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Summary

This theoretical PhD project investigates the fundamental limits to the precision with
which temperature can be estimated in quantum systems. The first part of the thesis
presents a Bayesian formulation of temperature estimation theory, which is based on
the thermodynamic length between thermal sample states. We show how the resulting
temperature estimation theory can be mapped onto a Euclidean parameter estimation
problem, and this insight makes it possible to apply precision bounds developed in this
context. When mapping these bound from the Euclidean theory, back to the space of
temperatures, it is found that the measure of precision resulting from a framework based
on the thermodynamic length, has a natural interpretation as a generalized relative
error.

The Bayesian approach to temperature estimation, in which a priori incomplete
information is assumed, points to the need of effective adaptive strategies, with which
the measurement strategy can be updated as temperature information is extracted. We
propose two such adaptive strategies. In the case of equilibrium probe thermometry,
we show that no non-adaptive measurement strategy can exhibit Heisenberg-like scaling
with the probe dimension. Furthermore, it is illustrated that an adaptive strategy can
restore Heisenberg-like scaling with the probe dimension. These results highlight the
essential role of adaptation for thermometry.

The last part of this thesis investigates optimal thermometry under realistic con-
straints on the available measurements. In particular, we focus on the challenges as-
sociated with thermometry at very low temperatures. It is found that finite energy-
resolution fundamentally constrains the attainable sensitivity of a measurement to tem-
perature in the ultracold regime. The relevance of the derived bounds is illustrated
by considering a numerically exact simulation of a probe-based thermometry protocol.
Furthermore, we investigate fundamental limitations under constraints of measurements
with only a finite number of distinguishable outcomes, and derive the associated preci-
sion bounds. It is shown that for the majority of many-body quantum systems, there
exist coarse-grained measurements achieving a temperature sensitivity comparable to
that of the many-body system itself.
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Resume

Dette teoretiske PhD projekt undersøger de fundamentale begrænsninger af præcisio-
nen hvormed temperatur kan måles i kvantesystemer. I den første del af afhandlingen
præsenterer vi en Bayesisk formulering a temperatur estimerings problemet, som er
baseret på den termodynamiske længde mellem termiske tilstande. Vi viser at temper-
atur estimerings problemet har en ækvivalent formulering som et Euklidisk estimations
problem, og bruger denne indsigt til at anvende fundamentale præcisions begrænsninger
udviklet i den Euklidiske kontekst. Når disse udtrykkes direkte som begrænsninger på
temperatur målinger, finder vi et mål for præcision som naturligt kan fortolkes som en
generaliseret relativ fejl.

Den Bayesiske tilgang til temperatur estimering, hvori kun begrænset information
om temperature er tilgængelig a priori, motiverer formuleringen af effektive adaptive
strategier, hvormed en målings-strategi kan opdateres i takt med at temperatur informa-
tion bliver tilgængelig. Vi præsenterer to adaptive strategier. For ligevægts-termometri
med kvante prober viser vi at ingen ikke-adaptive strategi kan realisere Heisenberglig-
nende skalering med dimensionen af proben. Derudover viser vi at hvis målingen kan
adapteres, så kan Heisenberglignende skalering med probens dimension genetableres.
Disse resultater illusterer vigtigheden af adaption i termometri.

I den sidste del af afhandlingen undersøger vi optimal termometri under realistiske
begrænsninger på tilgængelige målinger. Især fokuserer vi på de udfordringer der er for-
bundne med termometri ved meget lave temperature. Vi finder at målinger med endelig
energiopløsnning er fundamentalt begrænsede med hensyn til deres sensitivitet overfor
meget lave temperature. Vi illustrerer relevansen af disse begrænsninger ved at studere
en numerisk eksakt løsning af en probe-baseret termometri protokol. Derudover un-
dersøger vi fundamentale begrænsninger når det antages at kun målinger med endeligt
mange forskellige udfald er tilgængelige. Vi viser at for størstedelen af kvante mange-
legeme systemer, eksisterer der sådanne målinger som realisere en sensitivitet overfor
temperatur som er sammenlignelig med temperatur sensitiviteten af mange-legeme sys-
temet selv.

vii



viii



Preface

This thesis was completed at the section for Quantum Physics and Information Technol-
ogy (QPIT) at the Department of Physics, as part of the fulfilment of the requirements
for the PhD degree. The project was carried out under the supervision of Associate Prof.
Jonatan B. Brask, with Associate Prof. Alexander Huck acting as co-supervisor, and
was funded by the Independent Research Fund Denmark. As part of my PhD project I
spent three months of 2020 in the group of Prof. Nicolas Brunner at the Department of
Applied Physics at the University of Geneva. In Geneva I worked directly with scientific
collaborator Martí Perarnau-Llobet.

First and foremost I would like to thank my direct supervisor Jonatan. I deeply
appreciate the trust he has shown me in providing me with the freedom to pursue my
research interests in my own way. His competent guidance, and constantly good mood,
has been a unwavering source of support, especially when considering that he has had
to balance the requirements of a young family, a growing research group and a global
pandemic.

I would also like to thank the group in Geneva, and Prof. Nicolas Brunner for hosting
my visit. In particular, I would like to thank Martí Perarnau-Llobet and Mohammad
Mehboudi for welcoming me into the group both scientifically and socially. Martí has
been an invaluable resource in driving research projects forward, and putting me in
contact with collaborators around the world.

My gratitude also goes out to the QPIT group at the Technical University of Den-
mark. In particular, the other PhDs and Post. Docs. working with Jonatan: Bradley,
Kieran, Carles, Anders and Michael. After having been the only non-senior member of
the group for a good two years, and after being kept at home by a global pandemic,
it is invaluable to have the support of other group members who are always up for a
discussion of either physics or other things of interest.

In addition I would like to thank my family home in Jutland. Although the work for
my PhD often kept me away more than it should have, you have always been a source
of love and support. Lastly, I would like to thank Mie. Both for being a superb, albeit
unintentional, office mate for a year. But also for being a daily reminder that there is
more to life than physics.

ix



x



Dissemination of research

Publications included in this thesis:

Mohammad Mehboudi, Mathias R. Jørgensen, Stella Seah, Jonatan B. Brask,
Jan Kołodyński and Martí Perarnau-Llobet, "Fundamental limits in Bayesian ther-
mometry and attainability via adaptive strategies", arXiv ID:2108.05932 (Submitted
to Physical Review Letters).

Mathias R. Jørgensen, Mohammad Mehboudi, Jan Kołodyński, Martí Perarnau-
Llobet and Jonatan B. Brask, "Bayesian quantum thermometry based on thermody-
namic length", arXiv ID:2108.05901 (Submitted to Physical Review A).

Karen V. Hovhannisyan, Mathias R. Jørgensen, Gabriel T. Landi, Álvaro M.
Alhambra, Jonatan B. Brask and Martí Perarnau-Llobet, "Optimal Quantum Ther-
mometry with Coarse-grained Measurements", PRX Quantum 2, 020322 (2021).

Mathias R. Jørgensen, Patrick P. Potts, Matteo G. A. Paris and Jonatan B. Brask,
"Tight bound on finite-resolution quantum thermometry at low temperatures", Phys.
Rev. Research 2, 033394 (2020).

Publications beyond the scope of the thesis:

Mathias R. Jørgensen and Felix A. Pollock, "A discrete memory-kernel for multi-
time correlations in non-Markovian quantum processes", Phys. Rev. A 102, 052206
(2020)1.

Mathias R. Jørgensen and Felix A. Pollock, "Exploiting the causal tensor network
structure of quantum processes to efficiently simulate non-Markovian path integrals",
Phys. Rev. Lett. 123, 240602 (2019)2.

1This work was initiated during my MSc thesis, but significantly expanded and eventually completed
during my PhD

2This work was initiated during my MSc thesis but significantly expanded and eventually completed
during my PhD. This paper forms the basis of the numerical simulations performed in chapter 6, and
is included in appendix B for reference.

xi



xii

Conference contributions:

"Optimal Quantum Thermometry with Coarse-grained Measurements", Oral presen-
tation, Lake Como School on quantum thermodynamic systems and processes (2021).

"Tight bound on finite-resolution quantum thermometry at low temperatures", Oral
presentation, WE-Heraeus-Seminar on Quantum Thermodynamics for Young Scien-
tists (2020).

"Exploiting the causal tensor network structure of quantum processes to efficiently
simulate non-Markovian path integrals", Oral presentation, Polaron day, Technical
University of Vienna (2019).

"A discrete memory-kernel for multi-time correlations in non-Markovian quantum
processes", Oral presentation, Poster presentation, YQIS Conference and CoQuS
Summer School (2018).



Contents

Summary v

Resume vii

Preface ix

Dissemination of research xi

1 Introductory material 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Quantum mechanical modelling . . . . . . . . . . . . . . . . . . . 3
1.2.2 Quantum thermodynamic modelling . . . . . . . . . . . . . . . . 6

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Estimation Theory: Quantum Model and Invariance Conditions 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Quantum statistical model and likelihood . . . . . . . . . . . . . . . . . . 11

2.2.1 Manifold of quantum states . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Measurements and the likelihood function . . . . . . . . . . . . . 12
2.2.3 Likelihood for adaptive measurements . . . . . . . . . . . . . . . . 13

2.3 Frequentist estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 The error-propagation formula . . . . . . . . . . . . . . . . . . . . 14
2.3.2 The frequentist Cramér-Rao bound . . . . . . . . . . . . . . . . . 16

2.4 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Probability measure on the manifold . . . . . . . . . . . . . . . . 17
2.4.2 Bayesian updating . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Criteria for parameterization invariance . . . . . . . . . . . . . . . 18

2.5 Invariant estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Criteria for invariant point estimation . . . . . . . . . . . . . . . . 19
2.5.2 Singling out a parameter estimate . . . . . . . . . . . . . . . . . . 20
2.5.3 Distance function and the mean-squared error . . . . . . . . . . . 21
2.5.4 Metric structure and the geodesic distance . . . . . . . . . . . . . 22
2.5.5 Invariant MAP estimates . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.6 Selecting an initial prior probability . . . . . . . . . . . . . . . . . 26

2.6 Properties of the Fisher information . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Derivation of the quantum Fisher information . . . . . . . . . . . 27
2.6.2 Additivity of independent measurements . . . . . . . . . . . . . . 27

xiii



Contents xiv

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Estimation Theory: Precision Bounds and Adaptive Strategies 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Posterior mean-squared error . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Minimal mean-squared error estimator . . . . . . . . . . . . . . . 30
3.3 Posterior Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Saturability of the CRB . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Asymptotic statistics . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Bayesian mean-squared error . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Total variance decomposition . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Bayesian Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . 37
3.4.3 Van Trees bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Adaptive measurement design . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Asymptotic expression for the added information . . . . . . . . . 40
3.5.2 Alternative optimization strategy . . . . . . . . . . . . . . . . . . 41

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Temperature Estimation Based on the Thermodynamic Length 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Outline of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Canonical thermal states . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Quantum Fisher information metric . . . . . . . . . . . . . . . . . 45
4.2.2 Statistical interpretation of thermodynamic length . . . . . . . . . 46

4.3 The thermalizing channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Non-interacting spin one-half particles . . . . . . . . . . . . . . . . . . . 49
4.5 Difficulty of thermometry at low temperatures . . . . . . . . . . . . . . . 52

4.5.1 Relation to conventional thermometry . . . . . . . . . . . . . . . 52
4.5.2 Thermometry of a Bose-Einstein condensate . . . . . . . . . . . . 54
4.5.3 Thermometry of a tight-binding chain . . . . . . . . . . . . . . . 57

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Fundamental Limits in Bayesian Thermometry and Attainability via
Adaptive Strategies 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Preliminaries and setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.1 Van Trees inequality in equilibrium thermometry . . . . . . . . . 68
5.6.2 Model-independent super-extensive upper bound on Γ . . . . . . . 69
5.6.3 Tight upper bound on the thermal energy density . . . . . . . . . 69
5.6.4 Extensive bounds for the non-adaptive scenario . . . . . . . . . . 70
5.6.5 Model-independent bound for a Gaussian prior . . . . . . . . . . . 71



xv Contents

6 Tight bound on finite-resolution quantum thermometry at low tem-
peratures 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Temperature estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Quantifying the estimation precision . . . . . . . . . . . . . . . . 75
6.2.2 Accounting for measurement limitations . . . . . . . . . . . . . . 76
6.2.3 Low-temperature scaling behaviour . . . . . . . . . . . . . . . . . 78

6.3 Scaling bound for large systems . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Finite-resolution criterion . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Finite-resolution bound . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 Proving tightness of bound . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Generalization to noisy measurements . . . . . . . . . . . . . . . . . . . . 83
6.4.1 Noisy temperature measurements . . . . . . . . . . . . . . . . . . 83
6.4.2 Illustration of noisy measurement . . . . . . . . . . . . . . . . . . 84

6.5 Single-qubit probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5.1 Measurement protocol . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5.2 Excitation-preserving interaction . . . . . . . . . . . . . . . . . . 88
6.5.3 Excitation-non-preserving interaction . . . . . . . . . . . . . . . . 88

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.7.1 Density of states for a bosonic bath . . . . . . . . . . . . . . . . . 91
6.7.2 Scaling behaviour for the noisy model . . . . . . . . . . . . . . . . 91
6.7.3 The non-excitation-preserving interaction as a noisy POVM . . . . 93
6.7.4 Tensor network simulation . . . . . . . . . . . . . . . . . . . . . . 93

7 Optimal Quantum Thermometry with Coarse-grained Measurements 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Optimal coarse graining . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 Optimal POVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3.2 Optimal binning . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3.3 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3.4 General remarks and extension to imperfect measurements . . . . 107

7.4 Many-body lattice models . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4.1 Gaussian density of states . . . . . . . . . . . . . . . . . . . . . . 109
7.4.2 Noncritical, interacting systems on lattices . . . . . . . . . . . . . 112
7.4.3 Critical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Probe-based measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.5.1 Jaynes–Cummings model . . . . . . . . . . . . . . . . . . . . . . . 117

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Probability theory 121

B Exploiting the Causal Tensor Network Structure of Quantum Pro-
cesses to Efficiently Simulate Non-Markovian Path Integrals 125
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.2 Process tensor framework . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.3 Gaussian influence functional . . . . . . . . . . . . . . . . . . . . . . . . 127



Contents xvi

B.4 Tensor network simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.5 Network complexity for a two level system . . . . . . . . . . . . . . . . . 131
B.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 141



Chapter 1

Introductory material

1.1 Introduction

Quantum mechanics provide the best theory we have for describing natural phenomena
occurring at all length and energy scales [1]. Recent decades have seen an explosion of
interest in the so-called second quantum revolution, in which highly controlled quantum
systems form the basis for quantum-enhanced technologies [2]. Potential quantum tech-
nologies include secure communication systems, powerful computing machines, highly
efficient material simulations, and quantum-enhanced sensing protocols. In particular,
quantum sensing holds the promise for highly accurate determination of physical quanti-
ties of interest [3, 4]. Examples include the measurement of electric and magnetic fields,
but also extends to the accurate determination of the minuscule space-time distortions
associated with gravitational waves [5].

