valence band maximum.

Unfortunately, getting a very accurate value for the effective masses
in a fully automated fashion turns out to be a quite challenging
task, with some fits being not accurate enough, or picking a wrong
sign for the electron or hole mass in the case of a particularly
heavy effective mass. We, therefore, remove all materials having
m(e=h)

i � 20me, with me the free electron mass, and materials with
extremely high ratio m(e=h)

i =m(e=h)
j � 20. We stress that these

threshold values are arbitrary. They have been primarily chosen so
that we discard all wrong results, while also keeping the highly
anisotropic materials with accurate results into the analysis as
much as possible.

The C2DB database contains 574 dynamically and thermody-
namically stable materials with a PBE bandgap greater than
0.01 eV, of which 106 fall outside the range of validity described
above. This leaves us with a total of 468 materials, whose effective
electron and hole masses are shown as a scatterplot in Figs. 5(a)
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and 5(b). We find a rather large set of materials with anisotropic
effective masses, as one can immediately notice from the large
number of points falling outside the main diagonal. Indeed, as
shown in Fig. 5(c), 60% of the selected materials (282 out of 468)
show a difference of at least 10% between electron effective masses,
while 54% of them (253 out of 468) have at least 10% of difference
between hole effective masses. Moreover, a quite large fraction of

materials have extremely high values of δme or δmh as compared
with the case of elastic anisotropy in Fig. 3(c).

When considering the distribution of point groups for materials
with effective masses anisotropy, a quite different behavior with
respect to previous cases emerges. First, as shown in the left column
of Fig. 6, let us notice that the restriction to semiconductors with a
bandgap of at least 0.01 eV removes many structures in the

FIG. 5. Distribution of the effective masses in C2DB. In panels (a) and (b), we show the effective mass along the heaviest direction against the effective mass along the
lightest direction for conduction and valence bands respectively. Effective masses are plotted in units of the free electron mass me. Panel (c) shows a distribution of the
anisotropic degrees δme (δmh) for the such cases where δme (δmh) is greater than 0.05. Panel (d) shows, from left to right, the distribution of δme (δmh) in terms of point
group symmetry for three different threshold values of 0, 0.05, and 0.7 respectively.
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FIG. 6. Materials with highly anisotropic effective masses δme � 0:7 or δmh � 0:7, sorted from the highest (top left) to lowest (bottom right) value of max(δme, δmh).
Green (purple) labels indicates ferromagnetic (antiferromagnetic) materials. A green (light gray) background indicates the presence of a direct (indirect) bandgap at the
PBE level.
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orthorhombic (mmm) and monoclinic (2/m) groups, while favor-
ing structures with trigonal (�3m, 3m) and hexagonal (�62m)
symmetry with respect to the general case shown in Fig. 1. More
importantly, we notice that these structures are not filtered out
even when we select materials with increasingly high effective
masses anisotropy (δme (mh) � 0:05 in the middle, δme (mh) � 0:7
on the right). This means that, despite their structural symmetry,
materials such as TMDCs in the T and H phase and Janus struc-
tures display a quite strong anisotropy in the effective masses. One
should bear in mind that we only calculate the curvatures of
valence and conduction bands in one particular valley. While
these are not bound to symmetries of the crystal, the overall trans-
port properties (such as, for instance, the mobility) are determined
by adding up contributions from all valleys, which in the end
cancels out any anisotropic effect and restores the Neumann prin-
ciple. However, it is worth noting that transport properties of a
single anisotropic valley should in principle be accessible in experi-
ments with valley-selection techniques such as circularly polarized
optical excitation and gating92–94

For the case of electron effective masses, we find that 61 stable
materials have a rather high anisotropy degree δme � 0:7. While
this group is dominated by monoclinic structures in the 2/m point
group (mostly TMCD in the distorted T0 phase), we find a rather
large set of triclinic structures which sum up to roughly one third
of the total, and a significant 13% of share for hexagonal structures.
The situation is different for the case of hole effective masses,
where orthorhombic structures represent a 34% of the 50 materials
with δmh � 0:7. However, we still find that 22% of structures are in
a trigonal point group as well.

We have reported all the 101 structures with δme or δmh

greater that 0.7 in Fig. 6, with 10 of them having both parameters
above the threshold value. Among this group, we notice a recur-
rent presence of hafnium, bismuth, and antimony-based Janus
structures, and chromium based compounds (especially, chro-
mium halides, which also bear elastic and magnetic anisotropy).
Most importantly, we find few materials that have already been
exfoliated down to monolayer thickness in experiments, including
four hafnium and zirconium-based TMDC in the stable T phase
and the already mentioned FM compound CrBrS. We also point
out the presence of monolayers SbI3, BiClTe, SbITe, and other
ternary compounds in the crystal prototype ABC-59-ab (point
group mmm) such as CrBrO and CrClO, which all seem to be
easily exfoliable from the layered 3D parent bulk structure.37

Finally, we note that the direct or indirect character of the
bandgap does not seem to be relevant for attaining high anisot-
ropy in the effective masses. Indeed, we find 18 out of 101 highly
anisotropic materials with direct gap (that is, 18%), which is not
dramatically different from the total fraction of semiconductors
and insulators with direct gap among the 468 materials consid-
ered in this analysis (29%).

A list of experimentally available or easily exfoliable materials
with highly anisotropic effective masses is presented in Table II,
where we also report three experimentally available materials and
one easily exfoliable material having 0:5 � δme=mh � 0:7 (namely,
TiS3, SnSe2, GaTe, and AuSe). We also include additional struc-
tures that can be obtained from this subset by replacing a constitu-
ent element with atoms from the same group. This a relevant case

for Janus monolayer, which can be obtained from already avail-
able structures by stripping off an outer layer of chalcogen atoms
and substituting them with an element from the same family.54

A similar method is likely to be applicable to halogen and chal-
cogen atoms in ternary orthorhombic compounds. For each
entry of Table II, we have double-checked the accuracy of the
parabolic fit.

D. Polarizability

The polarizability of a material relates the induced electric
dipole moment density to an applied electric field to linear
order.104 For 2D materials, this relation takes the form

P2D
i (~q, ω) ¼

X
j

α2D
ij (~q, ω)Ej(~q, ω), (10)

where P2D is the induced polarization in the material averaged over
the area of the unit cell, E(~q, ω) is the applied electric field, and α2D

is the polarizability.36

In general, the polarizability can be split into a contribution
from the electrons, αe

ij(~q, ω), and a contribution from the lattice,
αlat
ij (~q, ω). Since the characteristic response time of the electrons

is much faster than that of the lattice, the relevance of the two
contributions depends on the time scale of the considered
problem. For optical processes involving electromagnetic waves
with frequency well above the characteristic phonon frequency
of the lattice, only the electronic polarizability is relevant and
we can write αij(~q, ω) � αe

ij(~q, ω). On the other hand, for pro-
cesses involving infrared light, the lattice response must be con-
sidered as well and can in some case even dominate the
electronic response.

The polarizability determines the degree of dielectric screen-
ing in a material and as such it sets the strength of Coulomb inter-
action between charged particles.105,106 It thereby governs several
of the unique properties that made 2D materials famous over the
last decade4,6,107 including excitons, plasmons, and bandgap
renormalization effects.108 In this context, the in-plane anisotropy
of 2D materials has attracted significant interest since the synthesis
of few-layer black phosporus (P4) in 2014.7,9,109 For example, the
anisotropic optical absorption (essentially the imaginary part of
the electronic polarizability) makes the material act as a linear
polarizer,110 which finds applications in diverse fields such as
liquid-crystal displays, medical applications, or optical quantum
computers.111,112 In addition, other fundamental properties, such
as the electron–phonon coupling and electron–hole interactions,
are influenced by an anisotropic polarizability resulting in forma-
tion of quasiparticles, e.g., polarons, excitons, trions, with uncon-
ventional shapes and dispersion relations.110,113–118

In the C2DB, the electronic polarizability is calculated within
the random phase approximation (RPA)119,120 using PBE wave
functions and eigenvalues, see Ref. 36 for further details. To keep
the discussion general, we focus here on the polarizability in the
static (ω ¼ 0) and long wavelength (q ¼ 0) limits. As a measure of
the degree of anisotropy we adopt the δ parameter defined above
and define
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δαp ¼ jαp
x � αp

y j
jαp

xj þ jαp
y j
, (11)

with p ¼ {e, lat} for the electronic and lattice polarizability,
respectively.

In Fig. 7 panels (c) and (d), we show the statistical distribution
of the materials with electronic polarizability anisotropy above 0.005
and 0.4, respectively. For reference, the distribution of all the materi-
als for which the polarizability has been calculated is shown in
panel (a), and the materials are classified according to point group
symmetry as usual. As the threshold is increased we see the same
trend as for the magnetic, elastic, and effective masses anisotropies,
namely, the orthorhomic mmm point group followed by the mono-
clinic 2/m becomes increasingly dominant. Both the trigonal and
tetragonal phases disappear from the distribution already for
δαe . 0:005. The othorhombic mmm group is particularly ubiquitous

among the materials with high δαe , surpassing 70% of the remain-
ing materials already at a moderate threshold of δαe . 0:4. In
Fig. 7(e), we show the materials with the largest anisotropies
found in the range δαe . 0:7. We note that our analysis correctly
identifies the known in-plane anisotropic compounds such as P4

7

(phosphorene), As4
59 (arsenene), MoS2 (in the T0 phase) and

WTe2
58 among others.
The materials with the highest δαe are ternary compounds

and, therefore, more challenging to realize experimentally than the
more common binary 2D materials, a notable exception being the
recently synthesized Cs2Br2S2,

61 mentioned above, which has, in
addition, a high electronic polarizability anisotropy. Regarding
binary compounds, several of the materials with large δαe have
been predicted to be exfoliable from known parent bulk materials.37

Among our anisotropic materials that match the stoichiometry of
the materials listed in Ref. 37 as easily exfoliable, the most promis-
ing of these are listed in Table III.

TABLE II. List of experimentally available or easily exfoliable materials with high anisotropy in the effective electron or hole masses. The list includes materials that can be
obtained from available or exfoliable compounds by chemical substitution of one or more atomic species.

Material Pointgroup δme δmh Ref. (Exp.) Exfol. from bulk

CrBrS (AFM) mmm 0.89 0.94 61 Yes
W2Se4 2/m 0.07 0.88 95
CrBrS (FM) mmm 0.85 0.84 61 Yes
HfSe2 −3m 0.85 0.00 96 Yes
Ti2CO2 −3m 0.83 0.00 97
HfS2 −3m 0.81 0.00 51 Yes
ZrSe2 −3m 0.81 0.00 98 Yes
Re4Se8 −1 0.80 0.30 30 Yes
SnS2 −3m 0.50 0.78 99 Yes
ZrS2 −3m 0.75 0.00 100 Yes
PbI2 −3m 0.00 0.72 101 Yes
Ti2S6 2/m 0.60 0.52 23 Yes
SnSe2 −3m 0.55 0.00 102 Yes
Ga2Te2 −6m2 0.51 0.37 103 Yes
CrBrO (AFM) mmm 0.37 0.84 Yes36,37

CrClO (AFM) mmm 0.83 0.79 Yes36,37

CrBrO (FM) mmm 0.25 0.83 Yes36,37

CrClO (FM) mmm 0.45 0.81 Yes36,37

I6Sb2 −3m 0.01 0.80 Yes36

Au2Se2 2/m 0.65 0.26 Yes36,37

Material Pointgroup δme δmh Obtainable via substitution from

CrBrSe (AFM) mmm 0.94 0.92 CrBrS37

CrIS (FM) mmm 0.93 0.73 CrBrS37

BrSbSe 3m 0.90 0.13 ISbTe37

CrISe (AFM) mmm 0.89 0.80 CrBrS37

CrBrSe (FM) mmm 0.88 0.88 CrBrS37

CrIS (AFM) mmm 0.79 0.53 CrBrS37

CrIO (FM) mmm 0.08 0.79 CrBrO,37 CrClO37

HfSeTe 3m 0.79 0.01 HfS2,
51 HfSe2

96

ZrSSe 3m 0.75 0.00 ZrS2,
100 ZrSe2

98

CrIO (AFM) mmm 0.15 0.58 CrBrO,37 CrClO37
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FIG. 7. (a) Distribution of materials predicted to be stable in the C2DB database, according to their point group and their in-plane optical polarizability anisotropy. The per-
centage of materials represented by each point group and their number of occurrences in the database is explicitly shown, except for those point groups representing less
than 3% of materials. In (b) and (c), classification of materials in the database with a low (δαe . 0:005) in-plane optical polarizability anisotropy threshold; in a histogram
according to their degree of anisotropy in (b), and in a pie chart according to their point group in (c). The main chart in (b) shows the distribution of the materials above
the threshold, while in the inset an orange bin represents all materials below the threshold. In (d) and (e), the materials with a high anisotropy are classified. In (d), a
threshold of δαe . 0:4 is set. In (e), the materials over a threshold of δαe . 0:7 are sorted by their anisotropy, and their magnetic state is indicated by the font color
(purple for AFM). Green, gray, and white background colors indicate the presence of a direct and indirect bandgap and zero bandgap according to HSE calculations.
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We highlight the experimentally known ternary compound
Cs2Br2S2 among the easily exfoliable materials from Table III, pre-
senting a high optical polarizability anisotropy of δαe . 0:41.
Among the compounds not known yet experimentally, we highlight
two in the table, that have δαe . 0:65 and δαe . 0:5, respectively:
Ti2Cl4 and Zr2I4. We stress that δαe ¼ 0:65, for instance, implies
that the polarizability in one direction of the plane is 4.7 times
larger than in the other direction. Consequently, these materials are
very promising candidates for anisotropic optical applications such
as light polarizers.

The lattice or infrared polarizability αlat is calculated in the
C2DB database only for materials meeting the requirements of
high stability and bandgap. 10meV, which represent about
15% of the materials in the database. Hence we will limit our

analysis to extracting the most promising individual materials,
since a statistical analysis would not be representative of the real
distribution of the materials in the database. In Fig. 8, we show
all 16 materials with δαlat . 0:2. As it is the case with the rest of
properties, we find several materials with a significant anisot-
ropy. For instance, the monolayer Sn2Te2 has a δαlat value 0.45, is
at the bottom of the convex hull combining Sn and Te among
monolayers and is considered to be easily exfoliable.37 This
makes it a very interesting material for further experimental and
theoretical exploration. We find other materials whose stoichi-
ometry matches easily exfoliable entries in Ref. 37 among those
with δαlat . 0:25 and are listed in Table IV. Taking into account
that these promising materials are selected among only a little
fraction of the entire C2DB database, we anticipate that there are
a large amount of promising infrared anisotropic materials in
the database yet to be discovered.

TABLE III. Monolayers with the highest in-plane electronic polarizability anisotropy
(δαe ) in the C2DB database whose stoichiometry matches that of the entries pre-
dicted to be easily exfoliable from a known layered bulk material in Ref. 37. Their
space group symmetry, energy above convex hull, magnetic state, and in-plane elec-
tronic polarizability anisotropies are listed.

Sym.
Ehull
(meV)

Lowest Ehull
monolayer? δαe

Cs2Br2S2
61 Pmmm 0.0 Yes 0.41

W2Se4
95 P21/m 91.7 No 0.47

Zr2I4 P21/m 0.0 Yes 0.51
Mo2Se4 P21/m 109.4 No 0.54
Zr2Cl4 P21/m 31.9 No 0.60
Ti2Cl4 P21/m 0.0 Yes 0.65
W2S4 P21/m 177.9 No 0.82

FIG. 8. Materials in the C2DB database
with high infrared polarizability anisotropy
(δαlat . 0:2) predicted to be stable.
Green, gray, and white background
colors indicate the presence of a direct
and indirect bandgap and zero bandgap
according to HSE calculations.

TABLE IV. Stable materials with the highest in-plane infrared polarizability anisot-
ropy in the C2DB database whose stoichiometry matches that of entries in the
easily exfoliable 2D materials list in Ref. 37. Their space group symmetry, energy
over the hull minimum, magnetic state and in-plane infrared polarizability anisotro-
pies are given.

Sym. Ehull (meV) Lowest Ehull monolayer? δαlat

Sn2S2 Pmn21 42.6 No 0.26
Sn2Se2 Pmn21 42.9 No 0.38
Sn2Te2 Pmn21 62.9 Yes 0.45
ZrI2 P�6m2 27.0 No 0.46
Ge2Se2 Pmn21 24.9 No 0.50
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IV. CONCLUSIONS

In this work, we have analyzed the presence of anisotropic
behavior among more than 1000 2D materials predicted to be
stable in the C2DB database.36 Specifically, we have identified mate-
rials with in-plane magnetic anisotropy, anisotropic Young’s
modulus and/or negative Poisson ratio, anisotropic effective
masses, and anisotropic polarizabilities.

Consistent with the Neumann principle, we have found that
there are two main features in the C2DB database that favor anisot-
ropy, namely, (i) a lower symmetry and (ii) a larger number of con-
stituent elements. In addition, our analysis satisfactorily captures
the specific symmetry requirements of each anisotropy type: elastic
and polarizability anisotropies, derived from second order tensors,
are forbidden for trigonal, tetragonal, or hexagonal compounds; the
magnetic anisotropic materials do not include hexagonal and
tetragonal groups, and the effective mass anisotropy is allowed for
all symmetry groups in the database. Several of the materials identi-
fied in this study outperform the known 2D materials in terms of
anisotropic figures of merit and are predicted to be stable and/or
exfoliable from known parent bulk crystals,37 providing useful
guidelines for future experimental investigations.

The most prominent material class resulting from our analysis
is the ternary orthorhombic compound prototype ABC-59-ab.36

This material class combines three different atomic species in a low
symmetry structure, often resulting in strongly anisotropic proper-
ties. To the best of our knowledge, one of such materials (namely,
CrSBr) has been isolated in monolayer form very recently,61 and
further experimental efforts in this direction could hopefully be
motivated by our work.

We find several binary monolayers with interesting anisotropic
behaviors that are predicted to be stable and in some cases even
predicted as easily exfoliable. A transition metal (in particular, Ni,
V, Cr, and Os) combined with a halide in a low symmetry structure
appears to be the best recipe for obtaining in-plane magnetic and
elastic anisotropy. For instance, VI2 is an exfoliable and very stable
compound with an in-plane magnetic anisotropy that competes
with the highest out-of-plane anisotropies known to date.
Moreover, there are multiple compounds with large predicted
anisotropies, that match the stoichiometry of exfoliable materials
and with similar total energies. Such materials could be stabilized
under the right experimental conditions. Among them, we high-
light anti-ferromagnetic Ni2I4, which has an exceptional in-plane
anisotropy exceeding 20 meV/unit cell, that makes it a candidate
for realization of high temperature in-plane 2D antiferromagnet-
ism. Likewise, chromium di-halides stand out for their markedly
anisotropic behavior in the elastic response and effective electron
and hole masses. Among the non-magnetic materials, we identify
AuX (X = S, Se, Te) as a new class of potentially stable 2D materials
with high anisotropy in several physical properties, with AuSe
being reported as easily exfoliable in the literature.

On the other hand, transport properties of a single valley
deserve to be mentioned separately, as they do not seem to be
bound to the symmetries of the crystal lattice and could be experi-
mentally accessed by means of circularly polarized light. Several
TMDCs and Janus structures have highly symmetric crystal struc-
ture with trigonal symmetry but strong effective mass anisotropy,

and we identify HfX2, ZrX2, and SnX2 (X = S, Se) as the most inter-
esting monolayers for anisotropic transport applications already avail-
able in experiments, together with the above mentioned CrSBr.
Moreover, new undiscovered structures with very low inter-layer
binding energy such as SbI3, AuSe, and ternary magnetic compounds
CrOBr and CrOCl display strong effective masses anisotropies.

Regarding the electronic polarizability, we also find a large
amount of anisotropic materials, nearly all being ternary com-
pounds of orthorhombic symmetry. In addition, some binary com-
pounds, mostly involving a transition metal and a halide or a
chalcogen, that are predicted to be easily exfoliable are identified
and listed in the text. Finally, we also identified materials with
interesting infrared polarizability anisotropy values among a
smaller set of candidates in the C2DB. The most promising pros-
pects for experimental realization are listed in the text.

Among the materials with negative Poisson ratios (so-called
auxetic materials) identified in our study, we highlight HgI2 and
ZnCl2, which are both predicted as easily exfoliable,37 and MnTe,
AgBr, and GeO2, which are predicted to be stable in their mono-
layer form.
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55B. Fülöp, Z. Tajkov, J. Pető, P. Kun, J. Koltai, L. Oroszlány, E. Tóvári,
H. Murakawa, Y. Tokura, S. Bordács, L. Tapasztó, and S. Csonka, “Exfoliation of
single layer BiTeI flakes,” 2D Mater. 5, 031013 (2018).
56A. C. Riis-Jensen, S. Manti, and K. S. Thygesen, “Engineering atomically sharp
potential steps and band alignment at solid interfaces using 2D Janus layers,”
J. Phys. Chem. C 124, 9572–9580 (2020).
57B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler,
D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden et al., “Layer-dependent
ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature
546, 270–273 (2017).
58S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H.-Z. Tsai, C. Jia, B. Moritz,
M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore,
C.-C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie,
T. P. Devereaux, M. F. Crommie, S.-K. Mo, and Z.-X. Shen, “Quantum spin hall
state in monolayer 1T’-WTe2,” Nat. Phys. 13, 683–687 (2017).
59C. Kamal and M. Ezawa, “Arsenene: Two-dimensional buckled and puckered
honeycomb arsenic systems,” Phys. Rev. B 91, 085423 (2015).
60E. J. Telford, A. H. Dismukes, K. Lee, M. Cheng, A. Wieteska, A. K. Bartholomew,
Y.-S. Chen, X. Xu, A. N. Pasupathy, X. Zhu, C. R. Dean, and X. Roy, “Layered anti-
ferromagnetism induces large negative magnetoresistance in the van der waals semi-
conductor CrSBr,” arXiv e-prints, arXiv:2005.06110 (2020).
61K. Lee, A. H. Dismukes, E. J. Telford, R. A. Wiscons, X. Xu, C. Nuckolls,
C. R. Dean, X. Roy, and X. Zhu, “Magnetic order and symmetry in the 2D semi-
conductor CrSBr,” arXiv e-prints, arXiv:2007.10715 (2020).

62H.-P. Komsa and A. V. Krasheninnikov, “Two-dimensional transition metal
dichalcogenide alloys: Stability and electronic properties,” J. Phys. Chem. Lett. 3,
3652–3656 (2012).
63L. M. Xie, “Two-dimensional transition metal dichalcogenide alloys: Preparation,
characterization and applications,” Nanoscale 7, 18392–18401 (2015).
64Z. Song, C.-C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, Q. Niu, J. Lu, and
Y. Yao, “Quantum spin hall insulators and quantum valley hall insulators of
BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap,” NPG
Asia Mater. 6, e147 (2014).
65L. Vannucci, T. Olsen, and K. S. Thygesen, “Conductance of quantum spin
hall edge states from first principles: The critical role of magnetic impurities and
inter-edge scattering,” Phys. Rev. B 101, 155404 (2020).
66N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic Heisenberg models,” Phys. Rev.
Lett. 17, 1133 (1966).
67Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J. Sanchez, W. Yao,
D. Xiao, X. Zhu, A. F. May, W. Wu, D. H. Cobden, J.-H. Chu, and X. Xu,
“Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2,” Nat.
Mater. 17, 778–782 (2018).
68W.-B. Zhang, Q. Qu, P. Zhu, and C.-H. Lam, “Robust intrinsic ferromagnetism
and half semiconductivity in stable two-dimensional single-layer chromium tri-
halides,” J. Mater. Chem. C 3, 12457–12468 (2015).
69J. L. Lado and J. Fernández-Rossier, “On the origin of magnetic anisotropy in
two dimensional CrI3,” 2D Mater. 4, 035002 (2017).
70D. Torelli and T. Olsen, “Calculating critical temperatures for ferromagnetic
order in two-dimensional materials,” 2D Mater. 6, 015028 (2018).
71D. Torelli, K. S. Thygesen, and T. Olsen, “High throughput computational
screening for 2D ferromagnetic materials: The critical role of anisotropy and
local correlations,” 2D Mater. 6, 045018 (2019).
72C. Gong and X. Zhang, “Two-dimensional magnetic crystals and emergent
heterostructure devices,” Science 363, eaav4450 (2019).
73C. Cardoso, D. Soriano, N. A. García-Martínez, and J. Fernández-Rossier,
“Van der Waals spin valves,” Phys. Rev. Lett. 121, 067701 (2018).
74D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang,
E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao,
K.-M. C. Fu, and X. Xu, “Van der Waals engineering of ferromagnetic semi-
conductor heterostructures for spin and valleytronics,” Sci. Adv. 3, e1603113
(2017).
75K. Burch, D. Mandrus, and J. Park, “Magnetism in two-dimensional van der
Waals materials,” Nature 563, 47–52 (2018).
76Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini,
T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, and A. F. Morpurgo,
“Very large tunneling magnetoresistance in layered magnetic semiconductor
CrI3,” Nat. Commun. 9, 2516 (2018).
77T. Olsen, “Designing in-plane heterostructures of quantum spin hall insula-
tors from first principles: 1T

0 �MoS2 with adsorbates,” Phys. Rev. B 94,
235106 (2016).
78T. Olsen, E. Andersen, T. Okugawa, D. Torelli, T. Deilmann, and
K. S. Thygesen, “Discovering two-dimensional topological insulators from high-
throughput computations,” Phys. Rev. Mater. 3, 024005 (2019).
79R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and
M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2
transistors,” Nat. Mater. 13, 1128–1134 (2014).
80D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao,
R. Huang, J.-S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed,
P. Wang, B. I. Yakobson, T. Zhang, Y.-W. Zhang, Y. Zhou, and Y. Zhu, “A
review on mechanics and mechanical properties of 2D materials—Graphene and
beyond,” Extreme Mech. Lett. 13, 42–77 (2017).
81C. Androulidakis, K. Zhang, M. Robertson, and S. Tawfick, “Tailoring the
mechanical properties of 2D materials and heterostructures,” 2D Mater. 5,
032005 (2018).
82L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 2nd ed., Course of
Theoretical Physics Vol. 7 (Pergamon Press, Oxford, 1970).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 105101 (2020); doi: 10.1063/5.0021237 128, 105101-18

Published under license by AIP Publishing.



