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I have told my two daughters that I am writing a book. A book about
the small spheres that I have inside my computer. I want too see, if I can
build something which is good at controlling electrical current.

”Mor! Leger du nu med dine atomer igen?” - Lærke Jelver Mathiesen
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Abstract
The evolution of field effect transistors (FETs) has enabled the digital revolution
which shapes the everyday lives of people all over the world. Currently, new
materials and designs are investigated in pursuit of continuing the improvement
of device performance and efficiency.

This thesis investigates two-dimensional (2D) materials for future transistor
designs. The research has mainly focused on the transition metal dichalcogenide
(TMD) heterophase FET design which uses the metallic phase of the TMD as
the source and drain electrodes and the semiconducting phase as the channel.
Density functional theory and the non-equilibrium Green’s function method are
used to investigate the charge transfer at interfaces between these 2D materials
and a method for predicting stable interfaces between two crystals has been
developed.

The Schottky barrier between contact and channel in a transistor is per-
ceived as an intrinsic property which predicts how well the device will perform.
In this thesis, ab-initio calculations on phase-engineered MoTe2 show that for
these 2D Schottky contacts, this is not the case. Interface states and standing
waves due to quantum confinement mediate tunneling current and renders the
Schottky barrier height a poor descriptor of device performance. The results
also demonstrate that the electrostatic response of the Schottky barrier can’t be
predicted by the conventional models which means the Schottky barrier found
from the activation energy method isn’t well-defined either.

The relevance of using a heterophase MoTe2 design for next-generation tran-
sistors is assessed by reviewing the available literature and by comparing with
the ab-initio calculations and the performance goals of a 2025 device as defined
by the International Roadmap for Devices and Systems.1 The comparison fo-
cuses on the ON-current, sub-threshold slope, and power supply voltage and
concludes that the heterophase design has the potential to perform according
to the goals of the roadmap if a high-κ dielectric is used as the gate oxide. The
largest obstacle for this design to succeed is the lack of a scalable method for
doping of 2D semiconductors. If such a method is developed, the heterophase
TMD transistors seem to be a viable option for future transistor designs.



Resumé
Evolutionen af felteffekttransistorer (FET’er) har muliggjort den digitale revo-
lution, som former hverdagen for mennesker over hele verden. I dag undersøges
nye materialer og design muligheder, for at muliggøre den fortsatte optimerin-
gen af transistorernes ydeevne of effektivitet.

Denne afhandling undersøger todimensionelle (2D) materialer til fremti-
dens transistordesign. Forskningen har hovedsageligt fokuseret på transitions-
metal dichalkogen (TMD) heterofase transistordesignet, hvor den metalliske
fase af TMD’en benyttes som elektroder, og den halvledende fase bruges som
strømkanal. Tæthedsfunktionalteori og Greens funktion metoden benyttes, til
at undersøge ladningsoverførslen ved disse 2D grænseflader, og en metode, der
kan forudsige stabile grænseflader mellem to krystaller, er blevet udviklet.

Schottky barrieren mellem elektroden og strømkanalen i en transistor be-
tragtes som en intrinsisk egenskab, der beskriver ydeevnen for enheden. I denne
afhandling demonstrerer ab-initio beregninger på fasekontrolleret MoTe2, at
det ikke er tilfældet for disse 2D Schottky kontakter. Grænsefladetilstande og
stående bølger grundet det begrænsende potentiale betyder, at Schottky barri-
eren bliver et dårligt mål for ydeevnen. Resultaterne demonstrer også, at det
elektrostatiske respons af Schottky barrieren ikke kan forudsiges med de kon-
ventionelle modeller, hvilket betyder at en Schottky barriere fundet ved hjælp
af aktiveringsenergimetoden, heller ikke er veldefineret.

Transistordesignet baseret på fasekontrolleret MoTe2 vurderes ved at gen-
nemgå den eksisterende litteratur og sammenligne den med ab-initio bereg-
ningerne og målsætningen for ydevenen af en 2025 transistor sat af ’Interna-
tional Roadmap for Devices and Systems’.1 Sammenligningen fokuserer på out-
put strømmen, responset på gate spændingen og strømforsyningsspændingen
og konkluderer, at det fasekontrollerede design viser potentiale til at kunne
levere i overensstemmelse med målsætningen. Den største udfordring, for at
få dette design til at blive en succes, er at der ikke findes en dopingmetode til
2D halvledere, som egner sig til opskalering. De fasekontrollerede transistorer
kan blive en mulig løsning til fremtidens transistordesign, hvis sådan en metode
bliver udviklet.
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CHAPTER 1
Introduction

This thesis uses ab-initio methods to describe the charge transfer at atomic-
scale interfaces specializing on interfaces between 2D materials. A general
method for predicting interfaces between crystals is developed and the
theory of the Schottky barrier is extended to 2D metal-semiconductor in-
terfaces. Finally, the 2D transition metal dichalcogenide heterophase field
effect transistor is modelled, analyzed, and evaluated as a future transistor
design.

1.1 The Digital Revolution
When I put my children to bed at night, they sometimes ask me to tell a
story from when I was a child. Then, I tell them something like ’when I
was a child, the phone was connected to the wall by a wire and the only
thing it could do was to phone other people’ or ’when I was a child, the
only cartoons I would watch, was the ones broadcasted on the television.
If you missed the show, you had to wait at least a day before you got
the chance again’. I am only 31 years old but the available computational
power, data storage, and bandwidth has developed with unprecedented
speed not only within my life span but ever since the beginning around
the Second World War. Computer and information technology has been
one of the fastest developing technologies in history. When I was a child,
there was airplanes, cars, synthetic fertilizer, and nuclear power plants
but there was no laptops, no smartphones, and absolutely no Netflix.

As a materials scientist, I will postulate that one of the main reasons
that this development has been possible is simply that we have an abun-
dance of silicon on Earth. 27.7% of the mass of Earths crust is made of
silicon which makes it the second most abundant element of Earth, second
only to oxygen. Silicon has been an almost supernatural material in terms
of the applicability within electronics and optics. Due to the large impact
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of silicon, the late 20th and beginning of the 21st century are being re-
ferred to as the ’Silicon Age’ just as previous ages have been named from
the utilization of a new material such as the Stone Age and Bronze Age.

The digital revolution which have resulted from the development of
silicon technology shapes the everyday lives of people all around the world.
59% of the global population are active internet users and the majority
of these users access the internet through a mobile device.2 This global
information sharing represents equal opportunities to self-educate and to
contribute to the common pool of knowledge. The internet represents
freedom of speech in the extreme limit, for better and worse. The massive
amounts of information requires filtering to be of use and, in some cases,
not to be harmful.

As in the case of most groundbreaking technologies throughout the
history, also information technology can be used for ethically debatable
purposes. The surveillance of citizens is one of the most pronounced exam-
ples of this. Considering the speed at which things have progressed, it is
perhaps not surprising that humanity is struggling a bit to keep up. How-
ever, The benefits of the internet, hearing aids, pacemakers, autonomous
vehicles, and, by the way, atomic-scale modelling are in in my opinion
worth some struggling.

1.2 The Energy Crisis
The distribution of information and communication technology (ICT) has
revolutionized our way of living but it has not come for free. In 2018,
1% of the annual global energy consumption was estimated to be related
to ICT and by 2030, it is projected to be between 3 and 8%.3 The large
projected increase is primarily due to the energy demand of large data
centers.

The world population is growing and so is the global energy demand.
The energy hunger is still primarily being fed with energy from fossil
fuels which are polluting the air and contributing to the global warming.
According to the World Health Organization (WHO), 91% of the global
population live in places where the air pollution exceeds the recommended
values4 and the global warming is steadily increasing. The temperature
average had risen by 1 ◦C in 2017 compared to pre-industrial values and
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is increasing at a pace of around 0.2 ◦C per decade.5 The consequences
of a continuous warming are predicted to cause both warmer and more
extreme weather. Wild fires, drought, and tornadoes will make large areas,
which are inhabited today, uninhabitable.

The greatest challenge of our time, will be to provide enough energy for
the growing population on Earth. Even ignoring the fatal consequences of
global warming, we will simply run out of fuels, if we continue to use the
nonrenewable sources. It has been a great hope, that ICT will be part of
the solution to the energy crisis. ICT is based on electricity which makes
it easier to sustain by renewable energy sources. However, it is crucial that
the development within this sector focuses on energy efficiency. ICT can
only become part the solution if the production and utilization of ICT
devices becomes sustainable. It is therefore imperative that the energy
efficiency of these devices continues to increase.

1.3 The Transistor
The transistor is a key component in all modern technology and the im-
provement of the transistor is what has enabled the digital revolution

Figure 1.1: Moore’s law. Number of transistors which fit into a micropro-
cessor. Adapted from Ref. [6] and [7].
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together with the development of hard drives and optical fibers. It is
therefore also a key component in improving the sustainability of the ICT
sector. There is approximately 8 billion transistors in a smartphone8 and
it is estimated that a total of 13 sextillion (×1021) transistors where fab-
ricated between 1960 and 2008.9 Needless to say, any small improvement
in the energy efficiency of the transistor will make a huge difference in the
energy consumption of the ICT sector.

The first transistor was made in 1947 at Bell Laboratories and the first
metal-oxide-silicon field effect transistors (MOSFETs) were developed in
the 1960s. These types of transistors held the potential to be miniaturized
and mass-produced and from that point, the technology really took off. In
1965, previous CEO and co-founder of Intel, Gordon E. Moore, noticed
that the number of transistors per silicon chip had doubled every 18-24
months. He then postulated that this trend of a doubling every second
year would continue the next decade.10 It turned out that the trend would
hold the next five decades and the statement has since been glorified as
Moore’s law. Some argue that it is still holding, see Figure 1.1.7

The transistor design has been improved tremendously over the decades.
The commercial transistors have evolved from a planar transistor of a
few different materials to devices using the finFET and Gate-All-Around
(GAA) designs where each part and material of the device has been op-
timized. High-κ gate oxides, work function modulating gate metals, and
channels doped with implanted ions are all examples of such optimizations.
A simple sketch of a FET is shown on Figure 1.2. The main components

Figure 1.2: Sketch of a MOSFET showing the four main components, the
source (S), drain (D), and gate (G) electrodes, and the semiconducting
channel.
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are the source and drain electrode, the semiconducting channel, and the
gate electrode. An in-depths description of the transistor components and
operation is presented in Chapter 9.

The evolution was originally aimed primarily at down-scaling the de-
vices in order to improve the efficiency and computational power. The
correlation between these quantities is known as Dennard scaling which
predicts that each time the density of transistors double, the circuit be-
comes 40% faster while the power consumption stays the same, i.e. the
power pr. transistor is reduced by 50%. Dennard scaling held up until
around 2005-2010 when power began to be lost through tunneling pro-
cesses in the nano-scale devices. Today, the semiconductor industry has
entered the ’More than Moore’ era where the efficiency and computational
power of the transistors are attempted to be improved by tailoring the
transistors to specific applications and investigate alternative materials.

The new era has fueled a massive amount of research in different ma-
terials and designs for the transistors of the future. A natural branch of
these efforts has investigated semiconducting 2D transition metal dichalco-
genides (TMDs) as a substitute for the silicon channels. The 2D materials
do indeed offer the ultimate dimensional scaling by their layered structure
and could enable an increased efficiency through further down-scaling. In
contradiction to silicon, the TMDs retain good carrier mobilities down to
the single layer limit (thickness around 0.7 nm’s).

The greatest challenges related to utilizing the 2D TMDs in transis-
tors are that a method for controlled doping of the 2D semiconductors
isn’t yet developed and that the deposition of metal contacts directly on
the 2D material results in a large resistance. The heterophase TMD FET
design is an attempt to solve the second of these challenges. The design
utilizes that the TMDs can exhibit either metallic or semiconducting prop-
erties depending on the crystal phase and that phase transition techniques
can be applied to control the phase. The semiconducting channel is con-
tacted with the metallic phase which serves as source and drain electrodes.
The conventional metal contacts is then deposited on the metallic 1T- or
1T’-phase of the TMD rather than the semiconducting 2H-phase which
decrease the resistance.

The Schottky barrier is a quantity which can be used as an descriptor
of the conductance between a metal and semiconductor. The charge trans-
fer when the two materials, or in this case phases, are interfaced creates a
potential barrier at the semiconductor-metal contact. The potential bar-
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rier represents the minimal energy required for carriers to pass trough the
contact. This minimal energy is called the Schottky barrier height and is,
within this simple picture, directly correlated with the contact resistance.
In order to evaluate the heterophase FET design, previous studies have
investigated the Schottky barrier between the two TMD phases both by
measurements and ab-initio calculations. The most investigated material
was originally MoS2 but MoTe2 has been given great attention the last
few years and seems to be the best candidate so far.

In this thesis, the general methods needed to do ab-initio modelling
of atomic-scale interfaces are introduced and a method for predicting sta-
ble interfaces between two periodic crystals is developed. The electronic
properties of the 2D TMDs are presented and the properties of these ma-
terials, which are of importance in the context of the heterophase FET
design, are reviewed. The topological properties of T’-phase TMDs are
also presented and it is shown that the topological protection of the edge
states is broken at the edges which most commonly form the contacts to
the semiconducting phase.

The theory of the Schottky barrier is reviewed and transferred to a
2D contact and heterophase contacts between T’- and H-phase MoTe2 are
investigated using ab-initio calculations. Finally, a heterophase FET is
modelled and compared to the experiments in order to asses the perfor-
mance. The heterophase FETs have shown impressive results in some of
the newest experiments11,12 but the technology is still in it’s cradle. The
objective of the ab-initio modelling of the devices is to illuminate some of
the physical mechanisms behind the charge transfer in hope that this can
help to speed up the development of this new technology.

1.4 Outline
The structure of the thesis has been chosen such that four parts each
present a subject needed to understand the scientific results. The four
subjects are,

Part I: Ab-initio Modelling of Interfaces which introduces a set of
tools and methods that are necessary for doing ab-initio modelling
of interfaces. Chapter 2 introduces density functional theory and
the non-equilibrium Green’s function, and Chapter 3 describes a
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general method for finding the best orientation of two crystals when
combining them to an interface.

Part II: 2D Transistion Metal Dichalcoginides which introduces the
transition metal dichalcogenides (TMDs). Chapter 4 describes the
structural phases and related electronic properties, Chapter 5 de-
scribes the fabrication and doping methods for the semiconducting
TMDs, and Chapter 6 describes the phase transition between the
semiconducting and semi-metallic phase and the topological proper-
ties of the latter.

Part III: 2D Schottky Barrier which describes how the dimensional-
ity of the materials affects the electronic properties of a metal-semi-
conductor interface. Chapter 7 introduces the theory behind the
Schottky barrier and charge transport across metal-semiconductor
interfaces and Chapter 8 presents ab-initio calculations of the Schot-
tky barrier and charge transport properties of T’-H MoTe2 inter-
faces.

Part IV: Phase-engineered MoTe2 as a Next-generation Transistor
which describes field effect transistors (FETs) and how 2D materials
can be utilized in future FET designs. Chapter 9 introduces mod-
ern field effect transistors, Chapter 10 outlines the possibilities of
using 2D TMDs in FETs and reviews the progress of using phase-
engineered MoS2 or MoTe2, and Chapter 11 presents ab-initio cal-
culations on MoTe2 heterophase field effect transistors.



PART I

Ab-initio Modelling of
Interfaces
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This part of the thesis will introduce tools and methods which are
necessary for doing ab-initio modelling of interfaces. Ab-initio is a Latin
term which translates to ’from the beginning’. In the natural sciences, ab-
initio or ’first-principles’ methods refers to methods where the results are
based exclusively on the laws of nature and the only input is the funda-
mental physical constants. Within quantum chemistry, this means that
the results must be based on the solution to the many-body Schrödinger
equation.

Density functional theory (DFT) is an example of an ab-initio method
for obtaining the ground-state electronic structure of materials. In this
thesis, DFT is used to model interfaces and surfaces of crystalline 2D
materials. The objective is to investigate the prospects of using the 2D
transition metal dichalcogenides in field effect transistors and therefore to
model the charge transport across interfaces consisting of these materials.
DFT is an equilibrium method which cannot describe a system where a
current is running, however, this can be achieved by combining DFT with
the non-equilibrium Green’s function method.

The interface between two crystalline materials should preferably pre-
serve the periodicity of the two crystals. If this condition isn’t fulfilled,
the interface will be incommensurate and consequently unstable due to
dislocations and strain. A tool for matching two crystals, while minimiz-
ing the strain and area of the coincidence interface cell, is therefore a basic
requirement for modelling of interfaces. Besides evaluating the minimal
strain between two crystals, this method also predicts which surfaces of
the two crystals that are most likely to form a stable interface.

The following chapters are organized as follows,

Chapter 2 introduces density functional theory and the non-equilibrium
Green’s function method and explains how these have been applied.

Chapter 3 describes a general method for obtaining the possible matches
between two periodic crystals such that they can be combined to
form an interface.



CHAPTER 2
Density Functional Theory

Density functional theory (DFT)13,14 is perhaps the most successful method
for describing the electronic structure of solid state materials. This chap-
ter will introduce Kohn-Sham DFT and explain how the theory is imple-
mented in the QuantumATK software15 and how it can be combined with
the non-equilibrium Green’s function (NEGF) method in order to describe
charge transport between two crystals.

DFT builds on the foundation that the electronic properties of a ma-
terial can be uniquely determined if the ground state density is known.
This is stated in the Hohenberg-Kohn theorems,

Hohenberg-Kohn Theorem 1 The external potential, vext, is uniquely
determined by the ground state density, n, besides a trivial additive con-
stant.

Hohenberg-Kohn Theorem 2 The ground state density, n, uniquely
determines the ground state electronic many-body wave function, Ψ[n],
and the ground state energy, E.

E[n] = ⟨Ψ[n]| T̂e + V̂ee |Ψ[n]⟩ +
∫

n(r)vext(r) dr

= F [n] +
∫

n(r)vext(r) dr.

T̂e is the kinetic energy of the electrons and V̂ee is the electron-electron
interaction.

Two questions arise from these statements, what is the density? and
how can the many-body wave function and ground state energy be deter-
mined from the density? These two questions can be answered trough
a series of derivations and approximation which I will briefly outline in
the following. For a more exhaustive review, I recommend the excellent
textbook by Kohanoff.16
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Adiabatic Approximation The equilibrium state of a system consist-
ing of both nuclei and electrons which are interacting with each other is
described by the many-body Schrödinger equation. This equation is not
analytically nor feasible to solve numerically. In order to simplify mat-
ters, the adiabatic approximation, also known as the Born-Oppenheimer
approximation, is invoked. Since the nuclei are much heavier than the
electrons, it is assumed that the nuclei motion is slow enough, compared
to the electronic motion, such that the electrons will reach an equilibrium
state of the nuclei positions at every infinitesimal step of the nuclei motion.
In this picture, the nuclei can be seen as a background of positive charge
and the electronic Hamiltonian is,

Ĥe = T̂e + V̂ee + V̂e,ext.

The electron-nuclei interaction has been included as an external poten-
tial, V̂e,ext, in this formulation since the ions are considered frozen and act
as a positive background. Note, that V̂e,ext can include contributions from
external fields as well. The equation can be solved analytically in the case
of the hydrogen atom and yields the hydrogen electronic orbitals and lev-
els. However, larger atoms require a numerical solution and the memory
consumption when solving the equation makes it practically impossible to
do. The power behind DFT is the reformulation of the problem in terms
of the ground state density which reduces the dimensionality significantly.

Kohn-Sham Formalism The second Hohenberg-Kohn theorem partly
answers how the ground state energy is dependent on the density, the
issue remains that F [n] isn’t known in terms the density. To circumvent
this, the Kohn-Sham (KS) formalism introduces a reference system of
non-interacting electrons. This allows to collect the contributions which
have an unknown dependence on the density in the exchange-correlation
energy,

FKS[n] = TR[n] + VH [n] + EXC [n] (2.1)

where TR is the kinetic energy of a reference system,
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VH [n] =
1
2

∫ ∫ n(r) − n(r′)
|r − r′| dr dr

′,

is the Hartree potential which is the classical electron-electron inter-
action, and EXC is the exchange-correlation (xc) energy functional. The
reference system is a system of non-interacting electrons which have the
same ground state density as the real system of interacting electrons.

DFT Self-consistency Loop The introduction of the reference system
is useful for obtaining the relationship between the density and FKS[n].
For non-interacting electrons, the many-body wave function can be writ-
ten as a Slater determinant of single particle wave functions (KS orbitals).
This decouples the many-body wave function and the problem is reduced
to solving a system of single-particle equations. This means that an iter-
ative procedure can be used to find the single particle states which repro-
duce the ground state density of the interacting system. The procedure
is shown on Figure 2.1 and ensures that the density is determined self-
consistently.

The starting point, is an initial guess of the density. Form this density,
the effective KS potential, vs, can be obtained. The third step defines the
KS single-particle equations which can be solved to find the KS orbitals,
ψi, and energy levels, εi. The final step calculates the density from the

Figure 2.1: The DFT self-consistency loop.
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KS orbitals. If the two densities match, the loop is closed, otherwise a
new guess is constructed from a mixture of the computed density and the
densities of the previous loops. This provides an answers to what the
density of a many-body electronic system is. The ground state energy can
be found from eq. (2.1) using the KS orbitals but the procedure does not
provide the many-body wave function.

It is important to highlight, that the KS potential, states and eigenen-
ergies are properties of the non-interacting system. The ground state en-
ergy and density, however, are properties of the interacting system. This
means that all electronic properties which only depend on the energy or
density can be directly obtained from these quantities. Examples are the
relative heat of formation, inter-atomic forces, and magnetization of a ma-
terial. However, if observables which depend directly on the energy levels
or wave functions are calculated from the KS orbitals, it should be kept
in mind that these does not represent the true wave functions and energy
levels of the interacting system. Several methods which builds on top of
DFT calculations can be used to address this issue but these methods are
outside the scope of this thesis. Part of the reason why DFT has been so
successful, is that for many systems, the KS wave functions and electronic
levels actually represent the behavior of the interacting material rather
well.

So far, the problem has only been reformulated and the theory is there-
fore, in principle, still exact (disregarding the adiabatic approximation).
However, the exact exchange-correlation functional is not known.

Exchange Correlation Functionals Several degrees of approxima-
tions have defined a rich variety of exchange-correlation functionals which
all have their advantages and limitations. The functionals are often grouped
according to the accuracy, as illustrated on Figure 2.2. In this slightly
simplified view, each group add a new component to the calculation of
the exchange-correlation and thereby increase the accuracy but also the
computational cost.

The local density approximation (LDA)14 is the most simple approx-
imation which is obtained assuming that the electrons locally act as a
homogeneous electron gas. LDA only depends on the density and can be
used to describe metals and other systems where the electrons are evenly
distributed. The generalized gradient approximation (GGA) based func-
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Figure 2.2: The groups of DFT functionals standing on the foundation of
Hartree theory. Each group add a new component to the calculation of
the exchange-correlation. As more components are added, the accuracy
is increased and so is the computational cost.
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tionals are a bit more advanced and depend on both the density and
the gradient of the density and the meta-GGAs also take the Laplacian
of the density into account. The next group are the hybrid functionals.
These functionals use the exact exchange combined with a mixture of
exchange and correlation from a GGA or meta-GGA level functional. Ex-
act exchange can be obtained from Hartree-Fock theory and consists of a
double summation over all occupied Kohn-Sham orbitals. Computing this
quantity therefore increases the computational cost significantly. The last
group consists of the fully non-local methods which describe the correla-
tion through perturbation theory and require a double summation over
both the occupied and unoccupied Kohn-Sham orbitals.

The Perdew, Burke and Ernzerhof functional (PBE)17 is a GGA type
of functional with the exchange correlation energy,

EP BE
XC =

∫

n(r)εP BE
XC (n(r),∇n(r)) dr,

εXC(n,∇n) = εLDA
X [n]FX

[

|∇n|
n

]

+ εLDA
C [n] +H[n,∇n].

εLDA
X and εLDA

C are the LDA exchange and correlation functionals, and
the functions Fx and H are used to fulfill a number of formal conditions
which makes the system behave physically sound.

PBE is a local functional and performs best when calculating proper-
ties which have a small dependence on long-range interactions. In this
thesis, the magnetic properties of the edges of semi-metallic 2D transi-
tion metal dichalcogenides (TMDs) and the transport properties between
semi-metallic and semiconducting 2D MoTe2 are described using PBE.
The structural reconstruction at interfaces or edges and the local mag-
netization density at an edge are expected to be well-described within
PBE. On the other hand, the non-local screening in 2D semiconductors
results in a large bandgap which isn’t reflected by the PBE KS energy
levels. To include such effects, the long-range Coulomb interactions must
be included which can be done within the framework of GW using the
single particle Green’s functions and many-body perturbation theory.18
However, the charge transfer properties between a doped 2D semiconduc-
tor and a 2D metal depend on the qualitative features of the bands rather
than the value of the gap.19–22 In the case of MoTe2, the band structure
of the valence and conduction bands is relatively unchanged when going
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from PBE to GW.23 The main difference is that the conduction band is
shifted 0.4-0.5 eV up in energy as the bandgap opens. The local charge
transfer at the interface is therefore well described within PBE as well.

This more or less concludes the formal description of DFT and how it
can be used to describe the electronic structure of a material. However,
two rather important concepts are missing from this introduction, the
Bloch states in a periodic crystal and the spin-dependence.

Bloch States and Spin-orbit Coupling In a translational invariant
crystal, the wave functions are described by Bloch states. This has the
important consequence that for periodic crystals, a set of coupled KS equa-
tions has to be solved at each k-point in the Brillouin zone. Consequently,
the KS orbitals have a k-index and the density has to by summed over
the weighted contributions from each k-point.

To describe spin-polarized systems, the density can be described as a
sum over the density of spin-up and spin-down electrons, n = n↑+n↓. The
KS orbitals will get a spin-index and the density can be obtained from
a sum over both particle, k-, and spin-index. The magnetization density
becomes m = n↑ −n↓. This is a fairly straight forward continuation of the
existing framework but if non-collinear spin and the spin-orbit coupling is
to be treated, the single particle wave functions must instead be described
as spinors and the density becomes a matrix,

nαβ(r) =
1
2
n(r)δαβ +

1
2

3
∑

i=0

mi(r)σi
αβ

=
1
2

[

n(r) +mz(r) mx(r) + imy(r)
mx(r) − imy(r) n(r) −mz(r)

]

.

σi are the Pauli spin matrices. The Hohenberg-Kohn theorem still
applies for the ground state density matrix and a KS potential and KS
Hamilton can be defined in this matrix representation as well. To include
the spin-orbit coupling, a term with an exchange-correlation field is added
to the matrix KS equations. The field can be interpreted as an internal
magnetic field which represents the variations in magnetization.
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2.1 Technical Details
In this section, I will highlight some of the most important technical details
on how DFT is implemented in the QuantumATK software.15

Basis Set and Pseudopotentials A significant challenge, when apply-
ing DFT, is how to represent the wave functions. In QuantumATK, two
methods are available, expansions in localized atomic orbitals (LCAO) or
plane-waves (PW). The work presented in this thesis has exclusively used
the pseudopotential method and LCAO basis sets.

The pseudopotential method freeze the core electrons to the nuclei
creating a positive ionic background at each atom with the charge ZV =
Z − Zcore where Z is the atomic number and Zcore is the charge of the
core electrons. This saves a lot of computational resources since only the
outer valence electrons have to be treated. The interaction between the
electrons and the positive ions and frozen core electrons is replaced by a
soft pseudopotential acting on pseudo wave functions which represent the
valence electrons. The calculations on the magnetic edges use the SG15
pseudo potentials24,25 whereas the charge transport properties of TMD
interfaces are described using the PseudoDojo pseudopotentials.26

The basis set is constructed from the pseudo wave functions of the
valence electrons. The pseudo wave functions are not orthogonal to the
core states as the true valence wave functions but conserve the norm of
these. They are products of spherical harmonics and radial functions
which goes to zero outside a cutoff radius.

These pseudopotentials and wave functions are represented on a real
space grid and the Brillouin zone is sampled by a k-space grid. Both
of these grids should be converged with respect to the physical quantity
which is being calculated. The real-space density cut-off value used in this
thesis is consistently 100 Ha which corresponds to a grid spacing of 12 pm.
The Brillouin zone samplings are summarized in Table 2.1.

Electronic Temperature The discrete k-grid represents an issue when
describing metals since the occupation of the electronic bands changes
abruptly when crossing the Fermi level, εF . A very dense grid will there-
fore be required to ensure convergence of the calculation. To compensate
for the discrete k-point sampling, a smearing of the occupations is included.
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System k-grid electrode(s) k-grid

H-phase TMD Periodic Crystal (7,7,1)

T’-phase TMD Periodic Crystal (6,11,1)

H-phase TMD Triangular Nanoparticle (1,1,1)

T’-phase TMD Nanoribbon along x-axis (6,1,1)

T’-phase TMD Nanoribbon along y-axis (1,11,1)

T’-phase TMD Surface (x-edge) (6,1) (6,401,1)

T’-phase TMD Surface (y-edge) (11,1) (401,11,1)

Heterophase TMD Device (6,1) (401, 6, 1)

Table 2.1: The k-point samplings used in this thesis.

This smearing is achieved by including a Fermi-Dirac distribution, f , in
the calculation of the density,

n(r) = 2
N
∑

i

f
(

εi − εF

kBT

)

|ψi(r)|2.

kB is the Boltzmann constant and the degree of smearing is determined
by the electronic temperature, T . This temperature is only included as
a tool to help the convergence and the density and energy is always ex-
trapolated back to zero Kelvin at the end of the calculation. All the
self-consistent calculations presented in this thesis are performed at an
electronic temperature of 300 K.

Doping To describe doped semiconductors, a continuous doping model
is used. The electrons per atom are explicitly modified by scaling the
atomic densities. This is possible since density is described in terms of
the localized basis functions.27
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2.2 Non-equilibrium Green’s Function
Method

Modelling of the current through an interface between two crystals has
been one of main objectives of this thesis. In order for a current to run, the
system must be brought out of equilibrium by applying a bias. Such a sys-
tem can therefore not be described within standard DFT which is an equi-
librium method. However, by combining DFT with the non-equilibrium
Green’s function (NEGF) method, self-consistent calculations on such sys-
tem can be obtained.

An interface between two crystals can be modelled by combining two
semi-infinite pieces of the crystals. This requires that the lattices of the
two crystals can be matched such that the directions perpendicular to the
interface share a periodicity. The next chapter will present a method for
finding such a shared unit cell of two crystals. The system is illustrated
on Figure 2.3a and consists of three regions, the left electrode, the central
region, and the right electrode. Each electrode (also sometimes referred

Figure 2.3: a Device for modelling an interface between two crystals. The
difference between the two chemical potentials is determined by the bias,
eVbias = µL − µR. b Semi-infinite system for modelling the surface of a
crystal. The central region is terminated by a vacuum region.
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to as the lead or probe) should be considered as a semi-infinite system
and acts as an electron reservoir. The number of occupied states in these
reservoirs are determined by the chemical potentials which differ by the
applied bias eVbias = µL − µR.

A positive bias will make the electrons move from the left electrode
through the scattering (central) region where they are either transmitted
to the right electrode or scattered by the interface. The eigenstates, ψL

i

and ψR
i of the two electrodes therefore represent the states available for

transport across the scattering region.
The surface of a crystal can be modelled in a similar manner using a

semi-infinite system. The setup allows for modelling of a single isolated
surface. A single electrode is coupled to a central region which contains a
surface as illustrated on Figure 2.3b. The NEGF method can be used to
describe this system using the same procedures as those used for devices.
The only differences are that only the left electrode yields contributions to
the Green’s function and that the electrostatic boundary condition at the
right hand side is fixed by the vacuum potential rather than the potential
of the right electrode.28 In the following, I will explain the procedure for
obtaining the non-equilibrium density of a device.

Since the central region has open boundary conditions, KS and Bloch
states can not be defined. The energy-dependent retarded Green’s func-
tion, on the other hand, is well-defined for open systems,

G(ε) =
1

(ε+ iη)S −H − ΣL(ε) − ΣR(ε)
.

ε is the energy, H and S are the Hamiltonian and overlap matrix of the
central region, and η is a positive infinitesimal. The self-energies of the
two electrodes, ΣL and ΣR represent the coupling between the electrodes
and the central region and can be obtained using a recursive method29

from the left and right electrode Hamiltonians.
The retarded Green’s function can be used to obtain the non-equilibrium

density in the central region using a self-consistency loop for DFT+NEGF
calculations which is illustrated on Figure 2.4. The starting point is to
perform regular DFT calculations on each of the two electrode unit cells.
The ground states of the electrodes are obtained using periodic bound-
ary conditions which corresponds to finding the equilibrium state of the
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Figure 2.4: The self-consistency loop of DFT+NEGF calculations. The
transport direction is along the x-axis.
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isolated crystals. From this calculation, the self-energies and Hartree po-
tentials are obtained. An initial guess is made on the density of the central
region and the Hartree potential is found by solving the Poison equation
using this density. The boundary conditions in the transport direction
are determined by the Hartree potentials of the electrodes. When this is
obtained, the KS potential and KS Hamiltonian are defined as in a regular
DFT calculation.

The KS Hamiltonian and self-energies are used to obtain the retarded
Green’s function which in turn is used to obtain the density matrix,

D =
∫

ρL(ε)f
(

ε− µL

kBTL

)

dε+
∫

ρR(ε)f
(

ε− µR

kBTR

)

dε,

ρL/R(ε) =
1

2iπ
G[ΣL/R − (ΣL/R)†]G†.

TL and TR are the temperatures used to determine the occupation in
each of the electrodes. Note, that this temperature is not the same as the
electronic temperature used in a regular DFT calculation but describes
how the charge transport across a device depends on the temperature.
From the density matrix, the LCAO basis functions, ϕ(r), are used to
find the density which concludes the self-consistency loop.

This procedure does not explicitly calculate the eigenstates of the cen-
tral region. This means that not all the quantities which can be obtained
from a regular DFT calculation are obtainable using the DFT+NEGF
approach. In this thesis, such calculations are used to obtain the pro-
jected density of states (PDOS) along the transport direction, transmis-
sion, transmission eigenstates, and current across the device.

The projected density of states, assuming the x-axis is along the trans-
port direction, can simply be obtained from the spectral density matrix,
ρ = ρL + ρR,

n(ε, x) =
∫ ∫

∑

ij

ρij(ε)ϕi(r)ϕj(r) dy dz.

The total transmission and transmission matrix can be found from
the retarded Green’s function and the imaginary part of the self-energies,
ΓL/R,



2.2 Non-equilibrium Green’s Function Method 23

T (ε) = Tr[G(ε)ΓL(ε)G†(ε)ΓR(ε)],

Tnm(ε) =
∑

l

tnl(ε)t
†
lm(ε).

tnl is the transmission amplitude from Bloch state ψL
n in the left elec-

trode to the Bloch state ψR
l in the right electrode. If the transmission

matrix is diagonalized, the contributions to the transmission are divided
in to transmission channels at each transmission eigenenergy. The sum
over the eigenvalues yields the total transmission.

As mentioned previously, the wave functions of the system cannot
be described by Bloch states. However, the Bloch states from the two
electrodes can be used to describe the transmission eigenstates which pro-
vide the spatial distribution of the electrons using a specific transmission
channel. The transmission eigenstates are found by propagating the states
which diagonalize the transmission matrix as a linear combination of Bloch
states from the left or right electrode.

The final quantity calculated using DFT+NEGF is the current across
the device. This is obtained from the transmission using the Landuaer
formula,

I =
2q
h

∫

T (ε, µL, µR)
[

f
(

ε− µL

kBTL

)

− f
(

ε− µR

kBTR

)]

dε.

.
This concludes the theory behind DFT and the NEGF method and

how these have been applied. The next chapter will present a general
method for obtaining the possible matches between two periodic crystals
in order to build an interface.



CHAPTER 3
Geometric Matching of

Crystals
This chapter explains and demonstrates a general method for combining
two crystals to an interface. The entire chapter is partly revised and
reprinted from the paper published in Physical Review B in 2017.30

The development of modern technology has become increasingly de-
pendent on knowledge of interfaces at the atomic scale. As the size of
electronic devices decrease, interfaces become an increasingly dominant
part of the system and thus become the limiting factor for device perfor-
mance.31–33 Many difficulties are related to obtaining a stable and defect
free interface. When the materials are not commensurate, a large strain
can build up at the interface, and result in defects and unstable interface
geometries. The prediction of the stability of an interface is difficult and
the commonly used approach is trial and error where many samples must
be grown before it can be concluded whether a stable interface can be
formed or not. This crystal matching method permits the combination
of any two crystals and provides information on which crystal surfaces, if
any, that allow for a low strain epitaxial interface. The method is solely
based on geometrical considerations of the possible surface cells of the two
crystals and it leads to an identification of interfaces where both the strain
and the size of the coincidence interface cell are small. The input is there-
fore only the material lattices, not the atomic details. Having low stress
and a small interface cell does not by itself guarantee a stable interface,
as the atomic structure of the interface may also play an important role.
However, the simple geometrical criteria provide a good starting point for
further experimental or theoretical investigations.
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3.1 Matching Method
The method for creating an interface between two crystals is completely
general and based on 2D cells of the two crystal surfaces. The 3D vectors
of the crystal, defining these surface cells, are projected from R

3 to R
2 as

illustrated on Figure 3.1a. The surface cell of the first crystal is defined
by two vectors u1 and u2, where u1 = [u1x, u1y]. Similarly, v1 and v2

denote the two vectors which define the surface cell of the second crystal.
The affine transformation A which maps [u1,u2] onto [v1,v2] is given by
the following system of linear equations,

[

A11 A12

A21 A22

] [

u1x u2x

u1y u2y

]

=

[

v1x v2x

v1y v2y

]

.

Any square matrix can be decomposed into the product of an orthonor-
mal matrix, U and a positive definite symmetric matrix, P. This is known
as a polar decomposition34. The symmetric matrix defines the 2D strain
tensor, ϵ, for deforming one cell into the other,

P = I + ϵ =

[

1 + ϵxx ϵxy

ϵxy 1 + ϵyy

]

. (3.1)

The first vectors are rotated along the x-axis such that u1y = v1y = 0.
This can be done without loss of generality and leads to,

A11 =
v1x

u1x

,

A12 =
v2x

u2y

− v1xu2x

u1xu2y

,

A21 = 0,

A22 =
v2y

u2y

.

The polar decomposition of A is A = UP, where U is a rotation
matrix because of the chosen projection to R

2,
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Figure 3.1: The method for finding and matching the 2D surface cells
of two crystals. (a) The lattice vectors of the first crystal (u1,u2) are
created from a linear combination of the Bravais vectors (a1, a2, a3). Here
u1 = −a1 + a2 + a3 and u2 = 2a1. The two vectors are then projected
from the 3D representation to a 2D representation on a crystal surface.
(b) Two cells of two different crystals are matched by applying the affine
transformation A[u1,u2] = [v1,v2], where A = UP consists of a rotation,
U, and a strain matrix, P. Reprinted with permission from Ref. [30].
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U = s

[

A11 + A22 A12

−A12 A11 + A22

]

=

[

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]

,

P = U
T
A.

s is a scaling constant which makes the columns of U unit vectors.
The U matrix defines the counter-clockwise rotation of the [u1,u2] cell
onto the [v1,v2] cell by the angle ϕ = |ϕa −ϕb|/2 as shown on Figure 3.1b.
Using this method, the above equations yield the strain matrix of any
given cell combination. The algorithm behind the extraction of the strain
matrix of all the possible matches between two crystals is illustrated on
the flow chart on Figure 3.2. It consists of three main steps.

3.1.1 Create (i, j, k)-list from ℓmax
The first step is to create all the possible lattice vectors of each crystal up
to a specified maximum length, ℓmax. The vectors are created as integer
combinations of the Bravais vectors of the crystal, as illustrated on Figure
3.1a,

u = ia1 + ja2 + ka3, |u| < ℓmax. (3.2)
This will create a list of (i, j, k)-values for each crystal.

3.1.2 Create Vector Pair List
The next step is to combine the created vectors such that a list of unique
surface cells is created for each crystal. This procedure uses two kinds
of filters to remove equivalent surface cells from the list; the symmetry
operations of the atom-free crystal and Niggli reductions of the cells.

The starting point is to create a list of symmetrically unique vectors of
the crystal. This is done by applying the symmetry operations of the crys-
tal on each vector in the generated (i, j, k)-list. This creates a symmetry
group of vectors for each vector in the (i, j, k)-list. To avoid consider-
ing symmetrically equivalent vectors, only the canonical representation of
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Figure 3.2: Flow chart behind the algorithm for matching two crystals.
Reprinted with permission from Ref. [30].
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each of these symmetry groups is kept. The canonical representation is,
in this case, defined as the vector with the lowest value when comparing
the vectors using lexicographic ordering. This results is a list of unique
vectors which fulfill the requirement of eq. (3.2).

To create the unique surface cells, each vector from the original (i, j, k)-
list is combined with the vectors in the symmetry reduced list. The com-
bination is discarded, if one of the following conditions is fulfilled,

1. The area spanned by the two vectors exceeds the area threshold,
Amax.

2. The two vectors are parallel.

3. The resulting surface cell is not a Niggli reduced cell.

4. The vector pair is not symmetrically unique.

The third condition checks whether the cell is a Niggli reduced cell. A
Niggli reduced 2D cell, will fulfil,

u1 · u1 ≤ u2 · u2, u1 · u2 ≤ 1
2

u1 · u1.

The cells that are not Niggli reduced, will be discarded. This is only
done for the first crystal, since a Niggli reduced cell may be strained
into a non Niggli reduced cell when the two crystals are combined. The
final condition is investigated by applying the symmetry operations of the
crystal on both vectors and thereby creating a symmetry group of surface
cells. The cells which are not the canonical representation of the group,
are discarded. After completing these steps, a list of unique surface cells
of each crystal have been created. The next step is to combine these two
lists.

3.1.3 Combine the Pair Lists of the Two Crystals
When the cells of the two crystals are matched, the first step is to fil-
ter out repeated matches. As an example, lets say that a [u1,u2] cell of
the first crystal is combined with a [v1,v2] cell where u1ijk = (1, 0, 0),
u2ijk = (2, 0, 1), v1ijk = (0, 0, 2) and u2ijk = (4, 4, 2). This combination
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will be completely equivalent to the ((2, 0, 0), (4, 0, 2), (0, 0, 4), (8, 8, 4))
combination. To avoid investigating both combinations, the greatest com-
mon divider (gcd) of all 4 vectors, gcd(u1ijk,u2ijk,v1ijk,v2ijk), is calcu-
lated and the match is discarded if this differs from 1. After this prelimi-
nary check, the strain matrix of the match is calculated using the method
explained above. The average strain of a match is defined as,

ϵ̄ =

√

ϵ2
xx + ϵ2

yy + ϵxxϵyy + ϵ2
xy

4
,

where the components are of the 2D strain tensor from eq. (3.1). This
average strain is an invariant of the strain tensor, since 4ϵ̄2 = Tr(ϵ)2 −
det(ϵ). Matches with an average strain below a given strain threshold,
εmax, are kept.

This concludes the algorithm for finding all the matches between two
crystals. The parameters determining which matches to include in the
search are; ℓmax, Amax, and εmax. These parameters help to filter out
the cells that wouldn’t create a physically meaningful interface. The area
and length threshold ensures that unreasonably large or narrow cells are
discarded and the strain threshold filters out the most strained matches.