A topic intimately connected to sensing is what we might call characterization.
When constructing controlled quantum devices, e.g. a simulation system or a sensor,
the state of the system, and by extension how it operates, typically depends on a set of
classical, or latent, parameters [6]. In the case of a sensor, the set of latent parameters
might be attributed a significance extrinsic to the sensor itself. I.e. we want to know
these parameters and the sensor is the tool we apply to that end. The aim is then to
measure the sensing system, and from the observed data, infer the most probable values
of the latent parameters. A different, but deeply connected, scenario might be that
the latent parameters are intrinsic to our model of the controlled quantum device. In
this case we face a characterization problem, i.e. we want to accurately determine the
latent parameters for the sake of modelling the operation of the quantum device. In both
cases, the fundamental limits to estimation would be determined by the sensitivity of the
system to small changes in the latent parameters. However, the physical implications of
a given sensitivity depends on the scenario. If the system manifest a vanishing sensitivity
to the latent parameter, it implies that it constitutes a poor sensor. However, at the
same time it signifies that no detailed knowledge of the latent parameter is required to
accurately model the operation of the system.

Principle among such latent parameters is the operating temperature of the de-
vice, typically taken to describe energy dissipation between the device and its sur-
roundings [7]. Determining the temperature of a physical system is an essential task
throughout science and technology. Current attempts at pushing the limits of accurate
temperature determination typically involves the use of controlled quantum systems

1



Chapter 1. Introductory material 2

acting as temperature sensors, or probes. Examples include, but are not limited to, the
following:

1. Explorations of real-time biological function of living organisms via in-vivo nanometer-
scale temperature sensors, e.g. optically monitored colour centers in nanodia-
monds [8, 9, 10]. Biological systems can typically be modelled locally as heat
reservoirs with a well-defined temperature, and by monitoring the physics of con-
tinuously thermalizing quantum probes, it is possible to extract information on
the temperature.

2. Precise characterization of ultracold atomic gases confined in optical lattices,
e.g. verification of a state preparation procedure, exploring thermodynamic phase
diagrams or investigating transport phenomena [11, 12, 13, 14, 15]. Tradition-
ally, temperature estimation in ultracold atomic gases involved time-of-flight or
in-situ absorption imaging, both of which are inherently destructive [16]. Recently
there has been proposals in which impurity atoms act as nonequilibrium quantum
probes of the gas temperature [17, 18, 19, 20], and such strategies could provide
non-destructive alternatives.

3. Within the field of microelectronic physics, precise thermometry techniques play a
crucial role in mapping out dissipative phenomena [21, 22]. State-of-the-art ther-
mometry methods typically employ nanoscale superconducting quantum interfer-
ence devices, and has enabled thermal-imaging measurements of energy dissipa-
tion at the fundamental Landauer bound [23, 24]. More broadly, the availability of
high-precision thermometry techniques makes it possible to study quantum ther-
modynamic phenomena, involving the interplay of heat, work and information, in
microelectronic systems[25, 26].

4. Lastly, we mention that precise thermometry techniques are also crucial in exper-
iments with micro-mechanical resonators. In particular, thermometry plays a key
role in the verification of cooling protocols attempting to prepare the resonator
near its ground state of motion [27, 28, 29] The accurate characterization of such
resonators would pave the way for the observation of quantum superposition states
of macroscopic quantum objects.

With the exception of the exploration of biological function in living organisms, all
the examples mentioned involves phenomena occurring at very low temperatures. In
fact, a sizeable part of modern physics focus on phenomena occurring at very low tem-
peratures [30]. The principal reason is that as a system is cooled down its distinctly
quantum mechanical features become increasingly manifest. As an example we mention
the study of quantum phase transitions occurring at zero temperature in some quantum
many-body systems [31]. In the case of a second-order phase transition, an ordered
phase in which quantum correlations are manifest at all length scales, emerge at the
critical point. It is well-known that quantum many-body systems tuned to critical-
ity, constitutes a key resource for quantum-enhanced metrology [32]. However, finite
temperature effects generally result in the fading away of these phenomena, and thus
constitute an unwanted nuisance. In particular, a zero-temperature critical point typi-
cally broadens into a critical region, and the system exhibit a smooth crossover between
different phases [31, 33]. Thus, certifying the presence or absence of a quantum phase
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transition, requires accurate determination of the system temperature deep into the
ultracold regime.

The study of quantum phase transitions is but one example of the importance of ac-
curate temperature determination, with respect to the detailed characterization, control
and ultimately utilization, of examined quantum systems and processes. The subject
of this thesis is the fundamental question of how accurately it is possible to determine
the temperature of a quantum system. In Sec. 1.3 we describe this problem in greater
detail, and outline the specific contribution of this thesis. First, however, in Sec. 1.2 we
will outline the basic theoretical framework with which we will approach the problem.
In particular, we focus on the role played by temperature within a quantum mechanical
model of a physical experiment.

1.2 Basic theoretical framework

1.2.1 Quantum mechanical modelling

The following section describes basic quantum mechanics [1, 34]. In particular, the
treatment is inspired by Gammelmark [35]. We make use of some basic notions of
measure-theoretic probability theory. For an in-depth treatment see Ref. [36]. A brief
discussion is provided in Appendix A.

Quantum mechanics asserts that a physical system is associated with a Hilbert
space H, and that a dynamical variable of the system is represented by a Hermitian
operator on H. The eigenvalues of the operator correspond to the possible values of
the dynamical variable. An experiment involving the system is divided into a state
preparation procedure followed by a measurement process. Quantum mechanics aims
to assign probabilities to the various possible outcomes of the measurement process.
The state preparation procedure is represented by a state operator ρ̂ on H, which is
Hermitian, non-negative and of unit trace. We will discuss the state operator in the
following section. The measurement process is represented by a measurement operator,
Ω̂, mapping an element of the space of measurement outcomes, X , to a bounded operator
on H. We write this as

Ω̂ : X → Ω̂(x) ∈ B(H), (1.1)

where x ∈ X and B(H) denotes the space of bounded operators on H. Given a reference
probability measure P0 : X → R on the space of possible measurement outcomes, here
R denotes the real numbers, the measurement operators must satisfy the normalization
condition ∫

X
dP0(x) Ω̂(x)†Ω̂(x) = 1. (1.2)

The reference measure is to be understood as a degree of freedom in the theory, i.e. the
measurement operators can be specified relative to a convenient reference process [35].
We will only make rudimentary use of the notion of a measure. For our purposes we can
simply understand it as a function which takes a subset of outcomes A ⊆ X and assigns
to this subset a probability. Note, that in the case of a discrete sample space, X , the
reference measure reduce to an arbitrary set of weights,

∫
dP0(x) =

∑
P0(x), and can

be eliminated via a rescaling, Ω̂(x)→
√

P0(x)Ω̂(x), of the measurement operators [35].
Hence, in this case we recover the more standard formulation of quantum measurement
theory [1, 34].
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The operator Π̂(x) := Ω̂(x)†Ω̂(x) is called an effect operator, and is both Hermi-
tian and non-negative. Together with the reference measure, the effect operator forms
a positive operator-valued measure (POVM) on X given by dP0(x)Π̂(x). The statis-
tical postulate of quantum mechanics asserts that the space of possible measurement
outcomes is equipped with a probability measure given by the Hilbert-Schmidt inner
product of the POVM and the state operator, that is

dP(x) = dP0(x) Tr(Π̂(x)ρ̂) , (1.3)

where Tr denotes the trace. Furthermore, the post-measurement state operator, con-
ditional on observing a measurement outcome x ∈ X , is given by ρ̂|x := Ω̂(x)ρ̂Ω̂(x)†.
Note that the conditional state operator is generally sub-normalized, that is, the trace is
less than one. Furthermore, we see that predicting the post-measurement state requires
knowledge of the measurement operators. If we only have available the set of effect
operators, then it is not possible to predict the post-measurement state. The reason for
this is that a given effect operator does not have a single unique decomposition in terms
of measurement operators [34].

We now ask the question whether it is possible to measure the value of a dynamical
variable of the system. The spectral theorem states that to any dynamical variable Q̂
there corresponds a unique family of non-negative projection operators Ê(q), for q ∈ R,
onto the subspace of Q̂ with eigenvalues less that q, such that Q̂ can be written on the
form [1]

Q̂ =

∫
R
dÊ(q) q, (1.4)

where dÊ(q) denotes the POVM associated with the family of projection operators. A
key concept in probability theory is that of a measurable function Q : X → R. For our
purposes, we can think of a measurable function as one with which we can meaningfully
associate an image measure defined as [35, 36]

dΠ̂Q(q) := dP0(Q−1(q)) Π̂(Q−1(q)), q ∈ R, (1.5)

where Q−1 is the pre-image of the measurable function. The image measure takes the
POVM on X and maps it to a POVM on the space of function values. Given the image
measure, we say that a given dynamical variable can be measured if it is possible to de-
sign an experiment, and construct a measurable function Q, such that the corresponding
image measure equals the POVM of the dynamical variable, that is

dΠ̂Q(q) = dÊ(q). (1.6)

Furthermore, from the statistical postulate it follows that the space of possible values of
the dynamical variable is equipped with a probability measure dPQ(q) = Tr(dÊ(q)ρ̂).
Lastly, we note that although all dynamical variables are associated with a POVM, it
is not true that all POVMs correspond to a dynamical variable. In other words, most
measurements do not correspond directly to measuring a dynamical variable.

Given a physical experiment, quantum mechanics allows us to assign probabilities to
possible measurement outcomes. Typically we are interested in statistical properties of
the experiment. If we consider again an arbitrary measurable function Q : X → Q(x) ∈
R on the space of measurement outcomes, then the expectation value is defined as

〈Q〉 :=

∫
X
dP(x) Q(x) =

∫
R
dPQ(q) q. (1.7)
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If an infinite number of identical repetitions of the experiment is performed, then the
average value of the function Q computed over the acquired data converges to the
expectation. If the image measure dPQ(q) equals the POVM associated with a dynamical
variable Q̂, then it is possible to write the expectation value of the dynamical variable
on the simple form

〈Q̂〉 = Tr(Q̂ρ̂) . (1.8)

Note that an expectation value is not something which is measured in an experiment.
Rather, an expectation must be estimated based on obtained measurement data. This is
also true for asymptotic statistical quantities beyond the expectation, e.g. the variance

Var(Q) = 〈(Q− 〈Q〉)2 〉 . (1.9)

Although the dynamical variables of a system are not what we exclusively, or even
typically, measure directly in an experiment, they play an essential role in the con-
struction of the measurement operators. As a simple example we consider a dynamical
variable of particular importance – the system energy. The system energy is repre-
sented by the energy operator Ĥ(ξ), also called the system Hamiltonian, that typically
depends on a vector of extrinsic control parameters ξ. These controls could for instance
be applied magnetic or electric fields. The particular importance of the Hamiltonian
operator, stems from the fact that it serves as the generator of the intrinsic evolution of
the system in time [1]. That is, if the system is closed, and initially in a state ρ̂i, then
over a time duration t the state will evolve to

ρ̂(t, ξ) = e−itĤ(ξ) ρ̂i e
itĤ(ξ). (1.10)

Intrinsic evolution is typically an idealization as most physical systems are not closed [37,
38], however, it will be sufficient as an illustration. If we imagine a measurement in which
the system evolves intrinsically over a time duration t, and is subsequently subjected to
a measurement process represented by measurement operators Ω̂, then from Eq. (1.3)
it follows that the probability measure takes the form

dP(x; t, ξ) = dP0(x) Tr(Π̂(x)ρ̂(t, ξ)) ,

= dP0(x) Tr(Π̂(x; t, ξ) ρ̂i ) ,
(1.11)

where the second equality follows from the cyclic property of the trace and from defining
the effect and measurement operators

Π̂(x; t, ξ) := Ω̂(x; t, ξ)†Ω̂(x; t, ξ), (1.12)

Ω̂(x; t, ξ) := Ω̂(x)e−itĤ(ξ). (1.13)

The second equation shows that the full measurement operator is given by a time-
ordered product of an operator describing the intrinsic evolution, generated by the
Hamiltonian, and an operator describing the final measurement. Thus, we see that the
simple scenario of an unmeasured system is captured by the system Hamiltonian. This
illustrates the importance of the dynamical variables of the system, namely, they are
the building blocks from which we construct measurement operators.