83J.-W. Jiang, S. Y. Kim, and H. S. Park, “Auxetic nanomaterials: Recent progress
and future development,” Appl. Phys. Rev. 3, 041101 (2016).
84T. C. T. Ting and T. Chen, “Poisson’s ratio for anisotropic elastic materials can
have no bounds,” Q. J. Mech. Appl. Math. 58, 73–82 (2005).
85B. Liu, M. Niu, J. Fu, Z. Xi, M. Lei, and R. Quhe, “Negative Poisson’s ratio in
puckered two-dimensional materials,” Phys. Rev. Mater. 3, 054002 (2019).
86X. Kong, J. Deng, L. Li, Y. Liu, X. Ding, J. Sun, and J. Z. Liu, “Tunable auxetic
properties in group-IV monochalcogenide monolayers,” Phys. Rev. B 98, 184104
(2018).
87L. C. Gomes, A. Carvalho, and A. H. Castro Neto, “Enhanced piezoelectricity
and modified dielectric screening of two-dimensional group-IV monochalcoge-
nides,” Phys. Rev. B 92, 214103 (2015).
88J.-W. Jiang and H. S. Park, “Negative poisson’s ratio in single-layer black phos-
phorus,” Nat. Commun. 5, 4727 (2014).
89Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, and P. D. Ye, “Auxetic black phos-
phorus: A 2D material with negative Poisson’s ratio,” Nano Lett. 16, 6701–6708
(2016).
90L. Yu, Q. Yan, and A. Ruzsinszky, “Negative Poisson’s ratio in 1T-type crystalline
two-dimensional transition metal dichalcogenides,” Nat. Commun. 8, 15224 (2017).
91G. Qin and Z. Qin, “Negative Poisson’s ratio in two-dimensional honeycomb
structures,” NPJ Comput. Mater. 6, 51 (2020).
92T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang,
B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybde-
num disulphide,” Nat. Commun. 3, 887 (2012).
93K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley hall effect in
MoS2 transistors,” Science 344, 1489–1492 (2014).
94J. Lee, K. F. Mak, and J. Shan, “Electrical control of the valley hall effect in
bilayer MoS2 transistors,” Nat. Nanotechnol. 11, 421–425 (2016).
95P. Chen, W. W. Pai, Y. H. Chan, W. L. Sun, C. Z. Xu, D. S. Lin, M. Y. Chou,
A. V. Fedorov, and T. C. Chiang, “Large quantum-spin-hall gap in single-layer
1T’ WSe2,” Nat. Commun. 9, 2003 (2018).
96K. E. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou,
S. A. Giamini, E. Vassalou, N. Kelaidis, and A. Dimoulas, “Two-dimensional semi-
conductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular
beam epitaxy,” Appl. Phys. Lett. 106, 143105 (2015).
97S. A. Melchior, K. Raju, I. S. Ike, R. M. Erasmus, G. Kabongo, I. Sigalas,
S. E. Iyuke, and K. I. Ozoemena, “High-voltage symmetric supercapacitor based
on 2D titanium carbide (MXene, Ti2CTx)/carbon nanosphere composites in a
neutral aqueous electrolyte,” J. Electrochem. Soc. 165, A501–A511 (2018).
98S. Mañas-Valero, V. García-López, A. Cantarero, and M. Galbiati, “Raman
spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers,” Appl. Sci. 6, 264
(2016).
99Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei,
and Y. Xie, “Freestanding tin disulfide single-layers realizing efficient visible-light
water splitting,” Angew. Chem. Int. Ed. 51, 8727–8731 (2012).
100M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui,
J. Zhang, C. Cai, and L. Xie, “Controlled synthesis of ZrS2 monolayer and few
layers on hexagonal boron nitride,” J. Am. Chem. Soc. 137, 7051–7054 (2015).
101W. Zheng, B. Zheng, C. Yan, Y. Liu, X. Sun, Z. Qi, T. Yang, Y. Jiang,
W. Huang, P. Fan, F. Jiang, W. Ji, X. Wang, and A. Pan, “Direct vapor growth of
2D vertical heterostructures with tunable band alignments and interfacial charge
transfer behaviors,” Adv. Sci. 6, 1802204 (2019).
102Y. W. Park, S.-K. Jerng, J. H. Jeon, S. B. Roy, K. Akbar, J. Kim, Y. Sim,
M.-J. Seong, J. H. Kim, Z. Lee, M. Kim, Y. Yi, J. Kim, D. Y. Noh, and
S.-H. Chun, “Molecular beam epitaxy of large-area SnSe2 with monolayer thick-
ness fluctuation,” 2D Mater. 4, 014006 (2016).

103O. D. Pozo-Zamudio, S. Schwarz, M. Sich, I. A. Akimov, M. Bayer,
R. C. Schofield, E. A. Chekhovich, B. J. Robinson, N. D. Kay, O. V. Kolosov,
A. I. Dmitriev, G. V. Lashkarev, D. N. Borisenko, N. N. Kolesnikov, and
A. I. Tartakovskii, “Photoluminescence of two-dimensional GaTe and GaSe
films,” 2D Mater. 2, 035010 (2015).
104E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman
Spectroscopy and Related Plasmonic Effects, 1st ed. (Elsevier, 2008), Vol. 7.
105F. Hüser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-
dimensional crystals affects the convergence of excited-state calculations:
Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013).
106T. Tian, D. Scullion, D. Hughes, L. H. Li, C.-J. Shih, J. Coleman,
M. Chhowalla, and E. J. G. Santos, “Electronic polarizability as the fundamental
variable in the dielectric properties of two-dimensional materials,” Nano Lett.
20, 841–851 (2020).
107A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
“The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
108K. S. Thygesen, “Calculating excitons, plasmons, and quasiparticles in 2D
materials and van der Waals heterostructures,” 2D Mater. 4, 022004 (2017).
109H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and Y. P. D.,
“Phosphorene: An unexplored 2D semiconductor with a high hole mobility,”
ACS Nano 8, 4033–4041 (2014).
110T. Wy, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and
anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319
(2014).
111E. Knill, R. Laflamme, and G. A. Milburn, “A scheme for efficient quantum
computation with linear optics,” Nature 409, 46–52 (2001).
112N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference
imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
113X. Ling, S. Huang, E. H. Hasdeo, L. Liang, W. M. Parkin, Y. Tatsumi,
A. R. T. Nugraha, A. A. Puretzky, P. M. Das, B. G. Sumpter, D. B. Geohegan,
J. Kong, R. Saito, M. Drndic, V. Meunier, and M. S. Dresselhaus, “Anisotropic
electron-photon and electron-phonon interactions in black phosphorus,” Nano
Lett. 16, 2260–2267 (2016).
114L. H. Li, E. J. G. Santos, T. Xing, E. Cappelluti, R. Roldán, Y. Chen,
K. Watanabe, and T. Taniguchi, “Dielectric screening in atomically thin boron
nitride nanosheets,” Nano Lett. 15, 218–223 (2015).
115R. Xu, S. Zhang, F. Wang, J. Yang, Z. Wang, J. Pei, Y. W. Myint, B. Xing,
Z. Yu, L. Fu et al., “Extraordinarily bound quasi-one-dimensional trions in two-
dimensional phosphorene atomic semiconductors,” ACS Nano 10, 2046–2053
(2016).
116J. Yang, R. Xu, J. Pei, Y. W. Myint, F. Wang, Z. Wang, S. Zhang, Z. Yu, and
Y. Lu, “Optical tuning of exciton and trion emissions in monolayer phosphor-
ene,” Light Sci. Appl. 4, e312–e312 (2015).
117T. Deilmann and K. S. Thygesen, “Unraveling the not-so-large trion binding
energy in monolayer black phosphorus,” 2D Mater. 5, 041007 (2018).
118M. N. Gjerding, L. S. Cavalcante, A. Chaves, and K. S. Thygesen, “Efficient
ab-initio based modeling of dielectric screening in 2D van der Waals materials:
Including phonons, substrates, and doping,” J. Phys. Chem. C 124, 11609–11616
(2020).
119D. Langreth and J. Perdew, “The exchange-correlation energy of a metallic
surface,” Solid State Commun. 17, 1425–1429 (1975).
120T. Olsen and K. S. Thygesen, “Random phase approximation applied to
solids, molecules, and graphene-metal interfaces: From van der Waals to cova-
lent bonding,” Phys. Rev. B 87, 075111 (2013).
121“Computational 2D materials database (C2DB),” https://cmr.fysik.dtu.dk/
c2db/c2db.html

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 105101 (2020); doi: 10.1063/5.0021237 128, 105101-19

Published under license by AIP Publishing.



138 New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials



Paper II
Towards fully automatized GW band structure
calculations: What we can learn from 60.000
selfenergy evaluations

Asbjørn Rasmussen, Thorsten Deilmann and Kristian S. Thygesen

npj Computational Materials 7(1), 10 (2021)  Published 29 January 2021

New Nonlocal XC Functionals and HighThroughput Studies of 2D Materials 139



ARTICLE OPEN

Towards fully automated GW band structure calculations:
What we can learn from 60.000 self-energy evaluations
Asbjørn Rasmussen 1,2✉, Thorsten Deilmann 3 and Kristian S. Thygesen 1,2

We analyze a data set comprising 370 GW band structures of two-dimensional (2D) materials covering 14 different crystal structures
and 52 chemical elements. The band structures contain a total of 61716 quasiparticle (QP) energies obtained from plane-wave-
based one-shot G0W0@PBE calculations with full frequency integration. We investigate the distribution of key quantities, like the QP
self-energy corrections and QP weights, and explore their dependence on chemical composition and magnetic state. The linear QP
approximation is identified as a significant error source and we propose schemes for controlling and drastically reducing this error
at low computational cost. We analyze the reliability of the 1/N basis set extrapolation and find that is well-founded with a narrow
distribution of coefficients of determination (r2) peaked very close to 1. Finally, we explore the accuracy of the scissors operator
approximation and conclude that its validity is very limited. Our work represents a step towards the development of automatized
workflows for high-throughput G0W0 band structure calculations for solids.

npj Computational Materials            (2021) 7:22 ; https://doi.org/10.1038/s41524-020-00480-7

INTRODUCTION
In computational materials science, the high-throughput mode of
operation is becoming increasingly popular1. The development of
automatized workflow engines capable of submitting, controlling,
and receiving thousands of interlinked calculations2–4 with
minimal human intervention has greatly expanded the range of
materials, and properties, that can be investigated by a single
researcher. Several high-throughput studies have been conducted
over the past decade mostly with the aim of identifying new
prospect materials for various applications including catalysis5,
batteries6,7, thermoelectrics8,9, photocatalysts10, transparent con-
ductors11, and photovoltaics12,13, just to mention some. The vast
amounts of data generated by such screening studies have been
stored in open databases14–17 making them available for further
processing, testing, and comparison of methods and codes,
training of machine learning algorithms, etc. With very few
exceptions, the high-throughput screening studies and the
generation of materials databases, have been based on density
functional theory (DFT) at the level of the generalized gradient
approximation (GGA).
While DFT is fairly accurate for structural parameters and other

properties related to the electronic ground state, it is well known
that electronic band structures, in particular the size of band gaps,
are not well reproduced by most xc-functionals18. This holds in
particular for the LDA and GGA functionals, which hugely
underestimate band gaps, often by about a factor of 2 or
more19,20. Hybrid functionals and certain metaGGAs perform
significantly better21, but are not fully ab-initio and miss
fundamental physics such as nonlocal screening effects22. Instead,
the gold standard for quasiparticle band structure calculations of
solids is the many-body GW method23–26, which explicitly
accounts for exchange and dynamical screening. In its simplest
non-self-consistent form, i.e., G0W0, this approximation reproduces
experimental band gaps to within 0.3 eV (mean absolute error) or
10% (mean relative error)19,20,27. We note in passing that for
partially self-consistent GW0

20 or when vertex corrections are

included28,29, the deviation from experiments falls below 0.2 eV,
which is comparable to the uncertainty of the experimental
reference data. The improved accuracy of the GW method(s)
comes at the price of a significantly more involved methodology
both conceptually and numerically as compared to DFT. While DFT
calculations can be routinely performed by non-experts using
codes that despite very different numerical implementations
produce identical results30, GW calculations remain an art for the
expert.
The high complexity of GW calculations is due to several factors

including (i) The basic quantities of the theory, i.e., the Greens
function (G) and screened Coulomb interaction (W) are dynamical
quantities that depend on time/frequency. Several possibilities for
handling the frequency dependence exists including the formally
exact direct integration19 and contour deformation techniques31

as well as the controlled approximate analytic continuation
methods32 and the rather uncontrolled but inexpensive
plasmon-pole approximations24. (ii) The formalism involves infinite
sums over the unoccupied bands. While most implementations
perform the sum explicitly up to a certain cutoff, schemes to avoid
the sum over empty states have been developed33,34. (iii) The
basic quantities are two-point functions in real space (or reciprocal
space) that couple states at different k-points. This leads to large
memory requirements and makes it unfeasible to fully converge
GW calculations with respect to the basis set. Consequently,
strategies for extrapolation to the infinite basis set limit must be
employed35,36. (vi) Unless the GW equations are solved fully self-
consistently, which is rarely done and does not improve
accuracy29,37, there is always a starting point dependence. This
has been systematically explored for molecules where it was
found that LDA/GGA often comprise a poor starting point whereas
hybrids perform better in the sense that they lead to better
agreement with experimental ionization potentials and produce
more well-defined spectral peaks with higher quasiparticle
weights38,39. These and other factors imply that GW calculations
not only become significantly more demanding than DFT in terms
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of computer resources, but they also involve more parameters
making it difficult to assess whether the obtained results are
properly converged or perhaps even erroneous.
Successful application of the high-throughput approach to

problems involving excited electronic states, e.g., light absorption/
emission, calls for the development of automatized and robust
algorithms for setting the parameters of many-body calculations
such as GW (according to available computational resources and
required accuracy level), extrapolating the basis set, and assessing
the reliability of the obtained results. The first step towards this
goal is to analyze and systematize the data from large-scale GW
studies. With a similar goal in mind, van Setten et al. compared
G0W0@PBE band gaps, obtained with the plasmon-pole approx-
imation, to the experimental band gaps. They analyzed the
correlations between different quantities and concluded that that
G0W0 (with plasmon-pole approximation) is more accurate than
using an empirical correction of the PBE gap, but that, for accurate
predictive results for a broad class of materials, an improved
starting point or some type of self-consistency is necessary.
In this work we perform a detailed analysis of an extensive GW

data set consisting of G0W0@PBE band structures of 370 two-
dimensional semiconductors comprising a total of 61,716 QP
energies. Our focus is not on the ability of the G0W0 to reproduce
experiments, i.e., its accuracy, which is well established by
numerous previous studies, but rather on the numerical robust-
ness and reliability of the method and the basis set extrapolation
procedure. The calculations employ a plane-wave basis set and
direct frequency integration; thus the use of projector augmented
wave (PAW) potentials represent the only significant numerical
approximation. We investigate the distribution of self-energy
corrections and quasiparticle weights, Z, and explore their
dependence on the materials composition and magnetic state.
By investigating the full frequency-dependent self-energy for
selected materials we analyze the error caused by the linear
approximation to the QP equation and propose methods to
estimate and correct this error. We assess the reliability of a plane-
wave basis set extrapolation scheme finding it to be very accurate
with a coefficient of determination, r2, values above 0.95 in more
than 90% of the cases when extrapolation is performed from 200
eV. Finally, we assess the accuracy of the scissors operator
approach and conclude that it should only be used when the
average (maximal) band energy errors of 0.2 eV (2 eV) are
acceptable.

RESULTS AND DISCUSSION
The G0W0 data set
The 370 G0W0 calculations were performed as part of the
Computational 2D Materials Database (C2DB) project40. Below
we briefly recapitulate the computational details behind the G0W0

calculations and refer to Ref. 40 for more details. All calculations
were performed with the projector augmented wavefunction
code GPAW41.
The C2DB database contains about 4000 monolayers compris-

ing both known and hypothetical 2D materials constructed by
decorating experimentally known crystal prototypes with a subset
of elements from the periodic table40. Currently, G0W0 calculations
have been performed for 370 materials covering 14 different
crystal structures and 52 different chemical elements. Figure 1a
illustrates the distribution of elements. The number of materials
containing a given element is shown below the element symbol.
The number of magnetic materials containing the elements is
shown in parenthesis next to the total number.
To give an overview of some of the data analyzed in this work,

the distribution of the 61716 G0W0 corrections for the six bands
around the bandgap is shown in Fig. 1b. The distribution for the
valence bands is shown in blue and for the conduction in orange.

It is usually the case in GW studies that the DFT valence bands are
shifted down and the conduction bands are shifted up. Similar
behavior is found for the main part of our data, but we also
observe a small subset of states for which the correction has the
opposite sign. It is difficult to provide a clear physical explanation
for why some occupied states are shifted up and some empty
states are shifted down. We stress, however, that the GW
corrections are measured relative to the PBE band energies,
which is a somewhat arbitrary reference. For example, G0W0@LDA
and G0W0@HSE would give different results—not so much for the
resulting QP energies, which are relatively independent of the
starting point—but for the size and sign of the GW corrections,
which would now be measured relative to the LDA and HSE
energies, respectively.
Figure 1c shows a scatter plot of the PBE energies versus the

G0W0 energies. We only show energies from −10 to 10 eV for
clarity. The color of a point shows the Z value. The latter has been
truncated to the region [0.5, 1.0] to show the variation of the main
part of the distribution. The main observation we can make from
this figure is that there is no obvious correlation between the
energies and the Z values. This is also verified by the calculated
correlation coefficient, C, between EPBE and Z (C = 0.27), EG0W0 and
Z (C = 0.23) and between the G0W0 correction, EG0W0 � EPBE, and Z
(C = 0.10). We conclude that there is no significant correlation
between the energies and Z, meaning that low Z values (which
signals a break down of the QP approximation) may occur in any
energy range.

Quasiparticle weight Z
The quasiparticle weight, Z, gives a rough measure of the validity
of the quasiparticle picture, i.e., how well the charged excitations
of the interacting electron system can be described by single-
particle excitations from the ground state. In the “Methods”
section, we prove a physical interpretation of the quasiparticle
weight.
In the following, we analyze the 61,716 calculated QP weights,

Z, contained in the C2DB database. As discussed in the Methods
section, for the QP approximation to be well-founded Z should be
close to 1. We split the Z values into two classes: quasiparticle-
consistent (QP-c) for Z∈ [0.5, 1.0] and quasiparticle-inconsistent
(QP-ic) for Z∉ [0.5, 1.0]. With this definition, QP-c states will have
at least half of their spectral weight in the quasiparticle peak, but
there is no deeper principle behind the threshold value of 0.5. We
can expect that the QP approximation is more accurate for QP-c
states than for QP-ic states.
Figure 2 shows a histogram of the Z-values (all extrapolated to

the infinite plane-wave limit) corresponding to the 3 highest
valence bands and 3 lowest conduction band of 370 semiconduc-
tors. The vast majority of the values are distributed around ≈0.75
with only 0.28% lying outside the physical range from 0 to 1
(0.16% are larger than one and 0.12% are negative). We find that
97.5% of the states are QP-c.
It is of interest to investigate if there are specific types of

materials/elements that are particularly challenging to describe by
G0W0. Figure 3 shows a barplot of the percentage of QP-ic states
in materials containing a given element (note the logarithmic
scale). The result of this analysis performed on the non-magnetic
(ferromagnetic) materials is shown in blue (orange). For example, a
large percentage (about 65%) of the states in Co-containing
materials are QP-ic. It is clear that magnetic materials contribute a
large fraction of the QP-ic states. In fact, 0.36% of the non-
magnetic states are QP-ic while 22% of the magnetic states are
QP-ic. In general, it thus seems that the QP approximation is
generally worse for magnetic materials.
We note that the employed PAW potentials are not strictly

norm-conserving. It has previously been found that the use of
norm-conserving pseudopotentials can be crucial for the
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quantitative accuracy of G0W0 results for materials with localized d
or f states35,42,43. To investigate this potential issue, we checked
the distributions of G0W0 corrections and QP weights for materials
containing at least one element with a pseudo partial wave of
norm <0.5, i.e., materials where the norm-conservation could
potentially be strongly violated for certain states. Out of the 370
materials, there were 279 materials in this category. The resulting
distributions were not found to deviate qualitatively from those of
all the materials (shown in Figs. 1b and 2, respectively), and the

strongest indicator of unphysical Z values or opposite-sign G0W0

corrections remained the magnetic state of the material. On basis
of this analysis, we conclude that the use of non-norm-conserving
PAW potentials does not affect the conclusions of our study.
Based on the distribution of QP weights in Fig. 2, it appears that

the QP approximation is valid for essentially all the states in the
non-magnetic materials and most of the states in the magnetic
materials. However, while a QP-c Z value is likely a necessary
condition for predicting an accurate QP energy from the linearized
QP equation [Eq. (6) in the “Method” section], it is not sufficient.

Fig. 1 The G0W0 data set. a The representation of individual elements in the G0W0 data set. The number of materials containing a given
element is shown under the element’s symbol. The number of magnetic materials, if any, is shown in the parenthesis next to the total number.
b Histograms of quasiparticle energy corrections calculated from G0W0 . The blue histogram shows the three topmost occupied valence
bands, while the orange shows the three lowest unoccupied conduction bands. c A scatter plot of the PBE energy vs. the G0W0 energy. The
colors show the Z value truncated to the interval [0.5, 1.0]. The points are plotted so that a point with smaller Z is plotted on top of a point
with larger Z if the two points overlap.

Fig. 2 Quasiparticle weights. Histogram of QP weights, Z, for the
61716 QP states in the C2DB40. The Z values have been extrapolated
to the infinite plane-wave limit (see next section). The main panel
shows the distribution of Z values within the range, Z∈ [0, 1], while
the upper and lower insets show the distribution outside the
physical range, i.e., Z > 1 and Z < 0, respectively. 0.16% of points lie in
the Z > 1 range, while 0.12% lie in the Z < 0 range.

Fig. 3 QP-inconsistent solutions by element. Barplot showing the
percentage of QP-ic Z values (Z∉ [0.5, 1.0]) for the given element.
Non-magnetic materials are shown in blue and magnetic materials
are shown in orange.
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This is because the assumption behind Eq. (6), i.e., that Σ(ε) varies
linearly with ε in the range between the KS energy and the QP
energy, is not guaranteed for QP-c states. This is illustrated in Fig. 4,
which shows the full frequency-dependent self-energy for three
states in the ferromagnetic FeCl2. Case (a) is a typical example
where the self-energy of a QP-c state (Z= 0.61) varies linearly
around εKS and the 1st order approximation works well. The
second case (b) shows an example where the 1st order
approximation breaks down for a QP-ic state (Z= 1.19). The final
case (c) illustrates that the 1st order approximation can break
down even in cases where Z is very close to 1. Unfortunately, there
is no simple way to diagnose such cases from the information
available in a standard G0W0 calculation (Σ(εKS) and Z). We stress
that the example in Fig. 4c is a special case and that in general, the
linear approximation is significantly more likely to hold for QP-c
states than for QP-ic states (see discussion below).

Beyond the linear QP approximation
Under the assumption that the KS wave functions constitute a
good approximation to the QP wave functions so that off-diagonal
elements can be neglected, the solution to the QP equation
reduces to solving an equation of the form

ω� εKS ¼ ΣðωÞ; (1)

where Σ(ω)= ΣGW(ω)− vxc is the frequency-dependent self-energy
(see “Methods” section).
In this section, we investigate different root-finding schemes to

estimate the size of the error introduced by the linear
approximation and obtain an improved QP energy. With high-
throughput computations in mind, a good algorithm provides a
reasonable balance between computation time (number of Σ/Z
evaluations) and accuracy. To benchmark the different schemes
we computed the full frequency-dependent self-energy for
3192 states, corresponding to the 3 highest valence bands and
3 lowest conduction bands, for 12 of the 370 2D materials
(including two ferromagnetic materials). The two ferromagnetic
materials were chosen at random from materials that had some Z
∉ [0, 1]. The remaining 10 materials were chosen at random from
materials with all Z∈ [0, 1] and typical Z distributions. An overview
of the materials is shown in Table 1. The self-energy is evaluated on
a uniform frequency grid and interpolated using cubic splines. The
“true” solution of the QP equation is then determined and used to
evaluate the errors of the approximate schemes. In cases where
there are multiple solutions, the smallest correction is selected.
We first determine the errors introduced by the linear

approximation. Histograms of the errors for QP-c and QP-ic states
are shown in Fig. 5. This shows that QP-ic generally has larger error
and thus warrant particular attention.

We first consider the iterative Newton–Raphson (NR) method
where we limit ourselves to 1 and 2 iterations to keep the number
of self-energy evaluations and thus the computational cost low.
We note that 1 iteration (NR1) is equivalent to the linear

Fig. 4 Self-energies and the linear approximation. Frequency-dependent self-energy (blue) for three electronic states with different
quasiparticle weights, Z. The red line indicates ω− ϵKS while the black line is the linear approximation of the self-energy. The intersection of
the blue and red lines indicate the solution to the quasiparticle equation, while the intersection between the red and black lines indicate the
solution given by the linear approximation to the self-energy.

Table 1. Properties of test materials summary of the 12 materials used
to study the frequency-dependent self-energy.