The algorithm is implemented using C++ with a Python interface.
This makes the code quite efficient; finding all matches between a InAs
fcc crystal and a Cobalt hcp crystal with the parameters, ℓmax = 50 Å,
Amax = 200 Å2, and ϵmax = 2 %, takes around twenty minutes on a normal
laptop.

3.2 General Matches Between fcc
and bcc Crystals

The algorithm can be used to find matches between any fcc crystal and
any bcc crystal. To this end, an isotropic scaling parameter, k, is defined
as the ratio between the lattice constants of the two crystals, k = afcc/abcc.
The effect of k on the strain matrix will be linear,
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Figure 3.3: The matches between a fcc and a bcc crystal. k represents
the scaling between the two lattice constants, k = afcc/abcc. (a) The ε̄2(k)
relation of (3.3) for optimal matches involving the [110] surface of the fcc
crystal. The color of the curves represents different surfaces of the bcc
crystal. (b) The surface cells and corresponding interface of the perfect
k = 2 match shown on (a). Illustrated here for InAs with Vanadium. (c)
Scatter plot of matches where the minima of the strain parabola gets below
10%. The dots represent the minimal strain of the match and the k-value
where this strain occurs. We have chosen ℓmax and Amax as four times
the lattice constant of the unstrained crystal. Reprinted with permission
from Ref. [30].
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A = kUP = U

[

k (1 + ϵxx) kϵxy

kϵxy k (1 + ϵyy)

]

.

This means that the effect of the scaling parameter on the average
strain can be described by the simple analytical relation,

4ε̄2(k) = k2(ϵ2
xx + ϵ2

yy + ϵxxϵyy + ϵ2
xy)

+ k2(3ϵxx + 3ϵyy + 3)

− k(3ϵxx + 3ϵyy + 6) + 3, (3.3)

where the strain tensor components are referring to the case of k = 1.
This relation allows to calculate the average strain of a match at any k-
value once the strain matrix has been calculated for any one specific value
of k. Eq. (3.3) defines a strain parabola and the minimal strain of a match,
along with the corresponding k-value, can be found from the minimum of
this parabola. The strain parabolas for the optimal matchesi between a
fcc[110] surface and a bcc crystal with k-values between 2.0 and 2.14 is
illustrated on Figure 3.3a. The two [110] surfaces has perfect matches at
k = 2.0, 2.04, 2.06, and 2.12. The surface cells and corresponding interface
of the perfect k = 2.0 match is illustrated on Figure 3.3b for InAs and
Vanadium.

To find all the matches between a fcc and a bcc crystal, the algorithm
on Figure 3.2 is used but where step 3.ii. is altered. After calculating the
strain matrix, eq. (3.3) is used to find the minimal strain of the match
and only matches where this is lower than the strain threshold is kept. In
this manner, the strain parabolas of all the relevant matches can be found
by doing a single calculation at k = 1. ℓmax and Amax is chosen as four
times the lattice constant of the unstrained crystal and ϵmax = 10%.

Figure 3.3c shows the results of this general investigation. For each
match, the minimal strain and the corresponding k-value is plotted. Note,
that the y-axis shows the squared strain, since this illustrates the general
shape of the matches better. The structure shows parabola like shapes
where zero strain minimas appear at the points k = 1/

√
2 ≈ 0.71, k =√

3/2 ≈ 0.87, k = 1, k =
√

3/2 ≈ 1.22, and k =
√

2 ≈ 1.41. Many low
iThe matching parameters are ℓmax = 50 Å, Amax = 200 Å2, and ϵmax = 2 %.
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strain solutions are found close to these points. The low strain solutions
around k = 1 appear since this value corresponds to the [100] facets of the
two cubic crystals fitting perfectly together. The other zero strain points
also represent some symmetry of the two crystals. The matches around
k = 1/

√
2 e.g. corresponds to matching the rotated bcc[100] surface with

cell vectors v1 = [
√

2abcc, 0] and v2 = [0,
√

2abcc] to a [100] facet of the
fcc crystal.

These results clearly show that the method represents a completely
general tool for crystal matching. The strength of the method is that
it only relies on the geometry of the crystals. This makes it possible to
calculate results for two arbitrary crystals and apply these results to all
interfaces between materials of these crystal structures. Furthermore, it
is an ideal tool for investigating alloy crystals where the lattice parameter
can be varied as the composition of the alloy is changed.

3.3 InAsSb and GaInAs Alloys
Matched with Metals

Alloyes are e.g. used in the fabrication of core-shell nanowires. These
nanowires have numerous applications e.g. for photodetectors35, photo-
electrodes36, and thermoelectric devices37. In the following, matches be-
tween two different semiconductor alloys, InAs1−xSbx and GaxIn1−xAs,
with ten different metals (Al, Ni, Cu, Ag, Au, Pb, V, Fe, Nb, and Co) are
found. The two alloys form a zincblende crystal and the relation between
the lattice constant and mole fraction x can be approximated by the linear
relation,38

aInAsSb(x) = 6.0583 + 0.4207x,

aGaInAs(x) = 6.0583 − 0.405x.

The experimentally determined lattice constants of the metals39 are
used and it is the metal surfaces which are strained to match the alloy
surfaces. The chosen parameters are ℓmax = 50 Å, Amax = 200 Å2, and
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Figure 3.4: (a) The InAsSb[11̄0] surface matched with ten different met-
als. Each block represents the match which results in the lowest average
strain between the two materials. The background color shows the strain
in percent and the markers show the involved metal surface. Filled mark-
ers denote a match where zero strain can be obtained. (b) Same as (a)
but where the background color shows the area given by the no. of alloy
surface unit cells of the match. Reprinted with permission from Ref. [30].
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ϵmax = 2 %.ii Furthermore, a limit on the Miller index of the crystal sur-
faces is set. If the highest value in the Miller index is above the threshold,
mmax = 3, the match is discarded. The matches are calculated for a single
value of the mole fraction and the scaling relation (3.3) is used to get the
results for the rest of the x-values. This is possible, since each x-value
directly corresponds to a k-value, k = aalloy(x)/ametal.

The matches involving the [11̄0] surface of InAsSb is shown on Figure
3.4. Each block on the plot corresponds to a certain match and a certain
strain parabola in a plot like Figure 3.3a. The background of Figure 3.4a
therefore represents the strain value of the lowest lying strain parabola.
Taking InAsSb[11̄0] matched to Vanadium as an example, the variation of
the lattice parameter results in different optimal matches. For instance,
from a perfect [110] match to a low strain [113] match as the lattice
constant is increased from 6.06 to 6.08. The area of the match, given
as the number of alloy surface unit cells, is illustrated in Figure 3.4b.
Several zero strain matches are possible between the InAsSb[11̄0] surface
and those of the metals. Nickel, Copper, Lead, and Vanadium even have
perfect matches with very small unit cells, indicating that these interfaces
will be stable.

Figure 3.5 shows all the perfect matches of the [11̄0], [111], and [112̄]
surfaces of both InAsSb and GaInAs. The red triangles in Figure 3.5a
therefore represents the same matches as those highlighted on Figure 3.4.
The surfaces have been chosen since they typically terminate nanowires of
the two investigated alloys. Many zero strain solutions are possible and
especially the [111] surfaces show many results. The zero strain match
between this surface of InAsSb and the Aluminum [111] surface close to
x = 0 agrees with the geometry observed using HR-TEM imaging for
InAs nanowires with a thick (> 30 nm) Al overlayer grown by Krogstrup
et al..40 The perfect matches are generally distributed well across the range
of lattice constants which should make it easier to realize some of these
interfaces experimentally. Details on all the matches of the remaining two
surfaces of InAsSb and the three surfaces of GaInAs can be found in the
Supplementary Material of Ref. [30].

iiThe area constraint is set for the cell size when using the lowest lattice constant
of each alloy.
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Figure 3.5: The perfect matches of the [11̄0], [111], and [112̄] surfaces of
(a) InAsSb and (b) GaInAs. The markers denote the metal surface (see
Fig 3.4 for labels) and the color denotes the alloy surface. Each marker is
placed at the alloy lattice constant which results in a zero strain match.
Reprinted with permission from Ref. [30].
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This concludes the part which introduces the general methods for per-
forming ab-initio calculations on interfaces between crystallized solid state
materials.



PART II

2D Transistion Metal
Dichalcoginides
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This part of the thesis is dedicated to introducing the transition metal
dichalcogenides (TMDs) and reviewing their electronic properties in the
context of their potential use in transistors. This group of materials have
been the center of countless research activities in recent years. They
represent a large variety of electronic and optical properties which make
them suitable for applications within nano-electronics, catalysis, spintron-
ics, light harvesting, and sensing. In the following, I will focus on the
electronic properties, since the goal of the research has been to investigate
TMDs as new materials for nanos-cale transistors.

The most famous TMD is MoS2 which occur naturally in the form of
the mineral molybdenite. Molybdenite is relatively abundant and easy to
process and is used as a solid lubricant due to the layered structure of
the crystal. It resembles graphite in appearance and single layers can be
isolated like graphene from graphite. MoS2 was the first TMD to be syn-
thesized as a single layer in 1986.42 Since then a large amount of layered
TMDs have been synthesized and characterised. More than 40 TMDs had
been identified in a layered structure already in the 1960s43 and, in the
Computational 2D Materials Database,23 more than 110 thermodynam-
ically stable TMDs have been identified in the single layer limit. The
synthesized TMDs and their structural and electronic properties, as of

Figure 3.6: Periodic table of synthesized TMDs based on the transition
metal element involved. The table show the existing structural phases (2H,
1T, 1T’ or other) and the observed electronic phases as of 2017. Adapted
with permission from Ref. [41]. Copyright 2017 Springer Nature.
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2017, are illustrated on the periodic table on Figure 3.6. The variety of
material properties within the group is quite astonishing. TMDs can be
metallic (NbS2), semi-metallic (WTe2), semiconducting (MoS2, MoTe2),
insulating (HfS2), or superconducting (TaS2).

The following chapters are organized as follows,

Chapter 4 describes the most common structural phases and the related
electronic properties of the TMDs.

Chapter 5 elaborates on the properties and describe fabrication and dop-
ing methods used for the semiconducting 2H-phase of the group VI
TMDs.

Chapter 6 describes the synthesis of the 1T- and 1T’-phase group VI
TMDs, the phase transition between the 2H- and 1T- or 1T’-phase,
and the topological properties of the T’-phase.



CHAPTER 4
Structure and Electronic

Properties
Transition metal dichalcogenides (TMDs) are layered materials where each
layer consists of a transition metal atom sandwiched between two chalco-
gen atoms. The bonds within the layer are covalent whereas the interlayer
bonds are van der Waals (vdW) type. The most common geometries of
the single layers are triagonal prismatic with spacegroup P6̄m2 (H-phase),
octahedral with spacegroup P3̄m1 (T-phase) or a distorted octahedral
with spacegroup P12/m (T’-phase). These three different phases of the
monolayer TMDs are shown on Figure 4.1. The layers can be stacked in
different ways to form at least six different bulk phases of the TMDs. The
H-phase layers stack to form 2Hc-, 2Ha-, or 3R-phase, the T-phase lay-
ers to form 1T-phase, and the T’-phase layers to form 1T’- or 2M-phase
crystals.

Using a simple ionic picture, the covalent bonds in the TMDs result in
an electron sharing where the metal atom gets the formal charge +4 and
the two chalcogen atoms get formal charge -2 each. This will result in a
filled outer p-shell of the chalcogens and an electron configuration xdn of
the metal, where x is the row in the periodic table, and n = 0 for group-IV
transition metals, n = 1 for group-V, and so on. In this simple picture,
the filling of the d-orbitals therefore dominates the electronic properties.

Some of the trends in the electronic properties can be explained by
ligand field theory arguments. The d-orbitals of the transition metals are
split by the hybridization and electrostatic interaction with the chalcogen
orbitals. According to the ligand field theory, a triagonal prismatic coor-
dination will split the orbitals of the metal in to a singlet, a′

1, and two
doublets, e′ and e′′. There is a relatively large gap between the singlet
and the two doublet states. If the metal atom is in the octahedral coordi-
nation, the orbitals are split into two levels, a triplet, t2g, and a doublet,
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Figure 4.1: Three phases of a single layer TMD. Transistion metals atoms
(M) are shown in the blue nuances and chalcogen atoms (X) are shown in
orange, yellow and red. The top part shows the metal atom(s) of a single
unit cell with the nearest neighbour chalcogen atoms. The bottom part
shows a side and top view of the layer. The unit cells are marked by the
black lines.

eg. The splitting is illustrated on Figure 4.2a and 4.2b, respectively. In
a crystal, the ligand field splitting results in d-bands which are placed
inside a gap between the σ bonding and antibonding bands of the metal-
chalcogen bonds. This is illustrated on the right hand side of Figure 4.2a
and 4.2b.

The filling of the ligand field levels can be used to predict both the
electronic state and the most stable structural phase. As an example, the
Group-VI TMDs have a formal d occupation of n = 2, filling two electrons
into the ligand field levels, as shown on Figure 4.2a and 4.2b. Because
the a′

1 level is lower in energy compared to the t2g level, the triagonal
prismatic phase becomes the most stable phase and is semiconducting
with a filled a′

1 level as the valence band and unoccupied e′ and e′′ levels.
If more electrons are filled into the ligand field levels, the large energy gap
between the singlet and the two doublets, makes the H-phase less stable
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Figure 4.2: Ligand field splitting in TMDs. a shows the ligand field split-
ting of a molybdenum based TMD in the triagonal prismatic coordination
of the H-phase, b shows the splitting in the octahedral coordination of the
T-phase, and c shows the relative stability of T- and H-phase disulfides in
the 4d and 5d transition metals from Ref. [44]. Copyright IOP Publishing.
Reproduced with permission. All rights reserved.

compared to the octahedral structures. This becomes the most stable
phase and is metallic up to a filling of 6 electrons. Using these arguments,
the stability of the H-phase TMDs should decrease when moving to the
right in the periodic table.

The trends in relative stability between the H- and T-phase of tran-
sition disulfides have been investigated using DFT and a tight-binding
Hamiltonian constructed from Wannier functions by Pasquier et al.44 The
trends are shown on Figure 4.2c and agree with the trends in a high-
throughput DFT study by Rasmussen et al.45 and partly with the simple
picture presented by the ligand field theory. If n > 2, the relative stabil-
ity of the H-phase is maximized, and when moving to the higher group
transition metals, the stability decreases. However, the trend of desta-
bilization when going to the left from n = 2 can not be explained from
this simple theory. In fact, the study by Pasquier et al.,44 concluded that
the ligand field splitting between the a′

1 and e′ levels where almost negli-
gible and that the stability trends should be explained by hybridization
between the different d-orbitals instead. The result of this hybridization
is a maximum stabilization of the H-phase when the low-energy d-band is
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filled, i.e. n is close to 2. Both theories therefore agree that the H-phase is
most stable at n = 2 and decreases compared to the T-phase when more
electrons are filled in.

The trends in Figure 4.2c are useful for identifying the most stable
phase between the H- and T-types but doesn’t contain any information
on the stability of the T’-phase. This phase is more stable than the T-
phase for the group-VI and -VII transition metals.44,46 Group-VII TMDs
therefore become more stable in the 1T’-phase than in the 2H-phase. The
group-VI TMDs are most stable in the 2H-phase, except for WTe2 which
is more stable in the 1T’-phase and is a quantum spin Hall insulator.47–49
Group-VIII to X are generally most stable in the 1T-phase as predicted by
Pasquier et al. but some of them (e.g. PdS2) are more stable in completely
different phases50 and Group-XI to XII are unstable in both the H- and T-
phase.45 These trends are also summarized in the periodic table on Figure
3.6. In the remaining part of the thesis, I will focus on the group-VI TMDs
(VI-TMDs). The heat of formation of the H- and T’-phase are close in
this group which makes them suitable for phase engineering.

The spin-orbit coupling (SOC) plays an important role in the elec-
tronic properties of these TMDs. The H-phase lacks inversion symmetry

Figure 4.3: The band structure of monolayer MoS2 in the a H-phase, b
T-phase, and c T’-phase calculated using the PBE functional w. and w.o.
spin-orbit coupling (SOC).
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which lead to a spin splitting of both the valence and conduction band.
The spin splitting results in opposite spins residing in the K and K ′ valley
and provides a platform for novel spintronic devices. Due to the relativis-
tic nature of the spin-orbit interaction, heavier elements have larger spin
splittings. The spin splitting of H-phase MoS2 is shown on Figure 4.3a.
The T-phase and T’-phase bandstructures are shown on Figure 4.3b and
Figure 4.3c, respectively. The T-phase is clearly metallic with several
bands crossing the Fermi level, the T’-phase is semi-metallic with a small
gap which is opened by the SOC. The lattice distortion of the T’-phase
results in a band inversion and a Dirac-cone between the X- and Γ-point.
The part of the cone which is above the Fermi level is dominated by p-
orbitals of sulfur whereas the part below the Fermi level is dominated by
the d-orbitals of molybdenum.51 The spin-orbit coupling opens a gap be-
tween the d- and p-bands which leads to a topological non-trivial phase
of the material; the Quantum Spin Hall insulator state. The topological
properties of the T’-phase VI-TMDs will revisited in Chapter 6.

Note, that the band structures on Figure 4.3 have been calculated
using the PBE functional which does not correctly capture the non-local
screening in the TMDs. This means that the bandgaps of the H- and
T’-phase are underestimated but otherwise, the qualitative behavior of
the bands of all three phases is in agreements with the behavior predicted
by GW calculations.23,51 This concludes the description of the general
structural and electronic properties of the TMDs, the following chapters
will elaborate on the synthesis methods and electronic properties of the
H-, T- and T’-phase of the VI-TMDs.



CHAPTER 5
Semiconducting H-phase

In this chapter, I will present the general fabrication and doping methods
of the semiconducting phase of the group-VI TMDs (VI-TMDs) which
is the most stable phase of these TMDs. The fabrication methods are
important to understand since the electronic properties depend on the
quality of the grown crystals and doping methods are important in the
context of using doped TMDs as transistor channels. In the following,
whenever the TMDs are mentioned as a group, I am referring to the
semiconducting VI-TMDs. I will focus on the electronic properties of the
materials and on how these are altered by the fabrication method and the
presence of defects.

The semiconducting TMDs have indirect band gaps around 1 eV in
the multilayer limit52 but change to a direct band gap semiconductor
with band gaps around 1.5-3 eV45 in the monolayer limit. The size of the
monolayer gap is typically about 50 % larger than the bulk gap and the
gap size decreases with the atomic number of the chalcogen atom.52 The
direct bandgap of ML MoS2 was illustrated on Figure 4.3a. The geometric
confinement and weak screening results in a large exciton binding energy
which can decrease the optical bandgap compared to the electronic by
up to 30%.53 Since the scope of this thesis is to investigate the electronic
properties of these materials rather than the optical properties, I will not
go into further details with the properties of the excitons.

5.1 Synthesis
MoS2 and WS2 are the only TMDs which are known to exist in nature as
layered crystals. MoS2 was therefore naturally the first TMD to be inves-
tigated in the few layer limit back in the 1960s54 using the ’Scotch tape’
method where the crystal is thinned by continues folding and unfolding
of a piece of Scotch tape with a multilayer crystal on it. In the pursuit
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Figure 5.1: The most common fabrication methods for synthesis of TMDs
divided into the top-down and bottom-up methods.

of a more scalable fabrication process and in order to investigate a larger
range of TMDs, molecular beam epitaxy (MBE) was extensively used in
the 1980s and 1990s to fabricate and investigate a range of layered materi-
als. However, it was not until 2013, that single layer MoS2 was successfully
grown on a substrate using chemical vapor deposition (CVD).55,56 In the
last decade, a number of studies have shown that also the metal-organic
CVD (MOCVD) method can produce large area single layers with a high
electron mobility.57,58

The most common fabrication methods for synthesis of TMDs are
illustrated on Figure 5.1. They can be divided into the top-down and
bottom-up methods. The most common top-down approaches are either
mechanical exfoliation, i.e. the Scotch tape method, or liquid exfoliation.
Liquid exfoliation can be performed using a solution containing the layered
crystal and Li-ions. The Li-ions become intercalated in the interlayer
spacing of the crystal and a sonication process can be used to ’shake’
the layers apart. The first reported monolayer of MoS2 was exfoliated
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using this method in 1986.42 Both of these top-down approaches have the
disadvantages that only relatively small flakes can be produced and that
they result in large variations in thickness of the samples. In the case of
the Scotch tape method, it is also rather destructive and not scalable for
practical applications.

The most common bottom-up methods are MBE, CVD, MOCVD and
atomic layer deposition (ALD). As mentioned above, MBE was exten-
sively used in some of the early studies. MBE works by heating elemen-
tary sources which sublime and then combine at a wafer target to grow
the desired crystal. The method requires a growth chamber which is held
at ultrahigh vacuum and a wafer material which is commensurate with
the growing crystal to avoid defects and grain boundaries. A cheaper al-
ternative is the CVD method which does not require ultrahigh vacuum.
In the CVD process, powders of the chalcogen and metal or metal oxide
are heated and moved by a carrier gas to the wafer where it combines to
form the crystal. Using an atomically smooth sapphire wafer, large area
monolayer MoS2 with high electron mobility has been grown using this
method.59 The high electron mobility suggests that the sample consists of
large domains with few defects. The MOCVD method has also produced
large area samples with high mobilities. The method uses gas phase pre-
cursors rather than heated powders for the crystal growth. The gases can
e.g. be Mo(CO)6 or W(CO)6 and (C2H5)2S to grow MoS2 or WS2.57 ALD
is a layer-by-layer growth method which therefore naturally has some ad-
vantages when growing layered materials and single layers. In CVD and
MBE methods, the crystal is grown from several seeds point on the wafer
which results in grain boundaries between the different seeds whereas, in
ALD, the crystal grows as one single layer at a time and grain boundaries
are therefore avoided. In the ALD method, one species is allowed to bond
to a wafer at a time. In the case of TMD growth, the metal atom is first
introduced, e.g. as the metal oxide gas, and allowed to fully cover the
surface of the sample. Afterwards, the chalcogen is introduced, also in a
gas form, and reacts with the metal atoms to form a single layer. The
process can be repeated to grow multiple layers. Recently, high quality
monolayer WS2 crystals were selectively grown over a length scale of more
than 200 µm using ALD.60

Other less common methods for TMD synthesis are magnetron sput-
tering, pulsed laser depostion, electric chemical exfoliation, and the ther-
molysis method. Even though tremendous progress has been made in the
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synthesis of TMDs, there is still no method which, in a scalable and re-
producible manner, can produce large area samples of good quality and
with a controlled thickness down to the monolayer limit.

5.2 Defects and Intrinsic Doping
Due to the many different fabrication methods, the quality of the produced
samples varies a lot. In this section, I will describe the most common de-
fects occurring in TMDs and how they affect the electronic properties. The
defects are often divided into groups with the same dimensionality. Exam-
ples of 0D or point defects are vacancies, substitutions and adatoms. 1D
defects are also known as line defects and examples are lines of vacancies
or a grain boundaries. Examples of 2D defects are wrinkling and scrolling
of the layers. The 0D and 1D defects can typically act as scattering cen-
ters of electrons which decreases the carrier mobility in the sample. As
mentioned above, grain boundaries are a common source of low mobility
in various TMD samples.

Until recently, there has been agreement that the most commonly ob-
served type of point defect in monolayer TMDs was a chalcogen vacancy.
In a DFT study by Haldar et al.61, the formation energies of a long range
of point defects were investigated in single layer TMDs. This study con-
cluded that the chalcogen vacancy was the most stable defect at metal
rich conditions except in MoTe2 where a Te-interstitial is the most sta-
ble defect. In chalcogen rich environment, this chalcogen interstitial was
found to be the most stable stable in all the materials. However, a recent
study by Barja et al.62 has showed that chalcogen vacancies and oxygen
substitutions at a chalcogen site cannot be distinguished on a tunneling
electron microscope (TEM) image. A combination of GW calculations,
scanning tunneling microscopy (STM) and spectroscopy (STS), and non-
contact atomic force microscopy (nc-AFM) imaging concluded that the
most commonly observed defect in their MBE grown MoSe2 and CVD
grown WS2 samples was of the oxygen substitution type rather than the
chalcogen vacancy. One of the main arguments of this work is that the
chalcogen vacancies result in in-gap states which are not observed in their
samples.

Regardless of the nature of the most common defect, the literature
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seems to agree that the defects lead to an intrinsic n-type doping. Using
the simple ionic picture from the previous chapter, a chalcogen vacancy
corresponds to an n-doping of the TMDs since the metal atom is unable to
donate electrons to the missing chalcogen and two electrons remain in the
metal d-orbital. A recent study by Jeong et al.63 has investigated these
vacancies in mechanically exfoliated ML MoS2, MoSe2, WS2, and WSe2
using electrical and optical measurements and found that the occupation
of the related in-gap states pushes the Fermi level closer to the conduction
band in the S-based materials. The vacancies therefore act as n-type
dopants of the material in agreement with the simple picture. In the
Se-based materials the effect is less pronounced leading to only a weak
n-doping in MoSe2 and no significant doping in WSe2. The samples with
oxygen substitutions observed by Barja et al.62 have Fermi levels about
three quarters of the band gap above the valence band edge corresponding
to a small n-doping even though the substitution, using the simple ionic
picture, does not donate any further electrons to the crystal.

Adsorbates from exposure to air can also play a large role in the elec-
tronic properties and intrinsic doping. Liu et al.64 have demonstrated that
a multilayer MoTe2 transistor, fabricated using mechanical exfoliation of
a CVD grown MoTe2 crystal, can be converted from p- to n-type by an-
nealing in vacuum. The p-type behavior is believed to be due to electron
transfer to a oxygen/water redox couple which can be removed from the
surface in the annealing process. The n-type behavior after annealing is
attributed to Te-vacancies.

In conclusion, the research in TMD defects and their effect on the
electronic properties is ongoing and even though some trends are under-
stood, many things remain uncertain. Investigating the effects of defects
in the monolayers is very challenging since TEM exposure, which is the
common technique for investigating defects, introduces defects in itself
and since AFM and STM methods cannot unambiguously identify the de-
fects on their own. The synergy between combined experimental methods
and theoretical predictions using GW calculations therefore seems to be
necessary to gain insight on the nature and consequences of these defects.
The two main materials investigated in this thesis are MoS2 and MoTe2.
The conclusions regarding these materials are that intrinsic n-type doping
is most common when the monolayer is encapsulated or in vacuum and
might be due to S and Te vacancies and that p-doping is most common
in air-exposed MoTe2 which may be due to adsorbed oxygen/water redox
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couples.

5.3 Doping Techniques
Since the intrinsic doping of the monolayer TMDs is barely understood,
controlling the doping density in these 2D semiconductors presents a great
challenge. The common method for 3D semiconductor doping where ion
implantation is achieved by ion bombardment of the sample is much
too destructive for these atomically thin layers and other solutions are
therefore being investigated. The doping techniques are illustrated on
Figure 5.2 and can be divided into four categories; substitutional dop-
ing, charge transfer doping, intercalation doping, and electrostatic doping.
Both metal and chalcogen atoms can be substituted by foreign atoms of
comparable radii resulting in a n- or p-type doping depending on the num-
ber of valence electrons in the dopant atom. For non-metal atoms, the
chalcogen sites are occupied whereas metal dopants will occupy the metal
sites for heavy atoms or the interlayer spacing for light atoms.66 Depend-
ing on the type of dopant atom, large structural distortions may occur
which can alter the material significantly. Suh et al.67 have reported that
substitution of Nb with sulfur in MoS2 crystals drive a transformation of
the stacking sequence from 2H to 3R, and the intercalation of Li-atoms in
the interlayer spacing drives a phase transition in MoS2 from the 2H-phase
to the 1T or 1T’-phase.11,68–72

Charge transfer doping through the adsorption of gaseous molecules
on the basal plane of the TMDs is less volatile since lattice distortions
are avoided. Recently, Chamlagain et al.73 have demonstrated that ad-
sorption of benzyl viologen (BV) molecules on MoS2 and MoSe2 can be
used for area selective doping. A polymethylmethacrylat (PMMA) mask
is used to cover part of the MoS2 flake and the sample is then immersed
in a BV solution. Using this approach, the doping degree can be con-
trolled by the immersion time. 2D semiconductors are very susceptible
to electrical fields in the atomically thin dimension. Charge can therefore
be electrostatically transferred by gate-control as a non-volatile and high-
control doping mechanism. This can be achieved e.g. through a floating
gate set-up74,75 or by charge transfer from an ionic liquid.76–78

This concludes the chapter concerning the properties of the semicon-
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Figure 5.2: Doping strategies of 2D TMDs and their potential applica-
tions. Reprinted from Ref. [65] with permission from The Royal Society
of Chemistry. Copyright 2019.

ducting group-VI TMDs. The next chapter will concern the metallic and
semi-metallic phase of these materials.



CHAPTER 6
Semi-metallic T’-phase

This chapter describes the synthesis and electronic properties of the 1T’-
and T’-phase VI-TMDs. The section on synthesis also describes the syn-
thesis of the 1T-phase since the methods for obtaining both of these phases
are the same. Even though the 1T’-phase is more stable than the 1T-phase,
many of the early attempts on inducing a phase transition of 2H-MoS2
samples have been reported to result in the 1T-phase.

6.1 Synthesis and Phase Transition
The 1T- or 1T’-phase TMDs can be synthesized either by growing or
exfoliating a 2H-phase sample using the methods described in the previous
chapter and afterwards induce the other phase or by varying the growth
conditions in a CVD process to directly obtain the meta-stable phase.
This section will present both types of approaches and therefore serves to
describe both how the 1T- and 1T’-phase TMDs can be synthesized but
also how heterophase devices with phase boundaries can be fabricated.

The 1T’-phase can be induced from a 2H-sample by creating chalcogen
vacancies resulting in an excess of electrons in the metal d-orbitals which
drives the phase transition. The vacancies can e.g. be created from e-
beam69,79 or laser irradiation80 or by Ar-plasma treatment.81 In the case
of e-beam or laser irradiation, the beam can be used to selectively target
an area of the sample whereas the plasma treatment method requires a
protective mask if some areas are indented to remain in the 2H-phase.
Another method, which was extensively used in the early studies, also
uses excess charge to drive the phase transition by intercalating electron-
donating alkali metals such as Li, Na or K into the 2H-phase TMD.11,68–72
An excess charge can be added from the decay of a plasmon into hot
electron-hole pairs. That can e.g. be realised by placing gold nanospheres
on a 2H-MoS2 sheet and illuminating the sample with laser light.82 The
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plasmonic generated hot electrons can transfer into the conduction band
of the 2H-phase and drive the phase transition.

Another method for phase transition is to induce strain on the 2H-
phase. Since the lattice constant of the 1T’-phase is slightly larger than
the lattice constant of the 2H-phase, a tensile stress lowers the barrier for
phase transition. The method was proposed by Duerloo et al.46 in 2014
and has later been experimentally verified.83,84 As an example, Song et
al.83 used an AFM tip to apply tensile stress to the 2H-phase of MoTe2
and were thereby able to lower the temperature of phase transition to 1T’-
MoTe2 from 900 ◦C to room temperature. Besides the phase transition
methods mentioned here, several other have been demonstrated, such as
phase transition via electrostatic gating85, a photochemical method86, or
exposure to chemical vapor analytes.87

The meta-stable phases can also be directly synthesised by changing
the growth conditions in a CVD process. This method has mainly been
achieved for MoTe2,46 where the energy difference between the 2H- and
1T’-phase is very low (11 meV/atom).i By varying the temperature, the
flux of Te atoms can be controlled. A high flux of Te will form the 2H-
phase whereas a lower flux will result in the 1T’-phase presumably due to
Te vacancies. At intermediate temperatures, a mixture of the two phases
can be achieved.88–90 Sung et al.91 have used this approach together with
an excess of NaCl vapor to grow polymorphic structures of the 2H and
1T’-phase of MoTe2. The 1T’-phase grows as needles from a larger pad
of the 2H-phase and crystalline interfaces are formed. The NaCl vapor is
believed to help preserve enough Te vapour pressure to ensure crystalline
growth. Similarly, the growth time of the CVD can be varied which either
allows the sample to be fully tellurized, resulting in the 2H-phase, or ends
before full tellurization, resulting in the 1T’-phase.92 Patterned structures,
e.g. for transistor applications, can be achieved by masking a 2H-region
followed by an etch and growth of pure 1T’-phase by flux-control. This
method can also be applied to stitch different TMDs together which was
achieved by Sung et al.91, creating 2H-WSe2 - 1T’-WTe2 devices. Zhang et
al.12 have used two different Mo-precursors which results in different defect
densities of the CVD-grown MoTe2, selectively stabilizing either the 1T’-
or 2H-phase. A MoO3 precursor results in 1T’-growth in a temperature
range between 500 and 800 ◦C whereas a MoO2−2.5 precursor can result

iUsing calculations from this work.
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in either pure 2H-phase, mixed 2H and 1T’ or pure 1T’ depending on
the tellurization. This method allows for a single-step CVD growth of
heterophase MoTe2 with high crystallinity and atomically sharp interfaces.
To summarize, many different methods have been applied to successfully
synthesize the less stable phases of the TMDs. Heterophase devices with
atomically sharp interfaces have primarily been achieved for MoS2 based
devices using Li-intercalation and for MoTe2 based devices using various
CVD approaches.

6.1.1 Phase Boundaries
Substantial work has been put into investigating the properties of the
phase boundaries which result from a phase transition. Here, I will briefly
review the work concerning phase boundaries in MoS2 and MoTe2. Lin
et al.69 have investigated the 2H to 1T-phase transformation of MoS2
using an aberration-corrected scanning transmission electron microscope
(STEM). Their investigations have revealed both how the atoms move
doing the phase transition but also the atomic configuration of the phase
boundaries when phase transition is induced by Li-intercalation. On Fig-
ure 6.1a-c, the three phase boundaries discovered in this study, the α, β,
and γ boundaries, are shown. The atomic configurations of these three
boundaries are illustrated on figure 6.1d illustrating that they form along
the zigzag direction. Li-intercalation driven phase transitions by Eda et
al.68 and Kappera et al.70 (Figure 6.1e) have revealed boundaries similar
to the γ-boundaries found by Lin et al.69. Sun et al.72 have investigated
interfaces between monolayer H-phase and multilayer 1T’-phase MoS2 and
find that the phase boundaries form along the zigzag directions of the two
phases as illustrated on Figure 6.1f.

Sung et al.91 reported that two types of boundaries form between 2H-
and 1T’-phase MoTe2 when flux-controlled growth is used to induce the
phase transition. One type forms along the zigzag direction of the two
phase, as illustrated on Figure 6.2a, and the other forms between the
zigzag edge of 2H and the zigzag direction of 1T’ turned by 60 degrees,
as illustrated on Figure 6.2b. These two types have also been reported
by Xu et al.93 (Figure 6.2c) where variation of the growth time is used to
grow the 1T’-phase beside the 2H-phase.

Han et al.94 have conducted a comprehensive study of the variation of
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Figure 6.1: MoS2 phase boundaries. a-c show STEM images of 1T-2H
structures obtained by Lin et al. using Li-intercalation to drive the phase
transition, and d shows the atomic configurations of the three types
of boundaries. Reprinted with permission from [69]. Copyright 2014
Springer Nature. e shows a HRTEM image of the 2H-1T phase boundary
found by Kappera et al.. Reprinted with permission from [70]. Copyright
2014 Springer Nature. f shows STEM image of the boundary between
double-layered 1T’-phase and monolayer H-phase observed by Sun et al..
Reprinted with permission from [72]. Copyright 2018 American Chemical
Society.
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Figure 6.2: MoTe2 phase boundaries. a and b show the HAADF-STEM
images and interpreted atomic configurations of the two types of 2H-1T’
phase boundaries observed by Sung et al. Reprinted with permission
from [91]. Copyright 2017 Springer Nature. c shows a HAADF-STEM
image of a representative 2H-1T’ boundary observed by Xu et al.93 where
both of the types reported by Sung et al.91 are present. Reprinted with
permission from [93]. Copyright 2020 John Wiley and Sons. d-e show the
HAADF-STEM images of the 0 and 60 degree rotation 2H-1T’ boundaries
investigated by Han et al.94 corresponding to the boundaries seen on a and
b. Reprinted from [94] under a CC license.
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the deep ultraviolet plasmon oscillation (π + σ) peak as a function of the
rotation angle between the zigzag directions of 2H- and 1T’-phase MoTe2.
The study looks at angles between 0 and 60 degrees and concludes that
the red shift of the plasmon is minimized at 0 and 60 degrees (Figure
6.2d-e). This is interpreted as a sign of a good overlap between the σ
electron clouds of Mo and Te atoms which should result in a low barrier
for carrier injection.

To summarize, phase boundaries of 1T-2H (or 1T’-H) MoS2 tend to
form along the zigzag direction of both crystals and 1T’-1H MoTe2 bound-
aries have primarily been observed to form either along the zigzag direction
of both phases or at a 60 degrees angle from this directions.

6.2 Topological Properties
As mentioned previously, the T’-phase of the VI-TMDs are Quantum
Spin Hall Insulators (QSHIs).51 This section is a partly revised and partly
reprinted from the paper published in Physical Review B in 201995 and
will introduce the topological properties of T’-phase MoS2, MoTe2, WSe2,
and WTe2. It turns out, that some zigzag edge terminations host mag-
netic states which breaks the time-reversal symmetry. This first of all
breaks the topological protection of the edge states and furthermore re-
sults in conducting channels at the edge which no longer can be removed
by changing the topological phase of the bulk.

2D insulators with an electronic structure which is invariant under
time-reversal symmetry can be characterized as being either trivial insu-
lators or quantum spin Hall insulators.96 It is only possible for a mate-
rial to change from one of these topological states to the other if either
the gap closes or time-reversal symmetry is broken. For bulk materials,
the topological state does not have any direct observational consequences.
However, any interface between a trivial insulator and a QSHI e.i. be-
tween the two different topological states, is guaranteed to host gapless
(conducting) boundary states. Since vacuum can be regarded as a trivial
insulator it follows that also any edge of a quantum spin Hall insulator
hosts gapless states.

These boundary or edge states are protected from back scattering by
time-reversal symmetry and the states are always pairs of opposite spin
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such that a spin-up and spin-down channel is present at each edge. The
non-trivial topology simply implies that there is no available scattering
channel and the edge conductance is predicted to be exactly ±e2/h for
spin-up and spin-down electrons, respectively. If time-reversal symmetry
is broken, it is no longer guaranteed that gapless edge states persist at
the edge. Even if they do, the conductance may deviate from the quan-
tized value due to impurity scattering. This has been observed in WTe2

where the presence of an external magnetic field significantly reduces the
edge conductance.49 Likewise, the presence of magnetic impurities at edges
which may lead to broken time-reversal symmetry97–99 and destroy the
topological edge states. Finally, time-reversal symmetry may be broken
spontaneously by the presence of magnetism without introducing any im-
purities. This possibility seems to be largely overlooked in the literature
although it by no means is an unlikely scenario. For example, first prin-
ciples calculations have shown that edges of a monolayer MoS2 in the
2H-phase acquires magnetic edge states although the bulk 2D material is
non-magnetic.100 If time-reversal symmetry is spontaneously broken at an
edge of a quantum spin Hall insulator, the presence of gapless edge states
is no longer guaranteed. Even if they persist, the observable consequences
of the quantum Hall state could in principle be removed by a suitable edge
modification.

As a starting point, let us consider the T’-phase of ML MoS2. This
phase possesses a small band gap of 80 meV101 due to spin-orbit splitting
of the bands occurring between the Γ- and Y -point in the Brillouin zone

Figure 6.3: Top view of a T’-phase TMD showing the (X), (m), and (c)
edge.
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(BZ). The band structure was shown on Figure 4.3c. Note, that using
this method, the gap is 48 meV which is only slightly lower than the
experimental value obtained using STS.101 Three different edges will be
considered, as indicated on Figure 6.3. The (X) edge is a cut along the x
direction and the (m) and (c) edges are cuts along the y direction. The
y-cut can be made in several different ways, but these two edges represent
the must stable ones for the Mo and single-S terminated kinds respectively,
see Appendix B.1 for a stability analysis.

In order to study the electronic bands of the three different edges,
DFT+NEGT calculations on a surface configuration can be used. This
type of configuration consists of two regions; the electrode and the central
region and was described in Chapter 2.2. Green’s functions to couple the
central region to the electron reservoir of a monolayer which is periodic
in the x and y direction (2D crystal). Details on how the systems are set
up can be found in Appendix A.1.

The band structures can be seen on Figure 6.4 showing the density of
states for the k-points along the Y → Γ → Y path of the BZ. The total
number of states is seen on the left hand side and the spin-polarized states
on the right hand side. The solid areas represents the bulk states and the
edge states can be identified as the isolated and spin-polarized bands. All
three edges host gapless edge states. The (X) edge has 4 edge states which
are degenerate two-by-two in the high symmetry points of the Brillouin
zone. Two states can be seen at the region around the Fermi level and
Γ-point and two more states can be distinguished from these around X
and −X at low energies. The pair which is degenerate at the Γ-point
both crosses the Fermi level corresponding to one spin-up (spin in the +y
direction in this case) channel and one spin-down (spin in the −y direction)
channel at the edge. This is exactly what is expected for the topologically
protected edge states of a topological insulator. However, the behavior is
different at the two other edges where time-reversal symmetry is broken.
The effect is most pronounced for the (m) edge and as seen on Figure 6.4b
where the spin polarization is equal instead of opposite for any k and −k
pair of the edge state. Furthermore, the degeneracy at the high symmetry
points is lifted and the bands are separated by approximately 0.25 eV at
the Y and −Y points. For the (c) edge, the effect is more subtle and can
only be seen for the edge states close to the Gamma point between the
two dips of the conduction band. Here, the spin polarization changes, not
at the Γ point, but at a small positive value of k going in the Y direction.
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Figure 6.4: The electronic bands for a the (X) edge, b the (m) edge, and
c the (c) edge of monolayer 1T’ MoS2. left side shows the sum of all spin
components and right side shows the spin-polarized density of states wrt.
the y and x direction, respectively. Adapted with permission from Ref.
[95].
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The origin of this effect is, that the time-reversal symmetry is spon-
taneously broken as a magnetic state is formed at the edge. This can be
illustrated by a plot of the magnetization density as shown on Figure 6.5.
Note, that the spin configuration is non-collinear and we therefore have a
magnetization density wrt. each spatial direction. The figure only shows
the x and z components, since the y component is zero. The magnetic
moments point to the right and downwards (upwards) for the m (c) edge
and have most weight on the last Mo-atom of the surface. The edge states
primarily stems from the Mo d-orbitals and S p-orbitals with the approx-
imate relative weight of 3:1 for the (m) edge and 5:2 for the (c) edge.

The surface configuration allows for observing only a single edge or
surface of a material. This is advantageous in showing phenomenons such
as the ones described above, but some more insights can be gained from
comparing with a nanoribbon configuration as well. Calculations on such a
configuration with two (m) type edges show that the magnetic state points
in the same spatial direction on both edges.95 This is also in contrast to
the QSHI where two spin channels going in opposite directions resides
on each edge. In conclusion, these investigations show that the time-
reversal symmetry can be spontaneously broken on the edges of T’-MoS2

and that it leads to magnetic states which behaves very differently from
the expected topological states. This means that the gapless states on
these edges are not topologically protected.

The magnetization vector, m⃗, and the total magnetization, m, can be
used to quantify the magnetization.

m⃗ =
1
NM

∫

m⃗(r⃗) dV,

m =
1
NM

∫

√

m⃗2(r⃗) dV.