At this point we have encountered two kinds of objects: 1) The POVMs, e.g. the
one associated with a dynamical variable like the energy, which are in principle directly
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measurable, and 2) the latent variables, such as the time duration t or the extrinsic
control parameters ξ, which are intrinsic to the mechanical description [6]. Latent
variables are by definition not directly measurable. To determine their values we must
either assume that sufficient information is available a priori to fix the value, or we must
resort to indirectly estimating the value via the statistics of the obtained measurement
data [6]. This is also true for asymptotic quantities such as an expectation value. In
this sense expectations themselves can be considered as latent variables of the model.

1.2.2 Quantum thermodynamic modelling

In the preceding section we saw how systems and processes are modelled quantum
mechanically. In this section, we outline what is meant by a quantum thermodynamic
model, in the specific context considered in this thesis. It should be noted, however, that
the subject of quantum thermodynamic modelling extends far beyond the rudimentary
picture discussed here [39, 40].

A key ingredient of the quantum mechanical description of a physical experiment is
the initial state operator, ρ̂i, of the system. Once the state operator is specified, the
statistical properties of any conceivable measurement of the system is fixed. In principle,
given complete microscopic information, it is possible to mechanically specify the state
preparation procedure. In practice, however, such complete microscopic information is
rarely available for systems of even modest complexity.

Following E.T. Jaynes [41, 42], we say that a quantum thermodynamic description
comes about, when prior information can be expressed as constraints on the expecta-
tion values of a set of dynamical variables. Furthermore, we adopt an assumption of
sufficiency, namely, we assume that if the set of expectation values are known precisely,
then that knowledge is sufficient to fix the statistics of any other measurement of the
system. In particular, we define the internal energy of the system as the expectation of
the Hamiltonian operator

U(ξ) := 〈Ĥ(ξ)〉 = Tr(Ĥ(ξ) ρ̂i ) . (1.14)

We then imagine a thermodynamic scenario in which sufficient prior information exist
to fix the values of the internal energy U(ξ) and the latent parameters ξ. Given these
constraints, we can ask the inverse problem of finding an initial state operator ρ̂i consis-
tent with the fixed variables. Based on information-theoretic arguments, the so-called
maximum-entropy principle, it can be shown that the state operator must take the form
of a thermodynamic equilibrium state [41, 42]

ρ̂(T ; Ĥ(ξ)) := e−Ĥ(ξ)/kBT/Z(T ; Ĥ(ξ)), (1.15)

where kB is the Boltzmann constant, T ∈ R+ is a parameter known as the system
temperature, and we have defined the partition function

Z(T ; Ĥ(ξ)) := Tr(e−Ĥ(ξ)/kBT ) . (1.16)

Given the thermodynamic equilibrium state, it follows that the temperature of the
system is itself a latent variable of the quantum mechanical model. It encodes the
constraint that the internal energy is fixed. To be specific, the temperature must be
such that the following relation is satisfied [41, 42]

U(ξ) = kBT
2∂T logZ(T ; Ĥ(ξ)), (1.17)
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where log refers to the natural logarithm. Information-theoretic reasoning is not the only
way of arriving at the thermodynamic equilibrium state as the suitable description of a
quantum system. Alternatively, we could consider dynamic thermalization in quantum
systems [7, 39, 43, 44]. Rather than pursuing this topic further, however, throughout
this thesis we take the suitability of the thermodynamic equilibrium state as a given
phenomenological fact.

1.3 Outline of the thesis

Above we saw how our quantum thermodynamic model of a physical system depends on
the set of latent variables (T, ξ). Knowledge of these variables determines the initial state
of the system, and thus fix the statistics of any conceivable measurement which could be
performed. The setting considered in this thesis is one in which the latent parameters
ξ are taken to be known precisely, that is the system Hamiltonian is perfectly specified.
On the other hand, the system temperature is taken to be only partially known. In
other words, we consider an experimental scenario in which the suitability of the family
of thermodynamic equilibrium states is taken for granted. However, it is not known
precisely which state in the family is the correct one.

The subject of this thesis is the exploration of the fundamental limits to how well
temperature can be determined in quantum systems. In particular, we focus on the
challenges emerging when attempting to estimate the temperature of quantum systems
in the ultracold regime. This subject matter is referred to as quantum thermometry,
and aims at guiding the design of optimal thermometric measurement processes, and
the processing of measurement data into an accurate temperature. The subject matter
of quantum thermometry is rapidly expanding. For recent reviews see Refs. [45, 46].
The humble contributions of this thesis is outlined below:

1. In chapter 2 we develop the Bayesian estimation theory forming the backbone of
the remaining thesis. In contrast to previous approaches to quantum thermom-
etry [45, 46], we construct the estimation theory around the estimation of the
thermal state itself, rather than the temperature parameter. We find that this
approach forces us to adopt measures of precision respecting the invariance prop-
erties of the quantum states. In particular, we find that the only consistent way
of constructing a distance function between different states, is an operational ap-
proach in which the distance is gauged by the ability of a reference measurement
to distinguish the states. The mathematical formalism required to complete this
construction is well developed [47, 48], and our contribution here is merely in the
realization that these tools are relevant for quantum thermometry.

2. In chapter 3 we build on the foundations put down in chapter 2, and start from
the key insight, which constitutes our humble contribution, that a thermometry
problem can be formally mapped onto a Euclidean parameter estimation problem.
Given this correspondence, it follows straightforwardly that we can apply precision
bounds known from Euclidean parameter estimation theory [6]. The chapter goes
through the development of known results on precision bounds from estimation
theory within the Euclidean picture. In addition we discuss single-shot adaptive
strategies, and propose two distinct optimization strategies.
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3. In chapter 4 we apply the developed estimation theory to the problem of ther-
mometry. The operational distance measure proposed in chapter 2 is shown to
be equivalent to the concept of thermodynamic length [49]. The chapter goes
through a number of applications of the developed framework: 1) Thermome-
try of a heat reservoir, 2) thermometry involving spin-1/2 particles, 3) adaptive
probe thermometry of a non-interacting Bose gas, and 4) local thermometry of a
fermionic tight-binding chain. Common to these examples is the realization that
an analysis based on the thermodynamic length force us to consider a generalized
relative error. In particular, the thermal sensitivity of a given measurement strat-
egy must be determined relative to the thermal sensitivity of the thermal system
itself. This point seems intuitive, perhaps even trivial, but it has not previously
been properly appreciated within the field of quantum thermometry [45, 46].

4. In chapter 5 we consider the specific case of equilibrium probe thermometry of a
heat reservoir. Previous work has shown that the achievable precision, when using
a quantum probe of a certain dimension, is fundamentally limited to scale with the
square of the probe dimension [50]. This conclusion is generally reached within the
local estimation regime, in which good knowledge of the temperature is available a
priori. In this chapter, we show that if we start out with only limited information
on the temperature, then the precision scaling is limited to scale linearly in the
probe dimension, rather than quadratically. The key constraint, which brings
about this loss of super-linear scaling, is that we are not allowed to adaptively
change the employed measurement strategy as new information is acquired. If we
are able to update the measurement, then we show, and numerically illustrate,
that the super-linear scaling can be restored. Thus this chapter highlight the
essential role played by adaptation within quantum thermometry.

5. In chapter 6 we discuss the fundamental bounds on the scaling of the precision
with temperature, as the temperature approach absolute zero. In particular, we
seek to take into account realistic constraints on available measurement strategies.
We propose a finite-resolution criterion, and show that this constraint on the
available measurements, gives rise to a tighter bound on temperature scaling of
the precision, as compared to a previous bound which was derived based on the
unattainability principle [51]. Furthermore, we show that the tightened bound
can be saturated. We both provide a formal proof of this statement, and we also
demonstrate tightness in the specific scenario of monitoring the nonequilibrium
dynamics of a spin-1/2 probe interacting with a thermal phononic environment.
Interestingly, the enhanced sensitivity of the spin-1/2 probe is only realized when
full account is taken of non-Markovian effects in the dynamical evolution. We
model these effects using the tensor network algorithm outlined in appendix B.

6. In chapter 7 we take a slightly different approach to the question of fundamental
precision bounds. Instead of considering finite-resolution measurements, we con-
sider the fundamental limitations which arise in cases where the available mea-
surement has only a finite number of distinct observable outcomes. This scenario
is referred to as coarse-grained thermometry. In the chapter we develop a pre-
scription for how optimal coarse-grained measurement are to be designed, and we
study the performance of the optimal solutions for a number of different many-
body thermal sample systems. From an experimental point of view, perhaps the
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most relevant result of this investigation, is the construction of ultimate bounds
on the precision achievable, when employing finite-dimensional quantum probes
as thermometers.
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Chapter 2

Estimation Theory: Quantum Model
and Invariance Conditions

Parts of this chapter contains text and figures from Ref. [52]. It will be
explicitly indicated when a given section or figure has appeared in Ref. [52].

2.1 Introduction

The aim of this chapter is to formulate the problem of temperature estimation as a
problem of statistical inference — see Refs. [6, 53, 54, 55, 56] for standard treatments of
this topic. One task of statistical inference theory is to determine how best to extract
information on a quantity of interest from an experimental data set, where the data
set is generated according to a known stochastic process. In this chapter we take a
general approach, i.e. one not specific to temperature estimation, and formulate the
problem as that of identifying a quantum state which is known to belong to a known
family of states. Such a family is typically specified by a number of parameters, and
the identification task can thus be formulated as a parameter estimation problem.

The structure of the chapter is as follows: In Sec. 2.2 we describe how the preparation
and measurement of a system is described within the quantum mechanical formalism.
In Sec. 2.3 we briefly review the frequentist approach to parameter estimation. In
Sec. 2.4 we begin our treatment of the Bayesian approach to estimation, in particular
we describe how probabilities on a parameter space are updated. In Sec. 2.5 we develop
an invariant estimation theory, where invariance refers to the fact that it is typically
possible to work with multiple equivalent parameterizations of the family of quantum
states. We end the chapter in Sec. 2.6 where we outline some technical results.

2.2 Quantum statistical model and likelihood

2.2.1 Manifold of quantum states

Let us first define the quantity of interest, i.e., what we are trying to estimate. Con-
sider a physical system, referred to as the sample system. Within quantum theory, a
system is associated with a Hilbert space H, and the system state is represented by a
linear operator ρ̂ on H, which is non-negative, Hermitian and of unit trace — see for
instance Ref. [1]. We are interested in a prepare-and-measure scenario, in which the

11
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experimental background conditions, e.g. the nature of the experimental setup and the
specific preparation procedure, are such that the true quantum state of the sample being
prepared, ρ̂true, is an element of a smooth manifold of quantum states, S. A manifold is
a topological space that locally resembles a Euclidean space, and a smooth manifold is a
manifold on which the notion of differentiability exists. We will only make rudimentary
use of these concepts, and further details can be found in the mathematics literature —
see for instance Refs. [47, 57, 58]. The general question of how experimental background
conditions are mapped to a specific manifold is beyond the scope of the present discus-
sion, and here we simply take the existence of the manifold for granted. Any smooth
manifold of states can be equipped with a system of coordinates, or in other words it
can be given a continuous parameterization. If we consider a parameter space Θ ⊆ R
then

S = {ρ̂Θ(θ) for θ ∈ Θ} := SΘ, (2.1)

where ρ̂Θ(θ) denotes a Θ-parameterized quantum state-operator on the manifold. Through-
out this thesis, we focus on the case where the manifold is one-dimensional, and simply
note that a great deal of the presented formalism generalises to the multi-dimensional
case — see for instance Ref. [47].

We consider a large number of repetitions of the prepare-and-measure scenario. The
state preparation procedure is assumed perfectly reproducible, i.e. the sample state ρ̂true

is prepared with certainty in each repetition of the experiment. The true state of the
sample is thus well-defined, however, we assume that the true state is imprecisely known
to the experimenter, and our task is to provide an estimate of this state. Following the
approach of Braunstein and Caves [48], we note that since the sample state is an element
of a parameterized manifold of states, the state estimation problem can equivalently be
formulated as a parameter estimation problem. We should keep in mind, however, that
we are fundamentally interested in the state itself. This point is relevant as there might
exist a number of different ways in which to parameterize the manifold of states. E.g.,
thermal states can be parameterized by the temperature or the inverse temperature,
and a parameter estimate in one parameterization must be consistent with an estimate
in another parameterization.

2.2.2 Measurements and the likelihood function

The second question we address is how to acquire information about the true sample
state. In a single repetition of the prepare-and-measure scenario, an experimenter probes
the sample state by performing a measurement of the sample system, and thus acquires
measurement data. The basic setup is illustrated in Fig. 2.1. The acquired data is
generally represented as a specific realization of a stochastic variable X, taking values
x ∈ X where X denotes the data space of the measurement. This data space could be
a discrete set, or, in the case of continuous measurements, the data space could refer to
a set of continuous functions on a given interval of time.