Material Prototype Mag. state PBE gap [eV] G0W0 gap [eV]

HfBrI MoSSe NM 0.71 1.61

HfClI MoSSe NM 0.81 1.78

ZrBrCl MoSSe NM 0.91 1.88

ZrClI MoSSe NM 0.88 1.74

FeCl2 MoS2 FM 0.35 0.00

MnBr2 MoS2 FM 1.59 2.02

MoS2 MoS2 NM 1.58 2.53

PdSe2 CdI2 NM 0.56 1.61

Al2Se2 Ga2S2 NM 1.99 3.54

Ga2S2 Ga2S2 NM 2.32 4.08

Ga2Se2 Ga2S2 NM 1.76 3.44

In2S2 Ga2S2 NM 1.67 3.15

Fig. 5 Errors of quasiparticle-consistent and -inconsistent solu-
tions. The distributions of the error incurred by the linear
approximation as estimated from 3192 states in 12 different
materials for which we have calculated the full frequency-
dependent self-energy and determined the exact QP energy (see
main text). The distribution for QP-c states is shown in blue, while
the distribution for QP-ic states is shown in orange. The inset shows
the full distribution for QP-ic states.
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approximation. The distribution of the errors is shown in Fig. 6a.
Although 87% of the errors from NR1 are below 0.1 eV, the mean
absolute error (MAE) is 0.11 eV due to outliers. Most of these errors
are significantly reduced by performing one more iteration of
Newton–Raphson (NR2), but again outliers increase the MAE. If we
evaluate the MAE without the outliers (those lying outside the
displayed error range), the MAE reduces to only 0.006 eV.
Motivated by the relatively narrow distribution of Z values in

Fig. 2, we consider an empirical solution estimate consisting of
replacing the actual Z value with the mean value of the
distribution, i.e., we simply set Z= 0.75. This has the advantage
of being simple, computationally cheap, and robust in the sense of
avoiding outlier Z-values arising from local irregularities in Σ at the
KS energy (Fig. 4b). The resulting error distribution is shown in Fig.
6b. While the central part of the distribution is slightly broadened
compared to the 1st order approximation, the MAE is reduced due
to a reduction of outliers (enhanced robustness). As shown in Fig.
6c, the central part of the distribution can be narrowed by
applying the empirical approach only for QP-ic states, i.e., when Z
∉ [0.5, 1]. In fact, this approach (empZ@QP-ic) has a MAE equal to
that of NR2 but with half the computational cost (two Σ/Z
evaluations compared to four).
Next, we examine the polynomial fitting of the self-energy. We

construct second and fourth-order polynomials, Pn(ω), from the
self-energy at energies in a range of ±1 eV around the KS energy.
The cost of the second and fourth-order fits is equivalent to three
and five self-energy evaluations, respectively. In general, the
polynomial fits have rather low correlation coefficients of C < 0.9
and are sensitive to the choice of frequency points and self-energy

data used for the fit. As a consequence, the resulting errors are
large (not shown) and the approach is not suitable. We attribute
this to our observation that self-energies are often irregular (on
the relevant scale of 1 eV) and not well-described by low-order
polynomials.
Finally, we consider a scheme that we refer to as ΣdE, which

estimates the error as

δ ¼ ΣðεQP;linÞ � ΣðεKSÞ þ dΣ
dω jω¼εKS ðεQP;lin � εKSÞ� �

: (2)

The motivation for this expression is the following. If the linear
approximation is exact, then δ vanishes as it should. Moreover, if
the self-energy has a non-zero curvature it can be shown that δ
equals the true error to leading order in the curvature. In that
sense, it is similar to the second-order polynomial fit, but with the
important difference that whereas the polynomial fit was based
on uniformly distributed points, ΣdE uses the value and slope at
EKS and the value at EQP,lin.
In Fig. 7a, the distribution of the ratios of the estimated error

and true error is shown and the errors resulting from Eq. (2) are
shown in Fig. 7b. Compared to the linear approximation, the ΣdE
reduces the MAE from 0.11 to 0.05 eV, at the cost of one additional
self-energy evaluation. Interestingly, Eq. (2) systematically over-
estimates the error as shown in Fig. 7a. A Gaussian fit to the
distribution (red curve) has a mean value of α0= 1.5 and a
standard deviation of 0.2. Since the distribution of α is fairly
narrow, it is tempting to correct for the systematic error using α=
α0, i.e., replacing δ→ δ/α0. We denote this estimate as ΣdE-
corrected. To verify this procedure we randomly bisect the data
into a “training” and a “test” set of equal size. α0 is determined

Fig. 6 Newton–Raphson and the empirical Z method. a The error distributions for first-order Newton–Raphson (NR1) (blue) and second-
order Newton–Rahpson (NR2) (orange). NR1 is equivalent to solving the linearized QP equation. b The NR1 distribution from a is again shown
in blue for comparison. The orange distribution shows the error for the empirical empZ scheme. c The NR1 distribution is again shown in blue.
The orange distribution is the error when the empZ scheme is applied only to the QP-ic states.

Fig. 7 Estimated errors and the ΣdE method. a The distribution of the ratio of the estimated error and the true error. Also shown in red is a
gaussian fit to the distribution. The text annotations are shown the definition of α (top), the mean of the fitted gaussian, α0 (middle), and the
standard deviation of the fitted gaussian, σ, (bottom). b Distribution of the error of the linear approximation (blue) and the error of solution
derived from the estimated error (orange). c Correcting for the mean of α yields improved solution estimates (orange).
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from the training set and the MAE is calculated on the test set. The
MAEs thus found were always 0.02–0.03 eV. We performed the
same analysis using different sizes of the training set and found
that an MAE of 0.03 eV is robust with a training set down to ≥5%
of data points. This indicates the approach is insensitive to data
used to determine α0. In Fig. 7c, the ΣdE-corrected values are
shown, where α0 was determined from the full distribution for
simplicity. The ΣdE-corrected scheme shows excellent perfor-
mance with an almost four-fold reduction of the MAE from 0.11 eV
for the linear approximation to only 0.03 eV at a computational
overhead of just one additional self-energy evaluation.
The performance of the different correction schemes is

summarized in Table 2.

Plane-wave extrapolation
The self-energy and the derivative of the self-energy (both
evaluated at the KS energy) are calculated at three cutoff energies:
170, 185, and 200 eV. These values are then extrapolated to
infinite cutoff, or an infinite number of plane waves, NPW→∞, by
assuming a linear dependence on the inverse number of plane
waves44. An example of this fitting procedure is shown in Fig. 8a.
The extrapolation procedure saves computational time while
improving the accuracy of the results—provided the extrapolation
is sufficiently accurate. Extrapolation can fail if convergence as a
function of the plane-wave cutoff for the given quantity does not
follow the expected 1/NPW behavior in the considered cutoff
range.
To validate this approach, we investigate the distribution of the

r2 values for all 61716 extrapolations in C2DB. We split them into
two cases: extrapolation of the self-energy and extrapolation of

the derivative of the self-energy. The distributions are shown as
histograms in Fig. 8b. The distributions are clearly peaked very
close to 1, and in general, it seems that the extrapolation is very
good. The distribution for the derivatives is somewhat broader,
and the extrapolation is generally less accurate than for the self-
energies, which indicates a slower convergence with plane waves
than for the self-energies. If we choose r2= 0.8 as an acceptable
threshold, we find that 1.7% of the r2 values of the self-energy
extrapolation fall below this criterion while 5.0% are below for the
derivative extrapolation. While these numbers might seem large,
the problem is readily diagnosed (by the r2 value) and can be
alleviated by using higher plane-wave cutoffs.

Scissors operator approximation
Within the so-called scissors operator approximation (SOA) it is
assumed that the G0W0 correction is independent of band- and k-
index. Consequently, the G0W0 correction calculated at, e.g., the Γ
point is applied to all the eigenvalues thus saving computational
time as only one G0W0 correction is required. In Fig. 9a, the idea is
illustrated for a generic band. With the notation from the figure,
the SOA consists of setting Δ(k)= Δ (or Δnσ(k)= Δnσ when more
than one band and spin is involved).
To test the accuracy of the SOA, we evaluate the mean absolute

error ( jϵjh i) and maximum absolute error (maxðjϵjÞ) of the band
energies obtained with the SOA for each of the 370 materials:

jδjh i ¼ 1
NσNkNn

X
n;k;σ

jΔnσðkÞ � Δnσj (3)

and

maxðjδjÞ ¼ maxn;k;σfjΔnσðkÞ � Δnσjg: (4)

The distribution of these errors is shown in Fig. 9b, c. From Fig. 9b,
we see that the mean error exceeds 100 meV for about half of all
materials—a rather large error, comparable to the target accuracy
of the G0W0method itself. Furthermore, it follows from Fig. 9c that
the maximum absolute error is often 0.5–1.0 eV. We conclude that
while the average error of the SOA might be acceptable, it can
produce significant errors for specific bands and should be used
with care.

Summary and conclusions
As high-throughput computations are gaining popularity in the
electronic structure community, it becomes important to establish

Table 2. Comparison of different methods mean absolute errors
(MAE) and the number of Σ evaluations for the various methods
discussed in the main text.

Method MAE [eV] #Σ/Z evals

1st order 0.11 2

empZ 0.09 1

empZ@QP-ic 0.06 2

ΣdE 0.05 3

ΣdE-corr. 0.03 3

Fig. 8 Plane-wave extrapolation. a Example of the plane-wave extrapolation procedure for the G0W0 self-energy and its derivative. The
quantity of interest, e.g., the self-energy, is calculated for three different cutoff energies, here 170, 185, and 200 eV, and the assumed linear
dependence on 1/NPW (NPW is the number of plane waves) is extrapolated to the infinite basis set limit. The coefficient of determination for the
fit, r2, is shown in the box. b Histogram of the coefficient of determination, r2, for the 61,716 plane-wave extrapolations of self-energies (blue)
and the derivatives of the self-energy (orange). The plot shows the distribution for the coefficient of determination r2 ≥ 0.99, while the insets
show values outside this range. A total of 5.5% and 14.1% of the values are <0.99 for the self-energy and its derivative, respectively.
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protocols for performing various types of calculations in an
automated, robust, and error-controlled manner. In this work, we
have taken steps towards the development of automated
workflows for G0W0 band structure calculations of solids. With
G0W0 representing the state-of-the-art for predicting QP energies
in condensed matter systems, such workflows are essential for
continued progress in the field of computational materials design.
Based on our detailed analysis of 61,716 G0W0 self-energy

evaluations for the eigenstates of 370 two-dimensional semicon-
ductors we were able to draw several conclusions relevant to
large-scale GW studies. First of all, we found it useful to divide the
states into two categories, namely quasiparticle-consistent (QP-c)
and quasiparticle-inconsistent (QP-ic) states defined by Z∈ [0.5,
1.0] and Z∉ [0.5, 1.0], respectively. Importantly, we found that the
QP energies obtained from the standard linearized QP equation
are significantly more accurate for QP-c states than for QP-ic state.
Moreover, we found the fraction of QP-ic states to be much larger
in magnetic materials (22%) than in non-magnetic materials
(0.36%). Thus, extra care must be taken when performing G0W0

calculations for magnetic materials; in particular, such materials
might require special treatment in high-throughput workflows.
The mean absolute error (MAE) on the QP energies resulting

from the linearized QP equation was found to be 0.11 eV. The MAE
evaluated separately for QP-c and QP-ic states were 0.04 and 0.27
eV, respectively. In comparison, the accuracy of the GW
approximation itself (compared to experiments) is on the order
of 0.2 eV. It is therefore of interest to reduce or at least estimate
the numerical error bar on the QP energies obtained from G0W0

calculations. We found that an empirical scheme, where we set Z
= 0.75 (corresponding to the mean of the Z-distribution) for QP-ic
states, reduces the MAE from 0.11 to 0.06 eV with no
computational overhead. Similarly, the method dubbed the
corrected ΣdE scheme reduces the MAE to 0.03 eV, at the cost
of one additional self-energy evaluation. From these studies, it
seems natural to accompany the QP energies obtained from G0W0

with estimated error bars derived from one of these correction
schemes. In fact, we have used the empZ@QP-ic method to
correct all the GW band structures in the C2DB database.
Our analysis of the well known and widely used scissors

operator approximation shows that the errors introduced on the
individual QP energies when averaged over all bands (specifically
the 3 highest valence and 3 lowest conduction bands) typically is
on the order of 0.1 eV while the maximum error typically exceeds
1 eV. We stress that our scissors operator fits each of the six bands
separately using the G0W0 corrections at the Γ-point. Thus the
errors introduced by the more standard scissors approximation
that fits only the bandgap, are expected to be even larger. We
conclude that the scissors operator should be used with care and

only in cases where errors on specific band energies of 1–3 eV are
acceptable.
Finally, the plane-wave extrapolation scheme was found to be

highly reliable for our PAW calculations when applied to cutoff
energies in the range 180–200 eV. In fact, only 1.7% (5.0%) of the
self-energy (a derivative of self-energy) extrapolations had an r2

below 0.8. However, for the purpose of high-throughput studies, it
may be prudent to store and make available information on the r2

for the extrapolation so that the quality of the extrapolation can
always be examined and improved calculations with higher cutoff
can be performed if deemed necessary.

METHODS
G0W0 calculations
For the materials considered here, DFT calculations using PBE45 were
performed using an 800 eV plane-wave cutoff. Spin–orbit coupling is
included by diagonalizing the spin–orbit Hamiltonian in the k-subspace of
the Bloch states found from PBE.
Those materials that have a finite gap and up to 5 atoms in the unit cell

are selected for G0W0 calculations. The QP energies in C2DB are calculated
for the 8 highest occupied and the 4 lowest unoccupied bands, however,
in this study we only use the 6 bands closest to the Fermi level (3 valence
and 3 conduction bands). Furthermore, we only include materials with a
PBE gap greater than 0.2 eV as the accuracy of G0W0 for materials with
very small PBE gaps is questionable. Three energy cutoffs are used: 170,
185, and 200 eV. The results are then extrapolated to infinite energy, i.e.,
to an infinite number of plane waves. This extrapolation is done by
expressing the self-energies in terms of the inverse number of plane
waves, 1/NPW, performing a linear fit, and determining the value of the fit
at 1/NPW= 035,46.
The screened Coulomb interaction entering in the self-energy is

calculated using full frequency integration in real frequency space. To
avoid effects from the (artificially) repeated layers. A Wigner–Seitz
truncation scheme is used for the exchange part of the self-energy47

and a 2D truncation of the Coulomb interaction is used for the correlation
part44,48. A truncated Coulomb interaction leads to significantly slower k-
point convergence because the dielectric function strongly depends on q
around q= 0; this is remedied by handling the integral around q= 0
analytically49,50. A k-point density of 5.0/Å−1 was used.
The statistical analyses performed here use the data from all spins, k-

points, and the three highest occupied bands, and the three lowest
unoccupied bands. In section IV B we consider several examples of the full
frequency-dependent self-energies for a randomly selected spin, k-point,
and band combination, subject to some requirements on the quasiparticle
weight, Z, which are described below.

Quasiparticle theory
The G0W0 quasiparticle energies are found by solving the quasiparticle
equation (QPE)37:

E QP
nkσ ¼ Rehψnkσ jHKS þ ΣðE QP

nkσÞjψnkσi (5)

Fig. 9 Scissor operator approximation. a Illustration of the scissors operator approximation for a generic band. The G0W0 correction (Δ) is
calculated at, e.g., the Γ-point and is used to correct the energies at all every k-point. This yields the scissors shifted band structure, here
labeled “PBE + Δ”. The actual G0W0 correction at the point k is labeled Δ(k). b Histogram showing the mean absolute error. c Maximum
absolute error (b) of the scissors operator approximation. In both b and c, the average (maximum) is taken over the 3 highest valence bands
and 3 lowest conduction bands in each of the 370 2D materials considered in this work.
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Here ψnkσ is the Kohn–Sham wavefunction for band n, crystal momentum k,
and spin σ, HKS is the single-particle Kohn–Sham Hamiltonian, Σ(ω)= ΣGW(ω)−
vxc is the self-energy, and vxc is the exchange-correlation potential.
Typically, and in C2DB, the QPE is solved via one iteration of the

Newton–Raphson method starting from the KS energy, ϵnkσ, which is
equivalent to making a linear approximation of the self-energy. This yields
the solution

E QP
nkσ � ϵnkσ þ Z Re hψnkσ jΣðϵnkσÞjψnkσi½ �; (6)

Z ¼ 1� ∂Σ

∂ω

����
ω¼ϵnkσ

 !�1

: (7)

Z is known as the quasiparticle weight. The G0W0 correction is
defined as the difference between the G0W0 energy and KS energy,
ΔEnkσ ¼ E QP

nkσ � ϵnkσ .
Following ref. 49, we provide here a physical interpretation of Z. We

denote the many-body eigenstates for the N particle system by ΨN
i

�� �
,

where i is the excitation index. An interesting question is how well the
state ΨNþ1

i

�� �
can be described as the addition of a single electron to the

ground state ΨN
0

�� �
. In other words, can we find a state ϕ such that

ΨNþ1
i

�� � � cyϕ ΨN
0

�� �
? The optimal ϕ is determined from maximizing the

overlap, i.e.,

ϕ ¼ argmaxφ jhΨNþ1
i jcyφjΨN

0 ij; jjφjj ¼ 1
� �

(8)

If the maximal overlap is close to 1 the excited many-body state is well
approximated by a single-particle excitation.
It turns out that the square of this maximal overlap is exactly equal to

the QP weight Z defined by Eq. (6) if it is evaluated at the true QP energy
and with the true QP wavefunction rather than at the KS energy and with
the KS wavefunction. Furthermore, Z can be shown to be equal to the
squared norm of the QP wavefunction, which is defined as

ψQP
i ðrÞ ¼ hΨNþ1

i jψ̂yðrÞjΨN
0 i: (9)

For proof of these results, we refer to ref. 49. In standard G0W0 calculations,
the self-energy is evaluated at the KS energy using KS eigenstates. In this
case, Z is no longer equal to the exact QP weight but only approximates it.
If Z deviates significantly from 1, we can only conclude that either (1) the
system is strongly correlated so that the QP approximation fails, or (2) the
Kohn–Sham energy and/or wavefunction are a bad approximation to
the true QP energy and/or wavefunction. In either case, we would expect
that the G0W0 calculation is problematic and requires special attention.
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Abstract. The C2DB is a highly curated open database organizing a wealth
of computed properties for more than 4000 atomically thin two-dimensional
(2D) materials. Here we report on new materials and properties that were
added to the database since its first release in 2018. The set of new
materials comprise several hundred monolayers exfoliated from experimentally
known layered bulk materials, (homo)bilayers in various stacking configurations,
native point defects in semiconducting monolayers, and chalcogen/halogen Janus
monolayers. The new properties include exfoliation energies, Bader charges,
spontaneous polarisations, Born charges, infrared polarisabilities, piezoelectric
tensors, band topology invariants, exchange couplings, Raman- and second
harmonic generation spectra. We also describe refinements of the employed
material classification schemes, upgrades of the computational methodologies
used for property evaluations, as well as significant enhancements of the data
documentation and provenance. Finally, we explore the performance of Gaussian
process-based regression for efficient prediction of mechanical and electronic
materials properties. The combination of open access, detailed documentation,
and extremely rich materials property data sets make the C2DB a unique resource
that will advance the science of atomically thin materials.
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1. Introduction

The discovery of new materials, or new properties of
known materials, to meet a specific industrial or scien-
tific requirement, is an exciting intellectual challenge of
the utmost importance for our environment and econ-
omy. For example, the successful transition to a society
based on sustainable energy sources and the realisa-
tion of quantum technologies (e.g. quantum computers
and quantum communication) depend critically on new
materials with novel functionalities. First-principles
quantum mechanical calculations, e.g. based on den-
sity functional theory (DFT)[1], can predict the prop-
erties of materials with high accuracy even before they
are made in the lab. They provide insight into mecha-
nisms at the most fundamental (atomic and electronic)
level and can pinpoint and calculate key properties
that determine the performance of the material at the
macroscopic level. Powered by high-performance com-
puters, atomistic quantum calculations in combination
with data science approaches, have the potential to rev-
olutionize the way we discover and develop new mate-
rials.

Atomically thin, two-dimensional (2D) crystals
represent a fascinating class of materials with excit-
ing perspectives for both fundamental science and
technology[2, 3, 4, 5]. The family of 2D materials
has been growing steadily over the past decade and
counts about a hundred materials that have been re-
alised in single- or few-layer form[6, 7, 8, 9, 10]. While
some of these materials, including graphene, hexago-
nal boron-nitride (hBN), and transition metal dichalco-
genides (TMDs), have been extensively studied, the
majority have only been scarcely characterized and re-
main poorly understood. Computational studies indi-
cate that around 1000 already known layered crystals
have sufficiently weak interlayer bonding to allow the
individual layers to be mechanically exfoliated[11, 12].
Supposedly, even more 2D materials could be realized
beyond this set of already known crystals. Adding
to this the possibility of stacking individual 2D layers
(of the same or different kinds) into ultrathin van der
Waals (vdW) crystals[13], and tuning the properties
of such structures by varying the relative twist angle
between adjacent layers[14, 15] or intercalating atoms
into the vdW gap[16, 17], it is clear that the prospects
of tailor made 2D materials are simply immense. To
support experimental efforts and navigate the vast 2D
materials space, first-principles calculations play a piv-

otal role. In particular, FAIR‡[18] databases populated
by high-throughput calculations can provide a conve-
nient overview of known materials and point to new
promising materials with desired (predicted) proper-
ties. Such databases are also a fundamental require-
ment for the successful introduction and deployment
of artificial intelligence in materials science.

Many of the unique properties exhibited by
2D materials have their origin in quantum confine-
ment and reduced dielectric screening. These ef-
fects tend to enhance many-body interactions and
lead to profoundly new phenomena such as strongly
bound excitons[19, 20, 21] with nonhydrogenic Ryd-
berg series[22, 23, 24], phonons and plasmons with
anomalous dispersion relations[25, 26], large dielec-
tric band structure renormalizations[27, 28], unconven-
tional Mott insulating and superconducting phases[14,
15], and high-temperature exciton condensates[29].
Recently, it has become clear that long range magnetic
order can persist[30, 31] and (in-plane) ferroelectric-
ity even be enhanced[32], in the single layer limit. In
addition, first-principles studies of 2D crystals have re-
vealed rich and abundant topological phases[33, 34].
The peculiar physics ruling the world of 2D mate-
rials entails that many of the conventional theories
and concepts developed for bulk crystals break down
or require special treatments when applied to 2D
materials[35, 26, 36]. This means that computational
studies must be performed with extra care, which in
turn calls for well-organized and well-documented 2D
property data sets that can form the basis for the devel-
opment, benchmarking, and consolidation of physical
theories and numerical implementations.

The Computational 2D Materials Database
(C2DB)[6, 37] is a highly curated and fully open
database containing elementary physical properties of
around 4000 two-dimensional (2D) monolayer crys-
tals. The data has been generated by automatic high-
throughput calculations at the level of density func-
tional theory (DFT) and many-body perturbation the-
ory as implemented in the GPAW electronic structure
code. The computational workflow is constructed us-
ing the Atomic Simulation Recipes (ASR) – a recently
developed Python framework for high-throughput ma-
terials modeling building on the Atomic Simulation En-
vironment (ASE) – and managed/executed using the

‡ FAIR data are data which meet principles of findability,
accessibility, interoperability, and reusability
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MyQueue task scheduler[38].
The C2DB differentiates itself from existing

computational databases of bulk[39, 40, 41] and low-
dimensional[12, 11, 42] materials, by the large number
of physical properties available, see Table 1. The use
of beyond-DFT theories for excited state properties
(GW band structures and BSE absorption for selected
materials) and Berry-phase techniques for band
topology and polarization quantities (spontaneous
polarization, Born charges, piezoelectric tensors), are
other unique features of the database.

The C2DB can be downloaded in its entirety
or browsed and searched online. As a new
feature, all data entries presented on the website are
accompanied by a clickable help icon that presents
a scientific documentation (”what does this piece
of data describe?”) and technical documentation
(”how was this piece of data computed?”). This
development enhances the usability of the database
and improves the reproducibility and provenance of
the data contained in C2DB. As another novelty it is
possible to download all property data pertaining to a
specific material or a specific type of property, e.g. the
band gap, for all materials thus significantly improving
data accessibility.

In this paper, we report on the significant C2DB
developments that have taken place during the past
two years. These developments can be roughly
divided into four categories: (i) General updates of
the workflow used to select, classify, and stability
assess the materials. (ii) Computational improvements
for properties already described in the 2018 paper.
(iii) New properties. (vi) New materials. The
developments, described in four separate sections,
cover both original work and review of previously
published work. In addition, we have included some
outlook discussions of ongoing work. In the last section
we illustrate an application of statistical learning to
predict properties directly from the atomic structure.

2. Selection, classification, and stability

Figure 1 illustrates the workflow behind the C2DB. In
this section we describe the first part of the workflow
until the property calculations (red box), focusing
on aspects related to selection criteria, classification,
and stability assessment, that have been changed or
updated since the 2018 paper.

2.1. Structure relaxation

Given a prospect 2D material, the first step is to
carry out a structure optimization. This calculation
is performed with spin polarization and with the
symmetries of the original structure enforced. The
latter is done to keep the highest level of control

over the resulting structure by avoiding “uncontrolled”
symmetry breaking distortions. The prize to pay
is a higher risk of generating dynamically unstable
structures.

2.2. Selection: Dimensionality analysis

A dimensionality analysis[43] is performed to identify
and filter out materials that have disintegrated into
non-2D structures during relaxation. Covalently
bonded clusters are identified through an analysis of
the connectivity of the structures where two atoms
are considered to belong to the same cluster if their
distance is less than some scaling of the sum of their
covalent radii, i.e. d < k(rcovi + rcovj ), where i and
j are atomic indices. A scaling factor of k = 1.35
was determined empirically. Only structures that
consist of a single 2D cluster after relaxation are
further processed. Figure 2 shows three examples
(graphene, Ge2Se2, and Pb2O6) of structures and their
cluster dimensionalities before and after relaxation. All
structures initially consist of a single 2D cluster, but
upon relaxation Ge2Se2 and Pb2O6 disintegrate into
two 2D clusters as well as one 2D and two 0D clusters,
respectively. On the other hand, the relaxation of
graphene decreases the in-plane lattice constant but
does not affect the dimensionality. According to the
criterion defined above only graphene will enter the
database.