The magnetization is defined per transition metal atom on the edge,
NM . Note, that for all three edges, NM = 1. Studies of the T’-TMD phase
have primarily been based on MoTe2,91,93,94 WSe2,102,103 and WTe47–49
where the T’-phase is relatively more stable compared to the H-phase
than it is for MoS2. The magnetization vector and total magnetization of
the MoS2 (m) and (c) edges are compared to the edges of these materials in
Table 6.1. Note, that MoTe2 and WTe2 are metallic since the valence and
conduction bands overlap in energy. However, the bands are separated in
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Figure 6.5: The magnetization density wrt. the x and z axis of a the
(m) edge and b the (c) edge of MoS2. Adapted with permission from Ref.
[95].

k-space which means that the character of the electronic structure is simi-
lar to the other materials and that a topological index can be defined. The
magnetic edge state is present for MoS2, MoTe2, and WTe2 but missing
for WSe2.

The magnetic (m) edges show a higher magnetism than the magnetic
(c) edges for the same material. This can be understood through the dif-
ferent stoichiometry of the two termination. At the (m) type edge, the out-
ermost metal atoms are completely exposed and missing 3 of the nearest
chalcogenide atoms. This means that the metal atoms end up with a small
excess of electrons compared to a metal atom in the 2D crystal. These
excess electrons will be filled into the d-band resulting in a higher DOS
at the Fermi level. This higher DOS results in magnetism in accordance
with the Stoner criterion. At the (c) type edges, the outermost metal
atoms only lacks a single chalcogenide neighbor. The bonds are therefore
more saturated, the d-band less filled, and the magnetism smaller. The
edges which become magnetic have edge states where the d-orbitals have
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a weight which is larger than twice the weight on the p-orbitals. This
agrees with the explanation above and shows that the magnetism arise
when d-type states dominate at the Fermi level.

It is highly desirable to be able to change the topological index of
insulators by external means. This would imply that gapless surface states
can be removed or introduced at a given edge which may form the basis
of one-dimensional transistors. In the case of the T’-phase TMDs, an
external electric field perpendicular to the layer can induce a transition
from the quantum spin Hall state to a trivial state.51,95 External electric
fields can therefore be used to switch between conductive and insulating
edges. The topological state of the material can be changed since the
electric field at closes the band gap. At a higher field strength, the gap
opens again and the system has become topologically trivial. This is
illustrated on the top part of Figure 6.6 where the distance between the
valence and conduction band is plotted against the field strength. The
vacuum and ML field strength is defined as the slope of the effective
potential in the vacuum an ML region, respectively.

The critical fields, where the gap is closed, are Evac
c = 1.7 V/Å in

the vacuum and EML
c = 6.4 × 10−2 V/Å in the ML. The large difference

between the vacuum field and and field inside the material shows that the
monolayer strongly screens the field. In particular, the longitudindal part
of the dielectric constant in the z direction can be estimated as the ratio
between the vacuum field and the ML field, εML = Evac/EML = 27.

The electronic bands of the MoS2 edges is seen on Figure 6.6 at zero
field, the critical field strength, and twice the critical field strength. The

Eg
(m) edge (c) edge

m m⃗ m m⃗

MoS2 48 meV 6.7 (0.26,0,-0.069) 0.82 (0.035, 0, 0.028)
MoTe2 0 meV 17 (0.75, 0, 0.26) -
WSe2 10 meV - -
WTe2 0 meV 5.7 (0.23, 0, 0.10) 1.0 (0.035, 0, -0.030)

Table 6.1: Calculated band gaps, total magnetization in µB × 10−2 and
magnetization vector in µB pr. transition metal atom on the edge for 4
different T’-TMDs.
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Figure 6.6: Top: Gap between valence and conduction band of T’-MoS2

as function of the effective potential in the vacuum region and the ML.
Bottom: Response from of the electronic bands when applying a perpen-
dicular field. a the (X) edge, b the (m) edge, and c the (c) edge. Adapted
with permission from Ref. [95].
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non-magnetic (X) edge show the expected behavior. Above the critical
field, the gapless states have disappeared and no conducting channels are
available. For the two magnetic edges, on the other hand, the metallic
edge states persist relatively unaltered above the critical field. In the case
of the magnetic edges, it is therefore not possible to remove the conducting
states by applying a field. Due to the weak coupling between the magnetic
and electronic degrees of freedom, the total magnetization also remains
relatively unaltered with respect to the field strength.

A study by Gibertini et al.104 has shown that H-phase TMDs generally
have metallic edge states on the edges along the zigzag direction since
these edges have a polar discontinuity. The polarization of the H-phase
is along the armchair direction which means that an edge termination
along the zigzag edges represents a discontinuity in the polarization and
polarization charges appear at the edge creating a field between the two
edges. This field drives a charge reconstruction where electrons from the
valence bands on one edge is transferred to the conduction band on the
other edge. Put in another way, free electrons and holes are driven to the
edges to screen the polarization charge. These free charges are associated
with the gapless states localized at the edges. The T’-phase also has a
polarization along the armchair direction (x direction) due to the zigzag
chains of metal atoms. One might therefore speculate that the edge states
appearing on the edges which are terminated along the y direction are
related to a discontinuity in the polarization rather than the topological
state of the crystal.

In conclusion, even though the T’-phase TMDs are QSHIs, several of
the edges show breaking of the time-reversal symmetry and exhibits mag-
netic edge states. This means that the gapless edge states of these edges
are no longer protected against impurity scattering. The total magnetiza-
tion varies between different TMDs and is strongest for the Mo-terminated
MoTe2 edge with a value of 0.17 µB pr. unit cell. The topologically pro-
tected edge states can be removed above a critical field while the gapless
magnetic edge states remain relatively unaltered.

The topological properties of the T’-phase zigzag edges is important
for the charge transport along the edge but do not play a significant role in
the charge transfer across the edge.105 Calculations on the charge transfer
between the T’- and H-phase TMDs will therefore not take these effects
in to consideration.



PART III

2D Schottky Barrier
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The two previous parts have introduced the tools and materials which
are the foundation of the research presented in this thesis. In this part,
I will explain the physics behind the Schottky barrier which forms when
a metal and semiconductor are interfaced. The theory is introduced both
in the case of 3D and 2D materials and ab-initio calculations are used to
illustrate how the atomic-scale properties of the interface dominate the
behavior of interfaces between 2D materials.

Metal-semiconductor contacts are some of the main components in
countless electronic devices. The theory behind the Schottky barrier was
formulated by Schottky in 1938106 and in 1942, Bethe refined the theory
by formulating the thermionic emission model.107 The theory has therefore
been around for more than half a century and has been very successful in
describing properties of 3D contacts. However, since modern technological
applications of metal-semiconductor contacts operate on the nano-scale,
it seems reasonable to revisit the subject.

The objective of this part is to gain a basic understanding of how the
dimensionality of the materials affects the electronic properties of a metal-
semiconductor interface. More specifically, the charge transport properties
of interfaces between T’- and H-phase MoTe2 are investigated using ab-
initio modelling. This will build the foundation needed to evaluate these
contacts for usage in a field effect transistor which is the subject of the
final part.

The following chapters are organized as follows,

Chapter 7 describes the basic theory behind the Schottky barrier and
charge transport across metal-semiconductor interfaces and summa-
rizes the most common methods used for determining the barrier.

Chapter 8 presents ab-initio calculations of the Schottky barrier and
charge transport properties of T’-H MoTe2 interfaces.



CHAPTER 7
2D Schottky Contact

In this Chapter, I will describe the theory behind the Schottky barrier
and how the charge transport across metal-semiconductor contacts are
changed by the dimensionality of the materials going from 3D to 2D. The
theory behind the 3D Schottky contact follows Chapter 3 of Ref. [108]
and the 2D expressions are derived using corresponding methods.

The emergence of a Schottky barrier at a metal-semiconductor contact
can be explained by imagining that the two materials are contacted step-
by-step as illustrated on Figure 7.1 and 7.2. Figure 7.1a shows a metal
with work function, qϕm, and an n-doped semiconductor with electron
affinity, qχ, and with a distance between the Fermi level and conduction

Figure 7.1: Schottky barrier, Φn, at metal-semiconductor interface. a
shows the isolated metal and n-doped semiconductor with the metal work
function, qϕm, and semiconductor electron affinity, qχ. The valence band
maximum, εV B, conduction band minimum, εCB, Fermi level, εF , distance
between conduction band and Fermi level in the semiconductor, qϕn, and
vacuum potential, εvac, are marked. b shows the metal and semiconductor
in electrical contact but separated by a small spatial gap.
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band of qϕn. q is the elementary charge. On Figure 7.1b, these two
materials have been electrically connected but are still separated in space.
When the contact is formed, electrons flow from the semiconductor to the
metal to reach equilibrium. The electric field in the gap creates negative
charge on the metal side and positive charge on the semiconductor side.
The conduction band starts to bend and electrons are depleted from the
area close to the interface.

As the distance between the two materials decreases, the field in the
gap increases until the two materials are combined to an interface and the
electrons have been completely depleted from the part of the semiconduc-
tor closest to the interface. This depletion region corresponds to a band
bending of ∆V = q(ϕm − χ − ϕn) (often called the built-in potential). A
Schottky barrier has formed with a barrier height of

ΦSM
n = q(ϕm − χ). (7.1)

This is known as the Schottky-Mott limit and represents the simplest
way of predicting the Schottky barrier height of a metal-semiconductor
contact. The final interface is illustrated on Figure 7.2 for 3D and 2D in-
terfaces, respectively. If the semiconductor had been p-doped, the barrier
would be

ΦSM
p = Eg − q(ϕm − χ), (7.2)

Figure 7.2: Schottky-Mott Schottky barrier in 3D (left) and 2D (right).
The 2D case differs from the 3D case by the created vacuum field, εvac,
and the longer depletion width, xD.
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where Eg is the band gap of the semiconductor. This shows that the
size of the n- and p-type barrier will be anti-correlated since the sum must
equal the semiconductor gap.

In 3D, the charge build-up at each side forms two sheets of opposite
charge. This is the interface dipole. At the metal side, the surface charge
completely screens the build-up charge on the semiconductor side. The
length of the depletion width can be estimated by the assumption that the
charge density equals the doping level, N3D, inside the depletion region,
ρ(x < xD) = qN3D and vanishes outside and that the field created by
the depleted charge vanishes outside the depletion region as well. This is
known as the depletion approximation and separates the Schottky contact
into three areas, the metal side (x < xint), the depletion region (xint <
x < xD), and the quasi-neutral region (x > xD), where xint is the position
of the interface. The term ’quasi-neutral’ refers to the fact that in a real
Schottky contact the field does not vanish completely in this region. The
field created by the charge in the depletion region can be found from the
Poison equation,

d2ϕ

dx2
= −dE3D

dx
=
qN3D

εs

⇒

E3D(x) = −qN3D

εs

(xD − x).

where εs is the dielectric constant of the semiconductor. The corre-
sponding electrostatic potential is parabolic and shown in Table 7.1. The
depletion width is found from the condition that the potential difference
between the two sides equals the built-in potential. This leads to the
square root dependence seen in Table 7.1.

In 2D, charge flows towards the edges of the two materials but this
does not create a uniform field in the depletion region as it does at the
3D contact. The electrostatics at the interface differs from the 3D case in
two important ways.

1. A macroscopic field is created in the vacuum region.

2. The field from the interface dipole is long-ranging which results in
a longer depletion width.
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3D 2D

E(x) = − qN3D

εs
(xD − x) E(x) ≈ − qN2D

πεeff
(ln (2xD − x) − ln (x))

ϕ(x) = − qN3D

εs
(x2

2
− xDx) ϕ(x) ≈ − qN2D

πεeff
[(2xD − x) ln (2xD − x)

+x ln (x) − 2xD ln (2xD)]

xD =
√

2εs∆V
q2N3D

xD = πεeff ∆V

q2N2D ln 4

Table 7.1: Field and potential inside the depletion region of a metal-
semiconductor interface and the depletion width in 2D and 3D. The inter-
face is positioned at x = 0. The expressions for a 2D interface follows the
derivations by Ilatikhameneh et al.109

Figure 7.3: Equipotential lines (purple) and field lines (black) of the field
created in the vacuum region outside a 2D metal-semiconductor interface.
The interface position is marked by the grey line and the atomic positions
are at the center of the z-axis. The values of the equipotential lines are
in meV.
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The first property arises since the 2D system continues to be refer-
enced to the vacuum level after the interface has been formed. This is to
be understood the following way; If an electron is taken from the metal
side far away from the interface, transported through the vacuum, and
returned to the system through the semiconductor, the work done on the
electron must be zero since the system in equilibrium. This implies,

qϕm − ∆εvac − q(ϕn + χ) = 0 ⇒ ∆εvac = −q(ϕm − ϕn − χ) = −∆V.

A macroscopic field is therefore generated in the vacuum region cor-
responding to the potential shift, ∆εvac. This is equivalent to the field
generated when two metal surfaces with different work functions are in-
terfaced (see e.g. Landau and Lipshift110, Chapter 3, §23). The vacuum
potential can be found by solving the Laplace equation in the vacuum
region above the interface,

∇2ϕvac(x, z) = 0 for z > 0

ϕvac(x) = 0 for x → −∞
ϕvac(x) = ∆V for x → +∞

The x-direction is perpendicular to the interface which is positioned
at x = 0 with the metal to the left and the semiconductor to the right
and the z-direction is perpendicular to the nanoribbon which is placed
at z = 0. The energy scale has been chosen such that the work function
of the metal is set to zero. The solution is most easily expressed using
spherical coordinates,

ϕvac(r, θ) =
∆V
π
θ.

The equipotential lines extends from the interface as rays placed at
every value of θ and the corresponding electrical field is,

E⃗vac = −∇ϕvac(r, θ) = −∆V
πr

θ̂

The field lines are completely circular and the strength is determined
by the difference between the two work functions. The vacuum potential
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and field are illustrated on Figure 7.3 for an interface between H- and T’-
phase MoTe2. Note, that these field lines are elliptical rather then circular
due to the boundary conditions in the calculation.

In order to obtain the potential and field from the interface dipole and
the depletion width, the 2D Poisson equation must be solved. In 3D, the
depletion approximation was used to define the boundary conditions when
solving this equation. Unfortunately, these boundary conditions leads to
unphysical behavior at a 2D contact.

I will attempt to explain this behavior by considering a charged metal-
lic nanoribbon. This example illustrates that when a 2D material is
charged, a divergence in the surface charge density arises. Let us con-
sider the charge density of a charged 2D metal nanoribbon at a constant
potential, −ϕ0,

σ(x) =
2εeffϕ0

√

1 −
(

x
xedge

)2
.

εeff is the dielectric constant of the surroundings and the edges of
the ribbon are placed at x = ±xedge. The derivation is carried out in
Appendix C.1. From this expression it is seen that a charged 2D material
in a constant potential will have a surface charge accumulation which
diverges at the edges.

Returning to the 2D interface, the boundary conditions from the de-
pletion approximation are σ(x < xD) = qN2D, σ(x ≥ xD) = 0 and
E(x ≥ xD) = 0. The depletion region is charged due to the depleted elec-
trons and the boundary conditions demand that the potential is constant
in the quasi-neutral region. A divergence in the surface charge density be-
tween depletion and quasi-neutral region therefore appears in correspon-
dence with the example above. This makes the second of the boundary
conditions impossible to fulfill. A derivation showing this in detail can be
found in Appendix C.1.

The charge density divergence at the interface between the depletion
and quasi-neutral region in unphysical since the transition from depletion
region to quasi-neutral region should be smooth. Possible solutions to this
issue, have been presented both by Ilatikhameneh et al.109 and Nipane et
al.111. Both of these derivations use an infinite repetition of image charges
in the quasi-neutral region. The charge density is the first part of the
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quasi-neutral region is constant and equal to the charge density in the
depletion region but the infinite repetition of image charges ensures an
overall neutrality. The resulting potential, electrostatic field, and deple-
tion width obtained by Ilatikhameneh et al.109 are included in Table 7.1.

Both of the derivations result in a depletion width which scales lin-
early with ∆V/N2D. This linear dependence is confirmed using ab-initio
methods in Chapter 8. A corresponding 3D interface has a square root de-
pendence on this term which means that the 2D depletion width is longer.
The potential and field from a 2D interface dipole are therefore longer
ranging than the 3D counterparts. It is important to note that it is the
dimensionality of the contact which results in the longer depletion width.
Screening in 2D materials is generally weaker than in 3D which also leads
to a longer depletion width but this is an effect which is on top of the
dimensionality effect.

This concludes the most simple approximations for obtaining the bar-
rier height and the main differences between a 3D and 2D Schottky con-
tact.

7.1 Fermi Level Pinning
The Schottky-Mott rule assumes an ideal contact. Many physical phenom-
ena can be responsible for breaking the behavior predicted by this rule.
One of the most simple examples is to consider how the image-force can
decrease the Schottky barrier. When an electron moves in the semicon-
ductor towards the metal, it will be affected by an attractive force from
the induced charge on the metal side. This attractive force lowers the
effective Schottky barrier which the electron must overcome to move from
the semiconductor to the metal.

The Schottky barrier height can also be altered by the presence of
interface states. If the interface states are a property of the semiconductor
surface, the neutrality level of the semiconductor can pin the Fermi level
at the interface. At a 2D contact, the interface states can also originate
from the metallic edge. Chapter 8 will elaborate on this using ab-initio
calculations. In this section, I will consider the effect of interface states
originating from the semiconductor surface.

Consider a semiconductor surface with a density of interface states,
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Figure 7.4: Fermi level pinning due to interface states (green) originating
from the semiconductor surface. The Schottky barrier height, Φn depends
on both the difference between the metal work function, qϕm, and semi-
conductor electron affinity, qχ, and on the total charge accumulation at
the interface due to the carrier depletion in the semiconductor, σsc, and
the interface charge traps, σifs. qϕ0 is the charge neutrality level of the
semiconductor and δ is the small gap between the metal and semicon-
ductor which is of atomic dimensions and supports a potential drop, ∆.
Inspired by Ref. [108].

Difs, inside the gap. Some of these states will be donor type which is
neutral when occupied and positively charged when empty. Others will
be acceptor type which are neutral when empty and negatively charged
when occupied. The energy level separating these two types is called
the neutrality level, qϕ0. The Fermi level of the surface will therefore
coincide with this level at a neutral surface. This semiconductor surface
is interfaced with a metal surface such that they are separated by a gap
of atomic dimensions. The gap will be transparent to electrons but large
enough to contain a small potential drop.

Let us consider a case where negative charge is trapped at the interface
due to acceptor states of the semiconductor which became occupied when
the semiconductor was interfaced with the metal. This means that the
Fermi level is above the charge neutrality level as seen on Figure 7.4. The
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charge density of these interface charge traps is,

σifs = −qDifs(εF − qϕ0) = −qDifs(Eg − qϕ0 − Φn).

The space charge inside the depletion region of the semiconductor is
given by,

σsc = qN3DxD =
√

2εsN3D∆V .

The sum of the charge density on the semiconductor side of the in-
terface is therefore the sum of the trapped charge and the charge in the
depletion region. In the metal, an equal and opposite charge is induced,
σm = −(σifs + σsc). The potential inside the small gap at the interface, δ,
is

∆ = −δσm

εi

= ϕm − (χ+ Φn/q) ⇒

ΦSM − Φn = q

√

2εsN3D∆V δ2

ε2
i

− q2Difsδ

εi

(Eg − qϕ0 − Φn).

It has been used that ΦSM = q(ϕm − χ) and the dielectric constant of
the interface region is defined as εi. The barrier height becomes,

Φn =
εi

εi + q2Difsδ
ΦSM +

q2Difsδ

εi + q2Difsδ
(Eg − qϕ0)

= SΦSM + (1 − S)(Eg − qϕ0)

The term related to the charge in the depletion region, q
√

2εsN3D∆V δ2

ε2

i

,
is small unless the doping is very high and has been neglected. S is known
as the pinning factor. For S = 1, there is no Fermi level pinning and the
barrier is determined by the Schottky-Mott rule. This limit corresponds
to Difs → 0. If S = 0 the Fermi level is completely pinned, and the barrier
height equals the difference between the band gap and the charge neutral-
ity level. This limit corresponds to Difs → ∞. The same expressions
can be derived for a 2D Schottky contact since the charge density in the
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Box 7.1.1: 2D interface

λifs = −qDifs(εF − qϕ0) = −qDifs(Eg − qϕ0 − Φn).

λsc = qN2DxD =
πεeff∆V
q ln 4

.

∆ = −δσm

εi

= ϕm − (χ+ Φn/q) ⇒

ΦSM − Φn =
πεeff∆V δ

ln 4εi

− q2Difsδ

εi

(Eg − qϕ0 − Φn).

The term πεeff ∆V δ

ln 4εi
is neglected,

Φn =
εi

εi + q2Difsδ
ΦSM +

q2Difsδ

εi + q2Difsδ
(Eg − qϕ0)

= Φn = SΦSM + (1 − S)(Eg − qϕ0).

depletion region, which is the term with all the dimensionality dependent
parameters, is even smaller in the 2D case. The derivation is shown in
Box 7.1.1.

Since ΦSM is proportional to the metal work function, the pinning fac-
tor can be determined by measuring the barrier height between the same
semiconductor interfaced with different metals. The Schottky contact be-
tween few or single layered TMDs and different 3D metals are systems
which have turned out to be highly dominated by Fermi level pinning.
MoS2 has a pinning factor of ≈ 0.3 and a pinning factor of only 0.07 has
been measured for monolayer MoTe2.19,21

The image force effect and Fermi level pinning are two well-known ef-
fects which may alter the barrier size in a reasonably predictable manner.
However, many other effects can alter the barrier as well. Most note-
worthy, is perhaps the possibility of charged defects or impurities at the
interface which will change the field and thereby the barrier height. When
combining two materials to an interface, contamination of the interface
region is difficult and expensive to avoid. 3D interfaces are not that vul-
nerable to such defects since the interface spans a large region of space
and a low concentration of defect will not change the overall behavior.
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In 2D, where the interface is atomically thin, much lower concentrations
of defects will alter the interface properties. Local stress and strain may
also result in small fields which can alter the barrier height and, finally, a
non-uniform doping will also affect the barrier.

This concludes the part concerning Schottky contacts in equilibrium.
The next section will explain the theory behind charge transfer across a
Schottky contact which is the basis for understanding how field effects
transistors operate.

7.2 Charge Transfer Mechanisms
If a bias is applied across a Schottky contact, an electron current can be
driven from the semiconductor to the metal (forward bias). The charge
transport at a Schottky contact primarily occurs through the 4 mecha-
nisms illustrated on Figure 7.5.

1. Thermionic emission (TE)

2. Tunneling (TUN)

Figure 7.5: The 4 charge transport mechanisms at a Schottky barrier;
Thermionic emission (TE), tunneling (TUN), recombination in the deple-
tion region (RE), and diffusion (DIF). Inspired by Ref. [108].
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3. Recombination in the depletion region (RE)

4. Diffusion (DIF)

Thermionic emission occurs when thermal excitation of the carriers
allows them to be transported over the barrier. This is the dominating
transport mechanism for 3D semiconductors with a high mobility such as
Si and GaAs as long as the Schottky barrier is significantly larger than
kBT . Quantum mechanical tunneling of electrons through the barrier is
the second transport mechanism. This dominates in the 2D Schottky con-
tacts of heterophase MoTe2 which will be the subject of the next chapter.
Recombination of an electron in the conduction band with a hole from
the metal side also leads to a current. Recombination processes are not
treated directly here but can be inferred trough an ideally constant which
is briefly discussed in the section on thermionic emission. Diffusion of
carriers in and out of the depletion region is the final transport mecha-
nism. Transport by diffusion of carriers is mostly relevant for low mobility
semiconductors and is out of the scope of this thesis. See e.g. Ref. [108]
Section 3.3 on this subject.

7.2.1 Thermionic Emission
An n-type Schottky barrier at forward and backwards bias is illustrated
on Figure 7.6. The forward bias, V , raises the electronic levels of the
semiconductor by qV compared to the metal Fermi level whereas a back-
wards bias lowers the levels. The built-in potential in both cases becomes
∆V = Φn − qϕn − qV . Let us assume that for a given system, thermionic
emission is the dominating current transport mechanisms and that the sys-
tem is in thermal equilibrium even though a net current is running. The
total current can be found as a sum of the current running from the semi-
conductor to the metal and the current running in the opposite direction.
The current density towards the metal is determined by the availability
of electrons which have sufficient energy to overcome the barrier height,
µn + Φn − qV ,

JT E
s→m =

∫ ∞

µn+Φn−qV
qvx dn.
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Figure 7.6: A n-type Schottky contact at a forward and b backwards bias.
µm and µn are the chemical potentials of the metal and semiconductor
respectively, Φn is the barrier height from the metal to the semiconductor
and Φn − qV is the barrier height from the semiconductor to the metal.

vx is the electron velocity in the x-direction and n is the electron
density. The change in electron density with energy is,

dn
dE

= D(E)f(E + qϕn) =
1

2π2

(2m∗
e

ℏ2

)3/2 √
Ef(E + qϕn)

≈ 1
2π2

(2m∗
e

ℏ2

)3/2√

E − εCB exp

(

−E − εCB + qϕn

kBT

)

.

Box 7.2.1: 2D interface

dn2D

dE
= D2D(E)f(E + qϕn)

≈ m∗
e

πℏ2
exp

(

−E − εCB + qϕn

kBT

)

.

dn2D

dv
=

(m∗
e)

2

πℏ2
exp

(

− qϕn

kBT

)

exp

(

−m∗
ev

2

2kBT

)

v.
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The Fermi distribution function has been approximated by f(E) =
1/(1 + exp(E/kBT )) ≈ exp(−E/kBT ) assuming that E >> kBT . D(E)
is the density of states of a 3D electron gas, m∗

e is the effective electron
mass in the semiconductor, ℏ is the reduced Planck’s constant, and εCB

is the conduction band minima. Assuming that the energy of the electron
in the conduction band is kinetic, the following can be used to rewrite the
expression for dn,

E − εCB =
1
2
m∗

ev
2 ⇒ dE

dv
= m∗

ev ⇒
dn
dv

=
1
π2

(

m∗
e

ℏ

)3

exp

(

− qϕn

kBT

)

exp

(

−m∗
ev

2

2kBT

)

v2.

using that v2 = v2
x + v2

y + v2
z and 4πv2 dv = dvxdvydvz,

JT E
s→m =

q

4π3

(

m∗
e

ℏ

)3

exp

(

− qϕn

kBT

)

∫ ∞

v0x

vx exp

(

−m∗
ev

2
x

2kBT

)

dvx×
∫ ∞

−∞
exp

(

−m∗
ev

2
y

2kBT

)

dvy

∫ ∞

−∞
exp

(

−m∗
ev

2
z

2kBT

)

dvz

=
qm∗

ek
2
B

2π2ℏ3
T 2 exp

(

− Φn

kBT

)

exp
(

qV

kBT

)

.

Box 7.2.2: 2D interface

Using v2 = v2
x + v2

y and 2πv dv = dvxdvy,

JT E
s→m = A∗

2D T 3/2 exp

(

− Φn

kBT

)

exp
(

qV

kBT

)

.

A∗
2D =

√

m∗
e

2
qk

3/2
B

π3/2ℏ2
.

where v0x is the velocity required to overcome the barrier, Φn − qV =
1
2
m∗

ev
2
0x. The pre-factor A∗ = qm∗

ek2

B

2π2ℏ3 is called the effective Richardson
constant. If the electrons are free, the value is A∗(m0) = A = 120 A cm−2

K−2. The corresponding derivations for a 2D Schottky contact are shown



7.2 Charge Transfer Mechanisms 83

in Box 7.2.1 and 7.2.2 and agree with the derivations by Ang et al.112
using a different approach. The 2D effective Richardson constant of free
electrons is A∗

2D(m0) = A2D = 0.895 mA cm−1 K−3/2.
Assuming that the barrier from the metal to the semiconductor is

unaffected by the bias, the current running in that direction must be
independent on the bias as well. Without any applied bias, the system is
in equilibrium and no net current is running,

JT E
eq = Js→m(V = 0) + Jm→s = 0 ⇒

JT E
m→s = −A∗ T 2 exp

(

− Φn

kBT

)

.

The total current out of equilibrium is then,

IT E
3D = A⊥A

∗ T 2 exp

(

− Φn

kBT

)

(

exp
(

qV

kBT

)

− 1
)

. (7.3)

IT E
2D = W⊥A

∗
2D T 3/2 exp

(

− Φn

kBT

)

(

exp
(

qV

kBT

)

− 1
)

. (7.4)

A⊥ and W⊥ are the area and width of the contact perpendicular to
the transport direction. At negative biases, a small current will run from
the metal to the semiconductor and at positive biases, the current will
run from the semiconductor to the metal and rise exponentially with the
bias. These expressions are derived for n-type semiconductors, for p-type
semiconductors, holes are the majority carriers. The main electron cur-
rent will run in the opposite direction (metal to semiconductor) when a
negative bias is applied. This corresponds to a negative sign in front of
the total current and the bias in the expressions in eq. (7.3) and (7.4).

Charge transfer due to recombination in the depletion region is some-
times included in these expressions as an ideality factor. The ideality
factor, η, is unity if no recombination occur in the depletion region and
increases as this effect becomes more dominant. The factor is included
in the exponential dependence of the bias as exp(qV/ηkBT ). The ideality
factor is sometimes also used to include the effect of tunneling. As we
shall see in the following, this might not be completely justified.

The difference between the 2D and 3D expression is most pronounced
in the different temperature dependency. For free electrons at 300 K,
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the prefactor of the 2D thermionic current is 4.65 A cm−1 and the 3D
prefactor, using a thickness of 1 nm, is 1.08 A cm−1. This illustrates that
the total amount of thermionic current does not differ that much between
comparable 2D and 3D contacts.

7.2.2 Tunneling
Besides transport of thermally excited electrons, a large contribution to
the current can arise from the quantum mechanical tunneling of electrons
through the Schottky barrier. In this section, I will derive expressions for
the current due to tunneling using the Landuer formula. The electron
current is the tunneling probability times the difference in occupation
functions of the metal and semiconductor,

IT UN =
2q
h

∫ Φn−µm

µn

T (E, µn, µm)
[

f
(

E − µn

kBT

)

− f
(

E − µm

kBT

)]

dE

≈ 2q2V

hkBT

∫ Φn−qV

0
T (E, 0,−qV ) exp

(

− E

kBT

)

dE.

µn and µm are the Fermi levels of the semiconductor and the metal,
µm−µn = qV . In the second line, the energy zero point has been set at the
Fermi level of the semiconductor and the difference in the Fermi functions
has been approximated assuming that qV >> kBT and E >> kBT which
is valid at forward bias and barriers significantly larger than kBT . The
tunneling probability can be found using the Wentzel–Kramers–Brillouin
(WKB) method113 and by approximating the potential as a triangular
barrier,

T (E) = exp



−2

√

2m∗
e

ℏ2

∫ xD

xcl

√

ϕ(x) − E dx



 ,

ϕ(x) = qϕn − qV +
Φn − qV − qϕn

xD

x.

xcl is the classical turning point of the barrier and ϕ(x) is the potential
in units of energy. This results in,
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T (E) = exp



−4
3

√

2m∗
e

ℏ2

xD

Φn − qV − qϕn

(Φn − qV − E)3/2



 .

Reintroducing the built-in potential, ∆V = Φn − qV − qϕn, and using
the expression for xD in Table 7.1, the tunneling current becomes

IT UN ≈ 2q2V

hkBT

∫ Φn−qV

0
exp

(

−2
3

(Φn − qV − E)3/2

E00

√
∆V

− E

kBT

)

dE. (7.5)

E00 =
qℏ

4

√

N3D

m∗
eεs

.

To get some insights, we can look at the energy where the tunneling
current has the maximum contribution, i.e. where the term inside the
integral is maximized,

Emax = Φn − qV −
(

E00

kBT

)2

∆V

= (Φn − qV )

(

1 −
(

E00

kBT

)2
)

+ qϕn

(

E00

kBT

)2

.

Box 7.2.3: 2D interface

T2D(E) = exp



−4
3

√

2m∗
e

ℏ2

πεeff

q2N2D ln 4
(Φn − qV − E)3/2



 .

Emax = Φn − qV −
(

E2D
00

kBT

)2

.

E2D
00 =

q2N2D ln 4
2πεeff

√

√

√

√

ℏ2

2m∗
e

.

If E00 << kBT , the system is dominated by thermionic emission and
tunneling contributions are primarily from tunneling near the top of the
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barrier. On the other hand, if E00 ≈ kBT , the tunneling contributions are
primarily at the conduction band of the semiconductor. If N3D = 1018 cm
−3, εs = 10ε0 and m∗

e = m0, then E00 = 2.9 meV and a doping level of
N3D = 1019 cm −3 will correspond to E00 = 9.3 meV.

A corresponding derivation using the 2D depletion width from Table
7.1 is shown in Box 7.2.3. The result is the same but with the differ-
ence that E3D

00

√
∆V → E2D

00 which means that the current becomes inde-
pendent on the built-in potential. The tunneling though a 2D Schottky
contact is therefore primarily dominated by the doping level and the dielec-
tric constant of the surroundings. The energy of maximum transmission
is lowered from the top of the barrier by (E2D

00 /kBT )2. The unit of E2D
00 is

eV3/2 and if N2D = 1012 cm −2, εeff = 3.9ε0, m∗
e = m0, and T = 300 K,

then (E2D
00 /kBT )2 = 6.0 meV whereas a doping level of N2D = 1013 cm −2

results in a value of 0.60 eV.
Emax decreases from the top of the barrier linearly with the doping

level in 3D but quadratically in 2D. Tunneling therefore becomes rela-
tively more probable in 2D contacts compared to 3D for medium and
high doping levels. Since Emax also depends on the built-in potential in
3D, the difference between 2D and 3D will be increased even further.

The integral in eq. (7.5) can be approximated using the method of
steepest descent. This is carried out in Appendix C Section C.2 and
results in

IT UN
3D ≈ AT UN

3D

qV
√

∆V
T 3/2

exp

(

E2
00

3(kBT )3
∆V

)

exp

(

− Φn

kBT

)

exp
(

qV

kBT

)

.

AT UN
3D =

2q
h

E00

k
3/2
B

√
4π =

q2

k
3/2
B

√

N3D

4πm∗
eεs

.

The 2D expression is shown in Box 7.2.4. AT UN is an effective tunnel-
ing constant which is AT UN

3D (m0) = 1.0 A K3/2 eV−3/2 and AT UN
2D (m0) =

0.69 A K3/2 eV−1 using the same parameters as the estimation of E00.
Compared to the thermionic current, the tunneling current has a very dif-
ferent dependence on the temperature. This can have some importance
when attempting to measure a Schottky barrier which I will return to in
the following section. The dependence on the applied bias is similar to
the expressions for the thermionic current which makes this model con-
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Box 7.2.4: 2D interface

IT UN
2D ≈ AT UN

2D

qV

T 3/2
exp

(

(E2D
00 )2

3(kBT )3

)

exp

(

− Φn

kBT

)

exp
(

qV

kBT

)

.

AT UN
2D =

2q
h

E2D
00

k
3/2
B

√
4π =

q3

k
3/2
B

N2D ln 4
πεeff

√

1
2πm∗

e

.

tradicts the idea of defining an ideally factor to include the tunneling
contributions.

This concludes the part describing the charge transfer methods. The
investigations have concluded that thermionic emission follows a different
temperature dependence in 2D compared to 3D but comparable values are
expected around room temperature and that tunneling is more probable
in 2D than in 3D at high or intermediate doping levels.

7.3 Barrier Extraction Methods
The Schottky barrier height may be determined using a range of different
approaches. Current-voltage (IV) measurements can be used to obtain
the barrier directly from eq. (7.3), assuming that thermionic emission is
the dominating transport mechanism,

Φn =
q

kBT
ln

(

A⊥A
∗T 2

J0

)

,

where J0 is the saturation current density which can be found by ex-
trapolating the current value corresponding to zero bias. This method re-
quires that the contact area and effective Richardson constant are known.
If these quantities are difficult to estimate, the activation energy method
can be applied. This method still assumes that thermionic emission is the
dominating transport mechanism and relies on eq. (7.3) and (7.4) which
can be rewritten as,
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ln(I3D/T
2) = ln(A⊥A

∗) − Φn − qV

kBT
. (7.6)

ln(I2D/T
3/2) = ln(W⊥A

∗
2D) − Φn − qV

kBT
. (7.7)

The barrier height is extracted by measuring the current in a range
of different temperatures and extracting the slope in an Arrhenius plot of
eq. (7.6) or (7.7) vs. 1/T. The barrier height becomes ΦTE

n/p = ±qV −αkB

for n- or p-type devices respectively where α is the slope. As mentioned
above, this model assumes a purely thermionic current. However, many
metal-semiconductor junctions form barriers where the current will have
contributions from both thermal excitation of electrons and tunneling.
Suppose that the Schottky diode is dominated by tunneling rather than
thermionic emission, then

ln(I3D/T
2) = ln(AT UN

3D qV
√

∆V )

+
7
2

ln(1/T ) − Φn − qV

kBT
+

E2
00

3(kBT )3
∆V.

ln(I2D/T
3/2) = ln(AT UN

2D qV ) + 3 ln(1/T ) − Φn − qV

kBT
+

(E2D
00 )2

3(kBT )3
.

The barrier height will therefore be underestimated by,

∆ΦT E
3D =

7
2
kBT +

(E3D
00 )2

3(kBT )2
∆V ≈ 98 meV + 1.4 × 10−3∆V. (7.8)

∆ΦT E
2D = 3kBT +

(E2D
00 )2

3(kBT )2
≈ 78 meV. (7.9)

These estimates are made at 300 K and using the same values for the
doping and dielectric constants as in the previous section. The numbers
represent an upper bound for the underestimation of the barrier since
most Schottky contact will have contributions from both tuneling and
thermionic emission and the estimated barrier height using the activation
energy method will lie between Φ and Φ − ∆ΦT E.

The most commonly applied experimental method for measuring the
Schottky barrier in 2D devices is the activation energy method.79,80,89,91,114–116
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Other methods worth mentioning are: measuring the capacitance-voltage
relationship or generating a photocurrent by illumination of the sample.
The relationship between the photocurrent and the energy of the adsorbed
photons can be used to obtain the barrier height. Finally, the barrier can
be measured using Kelvin Probe Force Microscopy (KPFM) which has
been used to measure the barrier height of 2D Schottky contacts as well.92

KPFM is a method using the same principles as atomic force mi-
croscopy. A probe is electrically contacted to a sample and scanned across
the surface. The electrical contact align the Fermi levels of the probe and
sample giving rise to charge accumulation and creating a potential drop
in the vacuum region between the probe and sample. The potential drop
equals the difference in workfunction. Both a direct-current voltage, Vbias,
and an alternating-current voltage VAC sin(ωt), is then applied between
the probe and sample. The total potential difference becomes,

V = Vbias − (ϕprobe − ϕsample) + VAC sin(ωt),

where q(ϕprobe − ϕsample) is the difference in workfunction between the
probe and sample. The accumulated charge creates an electrostatic force
between the probe and sample,

F =
1
2

dC
dz

V 2,

where C is the capacitance and z is the distance between the probe
and sample. Due to this force, the probe will oscillate above the surface.
The oscillation will have a component with frequency ω and a component
with frequency 2ω. The bias is adjusted to counteract the oscillation with
frequency ω, which corresponds to Vbias = ϕprobe − ϕsample and reveals the
difference in workfunction between the sample and probe. If the probe
is scanned across a Schottky contact, a plot of the counteracting bias vs.
the probe position will show the change in workfunction across the barrier.
The difference between the value at the metal side and the semiconductor
side will equal the built-in potential of the Schottky contact. This method
therefore probes the barrier within the Schottky-Mott limit.
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7.3.1 Barrier Calculation Methods
In this thesis, density functional theory (DFT) and the non-equilibrium
Green’s function (NEGF) method are used to calculate Schottky barrier
heights of different 2D metal-semiconductor contacts. The barrier height
can be extracted from the work difference, from the projected density of
states (DOS) along the transport direction, from the transmission spec-
trum (TS), or using the activation energy method and the calculated
current. The two three methods can be performed using equilibrium DFT
calculations whereas the last one requires a NEGF calculation. When cal-
culated Schottky barriers are reported in the remainder of this thesis, the
barriers are defined as in Ref. [22]:

The SM barrier, ΦSM, is extracted from the work difference be-
tween the two isolated crystals and represents the barrier height within
the Schottky-Mott limit.

The DOS barrier, ΦDOS, is extracted from the projected DOS as
the distance between the Fermi level and the maximum (minimum) of the
conduction (valence) band for the n-type (p-type) devices. ΦDOS therefore
includes the band bending due to the electric field created by the interface
dipole. This is a macroscopic electrostatic effect ranging over many atomic
layers.

The TS barrier, ΦTS, is defined as the distance between the Fermi
level and the energy at which the device experience full transmission, de-
fined as 1% of maximum transmission.i ΦTS represents a microscopic
quantity that depends directly on the electronic states available for trans-
port.

The TE barrier, ΦTE, is found by applying the activation energy
method to find the barrier from the temperature dependence of the current
using eq. (7.6) and (7.7). This method therefore assumes that the current
is dominated by coherent transport of thermally excited electrons above
the Schottky barrier.

iThe threshold of full transmission is discussed in Ref. [22].



CHAPTER 8
Ab-initio Modelling of
Heterophase MoTe2

Contacts
This chapter illustrates some of the rich physics which takes place at the
interface between T’- and H-phase MoTe2. The Schottky barrier which is
formed between the two phases is highly dominated by the local atomic
configuration at the phase boundary and by the density of states at the
interface. States in the interface are present at all of the investigated phase
boundaries and originates from the T’-phase. The states are either metal
induced gap states or resonances originating from T’ edge states. Both
types of interface states greatly affect the charge transport leading to lower
Schottky barriers. The first section will illustrate how the atomic positions
at the boundary can change the barrier height by more than 0.6 eV and
the depletion width by more than 3 nm’s. The next section dives into the
role and origin of the interface resonances and the last part demonstrates
how the electrostatic response is affected by the interface states as well.
The objective of these investigations is to gain a better understanding of
the charge transport mechanisms across these heterophase contacts and
the main conclusion is that they are dominated by quantum mechanical
effects.

8.1 Variation with Phase Boundaries
This section will illustrate how the atomic rearrangements, potential pro-
file, and charge transport properties show large variations across different
phase-boundaries between the T’- and H-phase. As discussed in Section
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Figure 8.1: The eight possible phase boundaries along the zigzag direction
between H- and T’-phase TMDs. Yellow triangles represent the H-phase
geometry and red and blue zigzag chains represent the T’ geometry. The
metal atoms are placed at the corners of the blue and yellow triangles. In
the lower panel, red crosses mark a triangle corner without a metal atom
and blue circles mark metal atoms placed away from a triangle corner.

6.1.1, phase boundaries of T’-H MoTe2 have primarily been observed to
form either along the zigzag direction of both phases or at a 60 degrees
angle between these directions. DFT calculations by Li et al.117 on 12
different interface geometries along the zigzag direction have shown that
the interfaces which conserve the local atomic structure of the two phases
close to the interface result in the most stable configurations. Phase-
boundaries along the zigzag direction which conserve the stoichiometry of
the two phases are therefore of interest. Eight such unique boundaries
can be made, as illustrated on Figure 8.1.