Within quantum mechanics, a measurement is represented by a set of measurement
operators Ω̂(x) for x ∈ X , which are bounded operators on the system Hilbert space.
The measurement operators are generally defined with respect to a reference probability
measure P0 : X → R, which constitutes a degree of freedom in the theory [35], and
which allows us to treat discrete and continuous sample spaces in a unified way. The
probability of observing an outcome within the subset A ⊆ X , given the sample-system
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Figure 2.1: Illustration of estimation scenario. A true state of the sample
system is generated according to an unknown preparation procedure (black
box). The sample is subjected to a measurement, producing an outcome x ∈
X . The measurement is designed based on the accumulated data, denoted D.
After the measurement the sample is in a state ρtrue|x, which is conditional on
the observed outcome. Throughout this thesis, we only consider scenarios in
which the sample state is discarded after the measurement and a fresh state is
prepared.

state labelled by θ ∈ Θ, is given by Born’s rule [35]

P(x ∈ A|θ) =

∫
A
dP(x|θ),=

∫
A
dP0(x) Tr

[
Π̂(x)ρ̂Θ(θ)

]
, (2.2)

where Π̂(x) := Ω̂(x)†Ω̂(x) is called an effect operator. From here on will refer to the op-
erator Π̂(x) as an element of the positive operator-valued measure (POVM) representing
the implemented measurement. Strictly speaking this is not correct, as it is the com-
bination dP0(x)Π(x) which constitutes the POVM element. However, this slight abuse
of nomenclature will not lead to any serious confusion. Furthermore, we will drop the
hats on operators whenever it does not lead to any confusion.

The quantity Tr [Π(x)ρΘ(θ)] serves as a generalized probability density function
(PDF) on the data space X , with respect to the reference probability measure P0.
Throughout we will refer to this PDF as the likelihood function associated with the
measurement

pX (x|θ) := Tr [Π(x)ρ(θ)] =
dP(x|θ)
dP0(x)

, (2.3)

where the second equality serves to remind us that the likelihood function is formally
defined as the Radon-Nikodym derivative with respect to a reference measure [35].
Any measurement, for which the associated likelihood function can be written in the
form of Eq. (2.3), is considered a single-shot measurement. Notice that for a single-
shot measurement, the POVM element representing the measurement is required to be
independent of the sample state.

2.2.3 Likelihood for adaptive measurements

The most general estimation protocol we will consider consists of multiple single-shot
measurements performed in a time-ordered sequence. For a sequence consisting of n
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measurements, the accumulated measurement data is represented by a trajectory of
measurement outcomes

xn := {x1, ..., xn} , (2.4)

where xk ∈ Xk and Xk denotes the data space associated with the kth measurement.
For later convenience we denote the full data space by X n := X1 × ...×Xn. In general,
we do not require the implemented measurements to be identical, nor do we require
the measurements to be independent. By dependent measurements, we mean that the
POVM elements describing the jth measurement, can depend on the past measurement
trajectory xj−1. We will express the likelihood function associated with a correlated
measurement, at the jth measurement step, as

pXj(xj|θ,xj−1) = Tr (Π(xj|xj−1)ρΘ(θ)) , (2.5)

where x0 should be understood as an empty vector, i.e. no measurement data, and
Π(xj|xj−1) denotes the POVM element associated with the jth measurement conditional
on the past measurement trajectory. Notice that the quantum state of the sample
system is not conditional on the measurement trajectory. We only consider the restricted
case where a fresh sample state is prepared between single-shot measurements — this
is described in Fig. 2.1 as discarding the conditional sample-state post measurement.
Alternatively, this lack of conditioning could model a non-invasive measurement which
is effectively not disturbing the sample.

Physically, the conditioning of the present measurement on the past measurement
trajectory, could mean one of two things. The first possibility is that the state of
the measurement apparatus, e.g. a probing system which interacts with the sample,
becomes conditioned on the observed measurement outcome, and is reused for a sub-
sequent measurement. The second possibility, which we focus on exclusively, is that
the experimenter is allowed to adapt the measurement based on the accumulated data.
For instance, we might imagine that the measurement is described by a set of control
variables, e.g. interaction strength between the sample and a quantum probe, the mea-
surement time, etc., and the adaptation could consist of tuning these variables. The
ability to design the measurement based on accumulated data, makes it possible to
optimize the expected performance of the measurement protocol with respect to the
parameter estimation task.

2.3 Frequentist estimation

2.3.1 The error-propagation formula

In this section we provide a rudimentary description of the frequentist approach to para-
meter estimation [6]. We perform a measurement represented by the POVM elements
Π(x) for x ∈ X . Based on the acquired measurement data we build an observable O(x)
as measurable function of the observation. In the special case where the implemented
measurement corresponds to a projection onto the eigenstates of a quantum observable
Ô, the observable function O(x) would be the eigenvalue associated with an eigenvector
labelled by x [1]. The expectation value of the observable function is defined as

〈O〉 :=

∫
X
dP(x|θ) O(x), (2.6)
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and is a function of the parameter to be estimated. For generality, we suppose that
we want to estimate a bijective function g of the parameter, i.e. a function with a
well-defined inverse. If we assume that the observable expectation can be theoretically
computed to high precision, and that the observable expectation is a monotonically
increasing function of g, then in principle there exist a function f such that

f(〈O〉) = g(θ). (2.7)

Hence, knowing precisely the expectation of the observable function makes it possible
to infer the value of the function g and by extension the parameter value.

Naturally, the observable expectation is not a directly measurable quantity, and
it must itself be estimated based on the acquired measurement data. If we perform n
identical measurements, i.e. no adaptation, then we can compute the sample mean of the
observable function. Denoting the sample mean by Õ(xn), we can define a frequentist
estimate of the parameter

f(Õ(xn)) := g(θ̃(xn)) := g̃(xn), (2.8)

The law of large numbers states that the sample mean converge to the expectation value
as n increases [59]. Thus in the asymptotic limit, i.e. for sufficiently large n, we can
locally Taylor-expand the estimate around the expectation

f(Õ(xn)) = g(θ) + ġ(θ)

∣∣∣∣d〈O〉dθ

∣∣∣∣−1

(Õ(xn)− 〈O〉) +O(δ2
n), (2.9)

where the dot denotes derivative, and the O notation indicates that we neglect higher-
order terms in the deviation δn := Õ(xn) − 〈O〉. In writing down the above Taylor-
expansion we take the true parameter value as known, i.e. given a true parameter value,
we quantify the deviation between the true g value and the frequentist estimate.

Armed with the above Taylor-expansion, we can provide an asymptotic quantifi-
cation of the fluctuations of the g estimate around the true function value, via the
frequentist mean-squared error defined as

∆2g̃n(θ) :=

∫
Xn

dP(xn|θ) (g̃(xn)− g(θ))2

= (ġ(θ))2

∣∣∣∣d〈O〉dθ

∣∣∣∣−2

Var[Õn ] +O(〈δ3
n 〉),

(2.10)

where dP(xn|θ) =
∏n

k=1 dP(xk|θ), and the second equality follows by substituting the
Taylor-expanded estimate, and we have defined the variance of the observable function

Var[Õn ] :=

∫
Xn

dP(xn|θ) (Õ(xn)− 〈O〉)2. (2.11)

The second equality in Eq. (2.10) is called the error-propagation formula [60], and quan-
tifies the fluctuations of the computed frequentist estimate around a given true value.
These fluctuations arise due to the stochastic nature of the employed measurement.

Naturally, the dependence on a true parameter value in the error-propagation for-
mula is problematic from both a conceptual and an experimental point of view, i.e. be-
fore we can quantify the error of an obtained estimate we need to know the true value,
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which is exactly what we are attempting to estimate. In practice, this issue can typ-
ically be resolved by specifying that the frequentist approach is valid within the local
paradigm [6]. If we obtain a frequentist estimate θ̃(xn), and we consider a parameter in-
terval θ ∈ [θ̃(xn)−δθ/2, θ̃(xn)+δθ/2] around the estimate. Then if we find that ∆2g̃n(θ)
is approximately constant with respect to the parameter across this interval, it follows
that ∆2g̃n(θ) provides a meaningful notion of error once ∆2g̃n(θ) 6 δθ2. Thus, within
this local paradigm, the error-propagation formula provides us with a tool to quantify
the performance of an estimation protocol utilizing a given observable function.

2.3.2 The frequentist Cramér-Rao bound

The error-propagation formula quantifies the error of the frequentist estimate resulting
from a specific choice of observable function. We now ask whether a lower bound on
this quantity exist, which is given directly in terms of the acquired measurement data,
i.e. without any dependence on the choice of observable function. One way of deriving
such a bound is to first point out the following equality

d〈O〉
dθ

=

∫
Xn

dP(xn|θ)
(
Õ(xn)− 〈O〉

) ∂logP(xn|θ)
∂θ

, (2.12)

which can be shown straightforwardly by performing the integral on the right-hand side.
From the Cauchy-Schwarz inequality [59], we then obtain directly the lower bound∣∣∣∣d〈O〉dθ

∣∣∣∣−2

Var[Õn ] > (nFΠ(θ))−1 , (2.13)

where we have defined the Fisher information of the implemented measurement [48]

FΠ(θ) :=

∫
X
dP(x|θ)

(
∂logP(x|θ)

∂θ

)2

, (2.14)

and made use of the fact that the Fisher information of independent measurements is
additive, we will prove this in Sec. 2.6.2. The Fisher information is a central quantity
in estimation theory as it quantifies the amount of information on the parameter which
can in principle be extracted from the measurement data [6, 53, 54, 55, 56]. Taking
Eq. (2.13) and substituting into the error-propagation formula Eq. (2.10), we obtain the
frequentist Cramér-Rao bound [6]

∆2g̃n(θ) >
(ġ(θ))2

nFΠ(θ)
+O(〈δ3

n 〉). (2.15)

The frequentist Cramér-Rao bound place a lower bound on the fluctuations of our
frequentist estimate of the function g at a known true parameter value. Within the
frequentist approach the next step is to solve two problems: 1) The so-called classical
problem is to find an observable function for which the bound is tight, and 2) the so-
called quantum problem is to design the measurement itself to maximize the associated
Fisher information [48]. We will not pursue the topic further, as we will primarily
concern ourselves with the Bayesian approach to estimation.
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2.4 Bayesian inference

2.4.1 Probability measure on the manifold

At this point we have specified the quantity of interest, i.e. the sample state, and
described a method of data acquisition. We now discuss how to translate the acquired
data into information about the true sample state, by approaching the problem from
the perspective of Bayesian inference [6, 53, 54, 55, 61]. From this point of view,
the information available about a quantity in a smooth manifold S, is represented by
a probability measure PS assigning a probability to a region of the manifold. This
probability measure is conditional on the obtained measurement data, i.e. we assume
that there exist a rule for mapping available information to a probability measure. If we
consider a parameterization Θ ⊆ R of the smooth manifold, and indicate the available
data as D, then we can express the probability assigned to an infinitesimal interval
[θ, θ+ dθ] ⊂ Θ, where dθ denotes an infinitesimal increment, in terms of a PDF on Θ as

PS(θ|D) = dθ pΘ(θ|D). (2.16)

The mathematically inclined reader will notice that in decomposing the probability mea-
sure as above, we are implicitly assuming that the parameter space Θ can be equipped
with a non-negative Riemannian metric, λ̇Θ, such that given this metric we can con-
struct an integration measure on the manifold as dλΘ(θ) := dθλ̇Θ(θ), with the prime
denoting derivative [57, 58, 47]. In the above we have included the factor λ̇Θ(θ) as
part of the definition of the PDF on Θ, and in what follows we will work with this PDF
directly.

2.4.2 Bayesian updating

We have argued that the available information should be represented by a PDF condi-
tioned on the acquired data. However, we have said nothing about how to actually map
the acquired data into a PDF. The theoretical foundation of Bayesian inference theory,
is a prescription for how to update the PDF on Θ as additional measurement data is
acquired. This prescription is provided by the Bayes rule. For our purpose we express
Bayes rule as [53]

pΘ(θ|xj) =
pXj(xj|θ,xj−1)pΘ(θ|xj−1)

pXj(xj|xj−1)
, (2.17)

which is a single-shot relation between the prior PDF pΘ(θ|xj−1) and a posterior PDF
pΘ(θ|xj) reflecting the additional knowledge acquired by observing the measurement
outcome xj ∈ Xj. The posterior PDF is obtained from the prior PDF via multiplication by
the single-shot likelihood function and division by the prior-averaged likelihood function
defined by

pXj(xj|xj−1) :=

∫
Θ

dθ pXj(xj|θ,xj−1)pΘ(θ|xj−1). (2.18)

The prior-averaged likelihood function is also called the evidence function. Note that
Bayes’ rule as formulated above assumes that the evidence function is positive, or at
the very least that the ratio of the likelihood function to the evidence function is finite.
For later reference we also define the joint PDF:

pXj×Θ(xj, θ|xj−1) := pXj(xj|θ,xj−1)pΘ(θ|xj−1). (2.19)



Chapter 2. Estimation Theory 18

Before proceeding we mention two subtleties. The first is fundamental, namely, in
outlining the Bayesian updating prescription we are merely postponing the question of
how the acquired data is mapped to a posterior PDF. Eventually we must specify an
initial prior PDF pΘ(θ|I0) based solely on the available background information, denoted
I0. The background information represents knowledge of the experiment prior to the
acquisition of any measurement data. We will return to the problem of specifying an
initial prior towards the end of this chapter. The second subtlety is notational, in that
all the PDFs introduced above should be conditional on I0. To simplify the notation,
we will not indicate this dependence explicitly, except in special cases.