2.3. Selection: Ranking similar structures

Maintaining a high-throughput database inevitably
requires a strategy for comparing similar structures
and ranking them according to their relevance. In
particular, this is necessary in order to identify
different representatives of the same material e.g.
resulting from independent relaxations, and thereby
avoid duplicate entries and redundant computations.
The C2DB strategy to this end involves a combination
of structure clustering and Pareto analysis.

First, a single-linkage clustering algorithm is used
to group materials with identical reduced chemical
formula and ”similar” atomic configurations. To
quantify configuration similarity a slightly modified
version of PyMatGen’s[44] distance metric is employed
where the cell volume normalization is removed to
make it applicable to 2D materials surrounded by
vacuum. Roughly speaking, the metric measures the
maximum distance an atom must be moved (in units
of Å) in order to match the two atomic configurations.
Two atomic configurations belong to the same cluster
if their distance is below an empirically determined
threshold of 0.3 Å.

At this point, the simplest strategy would be
to remove all but the most stable compound within



Recent Progress of the Computational 2D Materials Database (C2DB) 4

Structure relaxation
(symmetry constrained)

Dimensionality analysis:
Exactly one 2D cluster ?

Classification of Magnetic state:
NM: max{|µatom|} <  0.1µB

Classification of Crystal type:
‘Stoichiometry – SG – Wykoff ’

Duplicate check:
Unique material ∉ C2DB ?

C2DB monolayer workflow

Formation and hull energy
(ΔHform and ΔHhull)

min{eig(C)} ≥ 0 ?

min{eig(D)} ≥ 0 ?

ΔHform < 0 ?

Stiffness tensor (C)

Dynamical matrix (D)

Property workflow
(see Table 1)

YES
NO

NO

NO

YES

Multilayers

Point defects

Monolayers

dy
na

m
ic

al
ly

  u
ns

ta
bl

e

thermodynamically
unstable

• Thermodynamic
• Elastic
• Electronic
• Magnetic
• Topological
• …

no
t  

ne
w

 / 
no

t  
2D

C2DB

YES

YES

YES

NO

NO

Figure 1. The workflow behind the C2DB. After the structural relaxation, the dimensionality of the material is checked and it is
verified that the material is not already present in the database. Next, the material is classified according to its chemical composition,
crystal structure, and magnetic state. Finally, the thermodynamic- and dynamic stability is assessed from the energy above the
convex hull and the sign of the minimum eigenvalues of the dynamical matrix and stiffness tensor. Unstable materials are stored in
the database; stable materials are subject to the property workflow. The C2DB monolayer database is interlinked with databases
containing structures and properties of multilayer stacks and point defects in monolayers from the C2DB.

a cluster. However, this procedure would remove
many high symmetry crystals for which a more stable
distorted version exists. For example, the well known
T-phase of MoS2 would be removed in favor of the more
stable T’-phase. This is undesired as high-symmetry
structures, even if dynamically unstable at T = 0, may
provide useful information and might in fact become
stabilized at higher temperatures[45]. Therefore, the
general strategy adopted for the C2DB, is to keep a
material that is less stable than another material of the
same cluster if it has fewer atoms in its primitive unit
cell (and thus typically higher symmetry). Precisely,
materials within a given cluster are kept only if they
represent a defining point of the (N , ∆H)-Pareto front,
where N is the number of atoms in the unit cell and
∆H is the heat of formation. A graphical illustration
of the Pareto analysis is shown in Figure 3 for the case
of ReS2.

2.4. Classification: Crystal structure

The original C2DB employed a crystal prototype
classification scheme where specific materials were
promoted to prototypes and used to label groups
of materials with the same or very similar crystal
structure. This approach was found to be difficult to
maintain (as well as being non-transparent). Instead,
materials are now classified according to their crystal

type defined by the reduced stoichiometry, space group
number, and the alphabetically sorted labels of the
occupied Wyckoff positions. As an example, MoS2 in
the H-phase has the crystal type: AB2-187-bi.

2.5. Classification: Magnetic state

In the new version of the C2DB, materials are
classified according to their magnetic state as either
non-magnetic or magnetic. A material is considered
magnetic if any atom has a local magnetic moments
greater than 0.1 µB.

In the original C2DB, the magnetic category was
further subdivided into ferromagnetic (FM) and anti-
ferromagnetic (AFM). But since the simplest anti-
ferromagnetically ordered state typically does not
represent the true ground state, all material entries
with an AFM state have been removed from the C2DB
and replaced by the material in its FM state. Although
the latter is less stable, it represents a more well
defined state of the material. Crucially, the nearest
neighbor exchange couplings for all magnetic materials
have been included in the C2DB (see Sec. 5.8). This
enables a more detailed and realistic description of
the magnetic order via the Heisenberg model. In
particular, the FM state of a material is not expected
to represent the true magnetic ground if the exchange
coupling J < 0.
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Property Method Criteria Count

Bader charges PBE None 3809

Energy above convex hull PBE None 4044

Heat of formation PBE None 4044

Orbital projected band structure PBE None 2487

Out-of-plane dipole PBE None 4044

Phonons (Γ and BZ corners) PBE None 3865

Projected density of states PBE None 3332

Stiffness tensor PBE None 3968

Exchange couplings PBE Magnetic 538

Infrared polarisability PBE EPBE
gap > 0 784

Second harmonic generation PBE EPBE
gap > 0, non-magnetic,

non-centrosymmetric
375

Electronic band structure PBE PBE* None 3496

Magnetic anisotropies PBE* Magnetic 823

Deformation potentials PBE* EPBE
gap > 0 830

Effective masses PBE* EPBE
gap > 0 1272

Fermi surface PBE* EPBE
gap = 0 2505

Plasma frequency PBE* EPBE
gap = 0 3144

Work function PBE* EPBE
gap = 0 4044

Optical polarisability RPA@PBE None 3127

Electronic band structure HSE06@PBE* None 3155

Electronic band structure G0W0@PBE* EPBE
gap > 0, Natoms < 5 357

Born charges PBE, Berry phase EPBE
gap > 0 639

Raman spectrum PBE, LCAO basis set Non-magnetic, dyn. stable 708

Piezoelectric tensor PBE, Berry phase EPBE
gap , non-centrosym. 353

Optical absorbance BSE@G0W0* EPBE
gap > 0, Natoms < 5 378

Spontaneous polarisation PBE, Berry phase EPBE
gap > 0, nearly centrosym.

polar space group
151

Topological invariants PBE*, Berry phase 0 < EPBE
gap < 0.3 eV 242

Table 1. Properties calculated by the C2DB monolayer workflow. The computational method and the criteria used to decide
whether the property should be evaluation for a given material is also shown. A ’*’ indicates that spin-orbit coupling (SOC) is
included. All calculations are performed with the GPAW code using a plane wave basis except for the Raman calculations, which
employ a double-zeta polarized (DZP) basis of numerical atomic orbitals.

2.6. Stability: Thermodynamic

The heat of formation, ∆H, of a compound is
defined as its energy per atom relative to its
constituent elements in their standard states.[46] The

thermodynamic stability of a compound is evaluated
in terms of its energy above the convex hull, ∆Hhull,
which gives the energy of the material relative to other
competing phases of the same chemical composition,
including mixed phases[6], see Fig. 4 for an example.
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Figure 2. Three example structures from C2DB (top:
graphene, middle: Ge2Se2, bottom: Pb2O6) with their
respective cluster dimensionalities cluster before (left) and after
(right) relaxation. The number NxD denotes the number of
clusters of dimensionality x.

Clearly, ∆Hhull, depends on the pool of reference
phases, which in turn defines the convex hull. The
original C2DB employed a pool of reference phases
comprised by 2807 elemental and binary bulk crystals
from the convex hull of the Open Quantum Materials
Database (OQMD)[46]. In the new version, this set

Thermodynamic
stability indicator

Criterion (eV/atom)

LOW ∆H > 0.2

MEDIUM ∆H < 0.2 and ∆Hhull > 0.2

HIGH ∆H < 0.2 and ∆Hhull < 0.2

Table 2. Thermodynamic stability indicator assigned to all
materials in the C2DB.

has been extended by approximately 6783 ternary bulk
compounds from the convex hull of OQMD, making a
total of 9590 stable bulk reference compounds.

As a simple indicator for the thermodynamic
stability of a material, the C2DB employs three labels
(low, medium, high) as defined in Table 2.

It should be emphasized that the energies of both
monolayers and bulk reference crystals are calculated
with the PBE xc-functional. This implies that
some inaccuracies must be expected, in particular
for materials with strongly localized d-electrons, e.g.
certain transition metal oxides, and materials for which
dispersive interactions are important, e.g. layered van
der Waals crystals. The latter implies that the energy
of a monolayer and its layered bulk parent (if such
exists in the pool of references) will have the same
energy. For further details and discussions see Ref.
[6].

2.7. Stability: Dynamical

Dynamically stable materials are situated at a local
minimum of the potential energy surface and are thus
stable to small structural perturbations. Structures
resulting from DFT relaxations can end up in saddle
point configurations because of imposed symmetry
constraints or an insufficient number of atoms in the
unit cell.

In C2DB, the dynamical stability is assessed from
the signs of the minimum eigenvalues of (i) the stiffness
tensor (see Sec. 3.1) and (ii) the Γ-point Hessian
matrix for a supercell containing 2 × 2 repetitions
of the unit cell (the structure is not relaxed in the
2 × 2 supercell). If one of these minimal eigenvalues
is negative the material is classified as dynamically
unstable. This indicates that the energy can be
reduced by displacing an atom and/or deforming the
unit cell, respectively. The use of two categories for
dynamical stability, i.e. stable/unstable, differs from
the original version of the C2DB where an intermediate
category was used for materials with negative but
numerically small minimal eigenvalue of either the
Hessian or stiffness tensors.
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3. Improved property methodology

The new version of the C2DB has been generated
using a significantly extended and improved workflow
for property evaluations. This section focuses on
improvements relating to properties that were already
present in the original version of the C2DB while new
properties are discussed in the next section.

3.1. Stiffness tensor

The stiffness tensor, C, is a rank-4 tensor that relates
the stress of a material to the applied strain. In Mandel
notation (a variant of Voigt notation) C is expressed
as an N × N matrix relating the N independent
components of the stress and strain tensors. For a 2D
material N = 3 and the tensor takes the form

C =


Cxxxx Cxxyy

√
2Cxxxy

Cxxyy Cyyyy
√

2Cyyxy
√

2Cxxxy
√

2Cyyxy 2Cxyxy

 (1)

where the indices on the matrix elements refer to the
rank-4 tensor. The factors multiplying the tensor
elements account for their multiplicities in the full
rank-4 tensor. In the C2DB workflow, C is calculated
as a finite difference of the stress under an applied
strain with full relaxation of atomic coordinates. A
negative eigenvalue of C signals a dynamical instability,
see Sec. 2.7
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In the first version of the C2DB only the diagonal
elements of the stiffness tensor were calculated. The
new version also determines the shear components such
that the full 3×3 stiffness tensor is now available. This
improvement also leads to a more accurate assessment
of dynamical stability[47].

3.2. Effective masses with parabolicity estimates

For all materials with a finite band gap the effective
masses of electrons and holes are calculated for
bands within 100 meV of the conduction band
minimum (CBM) and valence band maximum (VBM),
respectively. The Hessian matrices at the band
extrema (BE) are determined by fitting a second order
polynomium to the PBE band structure including
SOC, and the effective masses are obtained by
subsequent diagonalization of the Hessian. The main
fitting-procedure is unaltered from the first version of
C2DB, but two important improvements have been
made.

The first improvement consists in an additional
k-mesh refinement step for better localization of the
BE in the Brillouin zone. After the location of the
BE have been estimated based on a uniformly sampled
band structure with k-point density of 12 Å, another
one-shot calculation is perform with a denser k-mesh
around the estimated BE positions. This ensures a
more accurate and robust determination of the location
of the BE, which can be important in cases with a
small but still significant spin-orbit splitting or when
the band is very flat or non-quadratic around the BE.
The second refinement step is the same as in the first
version of C2DB, i.e. the band energies are calculated
on a highly dense k-mesh in a small disc around the
BE, and the Hessian is obtained by fitting the band
energies in the range up to 1 meV from the band
minimum/maximum.

The second improvement is the calculation of the
mean absolute relative error (MARE) of the poly-
nomial fit in a 25 meV range from the band mini-
mum/maximum. The value of 25 meV corresponds to
the thermal energy at room temperature and is thus
the relevant energy scale for many applications. The
MARE provides a useful measure of the parabolicity of
the energy bands and thus the validity of the effective
mass approximation over this energy scale.

Figure 5 shows two examples of band structures
with the effective mass fits and corresponding fit errors
indicated. Additionally, the distribution of MARE for
all the effective mass fits in the C2DB are presented.
Most materials have an insignificant MARE, but a
few materials have very large errors. Materials with
a MARE above a few tens of percentages fall into two
classes. For some materials the algorithm does not
correctly find the position of the BE. An example is

Ti2S2 in the space group C2/m. For others, the fit and
BE location are both correct, but the band flattens
away from the BE which leads to a large MARE. An
example of this latter class is Cl2Tl2 in the space group
P-1. In general a small MARE indicates a parabolic
band while materials with large MARE should be
handled on a case-by-case basis.

3.3. Orbital projected band structure

To facilitate a state-specific analysis of the PBE
Kohn-Sham wave functions, an orbital projected
band structure (PBS) is provided to complement
the projected density of states (PDOS). In the
PAW methodology, the all-electron wave functions are
projected onto atomic orbitals inside the augmentation
spheres centered at the position of each atom. The PBS
resolves these atomic orbital contributions to the wave
functions as a function of band and k-point whereas
the PDOS resolves the atomic orbital character of the
total density of states as a function of energy. The spin-
orbit coupling is not included in the PBS or PDOS, as
its effect is separately visualized by the spin-projected
band structure also available in the C2DB.

As an example, Figure 6 shows the PBS (left)
and PDOS (right) of monolayer MoS2 calculated with
PBE. The relative orbital contribution to a given Bloch
state is indicated by a pie chart symbol. In the
present example, one can deduce from the PBS that
even though Mo-p orbitals and S-p orbitals contribute
roughly equally to the DOS in the valence band, the
Mo-p orbital contributions are localized to a region in
the BZ around the M -point, whereas the S-p orbitals
contribute throughout the entire BZ.

3.4. Corrected G0W0 band structures

The C2DB contains G0W0 quasiparticle (QP) band
structures of 370 monolayers covering 14 different
crystal structures and 52 chemical elements. The
details of these calculations can be found in the original
C2DB paper[6]. A recent in-depth analysis of the
61.716 G0W0 data points making up the QP band
structures led to several important conclusions relevant
for high-throughput G0W0 calculations. In particular,
it identified the linear QP approximation as a
significant error source in standard G0W0 calculations
and proposed an extremely simple correction scheme
(the empirical Z (empZ) scheme), that reduces this
error by a factor of two on average.

The empZ scheme divides the electronic states into
two classes according to the size of the QP weight,
Z. States with Z ∈ [0.5, 1.0] are classified as QP
consistent (QP-c) while states with Z 6∈ [0.5, 1.0]
are classified as QP inconsistent (QP-ic). With this
definition, QP-c states will have at least half of their
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Figure 5. Left: The PBE band structures of Rh2Br6 and MoS2 (colored dots) in regions around the conduction band minimum.
The dashed red line shows the fit made to estimate the effective masses of the lowest conduction band. The shaded grey region
highlights the error between the fit and the true band structure. The mean absolute relative error (MARE) is calculated for energies
within 25 meV of the band minimum. For MoS2 the fit is essentially ontop of the band energies. Right: The distribution of the
MARE of all effective mass fits in the C2DB. The inset shows the full distribution on a log scale. As mentioned in the main text,
very large MAREs indicate that the band minimum/maximum was incorrectly identified by the algorithm and/or that the band is
very flat.
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state at K is QP-ic.

spectral weight in the QP peak. The distribution of
the 60.000+ Z-values is shown in Figure 7. It turns
out that the linear approximation to the self-energy,
which is the gist of the QP approximation, introduces
significantly larger errors for QP-ic states than for QP-
c states. Consequently, the empZ method replaces the
calculated Z of QP-ic states with the mean of the
Z-distribution, Z0 ≈ 0.75. This simple replacement
reduces the average error of the linear approximation
from 0.11 eV to 0.06 eV.

An illustration of the method applied to MoS2 is
shown in Figure 7. The original uncorrected G0W0

band structure is shown in blue while the empZ
corrected band structure is shown in orange. MoS2

has only one QP-ic state in the third conduction band
at the K-point. Due to a break-down of the QP
approximation for this state, the G0W0 correction is
greatly overestimated leading to a local discontinuity
in the band structure. The replacement of Z by Z0 for
this particular state resolves the problem. All G0W0

band structures in the C2DB are now empZ corrected.

3.5. Optical absorbance

In the first version of the C2DB, the optical absorbance
was obtained from the simple expression [6]

A(ω) ≈ ω Im
{
α2D(ω)

}
ε0c

, (2)

where α2D is the long wavelength limit of the in-plane
sheet polarisability density (Note that the equation
is written here in SI units). The sheet polarisability
is related to the sheet conductivity via σ2D(ω) =
−iωα2D(ω). The expression (2) assumes that the
electric field inside the layer equals the incoming
field (i.e. reflection is ignored), and hence, it may
overestimate the absorbance.

In the new version, the absorbance is evaluated
from A = 1− R − T , where R and T are the reflected
and transmitted powers of a plane wave at normal
incidence, respectively. These can be obtained from
the conventional transfer matrix method applied to a
monolayer suspended in vacuum. The 2D material
is here modelled as an infinitely thin layer with a
sheet conductivity. Alternatively, it can be modelled
as quasi-2D material of thickness d with a “bulk”
conductivity of σ = σ2D/d [48], but the two approaches
yield very similar results, since the optical thickness
of a 2D material is much smaller than the optical
wavelength. Within this model, the expression for the
absorbance of a suspended monolayer with the sheet
conductivity σ2D reads

A(ω) = Re
{
σ2D(ω)η0

}∣∣∣∣ 2

2 + σ2D(ω)η0

∣∣∣∣2, (3)

where η0 = 1/(ε0c) ≈ 377 Ω is the vacuum impedance.
If the light-matter interaction is weak, i.e.

|σ2Dη0| � 1, Eq. (3) reduces to Eq. (2). Nonetheless,
due the strong light-matter interaction in some 2D
materials, this approximation is not reliable in general.
In fact, it can be shown that the maximum possible
absorption from Eq. (3) is 50%, which is known as the
upper limit of light absorption in thin films [49]. This
limit is not guaranteed by Eq. (2), which can even yield
an absorbance above 100%.

As an example, Fig. 8 shows the absorption
spectrum of monolayer MoS2 for in- and out-of-plane
polarized light as calculated with the exact Eq. (3) and
the approximate Eq. (2), respectively. In all cases the
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sheet polarisability is obtained from the Bethe-Salpeter
Equation (BSE) to account for excitonic effects [6].
For weak light-matter interactions, e.g. for the z-
polarized light, the two approaches agree quite well,
but noticeable differences are observed in regions with
stronger light-matter interaction.

4. New materials in the C2DB

In this section we discuss the most significant
extensions of the C2DB in terms of new materials.
The set of materials presented here is not complete,
but represents the most important and/or well defined
classes. The materials discussed in Secs. 4.1 and
4.2 (MXY Janus monolayers and monolayers extracted
from experimental crystal structure databases) are
already included in the C2DB. The materials described
in Secs. 4.3 and 4.4 (homo-bilayers and monolayer
point defect systems) will soon become available as
separate C2DB-interlinked databases.

4.1. MXY Janus monolayers

The class of transition metal dichalcogenide (TMDC)
monolayers of the type MX2 (where M is the transition
metal and X is a chalcogen) exhibits a large variety of
interesting and unique properties and has been widely
discussed in the literature [50]. Recent experiments
have shown that it is not only possible to synthesize
different materials by changing the metal M or the
chalcogen X, but also by exchanging the X on one
side of the layer by another chalcogen (or halogen)
[51, 52, 53]. This results in a class of 2D materials
known as MXY Janus monolayers with broken mirror
symmetry and finite out-of-plane dipole moments. The
prototypical MXY crystal structures are shown in
Fig. 9 for the case of MoSSe and BiTeI, which have both
been experimentally realized [51, 52, 53]. Adopting the
nomenclature from the TMDCs, the crystal structures
are denoted as H- or T-phase, depending on whether
X and Y atoms are vertically aligned or displaced,
respectively.

In a recent work [54], the C2DB workflow was
employed to scrutinize and classify the basic electronic
and optical properties of 224 different MXY Janus
monolayers. All data from the study is available in the
C2DB. Here we provide a brief discussion of the Rashba
physics in these materials and refer the interested
reader to Ref. [54] for more details and analysis of other
properties.

A key issue when considering hypothetical mate-
rials, i.e. materials not previously synthesized, is their
stability. The experimentally synthesized MoSSe and
BiTeI are both found to be dynamically stable and lie
within 10 meV of the convex hull confirming their ther-
modynamic stability. Out of the 224 initial monolayers

93 are classified as stable according to the C2DB cri-
teria (dynamically stable and ∆Hhull < 0.2 eV/atom).
Out of the 93 stable materials, 70 exhibits a finite band
gap when computed with the PBE xc-functional.

The Rashba effect is a momentum dependent
splitting of the band energies of a 2D semiconductor
in the vicinity of a band extremum arising due to
the combined effect of spin-orbit interactions and a
broken crystal symmetry in the direction perpendicular
to the 2D plane. The simplest model used to
describe the Rashba effect is a 2D electron gas in a
perpendicular electric field (along the z-axis). Close to
the band extremum, the energy of the two spin bands
is described by the Rashba Hamiltonian [55, 56]

H = αR(σ× k) · êz , (4)

where σ is the vector of Pauli matrices, k = p/~
is the wave number, and the Rashba parameter is
proportional to the electric field strength, αR ∝ E0,

Although the Rashba Hamiltonian is only meant
as a qualitative model, it is of interest to test
its validity on the Janus monolayers. The electric
field of the Rashba model is approximately given by
E0 = ∆Vvac/d, where ∆Vvac is the shift in vacuum
potential on the two sides of the layer (see left inset
of Fig. 10) and d is the layer thickness. Assuming a
similar thickness for all monolayers, the electric field is
proportional to the potential shift. Not unexpected,
the latter is found to correlate strongly with the
difference in electronegativity of the X and Y atoms,
see left panel of Fig. 10.

The Rashba energy, ER, can be found by fitting
E(k) = ~2k2/2m∗ ± αRk to the band structure (see
right inset of Fig. 10) and should scale with the electric
field strength. However, as seen from the right panel
of Fig. 10, there is no correlation between the two
quantities. Hence we conclude that the simple Rashba
model is completely inadequate and that the strength
of the perpendicular electric field cannot be used to
quantify the effect of spin-orbit interactions on band
energies.

4.2. Monolayers from known layered bulk crystals

The C2DB has been extended with a number of mono-
layers that are likely exfoliable from experimentally
known layered bulk compounds. Specifically, the In-
organic Crystal Structure Database (ICSD)[57] and
Crystallography Open Database (COD)[58] have first
been filtered for corrupted, duplicate and theoretical
compounds, which reduce the initial set of 585.485
database entries to 167.767 unique materials. All of
these have subsequently been assigned a ”dimensional-
ity score” based on a purely geometrical descriptor. If
the 2D score is larger than the sum of 0D, 1D and 3D
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in the BSE framework, obtained using Eq. (2) (blue) or Eq. (3) (orange). The crystal structure cross-sectional views are shown in
the inset with the definition of directions.

H-phase (MoSSe) T-phase (BiTeI)

Figure 9. Atomic structure of the MXY Janus monolayers
in the H-phase (left) and T-phase (right). The two prototype
materials MoSSe and BiTeI are examples of experimentally
realized monolayers adopting these crystal structures (not to
scale).

scores we regard the material as being exfoliable and
we extract the individual 2D components that com-
prise the material (see also Sec. 2.2). We refer to the
original work on the method for details [43] and note
that similar approaches were applied in Refs. [12, 11]
to identify potentially exfoliable monolayers from the
ICSD and COD.

The search has been limited to bulk compounds
containing less than 6 different elements and no rare
earth elements. This reduces the set of relevant bulk
materials to 2991. For all of these we extracted the 2D
components containing less than 21 atoms in the unit
cell, which were then relaxed and sorted for duplicates
following the general C2DB workflow steps described
in Secs. 2.1-2.3. At this point 781 materials remain.
This set includes most known 2D materials and 207 of

the 781 were already present in the C2DB prior to this
addition. All the materials (including those that were
already in C2DB) have been assigned an ICSD/COD
identifier that refers to the parent bulk compound from
which the 2D material was computationally exfoliated.
We emphasize that we have not considered exfoliation
energies in the analysis and a subset of these materials
may thus be rather strongly bound and challenging to
exfoliate even if the geometries indicate van der Waals
bonded structures of the parent bulk compounds.

Fig. 11 shows the distribution of energies
above the convex hull for materials derived from
parent structures in ICSD or COD as well as for
the entire C2DB, which includes materials obtained
from combinatorial lattice decoration as well. As
expected, the materials derived from experimental bulk
materials are situated rather close to the convex hull
whereas those obtained from lattice decoration extend
to energies far above the convex hull. It is also
observed that a larger fraction of the experimentally
derived materials are dynamically stable. There are,
however, well known examples of van der Waals
bonded structures where the monolayer undergoes a
significant lattice distortion, which will manifest itself
as a dynamical instability in the present context. For
example, bulk MoS2 exists in van der Waals bonded
structures composed of either 2H-MoS2 or 1T-MoS2

layers, but a monolayer of the 1T phase undergoes
a structural deformation involving a doubling of the
unit cell[59] and is thus categorized as dynamically
unstable by the C2DB workflow. The dynamically
stable materials derived from parent bulk structures
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in the ICSD and COD may serve as a useful subset
of the C2DB that are likely to be exfoliable from
known compounds and thus facilitate experimental
verification. As a first application the subset has
been used to search for magnetic 2D materials, which
resulted in a total of 85 ferromagnets and 61 anti-
ferromagnets [60].