The properties presented in this section are all calculated without in-
cluding the spin-orbit coupling since neither the atomic rearrangements
nor the charge transport are expected to depend significantly on this. The
T’-phase is therefore a semi-metallic phase with a Dirac cone between the
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X- and Γ-point as illustrated on Figure 4.3c.
As a starting point, let us consider the stability of these phase bound-

aries. The stability can be calculated using nanoribbon configurations of
the eight boundaries consisting of an H-phase edge, an H-phase region,
the phase boundary, a T’-phase region, and a T’-phase edge. The unit
cell is doubled in the y-direction which allows for a small stabilizing dis-
tortion at some of the boundaries. In order to match the unit cells, the
T’-phase is strained by 2.12 % along the y direction to make a match
between the (200)-edge of T’ and the (02-20)-edge of H. The details on
how the interfaces are build are outlined in Appendix A.2.

The total energy of such a nanoribbon can be divided into the following
contributions,

Eribbon = nT ′ET ′

+ nHE
H +W (Eedge(T ′)

F + E
edge(H)
F + Eboundary

F ).

W is the width of the ribbon in the x-direction, Eribbon is the total
energy of the ribbon, and nT ′ET ′ and nHE

H are the energies of nT ′ and
nH unit cells of the T’- and H-phase, respectively. Eedge(T ′)

F , Eedge(H)
F , and

Eboundary
F are the heat of formations of the edges terminating the nanorib-

bons and the phase boundary pr. unit length of the edge or boundary.

Figure 8.2: The relative stability of the
eight phase boundaries between H- and T’-
phase MoTe2 as a function of the chemical
potential of tellurium in the H-phase.

∆Ea
int Ref ∆Ea∗

int 0.364

∆Eb
int 1.33 ∆Eb∗

int 1.31

∆Ec
int 1.05 ∆Ec∗

int 1.17

∆Ed
int 0.0273 ∆Ed∗

int 0.0263

Table 8.1: Relative sta-
bility in eV/Å of the
eight phase boundaries at
µH

T e = 1.
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Note, that the edges are fixed in the crystal structure of the 2D crystal.
The energy of the free edges of each phase must be subtracted in order to
isolate the formation energy of the phase boundaries. The energy of the
free edges can be found from T’-phase nanoribbons and H-phase triangu-
lar nanoparticles and are dependent on the chemical potential of tellurium.
The expressions for the stabilities are derived in Appendix B.2 and the
results are illustrated on Figure 8.2 relative to the most stable interface
at µH

T e = 1. This corresponds to Te atoms at the same chemical potential
as in a tellurium alpha crystal. At Mo-rich or intermediate conditions,
µH

T e ≤ 1, the a- d- and d* boundaries are most stable whereas in Te-rich
conditions, µH

T e > 1, the c and c* boundaries become the most stable. The
stabilities at µH

T e = 1 are summarized in Table 8.1.
These stabilities assume a that the position of the interface is exactly

between the atoms which originally belonged to the H-phase on one side
and the T’-phase on the other. This is justified since the energy of the
T’- and H-phase unit cells only differs by 11 meV/atom such that shifting
the interface position a few atomic layers will have limited impact on the
formation energy.

Figure 8.3: Charge redistribution due to the rearrangement of atoms at
the six phase boundaries. The colored charges represent the trend due
to atomic rearrangements at the boundaries. ’-’ signs represent a region
where the atoms have been pushed closer together and ’+’ signs represent
a region where the atoms are further apart compared to the original crystal
structure. The grey vertical line marks the boundary and is placed at the
rightmost atom of the T’-phase.
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In the following, I will describe the trends in the charge transfer prop-
erties of the six types of boundaries, a, b*, c, c*, d and d*. The effective
potential perpendicular to the transport direction contains information on
the charge transfer since this is the potential that the charge carriers must
overcome in order to be transmitted across the phase boundary. However,
the potential is difficult to interpret since two contributions are coupled;
the change in potential due to atomic rearrangements at the boundary and
the potential from the interface dipole. To interpret the potential profile,
it can therefore be instructive to inspect the atomic rearrangements at
the relaxed boundary first. The relaxed boundaries are shown on Figure
8.3. Areas where atoms have been pushed further apart compared to the
position in the 2D crystal are marked by a ’+’ charge. The electron gas is
thin in these areas compared to the electron gas in the undistorted crystal.
Likewise, areas where the atoms have been pushed closer are marked by
a ’-’ charge.

The transport properties across the phase boundaries can be investi-
gated by using DFT+NEGF calculations and converting the nanoribbons
into device configurations which have an H and T’ electrode and a cen-
tral region with the phase boundary. Details on this procedure and the
calculations are explained in Appendix A.2. Figure 8.4 shows effective
potentials both for p- and n-doping with ND/A = 4.6 × 1012 cm−2. The
doping has been added to atoms which originally belonged to the H-phase.

The effective potential is the sum of the Hartree potential, the exchange-
correlation potential, and the electrostatic potential of the ions. To avoid
including the effects of the potential drop in the vacuum region, the poten-
tials have been averaged over a strip placed 4 Bohr radii above the highest
positioned atom, zmax, and 4 Bohr radii below the lowest positioned atom,
zmin,

Veff (x) =
1

W (zmax − zmin)

∫ zmax

zmin

∫

Veff (x, y, z) dy dz. (8.1)

Gaussian functions have been used to remove the fluctuations at the
atomic positions. Note, that the value of the potentials at the left bound-
ary should be equal, but isn’t, due to the difference in how much the
nanoribbon buckle at the phase boundary. The buckling creates different
z off-sets between the two phases and gives a slightly different average.
Since the plots are used to investigate the change in potential at the
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Figure 8.4: Effective potential of the 6 interfaces for both n- and p-doping.
a and c shows the n-type and p-type d*-, a-, and b*-interfaces respectively.
b and d shows the potential of the c-, c*-, and d-interfaces. The colors
denote the different boundaries and follow the legend on Figure 8.2 and
grey charges represent the interface dipoles created by charge transfer
between the two phases. The grey vertical line marks the boundary and
is placed at the rightmost atom of the T’-phase.
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boundary, these slight differences should not affect the conclusions. The
charge accumulation in the semiconductor and on the metal edge creating
the interface dipole is illustrated by grey charges. The rearrangements
which were highlighted on Figure 8.3 are also marked by colored ’+’ and
’-’ signs. The trends in the rearrangements are generally reflected by the
potentials such that regions with an thin electron gas are accompanied
by a rise in the effective potential whereas the regions with a dense gas
correspond to a dip in the potential.

The 6 interfaces have been paired up 3-by-3 depending on what type
of behavior the potential shows. The first group is the d*-, a- and b*-
interfaces which all show a rise in the potential at the phase boundary
independent on the type of doping. The sign of the interface dipole is
inverted between n- and p-doping and this rise is therefore concluded to
be due to the atomic rearrangements. The b*-type furthermore shows a
dip in the potential to the right of the interface for both types of doping.
This is interpreted as a strong dipole due to the rearrangements. At the
d*-boundary, a dip in the potential is expected to the left of the interface
from the observed rearrangements. The reason that this doesn’t show up
in the potential may be that the rise in potential due to the rearrangement
to the right of the interface is much larger.

The second group is the c-, c*-, and d-interfaces. These all have a
dip in the potential at the phase boundary. The c-type also has a rise
in the potential at the semiconductor side of the interface for both types
of doping. The dipole of the c-boundary point opposite to the interface
dipole of the p-type devices creating a very flat potential. In conclusion,
the atomic rearrangements have a large influence on the potential profile.
At several of the boundaries, this is the only visible contribution at the
phase boundary whereas the potential from the interface dipole only shows
up as a tail in the depletion region.

Figure 8.5 shows the projected density of states (DOS) across the
boundaries. The projected DOS directly shows the band bending of the
semiconductor and the height of the Schottky barrier. According to the
Schottky-Mott rule, all of these boundaries should result in the same bar-
rier height and depletion width. The work function of T’ MoTe2 lies
within the gap of the H-phase which leads to a work function difference
of ΦSM

n = 0.76 eV and ΦSM
p = 0.20 eV for n- and p-doping respectively.

However, the large variation in barrier heights between these 6 different
phase boundaries demonstrates that a quantum mechanical description is



8.1 Variation with Phase Boundaries 98

Figure 8.5: Projected density of states and Schottky barrier heights of the
six interfaces between T’ and H-phase MoTe2. The corresponding atomic
arrangements are illustrated on Figure 8.1. Top and bottom panels show
interfaces where the H-phase has been n- or p-doped with a doping level
of ND/A = 4.6 × 1012 cm−2.
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absolutely necessary. It is worth noticing, that the p-type c-interface has
a vanishing Schottky barrier which makes this kind of phase boundary
promising for device applications.

Interface states, where the DOS is increased locally at the boundary
but decreases both towards the metal and semiconductor side, can be
observed in all of the 6 boundaries. Examples, which can be observed
easily from Figure 8.5, are at 0.35 above the Fermi level for the n-type
a-interface, at 0.6 eV above the Fermi level for the n-type c-interface, at
0.11 eV below the Fermi level for the p-type a-interface, and at 0.15 eV
below the Fermi level in the p-type c*-interface. The origin of some of
these interface states is discussed in the next section.

The barrier heights and depletion widths are summarized on Figure
8.6 where the p-type barriers have been defined as a negative barrier, in
order to illustrate the trends. The n- and p-type DOS barriers mostly show
opposite trends which is in agreement with the Schottky-Mott rule. The p-
type a- and c*-interfaces have a lower barrier than what the corresponding
n-type barrier would predict. This seems to be due to the large interface
DOS near the top of the barrier in these two devices. The large interface
DOS bridges the gap between the valence band and metal and results in
an effectively lower barrier than what the potential would dictate. The
difference between the p- and n-type barrier also varies between the 6
interfaces. The largest difference is for the c-type interface and the lowest
is for the c*- and b*-interfaces. These differences seems to be due to the
amount of interface DOS at either the n- or p-type barrier or both.

Comparing with the trends seen in the effective potentials, the bound-
aries, where the atomic rearrangements result in a charge distribution
which is opposite of the interface dipole, generally show flatter potentials
and lower barriers. The charge distribution from the rearrangements there-
fore seems to be able to screen the interface dipole resulting in a smaller
barrier for transport. This is e.g. the case at the n-type b*-boundary
which can explain why the b*-interface has a smaller n-type barrier than
p-type barrier in contrast to the other five interfaces. Likewise, the p-
type c-boundary has a very small barrier reflected in the flat potential on
Figure 8.4.

The transport properties can also be described by the size of the TE
barriers which are shown on Figure 8.6a as well. They have been extracted
from the temperature dependence of the current at a small bias of ±0.01 V
for n- and p-doping and using the method explained in Section 7.3. These
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Figure 8.6: Schottky barrier heights and depletion widths of six interfaces
between H- and T’-phase MoTe2 where the H-phase has been n- or p-
doped with ND/A = 4.6 × 1012 cm−2. a Schottky barrier heights from
the projected density of states, ΦDOS, and the thermionic emission model,
ΦT E. b Depletion widths. The colors denote the different boundaries and
follow the legend on Figure 8.5 and the boundaries have been placed in
the order of decreasing n-type DOS barriers.

barriers follow the trends seen in the DOS barriers. However, the p-type
c- and a-boundary have TE barriers that are larger than the DOS barrier.
This can be explained by the current transport being limited by momen-
tum conservation when the barrier in the DOS is very low. On the other
hand, the n-type TE barriers are very low and become comparable to the
value of the conduction band for both the d-, c*-, and b*-interface. The
reason for these very low TE barriers is that the transport is dominated by
tunneling which can be enhanced by the presence of the interface states.
Both of these phenomena are described in more detail in the next section
which deals with the effect of these interface states. Figure 8.6b shows the
depletion widths which are defined from the band bending seen on Figure
8.5. The depletion width is the distance from the top of the barrier to
the point where the band becomes flat. The trend in barrier heights are
generally followed by the depletion width.

In conclusion, these results underline that the charge transfer at these
heterophase interfaces is dominated by atomic-scale effects and that both
DOS barrier heights and potentials show very large variations with the
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type of phase boundary.

8.2 Role and Origin of Charge
Carrying Interface States

As demonstrated in the previous section, interface states appear at many
types of phase boundaries between T’ and H MoTe2. The effects of these
states on the charge transport are nicely illustrated at an n-doped c*-type
interface. However, before starting the analysis of this device, let me
distinguish between the different types of quantum states which can be
present at a 2D metal-semiconductor interface.

• Semiconductor edge states are a property of the isolated semiconduc-
tor edge and can act as charge traps at the interface. The presence
of such states tend to lead to Fermi level pinning (FLP), see Sec-
tion 7.1.

• Metal edge states are a property of the isolated metal edge. They
will not pin the Fermi level as charge cannot be trapped at the edge.

• Metal-induced gap states (MIGS) stems from the extended bulk
metal states protruding into the gap region of the semiconductor
with their exponential tail.

• Topological interface states are worth mentioning since the interface
between the T’-phase and H-phase TMDs represent a boundary be-
tween a topological and a trivial material which will lead to topolog-
ically protected interface states. However, since these states travel
along the interface, they will not participate in the transport.

Both the semiconductor and metal edge states can be the result of a
hybridization between bulk states and discrete states related to defects or
atomic rearrangements at the boundary. The states may also appear due
to a discontinuity in the polarization104, or a finite magnetization95 at the
edge which can prevail even after the edge is interfaced with another ma-
terial. The types of interface states which aren’t localized can contribute
to the charge transport between the metal and semiconductor. This is
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e.g. the case, when edge states become resonances. The MIGS will also
contribute to transport if they have overlap with semiconductor states at
the other side of the boundary.

The effect of a hybridization between a discrete state and a continuum
of states can be illustrated through the Newns-Anderson model. This is a
tight-binding model consisting of an semi-infinite chain, often representing
the sp- or d-band of a metal, and an end-site which represents a discrete
state with a specified coupling to the chain. The DOS inside the chain
(grey) and at the last site (blue and red) are illustrated on Figure 8.7a.
In the case where the discrete state couples strongly with the bulk states,
corresponding to a defect at the metal edge, the discrete state will be
broadened and lowered in energy. The projected DOS along the chain
is illustrated on Figure 8.7b for this case. In the case of weak coupling,
corresponding to a defect state which couples to a bend semiconductor
band, the discrete state experiences only a small broadening and energy
shift and may become a resonance. The resonance only has finite lifetime
at the edge and then decays into the bulk, as illustrated on Figure 8.7c.

Let us continue with a concrete example of the effects of these interface
resonances. The following analysis is partly revised and reprinted from
the paper published in Nanoscale Advances in 202122. The projected DOS

Figure 8.7: The DOS resulting from the Newns-Anderson model, when a
discrete state coupled to a continuum of states. a shows the DOS at the
end of the chain in grey and at the last site in blue and red for strong
and weak coupling respective. b illustrates the projected density of states
along the chain for the bulk and edge states in the case of a metal whereas
c shows the case of a semiconductor with bend bands and a resonance at
the edge.
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Figure 8.8: Projected DOS, transmission spectrum, and Arrhenius plot
of the devices with a doping of ND/A = 4.6 × 1012 cm−2. a and d show
the band bending, interface states (indicated by the arrows), and DOS
barrier (orange) of the n- and p-doped device respectively. b and e show
the transmission spectrum and the TS barrier (green) of the two devices.
c and f show the ky-dependence of the transmission spectra of the de-
vices. The white star on c marks the position at which the transmission
eigenstates on Figure 8.9 have been calculated. g shows the Arrhenius
plot and TE barriers at ±0.01 V bias. 201 ky-points have been used for
the non-selfconsistent calculations of the transmission spectra and current.
Revised with permission from [22].

of two c*-boundary devices, where a doping of ND/A = 4.6×1012 cm−2 has
been added to the atoms which belonged to the H-phase before relaxation,
are seen on Figure 8.8a and 8.8d. The DOS barriers are 0.32 eVi and 0.19
eV for the n- and p-doped devices respectively. One or more interface
states are present in the band bending region between the Fermi level
and the barrier height. The positions of the interface states are indicated
with arrows. In the n-doped device, interface states or resonances are
seen around 0.12 eV and 0.28 eV above the Fermi level. The states are
predominantly localized in the interface region with a high DOS which

iThe energy resolution of this DOS is slightly lower than on Figure 8.5 resulting
in a n-type barrier of 0.32 eV in stead of 0.34 eV.
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decays both towards the metal and the semiconductor. In the p-doped
device, interface states are seen 0.15 eV and 0.24 eV below the Fermi level.

The transmission spectra are illustrated on Figure 8.8b and 8.8e. The
TS barrier of the n-doped device is 0.30 eV and the p-doped device has a
TS barrier of 0.19 eV which agrees with the DOS barrier heights. A peak is
seen in both transmission spectra around the energy of the interface states
closest to the Fermi level which illustrates that these states contribute
significantly to the charge transport. The peak is most visible in the n-
doped device where the position of the interface state is well below the
barrier height whereas it is more difficult to see in the p-doped device,
where the interface state is positioned very close to the barrier.

To investigate the origin of these interface states, the transmission
eigenstates of the n-doped device at 0.12 eV above the Fermi level and
at the ky-value of -0.3 (as indicated by the white star on Figure 8.8c) are
plotted on Figure 8.9a and 8.9b. The green and yellow isosurface illustrate
the eigenstate originating from the T’ electrode, ΨL, and the pink and cyan
isosurface illustrate the eigenstate originating in the H electrode, ΨR. It
is seen that the transport primarily occurs between dyz like orbitals on the
molybdenum atoms in the interface and dz2 like orbitals in the H-phase.

The DOS close to the interface at the position of the last Mo-atom
belonging to the 1T’-phase is seen on Figure 8.9c for the two devices
along with corresponding devices with a lower doping density. The peak
of the interface states just above and below the Fermi level only moves
about 60 meV between the 4 devices. An isosurface plot of the left trans-
mission eigenstate of the low n-doped device at 0.14 eV above the Fermi
level results in the same isosurface as seen on Figure 8.9, identifying it
as the same state. Based on these observations, the conclusion is that
the interface states are mainly determined by the 1T’-phase rather than
H-phase. These heterophase junctions are therefore free of FLP despite
hosting interface states. This agrees with a recent study by Urquiza et
al.118 who have investigated doped T’-H MoS2 junctions. The FLP of
interfaces between 3D metals and H-phase TMDs has in previous stud-
ies been attributed to defects119 or negative ionization of the outmost S
atom complex.20 The reason why such behavior isn’t present in these sys-
tems might therefore be that they represent perfect crystalline interfaces
without any defects with dangling bonds.

To summarize, these interface states are most likely resonances which
stems from a metal edge state broadened by a strong coupling to the
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Figure 8.9: Transmission eigenstates of the c*-boundary with n-doping
ND = 4.6 × 1012 cm−2 at ε = 0.12 eV and ky = −0.3. a and b show the
isosurfaces of the eigenstate from the T’ electrode, ΨL, (green and yellow
isosurface) and the eigenstate from the H electrode, ΨR, (cyan and pink
isosurface) seen from the side and top of the ML respectively. c the DOS
around the Fermi level projected on the final Mo atom of the T’-phase at
x = 6.0 nm. The arrows indicate the energy of maximum DOS of the two
interface states placed closest to the Fermi level. Revised with permission
from [22].
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bulk metallic states and with a weak coupling with the semiconductor
states at the conduction or valence band. This conclusion agrees with the
decaying DOS both towards the metal and semiconductor. As already
mentioned, these resonances play a large role in the charge transport which
can be seen in the transmission spectrum but becomes even more evident
considering the effective Schottky barriers found from thermionic emission
(TE) theory. The temperature dependence of the current through the
devices is seen on Figure 8.8g and shows an TE barrier of 55 meV for the
n-doped device and 0.16 eV for the p-doped device between 300 and 450 K.
The n-doped device shows tunneling dominated current up to around 740
K whereas the p-doped device becomes dominated by thermal excitation
already around 320 K. The very low TE barrier in the n-doped device
reflects the steep increase in the transmission spectrum. The temperature
dependence of the current is evaluated as,

I =
2q
h

∫

T (E, µL, µR)×
[

f
(

E − µL

kBT

)

− f
(

E − µR

kBT

)]

dE, (8.2)

where the transmission is integrated with the two Fermi distributions
of the electrodes. A steep transmission onset therefore results in a sig-
nificant amount of current running already at low temperatures and the
current will only have a weak dependence on the temperature. In the
p-doped device, the interface states only has a small effect. This is partly
because these interface states are positioned close to the DOS barrier and
partly because only few states are available for transport due to the sym-
metry of the system.

This symmetry is illustrated on Figure 8.8c and 8.8f which shows the
ky-resolved transmission spectrum for both devices. For the n-doped de-
vice, a reasonably range of ky points contribute to the transmission already
at the conduction band edge. For the p-doped device, the transmission
is much more narrow in k-space. This is reflected in the rapid decay
of the transmission from the energy of the interface states towards the
transmission onset on Figure 8.8e where the transmission is summed over
all ky-points. The k-dependence of the transmission arises due to the
different dispersion relations of the T’- and H-phase. In order to have
momentum conservation perpendicular to the transport direction, a state
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must be available at the same ky-value in both phases. This is possible
for a larger range of ky-points for the n-doped device than for the p-doped
device. This is also the reason why the transmission onset of the p-doped
device occurs below the valence band edge. There are no states available
in the T’-phase for transport at the valence band edge of the H-phase.

The lowering of an TE barrier due to tunneling is described in Sec-
tion 7.3. The maximum barrier underestimation due to tunneling, using
eq. (7.9), is between 97 meV and 0.12 eV at 300 K and 450 K, respec-
tively.ii This can not account for the entire difference between the TE
and DOS barrier of the n-doped device. Using the Wentzel–Kramers–
Brillouin (WKB) method, the transmission probability across a potential
barrier with the shape of the conduction band can be calculated. From
this transmission and eq. (8.2), the TE barrier can be estimated when
the effects of the resonances are omitted. This results in an TE barrier of
0.18 eV in reasonable agreement with the underestimation predicted by
the simple model. This supports that it is the presence of the resonances,
and not the well-known barrier tunneling, which is responsible for the very
low TE barrier of this junction.

In conclusion, the charge transport and effective Schottky barrier can
be decreased dramatically due to the presence of interface states. In con-
trast to the effect of Fermi level pinning where the charge neutrality level
of the semiconductor edge dominates the band bending and DOS barrier,
in these cases, interface resonances originating from the metallic phase
dominates the size of the effective barrier by enhancing the tunneling
current. Since TMDs with group six metals have very similar dispersion
relations and chemical bonds it seems likely that the effect will be present
in other heterophase devices as well.

8.3 Electrostatic Response
In the following section, I will highlight some of the differences between the
electrostatic response of the interfaces calculated with ab-initio methods
and the response predicted by classical electrostatics. The electrostatic
response of the Schottky barrier is one of the main mechanisms in a field

iiWith the doping level of ND/A = 4.6 × 1012 cm−2 and using the effective mass of
carriers in ML MoTe2 at the Γ-point of the valence band, m∗ = 10.93m0.120
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Figure 8.10: The T’-H device of ML MoTe2 on a substrate and back-
gate. The top part shows the atomic configurations of the two investigated
boundaries seen from the top. The bottom part shows the device seen from
the side and consisting of a central region and two electrodes. The total
cell size is (30.0, 0.718, 15.0) nm.

effect transistor (FET). In the FET, a gate potential is used to draw in
or push out carriers from the semiconducting channel and thereby turn
the device on or off. Here, the doping level in the H-phase is tuned in
order to mimic this electrostatic effect and investigate the response of the
Schottky barrier.

In the calculations, the interfaces are placed on a 5 nm substrate which
is represented as a continuum dielectric with a dielectric constant of ε =
3.9, in agreement with the dielectric constant of SiO2, and a thin back-
gate of 1 Å as shown on Figure 8.10. The distance between SiO2 and
2H-MoS2 has been estimated to be 2.96 Å121 and the smallest distance
between SiO2 and T’-MoTe2 has been calculatediii to be 2.32 Å. The 2D
interface is placed such that the lowest atom is 2.4 Å above the substrate

iiiUsing the PBE-D2 functional and the counterpoise correction, small k-point den-
sity as the MoTe2 calculations, 125 Ha cut-off, PseudoDojo pseudo potentials and a
match between 4 unit cells of SiO2 to 9 unit cells of T’-MoTe2 resulting in 0.6 % strain.
The relaxation was performed with a fixed SiO2 crystal and a rigid MoTe2 crystal to
get the spacing.
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since varying this distance between 2.2 and 4 Å did not change the barrier
height or depletion width.

The screening by the substrate is an important part of the electro-
statics involved when the Schottky barrier is formed. The substrate will
enhance the screening of the interface dipole field at the interface and
result in a larger charge transfer since the overall potential difference be-
tween the two phases is independent on the substrate. The substrate will
therefore increase the depletion width but not alter the barrier height. In
an experiment, a substrate below a 2D TMD may have several effects: a
small change of the band gap122, longer depletion widths123, and a modu-
lation of the work function or doping level109.

To illustrate the electrostatic response, the valence band bending of a
c- and d-type interface with p-doping between 1012 and 1.5 × 1013 cm−2 is
shown on Figure 8.11a and 8.11c. The doping is added to all of the atoms
to avoid any dependence on the choice of which atoms belongs to which
phase. As the doping density is increased, the barrier is decreased and
the depletion width becomes shorter. The c-type device has flat bands
already at a doping level of 4 × 1012 cm−2 where the barrier height starts
to follow the valence band edge. The d-type, on the other hand, shows
band bending for all these doping densities.

Figure 8.11b and 8.11d show the p-type barrier height as a function of
the doping density together with a grey scale contourplot of the density
of states projected on the boundary. The position of the boundary is
illustrated by the grey vertical line on Figure 8.11a and 8.11c and is defined
as the x-coordinate of the leftmost Mo-atom which belonged to the H-
phase before relaxation. The movement of the valence band edge as a
function of doping is indicated by the black line. In the case of a c-type
interface, the barrier height follows the movement of the valence band
maximum, εV B, for the first 3 doping levels and then jumps to the value
of εV B after which the bands become flat. A high density of interface
states is present between the barrier height where the jump occurs and the
valence band edge. When the doping is increased, the barrier is lowered,
i.e. moved upwards on the figure, but enters a region with a large density
of interface states (DOIS). These states bridge the narrow part of the
barrier and allows for charge to be transported resulting in the top of the
barrier being pushed up in energy to a point where the DOIS becomes
negligible or the valence band becomes flat. The behavior is perhaps even
more pronounced in the d-type case, where a large DOIS is seen in the
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Figure 8.11: The Schottky barriers of c- and d-type interfaces with vary-
ing levels of p-doping. a and c show the valence band edge of the H-phase
found from the projected density of states for the c- and d-type respec-
tively. The grey line indicates the first Mo-atom belonging to the H-phase.
b and d show the barrier heights as a function of the doping level (circles)
along with the valence band edge of the H-phase electrode (black line).
The density of states at the position of the grey line on a and c at each
doping level are included as a grey-scale contour to illustrate the density
of interface states between the band edge and Fermi level. The red and
blue shaded regions mark the valence band states.
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entire region between -0.3 and -0.2 eV and between -0.15 and 0 eV. The
barrier height follows the band movement when the DOIS is low around
E = −0.26eV and above E = −0.19 eV. Between these plateaus it jumps
between the small energy windows where the DOIS is low. From a classical
point of view, we would expect that the barrier height would follow the
band movement but, as we have seen here, the interface states result in a
very different behavior and once more underlines the quantum mechanical
nature of the barrier forming in these interfaces.

The DOIS of both types of interfaces show that the interface states
all move with a smaller slope than the valence band wrt. the change
in doping level. The interface states are not moving together with the
semiconductor states but, as was the case for the c*-type boundary, have
origin in the metallic phase. The states are therefore expected to be either
MIGS or resonances originating from metal edge states.

Figure 8.12a shows the change in electron density at the d-type inter-
face as the doping level is increased. The plot shows the difference in the
2D electron density between the doping level, Ndop

2D , and the density of a
reference device with doping level N ref

2D = 1 × 1011 cm−2 where almost no
charge transfer is possible since less than 0.02 holes are available in the
entire semiconductor region. This reference removes the contributions
from the atomic rearrangements at the boundary. After the subtraction
of the reference density, the doping difference between the reference device
and this device is subtracted in order to remove the background doping
density,

∆ne(x) =
1
W

∫

ne(x, y, z) − nref
e (x, y, z) dy dz − (Ndop

2D −N ref
2D ).

W is the width of the device in the y-direction. Finally, the density has
been smoothed using Gaussian curves to remove the fluctuations at the
atomic positions. The result clearly illustrates how the interface dipole
changes with an increasing doping level. The device with the lowest doping
shows an increase in electron density at the H side which extends far to
the right and is almost flat at the top showing that the semiconductor
becomes completely depleted of holes. When the doping level increases,
the dipole becomes more narrow since more charge carriers are available
close to the boundary. The charge build-up in the T’-phase also has some
spatial extend which is somewhat unexpected in a metal where a large
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Figure 8.12: The electron density (a), effective potential (b), and depletion
width (c and d) of the d-type interface with varying p-doping following
the color-scale on Figure 8.11c. The depletion width is compared to the
model predictions by Ilatikhameneh et al.109 (dashed line) and Nipane et
al.111 (dotted line). d shows the depletion width as a function of the work-
function difference divided by the doping density and a linear fit to the
calculated depletion widths (solid line).
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density of charges is available. This is due to the 2D nature of the metal.
Even though it is a metal, charge can not build up as line charge along
the interface and the charge density instead decreases as 1/x away from
the interface. This is in agreement with the behavior of a charged 2D
metal nanoribbon which was discussed in Chapter 7. The corresponding
effective potential is shown on Figure 8.12b and reflects the behavior seen
in the density. It has been averaged over the y-direction and over the
z-direction from 1 Bohr radii below the lowest positioned atom to 1 Bohr
radii above the highest positioned atom using eq. (8.1).

It is worth noticing that the jumps in the barrier height isn’t reflected
in the density or potential which both varies smoothly with the increasing
doping as shown in the insets of Figure 8.12a and 8.12b. This illustrates
the difference between considering a Schottky barrier from a classical point
of view and from a quantum mechanical point of view. In the classical
view, the barrier is exclusively determined by the charge density and cor-
responding potential. In the quantum mechanical view, the barrier height
is determined from the density of states available for charge transport.

On Figure 8.12c, the depletion width of the d-type interface is shown
together with the corresponding widths calculated from the expressions
derived by Ilatikhameneh et al.109 and Nipane et al.111 using classical
electrostatics,

xIlatikhameneh
D =

πεeff∆V
ln(4)qN2D

,

xNipane
D =

π2εeff∆V
8GqN2D

.

∆V is the work function difference between the two materials in the
junction, εeff is the effective dielectric constant which is determined by
the dielectrics surrounding the 2D material which in this case is εeff =
(εabove +εbelow)/2 = 2.45, G ≈ 0.915 is the Catalan’s constant, and q is the
elementary charge. These depletion widths have been calculated using
the work function of the H- and T’-phase at each doping level using a
computational cell and parameters matching those used for the electrodes
of the devices.

The depletion widths extracted from the calculations are the distance
from the position of the barrier to where the valence band becomes flat.
The calculated depletion widths are considerably lower than what the
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models predict. However, it seems that the ∆V/N2D dependence is more
or less followed, as illustrated on Figure 8.12d. The slope found for the
calculated depletion widths is around an order of magnitude lower than
the slope predicted for the classical models. The analysis presented here
for the d-type boundary can be carried out for the c-type device as well.
However, since the depletion width vanishes after the first three doping
levels, a meaningful fit cannot be made.

In conclusion, the electrostatic response of the Schottky barrier height
between T’- and H-phase MoTe2 is dominated by quantum mechanical
effects. The barrier height follows the expected trend from classical elec-
trostatics when no or few states are present in the semiconductor gap at
the boundary between the two phases. If there is a high density of in-
terface states present between the Fermi level and band edge, the barrier
is decreased since charge transfer is possible through these states. The
interface dipole, effective potential and ∆V/N2D scaling of the depletion
width follow the expected behavior from classical models. However, the
depletion width, like the barrier height, is determined by the atomic re-
arrangement at the boundary and is much smaller than predicted by the
models. The electrostatic response is important to understand in the con-
text of using these Schottky contacts in field effect transistors. This will
be the subject of Chapter 11.

This concludes the part of the thesis which describes 2D Schottky
contacts both from a classical point of view, a simplified theoretical point
of view, and by the use of ab-initio calculations. The results underline that
the 2D Schottky contacts are dominated by atomic-scale phenomenons.
Atomic rearrangements, interface states, and tunneling all play a large
role in determining the transport properties.



PART IV

Phase-engineered MoTe2
as a Next-generation

Transistor
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Field effect transistors (FETs) are a keystone in all modern electronic
devices. They form the logic elements which allows for communication
across and inside the nodes in the device. The development of the FET
has been the technological backbone of the tremendous development that
we have seen in the capability, down-scaling and distribution of electronic
devices. Laptops, smart phones, high-performance computing and au-
tonomous driving are just a few examples of the technologies depending
on this development.

This final part of the thesis describes how FETs operate and how 2D
materials can be utilized in future FET designs. Specifically, the concept
of a phase-engineered FET using contacts between the semiconducting
and metallic phases of TMDs is explained and the progress in fabricating
and modelling such devices is reviewed. Ab-initio calculations on MoTe2
heterophase FETs are used to evaluate the monolayer limit of this design.

The following chapters are organized as follows,

Chapter 9 describes the basic building blocks of modern field effect tran-
sistors, how they operate, and the figures of merit used to evaluate
their performance.

Chapter 10 explains how the 2D transition metal dichalcogenides can
be used in FETs and reviews the progress and challenges related
to using phase-engineered MoS2 or MoTe2 as the contact-channel
interface.

Chapter 11 presents ab-initio calculations on MoTe2 heterophase field
effect transistors.



CHAPTER 9
Field Effect Transistors

In this chapter, I will introduce the working principles behind a field ef-
fect transistor (FET) and how the transistor performance is evaluated. A
simple schematic of a planar metal-oxide-semiconductor FET (MOSFET)
is shown on Figure 9.1a. The transistor works by controlling the electro-
static potential between 3 contacts, the source (S), the drain (D), and
the gate (G). When a potential drop is induced between the source and
drain (bias, Vsd), the device can be turned off or on by controlling the
potential between the source and the gate (gate potential, VG). If the
device is turned on, current can flow from the source to the drain if it is
turned off, the current is blocked. The region between the source and the
drain, where the current flow, is called the channel. The channel is made
of a semiconducting material, in practice almost always silicon, where the
conduction (valence) band states are responsible for the transport of elec-
trons (holes) through the n-type (p-type) transistor. Between the channel
and the source or drain a region of the silicon is heavily doped using ion
implantation (extension implant). This ensures a small Schottky barrier
between the contacts and channel, as discussed in Chapter 7. A number
of thin metal films e.g. of TaN, TiN, or both are usually present between
the gate oxide and the gate electrode. These layers modulate the effective
work function of the gate stack (gate oxide + gate electrode).

The electronic band alignments between the source, drain, and channel
are illustrated on the top row of Figure 9.2 for a n- and p-type device.
Without any bias or gate potential, two Schottky barriers will form at
the source and the drain. When a bias is applied, the semiconductor
bands will move to effectively create only a single barrier either at the
source or the drain, depending on the sign of the bias. This is illustrated
in the middle row of Figure 9.2 with a barrier at the drain. Notice, that
these illustrations are drawn with respect to electronic energy levels which
means that a positive bias (in units of Volt) corresponds to a positive slope.
In this condition, the gate potential can be used to raise or lower the
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Figure 9.1: Commercial MOSFET designs. a shows a planar FET, b, a
FinFET, and c, a Gate-All-Around FET. The source (S), drain (D), and
gate (G) are marked on each design. Shallow trench isolation (STI) is
used to isolate the FET from the neighbouring components.

electronic bands and thereby alter the energy barrier. This is illustrated
in the bottom part of Figure 9.2. In the ON-state, the barrier is thinned
to a degree where the carriers will tunnel to the other side and current
flows. In the OFF-state, the electronic band are moved to form a block-
like region without any available states, effectively blocking the charge
transfer. The flat-band voltage is defined as the condition where both
valence and conduction band becomes completely flat.

Two key measurements are used to characterize a transistor; the IV
curve and the transfer characteristic. The IV curve measures the source-
drain current as a function of bias and the transfer characteristic measures
the source-drain current as a function of the gate potential and is typically
shown on a log scale. An illustration of these curves for an n- and p-type



9 Field Effect Transistors 119

Figure 9.2: Electronic band alignment of an n- (left) or p-type (right) FET.
Top row: Zero bias, Vsd, and gate potential, VG. Middle row: Zero
gate potential and forward (n-type) or backwards (p-type) bias creating
a single barrier at the drain. Bottom row: Variance with gate potential
at a fixed bias. The flat band condition is shown in dark blue (red) for
the n-type (p-type) FET.

device is shown on Figure 9.3. The IV curves show two behaviors, a linear
dependence at low biases and a saturation behavior at higher biases. The
bias which separates these two regions is called the saturation voltage and
depends on the gate potential.

The transfer characteristic can be divided into three regions. In the
OFF-state, the current is very low and the dependence on the gate po-
tential will often be too small to measure. As the device approaches
the flat-band condition, the current starts to rise exponentially (linear
on the log-plot). In this regime, the bands are inverted wrt. the device
type and thermal excitation of carriers is the only possible mechanism for
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Figure 9.3: IV characteristics and transfer characteristics of a n- (left) and
p-type (right) transistor. a and b show the IV characteristics at different
gate potentials. c and d show the transfer characteristics and the sub-
threshold slope (SS), flat band voltage (VF B), threshold voltage, (VT H),
and OFF- and ON current (ION , IOF F ).

charge transport. The current therefore follows an exponential increase
determined by eq. (7.3). Note that it is the gate potential which deter-
mines the alignment between the semiconductor and metal states which
means that V = VG in (7.3). This exponential rise characterises the sub-
threshold regime of the device and the slope on the log-plot is called the
sub-threshold slope (SS). The slope is calculated as the amount of gate
potential required to increase the current by one order of magnitude. A
small SS is favorable since this means that only a small bias is required to
move from the OFF-state to the ON-state. From eq. (7.3), the smallest
possible slope will be,

SS =
d(log I)

dVG

=
kBT

q
ln 10 ∼ 60 mV/dec,

at room temperature. Since the charge transport is purely thermionic,
the expression in eq. (7.6) can be used to determine the barrier rather
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accurately. Measurements of the barrier as a function of the gate poten-
tial in this regime can therefore be used to extrapolate the value of the
Schottky barrier back to zero gate potential.

The next regime can be denoted the Schottky barrier (SB) regime.
The device approaches the ON-state and the current is conducted as a
mixture of thermal excitation and tuneling. The mechanism responsible
for most of the charge transfer is in many cases thermally excited tun-
neling i.e. thermionic-field emission (TFE) and the relative contributions
from thermionic emission and tunneling are determined by both the tem-
perature and the carrier concentration in the channel (doping level). At
some point, the current response to the gate potential starts to level off.
This gate potential is called the threshold voltage, VT H , and above this
point, scattering mechanisms in the channel starts to limit the device
performance.

The current at the threshold voltage is often defined as the ON-current
of the device whereas the OFF-current can be defined as the bottom of
the sub-threshold region where the current response becomes too small to
measure. When device performance is compared, the OFF-current is often
defined at a certain level which might be higher than the lowest current
in the transfer characteristics. As an example, the IEEE International
Roadmap for Devices and Systems (IRDS) defines the OFF-current of a
high-performance device to be 10 nA/µm.1 The ratio between the ON-
and OFF-current is often used as a device performance parameter which
contains information on how well the device turns off. If the OFF-current
is too high, it is a sign that ’leakage current’ is running between the source
and drain. This can for example be due to direct tunneling between the
source and drain in a short channel device. Similarly, the gate potential
difference between when the ON- and OFF-current are reached, VDD, rep-
resents the required power supply voltage for the device to function and
is therefore a measure of the power consumption.

FET Figures of Merit Here follows a summary of the most common
figures of merits which are used to quantify FET performance,

• ΦSB, Schottky Barrier: The energy barrier which the charge carriers
must overcome to move from the drain to the channel or from the
source to the channel.
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• SS, Sub-threshold Slope: The amount of gate potential required for
the current to rise by one order of magnitude in the sub-threshold
regime.

• ION , ON-current: The current running at the threshold voltage.

• IOF F , OFF-current: The lowest current in the transfer characteristic
or a predetermined value, e.g. 10 nA/µm.1

• ION/IOF F , ON-OFF Ratio: The ratio between the ON- and OFF-
current which evaluates how well the device turns off.

• VDD, Power Supply Voltage: The gate potential difference between
the ON- and OFF-state.

• FET µ, FET Mobility: The mobility of the carriers in the device.

9.1 Field Effect Transistor Design
Up to this point, I have described the transistor performance in the frame-
work of a planar transistor setup as the one shown on Figure 9.1a. How-
ever, since 2011, commercial FETs have been utilizing the FinFET design
illustrated on Figure 9.1b. In this design, the gate electrode is wrapped
around a silicon ’fin’. The two regions of the fin which is outside the gate
are utilized as the source and drain whereas the region surrounded by the
gate is utilized as the channel region. The change of design was introduced
since the planar transistor design had reached the limit wrt. down-scaling
and effectivity. Short channel effects had begun to dominate the device
performance. Such effects occur when the field between the source and the
drain becomes too large such that the gate no longer controls the device
properly. More power is required to turn the device ON and a leakage
current will run in the OFF-state which may cause malfunction.

A new design rule rose from these challenges called the Scale Length
Theory.124–126 This defines a natural scaling length, λ, which relates the
geometric properties and dielectric constants of the channel and gate oxide
to the electrostatic integrity of the device. It builds on the assumption
that the field between the source and drain follows an exponential law,
Esd(x) ∝ e−x/λ, where the natural scaling length is
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λ =
√

tchtoxεch/εox. (9.1)

tch is the thickness of the channel, tox is the gate oxide thickness, εch

is the dielectric constant of the channel, and εox is the dielectric constant
of the gate oxide. In order to have proper gate control, the channel length
must be 5-10 times the size of λ. Within this design rule, the channel
length can therefore be decreased, if the channel thickness or oxide thick-
ness is decreased accordingly or if the oxide dielectric constant is increased.

In a planar FET design tch and tox are the height of the channel and
equivalent oxide thickness (EOT) when seen from the side as on Fig-
ure 9.1a and in a finFET design tch and tox are the fin width and EOT of
the gate oxide. The equivalent oxide thickness is a measure of how thick
a SiO2 film that would be needed to reproduce the same gate capacitance
as a high-κ dielectric,

tEOT = thigh−κ
εSiO2

εhigh−κ

. (9.2)

The gate capacitance scales as ∝ εox/tox which means that a thicker
layer of a high-κ dielectric will reproduce the capacitance of a thin SiO2
film. The high-κ dielectric helped solve two problems at once, the large
screening dampens the source-drain field and the increased thickness of
the gate oxide layer prevents carrier tunneling between the channel and
gate electrodes which was starting to become a problem as the SiO2 film
thickness was decreased.

The finFET design is a result of the design rule in eq. (9.1) and
represents an improved gate control and thereby a lower power consump-
tion. This is achieved both by decreasing the tch dimension and by plac-
ing the channel such that the gate controls the source-drain field from
3 sides. By creating the silicon fin, the channel thickness was reduced
significantly. However, the down-scaling of this dimension is also limited
since the charge carrier mobility of 3D semiconductors becomes severely
reduced when the fin thickness decreases. The currently available lithog-
raphy methods results in rough surfaces and dangling bonds when the
thickness is reduced below 5-6 nm’s129 which leads to scattering of the
carriers and a mobility which rapidly decreases. This is illustrated on Fig-
ure 9.4 where the thin-channel mobility of silicon- and germanium based
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Figure 9.4: Mobility vs. channel thickness for semiconducting channels
of TMDs (grey area) and for silicon-on-insulator (SOI) and germanium-
on-insulator (GOI) devices (blue areas). Filled (open) symbols represent
electron (hole) mobilities, respectively. Reprinted with permission from
Ref. [127] and adapted with permission from Ref. [128]. Copyright 2016
American Chemical Society.

devices is compared to the mobility of 2D TMD based devices.127 The 2D
TMDs have a clear advantage on this point. Due to the layered structure,
these can be exfoliated down to the monolayer limit while retaining a good
mobility.