The single-shot Bayes rule as formulated above can be understood as an iterative
updating prescription. If we consider a sequence of n measurements, then we can apply
the Bayes rule repeatedly, and write the posterior PDF associated with the measurement
trajectory xn at measurement step n as:

pΘ(θ|xn) =

∏n
j=1 pXj(xj|θ,xj−1)∏n
j=1 pXj(xj|xj−1)

pΘ(θ). (2.20)

This provides a direct relation between the posterior PDF and the initial prior PDF. If
we recall that the full data space is denoted by Xn := X1× ...×Xn, then it is convenient
to define the sequential likelihood and the sequential evidence functions:

pXn(xn|θ) :=
n∏
j=1

pXj(xj|θ,xj−1), (2.21)

pXn(xn) :=
n∏
j=1

pXj(xj|xj−1), (2.22)

where x0 is to be understood as an empty vector, that can be omitted whenever it
appears as a conditioning in a PDF. Furthermore, we can define the full joint PDF as

pXn×Θ(xn, θ) := pXn(xn|θ)pΘ(θ). (2.23)

In working with both the joint and the sequential PDFs above, we should keep in mind
that they are generally classically correlated, and that care should be taken when ma-
nipulating these distributions according to the standard rules of probability theory [53].

2.4.3 Criteria for parameterization invariance

The text and figures of this section is taken from Ref. [52].

Having introduced the manifold of quantum states, and discussed PDFs on the parameter
space, we must pause and face the important subtlety of parameterization invariance.
In the above we work with a parameterization Θ, however the manifold of quantum
states itself is invariant with respect to the specific choice of parameterization. For
example, the manifold of thermal states is the same whether we parameterize it using
the temperature or the inverse temperature — this fact is illustrated in Fig. 2.2. In
general we can express this invariance as follows: if we consider a one-to-one mapping
φ :Θ→Φ, where Φ ⊆ R is the image of the map, then the function φ provides an equally
valid parameterization of the manifold of states, i.e. SΦ = SΘ with

SΦ := {ρΦ(φ) for φ ∈ Φ} , (2.24)
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Figure 2.2: This figure and caption is adopted from Ref. [52]. Illustration of
a parameter space Θ, or an alternative parameterization Φ, mapped into a
one-parameter curve of quantum states SΘ = SΦ. The distinguishability of pa-
rameter values is only meaningful, when expressed as a distance D between the
corresponding quantum states,i.e., the state space induces a geometry on the
parameter space. The induced geometry may be simpler for certain choices of
parameterization. In particular, there may exist a Euclidean parameterization
with a flat geometry. By considering the distance directly between quantum
states, it follows that the distance is invariant with respect to the specific choice
of parameterization of the states.

where we explicitly indicate that each state is given with respect to the parameterization
Φ, while the invariance condition reads

∀φ : φ = φ(θ), ρΘ(θ) = ρΦ(φ), (2.25)

and expresses the parameterization invariance of every equivalent quantum state. Fur-
thermore, the probability assigned to a given region of state space must be independent
of the specific parameterization employed. Thus, to be consistent, the PDF on the
parameter space must satisfy the invariance condition [47, 61]

∀φ : φ = φ(θ), dθ pΘ(θ|D) = dφ pΦ(φ|D). (2.26)

Since the likelihood function only depends on the sample state itself it is inherently pa-
rameterization invariant, and it thus follows that if the above invariance condition holds
for the initial prior PDF pΦ(φ|I0), then it will also hold for the sequence of posterior
PDFs. To simplify our notation we will in the following chapters not indicate the pa-
rameterization explicitly in all cases. The choice of parameterization is then implicitly
indicated by the parameter value itself.

2.5 Invariant estimation theory

2.5.1 Criteria for invariant point estimation

At this point we have described how, within the Bayesian approach to parameter estima-
tion, the available information is translated into a posterior PDF pΘ(θ|D) on a parameter
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space Θ. This posterior PDF represents our degree of belief in different parameter values
being the true parameter value, given the acquired measurement data. Furthermore, we
have pointed out the required parameterization-invariance of the estimation task, i.e. the
available information could equivalently be translated into a posterior PDF pΦ(φ|D) on
a parameter space Φ, with a one-to-one mapping φ : Θ → φ(θ) ∈ Φ connecting these
two parameter spaces. Given these tools, we are ready to discuss how to go about
developing a well-defined, i.e. an invariant, estimation theory.

A classical estimation theory, at least when considering point estimation, is (i) a
prescription for singling out a parameter estimate θest ∈ Θ, serving as a best guess of the
true parameter value, and (ii) aims to provide a measure of confidence in the correctness
of the identified point estimate, we will refer to this as the credibility [6, 53, 54, 55,
56]. In light of the above discussion, we must demand that a well-defined estimation
theory is parameterization invariant. In particular, we impose two requirements. First,
that the prescription for specifying an estimate should be consistent. The identified
estimates should correspond to the same quantum state irrespective of the choice of
parameterization. Mathematically, we demand that φest = φ(θest). Second, that the
credibility is a single unambiguous parameterization-invariant quantity.

2.5.2 Singling out a parameter estimate

First we consider the task of singling out a parameter estimate. As above, we consider
a general estimation protocol consisting of n single-shot measurements. The full exper-
iment generates a trajectory of n measurement outcomes, which are sampled from the
ordered sequence of likelihood functions, that is

Xk ∼ pXk(xk|θtrue,xk−1), for k = 1, .., n, (2.27)

where the notation ∼ indicates that the stochastic variable on the left is sampled ac-
cording to the distribution on the right. Here, the likelihood functions are specified
with respect to a true parameter value θtrue ∈ Θ, which is unknown to the experi-
menter. Note that since the likelihood function is inherently parameterization-invariant,
we could equivalently specify the sampling with respect to the parameterization Φ, with
the constraint that ϕtrue = ϕ(θtrue).

In general, an estimate is computed as a function of the available measurement data.
Any arbitrary estimator can be expressed as a mapping from the full data space to the
parameter space:

θest : X n → θest(xn) ∈ Θ. (2.28)

A common choice of estimator is the maximum-a-posterior (MAP) estimate [6, 47].
This is conventionally defined as the parameter value for which the posterior PDF,
resulting from updating a prior PDF based on the acquired data, takes its maximum
value. However, in adopting the MAP estimator we immediately run into conflict with
the requirement of parameterization invariance. To see this, we recall from the invariance
condition Eq. (2.26) that PDF on the parameter space transforms as

pΘ(θ|xn) = ∂θφ pΦ(φ|xn), for φ = φ(θ), (2.29)

under a change of parameterization Θ → Φ. The presence of the Jacobian factor ∂θϕ,
means that the MAP estimates computed by maximising the PDF on Θ and on Φ, might
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be different depending on the specific parameterization employed. That is, we could find
φMAP 6= φ(θMAP), which breaks the invariance condition. The implication of this is that
the MAP estimate of the true sample state depends on the choice of parameterization, or
in other words, it depends on the whims of the person making the estimate. A situation
that is untenable.

One might reasonably ask if this problem only arises because we consider the MAP
estimator, and whether alternative well-defined estimators exist. Indeed the prob-
lem can be circumvented if we instead consider a maximum-likelihood (ML) estima-
tor [6], in which we search for the parameter value that maximizes the sequential like-
lihood function pXn(xn|θ) given the observed data. The fact that the ML estimate is
parameterization-invariant follows directly from the parameterization-invariance of the
likelihood function. The ML estimator is a common choice within the frequentist ap-
proach to estimation theory [6], and it has the feature, for better or worse, that it is
independent of the choice of initial prior PDF.

2.5.3 Distance function and the mean-squared error

Although the use of the ML estimator is perfectly acceptable, we shall return to the
problem of obtaining parameterization-invariant MAP estimates. First, however, we
consider the second part of an estimation theory – the construction of a measure of
credibility. The following analysis will allow us to correct the problems with the MAP
estimator. If we consider the Θ parameterization, then a common credibility measure
is the posterior mean-squared error defined as [47]

MSE[θest](xn) :=

∫
Θ

dθ pΘ(θ|xn) DΘ(θest(xn), θ)2, (2.30)

where we have introduced a distance function DΘ(θest, θ) gauging the distance, or devi-
ation, between an adopted estimate θest ∈ Θ and a parameter value θ ∈ Θ. A suitable
distance function must be non-negative, symmetric in its arguments, it must vanish
at θest = θ, it must increase monotonically away from this point and it must satisfy
the triangle inequality [47]. Note that the MSE is defined with respect to the choice
of estimator, which we indicate using square brackets, and that it is a function of the
obtained measurement trajectory, i.e. it is a stochastic quantity.

In order for the adopted confidence measure to be well defined, and thus provide a
single unambiguous credibility measure, it must satisfy the requirement of parameteri-
zation invariance. We can state this requirement as

∀φ : φ = φ(θ), MSE[θest](xn) = MSE[φest](xn), (2.31)

where we use the convention that the choice of parameterization is indicated by the
notation used for the estimator. From Eq. (2.26) we recall the invariance condition

∀φ : φ = φ(θ), dθ pΘ(θ|xn) = dφ(θ) pΦ(φ(θ)|xn), (2.32)

ensuring that the MSE is defined with respect to a parameterization-invariant probability
measure. The invariance condition makes it possible to express the requirement for
Eq. (2.31) to hold, directly in terms of the distance function as

∀φ : φ = φ(θ), DΘ(θest, θ) = DΦ(φest, φ). (2.33)
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Hence the MSE is a parameterization-invariant confidence measure, whenever the dis-
tance function is a parameterization-invariant quantity, satisfying Eq. (2.33). Such a
distance function can be understood as a distance directly between quantum states in
the manifold. If we were to follow the conventional route to parameter estimation [6,
54, 55], we would adopt a distance function which is simply the absolute difference of
the parameter values, that is

DΘ(θest, θ) = |θest − θ|. (2.34)

This choice satisfies all the requirements placed on a well-defined distance function.
However, in general |θest − θ| 6= |φest − φ(θ)| and it is clear to see that the resulting
MSEs cannot be equivalent. The question we must address, before we can compute an
invariant credibility of a given estimate, is thus how to construct a parameterization-
invariant distance function.

2.5.4 Metric structure and the geodesic distance

This section, and its subsections, contains text and figures from Ref. [52].
Minor edits have been made to the text to conform to notation.

The essential ingredient required for the development of a parameterization-invariant
estimation theory on a smooth manifold is the introduction of a metric structure, i.e. an
infinitesimal notion of length, on the manifold of quantum states [47, 57, 58]. A metric
makes it possible to define the distance between states on the manifold, and more
fundamentally, the idea of defining a PDF on a continuous parameter space, is not well-
defined in the absence of such a metric structure [47]. Suppose for a moment that the
manifold posses a metric, denoted λ̇. Then, it is always possible to construct a well-
defined distance function, as the geodesic length – which we refer to as the metric-based
distance – defined by [47, 57, 49]

DΘ(θ0, θ1) :=

∣∣∣∣∫ θ1

θ0

dθ λ̇Θ(θ)

∣∣∣∣, (2.35)

where the integral is over the parameter domain θ ∈ [θ0, θ1] ⊆ Θ, and the quantity
dλΘ(θ) = dθλ̇Θ(θ) provides a parameterization-invariant integration measure, i.e. if
φ = φ(θ) then it follows that dλΘ(θ) = dλΦ(φ). The metric-based distance is a distance
between states, and is thus a parameterization-invariant quantity — this is depicted in
Fig. 2.2. The form of the geodesic length above is valid for one-parameter problems,
more generally, defining the geodesic length involves a minimization over paths [47].

The above way of defining a distance function on the parameter space may still seem
ambiguous unless a particular choice of metric can be justified. However, if we consider
a measurement of the sample with POVM elementsM(y) for y ∈ Y , then a key insight
of Bayesian information geometry [47, 57, 49] is that the likelihood associated with
this measurement, induces a metric of the form λ̇Θ = F1/2

M,Θ, where FM,Θ is the Fisher
information (FI) associated with theM measurement [47, 57, 62]

FM,Θ(θ) :=

∫
Y
dP0(y) pY(y|θ) (∂θ log pY(y|θ))2 . (2.36)

Throughout, we refer to theM measurement as the reference measurement. From the
point of view of Bayesian probability theory, the FI metric is the unique Riemannian



23 2.5. Invariant estimation theory

metric, up to a choice of reference measurement, which is both parameterization invari-
ant and which satisfies any other invariance property of the likelihood function [47, 63].
According to Chentsov’s theorem, any other monotonic metric on the parameter space
corresponds to a Fisher information metric up to a multiplicative constant [63, 64].

Quantum Fisher information metric

The choice of reference measurement represents a degree of freedom, i.e., we can define
the metric-based distance, and the estimation theory itself, relative to an arbitrary ref-
erence measurement of the sample. A natural choice would be to maximize the distance
DΘ(θ0, θ1) over all possible measurements, however this procedure does not generally
yield a unique reference measurement. To see this, we consider the problem of maximiz-
ing the metric at a specific parameter value. This local maximization problem can be
solved analytically, and yields a metric defined relative to a projective measurement of
the symmetric logarithmic derivative LΘ(θ) associated with the manifold of states1 [48]
The symmetric logarithmic derivative (SLD) is defined implicitly by the relation [48]

LΘ(θ)ρΘ(θ) + ρΘ(θ)LΘ(θ) = 2∂θρΘ(θ), (2.37)

and is in general a function of the parameter value. The problem alluded to above
is then that the SLD defines a natural reference measurement only if the eigenbasis of
the SLD is parameter independent, i.e., the projectors must be parameter independent.
Notice that this need not be the case for the SLD eigenvalues.