4.3. Outlook: Multilayers

The C2DB is concerned with the properties of
covalently bonded monolayers (see discussion of
dimensionality filtering in Sec. 2.2). However,
multilayer structures composed of two or more
identical monolayers are equally interesting and
often have properties that deviate from those of
the monolayer. In fact, the synthesis of layered
vdW structures with a controllable number of
layers represents an interesting avenue for atomic-
scale materials design. Several examples of novel
phenomena emerging in layered vdW structures have
been demonstrated including direct-indirect band gap
transitions in MoS22[61, 62], layer-parity selective
Berry curvatures in few-layer WTe2[63], thickness-
dependent magnetic order in CrI3[64, 65], and
emergent ferroelectricity in bilayer hBN[66].

As a first step towards a systematic exploration
of multilayer 2D structures, the C2DB has been
used as basis for generating homobilayers in various
stacking configurations and subsequently computing

their properties following a modified version of the
C2DB monolayer workflow. Specifically, the most
stable monolayers (around 1000) are combined into
bilayers by applying all possible transformations
(unit cell preserving point group operations and
translations) of one layer while keeping the other
fixed. The candidate bilayers generated in this way
are subject to a stability analysis, which evaluates the
binding energy and optimal interlayer distance based
on PBE-D3 total energy calculations keeping the atoms
of the monolayers fixed in their PBE relaxed geometry,
see Fig. 12 and Table 3.

The calculated interlayer binding energies are
generally in the range from a few to a hundred
meV/Å2 and interlayer distances range from 1.5Å to
3.8Å. A scatter plot of preliminary binding energies
and interlayer distances is shown in Fig. 13. The
analysis of homobilayers provides an estimate of the
energy required to peel a monolayer off a bulk
structure. In particular, the binding energy for the
most stable bilayer configuration provides a measure
of the exfoliation energy of the monolayer. This key
quantity is now available for all monolayers in the
C2DB, see Sec. 5.1.

4.4. Outlook: Point defects

The C2DB is concerned with the properties of 2D
materials in their pristine crystalline form. However,
as is well known the perfect crystal is an idealized
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Figure 11. Distribution of energies above the convex hull for
the 2D materials extracted from bulk compounds in ICSD and
COD (top) and for the entire C2DB including those constructed
from combinatorial lattice decoration (bottom). Dynamically
stable materials are indicated in blue.

model of real materials, which always contain defects
in smaller or larger amounts depending on the intrinsic
materials properties and growth conditions. Crystal
defects often have a negative impact on physical
properties, e.g. they lead to scattering and life
time-reduction of charge carriers in semiconductors.
However, there are also important situations where
defects play a positive enabling role, e.g. in
doping of semiconductors, as color centers for photon
emission[67, 68] or as active sites in catalysis.

To reduce the gap between the pristine model
material and real experimentally accessible samples,
a systematic evaluation of the basic properties of
the simplest native point defects in a selected subset
of monolayers from the C2DB has been initiated.
The monolayers are selected based on the stability
of the pristine crystal. Moreover, only non-magnetic
semiconductors with a PBE band gap satisfying
Egap > 1 eV, are currently considered as such
materials are candidates for quantum technology
applications like single-photon sources and spin
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Å

2
]

MoS2 - AA

Figure 12. An illustration of the optimization of the interlayer
(IL) distance for MoS2 in the AA stacking. The black crosses
are the points sampled by the optimization algorithm while the
blue curve is a spline interpolation of the black crosses. The
inset shows the MoS2 AA stacking and the definition of the IL
distance is indicated with a black double-sided arrow.

1.5 2.0 2.5 3.0 3.5 4.0

Interlayer distance [Å]
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Figure 14. Overview of some of the properties included in the 2D defect database project for the example host material CH2Si. (a)
The supercell used to represent the defects (here a Si vacancy). The supercell is deliberately chosen to break the symmetry of the
host crystal lattice. (b) Formation energies of a C vacancy (green) and C-Si substitutional defect (purple). (c) Energy and orbital
symmetry of the localized single-particle states of the VSi defect for both spin channels (left and right). The Fermi level is shown by
the dotted line. (d) Schematic excited state configuration energy diagram. The transitions corresponding to the vertical absorption
and the zero-phonon emission are indicated.

qubits. Following these selection criteria around 300
monolayers are identified and their vacancies and
intrinsic substitutional defects are considered, yielding
a total of about 1500 defect systems.

Each defect system is subject to the same
workflow, which is briefly outlined below. To
enable point defects to relax into their lowest energy
configuration, the symmetry of the pristine host crystal
is intentionally broken by the chosen supercell, see
Fig. 14 (a). In order to minimize defect-defect
interaction, supercells are furthermore chosen such
that the minimum distance between periodic images
of defects is larger than 15 Å. Unique point defects are
created based on the analysis of equivalent Wyckoff
positions for the host material. To illustrate some of
the properties that will feature in the upcoming point
defect database, we consider the specific example of
monolayer CH2Si.

First, the formation energy[69, 70] of a given
defect is calculated from PBE total energies. Next,
Slater-Janak transition state theory is used to obtain
the charge transition levels[71, 72]. By combining
these results, one obtains the formation energy of the
defect in all possible charge states as a function of
the Fermi level. An example of such a diagram is
shown in Fig. 14 (b) for the case of the VC and
CSi defects in monolayer CH2Si. For each defect and
each charge state, the PBE single-particle energy level
diagram is calculated to provide a qualitative overview
of the electronic structure. A symmetry analysis[73] is
performed for the defect structure and the individual
defect states lying inside the band gap. The energy
level diagram of the neutral VSi defect in CH2Si is
shown in Fig. 14 (c), where the defect states are labeled
according to the irreducible representations of the Cs

point group.



Recent Progress of the Computational 2D Materials Database (C2DB) 16

In general, excited electronic states can be
modelled by solving the Kohn-Sham equations with
non-Aufbau occupations. The excited-state solutions
are saddle points of the Kohn-Sham energy functional,
but common self-consistent field (SCF) approaches
often struggle to find such solutions, especially when
nearly degenerate states are involved. The calculation
of excited states corresponding to transitions between
localized states inside the band gap is therefore
performed using an alternative method based on
the direct optimization (DO) of orbital rotations
in combination with the maximum overlap method
(MOM) [74]. This method ensures fast and robust
convergence of the excited states, as compared to
SCF. In Fig. 14 (d), the reorganization energies for
the ground- and excited state, as well as the zero-
phonon line (ZPL) energy are sketched. For the
specific case of the Si vacancy in CH2Si, the DO-MOM
method yields EZPL = 3.84 eV, λreorggs = 0.11 eV and
λreorgexc = 0.16 eV. For systems with large electron-
phonon coupling (i.e. Huang-Rhys factor > 1) a one-
dimensional approximation for displacements along the
main phonon mode is used to produce the configuration
coordinate diagram (see Fig. 14 (d)). In addition
to the ZPL energies and reorganization energies,
the Huang-Rhys factors, photoluminescence spectrum
from the 1D phonon model, hyperfine coupling and
zero field splitting are calculated.

5. New properties in the C2DB

This section reports on new properties that have
become available in the C2DB since the first release.
The employed computational methodology is described
in some detail and results are compared to the
literature where relevant. In addition, some interesting
property correlations are considered along with general
discussions of the general significance and potential
application of the available data.

5.1. Exfoliation energy

The exfoliation energy of a monolayer is estimated as
the binding energy of its bilayer in the most stable
stacking configuration (see also Sec. 4.3). The
binding energy is calculated using the PBE+D3 xc-
functional[75] with the atoms of both monolayers fixed
in the PBE relaxed geometry. Table 3 compares
exfoliation energies obtained in this way to values from
Mounet et al.[11] for a representative set of monolayers.

5.2. Bader charges

For all monolayers we calculate the net charge on
the individual atoms using the Bader partitioning
scheme[76]. The analysis is based purely on the

Material SG PBE+D3 DF2 rVV10

MoS2 P-6m2 28.9 21.6 28.8

MoTe2 P-6m2 30.3 25.2 30.4

ZrNBr Pmmn 18.5 10.5 18.5

C P6/mmm 18.9 20.3 25.5

P Pmna 21.9 38.4 30.7

BN P-6m2 18.9 19.4 24.4

WTe2 P-6m2 32.0 24.7 30.0

PbTe P3m1 23.2 27.5 33.0

Table 3. Exfoliation energies for selected materials calculated
with the PBE+D3 xc-functional as described in Sec. 4.3 and
compared with the DF2 and rVV10 results from Ref. [11]. The
spacegroups are indicated in the column ”SG”. All numbers are
in units of meV/Å2.

electron density, which we calculate from the PAW
pseudo density plus compensation charges using the
PBE xc-functional. Details of the method and its
implementation can be found in Tang et al.[77]. In
Sec. 5.4 we compare and discuss the relation between
Bader charges and Born charges.

5.3. Spontaneous polarization

The spontaneous polarization (Ps) of a bulk material
is defined as the charge displacement with respect to
that of a reference centrosymmetric structure [78, 79].
Ferroelectric materials exhibit a finite value of Ps that
may be switched by an applied external field and
have attracted a large interest for a wide range of
applications [80, 81, 82].

The spontaneous polarization in bulk materials
can be regarded as electric dipole moment per unit
volume, but in contrast to the case of finite systems
this quantity is ill-defined for periodic crystals [78].
Nevertheless, one can define the formal polarization
density

P =
1

2π

e

V

∑
l

φlal (5)

where al (with l ∈ {1, 2, 3}) are the lattice vectors
spanning the unit cell, V is the cell volume and e is
the elementary charge. φl is the polarization phase
along the lattice vector defined by

φl =
∑
i

Zibl · ui − φelecl (6)

where bl is the reciprocal lattice vector satisfying
bl · Rl = 2π and ui is the position of nucleus i
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with charge eZi. The electronic contribution to the
polarization phase is defined as

φelecl =
1

Nk⊥bl

Im
∑

k∈BZ⊥bl

× ln

Nk‖bl
−1∏

j=0

det
occ

[〈
unk+jδk

∣∣∣umk+(j+1)δk

〉]
,

(7)

where BZ⊥bl
= {k|k · bl = 0} is a plane of k-

points orthogonal to bl, δk is the distance between
neighbouring k-points in the bl direction and Nk‖bl

(Nk⊥bl
) is the number of k-points along (perpendicular

to) the bl direction. These expression generalize
straightforwardly to 2D.

The formal polarization is only well-defined
modulo eRn/V where Rn is any lattice vector.
However, changes in polarization are well defined and
the spontaneous polarization may thus be obtained by

Ps =

∫ 1

0

dP(λ)

dλ
dλ, (8)

where λ is a dimensionless parameter that defines an
adiabatic structural path connecting the polar phase
(λ = 1) with a non-polar phase (λ = 0).

The methodology has been implemented in GPAW
and used to calculate the spontaneous polarization
of all stable materials in the C2DB with a PBE
band gap above 0.01 eV and a polar space group
symmetry. For each material, the centrosymmetric
phase with smallest atomic displacement from the

polar phase is constructed and relaxed under the
constraint of inversion symmetry. The adiabatic
path connecting the two phases is then used to
calculate the spontaneous polarization using Eqs. (5)-
(8). An example of a calculation for GeSe is
shown in Fig. 15 where the polarization along the
path connecting two equivalent polar phases via the
centrosymmetric phase is shown together with the total
energy. The spontaneous polarization obtained from
the path is 39.8 nC/m in good agreement with previous
calculations [83].

5.4. Born charges

The Born charge of an atom a at position ua in a solid
is defined as

Zaij =
V

e

∂Pi
∂uaj

∣∣∣∣∣
E=0

. (9)

It can be understood as an effective charge assigned
to the atom to match the change in polarization in
direction i when its position is perturbed in direction j.
Since the polarization density and the atomic position
are both vectors, the Born charge of an atom is a
rank-2 tensor. The Born charge is calculated as a
finite difference and relies on the Modern theory of
polarization [84] for the calculation of polarization
densities, see Ref. [85] for more details. The Born
charge has been calculated for all stable materials in
C2DB with a finite PBE band gap.

It is of interest to examine the relation between
the Born charge and the Bader charge (see Sec. 5.2).
In materials with strong ionic bonds one would expect
the charges to follow the atoms. On the other hand, in
covalently bonded materials the hybridization pattern
and thus the charge distribution, depends on the atom
positions in a complex way, and the idea of charges
following the atom is expected to break down. In
agreement with this idea, the (in-plane) Born charges
in the strongly ionic hexagonal boron-nitride (±2.71e
for B and N, respectively) are in good agreement with
the calculated Bader charges (±3.0e). In contrast,
(the in-plane) Born charges in MoS2 (−1.08e and 0.54e
for Mo and S, respectively) deviate significantly from
the Bader charges (1.22e and −0.61e for Mo and S,
respectively). In fact, the values disagree even on the
sign of the charges underlining the non-intuitive nature
of the Born charges in covalently bonded materials.

Note that the out-of-plane Born charges never
match the Bader charges, even for strongly ionic
insulators, and are consistently smaller in value
than the in-plane components. The smaller out-of-
plane values are consistent with the generally smaller
out-of-plane polarisability of 2D materials (for both
electronic and phonon contributions) and agrees with
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Figure 16. Born charges, Tr(Z)/3, vs. Bader charges for
3025 atoms in the 585 materials for which the Born charges are
calculated. The colors indicate the ionicity of the atoms (see
main text).

the intuitive expectation that it is more difficult to
polarize a 2D material in the out-of-plane direction as
compared to the in-plane direction.

Fig. 16 shows the average of the diagonal of
the Born charge tensor, Tr(Za)/3, plotted against the
Bader charges for all 585 materials in the C2DB for
which the Born charges have been computed. The data
points have been colored according to the ionicity of
the atom a defined as I(a) = |χa − 〈χ〉|, where χa and
〈χ〉 are the Pauling electronegativity of atom a and
the average electronegativity of all atoms in the unit
cell, respectively. The ionicity is thus a measure of the
tendency of an atom to donate/accept charge relative
to the average tendency of atoms in the material. It
is clear from Fig. 16 that there is a larger propensity
for the Born and Bader charges to match in materials
with higher ionicity.

Fig. 17 plots the average (in-plane) Born charge
and the Bader charge versus the band gap. It is clear
that large band gap materials typically exhibit integer
Bader charges, whereas there is no clear correlation
between the Born charge and the band gap.

5.5. Infrared polarizability

The original C2DB provided the frequency dependent
polarisability computed in the random phase approx-
imation (RPA) with inclusion of electronic interband
and intraband (for metals) transitions[6]. However,
phonons carrying a dipole moment (so-called infrared
(IR) active phonons) also contribute to the polariz-
ability at frequencies comparable to the frequency of
optical phonons. This response is described by the IR
polarizability,
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Figure 18. Total polarizability, including both electrons
and phonons, of monolayer hBN in the infrared frequency
regime. The resonance at around 180 meV is due to the
Γ-point longitudinal optical phonon. At energies above all
phonon frequencies (but below the band gap) the polarizability
is approximately constant and equal to the static limit of the
electronic polarizability, α∞.

αIR(ω) =
e2

A
ZTM−1/2

∑
i

did
T
i

ω2
i − ω2 − iγω

M−1/2Z,

(10)

where Z and M are matrix representations of the Born
charges and atomic masses, ω2

i and di are eigenvectors
and eigenvalues of the dynamical matrix, A is the
in-plane cell area and γ is a broadening parameter
representing the phonon lifetime and is set to 10
meV. The total polarizability is then the sum of the
electronic polarizability and the IR polariability.

The new C2DB includes the IR polarisability of
all monolayers for which the Born charges have been
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calculated (stable materials with a finite band gap),
see Sec. (5.4). As an example, Fig. 18 shows the total
polarizability of monolayer hexagonal boron nitride.
For details on the calculation of the IR polarizability
see Ref. [85].

5.6. Piezoelectric tensor

The piezoelectric effect is the accumulation of charges,
or equivalently the formation of an electric polarisa-
tion, in a material in response to an applied mechanical
stress or strain. It is an important material character-
istic with numerous scientific and technological appli-
cations in sonar, microphones, accelerometers, ultra-
sonic transducers, energy conversion etc [86, 87]. The
change in polarization originates from the movement
of positive and negative charge centers as the material
is deformed.

Piezoelectricity can be described by the (proper)
piezoelectric tensor cijk with i, j, k ∈ {x, y, z}, given by
[88]

cijk =
e

2πV

∑
l

∂φl
∂εjk

ali . (11)

which differs from Eq. (5) only by a derivative of the
polarization phase with respect to the strain tensor εjk.
Note that cijk does not depend on the chosen branch
cut.

The piezoelectric tensor is a symmetric tensor with
at most 18 independent components. Furthermore,
the point group symmetry restricts the number of
independent tensor elements and their relationships
due to the well-known Neumann’s principle [89]. For
example, monolayer MoS2 with point group D3h, has
only one non-vanishing independent element of cijk.
Note that cijk vanishes identically for centrosymmetric
materials. Using a finite-difference technique with a
finite but small strain (1% in our case), Eq. (11) has
been used to compute the proper piezoelectric tensor
for all non-centrosymmetric materials in the C2DB
with a finite band gap. Table 4 shows a comparison of
the piezoelectric tensors in the C2DB with literature
for a selected set of monolayer materials. Good
agreement is obtained for all these materials.

5.7. Topological invariants

For all materials in the C2DB exhibiting a direct band
gap below 1 eV, the k-space Berry phase spectrum of
the occupied bands has been calculated from the PBE
wave functions. Specifically, a particular k-point is
written as k1b1 + k2b2 and the Berry phases γn(k2)
of the occupied states on the path k1 = 0 → k1 = 1
is calculated for each value of k2. The connectivity of
the Berry phase spectrum determines the topological
properties of the 2D Bloch Hamiltonian [92, 93].

Material Exp. Theory [90] C2DB

BN - 0.14 0.13

MoS2 0.3 0.36 0.35

MoSe2 - 0.39 0.38

MoTe2 - 0.54 0.48

WS2 - 0.25 0.24

WSe2 - 0.27 0.26

WTe2 - 0.34 0.34

Table 4. Comparison of computed piezoelectric tensor versus
experimental values and previous calculations for hexagonal BN
and a selected set of TMDs (space group 187). All number are
in units of nC/m. Experimental data for MoS2 is obtained from
Ref. [91].

The calculated Berry phase spectra of the relevant
materials are available for visual inspection on the
C2DB webpage. Three different topological invariants
have been extracted from these spectra and are
reported in the C2DB: 1) The Chern number, C, takes
an integer value and is well defined for any gapped
2D material. It determines the number of chiral edge
states on any edge of the material. For any non-
magnetic material the Chern number vanishes due to
time-reversal symmetry. It is determined from the
Berry phase spectrum as the number of crossings at
any horizontal line in the spectrum. 2) The mirror
Chern number, CM , defined for gapped materials
with a mirror plane in the atomic layer[94]. For
such materials, all states may be chosen as mirror
eigenstates with eigenvalues ±i and the Chern numbers
C± can be defined for each mirror sector separately.
For a material with vanishing Chern number, the
mirror Chern number is defined as CM = (C+−C−)/2
and takes an integer value corresponding to the number
of edge states on any mirror symmetry preserving edge.
It is obtained from the Berry phase spectrum as the
number of chiral crossings in each of the mirror sectors.
3) The Z2 invariant, ν, which can take the values 0 and
1, is defined for materials with time-reversal symmetry.
Materials with ν = 1 are referred to as quantum spin
Hall insulators and exhibit helical edge states at any
time-reversal conserving edge. It is determined from
the Berry phase spectrum as the number of crossing
points modulus 2 at any horizontal line in the interval
k2 ∈ [0, 1/2].

Figure 19 shows four representative Berry phase
spectra corresponding to the three cases of non-
vanishing C, CM and ν as well as a trivial insulator.
The four materials are: OsCl3 (space group 147) -
a Chern insulator with C = 1, OsTe2 (space group
14) - a mirror crystalline insulator with CM = 2, SbI
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Figure 19. Berry phase spectra of the Chern insulator OsCl3 (top left), the crystalline topological insulator OsTe2 (top right), the
quantum spin Hall insulator SbI (lower left) and the trivial insulator BiITe (lower right).

(spacegroup 1) - a quantum spin Hall insulator with
ν = 1 and BiITe (spacegroup 156) - a trivial insulator.
Note that a gap in the Berry phase spectrum always
implies a trivial insulator.

In Ref. [95] the C2DB was screened for materials
with non-trivial topology. At that point it was
found that the database contained 7 Chern insulators,
21 mirror crystalline topological insulators and 48
quantum spin Hall insulators. However, that does not
completely exhaust the the topological properties of
materials in the C2DB. In particular, there may be
materials that can be topologically classified based on
crystalline symmetries other than the mirror plane of
the layer. In addition, second order topological effects
may be present in certain materials, which imply that
flakes will exhibit topologically protected corner states.
Again, the Berry phase spectra may be used to unravel
the second order topology by means of nested Wilson
loops [96].

5.8. Exchange coupling constants

The general C2DB workflow described in Secs. 2.1-
2.3 will identify the ferromagnetic ground state of a

material and apply it as starting point for subsequent
property calculations, whenever it is more stable than
the spin-paired ground state. In reality, however, the
ferromagnetic state is not guaranteed to comprise the
magnetic ground state. In fact, anti-ferromagnetic
states often have lower energy than the ferromagnetic
one, but in general it is non-trivial to obtain the true
magnetic ground state. We have chosen to focus on the
ferromagnetic state due to its simplicity and because
its atomic structure and stability are often very similar
to those of other magnetic states. Whether or not the
ferromagnetic state is the true magnetic ground state
is indicated by the nearest neighbor exchange coupling
constant as described below.

When investigating magnetic materials the ther-
modynamical properties (for example the critical tem-
peratures for ordering) are of crucial interest. In two
dimensions the Mermin-Wagner theorem[97] comprises
an extreme example of the importance of thermal ef-
fects since it implies that magnetic order is only pos-
sible at T = 0 unless the spin-rotational symmetry is
explicitly broken. The thermodynamic properties can-
not be accessed directly by DFT. Consequently, mag-
netic models that capture the crucial features of mag-
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netic interactions must be employed. For insulators,
the Heisenberg model has proven highly successful in
describing magnetic properties of solids in 3D as well as
2D[98]. It represents the magnetic degrees of freedom
as a lattice of localized spins that interact through a
set of exchange coupling constants. If the model is re-
stricted to include only nearest neighbor exchange and
assume magnetic isotropy in the plane, it reads

H = −J
2

∑
〈ij〉

Si · Sj −
λ

2

∑
〈ij〉

Szi S
z
j −A

∑
i

(
Szi
)2

(12)

where J is the nearest neighbor exchange constant, λ is
the nearest neighbor anisotropic exchange constant and
A measures the strength of single-ion anisotropy. We
also neglect off-diagonal exchange coupling constants
that give rise to terms proportional to Sxi S

y
j , Syi S

z
j

and Szi S
x
j . The out-of-plane direction has been chosen

as z and 〈ij〉 implies that for each site i we sum
over all nearest neighbor sites j. The parameters J ,
λ and A may be obtained from an energy mapping
analysis involving four DFT calculations with different
spin configurations[99, 60, 100]. The thermodynamic
properties of the resulting ”first principles Heisenberg
model” may subsequently be analysed with classical
Monte Carlo simulations or renormalized spin wave
theory [101, 36].

The C2DB provides the values of J , λ, and A
as well as the number of nearest neighbors Nnn and
the maximum eigenvalue of Sz (S), which is obtained
from the total magnetic moment per atom in the
ferromagnetic ground state (rounded to nearest half-
integer for metals). These key parameters facilitate
easy post-processing analysis of thermal effects on the
magnetic structure. In Ref. [102] such an analysis
was applied to estimate the critical temperature of all
ferromagnetic materials in the C2DB based on a model
expression for TC and the parameters from Eq. (12).

For metals, the Heisenberg parameters available
in C2DB should be used with care because the
Heisenberg model is not expected to provide an
accurate description of magnetic interactions in this
case. Nevertheless, even for metals the sign and
magnitude of the parameters provide an important
qualitative measure of the magnetic interactions that
may be used to screen and select materials for more
detailed investigations of magnetic properties.

A negative value of J implies the existence of an
anti-ferromagnetic state with lower energy than the
ferromagnetic state used in C2DB. This parameter is
thus crucial to consider when judging the stability
and relevance of a material classified as magnetic
in C2DB (see Sec. 2.5). Fig. 20 shows the
distribution of exchange coupling constants (weighted
by S2) of the magnetic materials in the C2DB. The
distribution is slightly skewed to the positive side

indicating that ferromagnetic order is more common
than anti-ferromagnetic order.

The origin of magnetic anisotropy may stem from
either single-ion anisotropy or anisotropic exchange
and it is in general difficult a priori to determine, which
mechanism is most important. There is, however,
a tendency in the literature to neglect anisotropic
exchange terms in a Heisenberg model description
of magnetism and focus solely on the single-ion
anisotropy. In Fig. 20 we show a scatter plot of the
anisotropy parameters A and λ for the ferromagnetic
materials (J > 0). The spread of the parameters
indicate that the magnetic anisotropy is in general
equally likely to originate from both mechanisms
and neglecting anisotropic exchange is not advisable.
For ferromagnets, the model (Eq. (12)) only exhibits
magnetic order at finite temperatures if A(2S − 1) +
λNnn > 0 [102]. Neglecting anisotropic exchange
thus excludes materials with A < 0 that satisfies
A(2S − 1) + λNnn > 0. This is in fact the case for 11
ferromagnetic insulators and 31 ferromagnetic metals
in the C2DB.