In the commercial 5 nm finFETs, the fin width is around 7 nm, the fin
height is 50 nm’s, and the metal pitch (distance between fins) is 28 nm’s.1
These numbers illustrate that also this design is reaching the limit with
respect to improvements through down-scaling. The semiconductor indus-
try has therefore introduced a new design which will be part of the next
generation of commercial logic devices and which is illustrated on Figure
9.1c. This gate-all-around (GAA) design is a natural continuation of the
finFET but where the gate is placed on all 4 sides of the channel which
gains another notch on the gate control and thereby allows for a reduction
in the power consumption. The IRDS 2020 GAA device requirements are
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22 nm’s latteral pitch, 18 nm’s vertical pitch, a thickness of 7 nm’s, and
a width ranging from 7-30 nm’s.1 According to the roadmap, the thick-
ness must be reduced to 5 nm’s by 2031. There is general agreement that
we have come to the end of Moore’s era and that down-scaling will stag-
nate. Future device improvements must be obtained by specialising the
transistors to the end application through optimization of the design and
materials. This has lead to a great deal of research on utilizing alternative
materials.



CHAPTER 10
2D Transition Metal
Dichalcogenides in

Transistors
The semiconducting 2D TMDs are emerging as a possible alternative to
silicon for transistor channels. The atomically thin materials offer the
ultimate scaling of the channel thickness while maintaining a high mobility
and the possibility of good gate control.127,130 Furthermore, the 2D TMDs
have band gaps in the region between 1-2 eV which is comparable to that
of silicon. In this chapter, I will describe how the 2D TMDs can be utilized
in future FET designs and review the progress in using phase-engineered
MoS2 and MoTe2. Such a review is not presently available in the literature
and this is therefore the first review of the combined experimental and
theoretical studies of TMD heterophase devices.

A top-gated 2D FET is illustrated on Figure 10.1a. The two largest
challenges of this design, is to reduce the contact resistance between the
2D channel and 3D metal electrode, and to find a method for area se-
lective doping of the 2D channel. Solving the latter would also improve
the contact resistance but local doping of the semiconductor below the
contact, is not realizable using conventional ion implantation methods.
The alternative doping methods and the challenges related to those where
discussed in Chapter 5.

When a 2D material is contacted with a 3D metal, water or hydro-
carbon layers will adsorb on the surface when the sample is exposed to
air. 2D materials are more or less all surface and such surface contam-
ination will therefore result in a large density of interface states at the
interface between the 2D material and the metal. This tends to lead to
Fermi level pinning and result in a large barrier for transport. Even if this
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Figure 10.1: 2D TMD FET designs. a top-contacted 2D TMD FET, b
phase-engineered 2D TMD FET with a back gate, and c state-of-the-art
phase-engineered 2D TMD FET with back gate and a high-κ dielectric as
the gate oxide.

effect is prevented, e.g. by fabrication in ultrahigh vacuum, a large degree
of damage is induced by the following metal deposition.19,131 Numerous
experimental efforts have been conducted to reduce the amount of defects
at the interface between 2D materials and their contacts. State-of-the-art
devices report contact resistances down to 0.8 kΩ µm (MoS2 contacted
by indium capped gold).132 However, there is still some way to go, to
reach the IRDS 2022 goal for the source-drain resistance, i.e. contact and
channel resistance total, of 271 Ω µm.

Edge contacts have shown some improvements over the top contacts
as the distance between the atoms of the 2D material and 3D metal are
closer in this setup. This results in a better orbital overlap and charge
transfer.133,134 Nevertheless, the fabrication process becomes very compli-
cated.

A broad range of approaches have been investigated to bring down the
contact resistance in the top-contacted design. Choosing the transition
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metal as the contact material to enforce covalent bonding between the
2D channel and contact,135 thin layers of e.g. Ti or In between the 2D
material and contact,132 intercalation of metal atoms between the channel
and contact by annealing,136 and inducing a phase transition to a metallic
phase below the contact11,12,70–72,79–81,89–92,137 have all proven to lower the
contact resistance. In the case of phase transition, values below 100 Ω µm
have been reported for both a heterophase MoTe2 device80 and a device
consisting of 6 coupled MoS2 heterophase FETs.11

10.1 Heterophase Transistors
A heterophase TMD FET is illustrated on Figure 10.1b. The local phase
transition below the contacts ensures that the vulnerable semiconducting
phase is isolated from the 3D metal contacts which is used to inject carriers
into the metallic phase instead. The carrier injection between 3D metal
and 2D metal has proven to be much less problematic.91 In this section, I
will review the current progress in fabricating and modelling heterophase
devices based on either MoS2 or MoTe2.

The first device utilizing phase engineering was demonstrated in 2014
by Kappera et al.70 In this study, the metallic 1T-phase of few layered
MoS2 was induced using a n-butyllithium treatment and then patterned
with gold electrodes. The resulting contact resistance was measured to
be between 0.6 and 0.7 kΩ µm. Since then, a large number of both
experimental and theoretical studies have been conducted to investigate
the electrical properties of these heterophase interfaces. The experimental
work has mainly been focused on MoS2 1T-2H interfaces11,70,72,79,81 or
MoTe2 1T’-2H interfaces.12,80,89–92,137 However, heterophase devices of 1T-
2H WSe2,71 WS2,149 TaS2,150 and NbS2

151 have also been reported. Finally,
devices where either the metal or chalcogen atom differs between the two
phases have also been fabricated, examples are 2H-WS2 with 1T’-ReS2

152,
1T-VS2 with 2H−MoS2,153 and H-MoS2 with T’-MoTe2.154

Figures of merit describing the device performance of heterophase
FETs based on MoS2 or MoTe2 are summarized in Table D.1 in Appendix
D. The performance of the MoS2 based devices vary quite a bit and so
does the fabrication methods and device setups. The general trend is that
the devices are intrinsically n-type. The devices fabricated by Nourbakhsh
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Figure 10.2: 2D TMD heterophase FET performance. a and b show a
SEM image and illustration of the device and the transfer characteristics
of the MoS2 device fabricated by Nourbakhsh et al.11 Reprinted with per-
mission from Ref. [11]. Copyright 2016 American Chemical Society. c
shows an illustration of the device setup and the transfer characteristics of
the device fabricated by Zhang et al.,12 and d shows a comparison between
the value of the SS and mobility for 2D TMD based devices using a high-κ
dielectric.64,138–148 Reprinted with permission from Ref. [12]. Copyright
2019 Springer Nature.
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et al.11 consist of 6 vertically connected monolayer or 3-layer heterophase
FETs with channel lengths of only 7.5 nm. The device is placed on 10
nm’s of the high-κ dielectric HfO2. The top part of Figure 10.2 show the
device together with the transfer characteristics. The results are promis-
ing with a contact resistance of only 75 to 80 Ω µm and a sub-threshold
slope of 120 mV/dec.

The performance of the MoTe2 based devices show better agreement
across different experiments. The contact resistance is measured to be
between 0.5 and 14 kΩ µm and the FET mobility is between 7 and 50
cm2/Vs for all devices except the one fabricated by Zhang et al.12. In
this device, the back gate has been localized below the 2H-phase and the
high-κ dielectric HfO2 was used as the gate oxide as illustrated on Figure
10.2c and 10.1c. This results in an impressive FET mobility of up to 130
cm2/Vs and a very low sub-threshold slope of only 69 mV/dec. Figure
10.2d shows a comparison of the best values of the SS and mobility of 2D
TMD based homophase devices with this heterophase device. The compar-
ison illustrates that the heterophase design results in a highly competitive
performance. The Schottky barrier height has been measured using either
the activation energy method and the barrier dependence on gate poten-
tial12,80,89,91 or by Kelvin probe force microscopy92,137. With the exception
of the device fabricated by Cho et al.80, which shows n-type behavior and
a barrier of 10 meV, there is agreement that the barrier is p-type with a
height of 20-30 meV. The disagreement with the work by Cho et al. can
be explained since the fabrication method of this device was laser irradi-
ation. This method is very destructive and can easily result in a device
with a large concentration of defects. As discussed in Chapter 5, the most
likely defect to form is Tellurium vacancies which will correspond to an
n-doping of the material.

10.1.1 Ab-initio Studies
These experimental achievements have inspired a great number of theoret-
ical studies which have applied ab-initio calculations to gain more insight
on the charge transport in these devices. Figures of merit describing the
performance of simulated heterophase interfaces based on MoS2 or MoTe2
are summarized in Table D.2-D.3 in Appendix D and illustrated on Figure
10.3. The simulation methods applied in these studies can be divided into
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three groups. In the order of increasing accuracy:

1. Pure DFT calculations. Either the work function of the two phases
are compared from a calculation of each isolated crystal which allows
for a barrier estimate from the Schottky-Mott rule or the projected
band structure or density of states of a nanoribbon configuration of
the interface is used to probe the electronic structure at the interface.
Method 1 and 2 on Figure 10.3.

2. DFT calculations are used to create a tight-binding basis set e.g.
using Wannier functions which allows for a simulation of a large
scale device using a semi-classical model and this basis set. Method
3 and 4 on Figure 10.3.

3. DFT calculations are combined with the non-equilibrium Greens
function method for self-consistent device simulations.(Method 5
and 6 on Figure 10.3.

As discussed in Chapter 5, the phase boundary between the 2H- and
1T- or 1T’-phase primarily form along the zigzag (ZZ) direction in MoS2.
In MoTe, the 1T’-2H phase boundary forms along the ZZ direction or at
a 60 degrees angle from the ZZ direction. The theoretical studies have
been carried out for monolayer interfaces both along the armchair (AC)
and ZZ direction for both materials. The 60 degree rotation between
the H and T’-phase is not accessible using these methods since the T’-
phase isn’t periodic perpendicular to this interface. The type of phase
boundary is indicated on Figure 10.3 by the color. T-H interfaces along
the ZZ direction form 4 distinct boundaries which correspond to the 8
boundaries of the 1T’-1H interfaces defined in Chapter 8 but where the a-
and d- types and the b- and c-types become equivalent. The 4 types are
illustrated on Figure E.1 in Appendix E. Two types of phase boundaries
along the AC direction of the T’-H interface (AC and AC*) have been
investigated and one type of the T-H interface (AC). These three phase
boundaries are illustrated on Figure E.2 and E.1, respectively.

Most attention has been given to devices based on monolayer MoS2
where at least 15 studies have been carried out.11,79,118,155–159,161,163–168
Among these studies, both doping level and interface geometry have been
varied. The 1H-1T interface without doping forms an n-type contact and
the NEGF-based calculations agree on a relatively high Schottky barrier
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Figure 10.3: Calculated barrier heights of MoS2 and MoTe2 heterophase
interfaces.11,22,79,89,90,117,118,155–162 Filled markers show barriers of T-H
interfaces and open markers show barriers of T’-H interfaces. The
symbol denotes the method, 1: DFT@PBE, 2: DFT@PBE + SOC,
3:DFT@PBE+NTV, 4: DFT@PBE + TB-NEGF, 5: DFT@LDA +
NEGF, 6: DFT@PBE + NEGF. The color denotes the atomic arrange-
ments at the interface. a-d* are the configurations defined in Chapter 8,
AC and AC* are the armchair interfaces defined on Figure E.2 and E.1,
and uZZ and uAC denote unidentified ZZ or AC type phase boundaries.

height around 0.8 eV. The T’-H interface without doping, on the other
hand, tend to form a p-type contact with a slightly lower but still rather
large Schottky barrier around 0.7 eV.

The variance of the Schottky barrier height between T’ and H MoTe2
with the type of phase boundary and the doping level was described in
Chapter 8. The results from this Chapter are marked by the grey region
on Figure 10.3b. Similar investigations have been made for MoS2 inter-
faces by Urquiza et al.118 (cyan and grey open circles on Figure 10.3a)
illustrating how the barrier decreases with increasing doping. Similar in-
vestigations have been performed by Fan et al.161 and Liu et al.159 who
demonstrated that the barrier height can be electrostatically tuned by
varying a back gate potential. The study by Urquiza et al.118 concluded
that changing the interface geometry between an interface along the zigzag
direction to one which is along the armchair direction has limited effect
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on the barriers of interfaces with a doping level of 5 × 1012 cm−2. How-
ever, the barrier height of the interfaces with a doping level of 5 × 1013

cm−2 changed by up to a factor of 4. Saha et al.157 (yellow and purple
open circles on Figure 10.3a) have investigated the effect of geometry and
doping on two kinds of phase boundaries along the zigzag direction. The
results generally agree with the findings of Urquiza et al.118

A number of theoretical studies have also been conducted on het-
erophace interfaces of MoTe2. Without any doping, the T-phase creates
an n-type contact with the H-phase with a barrier height around 0.4 eV.
The results on the H-T’ interface are less consistent. Both n- and p-type
contacts are reported depending on the method and phase boundary type.
This is in agreement with the conclusion of Chapter 8 that the barrier
heights of MoTe2 heterophase interfaces are very dependent on the atomic
positions at the interface.

To conclude this review, I will include a discussion on the channel
lengths of the simulated devices and how this is related to comparing the
simulations with the experimental results. An important thing to notice,
is that many of the simulated devices have relatively short channel lengths.
This is partly due to the large computational power required for simulating
larger devices and partly because some of the studies wish to investigate
the devices in the context of short-channel effects. As discussed in Chap-
ter 7, the depletion width of a 2D metal semiconductor interface is very
long. Most of the simulated devices on Figure 10.3 have channel lengths
between 5 and 9 nm’s. However, as demonstrated in Chapter 8, the de-
pletion widths of free-standing MoTe2 interfaces increases rapidly for low
doping and can be more than 10 nm’s already at doping levels around
5 × 1011 cm−2. Correspondingly, Urquiza et al.118 found that a semicon-
ductor length of 8.5 nm wasn’t enough to capture the entire depletion
region of free standing MoS2 interfaces without any doping. The rela-
tively small computational cells contrast the experimentally investigated
devices which all, except the ones fabricated by Nourbakhsh et al.11, have
channel lengths in the µm scale. If the computational cell is too small to
include the entire depletion region, the interface dipole isn’t completely
screened which result in a charge build-up at the semiconductor boundary
of the cell. The charge build-up creates a linear band bending and poten-
tially affects the barrier height. It is therefore necessary to include either
a high doping, a very large computational cell, or both, to reproduce the
behavior seen in the experiments.
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Simulated interfaces in which the entire depletion width is sure to have
been captured have been presented by Urquiza et al.118 for MoS2 and in
this thesis for MoTe2. In the case of MoS2, the highly n-doped device
with an interface geometry along the zigzag direction has a calculated
barrier of 0.2 eV which agrees reasonably well with the device fabricated
by Katagiri et al.79 who reported a n-type barrier height between 0.13 and
0.18 eV. In the case of MoTe2, the p-doped c-type MoTe2 interfaces have
barriers below 40 meV when the doping exceeds 5 × 1012 cm−2 which is
in agreement with the experimentally reported values of 20-30 meV. As
we have seen, the barrier height varies enormously with the type of phase
boundary. However, if the activation energy method is used to extract
the barrier height, the result will reflect the lowest barrier at the interface.
This means that if just some part of the interface has formed the favorable
c-type boundary, this might result in the very low measured barrier height.

Even though some agreement can been achieved, a comparison be-
tween the experimental and theoretical results is all-in-all difficult to per-
form. The fabricated devices differ from the simulated devices in many
ways. First of all, only a few of the simulated devices include a sub-
strate159–161,165 and most consider only a single interface, whereas the ex-
periments are performed on a symmetric device with an interface at both
the source and drain. Multi-layer and substrate effects, the presence of
defects, and finite temperatures leading to electron-phonon interactions
in the experiments may all affect the size of the barrier. The presence
of defects could very well increase the probability of localized states in
the interface and electron-phonon interactions could lead to phonon as-
sisted tunneling. The next chapter will present ab-initio calculations on
heterophase MoTe2 FETs where both doping, substrate and a back-gate
are included in order to make better comparisons with the experimental
results.
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In conclusion, heterophase interfaces of both MoS2 and MoTe2 have
been given a great deal of attention the last decade and enormous progress
has been made both in the experimental and theoretical studies. The early
results were inconsistent both between different experiments and between
experiment and simulation but during the last couple of years, the picture
has begun to take shape and some general conclusions have been drawn.
MoTe2 seems be the most promising material since the phase transitions
are easier to induce in this material due to the small energy difference
between the H- and T’-phase and since these devices consistently show
high FET mobility and small barrier heights.



CHAPTER 11
Ab-initio Modelling of

MoTe2 Heterophase FETs
This chapter will demonstrate the performance of monolayer heterophase
MoTe2 FETs using ab-initio calculations. The figures of merit describ-
ing the device performance will be compared to the performance of the
fabricated devices which were summarized in Table D.1 and the 2025 high-
performance device requirements of the IRDS roadmap. The goal of this
comparison is two-fold. The first objective is to validate that modelling

Figure 11.1: MoTe2 heterophase FET on a back-gate and substrate. The
top part shows the atomic configurations of the two contacts seen from the
top. The bottom part shows the device consisting of a H-phase channel
and two T’-phase contacts. The total cell size is (10+LC , 0.718, 15.0) nm
with LC being 18 or 20 nm’s.
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devices with channel lengths around 20 nm’s can reproduce the behavior
of the long-channel devices which the experiments are based upon. The
second objective is to use the results of both the calculations and mea-
surements to understand the trends in heterophase device behaviors and
evaluate the prospects of using this technology in future transistor designs.

The device setup used for these calculations is shown on Figure 11.1
and corresponds to the setup used to investigate the effects of doping in
Chapter 8 but where T’-phase contacts are placed on both sides of the
H-phase channel to complete the transistor setup. Two channel lengths
are investigated, 18 and 20 nm’s. The phase boundaries have been chosen
to be of c-type to the left and d-type to the right. All the atoms have been
p-doped by NA = 5 × 1012 cm−2 to better compare with the experimental
measurements which have shown p-type behavior. The distance between
the substrate and the atoms is 2.4 Å as discussed in Chapter 8. At this
doping level, the depletion widths of the c- and d-type phase boundaries
are zero and 3.2 nm’s, respectively, which means that the entire depletion
region of each contact is included at zero gate potential. The Schottky
barrier heights in this condition are therefore not subject to electrostatic
interactions between the two contacts in agreement with the situation in
a long-channel device.

The setup corresponds to a natural scaling length of 1.48 nm’s using
eq. (9.1). The dielectric constant of the channel is estimated as the
effective dielectric constant of the media above and below the monolayer,
εch ∼ εeff = (1 + 3.9)/2. The thickness of the channel is defined as half
the height of a 2H-phase unit cell, tch = 0.70 nm. Channel lengths above
15 nm’s should therefore, according to the simple design rule, be free of
short channel effects. Tunneling between the source and drain is avoided
and since the gate and gate oxide are described classically, no tunneling
can occur between the channel and gate either.

These calculations differ from previous DFT+NEGF calculations on
the MoTe2 heterophase device in two ways. The current in a symmetric
FET setup with both a source and drain contact has not been modelled
using the T’-phase as contacts before and channel length’s above 9 nm’s
have not been modelled before.
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11.1 Transfer Characteristics
To investigate the device performance, the transfer characteristics are cal-
culated by applying a potential shift between the gate and the source
(right electrode) and a small bias of Vsd = −0.01 V. The negative bias
drives a current running to the left and a single barrier forms at the
source (d-type phase boundary). This barrier is varied by changing the
gate potential. Note, that it is a very small bias which is chosen due
to convergence issues at larger biases. The convergence issue arise due
to charge build-up in the 1T’-phase region at large biases. This can be
avoided by including a longer 1T’ phase region which hasn’t been possible
due to the computational cost of including more atoms. The correspond-
ing transfer characteristics of the devices are shown on Figure 11.2. All
currents are calculated at electrode temperatures of 300 K and compared
to experiments conducted at this temperature.

In the range between 1.8 V and 2.4 V, the sub-threshold regime is
seen. At gate potentials above 2.4 V, the devices start to show n-type
behavior since the bands have been inverted. Note, that the potential
at which the device switches from p- to n-type is underestimated due

Figure 11.2: Transfer characteristics of the heterophase FETs at Vsd =
−0.01 V. The ON-current, OFF-current, and sub-threshold slope (SS) are
indicated. The flat-band condition is identified at VF B = 1.8 V and the
threshold voltage at VT H = −4.5 V for the 18 nm device and VT H = −4.8
V for the 20 nm device.
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to the underestimated band gap in these PBE calculations. The region
from 1.8 V and below is identified as the Schottky barrier regime. In
order to compare with the previous calculations and experimental results,
the lowest calculated gate potential is defined as the threshold voltage,
VT H = −4.5 V in case of the 18 nm device and VT H = −4.8 in case of the
20 nm device. Without calculations at lower gate potentials, however, it
is difficult to determine if the device is completely turned on at this point.
I will return to this in the next section.

Rather large spikes in the current can be seen around zero gate poten-
tial for both devices. These spikes mainly occur due to quantum confine-
ment effects in the channel. In the Schottky barrier regime, the semicon-
ductor states between the barrier bottom and the valence band top are
trapped in a confining potential between the barrier to the left and right.
This confinement creates standing waves in the projected density of states
(DOS) as illustrated in the case of the 18 nm device at VG = 0.3 V on
Figure 11.3. Two of these standing waves represent a peak in the DOS
close to the bottom of the barrier as highlighted by shaded blue boxes
and arrows in the DOS plot. Since the barrier is thin in this region, the
states bridge the barrier with the same consequences as discussed in rela-

Figure 11.3: Quantum effects in the 18 nm device visualized by the pro-
jected DOS and transmission at VG = 0.3 V. The chemical potentials of
the left and right electrode are illustrated by the dotted lines. The green
shaded areas and arrows indicate examples of interface states and blue
shaded regions and arrows indicate examples of standing waves due to
quantum confinement. The peaks in the transmission spectrum related to
these states are indicated by the green and blue arrows.
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tion to the interface states in Chapter 8. Two peaks are clearly visible in
the transmission spectrum at the same energies as these standing waves
and the transmission peaks result in the relatively large current seen for
VG = 0.3 V in the transfer characteristics. Note, that also the interface
states which originate from the T’-phase are visible at this contact. These
states and the corresponding rises in transmission are marked by green ar-
rows on the figure. Both types of states are present at the other gate
potentials as well and in general contribute to the total current by tunnel-
ing. At this gate potential, the effect is especially strong, as illustrated
by the large peak in the transmission spectrum at the lowest of the blue
arrows.

From the transfer characteristics, the sub-threshold slope, power sup-
ply voltage, ON-current, and ION/IOF F -ratio can be identified and com-
pared to the values of fabricated devices.

ON-current The ON-currents of the 18 and 20 nm devices are 5.7 and
56.6 nA/µm, respectively. These are not very large values but, keep in
mind that, the bias is only -0.01 V. In Table 11.1, the ON-currents and
power supply voltages of these two devices are compared to the ON-current
of three fabricated devices and the IRDS 2025 goal. These three devices
have been chosen for comparison since they represent the pool of fabricated

Ref. tEOT tch LC ION Vsd(ION ) VDD SS

[12] 1.87 nm 8 nm 4 µm 0.25 µA/µm 0.1 V 0.8 V 69 mV/dec
[91] 300 nm 5-6 nm 4-15 µm 15 nA/µm 50 mV 40 V
[89] 300 nm 8 nm 20 µm 39.6 nA/µm -0.1 V 100 V

This Work 5 nm ML 18 nm 5.7 nA/µm -10 mV 6.0 V 143 mV/dec
This Work 5 nm ML 20 nm 56.6 nA/µm -10 mV 6.4 V 167 mV/dec
This Work* 1 nm ML 18 nm 209 µA/µm -0.65 V 1.2 V 29 mV/dec
This Work* 1 nm ML 20 nm 226 µA/µm -0.65 V 1.3 V 33 mV/dec

IRDS 20251 1 nm 7 nm 14 nm 873 µA/µm 0.65 V 0.65 V 72 mV/dec

Table 11.1: EOTs, channel thicknesses, channel lengths, ON-currents,
power supply voltages and sub-threshold slopes of MoTe2 based het-
erophase devices. *Scaled using equations (11.1) and (11.2).
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Figure 11.4: The current-bias relationship of the 18 nm device calcu-
lated using eq. (11.1) (lines) and self-consistent DFT+NEGF calculations
(dots).

devices rather well and since these studies are very well documented. Not
all of these values are directly reported in the papers and are therefore an
estimate of the order of magnitude rather than absolute values. The two
devices on 300 nm SiO2 substrates (Ref. [91] and [71]) have ON-currents
comparable to the ones calculated here. The device from Ref. [12] show a
large improvement in the ON-current moving from nA to µA values. This
device is placed on 12 nm’s of HfO2 which corresponds to an equivalent
oxide thickness (EOT) of 1.87 nm’s.i

In order to compare with the IRDS 2025 goal, I will estimate the cur-
rents through the modelled devices at a higher bias. The Landuar formula
in eq. (8.2) is used without self-consistently updating the transmission
function,

I ∼ 2q
h

∫

T (ε, Vsd = −0.01 V)
[

f
(

ε− µL

kBT

)

− f
(

ε− µR

kBT

)]

dε. (11.1)

.
The resulting IV curve is shown in case of the 18 nm device on Figure

11.4 together with a few self-consistent results which where obtained at
iFrom eq. (9.2) using εox = 25.169
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a gate potential of VG = 0.3 V. The self-consistent results are showed
in the inset as round markers. Comparing to the non self-consistent ap-
proximation, the calculations performed at biases close to zero agree with
the approximation. These results are not yet fully analyzed, however, the
disagreement could be explained by the momentum conservation restric-
tion which was discussed in Chapter 8. If fewer k-points contribute to
the transport, the current will decrease. In a real device, impurities and
electron-phonon interactions would reduce this restriction but the effects
could also alter the current in less predictable ways. Assuming that the
band alignment created by the gate potential is what dominates the size of
the current, the approximation in eq. (11.1) gives a reasonable prediction.

Using eq. (11.1), the ON-current of the modelled devices is calculated
at Vsd = −0.1 and -0.65 V in order to compare with the measurements
and IRDS value. At -0.1 V, this results in a current of 59 nA/µm for
the 18 nm device and 0.47 µA/µm for the 20 nm device. The difference
in these two values can be attributed to the lower threshold potential of
the 18 nm device. The value of the 20 nm device is in good agreement
with the ON-current reported by Ref. [12]. All-in-all, the calculated ON-
currents of these devices seem to agree with the fabricated devices which
support that the channel lengths of these devices is sufficient to reproduce
the behavior of the devices with µm scale channels.

At -0.65 V, the ON-currents are 209 and 226 µA/µm, respectively.
This is a few times lower than the IRDS goal. However, this goal is based
on a device with a channel thickness of 7 nm which corresponds to 10
monolayers of MoTe2. Assuming that the current of each monolayer is
additive, the ON-current of devices with 10 monolayers will be 2.09 and
2.26 mA/µm which reaches the ON-current goal with some room for the
uncertainty in using these estimates. Since the calculations have been
able to reproduce comparable ON-currents to the fabricated devices, one
might speculate that those devices would be able to live up to the IRDS
goals as well.

Power Supply Voltage Table 11.1 also compares the power supply
voltages of the devices. The devices on SiO2 require very large power
supply voltages due to the thickness of the oxide whereas the device on
HfO2 shows an impressively low VDD. The power supply of the modelled
devices is found as VDD = VT H −VOF F where the OFF-potential is defined
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as the potential which corresponds to the OFF-current. The OFF-currents
are indicated by the horizontal blue lines on Figure 11.2 and are defined
as the ON-current divided by the ION/IOF F -ratio defined by IRDS which
is 8.73 × 104,

IOF F =
IOF F

IRDS

ION
IRDS

ION .

Note, that close to these values of the OFF-current, no large spikes
occur in the current which otherwise might result in a leakage current.
The power supply voltages are 6.0 and 6.4 V for the 18 and 20 nm device
respectively. When the gate oxide is considered as a continuum dielectric,
as it is in these calculations, a reduced oxide thickness will reduce the gate
potential needed to create the same field,

|E⃗|ML =
V calc

G

tcalc
EOT

=
V thin

G

tthin
EOT

⇒ V thin
G =

tthin
EOT

tcalc
EOT

V calc
G . (11.2)

|E⃗|ML is the size of the electric field created by the gate at the position
of the monolayer, V calc

G and tcalc
EOT are the gate potential and EOT used in

the self-consistent calculations, and V thin
G is the gate potential creating the

same field when the EOT is tthin
EOT . Using this relation for tthin

EOT = 1 nm
allows for a direct comparison with the IRDS goal. This results in power
supply voltages of 1.3 and 1.2 V which is about twice the size of the IRDS
goal. A possible approach to improve these values further would be to
use both a top and bottom gate or to make a Gate-All-Around setup to
improve the gate control.

It is worth noticing that the maximum possible ION/IOF F -ratios of
these devices are very large, 6.9×108 and 3.1×1010, respectively. The large
ION/IOF F -ratio seems to be a general feature of heterophase devices and
is represented in most of the experiments and calculations. Heterophase
devices may therefore be especially well-suited for applications where it is
important that the current is cut off completely in the OFF-state.

Sub-threshold Slope The sub-threshold slopes are 144 and 167 mV/dec
for the 18 and 20 nm channel, respectively. The IRDS roadmap suggests
a SS value of 72 mV/dec by 2025 for an EOT of 1 nm and in the study
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by Zhang et al.12 a value of 69 mV/dec was obtained using HfO2 with an
EOT of 1.87 nm. This study is the only experiment which have reported
the SS-value. The MoS2 based heterophase devices have SS values of 1
V/dec and 0.8 V/dec for devices placed on a thick SiO2 substrate and 120
mV/dec for a device on 10 nm’s of HfO2 (EOT of 1.56 nm). Scaling the
gate potential values in these calculations to an EOT of 1 nm using eq.
(11.2) leads to very low SS values of only 29 and 33 and mV/dec. These
values break the limit of 60 mV/dec defined by eq. (7.3) which suggest
that either the scaling using eq. (11.2) is too simple or that eq. (7.3) does
not describe the behavior very well even though thermionic emission must
be the dominant transport mechanism. All-in-all these results suggests, as
in the case of the power supply voltage, that good gate control is possible
for the heterophase devices by using a small EOT.

11.2 Schottky Barrier
Using the projected density of states, the Schottky barrier dependence of
the gate can be directly visualized. Figure 11.5 shows the evolution of
the conduction and valence band and Schottky barrier height with gate
potential in the device with a channel length of 18 nm. The band at
the flat band potential VF B = 1.8 V is marked in green on Figure 11.5a.
Gate potentials above this value show n-type band bending whereas those
below this potential show p-type behavior. At the bias of -0.01 V and zero
gate potential, the bands form a p-type barrier at the d-type boundary
and are flat at the c-type boundary in agreement with the behavior of the
isolated interfaces described in Chapter 8. Increasing the gate potential
pulls down the bands and turns the device off whereas decreasing the gate
potential lifts the bands and turns the device on. The band evolution
follows the simple picture which was shown on Figure 9.2 approximately
even though the barrier in the left side changes quite a bit with the gate
potential as well.

At the lowest gate potential, VG = −4.5 V, a barrier in the right side
is still present even though it is very thin. This suggests that the ON-
current defined in the above could be increased by further decreasing the
gate potential. Comparing to the 20 nm device, the lowest gate potential
was VG = −4.8 V. At this potential, the valence band is raised above
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Figure 11.5: Band bending and Schottky barrier height as a function of
gate potential in the 18 nm device. a shows the valence and conduction
band at different gate potentials. The flat band potential VF B = 1.8 V
is shown in green. b shows both the n- and p- type barrier height at
the right contact which has a d-type phase boundary. The orange open
circles show the TE barrier found using the activation energy method and
the orange line shows a linear fit to the values within the orange shaded
region.

the Fermi level and the right side barrier has disappeared. This explains
the large current at this potential seen in the transfer characteristics and
suggests that the threshold voltage is indeed at this potential. The current
is expected to saturate if the gate potential is decreased further since the
transmission onset already occurs at the Fermi level at this potential.

The Schottky barrier height is found both using the DOS and the
activation energy method and shown on Figure 11.5b. Since the device
changes from being p- to n-type at high gate potentials both the n- and
p-type barrier of the right contact are shown. The crossover between the
n-type and p-type behavior is identified at VG = 2.4 V in agreement with
the behavior seen in the transfer characteristics.

The sub-threshold (ST) regime is marked by the shaded orange region
on Figure 11.5b. In this region, the bands are inverted and charge is
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transported via thermionic emission alone which results in a one-to-one
correspondence between the TE and DOS barriers. The activation energy
method for barrier extraction assumes that this linear dependence of the
Schottky barrier represents the general electrostatic response of the Schot-
tky barrier and that a linear fit to the TE barriers in this region therefore
enables a determination of the Schottky barrier at zero gate potential.
However, as the calculations in Chapter 8 demonstrated by varying the
doping level, the electrostatic response of the Schottky barriers at these
interfaces is not smooth. The behavior is dominated by barrier jumping
between energies where the interface DOS is low. Such a jump can also
be identified on Figure 11.5b at a p-type barrier of 0.35 eV where the
linear behavior of the DOS barriers breaks. Since the gate dependence of
the Schottky barrier isn’t linear, the linear fit of the TE barriers in the
ST regime fails to predict the zero gate barrier. The fit instead results in
a barrier height of -0.32 eV which does not carry any physical meaning.
The negative barrier height suggests that the thermionic emission model
and eq. (7.3) does not represent the ST behavior very well and might also
explain why the SS values could be scaled below 60 mV/dec.

For gate potentials below the flat-band condition, the TE barriers are
generally overestimated or in agreement with the DOS barriers. Due to
tunneling contributions in this regime, an underestimation would actually
be expected. This underestimation does not occur due to the momentum
conservation restriction which significantly limits the current, as discussed
in Chapter 8.

The barrier heights of both devices are compared to the measured
barriers of heterophase MoTe2 devices in Table 11.2. In this table, all ex-
periments which have estimated a barrier are included. The experimental
barriers have been extracted either using the activation energy method
or using Kelvin probe force microscopy (KPFM). The activation energy
barriers can be compared to the calculated TE barriers and the KPFM
barriers can be compared to the Schottky-Mott limit of the barrier (SM
barrier).

The measured TE barriers agree very well between the experiments
and there is agreement that the TE barrier is around 30 meV. However,
as the calculations have demonstrated, this does not necessarily mean that
the Schottky barrier defined by the electronic bands is small as well. The
effects of having more than one monolayer and of electron-phonon inter-
actions may reduce the quantum effects and result in a better agreement
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Ref. tEOT / tch / LC ΦT E T(ΦT E) ΦSM ΦDOS

[92] - / ML / 20 µm 25 meV
[137] 298 nm* / 7 ML / 10-60 µm 27.5 meV
[89] 300 nm / 8 nm / 20 µm 30 ± 10 meV 240-300 K
[12] - / 8 nm / 4 µm 20 meV 300-400 K
[12] 1.87 nm / 8 nm / 4 µm
[91] 300 nm / 5-6 nm / 4-15 µm 22 meV 150-300 K

This Work 5 nm / ML / 18 nm -0.32 eV 300-450 K 0.20 eV 0.25 eV
This Work 5 nm / ML / 20 nm -0.40 eV 300-450 K 0.20 eV 0.23 eV

Table 11.2: EOTs, channel thicknesses, channel lengths, and Schottky
barriers of MoTe2 based heterophase devices. *The substrate consists of
285 nm SiO2 and 30 nm Al2O3 and the EOT is calculated using εAl2O3

=
9.169

between the DOS and TE barrier. Since the doping level generally isn’t
well-known in the fabricated devices, the measured TE barriers may ac-
tually correspond to a very small band bending achieved by high doping
levels. Lastly, the low measured TE barriers may be due to the favorable
atomic arrangement at the c-type phase boundaries. Nonetheless, usage
of eq. (7.3) for nano-scale devices based on 2D materials seems to be too
simplistic, especially in the monolayer limit.

The barriers measured by KPFM are also very small in contrast to the
SM barriers of these devices. The doping level of the H-phase will have a
large impact on the work function difference between the two phases. As
mentioned in Chapter 8, the work function of the T’-phase lies within the
gap of the H-phase and a very light p-doping level may cause the favorable
alignment.

The original motivation behind the heterophase devices was to find a
solution to the large contact resistance between 3D metal contacts and
H-phase TMDs. This contact resistance is primarily due to impurities
between the contact and channel, the weak vdW bond between them, and
damage from the metal deposition process. With regard to impurities,
there is no reason to believe that these are more easily avoided in the
heterophase devices in general. However, the weak bonds are definitely
improved in the heterophase devices which form covalent bonds between
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the two phases and the damage from metal deposition is not as problem-
atic when depositing on the T’-phase. Metal contacts on the 1T’-phase
create ohmic contacts.89,91

The contact resistance has been measured by Ref. [91] and [137] as 14
kΩ µm and 1.1 kΩ µm. These are quite high values compared to the IRDS
2025 goal for the total source-drain resistance which is 257 Ω µm. However,
these resistances have been measured in devices placed on SiO2 substrates
which generally show a rather low current. The MoS2-based devices on
HfO2 substrates fabricated by Nourbakhsh et al.11 have contact resistances
of 75 and 85 Ω µm. The resistance can not be obtained in a reliable fashion
from the calculations presented here due to the convergence issues related
to varying the bias.

To evaluate on the overall performance of the heterophase devices
compared to the metal contacted 2D TMD devices, my personal guess
is that they will perform comparably when using state-of-the-art fabrica-
tion methods. However, it may turn out that it is easier or cheaper to
scale up the fabrication of the heterophase devices. Both Ref. [137] and
[12] have presented wafers-scale arrays of heterophase devices fabricated
using temperature controlled or selective precursor CVD processes.

I would like to raise the question if the zero gate Schottky barrier
height is a good figure of merit for these nano-scale devices. The results
presented here suggest that this is not the case. Even though the DOS
barrier at zero gate potential is relatively large, the devices are capable
of performing in accordance with the IRDS 2025 goals with respect to
the ON-current and power supply voltage. The concept of a well-defined
Schottky barrier seems to break down in the case of these devices since the
barrier is punctured by quantum states from both sides, as demonstrated
on Figure 11.3. As long as the device can be turned on and off without
using too much power and a reasonable amount of current is produced, it
doesn’t really matter how high the Schottky barrier is. Using the Schottky
barrier as a descriptor of the contact resistance and the contact resistance
as a descriptor for the general device performance stems from the rather
simplistic picture of the Schottky barrier which was presented in Chapter 7.
This picture has worked relatively well in describing Schottky contacts
between 3D materials but breaks down in the case of the atomic-scale
device. The 2D devices are more complicated to describe, and there is no
single parameter which contains enough information to evaluate the device.
To evaluate 2D devices, it is necessary to measure the ON-current, power
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supply voltage, and ION/IOF F -ratios and evaluate the devices directly
based on these quantities.

In conclusion, the DFT+NEGF method is capable of reproducing the
behavior of the fabricated devices in terms of the resulting ON-current.
The calculations showed that quantum mechanical effects at the atomi-
cally thin interfaces create tunneling channels which enhances the current
and makes the Schottky barrier a poor descriptor of the device perfor-
mance. In general, the results of these calculations and previous measure-
ments suggests that the heterophase devices show potential of delivering
a performance in accordance with the IRDS 2025 goals if a high-κ dielec-
tric is used as the gate oxide. Adapting a finFET or Gate-All-Around
(GAA) design would most likely improve the gate control further. The
heterophase TMD design will probably not outcompete silicon any day
soon. However, it has the potential to perform just as well and perhaps
even better in the limit of very thin channels. It is a natural design for
nanoribbon shaped channels which is used in the GAA design and very
high ION/IOF F -ratios can be achieved. So far, the experiments on the
heterophase design have all presented proof-of-concepts. To truly justify
this technology as a viable solution, also experimental efforts need to go
to next level and demonstrate the competitiveness through comparisons
to silicon based devices.



CHAPTER 12
Conclusions and Outlook

The objective of this thesis has been to demonstrate how ab-initio calcu-
lations can be used to model and understand the physics in nano-scale
electronics. More specifically, the charge transfer mechanisms in 2D field
effects transistors have been discussed through the conventional models
and modelled using density functional theory and the non-equilibrium
Green’s function method. The thesis has focused on the phase-engineered
2D transition metal dichalcogenide transistor design and sought to under-
stand and evaluate this technology.

The starting point of the thesis was to present the tools which are
necessary for doing ab-initio calculations of nano-scale interfaces. A gen-
eral method for evaluating the possible interfaces between two periodic
crystals has been developed. There is in principle infinitely many ways to
combine two crystals to an interface but using some simple parameters the
possibilities can be narrowed down to the most probable interfaces. The
systematic procedure evaluates which surfaces of the two crystals that are
most likely to combine if the stability of an interface is assumed to cor-
relate with the strain between the unit cells of the two surfaces and the
interface cell area.

The method is based on the crystal unit cells and does not take the
atomic positions into account. An improvement of the method might
attempt to model the atoms by classical force fields to better estimate
the stability of the resulting interface. However, as the results in this
thesis have demonstrated, the chemistry at a nano-scale interface is ex-
tremely complicated and these classical potentials might not be able to
reliably predict the stability. Machine learning methods are a rapidly
growing field also within atom-scale physics.170 It is perhaps a better ap-
proach to attempt to use such method for evaluating the interface sta-
bility. Minimization of inter-atomic forces has already been investigated
using machine learning and interface formation energy predictions could
be a continuation of these efforts.
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The second part of the thesis introduced the transition metal dichalco-
genides (TMDs) with focus on the electronic properties of the group-VI
TMDs. The material properties which are important for understanding
transport between two different phases such as the doping, defect forma-
tion and phase transformation was reviewed. Furthermore, a section was
devoted to introducing the topological properties of the T’-phase TMDs
which are classified as topological insulators. Interestingly, it was found
that some edges of T’-phase MoS2, MoTe2, and WTe2 host magnetic states.
The magnetic states break the time-reversal symmetry which means that
the properties of the edge states no longer are determined by the topolog-
ical classification; the states are not protected from back-scattering and
changing the topology of the bulk does not remove them. The magnetic
states are not expected to influence the conductivity across the edge which
is what is important in the heterophase device design.

The edges of the T’-phase which host magnetic states represent a dis-
continuity in the polarization. The polarization of a crystal is also a topo-
logical property which is well-defined both in the case of time-reversal sym-
metry and without. Gibertini et al.104 have shown that the discontinuity
in polarization on edges of H-phase TMDs guaranties metallic edge states.
It could be interesting to investigate if the T’-phase edges are guarantied
to host metallic states which are protected either by the time-reversal sym-
metry or the polarization. Perfectly conducting edge states have a range
of interesting applications, an example is a topological transistor where
the conductance is switched off or on by changing the topological state of
the material.