If we adopt the SLD reference measurement, then with this choice of reference we ob-
tain the quantum Fisher information (QFI) metric, which gives the maximum likelihood-
induced metric-based distance between sample states. The QFI metric is given by [48]√

FL,Θ(θ) = Tr
[
LΘ(θ)2ρΘ(θ)

]1/2
. (2.38)

The resulting metric is equal to four times the Bures metric [62], and is thus directly
related to the so-called fidelity between infinitesimally separated states in the manifold.
If the family of states considered is a thermal state ensemble, then the metric-based
distance is also called the thermodynamic length [49, 65, 66, 67].

Likelihood-induced Euclidean parameterization

Having equipped the manifold with a metric structure, and constructed a distance
function, we return to the MSD, now defined with respect to an arbitrary reference
measurementM. For later convenience we define, implicitly, the function λM(θ) as the
inverse derivative of the FI metric associated with any measurementM as

∂θλM,Θ(θ) := F1/2
M,Θ(θ). (2.39)

Since the FI is non-negative it follows that the function λM,Θ is monotonically increas-
ing. Furthermore, if we consider a change of parameterization Θ → Φ, and note that
under such a transformation the FI transforms as FM,Θ(θ) = [∂θφ]2FM,Φ(φ), then we
see that it follows directly from the definition of λM,Θ that it is a parameterization-
invariant quantity, i.e., λM,Θ(θ) = λM,Φ(φ) for φ = φ(θ). Given the λM,Θ function it is

1We will provide a proof of this in Sec. 2.6.1.
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always possible to express the distance Eq. (2.35) defined based on the FI metric in the
Euclidean form, i.e.

DM,Θ(θest, θ) = |λM,Θ(θest)− λM,Θ(θ)|, (2.40)

where we indicate that the distance is defined with respect to the reference measurement
M. The Euclidean form of the distance follows directly from an application of the
fundamental theorem of calculus for λ̇M,Θ(θ) = F1/2

M,Θ(θ).
If we constrain ourselves to reference measurements for which the FI is non-vanishing

(except perhaps at isolated points, e.g., the boundaries of the parameter domain), then
λM,Θ itself constitutes a valid parameterization of the one-parameter family within the
manifold. Referring to the associated parameter space as ΛM, it follows that when
working in this parameterization the MSE takes the simple form

MSE[λest](xn) =

∫
ΛM

dλ pΛM(λ|xn) (λest(xn)− λ)2, (2.41)

where λest = λ(θest), we have made use of Eq. (2.26), i.e., the invariance property of
the posterior PDF. In the above we do not indicate explicitly that the MSE is defined
with respect to a reference measurement. Furthermore we drop the subscriptM when
referring to the λ parameter itself. Note that the ΛM-parameterization is special in that
it is associated with a FI equal to unity, i.e. a flat metric. The form of the MSE is then
simply the conventional Euclidean error with respect to the parameterization ΛM.

2.5.5 Invariant MAP estimates

Having established a metric structure, we now return to the problem of defining MAP
estimates satisfying the requirement of parameterization invariance. The treatment
follows that of Ref. [47]. The problem with our previous attempt was that we neglected
the fact that a PDF is always defined with respect to an underlying reference measure.
We denote this by UM in anticipation of the fact that the reference measure is defined
with respect to a reference measurement. The role of the reference measure is to assign
an invariant measure of length to a given parameter interval. If we consider an arbitrary
probability measure PS on the manifold of states S, we can define the invariant PDF,
denoted p̃S,M, with respect to UM via the Radon-Nikodym derivative [47, 35]. If we
focus on the coordinate system Θ, then this takes the form

p̃S,M(θ|D) :=
dPS(θ|D)

dUM(θ)
, (2.42)

where we use D to indicate available information, e.g. D = {xn, I0}. In light of the
discussion of the previous sections, we know that a suitable reference measure can be
written in terms of the Fisher information metric:

dUM(θ) = dθ F1/2
M,Θ(θ). (2.43)

Note that, even though we express the reference measure in the Θ parameterization,
it is a parameterization-invariant quantity. As mentioned above, the reference measure
assigns an invariant measure of length to a parameter interval. If we recall that the FI
metric provides a measure of the distinguishability of infinitesimally separated states,
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Figure 2.3: Illustration of the smoothed Jeffrey’s prior (Eqs. (2.48) and (2.49))
for θ ∈ [0, 5] and α ∈ [−20, 0]. (a) Plot for FM(θ) ∝ 1, as α decreases we
approach a flat prior distribution across the parameter domain. (b) Plot for
FM(θ) ∝ 1/θ, as α decreases we approach a 1/

√
θ prior distribution across the

parameter domain. (c) Plot for FM(θ) ∝ θ, as α decreases we approach a
√
θ

prior distribution across the parameter domain. For a curved metric the prior
density does not approach a constant across the parameter domain because the
metric length is not uniform.

then we see that UM assigns length based on the ability of the reference measurement
to resolve, or distinguish, the underlying quantum states.

Now, recall that the probability measure PS itself can also be written in terms of a
PDF in the Θ parameterization, namely PS(θ|D) = dθ pΘ(θ|D). Upon substitution we
obtain an explicit form of the invariant PDF given by

p̃S,M(θ|D) =
pΘ(θ|D)

F1/2
M,Θ(θ)

. (2.44)

Armed with the invariant PDF we can straightforwardly define an invariant MAP esti-
mate. We simply have to define the invariant MAP estimate in terms of the invariant
posterior PDF [47]. This can be expressed in a simple form if we consider the change of
parameterization Θ→ ΛM. Since the FI metric equals one in the ΛM parameterization,
we find that

p̃S,M(θ|D) = pΛM(λ(θ)|D), (2.45)

and we can thus express the MAP estimate as

λMAP(D) := arg max
λ∈ΛM

pΛM(λ|D). (2.46)

If we want the MAP estimate in the Θ parameterization, we apply the inverse mapping
λ−1

Θ : ΛM → Θ, and obtain θMAP(D) = λ−1
Θ (λMAP(D)). This equivalence can also be

shown by direct computation of the MAP estimate in the Θ parameterization. The
above expression for the MAP estimator is one example of the utility of working within
the Euclidean parameterization ΛM. In the next chapter we will utilize this choice of
parameterization to develop a number of key results from Euclidean estimation theory [6,
53, 54, 55, 56].
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2.5.6 Selecting an initial prior probability

The application of the Bayesian inference framework relies on the ability to specify an
initial prior PDF on a given parameter space. As mentioned in the Sec. 2.4 on Bayesian
inference we suppose that an experimenter has certain background information, de-
noted I0. Before the Bayesian inference framework can be applied, there should be a
prescription for how background information is mapped to a prior PDF.

Following E. T. Jaynes [53], the first step is to establish the form of a distribution
reflecting complete ignorance. Intuitively, given no information to the contrary, we
should assign equal probability to equal lengths on our manifold. In our case, the
invariant measure of length is given by the measure UM. Hence, a probability measure
reflecting complete ignorance must take the form

PS(θ) ∝ UM(θ). (2.47)

This form of the prior probability is essentially equivalent to the so-called Jeffrey’s
prior [53, 68, 61]. Jeffrey’s prior does not generally hold across the entire parameter
space, and in most cases must be supplemented with an envelope function to ensure
that the resulting measure is integrable. For the majority of the simulations performed
in this thesis, we assume that sufficient background information exists to identify a
bounded parameter interval θ ∈ [θmin, θmax]. On this interval we adopt a smoothed
version of Jeffrey’s prior:

pΘ(θ) =
√
FM,Θ(θ)ξΘ(θ), (2.48)

where the function ξΘ(θ) is an invariant envelope function, satisfying the condition
ξΘ(θ) = ξΦ(φ) under a change of parameterization Θ → Φ with φ = φ(θ). Inspired by
the envelope employed by Yan et al. in Ref. [69] we adopt the envelope function:

ξΘ(θ) =
1

N

(
exp

[
α sin2

(
π
λ(θ)− λmin

λmax − λmin

)]
− 1

)
(2.49)

with a normalization factor given by

N := (λmax − λmin) [exp(α/2)J0(α/2)− 1] , (2.50)

where J0 denotes the modified Bessel function of the first kind, and λmin,max := λ(θmin,max).
The difference between the above envelope and the one employed by Yan et al. [69], is
that we specify the function with respect to the Euclidean parameterization of the man-
ifold of states. In Fig. 2.3 we illustrate the smoothed Jeffrey’s prior for three different
FI metrics. We observe that in the limit of of α→ −∞, we approximate Jeffrey’s prior
across the full parameter domain. Finally, we note that the topic of finding suitable
prior distributions based on available background information extends far beyond the
rudimentary results discussed here. For an in-depth treatment see Ref. [53].

2.6 Properties of the Fisher information
The Fisher information associated with a given measurement is a key quantity in the
theory of estimation. It serves to equip a manifold with a local notion of distance based
on how well states on the manifold can be distinguished from the observed measure-
ment statistics [62]. In this section, we outline some technical properties of the Fisher
information.
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2.6.1 Derivation of the quantum Fisher information

We first derive the form of the quantum Fisher information (QFI) following the deriva-
tion of Ref. [48]. Starting out from the definition of the Fisher information (Eq. (2.36)):

FM(θ) =

∫
dP0(y)

(∂θ Tr (ρ(θ)M(y)))2

Tr (ρ(θ)M(y))

=

∫
dP0(y)

(Re [Tr (L(θ)ρ(θ)M(y))])2

Tr (ρ(θ)M(y))

6
∫
dP0(y)

|Tr (L(θ)ρ(θ)M(y)) |2

Tr (ρ(θ)M(y))
,

(2.51)

where the second equality follows from the definition of the SLD, and the third inequality
express the fact that the absolute value of a complex number is greater than the real
part of the number. If we now use the fact that quantum states and POVMs are positive
semi-definite operators, we can write

ρ(θ)M(y) =
√
ρ(θ)

√
ρ(θ)

√
M(y)

√
M(y). (2.52)

Substituting this above, making use of the cyclic property of the trace, and applying
the Cauchy-Schwarz inequality [1], we obtain the inequality:

FM(θ) 6
∫
dP0(y)

Tr (ρ(θ)M(y)) Tr (L(θ)ρ(θ)L(θ)M(y))

Tr (ρ(θ)M(y))

= Tr

(
L(θ)ρ(θ)L(θ)

∫
dP0(y)M(y)

)
= Tr (L(θ)ρ(θ)L(θ))

:= FL(θ),

(2.53)

where we employed the normalization requirement on the POVM, and the last equality
defined the quantum Fisher information. As shown by Braunstein and Caves [48] the
condition for saturating the bound in Eq. (2.53), comes down to choosing the POVM
elementsM(y) to be projectors onto the eigenstates of the SLD.

2.6.2 Additivity of independent measurements

An important property of the Fisher information is additivity. Given ν independent
measurements, denoted Mν := {M1, ...,Mν} with

Mk := {Mk(y) for yk ∈ Yk} , (2.54)
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the associated total Fisher information is given by the sum of the individual Fisher
informations. Defining dP0(yν) =

∏ν
k=1 dP0(yk), this can be shown as follows:

FMν ,Θ(θ) =

∫
Yν

dP0(yν) pYν (yν |θ) [∂θ log pYν (yν |θ)]
2

=

∫
Yν

dP0(yν) pYν (yν |θ)

[
∂θ

ν∑
k=1

log pYk(yk|θ)

]2

=
ν∑
k=1

FMk,Θ(θ) +
ν∑

k,l=1

∫
Yk×Yl

dP0(yk)dP0(yl) ∂θpYk(yk|θ)∂θpYl(yk|θ)

=
ν∑
k=1

FMk,Θ(θ),

(2.55)

where we have used that the total likelihood function is a product of the individual
likelihood functions, and the final equality follows due to vanishing cross terms under
the integral. Note that this property holds when the measurements are independent. In
the next chapter we will discuss a generalization of the additivity property that holds
for correlated measurements. Another important property of the Fisher information
is convexity. However, we will not introduce this notion until it is needed in a later
chapter.

2.7 Concluding remarks
In this chapter we have formulated the problem of identifying the true quantum state
of a physical system, in the case that the state belongs to a smooth manifold of states,
as a problem of statistical inference. We argued that in order for it to be possible
to meaningfully talk about the credibility of a given estimate, the manifold must be
equipped with a metric structure. Such a metric structure is in general defined relative
to a reference measurement of the system, and it induce a distance measure between
states in the manifold, based on how well the reference measurement can distinguish
the system states.

For each reference measurement, it is possible to associate a Euclidean parameteriza-
tion of the manifold. In the next chapter we will focus on this Euclidean parameteriza-
tion. In particular, we will be able to apply standard results on the fundamental limits
to estimation precision, which have been developed in the case of Euclidean parameter
spaces.



Chapter 3

Estimation Theory: Precision Bounds
and Adaptive Strategies

3.1 Introduction

In this chapter we consider a Euclidean parameter space Λ ⊆ R, in which the parameter
space is equipped with a flat metric structure. Given the Euclidean parameterization
we can develop some key results of standard estimation theory [6, 53, 54, 55, 56]. In
particular we can investigate lower bounds on the attainable credibility of an estimate,
and construct a methodology for adaptive measurement design. In light of the discussion
of the preceding section, we know that such a Euclidean theory is always defined relative
to a reference measurement, e.g. a projective measurement of the symmetric logarithmic
derivative. However, this fact will not be indicated explicitly in this chapter.