5.9. Raman spectrum

Raman spectroscopy is an important technique used
to probe the vibrational modes of a solid (or
molecule) by means of inelastic scattering of light
[103]. In fact, Raman spectroscopy is the dominant
method for characterising 2D materials and can
yield detailed information about chemical composition,
crystal structure and layer thickness. There exist
several different types of Raman spectroscopies that
differ mainly by the number of photons and phonons
involved in the scattering process [103]. The first-
order Raman process, in which only a single phonon is
involved, is the dominant scattering process in samples
with low defect concentrations.

In a recent work, the first-order Raman spec-
tra of 733 monolayer materials from the C2DB were
calculated, and used as the basis for an automatic
procedure for identifying a 2D material entirely from
its experimental Raman spectrum[104]. The Ra-
man spectrum is calculated using third-order pertur-
bation theory to obtain the rate of scattering pro-
cesses involving creation/annihilation of one phonon
and two photons, see Ref. [104] for details. The
light field is written as F(t) = Finuin exp(−iωint) +
Foutuout exp(−iωoutt)+c.c., where Fin/out and ωin/out

denote the amplitudes and frequencies of the in-
put/output electromagnetic fields, respectively. In ad-
dition, uin/out =

∑
i u

i
in/outei are the corresponding

polarization vectors, where ei denotes the unit vec-
tor along the i-direction with i ∈ {x, y, z}. Using this
light field, the final expression for the Stokes Raman in-
tensity involving scattering events by only one phonon
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λ for ferromagnetic materials with S > 1/2. The shaded area
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reads [104]

I(ω) = I0
∑
ν

nν + 1

ων

∣∣∣∣∑
ij

uiinR
ν
iju

j
out

∣∣∣∣2δ(ω − ων) .

(13)

Here, I0 is an unimportant constant (since Raman
spectra are always reported normalized), and nν is
obtained from the Bose–Einstein distribution, i.e.
nν ≡ (exp

[
~ων/kBT

]
− 1)−1 at temperature T for a

Raman mode with energy ~ων . Note that only phonons
at the Brillouin zone center (with zero momentum)
contribute to the one-phonon Raman processes due
to momentum conservation. In Eq. (13), Rνij is the
Raman tensor for phonon mode ν, which involves
electron-phonon and dipole matrix elements as well
as the electronic transition energies and the incident
excitation frequency. Eq. (13) has been used to
compute the Raman spectra of the 733 most stable,
non-magnetic monolayers in C2DB for a range of
excitation frequencies and polarization configurations.
Note that the Raman shift ~ω is typically expressed

in cm−1 with 1 meV equivalent to 8.0655 cm−1. In
addition, for generating the Raman spectra, we have
used a Gaussian [G(ω) = (σ

√
2π)−1 exp

{
(−ω2/2σ2)

}
]

with a variance σ = 3 cm−1 to replace the Dirac
delta function, which accounts for the inhomogeneous
broadening of phonon modes.

As an example, Fig. 21 shows the calculated
Raman spectrum of monolayer MoS2 and the Janus
monolayer MoSSe (see Sec. 4.1). Experimental
Raman spectra extracted from Ref. [52] are shown
for comparison. For both materials, good agreement
between theory and experiment is observed for the
peak positions and relative amplitudes of the main
peaks. The small deviations can presumably be
attributed to substrate interactions and defects in the
experimental samples as well as the neglect of excitonic
effects in the calculations. The qualitative differences
between the Raman spectra can be explained by the
different point groups of the materials (C3v and D3h,
respectively), see Ref. [104]. In particular, the lower
symmetry of MoSSe results in a lower degeneracy of its
vibrational modes leading to more peaks in the Raman
spectrum.

5.10. Second harmonics generation

Nonlinear optical (NLO) phenomena such as harmonic
generation, Kerr, and Pockels effects are of great tech-
nological importance for lasers, frequency converters,
modulators, etc. In addition, NLO spectroscopy has
been extensively employed to obtain insight into mate-
rials properties [105] that are not accessible by e.g. lin-
ear optical spectroscopy. Among numerous nonlinear
processes, second-harmonic generation (SHG) has been
widely used for generating new frequencies in lasers as
well as identifying crystal orientations and symmetries.

Recently, the SHG spectrum was calculated for
375 non-magnetic, non-centrosymmetric semiconduct-
ing monolayers of the C2DB, and multiple 2D mate-
rials with giant optical nonlinearities were identified
[106]. In the SHG process, two incident photons at fre-
quency ω generate an emitted photon at frequency of
2ω. Assume that a mono-harmonic electric field writ-
ten F(t) =

∑
i Fieie−iωt+c.c. is incident on the ma-

terial, where ei denotes the unit vector along direction
i ∈ {x, y, z}. The electric field induces a SHG polar-
ization density P(2), which can be obtained from the

quadratic susceptibility tensor χ
(2)
ijk,

P
(2)
i (t) = ε0

∑
jk

χ
(2)
ijk(ω, ω)FiFje−2iωt + c.c. , (14)

where ε0 denotes the vacuum permittivity. χ
(2)
ijk is a

symmetric (due to intrinsic permutation symmetry i.e.

χ
(2)
ijk = χ

(2)
ijk) rank-3 tensor with at most 18 independent

elements. Furthermore, similar to the piezoelectric
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Figure 21. Comparison of the calculated and experimental (extracted from Ref. [52]) Raman spectrum of MoS2 (left) and MoSSe
(right). The excitation wavelength is 532 nm, and both the polarization of both the incoming and outgoing photons are along
the y-direction. The Raman peaks are labeled according to the irreducible representations of the corresponding vibrational modes.
Adapted from Ref. [104].

tensor, the point group symmetry reduces the number
of independent tensor elements.

In the C2DB, the quadratic susceptibility is
calculated using density matrices and perturbation
theory [107, 108] with the involved transition dipole
matrix elements and band energies obtained from
DFT. The use of DFT single-particle orbitals implies
that excitonic effects are not accounted for. The
number of empty bands included in the sum over
bands was set to three times the number of occupied
bands. The width of the Fermi-Dirac occupation
factor was set to kBT = 50 meV, and a line-shape
broadening of η = 50 meV was used in all spectra.
Furthermore, time-reversal symmetry was imposed in
order to reduce the k-integrals to half the BZ. For
various 2D crystal classes, it was verified by explicit
calculation that the quadratic tensor elements fulfill
the expected symmetries, e.g. that they all vanish
identically for centrosymmetric crystals.

As an example, the calculated SHG spectra for
monolayer Ge2Se2 is shown in Fig. 22 (left panel).
Monolayer Ge2Se2 has 5 independent tensor elements,

χ
(2)
xxx, χ

(2)
xyy, χ

(2)
xzz, χ

(2)
yyx = χ

(2)
yxy, and χ

(2)
zzx = χ

(2)
zxz, since

it is a group-IV dichalcogenide with an orthorhombic
crystal structure (space group 31 and point group
C2v). Note that, similar to the linear susceptibility, the
bulk quadratic susceptibility (with SI units of m/V)
is ill-defined for 2D materials (since the volume is
ambiguous) [106]. Instead, the unambiguous sheet
quadratic susceptibility (with SI units of m2/V) is
evaluated. In addition to the frequency-dependent
SHG spectrum, the angular dependence of the static
(ω = 0) SHG intensity at normal incidence for
parallel and perpendicular polarizations (relative to

the incident electric field) is calculated, see Fig. 22
(right panel). Such angular resolved SHG spectroscopy
has been widely used for determining the crystal
orientation of 2D materials. The calculated SHG
spectra for all non-vanishing inequivalent polarization
configurations and their angular dependence, are
available in the C2DB.

Since C2DB has already gathered various material
properties of numerous 2D materials, it provides
a unique opportunity to investigate interrelations
between different material properties. For example, the
strong dependence of the quadratic optical response
on the electronic band gap was demonstrated on basis
of the C2DB data [106]. As another example of a
useful correlation, the static quadratic susceptibility
is plotted versus the static linear susceptibility for
67 TMDCs (with formula MX2, space group 187)
in Fig. 23. Note that for materials with several
independent tensor elements, only the largest is shown.
There is a very clear correlation between the two
quantities. This is not unexpected as both the
linear and quadratic optical responses are functions
of the transition dipole moments and transition
energies. More interestingly, the strength of the
quadratic response seems to a very good approximation
to be given by a universal constant times the
linear susceptibility to the power of three (ignoring
polarisation indices), i.e.

χ(2)(0, 0) ≈ Aχ(1)(0)3, (15)

where A is only weakly material dependent. Note that
this scaling law is also known in classical optics as
semi-empirical Miller’s rule for non-resonant quadratic
responses [109], which states that the second order
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electric susceptibility is proportional to the product of
the first-order susceptibilities at the three frequencies
involved.

6. Machine learning properties

In recent years, material scientists have shown great
interest in exploiting the use of machine learning
(ML) techniques for predicting materials properties
and guiding the search for new materials. ML is the

scientific study of algorithms and statistical models
that computer systems can use to perform a specific
task without using explicit instructions but instead
relying on patterns and inference. Within the domain
of materials science, one of the most frequent problems
is the mapping from atomic configuration to material
property, which can be used e.g. to screen large
material spaces in search of optimal candidates for
specific applications. [110, 111]

In the ML literature, the mathematical represen-
tation of the input observations is often referred to as
a fingerprint. Any fingerprint must satisfy a number of
general requirements. [112] In particular, a fingerprint
must be

Complete: The fingerprint should incorporate all the
relevant input for the underlying problem, i.e.
materials with different properties should have
different fingerprints.

Compact: The fingerprint should contain no or
a minimal number of features redundant to
the underlying problem. This includes being
invariant to rotations, translations and other
transformations that leave the properties of the
system invariant.

Descriptive: Materials with similar target values
should have similar fingerprints.

Simple: The fingerprint should be efficient to
evaluate. In the present context, this means that
calculating the fingerprint should be significantly
faster than calculating the target property.
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Figure 24. Pair-plot of selected properties from C2DB. The diagonal contains the single property histograms. Below the diagonal
are two-property scatter plots showing the correlation between properties and above the diagonal are two-property histograms.
properties include the HSE06 band gap, the PBE heat of formation (∆H), the exciton binding energy (EB) calculated from the
Bethe-Salpeter equation (BSE), the in-plane static polarisability calculated in the random phase approximation (RPA) and averaged
over the x and y polarisation directions (〈αi〉), and the in-plane Voigt modulus (〈Cii〉) defined as 1

4
(C11 + C22 + 2C12), where Cij

is a component of the elastic stiffness tensor.

Several types of atomic-level materials fingerprints
have been proposed in the literature, including general
purpose fingerprints based on atomistic properties[113,
114] possibly encoding information about the atomic
structure, i.e. atomic positions[115, 112, 116], and
specialized fingerprints tailored for specific applications
(materials/properties)[117, 118].

The aim of this section is to demonstrate how
the C2DB may be utilized for ML-based prediction
of general materials properties. Moreover, the
study serves to illustrate the important role of the
fingerprint for such problems. The 2D materials are
represented using three different fingerprints: two
popular structural fingerprints and a more advanced
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fingerprint that encodes information about the the
electronic structure via the projected density of
states (PDOS). The target properties include the
HSE06 band gap, the PBE heat of formation (∆H),
the exciton binding energy (EB) obtained from the
many-body Bethe-Salpeter equation (BSE), the in-
plane static polarisability calculated in the random
phase approximation (RPA) averaged over the x and
y polarisation directions (〈αi〉), and the in-plane
Voigt modulus (〈Cii〉) defined as 1

4 (C11 + C22 + 2C12),
where Cij is a component of the elastic stiffness tensor
in Mandel notation.

To introduce the data, Figure 24 shows pair-
plots of the dual-property relations of these properties.
The plots in the diagonal show the single-property
histograms, whereas the off-diagonals show dual-
property scatter plots below the diagonal and
histograms above the diagonal. Clearly, there are only
weak correlations between most of the properties, with
the largest degree of correlation observed between the
HSE06 gap and exciton binding energy. The lack
of strong correlations motivates the use of machine
learning for predicting the properties.

The prediction models are build using the Ewald
sum matrix and many-body tensor representation
(MBTR) as structural fingerprints. The Ewald
fingerprint is a version of the simple Coulomb matrix
fingerprint[115] modified to periodic systems [112].
The MBTR encodes first, second and third order terms
like atomic numbers, distances and angles between
atoms in the system [116]. As an alternative to the
structural fingerprints, a representation based on the
PBE projected density of states (PDOS) is also tested.
This fingerprint (to be published) encodes the coupling
between the PDOS at different atomic orbitals and the
distance between atoms. Since this fingerprint requires
a DFT-PBE calculations to be performed, additional
features derivable from the DFT calculation can be
added to the fingerprint. In this study, the PDOS
fingerprint is amended by the PBE band gap. The
latter can in principle be extracted from the PDOS, but
its explicit inclusion improves performance (see below).

A Gaussian process regression using a simple
Gaussian kernel with a noise component is used as
learning algorithm. The models are trained using 5-
fold cross validation on a training set consisting of 80%
of the materials with the remaining 20% held aside as
test data. Prior to training the model, the input space
is reduced to 50 features using principal component
analysis (PCA). This step is neccesary to reduce the
huge number of features in the MBTR fingerprint to a
manageable size. Although this is not required for the
Ewald and PDOS fingerprints, we perform the same
feature reduction in all cases. The optimal number of
features depends on the choice of fingerprint, target
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Figure 25. Prediction scores (MAE normalized to standard
deviation of property values) for the test sets of selected
properties using a Gaussian process regression.

property and learning algorithm, but for consistency
50 PCA components are used for all fingerprints and
properties in this study.

Figure 25 shows the prediction scores obtained for
the 5 properties using the three different fingerprints.
The employed prediction score is the mean absolute
error of the test set normalized by the standard
deviation of the property values (standard deviations
are annotated in the diagonal plots in Fig. 24).
In general, the PDOS fingerprint outperforms the
structural fingerprints. The difference between
prediction scores is smallest for the static polarisability
〈αi〉 and largest for the HSE06 gap. It should be
stressed that although the evaluation of the PBE-
PDOS fingerprint is significantly more time consuming
than the evaluation of the structural fingerprints, it is
still much faster than the evaluation of all the target
properties. Moreover, structural fingerprints require
the atomic structure, which in turns requires a DFT
structure optimization (unless the structure is available
by other means).

The HSE06 band gap shows the largest sensitivity
to the employed fingerprint. To elaborate on the
HSE06 results, Fig. 26 shows the band gap predicted
using each of the three different fingerprints plotted
against the true band gap. The mean absolute errors
on the test set is 0.95 eV and 0.74 eV for Ewald
and MBTR fingerprints, respectively, while the PDOS
significantly outperforms the other fingerprints with
a test MAE of only 0.21 eV. This improvement in
prediction accuracy is partly due to the presence of
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the PBE gap in the PDOS fingerprint. However,
our analysis shows that the pure PDOS fingerprint
without the PBE gap still outperforms the structural
fingerprints. Using only the PBE gap as feature results
in a test MAE of 0.28 eV.

The current results show that the precision of ML-
based predictions are highly dependent on the type of
target property and the chosen material representation.
For some properties, the mapping between atomic
structure and property is easier to learn while others
might require more/deeper information, e.g. in terms
of electronic structure fingerprints. Our results clearly
demonstrate the potential of encoding electronic
structure information into the material fingerprint, and
we anticipate more work on this relevant and exciting
topic in the future.

7. Summary and outlook

We have documented a number of extensions and
improvements of the Computational 2D Materials
Database (C2DB) made in the period 2018-2020.
The new developments include: (i) A refined and
more stringent workflow for filtering prospect 2D
materials and classifying them according to their
crystal structure, magnetic state and stability. (ii)
Improvements of the methodology used to compute
certain challenging properties such as the full stiffness
tensor, effective masses, G0W0 band structures, and
optical absorption spectra. (iii) New materials
including 216 MXY Janus monolayers and 574
monolayers exfoliated from experimentally known
bulk crystals. In addition, ongoing efforts to
systematically obtain and characterize bilayers in
all possible stacking configurations as well as point
defects in the semiconducting monolayers, have been

described. (iv) New properties including exfoliation
energies, spontaneous polarisations, Bader charges,
piezoelectric tensors, infrared (IR) polarisabilities,
topological invariants, magnetic exchange couplings,
Raman spectra, and second harmonic generation
spectra. It should be stressed that the C2DB will
continue to grow as new structures and properties are
being added, and thus the present paper should not
be seen as a final report on the C2DB but rather a
snapshot of its current state.

In addition to the above mentioned improvements
relating to data quantity and quality, the C2DB has
been endowed with a comprehensive documentation
layer. In particular, all data presented on the
C2DB website are now accompanied by an information
field that explains the meaning and representation
(if applicable) of the data and details how it was
calculated thus making the data easier to understand,
reproduce, and deploy.

The C2DB has been produced using the Atomic
Simulation Recipes (ASR) in combination with the
GPAW electronic structure code and the MyQueue
task and workflow scheduling system. The ASR is
a newly developed Python-based framework designed
for high-throughput materials computations. The
highly flexible and modular nature of the ASR and
its strong coupling to the well established community-
driven ASE project, makes it a versatile framework for
both high- and low-throughput materials simulation
projects. The ASR and the C2DB-ASR workflow
are distributed as open source code. A detailed
documentation of the ASR will be published elsewhere.

While the C2DB itself is solely concerned with
the properties of perfect monolayer crystals, ongoing
efforts focus on the systematic characterisation of
homo-bilayer structures as well as point defects



Recent Progress of the Computational 2D Materials Database (C2DB) 28

in monolayers. The data resulting from these
and other similar projects will be published as
separate, independent databases, but will be directly
interlinked with the C2DB making it possible to
switch between them in a completely seamless fashion.
These developments will significantly broaden the
scope and usability of the C2DB+ (+ stands for
associated databases) that will help theoreticians
and experimentalists to navigate one of the most
vibrant and rapidly expanding research fields at the
crossroads of condensed matter physics, photonics,
nanotechnology, and chemistry.
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[58] Gražulis S, Daškevič A, Merkys A, Chateigner D,
Lutterotti L, Quirós M, Serebryanaya N R, Moeck P,
Downs R T and Le Bail A 2012 Nucleic Acids Res. 40
D420–D427

[59] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344–1347
[60] Torelli D, Moustafa H, Jacobsen K W and Olsen T 2020

npj Computational Materials 6 158
[61] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010

Physical review letters 105 136805
[62] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y,

Galli G and Wang F 2010 Nano letters 10 1271–1275
[63] Xiao J, Wang Y, Wang H, Pemmaraju C, Wang S, Muscher

P, Sie E J, Nyby C M, Devereaux T P, Qian X et al.
2020 Nature Physics 16 1028–1034

[64] Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018
Nano letters 18 7658–7664

[65] Liu Y, Wu L, Tong X, Li J, Tao J, Zhu Y and Petrovic C
2019 Scientific reports 9 1–8

[66] Yasuda K, Wang X, Watanabe K, Taniguchi T and Jarillo-
Herrero P 2020 arXiv preprint arXiv:2010.06600

[67] Northup T and Blatt R 2014 Nature photonics 8 356–363
[68] O’brien J, Furusawa A and Vuckovic J 2009 Photonic

quantum technologies nat Photonics vol 3 p 687
[69] Zhang S and Northrup J E 1991 Physical review letters 67

2339
[70] Van de Walle C G, Laks D, Neumark G and Pantelides S

1993 Physical Review B 47 9425
[71] Janak J F 1978 Physical Review B 18 7165
[72] Pandey M, Rasmussen F A, Kuhar K, Olsen T, Jacobsen

K W and Thygesen K S 2016 Nano letters 16 2234–2239
[73] Kaappa S, Malola S and Häkkinen H 2018 The Journal of
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ABSTRACT
The Atomic Simulation Recipes (ASR) is an open source Python framework for working with
atomistic materials simulations in an efficient and sustainable way that is ideally suited for high-
throughput projects. Central to ASR is the concept of a Recipe: a high-level Python script that
performs a well defined simulation task robustly and accurately while keeping track of the data
provenance. The ASR leverages the functionality of the Atomic Simulation Environment (ASE)
to interface with external simulation codes and attain a high abstraction level. We provide a
library of Recipes for common simulation tasks employing density functional theory and many-
body perturbation schemes. These Recipes utilize the GPAW electronic structure code, but may
be adapted to other simulation codes with an ASE interface. Being independent objects with
automatic data provenance control, Recipes can be freely combined through Python scripting
giving maximal freedom for users to build advanced workflows. ASR also implements a com-
mand line interface that can be used to run Recipes and inspect results. The ASR Migration
module helps users maintain their data while the Database and App modules makes it possible
to create local databases and present them as customized web pages.
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1. Introduction
As computing power continues to increase and the era of exascale approaches, the development of software solu-

tions capable of exploiting the immense computational resources becomes a key challenge for the scientific community.
In the field of materials science, ab initio electronic structure (aiES) calculations are increasingly being conducted in a
high-throughput fashion to screen thousands of materials for various applications[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16] and to generate large reference data sets for training machine learning algorithms to predict fundamental
materials properties[17, 18, 19, 20, 21, 22] or design interatomic potentials[23, 24, 25, 26]. The results from such aiES
high-throughput calculations are often stored in open databases allowing the data to be efficiently shared and deployed
beyond the original purpose[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

While a few thousands of calculations can be managed manually, a paradigm in which data drives scientific dis-
covery calls for dedicated workflow solutions that automatically submit and retrieve the calculations, store the results
in organized data structures, and keep track of the origin, history and dependencies of all data, i.e. the data provenance.
Ideally, the workflow should also attach explanatory descriptions to the data that allows them to be easily accessed,
understood, and deployed – also by users with limited domain knowledge.

Materials scientists from the aiES community are employing a large and heterogeneous set of simulation codes
based mainly on density functional theory (DFT)[38]. These codes differ substantially in the way they implement
and solve the fundamental physical equations. This is due to the fact that different types of problems require different
numerical approaches, e.g. high accuracy vs. large system sizes, periodic vs. finite vs. open boundary conditions, or
ground state vs. excited state properties. In principle, the large pool of available aiES codes provides users with a great
deal of flexibility and freedom to pick the code that best suits the problem at hand. In practice, however, the varying
numerical implementations and the diverse and often rudimentary user interfaces make it challenging for users to
switch between the different aiES codes leading to a significant “code barrier”.

To some extent, a similar situation exists with respect to materials properties. Although aiES codes provide access
to a rich variety of physical and chemical properties, individual researchers often focus on properties within a specific
scientific domain. While this may be sufficient in many cases, several important contemporary problems addressed
by the aiES community are multi-physical in nature and require properties and insights from several domains. For
example, evaluating the potential of a material as a photocatalyst involves an assessment of solar light absorption,
charge transport, and chemical reactions at a solid–liquid interface. Calculating new types of properties for the first
time is often a time-consuming process involving trial and error and the acquisition of technical, implementation-
specific knowledge of no direct benefit for the user or the overall project aim. This situation may result in a “property
barrier” that hampers researchers’ exploitation of the full capacity of aiES codes.

In this paper, we introduce The Atomic Simulation Recipes (ASR) – a highly flexible Python framework for de-
veloping and working with computational materials workflows. The ASR reduces code and property barriers and
makes it easy to perform high-throughput computations with advanced workflows while adhering to the FAIR Data
Principles[39]. There are already some workflow solutions available in the field, some of the most prominent being
AFlow[30], Fireworks[40], AiiDA[41], and Atomate[42]. However, these are either designed for one specific simula-
tion code and/or constitute rather colossal integrated entities, the complexity of which could represent an entry barrier
to some users. The ASR differs from the existing solutions in several important ways, and we expect it to appeal to
a large crowd of computational researchers, e.g. those with Python experience who like to develop their own person-
alized (workflow) scripts and databases, less experienced users who prefer plug-and-play solutions, and those who
wish to apply non-standard methodologies, e.g. compute GW band structures or Raman spectra, but feel they lack the
expertise required for using standard low-level codes.

The basic philosophy of ASR is to prioritize usability and simplicity over system perfection. More specifically,
ASR is characterized by the following qualities:

• Flexibility: The Python scripting interface and high degree of modularity provide users with almost unlimited
freedom for developing and deploying workflows.

• Modularity: The key components of ASR, namely the workflow development framework (ASR core), the
Database and App modules, the task scheduler (MyQueue), and the simulation codes, are separate independent
entities. Moreover, the Recipe library concept supports modular workflow designs and reuse of code.

• Data locality: Generated data is stored in a special folder named .asr where it can be accessed transparently
via command line tools (similar to Git).
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• Compatibility: For compatibilitywith external simulation codes, theASR core is fully simulation code-independent
while specific Recipe implementations communicate with simulation codes via the abstract ASE Calculator in-
terface.

• Minimalism and pragmatism: ASR is based on simple solutions that work efficiently in practice. This makes
ASR fast to learn, easy to use, and relatively uncomplicated to adapt to future demands.

At the core of ASR is the concept of a Recipe. In essence, a Recipe is a piece of code that can perform a certain
simulation task (e.g. relax an atomic structure, calculate a Raman spectrum, or identify covalently bonded components
of a material) while recording all relevant results and metadata. The use of Recipes makes it simple to run simulations
from either Python or the command line. For example,

$ asr run "asr.bandstructure --atoms structure.json"

will calculate the electronic band structure of the material structure.json. Subsequently, the command
$ asr results asr.bandstructure

will produce a plot of the band structure. With two additional commands, the ASR results can be inspected in a web
browser, see example in Fig. 6.

In practice, Recipes are implemented as Pythonmodules building on theAtomic Simulation Environment (ASE)[43].
Recipes conform to certain naming and structured programming conventions, making them largely self-documenting
and easy to read. To keep track of data provenance, Recipes utilize a caching mechanism that automatically logs all
exchange of data with the user and other Recipes in a uniquely identifiable Record object. Not only does this guar-
antee the documentation and reproducibility of the results, it also allows ASR to determine whether a given Recipe
task has already been performed (such that its result can be directly loaded and returned) and to detect if a Recipe task
needs to be rerun because another piece of data in its dependency chain has changed. In addition, Recipes implement
presentation and explanatory descriptions of their outputs and may also define a web panel for online presentation.