The third part investigates how the dimensionality of a Schottky con-
tact affects the current transport across the barrier. The classical theory
of Schottky barriers is reviewed and transferred to 2D contacts. The elec-
trostatics of a 2D Schottky contacts differs a lot from the 3D case. A 2D
contact will always be a contact both between two materials and between
each material and the air or vacuum. This fact, means that a field is
formed in the vacuum outside a 2D interface. Furthermore, charge can
not accumulate as line charge at a 2D metal edge and the interface dipole
becomes long-ranging and with a spatial extend both at the metal and
semiconductor side. The comparisons of charge transfer mechanisms in
2D and 3D contacts conclude that, in the 2D limit, both the thermionic
emission and tunneling behaves differently and that the tunneling becomes
more dominant than in 3D.
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The Schottky barrier of a metal-semiconductor interface can be defined
in different ways depending on which property of the contact one focuses
on. In this thesis, I have classified four types of Schottky barriers in order
to make fair comparisons between different calculations and experiments;
the Schottky-Mott barrier, the density of states barrier, the transmission
spectrum barrier, and the thermionic emission barrier. One of the main
conclusions of this thesis is that the Schottky barrier isn’t well-defined at
atomic-scale interfaces. The need for a classification underlines this and
illustrates that the concept of the Schottky barrier, in general, is rather
complicated.

Ab-initio calculations are used to investigate the properties of T’-H
contacts of MoTe2. This investigation illustrates that the atomic configu-
ration at the phase boundary dominates the size of the Schottky barrier
seen in the density of states (DOS). Comparisons between different phase
boundaries show that the atomic rearrangement at the interface generally
modifies the effective potential more than the interface dipole. Tunnel-
ing currents are dominating the charge transfer and lead to relatively low
TE barriers in the heterophase contacts. The tunneling is mediated by
interface states which create a large density of states at the interface and
in some cases results in a conducting bridge between the semiconductor
conduction or valence band and the metal states. The interface states are
investigated and it is found that they originate from the metallic T’-phase
edge and therefore don’t result in Fermi level pinning.

The doping dependence of the charge transfer properties was also in-
vestigated. It was found that the depletion width is much smaller than
what the classical models predict but seems to scale as the build-in po-
tential divided by the doping density as classically predicted. By varying
the doping gradually, the effects of the interface states become very clear.
The Schottky barrier seen in the DOS jumps across regions with a high
interface DOS and the barrier height does not vary smoothly with the
doping level.

Most of the conclusions found in this part will be valid for 2D Schottky
contacts in general,

1. Tunneling is a more dominant charge transfer mechanism in 2D
contacts.

2. The atomic rearrangements at the interface dominate the behavior
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of the electrostatic potential.

3. Interface states affect the charge transfer.

4. The Schottky barrier is less well-defined in 2D due to the ’punctua-
tion’ of the barrier in the DOS created by interface states.

The prediction of an increased probability of tunneling is only based
on the dimensionality and the dominance of the atomic rearrangement
and quantum confinement is also expected to primarily be due to the 2D
nature of the contacts. It would be interesting to investigate interfaces
between two different 2D materials and see if interface states are present
and if they dominate the behavior as much as in the case of heterophase
contacts. This would enable drawing some more general conclusion on
how 2D Schottky contacts behave.

The final part of the thesis was devoted to understanding and evaluat-
ing the properties of MoTe2 heterophase FETs. The progress within fab-
ricating and modelling TMD heterophase transistors was reviewed which
concluded that the MoTe2 based device has shown most potential so far.
However, previous calculations of MoTe2 devices have been based on too
short channels to compare the results with the fabricated devices. Two
MoTe2 heterophase devices were therefore modelled with channel lengths
of 18 and 20 nm’s and compared to experimental measurements. The com-
parison concludes that the DFT+NEGF method is capable of reproducing
the behavior of the fabricated devices and that the heterophase transistors
have the potential to perform in accordance with the high-performance
devices in the IRDS roadmap.1 Comparing the experiments, it is clear
that using a high-κ dielectric as the gate oxide is necessary in order to
gain the necessary gate control.

It is easy to understand why the Schottky barrier has been used as
a device metric when evaluating this very novel technology. It is highly
difficult to compare different experiments because the doping is unknown
and the device setup and fabrication method differ. In the simple pic-
ture, the Schottky barrier is an intrinsic property of an interface which
shouldn’t depend much on the experimental setup. However, the calcu-
lations presented in this thesis highlight that the Schottky barrier isn’t a
good indicator of the device performance in atomic-scale devices since a
range of quantum effects dominate the charge transfer. Interface state me-
diated tunneling and enhanced charge transfer due to the standing waves
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from quantum confinement have both been illustrated. When evaluating
a 2D device, no single intrinsic parameter is enough to predict the perfor-
mance. The metrics have to be based on the future applications of the
device with focus on the energy efficiency.

The TMD heterophase FET is still at a stage of a rather simple design
but using some of the same design strategies as seen in commercial devices
have shown to improve the performance significantly. To fully evaluate
the potential of this design, experimental efforts most go to the next level
and benchmark the performance of the devices against silicon technology.
Furthermore, if the heterophase devices are to become competitive with
silicon based devices, a scalable method to fabricate the devices and to
systematically dope the 2D channel must be developed. With such a
method available, the prospects of using the 2D TMDs in transistors seems
to be very promising.



APPENDIX A
Computational Details

A.1 Setting up the T’-edges
The setup and relaxation of the surface configurations follow four steps
and the final configuration is shown on Figure A.1.

1. T’-phase is set up in the conventional unit cell and relaxed using
periodic boundary conditions. This gives the 2D lattice parameters
aT ′ = 5.73 Å and bT ′ = 3.19 Å.

2. The surface configuration is created from repeated units cells. The
length of the central region monolayer is 50 Å which insures that the
Hartree potential matches the periodic potential of the electrode at
the left hand side where the electrode is attached.

3. The 3 atomic layers closest to the edge are allowed to relax and the
remaining atoms are fixed.

4. A metallic region is placed in the bottom of the cell in order to apply
an electric field perpendicular to the monolayer.

The structure relaxations are done without SOC and to a force toler-
ance of 0.02 eV/Å.

An unconventional set of boundary conditions is chosen for solving
the Poisson equation. This is done to accommodate the gate construction
and to avoid interactions between images. Dirichlet boundary condition
(DBC) is used at the top and bottom of the cell so that the potential is
fixed in the gate and grounded at the top of the cell. This is analogous
to placing the surface between the two plates of a parallel-plate capacitor.
For the electrode calculation, standard PBCs is used in all other directions.
For the central region, on the other hand, the potential at the left side of
the cell is fixed to the value of the potential of the electrode using a DBC
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Figure A.1: The SurfaceConfiguration of T’-MoS2 on top of a gate along
with the applied boundary conditions. PBC, DBC, and NBC refers to
different boundary conditions as explained in the text.

and the potential at right side is allowed to converge to the potential in
the vacuum region by applying a Neumann BC (NBC).

Applying DBCs both at the top and bottom of the cell, forces the
potential to be zero at those boundaries. The equipotential lines are
correspondingly pushed away from these borders and the potential shift is
present along the right border of the cell. Our investigations show that, if
the cell is as high in the z-direction as it is long in the x-direction and has
enough vacuum to the right, s.t. the potential has converged to a constant
value when going from left to right, then the electronic levels of the system
are equivalent to those of the ungated system. This corresponds to a cell
height of 80 Å.

The k-point sampling of the (m) and (c) edge calculations are: 11 x 1
for the surface configurations, which are non-periodic in the x-direction,
and 401 x 11 x 1 for the periodic 2D crystals. The k-point sampling of
the (X) edge is 6 x 1 for the surface configuration, which is non-periodic



A.2 Setting up the MoTe2 Interfaces 157

in the y-direction, and 6 x 401 x 1 for the periodic 2D crystal.

A.2 Setting up the MoTe2 Interfaces
Reprinted with permission from the Supplemental material of [22]. The
setup and relaxation of the device follows four steps which are illustrated
in Figure A.2.

1. The 1H and 1T’ phases are set up in the conventional unit cell
and relaxed using periodic boundary conditions. This gives the 2D
lattice parameters a = 3.59 Å for the 1H phase and a = 3.52 Å, b =
6.37 Å for the 1T’ phase which compares well with the experimental
values.85,171

2. The interface is created using the interface builder in QuantumATK.30,172
The 1T’ phase is strained by 2.12 % along the y-direction to make
a match between the (200)-edge of 1T’ and the (02-20)-edge of 1H.
We choose to strain the 1T’ phase in order to maintain the semicon-
ductor properties.

3. A nanoribbon of this interface is created with 18 atomic layers of
each phase and 20 Å of vacuum between periodic images in the x-
direction. The 6 atomic layers closest to the interface are allowed to
relax and the remaining 1T’ phase is fixed while the remaining 1H
phase is kept rigid to allow for a compression or elongation of the
interface region.

4. The relaxed interface is converted to a device configuration in order
to perform the NEGF calculations. The central region is composed
of about 6 nm’s of 1T’ phase and 19 nm’s of 1H phase. For these cal-
culation we use Dirichlet boundary conditions between the central re-
gion and electrodes, periodic boundary conditions in the y-direction
and Neumann boundary conditions in the z-direction to avoid elec-
trostatic interactions between neighbouring interface dipoles. The
cell height is 15 nm’s which ensures that the out-of-plane fields due
to the 2D interface are properly accounted for and that their effect
on the size of the barrier is minimized.173–175
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Figure A.2: The relaxation scheme for setting up the device along with
the unit cells of each calculation.
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All the structure relaxations use a force tolerance of 0.02 eV/Å and the
k-point grid for the isolated 1H phase is (7, 7, 1) while it is (6, 11, 1) for
the isolated 1T’ phase and (kx, 6, 1) for the remaining calculations. kx = 1
for the nanoribbon calculation and kx = 401 for the NEGF calculation.
The occupations are described by using a Fermi-Dirac occupation function
with an electronic temperature of 300 K.



APPENDIX B
Formation Energies of
Edges and Interfaces

B.1 Stability of the MoS2 T’-edges
Reprinted with permission from the Supplemental material of [95].

The y-cut of the 1T’ phase can be made 6 different ways; 2 ways
terminated by the metal atom, (m), 2 ways by a single chalcogenide atom,
(c), and 2 ways by a pair of calcogenide atoms (2c). The 6 cuts can be
seen on Fig B.1. We have compared the heat of formation of the (m) and
(c) type edges of MoS2 using the formula,

EF = Enanoribbon
MoS2

− nEML
MoS2 − µS(EH2S − EH2

) (B.1)
Enanoribbon

MoS2
is the total energy of the nanoribbon, n is the no. of ML

unit cells in the nanoribbon, and EML
MoS2 is the total energy of the infinite

monolayer. µS is a parameter which can be varied to represent different
chemical potentials for sulfur. A value of µS = 1 corresponds to taking
one sulfur atom from a H2S gas. It is zero for the (c) type edge where
the nanoribbon corresponds to an integer no of ML unit cells but can be
varied for the (m) type edges which is missing a sulfur atom. EH2S and
EH2

is the total energy of the two molecules which are calculated with
the same method as the nanoribbon and ML but in a (10x10x10) Å cell
and with a single k-point. The PBE functional without SOC was used for
these calculations and the (m’) and (c’) nanoribbons are 50 Å long. The
stability of the two types of edges can be seen on Fig B.2.
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Figure B.1: The six kinds
of edge terminations for a cut
along the y-direction.

Figure B.2: The stability of (m) and
(c) type edges of monolayer 1T’ MoS2 at
varying µS.

Figure B.3: The 4 nanoribbon types used to calculate the stability of the
heterophase interfaces. The meaning of the geometrical shapes follow
Figure 8.1 and the for types of edges are labelled α, β, σ, and γ.
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B.2 Stability of MoTe2 T’-H Phase
Boundaries

The stability of the 8 types of phase boundaries which are illustrated on
Figure 8.1 in Chapter 8 can be found by comparing nanoribbon configura-
tions of the phase boundaries with structures of the isolated phases. The
starting point is to consider 4 nanoribbons with the 4 phase boundaries
illustrated on Figure B.3. Each ribbon consists of m = 18 unit cells of the
H-phase and n = 9 unit cells of the T’-phase. The ribbon is doubled in
the x-direction to allow for stabilizing atomic rearrangements at the inter-
face. The set-up and calculational parameters of the nanoribbons follow
the description in Appendix A.2. The heat of formation of these 4 phase
boundaries can be written,

WEa
F = Ea

ribbon − 2nET ′ − 2mEH −WEα
F −WEγ

F ,

WEb
F = Eb

ribbon − 2nET ′ − 2mEH −WEα
F −WEσ

F ,

WEc
F = Ec

ribbon − 2nET ′ − 2mEH −WEβ
F −WEσ

F ,

WEd
F = Ed

ribbon − 2nET ′ − 2mEH −WEβ
F −WEγ

F .

W is the width of the ribbon in the x-direction, Eribbon is the total
energy of the ribbon, ET ′ and EH are the energies of one unit cell of the
T’- and H-phase, respectively, and Eα

F , Eβ
F , Eσ

F , and Eγ
F are the heat of

formation of the 4 types of edges terminating the nanoribbons. Note, that
using this definition, the interface is sharply defined between the atoms
which originally came from the two different phases and that the edges are
fixed during the calculation. Eα

F , Eβ
F , Eσ

F , and Eγ
F are therefore related to

edges which are fixed in the bulk crystal structure.
Eα

F and Eβ
F can be found from two fixed nanoribbon configurations

with an equivalent edge termination of the T’-phase on each edge as illus-
trated on Figure B.4. The heat of formation is,



B.2 Stability of MoTe2 T’-H Phase Boundaries 163

Figure B.4: The T’ nanorib-
bons used to find the forma-
tion energy of the T’ edges.

Figure B.5: The H-phase triangles used
to find the formation energy of the H
edges. The triangle with σ edges is il-
lustrated for s = 6 and the triangle with
γ edges for s = 5.

2WEα
F = Eα

ribbon − 2nET ′ − 4
3
µT ′

T eET e3
,

2WEβ
F = Eβ

ribbon − 2nET ′ − 4
3
µT ′

T eET e3
.

µT ′

T e is a parameter which can be varied to represent different chemical
potentials of tellurium during the growth of the T’-phase. A value of
µT ′

T e = 1 corresponds to taking the Te atoms from a relaxed tellurium
alpha crystal which has 3 atoms in the unit cell.i The difference between
the these two formation energies becomes independent on the chemical
potential,

Eα
F − Eβ

F =
1

2W

(

Eα
ribbon − Eβ

ribbon

)

= −93 meV/Å.

The two types of H-phase edges can not be isolated on a nanoribbon.
Due to the symmetry of this phase, a σ edge will always be paired with a
γ edge. In order to investigate the heat of formation of these two edges,
nanoparticles in the shape of triangles are investigated instead. The total
energies of these nanoparticles are,

iA k-point grid of (11,11,7) was used to describe the Te alpha crystal and the
remaining parameters follow those of the nanoribbon calculations.
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Eσ
tri =

s(s+ 1)
2

EH − 2sEH
T e +

s− 1
2

WEσ
F + 3Eσ,corner

F ,

Eγ
tri =

s(s+ 5)
2

EH − 4sEH
T e +

s

2
WEγ

F + 3Eγ,corner
F .

s is no of Mo-atoms on each of the triangle edges, Eσ,corner
F and Eγ,corner

F

are the energies of the two types of corners on the triangles. EH
T e is the

energy of a Te atom in the H-phase and can be defined as in the expression
above to include the chemical potential of tellurium during the growth of
the H-phase, EH

T e = 1/3µH
T eET e3

. These expressions can be rearranged
such that the expression for the σ triangles is a linear function, f , of s− 1
and the expression for the γ triangles is a linear function, g, of s,

f(s− 1) = Eσ
tri − s(s+ 1)

2
EH

= (s− 1)
(

W

2
Eσ

F − 2EH
T e

)

− 2EH
T e + 3Eσ,corner

F ,

g(s) = Eγ
tri − s(s+ 5)

2
EH = s

(

W

2
Eγ

F − 4EH
T e

)

+ 3Eγ,corner
F .

Using four different sizes of the triangles, the slope of these functions
can be found from a linear fit,

Figure B.6: Linear fit to the two functions f(s− 1) and g(s).
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df
d(s− 1)

=
W

2
Eσ

F − 2EH
T e ⇒ Eσ

F =
2
W

df
d(s− 1)

+
4

3W
µH

T eET e3
,

dg
ds

=
W

2
Eγ

F − 4EH
T e ⇒ Eγ

F =
2
W

dg
ds

+
8

3W
µH

T eET e3
.

The fit is shown on Figure B.6 and results in the following formation
energies,

Eσ
F = 1591.29 − 1588.66µH

T e eV/Å,

Eγ
F = 3181.80 − 3177.33µH

T e eV/Å,

Eγ
F − Eσ

F = 1590.51 − 1588.66µH
T e eV/Å.

The relations obtained for the edges can be used to find expressions
for the formation energies of the phase boundaries,

Ea
F − Ed

F =
1
W

(Ea
ribbon − Ed

ribbon) − Eα
F + Eβ

F = −0.027 eV/Å,

Eb
F − Ec

F =
1
W

(Eb
ribbon − Ec

ribbon) − Eα
F − Eσ

F = 0.28 eV/Å,

Ea
F − Ec

F =
1
W

(Ea
ribbon − Ec

ribbon) − Eα
F + Eβ

F − Eγ
F + Eσ

F

= −1589.715 + 1588.66µH
T e eV/Å,

Eb
F − Ed

F =
1
W

(Ed
ribbon − Ed

ribbon) − Eα
F + Eβ

F − Eγ
F + Eσ

F

= −1591.05 + 1588.66µH
T e eV/Å.

These equations are transcendental which means that only the dif-
ference between the formation energies can be found. The most stable
interface at µH

T e = 1 is chosen as the reference level, ∆Ea
F = 0 eV/Å.

∆Ea
F = 0 eV/Å,

∆Eb
F = 1590.0 − 1588.66µH

T e eV/Å,

∆Ec
F = 1589.71 − 1588.66µH

T e eV/Å,

∆Ed
F = 0.027eV/Å.
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The formation energies of the 4 other possible phase boundaries are
found in the same way from 4 nanoribbons with these phase boundaries.
Since these 4 ribbons will have the same edges a the ones on Figure B.3,
the energy can be found directly from,

∆Ea∗

F =
1
W

(Ea∗

ribbon − Ea
ribbon) + Ea

F .

All eight formation energies is plotted against the chemical potential
of tellurium on Figure B.7 and summarized for µH

T e = 1 in Table 8.1 in
Chapter 8.

Figure B.7: The relative stability of the eight different phase boundaries
between H- and T’-phase MoTe2 as a function of the chemical potential
of tellurium in the H-phase.



APPENDIX C
Derivations

C.1 Derivations using Elliptical
Coordinates

The elliptical coordinate system is defined as,

x = a coshµ cos ν,

y = a sinhµ sin ν.

a and −a is the two foci of the ellipsis, where µ is a nonnegative
real number which adjusts the distance from the plane of the foci and
ν ∈ [0, 2π] is the angle. The nabla operator and Laplacian becomes,

∇Φ =
1

a2
(

sinh2 µ+ sin2 ν
)

(

∂Φ
∂µ

hµ +
∂Φ
∂ν

hν

)

.

hµ = a(sinhµ cos ν, coshµ sin ν).

hν = a(− coshµ sin ν, sinhµ cos ν).

∇2Φ =
1

a2
(

sinh2 µ+ sin2 ν
)

(

∂2Φ
∂µ2

+
∂2Φ
∂ν2

)

.

C.1.1 Metallic Nanoribbon
Let us place a 2D metal nanoribbon at y = 0 and between x = −a
and x = a and with some finite charge density. The potential inside the
nanoribbon is, −ϕ0, corresponding to the workfunction qϕ0. In elliptical
coordinates,
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ϕ(y = 0, x) = −ϕ0 ⇒ ϕ(µ, ν) = −ϕ0aµ− ϕ0.

The electric field at the nanoribbon is (µ = 0),

E = −∇ϕ = − 1
a2 sin2 ν

∂ϕ

∂µ
(0, a sin ν) =

(

0,
ϕ0

sin ν

)

This corresponds to a surface charge density of,

σ(x) =
2εeffϕ0

sin ν

=
2εeffϕ0

√

1 −
(

x
a

)2
sign(y).

εeff is the dielectric constant of the surroundings.

C.1.2 2D metal-semiconductor junction
In this coordinate system, the metal semiconductor interface can be rep-
resented by the following equations,

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0

∂ϕ

∂y
= −qN2D

εeff

for − a < x < a, y = 0

ϕ(x) = 0 for x < −a.y = 0

ϕ(x) = ∆V for x > a, y = 0

which in elliptical coordinates becomes,

∂2ϕ

∂µ2
+
∂2ϕ

∂ν2
= 0

∂ϕ

∂µ
= −qN2D

εeff

a sin ν for ν ∈ [0; π], µ = 0

ϕ(ν) = ∆V for ν = 0

ϕ(ν) = 0 for ν = π
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The solution is,

ϕ(µ, ν) = ∆V − ∆V
π
ν +

qN2D

εeff

ae−µ sin ν,

which at y = 0 and x ∈ [−a; a] corresponds to,

ϕ(x) = ∆V − ∆V
π

cos−1
(2x− xD

xD

)

+
qN2DxD

2εeff

√

1 − (2x− xD/xD)2

where a has been identified as half of the depletion width and x = 0
is moved to the position of the interface. The surface charge density in
quasi-neutral region (ν = 0) is,

σ(µ) = −εeff
∂ϕ

∂y
|ν=0 = − εeff

a2 sinh2 µ

∂ϕ

∂ν
|ν=0 a sinhµ

=
εeff

a sinhµ

(

∆V
π

− qN2D

εeff

ae−µ

)

At the position of the interface (µ = 0), converted back to Cartesian
coordinates and shifting x = 0 to the position of the interface,

σ(x > xD) =

(

(2x− xD

xD

)2

− 1

)−1/2

×




2εeff∆V
πxD

− qN2D





2x− xD

xD

−
√

(2x− xD

xD

)2

− 1







 .

The potential and surface charge density is plotted on Figure C.1 show-
ing the divergence at the boundaries between the metal and the depletion
region and the depletion region and the quasi-neutral region.

C.2 Tuneling Current using the
Method of Steepest Descend

The starting point is the integral in eq. (7.5),
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Figure C.1: Potential and surface charge density of a model where three
spatial regions have been defined; (1) the metal with ϕ = 0, (2) the
depletion region with σ = qN2D/εeff , and (3) the quasi-neutral region
where ϕ = ∆V .

IT UN ≈ 2q2V

hkBT

∫ Φn−qV

0
exp

(

−2
3

(Φn − qV − E)3/2

E00

√
∆V

− E

kBT

)

dE.

The method of steepest descend is a method for approximating an
integral of the form,

∫

C
G(x) exp(−f(x)) dx.

The function g(x) most be smooth, and the function f(x) differential
at lest two times and have a minima on C. The exponential function will
have largest weight at the minimum of f . We therefore approximate f at
the minimum,

f(x) ≈ f(xmin) +
1
2
f ′′(xmin)(x− xmin)2.

This leads to,
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∫

C
G(x) exp −f(x) ≈ G(xmin) exp(−f(xmin))

×
∫

C
exp

(

−1
2
f ′′(xmin)(x− xmin)2

)

≈ G(xmin) exp(−f(xmin))

√

2π
f ′′(xmin)

.

The second integral is evaluated using the area below a Gaussian curve
since we know that xmin lies on C. In our case G(x) = 1 and

f(E) =
2
3

(Φn − qV − E)3/2

E00

√
∆V

+
E

kBT

f ′(E) = −(Φn − qV − E)1/2

E00

√
∆V

+
1

kBT

f ′′(E) =
1
2

(Φn − qV − E)−1/2

E00

√
∆V

.

The minima of f(E) is the energy where the tunnel current has the
most weight,

−(Φn − qV − Emax)1/2

E00

√
∆V

+
1

kBT
= 0 ⇒ Emax = Φn − qV −

(

E00

kBT

)2

∆V

Emax = (Φn − qV )

(

1 −
(

E00

kBT

)2
)

+ qϕn

(

E00

kBT

)2

.

This point lie between qϕn and (Φn − qV ) when E00 ≤ kBT . If N3D =
1018 cm −3, εs = 10ε0 and m∗

e = m0, then E00 = 2.9 meV and it seems
reasonable to assume that E00 ≤ kBT holds unless the semiconductor is
very heavily doped. The tunneling current becomes,

IT UN
3D ≈ 2q2V

hkBT

√

2π
f ′′(Emax)

exp(−f(Emax))

=
2q2V

hkBT
E00

√

4π∆V
kBT

exp

(

1
3

E2
00

(kBT )3
∆V − Φn

kBT
+

qV

kBT

)

= AT UN
3D

qV
√

∆V
T 3/2

exp

(

E2
00

3(kBT )3
∆V

)

exp

(

− Φn

kBT

)

exp
(

qV

kBT

)

,
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which defines an effective tunneling constant,

AT UN
3D =

2q
h

E00

k
3/2
B

√
4π =

q2

k
3/2
B

√

N3D

4πm∗
eεs

.

A comparison between this expression and the exact numerically eval-
uated integral with the exact difference between Fermi functions and tun-
neling probability from the WKB approximation using the potential in
Table 7.1 is shown on Figure C.2. It can be seen that the model performs
reasonably well as long as qV < 1

2
Φn. Above this limit, the model overes-

timates the current since the energy of maximum transmission is pushed
close to the top of the barrier and the approximation using the entire area
below the Gaussian fails. The temperature dependence of the current is
seen on Figure C.2b and shows that the temperature dependence is well
described as well.

The corresponding 2D expression follows the same derivation with the
only difference that E3D

00

√
∆V → E2D

00 where,

Figure C.2: Comparison between the derived expression for the 3D tunnel-
ing current and the numerically evaluated integral. a shows the IV curve
and b shows the temperature dependence of the current.



C.2 Tuneling Current using the Method of Steepest Descend 173

Figure C.3: Comparison between the derived expression for the 2D tunnel-
ing current and the numerically evaluated integral. a shows the IV curve
and b shows the temperature dependence of the current.

E2D
00 =

q2N2D ln 4
2πεeff

√

√

√

√

ℏ2

2m∗
e

.

The comparison between the numerically evaluated integral and the
model expression is seen on Figure C.3 and generally shows a slightly
better agreement than the 3D model.



APPENDIX D
Collected Studies on
Heterophase Devices
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Figure E.1: The 4 types of phase boundaries between a 1T-phase and a
1H-phase TMD along the zigzag edge (a-b*) and one along the armchair
edge (AC). The yellow triangles represent the 1H-phase geometry and the
blue triangles represent the 1T geometry. The metal atoms are placed at
the corners of the blue and yellow triangles. Chalcogen atoms are placed
in the center of all the blue triangles and of the shaded yellow triangles.
Red crosses mark a triangle corner without a metal atom.

Figure E.2: The two types of phase boundaries between a 1T’-phase and a
1H-phase TMD along the armchair direction which have been investigated
using ab-inito calculations. The yellow triangles represent the 1H-phase
geometry and the red and blue zigzag chains represent the 1T’ geometry.
The metal atoms are placed at the corners of the blue and yellow triangles.
Red crosses mark a triangle corner without a metal atom.
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1. Introduction

As electronic devices shrink in size to reach nanoscale dimen-

sions, interfaces between different materials become increas-

ingly important in defining the device characteristics [1]. In 

many cases, it has been shown that the effect of the interface 

even dominates the device properties [2], leading to the con-

cept that ‘the interface is the device’ [3]. In order to optimize 

the performance of a device it is therefore important to under-

stand the properties of its interfaces.

First principles modeling based on atomistic methods 

such as density functional theory (DFT) [4] have become an 

important tool for simulating the properties of interfaces [5]. 

To be truly predictive, atomistic methods require an accurate 

model for the atomic-scale geometry of the interface. As these 

simulations typically use periodic boundary conditions in the 

direction parallel to the interface, a common supercell for the 

surfaces of the two crystals forming the interface must be 

determined. However, typically the two crystals are not com-

mensurate and finding a common supercell requires straining 

one of or both the surfaces. To accommodate the resulting 

strain, the two surfaces can also be rotated with respect to 

each other. However, for rotation angles preserving a high 

symmetry in the supercell, this has often the side-effect of 

increasing considerably its dimensions. Finding a supercell 

with low built-in strain and without an excessive number of 

atoms is therefore highly nontrivial.

In this paper we present an algorithm which allows for 

an efficient and systematic search for common supercells 

between two crystalline surfaces. Given the optimized geom-

etries of two surfaces forming the interface, the algorithm 

returns a list of all possible interface supercells by varying the 

interface strain and the rotation between the two surfaces. A 

related, but more simplistic method has been proposed in [6]. 

Compared to [6] our method automatically tests all possible 

rotations of the two lattices and has been implemented into a 

graphical user interface, the Virtual NanoLab [7].

In the paper we show that this is not only a practical pro-

cedure for generating low strain supercells for atomic-scale 

simulations, but it can also be used as a predictive tool for 

Journal of Physics: Condensed Matter
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Abstract

The geometry and structure of an interface ultimately determines the behavior of devices at 

the nanoscale. We present a generic method to determine the possible lattice matches between 

two arbitrary surfaces and to calculate the strain of the corresponding matched interface. We 

apply this method to explore two relevant classes of interfaces for which accurate structural 

measurements of the interface are available: (i) the interface between pentacene crystals and 

the (1 1 1) surface of gold, and (ii) the interface between the semiconductor indium-arsenide 

and aluminum. For both systems, we demonstrate that the presented method predicts interface 

geometries in good agreement with those measured experimentally, which present nontrivial 
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determining interface geometries in accordance with exper-

imental data. As a first example, we consider the interface 

between a pentacene crystal (PC) and the Au(1 1 1) surface, 

which has been widely studied both theoretically [8–13] and 

experimentally [14–24]. We show that the predicted geom-

etries of a pentacene monolayer on Au(1 1 1) recover those 

observed experimentally. Using DFT, we calculate the ground 

state structure and energetics of these interfaces and find that 

they are thermodynamically more stable than those previously 

used in the literature.

As a second example, we consider the interface between 

Al and InAs. This interface is relevant for studies on semicon-

ductor nanowires (NWs) in which superconducting properties 

are introduced by proximity effect with a superconductor [25–
28] and its structure has been recently resolved using high-

resolution transmission electron microscopy (HR-TEM) [29].

The organisation of the paper is the following. In section 2 

we introduce the algorithm for matching the two crystal ori-

entations with minimal strain. In section 3.1 we first apply the 

method to determine the geometry of a pentacene overlayer on 

Au(1 1 1). In section 3.2 we determine the structure of Al on 

InAs. Finally in section 4 we conclude.

2. Methods

2.1. Algorithm details

The algorithm has been implemented into the Virtual 

NanoLab [7, 30] and can be summarized in four main steps. 

A schematic flowchart is shown in figure  1. The algorithm 

takes as input the structures of two arbitrary surfaces A and B, 

described by surface unit cells with primitive vectors a a,1 2( )
→ →  

and b b,1 2( )
→ →

. In the first step, supercells are constructed for the 

two non-interacting surfaces starting from the corresponding 

surface unit cells. In the second and third step, the supercells 

are aligned and matched to create a supercell representation 

of the interface. The interface supercell is then accepted and 

added to the pool of interface structures if the strain and the 

rotation between the two surfaces are below given thresholds 

predefined by the user. The procedure is reiterated for all the 

possible supercells that can be constructed starting from the 

two surface unit cells. In the following, we detail the details of 

each individual step.

 (1) Construction of the surface supercells:

  Starting from the unit cells of the two individual surfaces 

with primitive vectors a a,1 2( )
→ →  and b b,1 2( )

→ →

, trial non-

strained surface supercells A∗ and B∗ are generated. These 

supercells have Bravais lattice vectors (v v,1 2
→ → ) and (u u,1 2

→ → ), 

which are described in terms of the corresponding surface 

unit cells by the relations:

=v v a aN, , ,1 2 1 2( ) ( )
→ → → →

 (1)

=u u b bM, , .1 2 1 2( ) ( )
→ →

→ →

 (2)

Figure 1. Flowchart diagram of the algorithm for matching two 
surfaces forming an interface with minimal strain. In step 1, 
two surface supercells with lattice vectors → →

v v,1 2( ) and → →

u u,1 2( ) are 
constructed from the surface unit cells with lattice vectors → →

a a,1 2( ) 

and 
→ →

b b,1 2( ), respectively. The two supercells are rotationally aligned 

(step 2) by applying the rotation matrix R and then matched (step 
3) using the the strain tensor ε. In step 4, the interface supercell is 
accepted based on pre-defined threshold values (see equation (8) 
and associated description).

J. Phys.: Condens. Matter 29 (2017) 185901
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  In equations  (1)–(2), N and M are ×2 2 repetition 

matrices. N takes the form:

=

n n

n n
N ,

11 12

21 22( ) (3)

  where ∈n Zij . An equivalent formulation to equation (3) 

can be given for M. During the generation of the super-

cells, we exclude equivalent lattices.

 (2) Rotational alignment:

  For each pair of supercells A∗ and B∗, we next determine 

a rotation matrix R which rotates B∗ and aligns u1
→  with v1

→ :

⎡
⎣⎢

⎤
⎦⎥

θ θ

θ θ
=

−

R
cos sin

sin cos
, (4)

  where θ φ φ=| − | 2
a b

/ , with φ = ∠ u u,
a 1 2( ) and φ =b  

∠ v v,1 2( ), respectively.

 (3) Supercell matching:

  Once the individual supercell of the two surfaces have 

been aligned, the supercell vectors are matched to create 

the interface supercell. This matching procedure can be 

described by defining a strain tensor ε, which is applied to 

the Bravais lattice of B∗ in order to match it to the Bravais 

lattice of A∗. The individual components of the strain 

tensor ε are:

ε = −

v

u
1,xx

x

x

1,

1,

 (5)

ε = −

v

u
1,yy

y

y

2,

2,

 (6)

ε =

−v u

u

1

2
.xy

x
v

u
x

y

2, 2,

2,

x

x

1,

1, (7)

 (4) Acceptance of the interface supercell:

  The full equation  to match the two surfaces A and B 

defined in terms of equations (1)–(7) reads:

ε= +a a b bN RM, 1 , .1 2 1 2( ) ( ) ( )
→ →

→ →

 (8)

By examining equation (8), it can be seen that the search for 

possible interface supercells can be narrowed by (i) defining a 

threshold value Nmax for the elements nij in N and an equiva-

lent threshold value Mmax for M, (ii) defining threshold values 

for the individual components of the strain tensor ε, and (iii) 

specifying a range for the angle φ associated with the rotation 

matrix R. We note that a procedure similar to that outlined, in 

which the surface B is strained, can also be applied to strain 

A and match it to B, or to strain equally both surfaces. For the 

systems considered in this study, the search for possible inter-

face supercells has been constrained by choosing a threshold 

for condition (i) of =N M, 6max max  or =N M, 12max max , and 

by considering all possible rotations and strains. With these 

parameters, a scan typically takes 1s and the simulation time 

scales as φN Nmax

2 , where φN  is the total number of angles. In 

the next section we will apply the method to determine the 

structure of a Pentacene monolayer on Au(1 1 1) and the inter-

face geometry of Al on top of InAs.

2.2. Elastic contribution to the interface energy

Straining one or both sides of the interface introduces and 

additional elastic contribution to the interface energetics. This 

contribution and its influence on the surface geometry varies 

considerably depending on the strength of the interaction 

between the overlayer and the substrate. For a substrate and 

a strained overlayer with cubic symmetry, we can write down 

the total energy per unit of area as [31]:

ε ε ε ε= + + + +E E E C C C t
1

2
,xx xx yy xy

int surf 2
11 12

2
44( ) (9)

where E int is the interface energy between the substrate and 

the overlayer, Esurf is the energy of the free surface of the over-

layer, ε ε ε, ,xx yy xy have been defined in equations (5)–(7), C11, 

C12, C44 are the elastic constants of the overlayer material and 

t is its thickness. The equation can be further simplified as

= + +E E E C t
1

2
,int surf 2

11Ē (10)

where

ε ε ε= + +
C

C

C

C
2 2 .xx xx xy

2 12

11

2 44

11

2
Ē (11)

Neglecting interactions between the interface and the over-

layer free surface and strain effects, Esurf will be independent 

of the interface geometry. For metals and weakly interacting 

interfaces, we also expect the interface energy E int to be rather 

similar for different geometries, so that the contribution of the 

elastic energy will be dominant and will determine the stability 

trend of the different geometries. On the other hand, for inter-

faces between semiconductors there may be a varying number 

of bonds at the interface, depending on the precise overlay 

structure. Since binding energies for covalent bonds are typi-

cally in the range 1–2 eV, the overlayer may need to have a 

thickness above  ∼2 nm before the elastic energy will dominate.

3. Results

3.1. PC/Au(1 1 1)

3.1.1. Computational details. The DFT calculations for PC/

Au(1 1 1) have been performed using the atomistix toolkit  

[32]. The Kohn–Sham orbitals have been expanded in a lin-

ear combination of pseudo-atomic orbitals (PAOs) [33]. 

The electronic exchange-correlation (xc) energy has been 

described by using the generalized gradient approximation 

(GGA) and the Perdew-Burke 91 (PW91) xc-functional [34]. 

We use this functional to compare with previous calculations 

[9], however, note that the GGA-PW91 xc-functional does 

not include van-der-Waals forces and it will therefore under-

estimate adsorption energies. We have used a slab geometry 

with  periodic boundary conditions parallel to the surface and 

mixed (Dirichlet  +  Neumann) boundary conditions in the 

J. Phys.: Condens. Matter 29 (2017) 185901
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direction normal to the surface, the latter allows for describ-

ing slabs with different workfunctions on the upper and lower 

surfaces. The Brillouin zone has been sampled using an 

× ×8 3 1 Monkhorst-Pack [35] grid and a Fermi-Dirac occu-

pation scheme with a broadening of =k T 25 meVB   . Structural 

relaxations have been performed using a convergence thresh-

old for the forces of 
−

0.01 eV Å
1

    . During both the structural 

optimization and the evaluation of binding energies, the basis 

set superimposition error (BSSE) has been corrected using the 

counterpoise (CP) correction scheme [36]. For the Au(1 1 1) 

surface, we have used a 6-layers slab. Only the two upper-

most Au layers were allowed to relax during the structural 

optim izations, while the atoms in the lowermost layers were 

kept frozen at their bulk position.

For carbon we have used 21 orbitals per atom with s, p 

and d characters and ranges up to 3.9 Å, while for hydrogen 

we have used 5 orbitals per atom with s and p characters and 

ranges up to 4.2 Å. This basis set has been optimized to repro-

duce hydrogen and carbon dimer total energies [37]. Using this 

basis set, we obtain an adiabatic ionization energy for the indi-

vidual pentacene molecule (P1) =E 6.34 eVI   , in good agree-

ment with the experimentally reported value =E 6.59 eVI
exp    

[38]. For gold, we have used an s, p, d basis set of ranges 

2.7–3.6 Å, with a total of 9 orbitals per atom. The calculated 

lattice constant for bulk Au using this basis is =a 4.17 ÅAu   . 

Using a layer of gold ghost orbitals to get a better description 

of the isolated Au(1 1 1) surface [39], we also obtain that the 

surface work function is =W 5.19 eVAu 1 1 1  ( ) . Both values are 

in good agreement with those obtained using similar compu-

tational parameters and a plane wave basis set [9].

Results To construct the interface between the PC (see 

figure 2) and Au(1 1 1), we have considered the PC unit cell 

according to the crystallographic parameters of [40] (P-1: 

=a 5.985 Å  , =b 7.596 Å  , =c 15.6096 Å  , �
α = 81.25 , 

�β = 86.56 , �
γ = 89.8 ). The internal stress calculated in this 

unit cell is lower than 
−

3 meV Å
3

    .

We have then aligned the 0 1 0⟨ ⟩ direction of the PC unit 

cell along the normal to the Au(1 1 1) surface, and gener-

ated all possible interface supercells with N M, 12max max ⩽  

by straining the PC lattice in the plane perpendicular to 

the 0 1 0⟨ ⟩ direction1. Figure  3(a) shows a graph with the 

resulting possible supercells, sorted according to the mean 

absolute strain ε̄  and the number of atoms in the supercell. 

The plot shows the number of atoms in the supercell as 

function of the average strain ε̄. For the average strain we 

for simplicity use, ε ε ε ε= | |+| |+| | 311 22 12¯ ( )/ . The measure 

Figure 2. Structure of the pentacene crystal.

Figure 3. (a) Graph of the possible supercells generated for 
PC/Au(1 1 1) as a function of the mean absolute strain ε̄  in the 
pentacene crystal and the number of atoms in the supercell. (b) and 
(c) Au(1 1 1) and pentacene surface lattices associated with supercell 
II. The latter is highlighted by the red dot in (a).

Table 1. Strain in the 0 1 0⟨ ⟩-oriented PC crystal to match Au(1 1 1). 
The first and second columns label each geometry by a roman 
number and list the supercell in the basis of the Au(1 1 1) Bravais 
lattice. The four indexes n n n n, ; ,11 12 21 22( ) refer to the rotation 
matrix as defined in equation (3). The third column lists the 
number of PC(0 1 0) surface cells in the structure. ε11, ε22, ε12 are the 
components of the strain tensor applied to the PC(0 1 0) surface cell 

in order to match the gold supercell. ε ε ε ε= | |+| |+| | 311 22 12¯ ( )/  is the 
average strain.

Structure Au(1 1 1) #PC ε11 ε22 ε12 ε̄

I (2,1;0,6) 1 −16.0 10.9 3.3 10.1

II (2,0;3,6) 1 −3.0 −4.0 2.9 3.3

III (2,0;−3,6) 1 −6.4 −0.54 0.0 2.3

IV (2,0;−2,13) 2 0.2 0.7 3.7 1.5

V (6,1;5,3) 4 −0.8 −0.3 −0.5 0.5

VI (16, −1;9, −2) 12 0.0 0.1 0.1 0.1

1 To have a more consistent matching with the PC unit cell, for which the 

experimental crystallographic parameters have been used, we have used the 

experimental lattice parameter of the Au(1 1 1) surface during the surface 

matching. However, in the calculations, the calculated lattice parameter for 

Au(1 1 1) has been used. We have checked that this procedure does not alter 

our conclusions.
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in equation  (11) gives slightly different orderings, but we 

found that orderings are basically similar and therefore 

selected the most simple option. The lattices with lowest 

strain are listed in table 1. It can be seen that supercell I, 

which has been used in earlier reports to model the PC/

Au(1 1 1) surface [9], possesses a rather large internal strain. 

On the other hand, our method reveals the existence of other 

non-trivial supercell arrangements which are associated 

with a much less strained PC lattice. In particular, among 

all the interfaces formed by a single PC(0 1 0) surface unit 

cell, the value of ε̄ is 67% and 77% lower for supercell II and 

III, respectively.

To analyze the relationship between strain and adsorption 

properties in PC/Au(1 1 1), we have compared the optimized 

geometries of supercells I, II, and III (see table 2). For each 

optimized geometry we calculate the lattice vectors a, b 

of the PC/Au(1 1 1) supercell, and the geometrical param-

eters of the PC crystal: the adsorption height z and the polar 

and azimuthal adsorption angles θ and φ, see figures 4((b) 

and (c)). Since supercell II and III have very similar prop-

erties, in the following we will only compare supercell I 

and II, see figures 4((a) and (b)). The structural parameters 

obtained for supercell I are very similar to those obtained 

using a plane wave basis set [9]. However, supercell II and 

III provides an overall better agreement with the available 

experimental data. In particular, the supercell lattice vectors 

a, b, and the azimuthal angle φ are closer to those measured 

experimentally.