The structure of the chapter is as follows: In Sec. 3.2 we recap the introduction
a posterior mean-squared error in the previous chapter. In Sec. 3.3 we discuss lower
bounds, in particular we focus on the posterior Cramér-Rao bound and the conditions
under which it is tight. In Sec. 3.4 we describe the averaged error and averaged bounds.
In Sec. 3.5 we make use of the averaged quantities to build strategies for adaptive
measurement design. The majority of the material presented here is well-known [6,
53, 54, 55, 56, 69, 70]. The one minor exception is Sec. 3.5 on adaptive measurement
design. Although similar results have been reported in the literature [71, 72], the specific
analysis presented here, and the idea of measurement design based on the van Trees
bound, seems novel.

3.2 Posterior mean-squared error

We first recap the basic idea of classical parameter estimation theory, and consider
a general estimation protocol consisting of n single-shot measurements. The full ex-
periment gives a trajectory xn of n measurement outcomes, which are generated via
stochastic sampling from the ordered sequence of likelihood functions

Xk ∼ pXk(xk|λtrue,xk−1), for k = 1, .., n, (3.1)

with respect to a true parameter value λtrue ∈ Λ. The true parameter value is unknown
to the experimenter, and is only accessible via the observed measurement record. A

29
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classical estimation theory, at least when considering point estimation, is (i) a prescrip-
tion for singling out a parameter estimate λest ∈ Λ, serving as a best guess of the true
parameter value, and (ii) aims to provide a measure of the credibility of the identified
point estimate. An estimate is computed as a function of the available measurement
data Any arbitrary estimator can be expressed as a mapping from the full data space
to the parameter space

λest : X n → λest(xn) ∈ Λ, (3.2)

where we recall that the full data space is denoted by X n := X1× ...×Xn. An estimator
can in principle be any arbitrary prescription preferred by the experimenter. However, a
minimal requirement of asymptotic consistency is typically adopted, demanding that in
the limit of infinite measurement data the estimator must converge to the true parameter
value [73, 74]. A common choice of asymptotically consistent estimator, which is suitable
given that Λ is a Euclidean space, is the MAP estimate, defined as the parameter value
for which the posterior PDF, resulting from updating a prior PDF based on the acquired
data, takes its maximum value.

Given an estimator, the next problem is to introduce a measure of confidence in the
correctness of the identified point estimate. When the parameter space Λ is a Euclidean
space, it is common to quantify the credibility of an estimate by the posterior mean-
squared error (MSE) defined as [6]:

MSE[λest](xn) :=

∫
Λ

dλ pΛ(λ|xn) (λest(xn)− λ)2, (3.3)

where we recall that pΛ(λ|xn) denotes the posterior PDF on the parameter space Λ.
Note that the MSE is a function of the acquired measurement data, i.e. it is a stochastic
quantity. Furthermore, it is defined with respect to a specific choice of estimation
function. We indicate this using square brackets. Lastly, the MSE depends on the choice
of the initial prior PDF pΛ(λ). We will never indicate this dependence explicitly.

3.2.1 Minimal mean-squared error estimator

Although alternatives exist, the MSE is a typical choice of credibility measure, in large
part due to its convenient mathematical properties. Given the MSE measure of confi-
dence, it is a natural question to find the specific estimator for which the MSE takes
its minimal value. It is a well-established fact that the minimal mean-squared error
(MMSE) estimator, denoted λ̄, is given by the average parameter value with respect to
the posterior PDF [6]

λ̄(xn) :=

∫
Λ

dλ pΛ(λ|xn)λ. (3.4)

This result can be derived by considering the first and second variational derivatives of
the MSE with respect to the estimator. Requiring that the first variation vanish gives
the posterior mean, and showing that the second variation is positive establishes the
posterior mean as a minimum. Evaluating the MSE using the MMSE estimator as the
estimator of choice, gives a lower bound on the MSE for an arbitrary choice of estimator

MSE[λest](xn) > MSE[λ̄](xn) := MMSE(xn). (3.5)

Here the posterior MMSE on the right-hand side, is simply the posterior variance of the
variable λ ∈ Λ over the posterior distribution pΛ(λ|xn). When working with the MMSE
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estimator, it follows directly from Eq. (3.5) that the MSE equals the MMSE. Thus, the
bound in Eq. (3.5) is tight.

In this thesis, we shall primarily consider the MAP estimator and the MMSE esti-
mator as our estimators of choice. One might reasonably ask if there is any reason
for considering the MAP estimator, given that the MMSE estimator is always attributed
maximum credibility. Essentially this comes down to the fact that in adopting the MSE
we are implicitly assuming that the posterior PDF can be well-captured by its mean
and variance. If the MAP and MMSE estimators are radically different, then this can be
taken as an indication that adopting the MSE as a measure of confidence is not suitable.

3.3 Posterior Cramér-Rao bound
Basic computational convenience, or potential insight into fundamental limitations on
estimation precision, motivates the study of lower bounds on the MMSE. Ideally, for
a lower bound to be informative it must be computationally tractable and it should
be tight, i.e. the MMSE should saturate the bound. An important family of lower
bounds, known as the Weiss-Weinstein family [70], follow from various applications of
the Cauchy-Schwarz inequality. Given two functions f, g : Λ→ R the Cauchy-Schwarz
inequality states that

〈f(λ)g(λ)〉2 6
〈
f(λ)2

〉 〈
g(λ)2

〉
, (3.6)

where 〈•〉 denotes an average over a PDF on the parameter space Λ [59]. In particular,
the MMSE satisfies the posterior Cramér-Rao bound (CRB) [69, 70]. To derive this bound
we first define the quantity

B(xn) :=

∫
Λ

dλ
√
pΛ(λ|xn) (λ̄(xn)− λ)

×
√
pΛ(λ|xn) ∂λ log pΛ(λ|xn)

(3.7)

where we implicitly assume differentiability of the posterior PDF. The quantity B(xn)
is intentionally defined to motivate an application of the Cauchy-Schwarz inequality.
Before getting to that, we first integrate B(xn) by parts yielding

B(xn) = 1 +
{

(λ̄(xn)− λ)pΛ(λ|xn)
}
λ∈B(Λ)

, (3.8)

where B(Λ) denotes the boundaries of the parameter space, and the brace notation
denotes a boundary term, i.e. the difference between the expression evaluated at the
upper and lower boundaries. The boundary term above vanishes if the posterior PDF
satisfies two conditions:

pΛ(λ|xn) = 0, for λ ∈ B(Λ), (3.9)
λpΛ(λ|xn) = 0, for λ ∈ B(Λ). (3.10)

When these two conditions are satisfied it follows that B(xn) = 1. Notice that if these
two conditions are true for the initial prior PDF pΛ(λ), then they will also hold for the
full sequence of posterior PDFs.

Throughout this thesis we adopt Eq. (3.9) and Eq. (3.10) as constraints on the class
of initial prior PDFs considered. If we return to the definition of B(xn), Eq. (3.7), and
apply the Cauchy-Schwarz inequality, we obtain the CRB:

MMSE(xn) > Q(xn)−1 := CRB(xn), (3.11)
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where we have defined the posterior information [47]

Q(xn) :=

∫
Λ

dλ pΛ(λ|xn)(∂λ log pΛ(λ|xn))2. (3.12)

Notice that the CRB is only well-defined for a given measurement trajectory if the
associated posterior information is non-zero. From a computational point of view it is
by no means obvious that the CRB should be any less demanding to compute than the
MMSE itself, and indeed this is not the case in general. Nonetheless, the CRB serves as a
starting point from which we can derive computationally more tractable lower-bounds,
and as we will argue below, it is in principle tight for a wide class of likelihood functions.

3.3.1 Saturability of the CRB

One of the advantages of starting with the CRB is that we can write down a condition
for when it is a tight bound. The condition for saturating the CRB is the same as the
condition under which the Cauchy-Schwarz inequality becomes an equality. For our
purposes, this condition can be written as [69, 70]

Q(xn)(λ̄(xn)− λ) = ∂λ log pΛ(λ|xn). (3.13)

If we substitute this condition into Eq. (3.7), we immediately see that the CRB becomes
an equality. Integrating the above condition, and performing a few straightforward
manipulations, allows us to conclude that a posterior PDF saturating the CRB has the
form

pΛ(λ|xn) = b(xn) exp

[
−Q(xn)

2
(λ− λ̄(xn))2

]
, (3.14)

where we have the normalization factor

b(xn)−1 :=

∫
Λ

dλ exp

[
−Q(xn)

2
(λ− λ̄(xn))2

]
. (3.15)

If the posterior informationQ(xn) is sufficiently large, and the estimate λ̄(xn) is not close
to the boundary of the parameter space Λ, then the above posterior PDF approximately
takes the form of a normal distribution. Alternatively, this normal form is obtained
exactly if the parameter space is the entire real line.

Attaining a posterior PDF of the form of Eq. (3.14) requires two things: (i) a like-
lihood function belonging to the so-called exponential model family, and (ii) a prior
PDF which is conjugate to the likelihood function [6, 70]. The exponential model family
includes most of the common distributions e.g. the Poisson, Bernoulli, Gamma, Gaus-
sian, χ-squared and binomial distributions [6], and a conjugate prior refers to a prior
such that the posterior belongs to the same family of PDFs. If we consider a single-shot
measurement giving an outcome x ∈ X , an exponential family model is characterized
by three functions: h(x) > 0 and η(λ), t(x) ∈ R2, such that

pexp
X (x|λ) := h(x) exp

[
η(λ)T t(x)− A(λ)

]
, (3.16)

A(λ) :=

∫
X
dx h(x) exp [η(λ)t(x)] . (3.17)
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Different choices of the three functions gives rise to different distributions within the
exponential family. The prior PDF that is conjugate to the exponential-model likelihood
function, can be expressed, given a constant γ ∈ R and µ ∈ R2, as follows

pΛ(λ; γ,µ) := κ(γ,µ) exp
[
η(λ)Tµ− γA(λ)

]
, (3.18)

κ(γ,µ)−1 :=

∫
Λ

dλ exp
[
η(λ)Tµ− γA(λ)

]
. (3.19)

Computing the posterior PDF resulting from this prior and the exponential-family likeli-
hood function, gives a distribution of the form pΛ(λ; γ+1,µ+t(x)), which, as expected,
belongs to the same family of PDFs as the conjugate prior. The requirement for satu-
rating the CRB is then that the PDF pΛ(λ; γ + 1,µ + t(x)) takes the form of Eq. (3.14).
This condition can be written as

η(λ)T (µ + t(x))− (γ + 1)A(λ) = −Q(x)

2
(λ− λ̄(x))2, (3.20)

which automatically implies b(x) = κ(γ+ 1,µ+ t(x)). This condition would have to be
checked in specific cases, but serves to show that there exist a very wide class of models
belonging to the exponential family, for which the CRB is a tight bound.

3.3.2 Asymptotic statistics

Neither the MSE itself, nor the CRB, can be computed without an explicit expression for
the posterior PDF. In general, it is not feasible to work with an analytic description of the
posterior PDF, and one must resort to numerical investigations. Remarkably, however,
it is often possible to provide good asymptotic approximations to the posterior PDF, and
the accuracy of such approximations increases as the size n of the data-sample increases.
The study of these approximations is called asymptotic statistics. The key result of this
theory, which will be of relevance here, is that of local asymptotic normality [73, 74].

Before we can present the explicit approximation scheme, we must discuss the na-
ture of the parametric model under study. Recall that we generally consider a stochastic
variable Xj at the jth measurement step, and that a specific realization xj ∈ Xj of the
stochastic variable is sampled from the likelihood function pXj(xj|λ0,xj−1), with respect
to a true parameter value λ0 ∈ Λ. In our context, the conditioning on the past measure-
ment trajectory is to be understood as the ability to adapt the measurement based on
the data accumulated in the past. More specifically, we assume that the experimenter
has available the posterior PDF resulting from the measurement data xj−1, and that
an adaptive strategy exists to optimize the expected performance of the measurement
with respect to the parameter estimation task, based on the information represented by
pΛ(λ|xj−1).

The results of asymptotic statistics do not apply directly to adaptive strategies.
However, progress can be made if we formally partition our estimation protocol into
an adaptive and a non-adaptive phase, i.e. we assume that there is a measurement
step, denoted kc, after which no adaptation takes place. The measurements associated
with steps j > kc are then independent and identical. Within this context, the key
corollary of local asymptotic normality that we will apply here, is the Bernstein-von
Mises theorem [73, 74].
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Bernstein-von Mises theorem:
Consider the likelihood pΛ(x|λ,xkc) for λ ∈ Λ and x ∈ X . Let Xkc+1, ..., Xn be
independently sampled from pΛ(x|λ0,xkc) for some λ0 ∈ Λ. We assume that (i)
λ0 is an interior point of Λ, (ii) the likelihood function is twice differentiable
around λ0, and (iii) the Fisher information associated with the likelihood
function is non-zero and finite around λ0. Then given that the initial prior
PDF assigns non-zero probability to the region around λ0, it follows that

pΛ(λ|xn)→ N
(
λ; λ̄(xn),F−1

Πn
(λ̄(xn))

)
, as n→∞, (3.21)

where N denotes a normal PDF, with a mean given by the MMSE estimator
and a variance given by the inverse Fisher information associated with the
measurement protocol Πn := {Π1, ...,Πn} where Πk := {Πk(x) for x ∈ Xk}.
Furthermore, the MMSE estimator is asymptotically consistent and tends to
the parameter value λ0. For completeness we recall the definition of the Fisher
information:

FΠn(λ) =

∫
Xn

dP0(xn) pXn(xn|λ)(∂λ log pXn(xn|λ))2, (3.22)

associated with the sequential likelihood function of the full estimation pro-
tocol. Note that we are essentially assuming that any adaptation of the mea-
surement can be restricted to an initial non-asymptotic regime, and that this
adaptation becomes irrelevant in the asymptotic regime.