The Recipes of the current ASR library cover a variety of computational tasks and properties (see Table 1). Most of
the 40+ available Recipes utilize DFT. However, some Recipes do not involve calls to a simulation code (e.g. symmetry
analysis or construction of phase diagrams) while others employ beyond-DFT methodology (e.g. the GW method or
the Bethe–Salpeter equation). These library Recipes can be used “out of the box” or modified to fit the user’s need.
New Recipes may be developed straightforwardly following the documentation and large body of available examples.
Recipes can be combined into complex workflows using Python scripting for maximal flexibility and compatibility with
ASE and other relevant Python libraries like PymatGen[44], Spglib[45] and Phonopy[46]. The Python workflows may
be executed on supercomputers using the MyQueue[47] task scheduler front-end or other similar systems.

The ASR contains a number of tools for working with the ASE database module, which makes it easy to generate
and maintain local materials databases. Relying on the Recipes’ web panel implementations, these databases may
be straightforwardly presented in a browser allowing for easy inspection, querying, and sharing of results on a local
or public network. As an example of an ASR-driven database project we refer to the Computational 2D Materials
Database (C2DB)[32, 48] 1.

While the core of ASR, i.e. the Recipe concept and caching system, is fully simulation code-independent, most
Recipe implementations of the current library contain calls to the specific aiES code GPAW[49]. We are currently
working on a generalization of the ASE Calculator interface which will decouple Recipe implementations from simu-
lation codes. In the future, many Recipes will therefore work with multiple simulation codes.

Another on-going effort is to generalize the organization of calculated results. For example results are currently
presented mainly by material. This is practical for a database which primarily associates a number of properties
with each material, but not for presenting sets of results parametrized over other variables than the material. These
limitations will be removed over the next releases.

The rest of this paper is organised as follows: In Section 2 we provide a general overview of the main components
of ASR. Section 3 zooms in on the central Recipe concept and its caching system while Section 4 gives an overview
of the currently available Recipes. In Section 5, the Database and App modules are described. Section 6 gives a
brief presentation of the Computational 2D Materials Database as an example of an ASR-driven high-throughput
database project and provides a few concrete examples of Recipe implementations. Section 7 describes the different

1http://c2db.fysik.dtu.dk
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Figure 1: Schematic overview of the main modules of the ASR and their interrelations.
ASR consists of a Python library of Recipes for materials simulations and a caching system
for recording of results and metadata. Recipes are envisioned to communicate with sim-
ulation codes via ASE interfaces, although most current Recipe implementations contain
parts that are specific to the GPAW code. An arrow from X to Y means that Y calls X.
The blue frames on the Instructions Recipe box symbolise a caching layer that records all
data flow to/from the Recipes.

user interfaces supported by ASR while Sections 8 and 9 explain how ASR manages data migration and provenance,
respectively. Sections 10 and 11 cover documentation and technical specifications. Finally, Section 12 summarises the
paper and presents our future perspectives for ASR.

2. Overview of ASR
Fig. 1 shows a schematic overview of the main components of the ASR and their mutual dependencies. An arrow

from X to Y indicates a direct dependence of Y on X, e.g. via function calls (Y calls X). The ASR modules have been
divided into the ASR core modules (Cache and Recipe) and the ASR user interfaces (command-line interface, Python,
Task scheduler front-end, and Apps). In addition, the ASR Database and Data migration modules contain tools for
working with databases and maintaining data, respectively.

Recipes implement specific, well defined materials simulation tasks as Python modules building on the ASE[43]
and other Python libraries. A Recipe integrates with a Cache module that keeps track of performed tasks and manages
all relevant metadata. The Cache also allows the user to inspect the data generated by a Recipe via the ASR command
line interface (CLI) or using Python. Likewise, the Recipes may be executed directly from the CLI or called via Python
scripts, the latter giving maximal flexibility and compatibility with existing Python libraries. For the purpose of high-
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Recipe 1

main(a,b):

c = recipe2.calculate(a)
d = recipe1.calculate(b)
e = recipe1.calc_corr(c,d)

return Result

calculate(a):

simulation_code(a)

return Result

calc_corr(a,b):

return Result

Cached  Records

…

Recipe 2

Recipe 3

Recipe 4

3 
In

st
ru

ct
io

ns

Dependency

Caching
Record_Recipe1_main

• Result

• Instruction version

• Input arguments

• uniqeID

• Dependencies

• Revision history

• Resources used

Record

Record

Record

Figure 2: A Recipe consists of a set of Instructions (see Fig. 3) implementing the
computational steps needed to obtain a desired result. An Instruction may call other
Instructions of the same, or separate, Recipes. An Instruction always returns a Record
holding its result, normally represented as a Result data structure, together with the
dependencies on other Instructions and all additional metadata required to trace back and
reproduce the result.

throughput computations, advanced Python workflows combining several Recipes may be constructed and executed
remotely using task scheduling systems like MyQueue[47].

The ASR Cache and Recipe modules work on a folder/file basis. This locality of data makes the ASR highly
transparent for the user. The ASR Database module contains functions for converting the ASR data stored in a tree
of folders into an ASE database and vice versa. The ASR App module generates web pages for online presentation,
browsing and searching of the databases generated by the ASR Database module. Finally, the Data migration module
provides tools for transforming data (results or metadata) to ensure backward compatibility when Recipes are updated.

3. What is a Recipe?
A Recipe is a Python module implementing the Instructions needed to obtain a particular result, for example to

relax an atomic structure, calculate an electronic band structure or a piezoelectric tensor. This section describes the
structure and main components of a Recipe. A schematic overview of the Recipe concept is shown in Fig. 2.
3.1. Instruction

An Instruction is to be understood as a Python function wrapped in a caching layer provided by ASR, see Fig. 3.
Whenever an Instruction is called, the caching layer intercepts the input arguments and asks the cache whether the
result of the particular Instruction call already exists (cache hit) or whether there are no matching results (cache miss).
If a matching result exists (because it was calculated previously), the caching layer skips the actual evaluation of the
Instruction and simply reads and returns the previously calculated result. In the case of a cache miss, the Instruction
is evaluated, after which the result is intercepted by the caching layer and stored together with the relevant metadata
in a Record object. The precise content of the Record object and the conditions for a cache hit/miss are described in
Section 3.3.

One of the great benefits of this design is its simplicity. Because the Instruction/caching layer is implemented as a
simple wrapper around a Python function, usage of the caching functionality requires minimal additional knowledge.
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Add Record 
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function
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Figure 3: An Instruction is a Python function (orange) wrapped in a caching layer (light
blue). When the function is called with a set of input arguments, the caching layer consults
the cache to check if a Record for that exact function call already exists. In case of a cache
hit, the Record is read and returned. In case of a cache miss, the function is evaluated
and the Record is stored before it is returned.

In practice, this means that working with ASR and implementing new ASR Recipes becomes really simple.
The caching system works on a per-folder basis (similar to Git): a cache is initialized by the user in a folder and

any instruction evaluated within this folder or sub-folders will utilize this cache. This mimics the behaviour of the
MyQueue task scheduler so as to maximize the synergy between these tools. In practice, the “one-cache-per-folder”
system works well together with a “one-material-per-folder” structure. The latter is currently still a requirement for
utilizing the Database functionalities described in Section 5. However, the caching system can work with several
atomic structures in the same folder as the cache can distinguish ASR tasks performed on different atomic structures.
Data written by ASR is encoded as JSON.

Any Instruction can be called directly by the user (from Python or the CLI), but special importance is given to the
“main Instruction”. The main Instruction usually provides the primary interface for the user to the Recipe and returns
the final result of the Recipe. Other Instructions are called by the main Instruction and evaluated as needed. These may
be Instructions implemented in the Recipe itself but may also be Instructions of separate Recipes. The main Instruction
takes all input arguments required by the Recipe and uses them to call other Instructions.

Having multiple Instructions in a Recipe is usually motivated by code reusability or reduction of resources. The
former is relevant when another Recipe needs to perform an identical Instruction (see Section on Dependencies). The
latter is relevant when the task can be divided into Instructions with different resource requirements, in which case the
separation may save computational time or resources. In particular, this is useful if a recalculation of a subset of the
generated data is required.

The input arguments of an Instruction comprise all the information required to specify its task. When calls to an
external simulation code are involved, the input arguments include a code specification, the computational parameters
like k-point density, basis set specification, or exchange–correlation (xc) functional, as well the atomic structure.

An Instruction carries a version number to facilitate data migrations, i.e. transformations of the values or organ-
isation of data produced by the Instruction. This may be required for backward compatibility when Instructions are
updated, see Section 8.
3.2. Dependencies

It often happens that an Instruction can benefit from the functionality implemented by other Instructions. An
example is the main Instruction of the “band structure” Recipe which calls an Instruction of the “ground state” Recipe
to compute the electron density that the band structure should be based on. The caching layer logs whenever an
Instruction requests data from another Instruction and uses that information to build a list of data dependencies. The
data dependency list is stored in the Record object making it possible to trace what other pieces of data were used in
the construction of the current result.
Morten Gjerding et al.: Preprint submitted to Elsevier Page 6 of 19



Atomic Simulation Recipes — a Python framework and library for automated workflows

Implementation of data-dependencies in Recipes requires no extra coding. Whenever an Instruction calls another
Instruction, the caching layer will automatically intercept the call and (1) determine if there exists a matching Record
(cache hit/miss); (2) log the data dependency by registering the unique IDs and revision UIDS (see Section 8) of any
dependent Records.
3.3. The Record object

The Record object is the basic data unit of ASR. It stores the results of Instructions together with metadata docu-
menting how the results were obtained, and is used by the cache system to identify already performed Instruction calls.
The Record object contains the following information:

• Result object (see Section 3.4)
• Input arguments, if relevant including

– Atomic structure
– Simulation code specification
– Computational parameters

• Instruction version (see Section 8)
• External codes versions
• Randomly generated unique ID
• Dependencies (see Section 3.2)
• Revision History (see Section 8)
• Execution time and resources (number of cores)
To identify a cache hit/miss when evaluating an Instruction, the caching layer searches the cache for Records with

matching Instruction name, version, and input arguments. A cache hit is then defined as the existence of a matching
Record. A recursive comparison is used to compare input arguments with those from existing Recordswithin a small
numerical tolerance for floating point numbers. Any later evaluations of the Instruction with identical arguments will
result in a cache hit.
3.4. The Result object

To store and document the result produced by a Recipe, ASR offers a Result object that wraps the actual result
data (stored as a Python dictionary) in a simple data structure that also contains specification of the result data types
along with short explanatory descriptions of the data. In addition, the Result object may implement methods to
present itself in different formats, see below. Using the Result object is optional, but in practice all instructions that
return more than a simple object or value utilizes a Result object for improved data documentation.
3.5. Presentation of results

The Result object may implement presentation options of the result data in various formats, for example text to
terminal, figures, and web panels. The ASR Database and App modules draw on the Recipes’ web panel implemen-
tation to create web pages for presenting, browsing, and distributing databases containing collected Result objects,
see sections 5 and 6. This provides an efficient way of inspecting and sharing data as it is generated, which is highly
practical for projects involving multiple collaborators.
3.6. General principles for Recipe development

Tomaintain and exploit the modular structure of ASR, the development of new Recipes should follow a few general
design principles. First, the task performed by a Recipe should be well defined and clearly bounded to make it easy to
use in different contexts. It should always be considered whether the Recipe could be split into smaller independent
Recipes that could be useful individually. Additionally, it is encouraged that Recipes are designed/programmed so as
to be as broadly applicable as possible, e.g. with respect to the type of material (structure dimensionality, chemical
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composition, magnetic/non-magnetic, metallic/insulating, etc.). Any information required to define the simulation task
should be included in the input argument of the Recipe, i.e. hard coding of parameters should be avoided. This should be
done to ensure a flexible use and enhance the data provenance (input arguments are stored in the Records). Recipes
should employ conservative parameter settings as default to ensure that the results are numerically well converged
independent of the application, e.g. material type. Finally, in order to keep ASR Recipes simple and easy-to-read,
and in order to enhance the modularity, code-extensive functionalities should be separated out into ASE functions and
called from ASR whenever it is possible and sensible, i.e. when the ASE function is useful in other contexts than the
specific Recipe.

4. The Recipe library
The ASR currently provides more than 40 complete Recipes allowing users to perform a broad range of materials

simulation tasks ranging from construction and analysis of crystal structures over DFT calculations of thermodynamic,
mechanical, electronic, magnetic, and optical properties to many-body methods for evaluating response functions,
quasiparticle band structures, and collective excitations. A non-exhaustive list of available Recipes is provided in
Table 1. It should be stressed that the list constitutes a snapshot of the current state of the Recipe library, which is
continuously expanding. For example, we are currently developing Recipes for creating and modeling layered van der
Waals structures and point defects in semiconductors.

Most of the currently implemented Recipes rely specifically on the GPAW[49] electronic structure code. As pre-
viously mentioned, we are currently working on a generalisation of the ASE Calculator interface to make the Recipes
– or a large portion of them – simulation code-independent. Until then, usage of ASR with other simulation codes
than GPAW is possible by porting of existing Recipes or development of new ones. The amount of work involved will
depend on the type of Recipe and the state of the ASE interface for the specific simulation code.

A few specific examples of Recipe implementations are given in Section 6 where we outline themain computational
steps and the final output of the asr.bandstructure and asr.emasses Recipes, respectively.

Morten Gjerding et al.: Preprint submitted to Elsevier Page 8 of 19



Atomic Simulation Recipes — a Python framework and library for automated workflows

5. The ASR Database and App modules
The ASR Database and web App modules make it possible to package, inspect, share, and present ASR-driven

projects easily and efficiently. The main tools and opportunities provided by these modules are described in more
detail below.
5.1. Database

The ASR Database module can be used to collect Record objects from a directory tree into an ASE database.
This is achieved by the command asr database fromtree. The procedure assumes a “one-material-per-folder”
structure, relying on the existence of an atomic structure file in each folder to select Records pertaining to that atomic
structure. The Database module proceeds to collect atomic structure-Record data sets and assign them to a particular
row of an ASE database. We shall refer to such a database as an ASR database. Once an ASR database has been
collected, it is possible to define key–value-pairs and relate property data to specific atomic structures.

The Database module also enables the reverse operation, that is, unpacking an existing ASR database to a directory
tree containing Record objects. This is achieved by the command asr database totree. The function is useful
when continuing a project, e.g. because existing datamust be updated or new datamust be added, for which the database
is available but not the original directory tree. Moreover, it provides tools for merging and splitting databases.

It is possible to collect a database for any number of materials/Record objects – even for a single material –
and thereby take advantage of the App tools for presenting and inspecting results in a browser with no extra efforts.
However, collecting databases is obviously most powerful in cases involving many materials/properties where the
database makes it possible to search and filter the data via the defined key–value-pairs.

The easy installation of ASE through the standard PyPI Python package manager makes the ASE database format
highly accessible. Furthermore, the portability of an ASE database (via several backends, e.g. SQLite, PostgreSQL,
MariaDB and MySQL) enables easy packaging and distribution of data among different parties.
5.2. Web App

The ASE provides a flexible and easily extensible database web application making it possible to present and
inspect the content of an ASE database in a browser. ASR leverages this ASE functionality to customize the web
application layout and provide more sophisticated features such as the automatic generation of web panels, generation
of figures, and documentation of the presented data by utilizing the web panel data structures encoded in the Result
objects. Normally a Recipe generates one web panel. However, panels gathering data from several Recipes may be
created. One example of the latter is the “Summary” panel of the C2DB web pages discussed in the next section. In
this case, a number of Recipes write data to a web panel data structure named “Summary” in their Result object. This
information is stored in the database when collected. When generating the C2DB web pages from the C2DB database,
the App constructs all web panels that are defined in the data pertaining to a particular material. If several Recipes
have written to the same web panel, the data will be combined in an order controlled by a priority keyword written
together with the web panel data.
5.2.1. Adding information fields

To enhance the accessibility of the data, it is possible to add an explanatory description to specific data entries,
i.e, key–value pairs and data files, of an ASR database. These descriptions will appear as text boxes when clicking a
“?”-icon placed next to the data on the web panels, see Fig. 5. General information boxes for web panels are always
generated by ASR. They contain a customised field that can be manually edited, e.g. providing a short explanation of
the data presented in the panel and/or links to relevant literature, and an automatically generated field listing the ASR
Recipes that have produced data for the web panel and the key input parameters for the calculations. An example of
such an information box is shown in Fig. 5.
5.2.2. Linking rows of databases

ASR provides functionality to create links between rows of the same, or different, ASR databases. This allows the
developer to connect relevant materials when designing web panels such that the end user can move swiftly between
them when browsing databases. For example, the asr.convex_hull Recipe creates the convex hull phase diagram
of a material using an ASR reference database of stable materials (originally from from the OQMD[28]), and creates a
table with links to all the materials on the phase diagram. Other examples, could be to link different defective versions
of the same crystalline material or different isomers of the same material/molecule.
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The links are defined in links.json files in the folders of the relevant materials. These files may be generated
manually or automatically using the Recipe asr.database.treelinks. When collecting the database, ASR reads
the links.json file for each folder and stores the information in the Data dictionary of the corresponding row.
The Recipe asr.database.crosslinks then creates links between rows of the collected database and rows of other
databases that are given as input to the Recipe. When generating the web panels, ASR uses this information to generate
hyperlinks in HTML format and present them in the web application for each material.

6. High-throughput example: The C2DB
In this section we present an example of what can be accomplished by the ASR in the realm of data intensive high-

throughput applications, showcase some examples of ASR-generated web panels, and discuss two specific Recipe
implementations.

Historically, the ASR evolved in a symbiotic relationship with the Computational 2D Materials Database (C2DB)
— an extensive database project organising various properties of more than 4000 two-dimensional (2D) materials[32,
48].

The C2DB distinguishes itself from existing computational databases of bulk[28, 29, 30] and low-dimensional[50,
15, 51] materials by the large number of physical properties available. These include convex hull diagrams, stiff-
ness tensors, phonons (at high-symmetry points), projected density of states, electronic band structures with spin–
orbit effects, effective masses, band topology indices, work functions, Fermi surfaces, plasma frequencies, magnetic
anisotropies, magnetic exchange couplings, Bader charges, Born charges, infrared polarisabilities, optical absorp-
tion spectra, Raman spectra, and second harmonics generation spectra. The use of beyond-DFT theories for excited
state properties (GW band structures and BSE absorption for selected materials) and Berry-phase techniques for band
topology and polarization quantities (spontaneous polarization, Born charges, piezoelectric tensors), are other unique
features of the C2DB.

Building the first version of C2DB without a fully functioning workflow framework was a long and painstaking
endeavour, but absolutely critical for the successful development of the ASR. Today, the entire C2DB project can
be generated by a single (MyQueue) Python workflow script comprising a sequence of ASR Recipe calls and sim-
ple Python code for controlling and directing the workflow via statements like “if band_gap > 0:”. Relying on
the MyQueue task scheduler (see Section 7.3), generation of the C2DB is accomplished by the single command “mq
workflow c2db_workflow.py tree/*/*/*/”, which will submit the C2DB workflow in folders matching the pat-
tern tree/*/*/*/. With the current C2DB workflow, this statement will launch up to 23 unique Instructions for each
of the 4047 materials amounting to a total of 59822 individual aiES calculations (some Recipes like phonon and stiff-
ness calculations launchmultiple aiES calculations). When the current workflow is runwith the GPAWcode, about 258
calculations are unsuccessful (most often due to convergence errors in the self-consistency DFT cycle) corresponding
to a success rate of 99.5%.

Apart from the data provenance control that ensures the documentation and reproducibility of the data, there are two
aspects of the ASR that are particularly crucial for making high-throughput computations work efficiently in practice.
First, the caching functionality ensures that Recipes which have already been performed are automatically skipped by
ASR (unless something in the input for a Recipe has changed since it was last executed). This means that only a single
workflow script needs to be maintained and submitted every time something has been changed, e.g., newmaterials have
been added, the workflow script has been updated, it has been decided to rerun certain tasks with new parameters, or a
Recipe has been modified. Such functionality is essential because running and maintaining high-throughput projects
inevitably requires that subsets of calculations are repeated at different points in time. Secondly, the carefully designed
and well tested Recipes minimise the number of unsuccessful calculations and the risk of human errors.
6.1. Recipe and web page examples

Below we present a few examples of output generated by the ASR-C2DB workflow (for a full impression we refer
the reader to the C2DB website).
6.1.1. Search page

Fig. 4 shows the C2DB search page, which consists of a search/filtering section followed by a list of the database
rows presented by a selected number of key–value pairs. Clicking one of the highlighted key names once (twice) will
sort the rows in increasing (decreasing) order of that key. Which keys should be shown by default can be customized,
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Figure 4: The search page of C2DB with the first few rows of the database shown below.
The default web page generated by ASR includes only the top most search field, but the
panel can be customized by additional fields and buttons for more convenient data filtering.

but the user can always add extra keys via the “Add column” button. By default, the search page generated by the ASR
App module will contain only the search field in the upper section, but additional fields or buttons may be added for
easy filtering according to the most relevant parameters.
6.1.2. “Summary” panel

Fig. 5 shows the C2DB web page for monolayer MoS2. All the web panels produced by the various Recipes of
the workflow are seen, but only the “Summary” panel is unfolded. This panel is designed to provide an overview
of the most basic properties of the material, and gathers data from the Result objects generated by the following
Recipes: asr.gs, asr.gw, asr.hse, asr.phonons, asr.magstate, asr.stiffness, asr.convex_hull, and
asr.structureinfo.

Fig. 5 also shows the information box of the “Effective masses” web panel. It contains a short explanation of the
effective mass tensor and how it is evaluated by the Recipe as well as a link to a relevant paper. The automatically
generated part shows that the panel contains data generated by the asr.emasses Recipe. The two fields at the top of
the page “Download raw data” and “Browse raw data” provide access to the entire data set comprised by all Result
objects of the specific material entry of the database.
6.1.3. “Band structure” Recipe

As another example, Fig. 6 shows the “Electronic band structure” panel for monolayer CrW3S8 as calculated and
presented by the Recipe asr.bandstructure. The band structure is calculated with the PBE xc-functional includ-
ing spin–orbit interactions. The out-of-plane spin projections of the states is shown by the color code. The main
computational steps carried out by this Recipe are:

• Perform a self-consistent ground state calculation (by calling the calculate Instruction of the ground state
Recipe asr.gs) to obtain a converged electron density.
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C2DB
The Computational 2D Materials Database

Figure 5: Screenshot of the web page for monolayer MoS2 from the C2DB project (only
the “Summary” panel is unfolded). The panel presents data from the Result objects gen-
erated by the following Recipes: asr.gs, asr.gw, asr.hse, asr.phonons, asr.magstate,
asr.stiffness, asr.convex_hull, asr.structureinfo.
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• Determine crystal symmetries and corresponding band path (uses ASE functionalities).
• Calculate the Kohn–Sham eigenvalues along the band path. For magnetic materials, this step calls the Recipe
asr.magnetic_anisotropy to obtain the magnetic easy axis for evaluating spin projections.

• Call the main Instruction of the ground state Recipe to get the Fermi level (in 3D) or the vacuum level (in <3D)
for use as zero-point energy for the band structure.

In addition to these computational steps, the main Instruction of the Recipe formats two figures to present the band
structure itself and the Brillouin zone with the band path and the positions of the valence band maximum (VBM)
and conduction band minimum (CBM). Note that the position of the VBM and CBM, as well as a number of other
properties like the band gap and band edge energies (not shown), are determined by the Recipe asr.gs, which is called
by asr.bandstructure.

Figure 6: Screenshot of the “Band structure” panel for monolayer CrW3S8 from the C2DB
project. The web panel contains data computed by the asr.bandstructure Recipe.

6.1.4. “Effective masses” Recipe
Fig. 7 shows a screenshot of the “Effectivemasses” panel formonolayer CrW3S8 generated by the Recipe asr.emasses.The effective mass tensor is calculated with the PBE xc-functional including spin–orbit interactions. The color code

represents the spin projections along the z-axis. In addition to the effective masses themselves, the Recipe evaluates
a “band parabolicity” parameter defined as the mean absolute relative error (MARE) between the parabolic fit and
the true bands in an energy range of 25 meV. The main computational steps carried out by this Recipe involve three
subsequent k-point grid refinements; specifically:

• Perform a self-consistent ground state calculation on a uniform k-point grid (by calling the calculate Instruc-
tion of the Recipe asr.gs) to obtain a converged electron density as well as Kohn–Sham band energies.

• Locate the preliminary positions of the VBM and CBM and calculate band energies on a higher-density k-point
grid around the VBM and CBM to locate the VBM and CBM positions with higher accuracy.

• Define final high-density k-point grids in the vicinity of the VBM and CBM points, and calculate band energies.
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• Locate VBM and CBM and fit bands by second-order polynomial using band energies in an energy range of 1
meV from the band extremum.

• Calculate band structures for the web panel and evaluate the “parabolicity parameter”.
It should be noted that even though effective mass calculations appear to be a simple task, it is surprisingly tricky to
design a scheme that performs efficiently, robustly, and accurately across all types of band structures including flat
bands, highly dispersive bands, highly anisotropic bands, and bands exhibiting complex spin–orbit effects like Rashba
splittings.
6.1.5. General comments

In contrast to the “Summary” panel, which has been customized for the C2DBproject (that is, theweb panel sections
of the relevant Recipes have been appropriately adjusted), the “Electronic band structure” and “Effectivemasses” panels
are the default web panels produced by the asr.bandstructure and asr.emasses Recipes, respectively.