In addition to the geometrical properties, we find that the 

calculated work function for supercell II is also in closer 

agreement with that measured experimentally, compared to 

that calculated for supercell I. Finally, the binding energy 

Eb calculated for supercell II is also larger compared to that 

calculated for supercell I. This indicates that the supercell 

II and III, in addition to providing structural parameters in 

better agreement with those measured experimentally, lead to 

a structure which is thermodynamically more favorable. We 

note that the discrepancy relative to the experimental value, 

is due to the neglect of van der Waals forces.

3.2. Al/InAs

Following recent experimental work on InAs NWs in which 

superconducting properties have been induced by the prox-

imity effect with Al [25–28], we have considered two surfaces 

of InAs: the 1 1 0 0( ¯ ) surface of the wurtzite phase (hereafter, 

1 1 0 0 WZ( ¯ ) ), and the 1 1 1 B( )  surface of the zinc-blend phase 

(hereafter, 1 1 1 BZB( ) ). NWs with both these surfaces orienta-

tions have been grown experimentally, and it has been demon-

strated that the precise orientation of the epitaxial Al overlayer 

depends on the exposed InAs surface [29].

For each of the two InAs surfaces, we have performed a 

scan over all Al(mkl) surfaces with m k l, , 3⩽ . Subsequently, 

for each set of Miller indexes, we have generated all possible 

supercells with N M, 6max max ⩽  and with a maximum of four 

InAs surface cells, by straining the Al lattice in the plane 

perpend icular to the interface.

For both the InAs surfaces considered, we have found that 

the Al surface which is predicted to have the lowest strain in 

the Al overlayer matches with that identified experimentally 

for thick ( >t 30 nm  ) Al overlayers, see table 3. In the case of 

InAs 1 1 0 0 WZ( ¯ ) , this corresponds to Al 1 1 2( ¯), whereas in the 

case of InAs 1 1 1 BZB( ) , this corresponds to Al 1 1 1( ).

Another check on the accuracy of the method can be done 

by comparing the structures of the predicted InAs/Al inter-

faces with those measured experimentally. Figure 5 shows the 

predicted InAs/Al interfaces, superimposed to the measured 

HR-TEM images for each interface. It can be seen that, for 

both interfaces, the agreement between the structural model 

and the HR-TEM pattern is excellent. On the InAs side of the 

interfaces, regions of dark and bright contrast can be associ-

ated with In and As atoms, respectively, whereas on the Al 

Table 2. Calculated properties of the optimized geometries of PC/Au(1 1 1), for supercell I, II, III. The repetition of the Au(1 1 1) surface 
Bravais vectors is given in parenthesis for each supercell. Eb is the binding energy. Φ is the work function. Reference calculation values for 
supercell I obtained by Li et al [9]2 are given in the third column.

I-(2,1;0,6) Li et al [9] II-(2,0;3,6) III-(2,0;−3,6) Exp.

a (Å) 5.11 5.11 5.90 5.90 5.64 [16] 5.76 [18] 5.7 [19, 21]

b (Å) 17.71 17.71 15.44 15.33 14.8 [16] 15.0 [18] 15.5 [19, 21]

z (Å) 3.35 3.1–3.5 3.18 3.17
�

θ ( ) 40 38 36 34 43 [17] 31 [19]
�φ ( ) 87 81 81 80

Φ (eV) 4.25 4.29 4.48 4.50 4.52 [16] 4.4 [20] 4.6 [23]

Eb (eV) −0.29 −0.16 −0.42 −0.42 −1.14 [18]

Figure 4. (a) Top view of supercell I. (b) and (c) Top and side 
views of supercell II. The structural parameters a, b, φ, θ and z are 
also shown (see the main text for a description of the parameters).

2 Figure 2 of Li et al [9] shows that the total energy as function of distance is 

lowest at ∼z 3.3 Å while the authors report z  =  3.13 Å. To address this dis-

crepancy, the authors put the following comment: ‘We note that the extreme 

flatness of the potential energy surface in the range ∼ −z 3.1 3.5 Å does not 

allow for a very accurate determination of the optimal z distance’.
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side of the interfaces, the regions with bright contrast can be 

associated with Al atoms.

4. Conclusions

In conclusion, we have presented a systematic and efficient 

method for determining a supercell geometry of the interface 

between two crystals. The method has been implemented into 

the Virtual NanoLab software [7]. The method was applied to 

two metal-semiconductor systems, namely the Au-pentacene 

and the InAs-Al interfaces. In both cases the method suggests 

interface geometries in good agreement with experimental 

data [16–19, 21, 29]. For Au-Pentacene we illustrated that pre-

vious studies [9], which does not use a systematic approach for 

finding a supercell geometry of the interface have lower binding 

energies and are not in accordance with experimental data.
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We present a general method for combining two crystals into an interface. The method finds all possible
interfaces between the crystals with small coincidence cells and identifies the strain and area of the
corresponding two-dimensional cells of the two crystal surfaces. We apply the method to the two semiconductor
alloys InAs1−xSbx and GaxIn1−xAs combined with a selection of pure metals or with NbTiN to create
semiconductor/superconductor interfaces. The lattice constant of the alloy can be tuned by composition and
we can extract the alloy lattice parameters corresponding to zero strain in both the metal and the alloy. The results
can be used to suggest new epitaxially matched interfaces between two materials.

DOI: 10.1103/PhysRevB.96.085306

I. INTRODUCTION

The development of modern technology has become in-
creasingly dependent on knowledge of interfaces at the atomic
scale. As the size of electronic devices decreases, interfaces
become an increasingly dominant part of the system and thus
become the limiting factor for device performance [1–3]. Many
difficulties are thus related to obtaining a stable and defect-free
interface. When the materials are not commensurate, a large
strain can build up at the interface, and result in defects and
unstable interface geometries. To this end, it can be beneficial
to use an alloy as one of the interface materials. By changing
the alloy composition, the lattice constant for one of the inter-
face materials can be tuned, thereby obtaining commensurate
lattices across the interface. Many future devices can therefore
be expected to be designed from alloys. A growing field, where
alloys are commonly used, is the fabrication of core-shell
nanowires. These nanowires have numerous applications, e.g.,
for photodetectors [4], photoelectrodes [5], and thermoelectric
devices [6].

The prediction of the stability of an interface is difficult [7]
and the commonly used approach is trial and error where many
samples must be grown before it can be concluded whether a
stable interface can be formed or not. In this paper, we present
a crystal matching method which permits the combination
of any two crystals and provides information on the crystal
surfaces, if any, that allow for a low-strain epitaxial interface.
The method is solely based on geometrical considerations of
the possible surface cells of the two crystals and it leads to
an identification of interfaces where both the strain and the
size of the coincidence interface cell are small. Having low
stress and a small interface cell does not by itself guarantee a
stable interface, as the atomic structure of the interface may
also play an important role. However, the simple geometrical
criteria provide a good starting point for further experimental
or theoretical investigations.

In a previous article [8], some of the authors have shown
how to find good matches between specific surfaces of two
crystals and a related, but more simplistic, method for such
a two-dimensional (2D) match has also previously been

*kwj@fysik.dtu.dk

proposed [9]. With the present method, all possible crystal
orientations and surfaces are investigated at the same time.
Furthermore, we introduce a scaling parameter between the
two crystals which can be tuned to gradually change the size
of one of the crystal structures while keeping the other fixed.
The scaling parameter mimics the situation where the lattice
constant of one of the materials can be tuned by modifying the
alloy composition, and it provides a convenient parameter for
analyzing and understanding the interface-matching problem.
We derive an analytical relation between the scaling parameter
and the minimal strain, and demonstrate its usefulness in
Sec. IV, where we investigate the matches between an arbitrary
fcc crystal and an arbitrary bcc crystal.

The introduction of the scaling parameter makes the method
an ideal tool for investigating interfaces containing alloys. In
Sec. V, we apply the method to the two semiconductor alloys
InAs1−xSbx and GaxIn1−xAs combined with a range of metals
(Al, Ni, Cu, Ag, Au, Pb, V, Fe, Nb, and Co) and for each
metal we predict the alloy lattice constants which lead to
strain free interfaces. InAs and InSb are, for example, used
in semiconductor-superconductor core-shell nanowires for the
realization of zero-energy localized Majorana modes [10–15].
The results obtained here therefore provide some guidelines
for promising new combinations of semiconductor alloy
compositions and metals for core-shell nanowires. Promising
results for the generation of Majorana modes have also been
shown for an InSb-Nb1−xTixN interface [16]. The final part of
this work is to investigate how the two semiconductor alloys
match with this superconducting alloy.

II. INTERFACE ENERGETICS

The method we are going to describe below makes it
possible to identify interfaces with small coincidence cells
where only a small strain is required. The model thus takes only
the material lattices into account, but not the atomic details. To
what extent such interfaces will be stable is highly dependent
on the particular materials and the character of the bonding. To
discuss this we consider the situation where two materials A
and B are homogeneously strained and put together to form an
interface. The energy difference �E associated with straining
the materials and forming the interface can be divided into

2469-9950/2017/96(8)/085306(7) 085306-1 ©2017 American Physical Society
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three contributions,

�E = �Eint + �Esurf. strain + �Ebulk strain, (1)

where the interface term is the energy gained by forming the
interface from the surfaces at fixed strain,

�Eint = Eint
AB(ǫA,ǫB) − Esurf

A (ǫA) − Esurf
B (ǫB). (2)

The second term is the energy change in the surface energy
because of the strain,

�Esurf. strain = Esurf
A (ǫA) − Esurf

A (ǫA = 0)

+Esurf
B (ǫB) − Esurf

B (ǫB = 0). (3)

This contribution can be both positive or negative and we shall
in the following assume that this term can be considered small.
The third term is the energy cost associated with straining the
bulk of the materials,

�Ebulk strain = Ebulk
A (ǫA) − Ebulk

A (ǫA = 0)

+Ebulk
B (ǫB) − Ebulk

B (ǫB = 0). (4)

If we assume that the dependency of the surface energy with
strain can be neglected, we expect to get a stable interface
if the energy gain from the interface �Eint dominates the
cost from straining the bulk of the materials �Ebulk strain.
The model suggested here identifies interface matches with
low-strain and small interface coincidence cells. The small
strain will clearly tend to minimize the bulk strain energy as
this scales quadratically with the strain. A more questionable
assumption is that a small interface cell will lead to strong
bonding at the interface. The bonding will often depend quite
sensitively on the atomic structure at the interface, which is not
considered at all by the model. However, in many cases where
the interface cell is small, a translation of one of the surfaces
relative to the other makes it possible to obtain favorable
bonding configurations which are then repeated over the entire
interface, leading to general high stability. However, if the
interface cell is large, the atomic bonding configurations will
often vary considerably over the cell, so that in some parts of
the cell favorable bonding configurations are obtained but in
other parts not. Overall this leads to weaker bonding [17].

Another advantage of a small coincidence cell is that it may
be more stable with respect to shear in the interface. For a small
cell, a large corrugation in the energy landscape as a function
of displacement of one of the materials relative to the other
one along the interface can be expected. The bonds across the
interface will respond to the shear “in synchrony” leading to
large variation. For a larger cell where some bonds are strong
and others are weak, the bonds will respond differently to the
shear presumably leading to a smaller energy corrugation.

If the materials are thick, the strain has to be very small since
the bulk strain energy grows in proportion to the thickness.
In this limit, only interface matches at very low strain will
be acceptable. However, in practice this limit may also lead
to incommensurate interfaces or defects at or close to the
interface, situations clearly beyond what a simple lattice model
can account for. Similarly, if the interface bonding energy is
very small and has a small corrugation, as is, for example,
the case with van der Waals bonding, stable interfaces with
large moiré-pattern coincidence cells or even incommensurate

cells may occur. This situation can arise even for very thin
films as, for example, in the case of graphene on some metal
surfaces, where the interaction is weak. Despite the fact that
a graphene layer is atomically thin, the strong interatomic
bonding within the graphene layer results, for some metals,
in little accommodation of the surface and large coincidence
cells as a result [18,19].

III. CRYSTAL MATCHING METHOD

Our method for creating an interface between two crystals
is general and based on 2D cells of the two crystal surfaces.
The 3D vectors of the crystal, defining these surface cells, are
projected from R

3 to R
2 as illustrated in Fig. 1(a). We begin

by explaining the method behind matching two such cells and
extracting the related strain.

Let the surface cell of the first crystal be defined by
two vectors u1 and u2, where u1 = [u1x,u1y]T , as shown in
Fig. 1(a). Similarly, let v1 and v2 denote the two vectors which
define the surface cell of the second crystal. Then, the affine
transformation A which maps [u1,u2] onto [v1,v2] is given by

FIG. 1. The method for finding and matching the 2D surface
cells of two crystals. (a) The lattice vectors of the first crystal
(u1,u2) are created from a linear combination of the Bravais vectors
(a1,a2,a3). Here u1 = −a1 + a2 + a3 and u2 = 2a1. The two vectors
are then projected from the three-dimensional (3D) representation
to a 2D representation on a crystal surface. (b) Two cells of two
different crystals are matched by applying the affine transformation
A[u1,u2] = [v1,v2], where A = UP consists of a rotation U, and a
strain matrix P.
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the following system of linear equations,
[

A11 A12

A21 A22

][

u1x u2x

u1y u2y

]

=
[

v1x v2x

v1y v2y

]

. (5)

Any square matrix can be decomposed into the product of
an orthonormal matrix U, and a positive definite symmetric
matrix P. This is known as a polar decomposition [20]. The
symmetric matrix defines the 2D strain tensor ǫ for deforming
one cell into the other,

P = I + ǫ =
[

1 + ǫxx ǫxy

ǫxy 1 + ǫyy

]

. (6)

The first vectors are rotated along the x axis s.t. u1y =
v1y = 0. This can be done without loss of generality and leads
to

A11 =
v1x

u1x

, (7)

A12 =
v2x

u2y

−
v1xu2x

u1xu2y

, (8)

A21 = 0, (9)

A22 =
v2y

u2y

. (10)

We now make the polar decomposition of A s.t. A = UP,
where U is a rotation matrix because of the chosen projection
to R

2,

U = s

[

A11 + A22 A12

−A12 A11 + A22

]

=
[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

, (11)

P = UT A, (12)

where s is a factor which makes the columns of U unit vectors.
The U matrix defines the counterclockwise rotation of the
[u1,u2] cell onto the [v1,v2] cell by the angle φ = |φa − φb|/2
as shown in Fig. 1(b). Using this method, Eqs. (7)–(12) thus
yield the strain matrix of any given cell combination.

A. Algorithm

We now explain the algorithm behind extracting the strain
matrix of all the possible matches between two crystals. The
procedure is illustrated in the flow chart in Fig. 2.

1. Create (i, j,k) list from ℓmax

The first step is to create all the possible lattice vectors
of each crystal up to a specified maximum length ℓmax. The
vectors are created as integer combinations of the Bravais
vectors of the crystal, as illustrated in Fig. 1(a),

u = ia1 + ja2 + ka3, |u| < ℓmax. (13)

This will create a list of (i,j,k) values for each crystal.

2. Create vector pair list

The next step is to combine the created vectors such that
a list of unique surface cells is created for each crystal. This

FIG. 2. Flow chart behind the algorithm for matching two crystals.

procedure uses two kinds of filters to remove equivalent surface
cells from the list; the symmetry operations of the atom-free
crystal [21] and Niggli reductions of the cells [22].

As a starting point, we create a list of symmetrically unique
vectors of the crystal by applying the symmetry operations
{S} to each vector in the generated (i,j,k) list. Let u be
the vector we apply the operations to and let {Su} be the
set of all the vectors created when applying the symmetry
operations. We define the canonical representation of this set
as its least element with respect to the lexicographic ordering.
When iterating through the (i,j,k) list, noncanonical vectors
are discarded.

To create the unique surface cells, we combine each vector
from the original (i,j,k) list with the vectors in the symmetry
reduced (i,j,k) list. The combination is discarded if the two
vectors are parallel or if the area that they span exceeds Amax.
The symmetry operations of the crystal are then reapplied, this
time on both vectors: {S[u1,u2]}. Again, any noncanonical
pairs are discarded.

The final test is to investigate whether the cell is a Niggli
reduced cell. A Niggli reduced 2D cell fulfils

u1 · u1 � u2 · u2, u1 · u2 �
1
2 u1 · u1. (14)

The cells that are not Niggli reduced are discarded. This is
only done for the first crystal, since a Niggli reduced cell may
be strained into a non-Niggli reduced cell when the two crystals
are combined. After these calculations, we have created a list
of surface cells for each crystal and the next step is to combine
these two lists.
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3. Combine the pair lists of the two crystals

When the cells of the two crystals are matched, the first
step is to filter out repeated matches. As an example, let a
[u1,u2] cell of the first crystal be combined with a [v1,v2]
cell where u1ijk = (1,0,0), u2ijk = (2,0,1), v1ijk = (0,0,2),
and u2ijk = (4,4,2). This combination is equivalent to the
((2,0,0),(4,0,2),(0,0,4),(8,8,4)) combination. We avoid in-
vestigating both combinations by discarding any combinations
whose greatest common divisor, gcd(u1ijk,u2ijk,v1ijk,v2ijk), is
not 1. After this preliminary test, the strain matrix of the match
is calculated using the method explained in the beginning of
this section.

We now define a measure for the average strain of a match,

ǭ =

√

ǫ2
xx + ǫ2

yy + ǫxxǫyy + ǫ2
xy

4
, (15)

where ǫxx,ǫxy , and ǫyy are the components of the 2D strain
tensor shown in Eq. (6). This average strain is an invariant of
the strain tensor, since 4ǭ2 = Tr(ǫ)2 − det(ǫ). Matches with
an average strain below a given strain threshold εmax are kept.

This concludes the algorithm for finding all the matches
between two crystals. The parameters determining which
matches to include in the search are ℓmax, Amax, and εmax.
These parameters help to filter out the cells that wouldn’t
create a physically meaningful interface. The area and length
threshold ensures that we don’t investigate unreasonably large
or narrow cells and the strain threshold filters out the most
strained matches.

The algorithm is implemented using C++ with a Python
interface and has good performance; finding all matches
between a InAs fcc crystal and a Cobalt hcp crystal with

the parameters, ℓmax = 50 Å, Amax = 200 Å
2
, and ǫmax = 2%,

takes approximately 20 min on a normal laptop. The algorithm
is available in VIRTUAL NANOLAB version ATK-VNL-2017 [23].

IV. MATCHING OF A FCC CRYSTAL

WITH A BCC CRYSTAL

In the previous section, we have explained how to match
two specific crystals with fixed lattice parameters. Here, we
discuss the matching of any fcc crystal with any bcc crystal.
To this end, we introduce an isotropic scaling parameter k,
which is applied to the Bravais vectors of the bcc crystal. This
scaling parameter can then be defined as the ratio between the
lattice constants of the two crystals, k = afcc/abcc. The effect
of k on the strain matrix is linear,

A = kUP = U

[

k(1 + ǫxx) kǫxy

kǫxy k(1 + ǫyy)

]

. (16)

This means that the effect of the scaling parameter on
the average strain can be described by the simple analytical
relation,

4ε̄2(k) = k2
(

ǫ2
xx + ǫ2

yy + ǫxxǫyy + ǫ2
xy

)

+ k2(3ǫxx + 3ǫyy + 3)

− k(3ǫxx + 3ǫyy + 6) + 3, (17)

where the strain tensor components are referring to the case of
k = 1. This relation allows us to calculate the average strain
of a match at any k value once the strain matrix has been

FIG. 3. The matches between a fcc and a bcc crystal. k represents
the scaling between the two lattice constants, k = afcc/abcc. (a) The
ε̄2(k) relation of (17) for optimal matches involving the [110] surface
of the fcc crystal. The color of the curves represents different surfaces
of the bcc crystal. (b) The surface cells and corresponding interface of
the perfect k = 2 match shown on (a). Illustrated here for InAs with
vanadium. (c) Scatter plot of matches where the minima of the strain
parabola gets below 10%. The dots represent the minimal strain of the
match and the k value where this strain occurs. We have chosen ℓmax

and Amax as four times the lattice constant of the unstrained crystal.
The color represents the area of the fcc surface cell of the match.

calculated for any one specific value of k. Equation (17) defines
a strain parabola; the minimal strain of a match, along with
the corresponding k value, can be found from the minimum of
this parabola.

The strain parabolas for the optimal matches [24] between
an fcc[110] surface and a bcc crystal with k values between
2.0 and 2.14 are illustrated in Fig. 3(a). This range is of
relevance for the matching of a InAsSb alloy with vanadium.
It can be seen that the two [110] surfaces have perfect
matches at k = 2.0, 2.04, 2.06, and 2.12. The surface cells
and corresponding interface of the perfect k = 2.0 match
are illustrated in Fig. 3(b) for InAs and vanadium. This k

value can be obtained, when matching, e.g., InAs0.996Sb0.004

to vanadium or Ga0.786In0.214As to iron. As such, this specific
match reappears in the results of the next section where these
two alloys are matched to a range of metals.

To obtain the full picture of the matches between a fcc
and a bcc crystal, we use the algorithm described in Sec. III
and apply the strain threshold to the minimal strain of a given
match. It corresponds to the following flow chart in Fig. 2 but
where step 3.ii. is altered such that after calculating the strain
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matrix, we use Eq. (17) to find the minimal strain of the match
and only keep the matches where this is lower than the strain
threshold. In this manner, we can retrieve the strain parabolas
of all the relevant matches by doing a single calculation at
k = 1. We have chosen ℓmax and Amax as four times the lattice
constant of the unstrained crystal and ǫmax = 10%.

Figure 3(c) shows the results of this general investigation.
For each match, we plot the minimal strain and the correspond-
ing k value. Note, that the y axis shows the squared strain, since
this illustrates the general shape of the matches better. The
structure shows curves where zero strain minimas appear, e.g.,
at the points k = 1/

√
2 ≈ 0.71, k =

√
3/2 ≈ 0.87, k = 1,

k =
√

3/2 ≈ 1.22, and k =
√

2 ≈ 1.41. The matches lying
on these curves are related to a uniaxial strain between the two
surface cells. The perfect matches at k = 1 appear since this
value corresponds to the [100] facets of the two cubic crystals
fitting perfectly together. All other matches on this k = 1 curve
correspond to a match where one of the cells is rotated and
then stretched in one direction only. The other zero strain
points also represent some symmetry of the two crystals. The
zero strain match at k = 1/

√
2, e.g., corresponds to matching

the rotated bcc[100] surface with cell vectors v1 = [
√

2abcc,0]
and v2 = [0,

√
2abcc] to a [100] facet of the fcc crystal. The

other matches lying on this curve represents a uniaxial strain
on top of this perfect match where one of the cells is rotated,
stretched in both directions by

√
2, and then stretched in one

direction afterwards. The matches lying on a specific curve are
thus related by having a fixed eigenvalue of the P matrix of
1/kzsm, where kzsm is the k value at the zero strain minimum
of the curve. For example, all matches on the k = 1/

√
2 curve

have P matrices with the eigenvalue
√

2.
Two things are important to note about this plot. First,

the length and area limits of the vectors and cells determine
the density of the found matches. Without these limits the
entire (ǭ,k) space would be filled with points. Secondly, the
constraining to cubic structures lead to points with nonzero
strain; if the crystal structures were allowed to vary arbitrarily,
all points would have zero strain.

These results demonstrate that the method represents a
general tool for crystal matching. The strength of the method
is that it only relies on the geometry of the crystals. This
makes it possible to calculate results for two arbitrary crystals
and apply these results to all interfaces between materials of
these crystal structures. Furthermore, it is an ideal tool for
investigating alloy crystals where the lattice parameter can be
varied as the composition of the alloy is changed. This will be
the subject of the next section.

V. INTERFACES BETWEEN SEMICONDUCTOR

ALLOYS AND METALS

We apply the method to two different semiconductor alloys,
InAs1−xSbx and GaxIn1−xAs, and match their surfaces with
those of 10 different metals (Al, Ni, Cu, Ag, Au, Pb, V, Fe,
Nb, and Co). In particular, we study how the orientation and
strain of the metallic surface depends on the lattice parameter
of the semiconductor surface, which can be tuned by changing
the mole fraction. The two alloys form a zincblende crystal

FIG. 4. (a) The InAsSb[11̄0] surface matched with 10 different
metals. Each block represents the match which results in the lowest
average strain between the two materials. The background color
shows the strain in percent and the markers show the involved metal
surface. Filled markers denote a match where zero strain can be
obtained. (b) Same as (a) but where the background color shows the
area given by the number of alloy surface unit cells of the match.

and the relation between the lattice constant and mole fraction
x can be approximated by the linear relations [25]:

aInAsSb(x) = 6.0583 + 0.4207x, (18)

aGaInAs(x) = 6.0583 − 0.405x. (19)

We use the experimentally determined lattice constants [26]
of the metals and strain the metal surfaces to match the alloy
surfaces. The chosen parameters [27] are ℓmax = 50 Å, Amax =
200 Å

2
, and ǫmax = 2%. In addition, we set a limit on the

Miller index of the crystal surfaces. If the highest value in the
Miller index is above the threshold, mmax = 3, the match is
discarded. The matches are calculated for a single value of
the mole fraction and the scaling relation (17) of Sec. IV is
then used to get the results for the rest of the x values. This is
possible, since each x value directly corresponds to a k value,
k = aalloy(x)/ametal.

In Fig. 4, we show the matches involving the [11̄0] surface
of InAsSb. Each block in the plot corresponds to a certain
match and a certain strain parabola in a plot like Fig. 3(a).
The background of Fig. 4(a) therefore represents the strain
value of the lowest lying strain parabola. Figure 3(a) shows
InAsSb[11̄0] matched to vanadium and it is seen how the
variation of the lattice parameter results in different optimal
matches. For instance, from a perfect [110] match to a
low-strain [113] match as the lattice constant is increased from
6.06 to 6.08.
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FIG. 5. The perfect matches of the [11̄0], [111], and [112̄]
surfaces of (a) InAsSb and (b) GaInAs. The markers denote the metal
surface (see Fig 4 for labels) and the color denotes the alloy surface.
Each marker is placed at the alloy lattice constant which results in a
zero strain match.

The area of the match, given as the number of alloy surface
unit cells, is illustrated in Fig. 4(b). It is seen that several zero
strain matches are possible between the InAsSb[11̄0] surface
and those of the metals. Nickel, copper, lead, and vanadium
even have perfect matches with very small unit cells, indicating
that these interfaces will potentially be stable. The geometry
of this small area match between InAsSb and vanadium can
be seen in Fig. 3(b).

Figure 5 shows all the perfect matches of the [11̄0], [111],
and [112̄] surfaces of both InAsSb and GaInAs. The red
triangles in Fig. 5(a) therefore represents the same matches
as those highlighted in Fig. 4. The surfaces have been
chosen since they typically terminate nanowires of the two
investigated alloys. Many zero strain solutions are possible,
especially for the [111] surfaces. Furthermore, it is seen that
the perfect matches are distributed well across the range of
lattice constants which should make it easier to realize some
of these interfaces experimentally. Details of all the matches
of the remaining two surfaces of InAsSb and the three surfaces
of GaInAs is in the Supplemental Material [32].

The method has also been used to find matches between
the two semiconductors and the superconductor Nb1−xTixN.
Since this material is an alloy in the NaCl structure, this is yet
another case of varying the scaling parameter. We use a linear
scaling of the NbTiN lattice constant in between the values

TABLE I. The perfect matches between NbTiN and the [11̄0],
[111], and [112̄] surfaces of InAsSb and GaInAs. The NbTiN surface
is the same as the given alloy surface.

InAsSb k value No. of cells GaInAs k value No. of cells

[11̄0] 1.414 2 [11̄0] 1.354 11
[11̄0] 1.5 9 [111] 1.271 21
[111] 1.363 13 [111] 1.309 12
[111] 1.453 19 [111] 1.323 14
[111] 1.5 9 [111] 1.333 16

[111] 1.363 13
[112̄] 1.265 8
[112̄] 1.291 5
[112̄] 1.323 7

that can be found in the literature [28–31],

aNbTiN(y) = 4.30 + 0.17y y ∈ [0; 1]. (20)

With this definition, the k value is given by k =
aalloy(x)/aNbTiN(y). The used matching parameters are the
same as for the investigation of the pure metals and the perfect
match results can be seen in Table I. For InAsSb, we find
two zero strain matches for the [11̄0] surface and the first of
these matches also has a very small unit cell of only two alloy
surface unit cells. For the [111] surface, we find three zero
strain matches and the k = 1.5 match has a reasonably small
unit cell of nine surface cells. Plots like Figs. 4 and 5 showing
all the matches between the semiconductors and NbTiN can
be found in Supplemental Material [32].

VI. CONCLUSION

We have presented a general method for matching two
crystals at an interface. A scaling parameter between the lattice
constants of two crystals was introduced. Using this scaling
parameter, we can consider a general match between an fcc and
a bcc crystal. Matches for any value of the lattice constant ratio
can be found by performing a single calculation. The method
was applied to the two semiconductor alloys InAs1−xSbx and
GaxIn1−xAs matched with a range of metals (Al, Ni, Cu, Ag,
Au, Pb, V, Fe, Nb, and Co). The scaling parameter was used to
tune the lattice constant of the alloys with their composition.
Results for the [11̄0], [111], and [112̄] alloy surfaces showed
many perfect match solutions over a broad spectrum of the
alloy lattice constant which is promising for realizing some of
these matches experimentally. Finally, we have matched the
two semiconductors to the superconducting alloy NbTiN. The
results showed perfect matches with low surface cell areas for
several of the investigated semiconductor surfaces.
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Using density functional theory (DFT) calculations and the Greens’s function formalism, we report the
existence of magnetic edge states with a noncollinear spin texture present on different edges of the 1T ′ phase of
the three monolayer transition metal dichalcogenides (TMDs): MoS2, MoTe2, and WTe2. The magnetic states
are gapless and accompanied by a spontaneous breaking of the time-reversal symmetry. This may have an impact
on the prospects of utilizing WTe2 as a quantum spin Hall insulator. It has previously been suggested that the
topologically protected edge states of the 1T ′ TMDs could be switched off by applying a perpendicular electric
field [X. Qian, J. Liu, L. Fu, and J. Li, Science 346, 1344 (2014)]. We confirm with fully self-consistent DFT
calculations that the topological edge states can be switched off. The investigated magnetic edge states are seen
to be robust and remain gapless when applying a field.

DOI: 10.1103/PhysRevB.99.155420

I. INTRODUCTION

In 2005, graphene was predicted to be a quantum spin
Hall insulator (QSHI) [1] with a band gap emerging at the
Dirac point as a consequence of spin-orbit coupling (SOC).
However, due to the tiny SOC in graphene, it has not yet
been possible to verify the prediction experimentally. The
quantum spin Hall effect was, however, predicted and ob-
served in HgTe quantum wells in 2007 [2,3] and the three-
dimensional (3D) analog of the effect was realized in Bi
and Sb chalcogenides in 2009 [4,5]. Meanwhile, several pre-
dictions for two-dimensional (2D) materials exhibiting the
quantum spin Hall effect had appeared. For example, the
graphenelike materials silicene [6,7], germanene [8,9], and
stanene [10] as well as certain monolayers (MLs) of transition
metal dichalcogenides (TMDs) in either the 1T ′ phase [11]
or the Haeckelite crystal structure [12]. In contrast to other
commonly occurring TMDs, WTe2 is of particular interest,
since the 1T ′ structure is the naturally occurring phase, and
MLs can thus be obtained by direct exfoliation. Indeed, the
quantum spin Hall effect in WTe2 has recently been verified
experimentally at temperatures up to 100 K [13–15] and the
band gap was reported to be about 50 meV.

2D insulators with an electronic structure which is invariant
under time-reversal symmetry can be characterized as be-
ing either trivial insulators or QSHIs [16]. This distinction
constitutes a topological Z2 classification, Z2 = 0, denoting
the topologically trivial state, and Z2 = 1 denoting the QSHI
state. It is only possible for a material to change from one of

*Also at CAMD, Dept. of Physics, Technical University of Den-
mark, Bldg. 307, DK-2800 Kongens Lyngby, Denmark.

†kwj@fysik.dtu.dk

these topological states to the other if either the gap closes
or time-reversal symmetry is broken. For bulk materials, the
topological state does not have any direct observational con-
sequences. However, assuming that time-reversal symmetry
is conserved, any interface between a trivial insulator and a
QSHI, i.e., between the two different topological states, is
guaranteed to host gapless boundary states. Since vacuum can
be regarded as a trivial insulator, it follows that any edge of a
QSHI also hosts gapless states.

The gapless boundary or edge states in QSHIs are protected
from backscattering by time-reversal symmetry. The nontriv-
ial topology simply implies that there is no available scattering
channel and the edge conductance is predicted to be exactly
e2/h. If time-reversal symmetry is broken, it is no longer
guaranteed that gapless edge states persist at the edge. Even
if they do, the conductance may deviate from the quantized
value due to impurity scattering. This has been observed
in WTe2 where the presence of an external magnetic field
significantly reduces the edge conductance [15]. Likewise,
the presence of magnetic impurities at edges which may
lead to broken time-reversal symmetry [17–19] and destroy
the topological edge states. Finally, time-reversal symmetry
may be broken spontaneously by the presence of magnetism
without introducing any impurities. This possibility seems
to be largely overlooked in the literature although it by no
means is an unlikely scenario. For example, first-principles
calculations have shown that edges of a ML MoS2 in the
2H phase acquires magnetic edge states although the bulk
2D material is nonmagnetic [20]. If time-reversal symmetry
is spontaneously broken at an edge of a QSHI, the presence
of gapless edge states is no longer guaranteed. Even if they
persist, the observable consequences of the quantum Hall state
could in principle be removed by a suitable edge modification.
In the present paper, we have used first-principles calculations

2469-9950/2019/99(15)/155420(7) 155420-1 ©2019 American Physical Society
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to demonstrate that certain edges of TMDs may acquire
magnetic moments, leading to spontaneously broken time-
reversal symmetry. The spontaneously symmetry breaking at
edges is therefore not a mere academic possibility but could
destroy the gapless edge states that are typically assumed to
be protected by topology.

It is highly desirable to be able to change the topological
index of insulators by external means. This would imply that
gapless surface states can be removed or introduced at a
given edge which may form the basis of 1D transistors. In
the case of TMDs, it has been demonstrated that an external
electric field can induce a transition from the quantum spin
Hall state to a trivial state [11]. External electric fields may
thus comprise a means to switch between conductive and
insulating edges. However, the calculations were based on a
tight-binding model and constitute a proof of concept rather
than an actual quantitative prediction. In the present paper,
we have performed full first-principles calculations of TMDs
in electric fields. We verify that electric fields can be used to
switch the topological state in these materials but find that the
magnetic states remain gapless.

The paper is organized as follows. In the second section,
we introduce the calculational method and in the third section,
we introduce the materials and types of edges that are inves-
tigated. The fourth section contains the results on the MoS2

edges and the fifth section contains the results on three other
TMDs. In the final section, we investigate the effect of gating
on the three MoS2 edges.

II. METHOD

The calculations are carried out using DFT [21,22] and the
surface Green’s function method as implemented in Quan-
tumATK [23]. We consider three different configurations in
this study: Fig. 2(a), a nanoribbon configuration with two
edges and periodic boundary conditions (PBCs); Fig. 2(b),
a surface configuration (SurfaceConfiguration [23]) with a
single edge and a semi-infinite electrode; and Fig. 2(c),
the surface configuration with a gate below. The nanorib-
bon configuration is used to compare the results of a sur-
face configuration to pinpoint the effect of having a sin-
gle edge instead of two edges. The gated configuration is
used to investigate the response of the edge to an electric
field.

To describe the single edge of the ML, we use a surface
configuration as shown in Fig. 1. This type of configuration
consists of two regions: the electrode and the central region.
The electrode is used to describe the bulk properties of the
system and the central region contains all the information
on the physics of the edge. The calculation is done in two
steps. First, a DFT calculation is performed on the isolated
and periodic electrode and then a DFT calculation using the
Green’s function method is performed for the central region.
The second calculation uses Green’s functions to couple the
central region to the electron reservoir of a ML which is
periodic in the x and y directions (2D crystal). The electron
reservoir is included through the self-energy matrix of the
semi-infinite electrode. This self-energy matrix is created
from the Hamiltonian of the 2D crystal by a recursive method.
More details on the surface Green’s function method can

FIG. 1. The SurfaceConfiguration of a ML 1T ′ MoS2 on top
of a gate along with the applied boundary conditions. PBC, DBC,
and NBC refer to different boundary conditions as explained in the
text.

be found in Ref. [23]. The length of the ML in the central
region is determined by converging the Hartree potential with
respect to length and making sure that it matches the periodic
potential of the electrode. A ML length of 50 Å is adequate
for all the systems investigated here.

Special care needs to be taken when describing the elec-
trostatics of 2D interfaces or surfaces. The equipotential and
corresponding field lines of the effective potential of the three
configurations are shown in Fig. 2. This illustrates the field
which is created by the 1D dipole (monopole) line along the
nanoribbon (single edge). Such a field decreases logarithmi-
cally and therefore reaches far out into the vacuum region of
the system.

Different treatments are needed for the three types of
configurations. In the nanoribbon calculation, we have PBCs
for all directions. This means that a sufficient amount of
vacuum must be applied both above and below the ML and
to the left and right of the ribbon to avoid the spurious
interaction between the periodic images of the ribbon. In the
case of the surface configuration without a gate, where we
only include a single edge, there is also the issue that there
is a slope in the potential above and below the ML. This
can be seen on Fig. 2(b), where the equipotential lines are
perpendicular to the top and bottom of the cell. The slope
represents the two distinct electronic levels to the right and
to the left of the cell. To the left, the work required for an
electron to leave the 2D crystal will be determined by the
work function of the crystal. To the right, the work required
for an electron to leave the edge will be influenced by the
created monopole at the edge and therefore not be equal to
the work function of the 2D crystal. The effect is that a
macroscopic field is set up which persists even infinitely far
away. This is an inherent issue of 2D systems [24], whereas a
3D system with a 2D mono- or dipole only experiences a local
potential shift at the surface or interface. To correctly describe
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FIG. 2. The equipotential and field lines of the effective potential of (a) a nanoribbon calculation, (b) a surface configuration without
a metallic gate, and (c) the surface configuration shown in Fig. 1 with a grounded metallic gate. The equipotential lines are given
in meV.

the potential slope and to avoid that it affects the electronic
levels, we require that the cell is as high in the z direction
as it is long in the x direction. This ensures that the potential
has an approximately linear slope at the top and bottom at
the cell.

In the case of the gated system, an unconventional set of
boundary conditions is chosen for solving the Poisson equa-
tion. This is done to accommodate the gate construction and
to avoid interactions between images. We apply a Dirichlet
boundary condition (DBC) at the top and bottom of the cell so
that the potential is fixed in the gate and grounded at the top
of the cell. This is analogous to placing the surface between
the two plates of a parallel-plate capacitor. For the electrode
calculation, we use standard PBCs in all other directions. For
the central region, on the other hand, the potential at the left
side of the cell is fixed to the value of the potential of the elec-
trode using a DBC and the potential at right side is allowed to
converge to the potential in the vacuum region by applying
a Neumann BC (NBC). All these boundary conditions are
summarized in Table I.

Applying DBCs both at the top and bottom of the cell
forces the potential to be zero at those boundaries. The equipo-
tential lines are correspondingly pushed away from these
borders and the potential shift is present along the right border
of the cell as can be seen in Fig. 2(c). Our investigations show
that if the cell keeps the same height as the ungated system
and has enough vacuum to the right such that the potential has
converged to a constant value when going from left to right,
then the electronic levels of the system are equivalent to those
of the ungated system.

TABLE I. Boundary conditions used to solve the Poisson equa-
tion for the gated surface configuration.

Electrode Central region

−x PBC DBC
+x PBC NBC
−y PBC PBC
+y PBC PBC
−z DBC DBC
+z DBC DBC

We apply the Perdew-Burke-Ernzerhof [25] exchange cor-
relation (xc) functional including SOC and noncollinear spin.
The wave functions are expanded as a linear combination of
atomic orbitals using SG15 pseudopotentials [26] together
with the SG15 medium basis set [23]. The occupations are
described using a Fermi-Dirac occupation function with an
electronic temperature of 300 K. All structure relaxations are
done without SOC and to a force tolerance of 0.02 eV/Å.

III. MATERIALS

Of all the 2D TMDs, MoS2 is by far the most studied
material. This is largely due to the fact that it is easily available
in the form of the mineral molybdenite. We will therefore
begin by investigating the edges of a MoS2 ML in the 1T ′

phase. The 1T ′ phase possesses a small band gap of 80 meV
[27] due to spin-orbit splitting of the bands occurring between
the Ŵ and Y point in the Brillouin zone (BZ). In Fig. 3(a), the
band structure is shown with and without SOC to illustrate
this. Note that we obtain a gap of 48 meV which is only
slightly lower than the experimental value obtained using
scanning tunneling spectroscopy (STS) [27]. We will consider
three different edges, as indicated in Fig. 3(c). The X edge
is a cut along the x direction and the m and c edges are
cuts along the y direction. The y cut can be made in several
different ways, but these two edges represent the most stable
ones for the Mo and single-S terminated kinds, respectively,

FIG. 3. (a) The band structure of ML MoS2 in the 1T ′ phase
with and without spin-orbit coupling. (b) Side view of the 1T ′ phase.
(c) Top view of the 1T ′ phase showing the three investigated edges.
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FIG. 4. The electronic bands for (a) the X edge, (b) the m edge,
and (c) the c edge of monolayer 1T ′ MoS2. Left side shows the
sum of all spin components and right side shows the spin-polarized
density of states with respect to the y direction (a) and the x direction
(b), (c).

see the Supplemental Material [28] for a stability analysis.
The k-point sampling of the m and c edge calculations are
1 x 11 x 1 k-points for the nanoribbons, 11 x 1 for the surface
configurations, which are nonperiodic in the x direction, and
401 x 11 x 1 for the periodic 2D crystals. The k-point sampling
of the X edge is 6 x 1 x 1 k-points for the nanoribbon, 6 x 1
for the surface configuration, which is nonperiodic in the y

direction, and 6 x 401 x 1 for the periodic 2D crystal.
Even though MoS2 is the most studied TMD, it is not

the most studied in the 1T ′ phase since this is unstable with
respect to the conventional 1H phase of the ML. Studies of
the 1T ′ ML TMD phase have primarily been based on WSe2

[29,30] and WTe2 [13–15], where the 1T ′ phase is more
stable. We have therefore included these two materials in our
investigations. Finally, we include MoTe2 which has been
studied as a material for field-effect transistors where few
layered 1T ′ and 2H phase materials are used as the contact
and channel material, respectively [31].

FIG. 5. The magnetization density with respect to the x and z axis
of (a) the m edge and (b) thec edge of MoS2.

IV. THE EDGES OF 1T
′ MoS2

We begin by studying the electronic bands of the three
different edges of MoS2. This is done by calculating the
density of states for the k-points along the Y → Ŵ → Y path
of the Brillouin zone. The band structures can be seen in
Fig. 4 both for the total number of states and for the spin-
polarized states weighted by the spin component in the x and
y directions, respectively. The solid areas represent the bulk
states and the edge states can be identified as the isolated and
spin-polarized bands. All three edges host gapless edge states.
The X edge has two edge states which are degenerate two-by-
two in the high symmetry points of the Brillouin zone. This is
exactly what we would expect for the topologically protected
edge states of a topological insulator. However, the behavior
is different for the other two edges, for which time-reversal
symmetry is broken. The effect is most pronounced for the m

edge and can be seen in Fig. 4(b), where the spin polarization
is equal instead of opposite for any k and −k pair of the edge
state. Furthermore, it can be seen that the degeneracy at the
high symmetry points is lifted and the bands are separated by
approximately 0.25 eV at the Y and −Y points. For the c edge,
the effect is more subtle and can only be seen for the edge
states close to the gamma point between the two dips of the
conduction band. Here, the spin polarization changes, not at
the Ŵ point, but at a small positive value of k going in the Y

direction.
The origin of this effect is that the time-reversal symmetry

is spontaneously broken as a magnetic state is formed at the
edge. This can be illustrated by a plot of the magnetization
density as shown in Fig. 5. Note that the spin configuration
is noncollinear and we therefore have a magnetization density
with respect to each spatial direction. The figure only shows
the x and z components, since the y component is zero. The
magnetic moments point to the right and downward (upward)
for the m (c) edge and have most weight on the last Mo atom
of the surface. By investigating the projected density of states
near the Ŵ point, we find that the edge states primarily stem
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TABLE II. Calculated band gaps, total magnetization in μB ×

10−2, and magnetization vector in μB per transition metal atom on
the edge for the four different 1T ′ monolayer TMDs.

m edge c edge

Eg
a m m m m

MoS2 48 meV 6.7 (0.26,0,−0.069) 0.82 (0.035, 0, 0.028)
MoTe2 0 meV 17 (0.75, 0, 0.26) -
WSe2 10 meV - -
WTe2 0 meV 5.7 (0.23, 0, 0.10) 1.0 (0.035, 0,−0.030)

aDifference between valance band maxima and conduction band
minima.

from the Mo d-orbitals and S p-orbitals with the approximate
relative weight of 3:1 for the m edge and 5:2 for the c edge.

From the nanoribbon calculation with two m-type edges
[as illustrated in Fig. 2(a)], it can be seen that the magnetic
state points in the same spatial direction on both edges. This is
also in contrast to the QSHI where two spin channels going in
opposite directions reside on each edge. The electronic bands
of the nanoribbon are symmetric with respect to k since the
two edges are symmetric so that the edge state at each −k

point from the left edge has an identical state at the k point
on the right edge. A spin-resolved density of states (DOS)
will of course still reveal the breaking of the time-reversal
symmetry. Nevertheless, this underlines the strength of the
surface configuration for investigating single edges one at a
time. More results from the nanoribbon calculation can be
found in the Supplemental Material [28].

In conclusion, we find that the time-reversal symmetry can
be broken on the edges of 1T ′ ML MoS2 and that it leads
to magnetic states which behave very differently from the
expected topological states. This means that the gapless states
on these edges are not topologically protected and one could
imagine that they could be removed by reconstructions of the
edge.

V. MAGNETIC EDGES ON 1T
′ TMDS

We now turn our attention to the other three TMDs of the
study: WSe2, WTe2, and MoTe2. In the investigations of these
materials, we use the configuration shown in Fig. 2(b), since
we do not wish to apply a field to these edges. The resulting
electronic bands can be seen in the Supplemental Material
[28]. All investigated edges exhibit edge states. To quantify
the magnetism, we calculate the magnetization vector,

m =
1

NM

∫

m(r) dV, (1)

and the total magnetization,

m =
1

NM

∫

√

m2(r) dV, (2)

per transition metal atom on the edge, NM . Note that for all
three investigated edges, NM = 1. The results for the m and c

edges of all the four investigated materials are seen in Table II
along with the distance between the valance and conduction
bands. We note that MoTe2 and WTe2 are metallic since the
valence and conduction bands overlap in energy. However,

the bands are separated in k-space, which means that the
character of the electronic structure is similar to the other
materials and that a topological index can be defined. The
magnetic edge state is present for MoS2, MoTe2, and WTe2

but missing for WSe2. As seen in the table, the magnetic m

edges show a higher magnetism than the magnetic c edges
for the same material. This can be understood through the
different stoichiometry of the two termination. At the m-type
edge, the outermost metal atoms are completely exposed and
missing three of the nearest chalcogenide atoms. This means
that the metal atoms are hindered in transferring electrons and
end up with a small excess of electrons compared to a metal
atom in the 2D crystal. These excess electrons will be filled
into the d-band, resulting in a higher DOS at the Fermi level.
This higher DOS results in magnetism in accordance with
the Stoner criterion. At the c-type edges, the outermost metal
atoms only lacks a single chalcogenide neighbor. The bonds
are therefore more saturated, the d-band less filled, and the
magnetism smaller. From the projected density of states, we
find that the edges which become magnetic have edge states
where the d-orbitals have a weight which is larger than twice
the weight on the p-orbitals. This agrees with the explanation
above and shows that the magnetism arise when d-type states
dominate the Fermi level.

VI. THE EFFECT OF GATING

It has previously been shown, based on electronic structure
calculations [11], that the metallic edge states of the 1T ′

TMD QSHIs can be switched off by applying an electric field
perpendicular to the ML. This field closes the band gap and
thereby changes the topological state of the material. At a
higher field strength, the gap opens again, the system has
become topologically trivial, and the gapless edge states are
removed. We do similar investigations for the three edges of
MoS2 using full self-consistent DFT to describe the response
to the electric field. To find the critical field at which the
gap closes, calculations are performed for a range of field
strengths perpendicular to the electrode cell of the configu-
ration. For these calculations, we use a k-point grid of 6 x
11 x 1. This describes the response of the 2D crystal and
can be seen in Fig. 6(a). The field is applied by adding an
external potential as a shift between the gate and the top of
the cell and then running a self-consistent DFT calculation.
The corresponding field strength in the vacuum region and in
the ML can be found as the slope of the effective potential in
these regions. The zero field potential is subtracted to extract
the slope in the ML region. The effective potentials for zero
bias and the critical potential of 130 V is shown in Fig. 6(b)
along with the difference between the two. The resulting
critical fields are Evac

c = 1.7 V/Å in the vacuum and EML
c =

6.4 × 10−2 V/Å in the ML. The critical field in the ML is
about half the size of the reported value from the previous
study [11] where the field is added as a correction to the
diagonal elements of the Hamiltonian. The large difference
between the vacuum field and and field inside the material
shows that the ML strongly screens the field. In particular, the
longitudindal part of the dielectric constant in the z direction
can be estimated as the ratio between the vacuum field and the
ML field, εML = Evac/EML = 27.
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FIG. 6. (a) Gap between valence and conduction band of ML 1T ′

MoS2 as function of the effective potential in the vacuum region and
the ML, and (b) effective potential of the zero bias and critical field
configurations.

As indicated by the dashed lines in Fig. 6(b), a characteris-
tic distance over which the potential on either side of the ML
is shifted can be found. Since the induced field must vanish in
the vacuum region, it is straightforward to verify that this shift
can be written as

d = −
1

Evac

∫

dz[EML(z) − Evac] =
4π

Evac

∫

dzP⊥(z)

=
4πP2D

⊥

Evac
= 4πα2D

⊥
(3)

for any applied field. P2D
⊥

is the 2D polarization perpendicular
to the ML, i.e., the dipole per unit area. Except for a factor of
4π , we can thus identify d with the perpendicular component
of the 2D polarizability α2D

⊥
≡ P2D

⊥
/E⊥. For the case of MoS2

in the 1T ′ phase shown in Fig. 6 we get d = 4.6 Å. This
compares reasonably well with the value of α2D

⊥
, calculated

using random-phase approximation (RPA) for the Computa-
tional 2D Materials Database [32], which yields d = 5.40 Å.

Having determined the critical field, we perform calcula-
tions on the three edges with the critical field and twice the
critical field applied. The electronic bands can be seen in
Fig. 7. The edge which has been investigated previously in
Ref. [11] is the nonmagnetic X edge. For this edge, we see the
expected behavior. Above the critical field, the gapless states
have disappeared and no conducting channels are available.
For the two magnetic edges, on the other hand, the metallic
edge states persist relatively unaltered above the critical field.
For the case of the magnetic edges, it is therefore not possible
to remove the conducting states by applying a field. Due to the

FIG. 7. Response from of the electronic bands of 1T ′ MoS2 when
applying a perpendicular field. (a) The X edge, (b) the m edge, and
(c) the c edge.

weak coupling between the magnetic and electronic degrees
of freedom, the total magnetization also remains relatively
unaltered with respect to the field strength.

VII. CONCLUSION

Using DFT and the Greens’s function method, we have
studied the single isolated edges of four different ML TMDs in
the 1T ′ phase. We find that several of the edges show breaking
of the time-reversal symmetry and exhibit magnetic edge
states. This means that the gapless edge states of these edges
are no longer protected against impurity scattering and that
they, in principle, could be removed by edge modifications.
The total magnetization varies over the four materials and is
strongest for one of the MoTe2 edges with a value of 0.17 μB

per unit cell. We have also studied the response of the edge
states of MoS2 when applying a perpendicular field. Self-
consistent DFT calculations show that only the topologically
protected gapless edge states are removed above a critical
field while the gapless magnetic edge states remain relatively
unaltered.
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Schottky barrier lowering due to interface states in
2D heterophase devices†

Line Jelver, ab Daniele Stradi,b Kurt Stokbrob and Karsten Wedel Jacobsen *a

The Schottky barrier of a metal–semiconductor junction is one of the key quantities affecting the charge

transport in a transistor. The Schottky barrier height depends on several factors, such as work function

difference, local atomic configuration in the interface, and impurity doping. We show that also the

presence of interface states at 2D metal–semiconductor junctions can give rise to a large

renormalization of the effective Schottky barrier determined from the temperature dependence of the

current. We investigate the charge transport in n- and p-doped monolayer MoTe2 1T0
–1H junctions

using ab initio quantum transport calculations. The Schottky barriers are extracted both from the

projected density of states and the transmission spectrum, and by simulating the IT-characteristic and

applying the thermionic emission model. We find interface states originating from the metallic 1T0 phase

rather than the semiconducting 1H phase in contrast to the phenomenon of Fermi level pinning.

Furthermore, we find that these interface states mediate large tunneling currents which dominates the

charge transport and can lower the effective barrier to a value of only 55 meV.

1 Introduction

The contact–channel interface is a crucial performance bottle-

neck in the development of new transistor technologies. The

energy barrier which charge carriers must overcome to move

from the metal contact to the semiconductor channel, the

Schottky barrier, is one of the main parameters in evaluating

the performance of the device. The atomically-thin transition

metal dichalcogenides (TMDs) are emerging as a possible

alternative to silicon for transistor channels in the next gener-

ations of technology nodes.1,2 However, the technology suffers

from large contact resistance between the TMD and the metallic

electrode. The resistance can be reduced by locally inducing the

metallic 1T3,4 or the semi-metallic 1T0 phase5–8 of the TMD and

thereaer pattern the 3D electrodes directly on the 1T/1T0

regions. Understanding and quantifying the energy barrier of

TMD 1T0
–1H interfaces is therefore of great importance for the

development of this technology.

Several techniques exist for extracting the Schottky barrier of

2D metal–semiconductor junctions both theoretically and

experimentally. Electronic structure calculations most oen

extract the barrier height from the projected density of states

(DOS) along the transport direction9–12 but the barrier can also

be extracted from the transmission spectrum (TS).11,13 Experi-

mental methods include Kelvin probe force microscopy,7 scan-

ning photocurrent microscopy correlated with

photoluminescence imaging14 and application of the therm-

ionic emission (TE) model.4–6,8,15–17 The TE model has been

utilized to extract barriers of fabricated TMD heterophase

devices typically in the order of a few tens of meV whereas ab

initio calculations estimate orders-of-magnitude larger

barriers.9–13

In this work, we analyze the Schottky barrier height of pris-

tine monolayer 1T0
–1H MoTe2 heterophase devices using

density functional theory (DFT) and non-equilibrium's Green's

function (NEGF) transport calculations. Compared to previous

investigations,9–13 we include both the effect of doping and

semiconductor lengths up to 19 nm, which allows for the entire

depletion region to be accounted for. Furthermore, we compare

the barriers extracted both from the projected DOS, the TS, and

using the IT-characteristic and TE model. We study both n- and

p-type devices which, due to tunneling effects, show signicant

reductions in the effective barriers extracted from the IT-

characteristic (TE barrier) compared to the barriers obtained

from the projected DOS or the TS. Tunneling between the metal

and semiconductor states reduces the TE barriers by up to

a factor 1.5 whereas tunneling between interface states and

semiconductor states can reduce the barrier by a factor of 6.

When the tunneling is mediated by interface states, we nd the

TE barrier of a n-type device to be 55 meV which is comparable

to the experimentally measured barriers. An analysis of the

interface states reveals that they originate from the metallic

phase which renders them relatively insensitive to the doping
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level. This discovery illustrates that these interface states do not

result in Fermi level pinning which is an otherwise well-known

issue of metal-contacted 1H TMDs.18–20

2 Methodology

We choose a free-standing monolayer interface between the

MoTe2 1T0 and 1H phase as our model system. Even though

a transistor will have two Schottky barriers, one at the source

and one at the drain, a forward bias will effectively create

a single barrier at the source which will dominate the device

behavior.21 We do not include any substrate or gate but inves-

tigate the behavior of the isolated heterophase interface. A

substrate below the 2D TMDs may have several effects: a small

change of the band gap,22 longer depletion widths,23 and

a modulation of the work function or doping level.24 A longer

depletion width would result in a lower tunneling current but

wouldn't change our conclusions. An estimate of this effect can

be found in the ESI.† We use doping levels of ND/A ¼ 4.9 � 1011

cm�2 and ND/A ¼ 4.6� 1012 cm�2. The rst value corresponds to

the estimated p-doping level reported by Sung et al.6 and the

second value is comparable with more recent estimated doping

levels in 1H phase TMDs.25,26 The doping of a 2D material is

extremely difficult to control and even to measure. Since almost

the entire material is a surface, it is very sensitive to both the

environment and local impurities. This means that the doping

level can vary signicantly across a sample, which makes it

important to consider, how different doping levels affect the

barriers.

We apply three methods for the Schottky barrier extraction.

The DOS barrier,FDOS, is extracted from the projected DOS as

the distance between the Fermi level and the maximum

(minimum) of the conduction (valence) band for the n-type (p-

type) devices. FDOS therefore includes the band bending due

to the electric eld created by the interface dipole. This is

a macroscopic electrostatic effect ranging over many atomic

layers.

The TS barrier, FTS, is dened as the distance between the

Fermi level and the energy at which the device experience full

transmission, dened in this work as 1% of maximum trans-

mission. This denition is discussed further in the results

section. FTS represents a microscopic quantity that depends

directly on the electronic states available for transport.

The TE barrier,FTE, is found by applying the TEmodel to nd

the barrier from the temperature dependence of the current. We

have chosen to evaluate the barriers using this model since it is

the most commonly applied experimental method for

measuring the Schottky barrier in 2D devices.4–6,8,15–17 As the

name implies, this model assumes that the current is domi-

nated by coherent transport of thermally excited electrons above

the Schottky barrier. From this assumption, a relationship

between the current, temperature, and barrier height can be

derived, which can be used to experimentally determine the

Schottky barrier. The most commonly used expression is,6,17,27

ITEn=pz � A*
2DT

3=2e
�
FTE

kBTe
�

eVsd

kBT : (1)

Vsd is the voltage drop between the source (semiconductor) and

drain (metal), e is the electron charge, kB is the Boltzmann

constant, T is the temperature, A*2D is the Richardson constant

and F
TE is the barrier height. The different signs in front of the

current and bias originate from the fact that holes are the main

charge carriers in a p-type device. This means that the current

runs from drain to source and that the hole barrier is lowered by

decreasing the source–drain bias rather than increasing it. The

barrier is extracted by measuring the current in a range of

different temperatures and extracting the slope in an Arrhenius

plot of ln(|I|/T2/3) vs. 1/T. The barrier height becomes F
TE
n/p ¼

�eVsd � akB for n- or p-type devices respectively where a is the

slope.

As mentioned previously, this model assumes a purely

thermionic current. However, many metal–semiconductor

junctions form tunneling barriers where the current will have

contributions from both the thermal excitation of the electrons

and the tunneling. The contribution from the tunneling current

has a different temperature dependence which will result in

a smaller slope in the Arrhenius plot. Some of the tunneling

contributions to the current can be included in eqn (1) using an

ideality factor. The ideality factor is unity if no tunneling

current is running and increases as the tunneling current

becomes more dominant. The factor, h, is included in the

exponential term as exp(�eVsd/hkBT). In this work, we explicitly

calculate and analyze the tunneling contributions to the current

and therefore do not include this factor.

In many experiments the issue of a tunneling current can be

avoided by measuring in a regime where tunneling contribu-

tions are negligible. This regime is attempted to be reached

either by tting the current response at high temperatures or by

applying a gate voltage to reach the at band condition. In this

condition, the semiconductor bands are completely at and no

tunneling can occur. In our calculations, we do not attempt to

avoid tunneling contributions but rather seek to investigate the

effect these contributions have on the extracted TE barriers. We

have therefore not included a back-gate in our simulations and

will likewise compare our results to experimentally extracted

barriers measured at zero gate voltage.

We extract the TE barriers in accordance with the experi-

mental method. A small bias of Vsd ¼ �0.01 V is applied for the

n- and p-type device, respectively, and we extract the barrier

from the temperature dependence of the total current using eqn

(1).‡ We use a temperature range between 300 and 450 K to

extract the Arrhenius slopes which is similar to the range used

in experiments.

The calculations are carried out using DFT28,29 and the non-

equilibrium Green's function method as implemented in

QuantumATK.30 We apply the Perdew–Burke–Ernzerhof (PBE)31

‡ Eqn (1) assumes the limit where eVsd [ kBT whereas the opposite limit would

result in a T1/2 dependence in the current and an Arrhenius slope which is

independent of the bias. We have investigated the effect of varying the

temperature exponent in the prefactor and found that the results depends only

weakly on this. We wish to investigate a broad temperature range and therefore

choose the dependence from eqn (1) and a very small bias such that the slope

is dominated by the size of the barrier.

Nanoscale Adv. This journal is © The Royal Society of Chemistry 2020

Nanoscale Advances Paper

O
p

en
 A

cc
es

s 
A

rt
ic

le
. 

P
u

b
li

sh
ed

 o
n

 0
7

 D
ec

em
b

er
 2

0
2

0
. 

D
o

w
n

lo
ad

ed
 o

n
 1

/2
0

/2
0

2
1

 7
:4

2
:4

8
 P

M
. 

 T
h

is
 a

rt
ic

le
 i

s 
li

ce
n

se
d

 u
n

d
er

 a
 C

re
at

iv
e 

C
o

m
m

o
n

s 
A

tt
ri

b
u

ti
o

n
 3

.0
 U

n
p

o
rt

ed
 L

ic
en

ce
.

View Article Online



exchange–correlation functional and a linear combination of

atomic orbitals using PseudoDojo pseudopotentials32 to expand

the wave functions. We use a continuous doping model where

the electrons per atom is modied and a neutralizing

compensation charge is added to the atomic charge.33 The

doping is added to those atoms which belong to the 1H phase

before relaxation. These are colored cyan and orange in Fig. 1.

The generalized gradient approximation (GGA) functionals

are known to produce bandgaps and work functions which are

too small for the free standing TMD monolayers.34–36 Our

calculations show a 1H phase bandgap of 1.03 eV in agreement

with previous PBE calculations.10–12 This should be compared to

the value of 1.56 eV obtained by GW calculations.37 Previous

investigations18–20 have shown that the Schottky barrier between

metals and semiconducting 2D TMDs deviate signicantly from

the Schottky–Mott rule. Therefore, we do not expect the barriers

to be dominated by the difference between the metal work

function and semiconductor electron affinity or ionization

potential but rather by the local charge transfer at the interface.

We expect this to be well described within PBE, since the band

structure of both conduction and valence band is very similar

between PBE and GW calculations.37 We do not include the

spin–orbit coupling which would open a small gap in the 1T0

phase. This is justied by previous calculations38 showing that

the barrier in TMD monolayer heterojunctions changes very

little when including this effect.

We set up the interface in the geometry found by Sung et al.6

using tunneling electron microscopy. The interface is between

the (100)-edge of 1T0 and the (01�10)-edge of 1H and is shown in

Fig. 1. We double the cell in the y-direction since this allows for

a small distortion that stabilises the interface compared to the

single cell geometry. The applied unit cells of the two phases are

shown as the shaded areas in Fig. 1. The size of our computa-

tional cell for the NEGF calculations is (25.0, 0.718, 15.0) nm

and the k-point grid is (401, 6, 1). Further computational details

can be found in the ESI.†

3 Results and discussion

We will begin by studying the devices with a doping level of ND/A

¼ 4.9 � 1011 cm�2. For these devices, the depletion width is too

long for the interface states to play a part in the quantum

transport. These devices will therefore serve as a reference for

studying the effect of the interface states in the high-doping

devices. For each device, we calculate the projected DOS and

the transmission spectrum in equilibrium. The projected DOS

of the devices can be seen on Fig. 2a and c. The n-doped device

shows a tunneling barrier and signicant band bending. The

barrier height is 0.54 eV and the depletion width, xD, is found to

be 5.7 nm, assuming a band bending following CB(x) f e�x/xD.

The corresponding transmission spectrum can be seen on

Fig. 2b showing signicant contributions from tunneling. The

transmission spectrum has several sharp features which stems

from the large variance of the DOS with energy in both of the 2D

electrodes. This makes the energy of full transmission difficult

to dene. In order to nd a barrier from the transmission, we

therefore consider the energy interval where the transmission

reaches between 1 and 10% of it's maximum value. This

corresponds to a TS barrier between 0.61 and 0.70 eV. The

barrier corresponding to 1% of maximum transmission is

illustrated on Fig. 2b.

Fig. 2c and d show the corresponding projected DOS and

transmission of the p-doped device. In this case, the DOS

barrier height is 0.32 eV and the depletion width is 4.1 nm. The

transmission once again shows a signicant tunneling contri-

bution and the TS barrier is between 0.32 and 0.59 eV corre-

sponding to 1–10% of maximum transmission. We will refer to

Fig. 1 The 1T0
–1H interface of MLMoTe2 observed by Sung et al.6 seen

from (a) the side and (b) the top. Note, that only the region around the

interface is shown. The total cell size is (25.0, 0.718, 15.0) nm. The

shaded area show the unit cells of the two phases. The largest distance

between the final Mo atoms of the 1T0 phase and the first Te atoms in

the 1H phase is no more than 3.05 Å.

Fig. 2 Projected DOS and transmission spectrum of the devices with

n- and p-doping of ND/A ¼ 4.9 � 1011 cm�2. (a) and (c) show the band

bending and DOS barrier (orange) for electrons and holes respectively.

(b) and (d) show the transmission spectrum and the TS barrier (green)

determined using 1% of maximum transmission.

This journal is © The Royal Society of Chemistry 2020 Nanoscale Adv.
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the TS barrier heights corresponding to 1% of full transmission

in the remaining of the paper. These agree reasonably well with

the barriers extracted from the DOS.

For the TE barrier extraction, we perform self-consistent

calculations of the current and use the Landauer–Büttiker

expression to calculate the temperature dependence,

ITUN ¼
2e

h

ðFDOS

mR

TðE;mL;mRÞ �

�

f

�

E � mL

kBT

�

� f

�

E � mR

kBT

��

dE:

(2)

ITEn=p ¼
2e

h

ð�N

FDOS

TðE;mL;mRÞ �

�

f

�

E � mL

kBT

�

� f

�

E � mR

kBT

��

dE:

(3)

I ¼ ITUN + ITE (4)

T is the transmission from the NEGF calculation,30 h is Planck's

constant, and mL and mR are the chemical potentials of the 1T0

and 1H electrode respectively. The current is separated into

a tunneling and thermionic contribution by dividing the energy

integral into a tunneling part running from the chemical

potential of the 1H electrode to the barrier height observed in

the DOS and a thermionic part running from the barrier to

innity. The resulting Arrhenius plot is seen on Fig. 3a showing

the total, tunneling and thermionic current of each device. The

n-doped device shows a dominating tunneling behavior below

600 K and thermionic behavior above, which can be identied

by the two distinct slopes above and below this temperature.

These two regimes indicate the existence of a tunneling barrier

and the behavior agrees qualitatively with the ones reported by

Sung et al.6 and Ma et al.8 We extract an TE barrier of 0.37 eV in

the temperature range 300–450 K, which is a factor 1.5 lower

than the DOS barrier extracted from the equilibrium

calculation. The temperature dependence of the TE barriers is

illustrated on Fig. 3b. The barrier of the n-doped device is seen

to be lower than the two barriers extracted from the DOS and TS

up to 750 K. This illustrates that the tunneling current is non-

negligible up to very large temperatures.

The p-doped device shows a tunneling dominated current at

least up to 1000 K and the TE barrier is found to be 0.27 eV

between 300 and 450 K. The temperature dependence of the

barrier is seen in Fig. 3b and shows a negligible variation with

temperature with a value below both the DOS and TS barrier.

The small variation with temperature reects the linear

behavior seen in the Arrhenius plot and might therefore easily

be mistaken to reect a purely thermionic current. This high-

lights the difficulty in interpreting these types of Arrhenius

plots. From these investigations, we can conclude that both n-

and p-type MoTe2 heterophase junctions are dominated by

tunneling currents in the 300–450 K regime which lower the

effective barriers.

We now consider, how a higher doping level affects the

devices. The projected DOS of these devices are seen on Fig. 4a

and d and show DOS barriers of 0.32 eV and 0.19 eV with

a depletion width of 1.6 nm and 0.76 nm for the n- and p-doped

devices respectively. The computational cells match those of the

lower doping level devices except that the highly n-doped device

is shortened to 15 nm's in the x-direction to help convergence.

The lowering of the DOS barriers as a result of the higher doping

level is in agreement with existing theory and with previous

studies of heterophase junctions between 1T0- and 1H-phase

MoS2.
13,39 It can be seen from the projected DOS of both

devices, that one or more interface states are present in the

band bending region between the Fermi level and the barrier

height. The positions of the interface states are indicated with

arrows. In the n-doped device, interface states or resonances are

seen around 0.12 eV and 0.28 eV above the Fermi level. The

states are predominantly localized in the interface region with

a high DOS which decays both towards the metal and the

semiconductor. In the p-doped device, interface states are seen

0.15 eV and 0.24 eV below the Fermi level. It is important to

highlight that these states are present in the devices with

a lower doping level as well. We will return to this point in the

discussion on the origin of the interface states.

The TS barriers are illustrated on Fig. 4b and e. The TS

barrier of the n-doped device is 0.30 eV and the p-doped device

has a TS barrier of 0.19 eV. A peak is seen in both transmission

spectra around the energy of the interface states closest to the

Fermi level which illustrates that these states contribute

signicantly to the charge transport. The peak is most visible in

the n-doped device where the position of the interface state is

well below the barrier height whereas it is more difficult to see

in the p-doped device, where the interface state is positioned

very close to the barrier. Another difference in the two spectra is

that in the n-doped device, the transmission increases very

rapidly above the conduction band edge whereas for the p-

doped device, there is no transmission at the valence band

edge. The transmission onset occurs around 40 meV below the

valence band edge and rises much slower than the transmission

of the n-doped device. This is due to the conservation of

Fig. 3 (a) Arrhenius plot showing the temperature dependence of the

total, tunneling and thermionic current with a bias of �0.01 V for the

two devices with ND/A ¼ 4.9 � 1011 cm�2. Currents of the n- and p-

doped devices are shown in deep and light blue respectively. The TE

barriers are extracted from the slope in a temperature range of 300–

450 K. (b) Temperature dependence of the IT barrier of the two

devices. The orange and green lines show the barriers extracted from

the DOS and TS respectively.

Nanoscale Adv. This journal is © The Royal Society of Chemistry 2020
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momentum perpendicular to the transport direction as we shall

now see.

The ky-resolved transmission spectrum for both devices are

shown on Fig. 4c and f. For the n-doped device, a reasonably

range of ky points contribute to the transmission already at the

conduction band edge. For the p-doped device, the trans-

mission is muchmore narrow in k-space. This is reected in the

rapid decay of the transmission from the energy of the interface

states towards the transmission onset on Fig. 4e where the

transmission is summed over all ky-points. The k-dependence of

the transmission arises due to the different dispersion relations

of the 1T0 and 1H phase. In order to have momentum conser-

vation perpendicular to the transport direction, a state must be

available at the same ky-value in both phases. This is possible

for a larger range of ky-points for the n-doped device than for the

p-doped device. This is also the reason why the transmission

onset of the p-doped device occurs below the valence band edge.

There are no states available in the 1T0 phase for transport at the

valence band edge of the 1H phase.

The temperature dependence of the currents is seen on

Fig. 4g and shows an TE barrier of 55 meV for the n-doped

device and 0.16 eV for the p-doped device between 300 and

450 K. The n-doped device shows tunneling dominated current

up to around 740 K whereas the p-doped device becomes

dominated by thermal excitations already around 320 K. The

very low TE barrier in the n-doped device reects the steep

increase in the transmission spectrum. The temperature

dependence of the current is evaluated through eqn (2)–(4)

where the transmission is integrated with the two Fermi

distributions of the electrodes. A steep transmission onset

therefore results in a signicant amount of current running

already at low temperatures and the current will only have

a weak dependence on the temperature. In the p-doped device,

the interface states only has a small effect. This is partly because

these interface states are positioned close to the DOS barrier

and partly because only few states are available for transport.

We have summarized the three calculated barrier heights of all

four devices in Table 1.

The lowering of an TE barrier due to tunneling through

a barrier, which dominate the low-doping devices, is a well-

known phenomenon11,21 which also occurs in 3D systems.40

The behavior seen in the highly n-doped device illustrates how

the presence of interface states can increase the tunneling

dramatically and lower the TE barrier by more than a factor of 6.

Using the Wentzel–Kramers–Brillouin method,41 we have esti-

mated the TE barrier of this device without the presence of the

interface states. The calculations can be found in the ESI† and

result in an TE barrier of 0.18 eV. This supports, that it is the

presence of the interface states, and not the well-known barrier

tunneling, which is responsible for the very low TE barrier.

To illustrate the hybridization between the interface states

and the conduction band states, the transmission eigenstates of

the n-doped device at 0.12 eV above the Fermi level and at the ky-

value of �0.3 (as indicated by the white star on Fig. 4c) are

plotted on Fig. 5a and b. The green and yellow isosurface

illustrates the eigenstate originating from the 1T0 electrode,JL,

Fig. 4 Projected DOS, transmission spectrum, and Arrhenius plot of the devices with a doping of ND/A ¼ 4.6 � 1012 cm�2. (a) and (d) show the

band bending, interface states (indicated by the arrows), and DOS barrier (orange) of the n- and p-doped device respectively. (b) and (e) show the

transmission spectrum and the TS barrier (green) of the two devices. (c) and (f) show the ky-dependence of the transmission spectra of the

devices. The white star on (c) marks the position at which the transmission eigenstates on Fig. 5 have been calculated. (g) shows the Arrhenius

plot and TE barriers at�0.01 V bias. 201 ky-points have been used for the non-selfconsistent calculations of the transmission spectra and current.

Table 1 Calculated barriers of all four devices extracted from the

projected DOS, the TS and using the TE model. The TS barriers assume

full transmission at 1% of the maximum transmission and the TE

barriers are extracted in a temperature range of 300–450 K

Type Doping (cm�2) F
DOS

F
TS

F
TE

n-Type 4.9 � 1011 0.54 eV 0.61 eV 0.37 eV
p-Type 4.9 � 1011 0.32 eV 0.32 eV 0.26 eV
n-Type 4.6 � 1012 0.32 eV 0.30 eV 55 meV
p-Type 4.6 � 1012 0.19 eV 0.19 eV 0.16 eV

This journal is © The Royal Society of Chemistry 2020 Nanoscale Adv.
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and the pink and cyan isosurface illustrate the eigenstate orig-

inating in the 1H electrode, JR. It is seen that the transport

primarily occurs between dyz like orbitals on the molybdenum

atoms in the interface and dz2 like orbitals in the 1H phase. On

Fig. 5c, we plot the norm of the two transmission eigenstates.

The state coming from the 1H electrode decays at the interface

but the exponential tail of the conduction band states reaches

into the 1T0 phase and the transmission eigenstate rises again at

the position of the interface state. This illustrates that

a coupling between the interface state and 1H conduction band

states is possible due to the short depletion width. A similar

analysis for the transmission eigenstates in the p-doped device

at the point indicated by the white star on Fig. 4f can be found

in the ESI† and show the same behavior.

We will now discuss the origin of the interface states. The

effect of the interface states described in this work is very

different from Fermi level pinning (FLP). FLP tends to pin the

Fermi level at the charge neutrality level of the semiconductor

surface (edge in 2D). Many previous investigations have shown

barrier heights of interfaces between 3D metals and 1H phase

TMDs which have a very small dependence on the metal work

function, suggesting that FLP dominates.18–20 However, in our

calculations, we nd that interface states are present, not at the

Fermi level, but above and below. Furthermore, if FLP

dominated, we would expect that the charge neutrality level

would be shied corresponding to the shi in the barrier height

when going from a low to a high doping level. Not only the

charge neutrality level, but all the interface states would be

shied by this amount. In our cases, it corresponds to a shi of

0.2 eV for the n-type devices and 0.14 eV for the p-type devices.

To quantify this energy shi, we plot the DOS close to the

interface at the position of the last Mo-atom belonging to the

1T0 phase. This corresponds to x ¼ 6.0 nm at the peak of the

transmission eigenstate norm on Fig. 5c. The DOS can be seen

on Fig. 6 and shows that the peak of the interface state above the

Fermi level only moves about 20 meV (from 0.12 eV to 0.14 eV)

going from high to low n-doping. This is only a tenth of the

expected shi. An isosurface plot of the le transmission

eigenstate of the low n-doped device at 0.14 eV above the Fermi

level results in the same isosurface as seen on Fig. 5, identifying

it as the same state. The interface state is placed close to this

energy even for the p-type devices with a peak at 0.17 eV for the

low p-doping and 0.18 eV for the high p-doping. However, since

there is no transmission at this energy for the p-type devices, we

are unable to conrm this by plotting the transmission eigen-

state isosurfaces. The interface state peak below the Fermi level

shows a similar behavior shiing about 20meV going from high

to low p-doping.

Based on these observations, we conclude that the interface

states are mainly determined by the 1T0 phase rather than 1H

phase. These heterophase junctions are therefore free of FLP

which agrees with a recent study by Urquiza et al.39 who have

investigated doped 1T0
–1H MoS2 junctions. The FLP of inter-

faces between 3D metals and 1H phase TMDs has in previous

studies been attributed to defects42 or negative ionization of the

outmost S atom complex.19 The reason why we do not observe

such behavior might therefore be that our systems represent

perfect crystalline interfaces without any defects with dangling

bonds. We suggest, that what we observe are resonances which

originate from a hybridization between a localized metal edge

state and the 1H conduction band. This conclusion agrees with

the decaying DOS both towards the metal and semiconductor.

Note, that this is somewhat different from the phenomenon of

metal induced gap states which are the result of the exponential

Fig. 5 Transmission eigenstates of the device with n-doping ND ¼ 4.6

� 1012 cm�2 at 3 ¼ 0.12 eV and ky ¼ �0.3. (a) and (b) show the iso-

surfaces of the eigenstate from the 1T0 electrode, JL, (green and

yellow isosurface) and the eigenstate from the 1H electrode,JR, (cyan

and pink isosurface) seen from the side and top of the ML respectively.

(c) shows the norm of the two eigenstates summed over the yz-plane

and projected along the x-axis. The fat trend lines have been created

using Gaussian smoothing.

Fig. 6 Density of states around the Fermi level projected on the last

atom of the 1T0 phase at x ¼ 6.0 nm. The arrows indicate the energy of

maximumDOS of the interface states placed closest to the Fermi level.

Nanoscale Adv. This journal is © The Royal Society of Chemistry 2020
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tail of extended bulk metal states protruding into the semi-

conductor gap region.

To summarize, our investigations show that the effective

barrier extracted from the IT-characteristic can be decreased

dramatically due to interface states. In contrast to the effect of

Fermi level pinning where the charge neutrality level of the

semiconductor edge dominates the band bending and DOS

barrier, we see that interface resonances originating from edge

states of the metallic phase can dominate the size of the effec-

tive barrier by enhancing the tunneling current. We can state

three conditions for this effect to be present. Firstly, the bond

types in the interface must host interface states originating

from the 1T0 phase which are placed relatively close to the Fermi

level. Secondly, the depletion width must be short enough to

allow for an overlap between the interface states and conduc-

tion or valence band states in the 1H phase. Finally, there must

be a reasonable amount of available states for momentum

conserving transport at the energy of the interface states. TMDs

with group six metals have very similar dispersion relations and

chemical bonds. We therefore nd it very likely that the effect

will be present in other heterophase devices as well.

One reason to investigate the TE barriers of the devices is to

get a better understanding of why experimentally extracted

barriers are much smaller than the barriers extracted from ab

initio calculations. We will therefore compare our results to the

previously measured barrier heights for MoTe2 heterophase

devices which are summarized in Table 2. Note, that these

results are extracted at zero gate voltage which allows us to

make the comparison with our calculations. Our TE barrier of

the highly doped n-type device is the only one which is the same

order of magnitude as the measured barriers. To our knowl-

edge, we are the rst to report barriers of these systems using

the DFT + NEGF method which reach values down to this order.

The fact, that it is the TE barrier which reaches a comparable

value, demonstrates that charge transport mediated by inter-

face states is capable of reducing a measured barrier dramati-

cally. That being said, the fabricated devices differ from our

devices in many ways. Multi-layer and substrate effects, the

presence of defects, and nite temperatures may all affect the

size of the barrier. The presence of defects could very well

increase the probability of localized states in the interface and

electron–phonon interactions could lead to phonon assisted

tunneling. Inelastic transport has previously been shown to

have a large effect on the transmission, for instance, it strongly

dominates in a reverse biased silicon p–n junction.43 The pres-

ence of defects or inelastic properties would reduce the effect of

momentum conservation, which in our calculations suppress

the tunneling in the highly p-doped device. The suppressed

tunneling results in the TE barriers of the highly doped devices

showing the opposite trend compared to the barriers in the

DOS. This leads us to suspect that an inclusion of the contri-

butions from inelastic transport in the p-type device would

result in a much better agreement with the experimental

results.

4 Conclusions

In conclusion, we have extracted the Schottky barriers of

monolayer MoTe2 1T0
–1H heterophase junctions of n- and p-

type using the most commonly applied methods for barrier

extraction in 2D systems. We found that the barrier heights

differ signicantly between the extraction methods which

highlights that care must be taken if barriers from different

methods are to be compared. Furthermore, we found that

interface states originating from the 1T0 edge are present in

these devices and that they can play a large role in the transport

properties. For sufficiently short widths of the depletion region,

the edge states hybridize with the states in the 1H phase and

signicantly enhance the tunneling current. In the highly n-

doped device, this decreases the barrier determined using the

TE model to 55 meV, which is comparable to experimentally

determined barrier heights and which is a factor of 6 lower than

the barrier seen in the projected DOS. In the low-doping

devices, we found that the depletion width is too long for the

interface states to affect the transmission through the device.

Regular tunneling effects reduce the TE barriers by a factor 1.5

for the n-doped device and 1.2 for the p-doped device. However,

the size of these barriers remains an order-of-magnitude larger

than the experimentally measured barriers. Our results,

combined with the results of previous ab initio studies,9–13

suggest that the low Schottky barriers measured in these

systems are caused by large tunneling currents mediated by

interface states.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

This work is partly funded by the Innovation Fund Denmark

(IFD) under File No. 5189-00082B.

References

1 D. Akinwande, C. Huyghebaert, C.-H. Wang, M. I. Serna,

S. Goossens, L.-J. Li, H.-S. P. Wong and F. H. L. Koppens,

Nature, 2019, 573, 507–518.

2 International Roadmap for Devices and Systems, https://

irds.ieee.org, 2018.

3 R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta,

A. D. Mohite and M. Chhowalla, Nat. Mater., 2014, 13,

1128–1134.

4 Y. Katagiri, T. Nakamura, A. Ishii, C. Ohata, M. Hasegawa,

S. Katsumoto, T. Cusati, A. Fortunelli, G. Iannaccone,

Table 2 Experimentally measured TE barriers of MoTe2 heterophase

devices at zero gate voltage

Type Doping (cm�2) F
TE Fit range

n-Type — 10 meV (ref. 5) 300–450 K
p-Type 4.9 � 1011 24 meV (ref. 6) 150–300 K
p-Type — 25 meV (ref. 8) 240–300 K

This journal is © The Royal Society of Chemistry 2020 Nanoscale Adv.

Paper Nanoscale Advances

O
p

en
 A

cc
es

s 
A

rt
ic

le
. 

P
u

b
li

sh
ed

 o
n

 0
7

 D
ec

em
b

er
 2

0
2

0
. 

D
o

w
n

lo
ad

ed
 o

n
 1

/2
0

/2
0

2
1

 7
:4

2
:4

8
 P

M
. 

 T
h

is
 a

rt
ic

le
 i

s 
li

ce
n

se
d

 u
n

d
er

 a
 C

re
at

iv
e 

C
o

m
m

o
n

s 
A

tt
ri

b
u

ti
o

n
 3

.0
 U

n
p

o
rt

ed
 L

ic
en

ce
.

View Article Online



G. Fiori, S. Roche and J. Haruyama, Nano Lett., 2016, 16,

3788–3794.

5 S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik,

D.-H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee and

H. Yang, Science, 2015, 349, 625–628.

6 J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song,

J. Kim, C.-S. Lee, S.-Y. Seo, D.-H. Kim, H. K. Kim,

H. W. Yeom, T.-H. Kim, S.-Y. Choi, J. S. Kim and M.-H. Jo,

Nat. Nanotechnol., 2017, 12, 1064.

7 X. Xu, S. Chen, S. Liu, X. Cheng, W. Xu, P. Li, Y. Wan, S. Yang,

W. Gong, K. Yuan, P. Gao, Y. Ye and L. Dai, J. Am. Chem. Soc.,

2019, 141, 2128–2134.

8 R. Ma, H. Zhang, Y. Yoo, Z. P. Degregorio, L. Jin, P. Golani,

J. Ghasemi Azadani, T. Low, J. E. Johns, L. A. Bendersky,

A. V. Davydov and S. J. Koester, ACS Nano, 2019, 13, 8035–

8046.

9 D. Saha and S. Mahapatra, Appl. Phys. Lett., 2016, 108,

253106.

10 X.-W. Jiang, L.-W. Wang, Z.-Q. Fan, J.-W. Luo, S.-S. Li,

L.-Y. Jiao and R. Huang, Phys. Rev. B, 2017, 96, 165402.

11 Z. Q. Fan, X. W. Jiang, J. Chen and J. W. Luo, ACS Appl. Mater.

Interfaces, 2018, 10, 19271–19277.

12 S. Liu, J. Li, B. Shi, X. Zhang, Y. Pan, M. Ye, R. Quhe, Y. Wang,

H. Zhang, J. Yan, L. Xu, Y. Guo, F. Pan and J. Lu, J. Mater.

Chem. C, 2018, 6, 5651–5661.

13 D. Saha and S. Mahapatra, IEEE Trans. Electron Devices, 2017,

64, 2457–2460.

14 M. Chhowalla, S. Lei, G. Gupta, H. Yamaguchi, J. J. Crochet,

S. Najmaei, A. D. Mohite, J.-C. Blancon, J. Lou,

B. D. Mangum, R. Kappera and P. M. Ajayan, ACS Nano,

2014, 9, 840–849.

15 X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee,

D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero,

B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller,

T. Low, P. Kim and J. Hone, Nat. Nanotechnol., 2015, 10,

534–540.
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