The examples given here concern two-dimensional (2D) materials. However, the Recipes asr.bandstructure
and asr.emasses (like all other Recipes of the current ASR library) apply also to 1D and 3D materials, as well as
0D where it is meaningful. As mentioned in Section 3.6, this kind of generality should always be strived for when
designing Recipes. Achieving this may be straightforward or more involved depending on the Recipe. The Recipe for
the stiffness tensor represents an easy case, where the dimensionality merely dictates the number of axes along which
the material must be strained. The Recipe for the band structure is more involved in this regard, as the determination
of the band path requires separate treatments in 2D and 3D as does the determination of the spin projection axis (in
2D the out-of-plane direction is a natural choice while in 3D the magnetic easy axis is more appropriate).

Figure 7: Screenshot of the “Effective masses” panel for monolayer CrW3S8 from the C2DB
project. The panel contains data computed by the asr.emasses Recipe.
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7. User interfaces
The ASR can be used via four different interfaces, c.f. Fig. 1: A command line interface (CLI), a Python interface,

a task scheduling front-end, and an app-based interface. Below we describe each interface in more detail.
7.1. The CLI

The CLI provides convenient commands for easy interaction with ASR via the cache and run subcommands.
The cache subcommand allows inspection of the Records stored in the cache, in particular their Result data. For
example, $ asr cache ls name=asr.gs will list all Records produced by the “ground state” Recipe. The run
subcommand can be used to execute Recipes directly from the command line. For example, $ asr run asr.gs will
run the ground state Recipe.
7.2. Python interface

The Python scripting interface allows inspection of Records and execution of Recipes directly from Python. This
makes it possible to implement more complex logic and integrate directly with ASE and any other tools in the user’s
Python toolkit.
7.3. MyQueue interface

For high-throughput computations, ASR can be used in combination with a workflow manager that can handle the
interaction with the scheduler of the supercomputer, such as Fireworks[40] or MyQueue[47]. The latter is a personal,
decentralized, and lightweight front-end for schedulers (currently supporting SLURM, PBS, and LSF), which has been
co-designed with ASR. MyQueue has a command line interface, which allows for submission of thousands of jobs in
one command and provides easy-to-use tools for generating an overview of the status of jobs (‘done’, ‘queued’, ‘failed’
etc.). It also has a Python interface that can be used to define workflows. A Python script defines a dependency tree
of tasks that MyQueue will submit without user involvement. The dependencies take the form: “if task X is done then
submit task Y”. MyQueue works directly with folders and files, which makes it transparent and easy to use. Together
ASR and MyQueue provide a powerful and extremely flexible toolkit for high-throughput materials computations.

Individual Instructions of the Recipes may be defined as separate MyQueue tasks, such that computational re-
sources can be specifically dedicated each Instruction ensuring a flexible and efficient execution of any workflow. It
is, however, not a requirement to specify resources on a per Instruction basis, in which case the resources specified for
the main Instruction will apply to all Instructions of the Recipe.
7.4. App interface

The App interface is a web-based read-only interface that allows the user to present and inspect the data stored in
an ASE database on a local or public network. Distributing the data on a local network is convenient for larger projects
and/or projects involving several users, as it allows for easy sharing and monitoring of the data as the project evolves.
Once a project is finalized, the App may be used as a platform to present the data to the world via web pages. The data
presentation used by the App is defined in the Result object of the Recipes.

8. Data maintenance
It sometimes happens that a Recipe, or one of its Instructions, has to be updated, e.g. because a bug has been

detected or it has been found appropriate to store additional metadata. Such updates may imply that previously gen-
erated Records are no longer consistent with the current implementation of the Recipe. Depending on the nature of
the change made to the Recipe, it may be possible to update the Record objects without rerunning the Recipe (data
migration) or it may be necessary to rerun the entire Recipe or some of its Instructions (data regeneration).

To support the migration of data, ASR implements a simple versioning system for Instructions. An Instruction is
associated with a integer version number which is stored in the Record and identifies the version of the Instruction at
the time of creation. When an Instruction is changed, its version number may be increased by the developer. Since the
caching layer matches the current Instruction version number against Records in the cache (see Section 3.3), older
Records would no longer yield cache hits and are then said to be invalidated.

To facilitate the migration of invalidated Records, it is possible to specify Migrations that can be associated with
an Instruction and thereby provide a way to bring old Records up to date. In practice, a Migration bundles a Record
transformation function, a unique migration ID and a human readable description of the effect of the migration, see
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Fig. 8. In general, a Record transformation function induces a change to a Record. For example, this could be to
convert a Record of version n to a later version n + 1 without rerunning the Instruction, but in general the effect of
the transformation could be anything. Use of transformation functions is typically possible when the update involves
changes to metadata and/or data restructuring while the actual result of the Instruction is unchanged.

When a Migration is applied to a Record, a Revision object is produced. A Revision contains a randomly
generated UID, the UID of the applied Migration, an explanatory description of the changes made to the Record,
and an automatically generated list of the Record entries that were changed, added or deleted. The auto-generated list
of changes is constructed by comparing the Record returned by the transformation function to the input Record.

Upon migration of a Record, a revision history is updated by the latest Revision and stored in the migrated
Record. The revision history can be inspected by users to learn which revisions, if any, have previously been applied
to a given Record.

A Selector is used to identify the Records to be migrated, e.g. based on the Instruction name and version
number. The Selector is bundled together with a Migration into a MigrationSelector, which can determine
whether a particular Record matches the selection criteria of the Selector. To migrate a Record, ASR searches
through all Recipes to collect their MigrationSelectors (if they have any) and apply them to the Record to find a
“migration strategy”, i.e., which Migrations to be applied and in which order. The migration strategy is then encoded
in a MigrationStrategy, which couples a particular Record to an ordered list of Migrations. The particular
MigrationStrategy can then be applied to the Cache to execute the migration of the associated Record.

Selector

MigrationSelector

Migration

Transformation fct.

Description

Migration uid=142

MigrationStrategy

…
Record

Instruction = X
version = 3

Record
Instruction = Y
version = 3

Record
Instruction = Z
version = 1

Record
Instruction = Z
version = 3

For all Records in cache:
Apply Selectors and construct 
MigrationStrategy

Apply Migrations. 
Add migrated Record to cache.
Update revision history

Migration uid=253

Record
Instruction = Z
version = 1

Recipe library

uid

Collect all 
MigrationSelectors

Figure 8: To support data maintenance, ASR provides migration tools for bringing Records
up-to-date with the latest version of the Instructions that produced them thereby avoiding
recalculations whenever possible. The ASR migration procedure consists of the main
steps: (1) Collect all MigrationSelectors from all available Instructions. (2) Select
the migratable Records of the cache. (3) Determine a migration strategy (an ordered
list of Migrations) for each migratable Record. (4) Apply transformation functions to
migrate the Records and add them to the cache. (5) Update the revision history by a
Revision object that documents the effect of the migration.

ASR provides a simple CLI, via asr cache migrate, to analyse existing Records in the cache, and identify
migratable Records.

Whenever the asr version used in a given project is upgraded, a project participant should identify migratable
Records, migrate them and then rerun the project workflow. Up-to-date Records will then be taken directly from
the cache, whereas the Instructions with invalidated Records and no associated Migration, i.e. Records that the
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developer cannot migrate directly to the newest version, will be rerun.
In order to minimize the computational cost of bringing data up-to-date with ASR, developers are strongly advised

to supply Migrations with their Recipe updates whenever possible.
To provide the best conditions for the long term deployment of ASR-generated data, the asr version of important

projects should be upgraded regularly and the project workflow rerun. Obviously, this action may induce changes in
the data. Whether this is acceptable or not is ultimately a strategic decision. However, for dynamic data projects, a
regular version upgrade not only ensures that the data is of the highest quality, it also makes it easier for other parties
to deploy the data because existing results (Records) can be reused directly with the newest version of ASR without
having to rerun Recipes to bring the data up-to-date.

9. Data provenance
Simply stated, data provenance is the documentation of the circumstances under which a piece of data came into

existence. This includes how the data originally was constructed, how the data has changed over time (also known as
data-lineage) and a documentation of relevant system specifications such as architecture, operating system, important
system packages, executables etc. If data provenance is handled perfectly, then data will in principle be reproducible,
i.e. given access to exactly the same systems and software, any piece of data can be reproduced. In a scientific context,
where reproducibility is key, data provenance is naturally very important.

In ASR, the basic unit of data is the Record object, which connects the result of an Instruction with various
pieces of contextual metadata, see Section 3.3. Taken together, the metadata tell the story of how the original Record
came into existence (Instruction name/version and input arguments), which other Records were implicitly used for
the construction of this Record (Dependencies), what external package versions were used, and how the Record
has transformed over time (Revision history). For simplicity, since it would be outside the scope of ASR, system
information is not stored with the Record, which, in our experience, is not practically relevant for the purposes of
ASR. As such, we characterize ASR as practically, but not perfectly, data provenant.

10. Documentation
ASR itself is documented on Read the Docs. The data is documented through the Record and Result objects, see

previous Section on data provenance.

11. Technical specifications
Some technical specifications are listed in Table 2. ASR can be installed via pip using the command pip install

asr.
ASR requires or is normally used with the following software:
• Python libraries: ASE, numpy, matplotlib, plotly, flask, click
• Computational and workflow software: GPAW or other ASE codes, MyQueue (SLURM/PBS/LSF)
• Optional extras: spglib, phonopy, and pymatgen (for Recipes); jinja, mysql or other ASE database backends

For community support see https://asr.readthedocs.io/en/latest/src/contact.html.

12. Summary and outlook
This article has introduced The Atomic Simulation Recipes (ASR) as an open source Python framework for devel-

oping materials simulation workflows and managing the data they produce.
To facilitate the transition to a paradigm of data-intensive science, ASR was designed to support the development

of materials simulation workflows that operate in accordance with the FAIR data principles, by providing tools and
concepts that are general enough that they do not restrict the user whilst being concrete enough tomake a real difference.
The ASR achieves this through the notion of a Recipe: a general Python script that performs a well defined simulation
task and is wrapped in a caching layer that logs all relevant metadata without involving the user. This construction
places essentially no restrictions on the developer’s freedom to design and control the workflow, but resolves the critical
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and complex issue of keeping track of the data provenance. We stress that the core of ASR, i.e. the Recipe concept
and the caching system, is fully simulation code independent. In particular, it is not tied to materials simulations and
could potentially be useful in other areas of computational science.

Beyond the built-in data documentation, there are many benefits of using standardized, well tested, and well doc-
umented Recipes. For example, it saves time and promotes a more sustainable scripting culture by reducing the need
for individual researchers to write and maintain their own personal scripts (which can be hard for other to read and
are often lost when the developer leaves the group). Furthermore, it reduces the risk of human errors and lowers the
barrier for researchers to undertake simulation tasks with which they have little prior experience.

The fact that Recipes are independent units with own data provenance control implies that they can be freely
combined to create advanced workflows using Python scripting for maximal flexibility. Such workflows can be exe-
cuted on supercomputers using a workflow management software that supports a Python interface. To this end, we
have developed the MyQueue[47] task manager that works as a front-end to the most common schedulers (currently
SLURM, PBS, and LSF). While MyQueue will resubmit jobs that have timed out or crashed due to lack of memory,
code-related failures must be handled manually. In the future, ASR should integrate more closely with MyQueue to
permit that errors from the simulation codes are automatically analysed and reacted upon. Along the same lines, an
automated estimation of the HPC resources (time/memory/nodes) required by individual tasks could limit the number
of failed jobs and improve the utilization of resources.

The current Recipe library already covers a wide range of materials simulation tasks and more are continuously
being added. Of special importance are Recipes for advanced beyond-DFT calculations where the benefits in terms of
a lowered user barrier, improved data quality, and increased utilization of computing resources, are particularly large.
The Recipe concept should also be advantageous for implementation of machine learning methods that could integrate
with ASR databases and “standard” Recipes to make for more intelligent and computationally efficient workflows.

The ASR makes extensive use of the Atomic Simulation Environment (ASE) as a toolkit to process atomistic
calculations. In particular, ASE is used as a front-end for ASR to communicate with external simulation codes. This
has the clear advantage that ASR can become decoupled from the simulation codes. This decoupling is currently not
in place, and the majority of the existing Recipe implementations contain code parts that are specific to the GPAW
electronic structure code. To make ASR fully simulation code-independent, the ASE Calculator interfaces must be
further generalized. This includes extensions of the interfaces to access outputs of calculations as well as a systematic
mechanism to control multi-step tasks. The adaptation of this interface to multiple codes will eventually require a
community effort that we hope many code developers will take part in. Until then, Recipes must to some extent be
code specific.
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Table 1
List of Recipes currently implemented in the ASR library. Most of the Recipes depend explicitly on the GPAW electronic
structure code. The Recipes are grouped under thematic headings and listed in alphabetic order.

Recipe name Description

Atomic structure
asr.database.duplicates Remove duplicate structures from a database
asr.database.rmsd Root mean square distance between structures
asr.dimensionality Dimensionality of covalently bonded substructures of a material
asr.push Push atoms along specific phonon mode
asr.relax Relax atomic structure
asr.setup.defects Generate native point defects
asr.setup.displacements Generate structures with a single displaced atom
asr.setup.magnetize Initialize atomic magnetic moments
asr.setup.reduce Reduce supercell to primitive cell
asr.setup.symmetrize Symmetrize an atomic structure
asr.structureinfo Extract structural information

Thermodynamic properties
asr.chc Constrained convex hull stability analysis
asr.convex_hull Convex hull stability analysis
asr.defectformation Formation energy of neutral point defect
asr.fere Define elemental reference energies

Mechanical properties
asr.phonopy Phonon band structure and dynamical stability
asr.piezoelectrictensor Piezoelectric tensor
asr.stiffness Stiffness tensor

Electronic properties
asr.bader Bader charge analysis
asr.bandstructure Kohn-Sham band structure
asr.berry Various band topology invariants
asr.borncharges Born effective charge tensor
asr.deformationpotentials Deformation potentials (only for 2D)
asr.dos Density of states
asr.emasses Effective masses
asr.fermisurface Fermi surface
asr.formalpolarization Formal polarization phase
asr.gs Electronic ground state
asr.gw G0W0 quasiparticle band structure
asr.hse HSE06 band structure
asr.pdos Orbital projected density of states
asr.projected_bandstructure Orbital projected Kohn–Sham band structure

Magnetic properties
asr.exchange Magnetic exchange coupling
asr.magnetic_anisotropy Magnetic anisotropy
asr.magstate Determine magnetic state

Optical properties
asr.bse Optical absorption from Bethe–Salpeter Equation (BSE)
asr.infraredpolarizability Infrared polarizability (caused by vibrations)
asr.plasmafrequency Plasma frequency (from intraband transitions)
asr.polarizability Optical polarizability (caused by electrons)
asr.raman Raman spectrum (first-order)
asr.shg Second harmonics generation
asr.shift Shift current
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Atomic Simulation Recipes — a Python framework and library for automated workflows

Source code https://gitlab.com/asr-dev/asr
Releases https://pypi.org/project/asr/
License GNU GPLv3 or newer (free software)
Documentation https://asr.readthedocs.io/en/latest/

Table 2
Technical specifications
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A WLDA
A.1 Optimizations
A.1.1 WLDA
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Figure A.1: The normalizedmean absolute error (NMAE, defined in main text) between
the WLDA functional using the exponential weight function for various c1 values. The
right plot shows the error averaged over all rs. The vertical dashed, red lines shown
the location of the minimum of the averaged errors in all cases. We see that the optimal
value of the average error is close to the minima in all cases. The optimal c1 value is
7.14286 with NMAE 0.089473.
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Figure A.2: The normalizedmean absolute error (NMAE, defined in main text) between
the WLDA functional using the Gaussian weight function for various c1 values. See fig.
A.1 for definitions. The optimal c1 value is 3.02419 with NMAE 0.128982.
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Figure A.3: The normalizedmean absolute error (NMAE, defined in main text) between
the WLDA functional using the Lorentzian weight function for various c1 values. See
fig. A.1 for definitions. The optimal c1 value is 5.5556 with NMAE 0.058134.

A.1.2 WLDAx
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Figure A.4: The normalizedmean absolute error (NMAE, defined in main text) between
the WLDAx functional using the exponential weight function for various c1 values. See
fig. A.1 for definitions. The optimal c1 value is 6.09756 with NMAE 0.0725738.
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Figure A.5: The normalizedmean absolute error (NMAE, defined in main text) between
the WLDAx functional using the Gaussian weight function for various c1 values. See
fig. A.1 for definitions. The optimal c1 value is 2.60417 with NMAE 0.10648.
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Figure A.6: The normalizedmean absolute error (NMAE, defined in main text) between
the WLDAx functional using the Lorentzian weight function for various c1 values. See
fig. A.1 for definitions. The optimal c1 value is 4.6875 with NMAE 0.07015287.
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A.1.3 rWLDA
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Figure A.7: The normalizedmean absolute error (NMAE, defined in main text) between
the rWLDA functional using the exponential weight function for various c1 values. See
fig. A.1 for definitions. The optimal c1 value is 5.0 with NMAE 0.104596.
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Figure A.8: The normalizedmean absolute error (NMAE, defined in main text) between
the rWLDA functional using the Gaussian weight function for various c1 values. See
fig. A.1 for definitions. The optimal c1 value is 2.08333 with NMAE 0.081950.
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Figure A.9: The normalizedmean absolute error (NMAE, defined in main text) between
the rWLDA functional using the Lorentzian weight function for various c1 values. See
fig. A.1 for definitions. The optimal c1 value is 4.28571 with NMAE 0.157958.

A.1.4 rWLDAx

0.0 0.1 0.2 0.3
1/c1

0.08

0.10

0.12

0.14

0.16

g c
(q

) n
or

m
al

ize
d 

M
AE

rs = 1.0

0.0 0.1 0.2 0.3
1/c1

0.12

0.14

0.16

0.18

0.20

0.22

g c
(q

) n
or

m
al

ize
d 

M
AE

rs = 2.0

0.0 0.1 0.2 0.3
1/c1

0.20

0.25

0.30

g c
(q

) n
or

m
al

ize
d 

M
AE

rs = 5.0

0.0 0.1 0.2 0.3
1/c1

0.3

0.4

0.5

g c
(q

) n
or

m
al

ize
d 

M
AE

rs = 10.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
1/c1

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

g c
(q

) 
no

rm
al

ize
d 

M
AE

Averaged over rs

Figure A.10: The normalized mean absolute error (NMAE, defined in main text) be
tween the rWLDAx functional using the exponential weight function for various c1
values. See fig. A.1 for definitions. The optimal c1 value is 5.43478 with NMAE
0.1560827.
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Figure A.11: The normalized mean absolute error (NMAE, defined in main text) be
tween the rWLDAx functional using the Gaussian weight function for various c1 values.
See fig. A.1 for definitions. The optimal c1 value is 2.18023 with NMAE 0.131995.
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Figure A.12: The normalized mean absolute error (NMAE, defined in main text) be
tween the rWLDAx functional using the Lorentzian weight function for various c1 values.
See fig. A.1 for definitions. The optimal c1 value is 5.17241 with NMAE 0.202066.
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A.1.5 fWLDA
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Figure A.13: The normalized mean absolute error (NMAE, defined in main text) be
tween the fWLDA functional using the exponential weight function for various c1 values.
See fig. A.1 for definitions. The optimal c1 value is 5.09393 with NMAE 0.035367.
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Figure A.14: The normalized mean absolute error (NMAE, defined in main text) be
tween the fWLDA functional using the Gaussian weight function for various c1 values.
See fig. A.1 for definitions. The optimal c1 value is 2.08333 with NMAE 0.081950.
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Figure A.15: The normalized mean absolute error (NMAE, defined in main text) be
tween the fWLDA functional using the Lorentzian weight function for various c1 values.
See fig. A.1 for definitions. The optimal c1 value is 3.48837 with NMAE 0.046904.
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Figure A.16: The normalized mean absolute error (NMAE, defined in main text) be
tween the fWLDAx functional using the exponential weight function for various c1
values. See fig. A.1 for definitions. The optimal c1 value is 4.09836 with NMAE
0.0520419.
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Figure A.17: The normalized mean absolute error (NMAE, defined in main text) be
tween the fWLDAx functional using the Gaussian weight function for various c1 values.
See fig. A.1 for definitions. The optimal c1 value is 1.83824 with NMAE 0.0439024.
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Figure A.18: The normalized mean absolute error (NMAE, defined in main text) be
tween the fWLDAx functional using the Lorentzian weight function for various c1 values.
See fig. A.1 for definitions. The optimal c1 value is 2.77778 with NMAE 0.0867764.
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A.2 Allelectron planewave convergence
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Figure A.19: Planewave convergence of WLDA for various small molecules using the
allelectron density.
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A.3 Atomization Results  All Variants

ME MAE MARE
LDA 84.18 84.19 0.1984
LDAx 20.62 36.41 0.1065
PBE 26.23 26.87 0.08238
WLDAx@Lor. 261 (329.7) 261 (329.7) 0.5688 (0.7163)
WLDA@Lor. 207.9 (257.7) 207.9 (257.7) 0.4551 (0.5613)
WLDAx@Exp. 45.15 (45.22) 45.4 (45.51) 0.1107 (0.1089)
WLDA@Exp. 60.05 (57.89) 60.05 (57.89) 0.1427 (0.1374)
WLDAx@Gau. 54.53 (49.95) 54.53 (49.95) 0.1328 (0.1228)
WLDA@Gau. 68.18 (63.97) 68.18 (63.97) 0.1618 (0.1531)
rWLDAx@Exp. 21.95 (28.38) 26.2 (32.84) 0.07088 (0.08081)
rWLDA@Exp. 21.32 (29.85) 26.54 (35.28) 0.07085 (0.08454)
rWLDAx@Gau. 26.8 (24.32) 28.04 (25.71) 0.07489 (0.06813)
rWLDA@Gau. 21.9 (20.74) 24.16 (23.2) 0.06555 (0.06098)
fWLDAx@Exp. 45 (63.52) 48.81 (67.32) 0.1144 (0.1473)
fWLDA@Exp. 50.98 (55.79) 51.35 (56.2) 0.1205 (0.1277)
fWLDAx@Gau. 35.87 (38.77) 37.3 (40.33) 0.09261 (0.0956)
fWLDA@Gau. 53.02 (51.37) 53.02 (51.37) 0.127 (0.1222)

Table A.1: Subset of G2/97 atomization energies (142 molecules) in kcal / mol. The
values are calculated using the optimal c1 parameters for each functional variant, see
table 3.2. Results for spinneutral Hartree is shown in parenthesis and other results
are calculated with Hartree as exchange. This table includes all variants of WLDA.
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B Bilayer Screening
B.1 Indirect to Direct Materials
We here show the full list of monolayers that have a energy above the convex hull of
less than 50 meV and where the monolayer has an indirect gap and all bilayers have a
direct gap. The monolayers are listed below with their C2DB [6] unique identifier (uid)
through which they can be inspected at https://cmrdb.fysik.dtu.dk/c2db/.

1. As4ff6eb167410f

2. Bi2Br62a1d71d82f8a

3. Bi2I6433fccc74b5d

4. Ga2S26f3b2e422ac9

5. Sb2Te33e3e0acdba55

6. PbI282db29775962

7. SrCl267727fec854b

8. Zr2Br4112846d9ccdd

9. BiBrSede5756e4fbfa

10. BiBrTe304bc6a92d82

11. BiClSea80866a2c6b4

12. BiISe70cbc0e44d36

13. Br2Ga2O2f06d0758fdea

14. Br2Ir2S2c0fadae216ee

15. BrIV2da05db34435

16. Br2O2Sc27a1e1bf3f7d9

17. Br2O2Tl2c3c952d61f44

18. BrSbTe18e62ba75259

19. Cl2Ga2O2d5722b10ff79

20. Cl2Ir2S24064ccdd7b40

21. ClSbSe0c0fbdaf8f4a

22. ClSbTeda5fd2bb47af

23. Cl2S2Sc28dd7b2e2ca68

24. PbSb2Te48e5a0876861b
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B.2 High Effective Mass Changes
Here we show the list of monolayers where one or more pairs of stackings are easily
switchable (dipole change greater than 10−13 C/m), have an effective mass change
of greater than 100% for at least one mass, and where the thermodynamic stability of
the material is judged to be very high (energy above convex hull of less than 50 meV).

1. Ag2Br2Te4ce52fbc99f30

2. Ag2Cl2Se455e92c5d7b58

3. SeBi2S25db44a94f3a6

4. Ag2Br2Se4c7e3d505588c

5. FeGa2S4362cc8f15083

6. BrClV878148656c6a

7. Ag2Cl2Te4d2ed9275e89c

8. Pt2S4216f8f2dd8c1

9. BiBrS49b7be14f786

B.3 Large Switchable Dipole Moment
Here we list the 28 monolayers that have at least one pair of stackings with a switch
able dipole moment greater than 10−12 C/m and where the monolayers are highly
thermodynamically stable.

1. SrCl267727fec854b

2. PtO26f43cd15097d

3. Ag2Br2Se4c7e3d505588c

4. HfSe27a708c5759cf

5. Cl2Rh2Te2fb4fb079660b

6. Au2Br2Te45e64ed168c9e

7. CaCl2643810e6bb76

8. MoSeTe42eb12e7b656

9. MoSe2f61b14d398c7

10. ZrSe27dc2a0a57b42

11. Ag2Br2Te4ce52fbc99f30

12. Ag2Cl2Se455e92c5d7b58

13. MoSSede7ac5fc6945

14. BN4a5edc763604
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15. SrBr2a17f01139eff

16. PbCl2ec34fbc566ef

17. MoTe238a53176109a

18. WSe21cfbe6183886

19. FeO2e25173381887

20. NiI20e87e38a2099

21. Fe2Cl6a7111f341a6a

22. BaI2080cc67ae6c9

23. WTe23c87365bc48c

24. SSeW001e03f2c095

25. Ag2Cl2Te4d2ed9275e89c

26. Ag2I2Te427e83673114d

27. SeTeW6e2a4c6f4f57

28. MoS2b3b4685fb6e1

B.4 Switchable Magnetic Order
The two materials mentioned in the main text that are easily switchable (dipole change
greater than 10−13 C/m), and where the magnetic order changes between two stack
ings.

1. BrClV878148656c6a

2. NiI20e87e38a2099
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