Hence, the posterior PDF is asymptotically normal. We mention that if condition (i) in
the above theorem is not valid, one can still derive an asymptotic approximation. In this
case it takes the form of a normal PDF with possible gamma function corrections [75].
Given that we assume a prior PDF satisfying the constraints of Eq. (3.9) and Eq. (3.10),
we are in effect assuming that condition (i) is always satisfied. Lastly, we note that
although we formally partitioned the estimation protocol into an adaptive and a non-
adaptive phase, it is often the case that the adaptive strategy employed converges on a
specific measurement design. In this case, the non-adaptive phase is effectively reached
without the need for imposing a cutoff.

If we substitute the normal form of the posterior PDF into the posterior information
Eq. (3.12), we find that the posterior information tends asymptotically to the Fisher
information with respect to the MMSE estimate, that is

Q(xn)→ FΠn(λ̄(xn)), as n→∞. (3.23)

Note that although we assumed an initial prior PDF satisfying the two constraints
Eq. (3.9) and Eq. (3.10), such that the boundary term B(xn) equals unity, this prop-
erty of the boundary term is true asymptotically provided that the Bernstein-von Mises
theorem holds, regardless of the initial prior PDF. An important implication of the
Bernstein-von Mises theorem is that in the asymptotic limit the MMSE saturates the
CRB

MMSE(xn)→ FΠn(λ̄(xn))−1, as n→ 0. (3.24)

Note that we cannot say anything about the rate of convergence to the CRB, and it
might well be the case that all results based on the asymptotic behaviour are irrelevant
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for all practical purposes. Lastly, we note that Eq. (3.24) coincides with the form of
the Cramér-Rao bound studied within the frequentist approach to estimation theory [6,
76]. Here we have seen how this form emerges as an asymptotic approximation within
the Bayesian framework. This insight is of course not novel [70].

3.4 Bayesian mean-squared error
The various estimators described above allows one to analyse a specific experimental
data set. In themselves, however, these tools do not provide a direct guide on how to
enhance the design of the measurement protocol to improve the expected performance
with respect to the parameter estimation task. In other words, the tools developed
so far allows us to extract an estimate and assign a credibility, but there is no direct
guide on how to design the measurement to optimize the credibility we expect to assign.
Thus, before we can discuss measurement design, we must construct a measure of the
expected credibility resulting from a given measurement protocol. Throughout, the
approach taken to evaluate the expected performance of an estimation protocol is the
following stochastic simulation algorithm:

Stochastic simulation algorithm:

1. A parameter value λ0 is sampled from the initial prior PDF pΛ(λ0).
2. n measurement outcomes are generated sequentially via stochastic sam-

pling from the sequence of correlated likelihood functions:

Xk ∼ pXk(xk|λ0,xk−1) for k = 1, ..., n. (3.25)

3. The set of posterior PDFs, and the associated trajectory of posterior
MSEs, are computed from the data using Bayes theorem.

4. The first three steps of the algorithm are repeated a large number of
times (ν), and the generated data is stored at each iteration.

The outcome of the above stochastic simulation is a set of ν posterior MSE trajectories.
By the law of large numbers the average computed over measurement trajectories con-
verges to the likelihood-averaged posterior MSE averaged over the initial prior PDF [59].
This averaged quantity is typically referred to as the Bayesian mean-squared error [6,
55, 56]. We will denote it as MSE. It is defined as

MSE[λest](n) :=

∫
Λ

dλ0 pΛ(λ0)

∫
Xn

dP0(xn) pXn(xn|λ0) MSE[λest](xn)

=

∫
Xn

dP0(xn) pXn(xn) MSE[λest](xn),

(3.26)

where the second equality follows from Eq. (2.22) defining the evidence function pXn(xn).
We will use the bar to distinguish between posterior quantities, such as the MSE, from
Bayesian quantities, such as the MSE. Note that the computed MSE trajectories provide
information beyond the MSE. In particular, the set of trajectories also provide insight
into stochastic fluctuations around the MSE, and in principle we could consider statistics
beyond the average value.
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In adopting the MSE as a quantifier of the expected performance, we are in effect
modelling the true parameter value as a stochastic variable, which is sampled from the
initial prior PDF. This is the reason that the resulting error is typically referred to as
the Bayesian mean-squared error. Historically, the paradigm of Bayesian parameter
estimation [55, 56] referred to the scenario in which both the data and the parameter to
be estimated are considered to be stochastic variables. The initial prior then represents
a true distribution according to which a value of the parameter is sampled in each real-
ization of the experiment. Here, we take the initial prior to reflect our initial ignorance
of the deterministic parameter. The MSE then gives the MSE that we expect to obtain
on average, given our ignorance, if we assume that the true parameter value is sampled
from the initial prior PDF.

Lastly we note that although the MSE is a deterministic quantity, it is still defined
with respect to a specific choice of estimator. From the definition of the MSE, namely
that it can be written as an average of the MSE, it follows directly that we have the
lower bound

MSE[λest](n) > MSE[λ̄](n) := MMSE(n), (3.27)

where λ̄ denotes the MMSE estimator, and we have defined the Bayesian minimal mean-
squared error (MMSE). The above lower-bound is trivially tight if the MMSE estimator
is employed. In the following we study the MMSE exclusively.

3.4.1 Total variance decomposition

Conceptually, and for practical reasons when considering adaptive estimation protocols,
it is desirable to provide a sequential decomposition of the MMSE. This can indeed be
done if we utilize the law of total variance. For a detailed discussion of this law see
Ref. [36] or the brief discussion in Appendix. A. To achieve the aim of a sequential de-
composition, we first note that from Eq. (2.22) defining the sequential evidence function,
it follows that∫

Xn

dP0(xn)pXn(xn)(•) =

∫
X1

dP0(x1)pX1(x1)

∫
X2

dP0(x2)pX2(x2|x1)

...

∫
Xn

dP0(xn)pXn(xn|xn−1)(•),

(3.28)

where the fat dot denotes the function to be averaged. More generally this statement
is known as the law of total expectation, or the tower property [35, 36]. The tower
property allows us to decompose the MMSE by iteratively applying the law of total
variance. In general, this law states that the expectation of a conditional variance can
be decomposed into the difference of the unconditional variance and the variance of the
conditional expectation [36]. For our purposes, the law of total variance can be stated
as ∫

Xn
dP0(xn) pXn(xn|xn−1) MMSE(xn) = MMSE(xn−1)−KΠn(xn−1) (3.29)

where we have defined the added information:

KΠn(xn−1) :=

∫
Xn

dP0(xn) pXn(xn|xn−1)
(
λ̄(xn)− λ̄(xn−1)

)2
. (3.30)

The added information gives the average reduction in the MMSE resulting from perform-
ing a measurement. Intuitively, we see that the added information is large if the set of
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possible posterior MMSE estimates have a large spread around the prior MMSE estimate.
The more we are likely to change the estimate based on the acquired data, the more
information must have been added. By iteratively applying the tower property and the
law of total variance, it follows straightforwardly that the MMSE can be written as:

MMSE(n) = MMSE(0)−
n∑
k=1

∫
Xk−1

dP0(xk−1) pXk−1
(xk−1) KΠk(xk−1), (3.31)

where MMSE(0) is simply the variance of the initial prior PDF, and we recall that x0 is
an empty vector such that

∫
dµ0(x0)pX 0(x0) = 1. The above expression shows that the

MMSE can be written as the difference between the initial prior variance and a sum of
evidence-averaged added information terms. It provides a sequential decomposition of
the MMSE in the sense that each additional measurement adds an added information
term. A decomposition of the MMSE similar to the one above was also considered in
Ref. [72], where it was used to define a Bayesian analogue of the SLD.

3.4.2 Bayesian Cramér-Rao bound

We now demonstrate that the MMSE satisfies a number of Bayesian lower bounds. First,
recall Eq. (3.11) stating the CRB is satisfied by the MMSE. It then follows directly that
the MMSE satisfies the analogous Bayesian Cramér-Rao bound [69, 70]. We denote this
by CRB. It is defined as

MMSE(n) >
∫

Λ

dλ pΛ(λ)

∫
Xn

dP0(xn) pXn(xn|λ) Q(xn)−1 := CRB(n). (3.32)

Note that the CRB is a tight inequality if the CRB itself is tight, i.e. if the posterior
distribution is given by Eq. (3.14). As was also pointed out in the case of the CRB, it
is not obvious that it is any less demanding to compute the CRB, than it is to compute
the MMSE itself. Indeed this is not the case in general. Note, however, that it is possible
to compute the CRB using the same stochastic simulation algorithm that is used to
compute the MMSE. Our main reason for considering the CRB is that we can obtain
an asymptotic approximation of the MMSE via the Bernstein-von Mises theorem. In
particular, from Eq. (3.24) we have

MMSE(n)→
∫

Λ

dλ pΛ(λ)

∫
Xn

dP0(xn) pXn(xn|λ) FΠn(λ̄(xn))−1, as n→∞,

=

∫
Λ

dλ) pΛ(λ) FΠn(λ)−1, as n→∞,
(3.33)

where the second equality should be understood as an asymptotic convergence and fol-
lows from the fact that the MMSE estimator converges to the true parameter value. The
MMSE thus tends asymptotically to the prior average of the inverse Fisher information
associated with the measurement protocol. This result is intuitive. Consider a Bayesian
scenario in which the true parameter value is sampled according to the prior PDF. At
the trajectory level the MMSE converges to the inverse Fisher information at the sam-
pled parameter value. Averaging over trajectories is then equivalent to averaging over
the prior PDF.



Chapter 3. Euclidean Estimation 38

3.4.3 Van Trees bound

Assuming that the Fisher information is efficiently computable, we have at this point
derived efficient asymptotic bounds, Eq. (3.24) and Eq. (3.33), on the MMSE and the
MMSE respectively. Crucially, these bound are asymptotically tight, i.e. tight for suffi-
ciently large n. However, with the exception of direct simulation, we have at this point
no way of determining what constitutes sufficiently large n.

Partial progress on this problem can be made if we consider the so-called van Trees
bound [54, 55] on the MMSE. We denote this bound by VTB. The VTB follows directly
from the CRB via an application of Jensen’s inequality. If Y is a stochastic variable drawn
from a probability measure and f is a convex function, then Jensen’s inequality states
that 〈f(Y )〉 > f(〈Y 〉), where 〈•〉 denotes an averaging over the probability measure [59].
Based on Jensen’s inequality, and since f(Y ) = Y −1 is a convex function, we can derive
the VTB

CRB(n) =

∫
Xn

dP0(xn) pXn(xn)Q(xn)−1

>

[∫
Xn

dP0(xn) pXn(xn)Q(xn)

]−1

:= VTB(n).

(3.34)

The CRB saturates the VTB if and only if the posterior information is a linear function.
For example, if the posterior information becomes a constant independent of the mea-
surement trajectory [59]. Straightforward manipulations allow us to rewrite the VTB as
follows

VTB(n)−1 =

∫
Xn

dP0(xn) pXn(xn)Q(xn)

=

∫
Xn×Λ

dP0(xn)dλ pΛ(λ)pXn(xn|λ)

× (∂λ log pΛ(λ) + ∂λ log pXn(xn|λ))2

=

∫
Xn×Λ

dP0(xn)dλ pΛ(λ)pXn(xn|λ)

×
(
(∂λ log pΛ(λ))2 + (∂λ log pXn(xn|λ))2

)
,

(3.35)

where the first equality is the definition, the second equality follows from substituting
the definition of the posterior information (Eq. (3.12)) and applying Bayes’ theorem,
and the third equality follows from cross-terms vanishing under the integral. If we
separate the last expression into two terms and perform the integrals, we arrive at the
final form of the VTB

VTB(n)−1 = Qprior +

∫
Λ

dλ pΛ(λ)FΠn(λ), (3.36)

where the initial posterior, or prior, information Qprior := Q(x0) quantifies the informa-
tion encoded in the prior PDF, and the second term is the Fisher information averaged
over the prior PDF. The partial progress alluded to at the beginning of this paragraph is
then as follows: The number of measurements, n, must be large enough that the infor-
mation acquired via the measurement, represented by the averaged Fisher information
term, is greater than the initial posterior information Qprior.

Working with the VTB is often computationally advantageous over working with the
CRB. This is due to the fact that the VTB is expressed directly in terms of the Fisher
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information, which is computationally less demanding than the posterior information.
However, this comes at the price that the VTB is not in general a tight inequality. If we
take Eq. (3.33), and recall Jensen’s inequality, we see that the VTB is asymptotically
tight if the Fisher information tends to a constant across the width of the prior PDF.
Note, however, that the VTB is not tight in general, not even asymptotically.

Additivity of the adaptive Fisher information

The last result we need, before we can turn to the question of designing optimal mea-
surements, is a generalized version of the additivity property of the Fisher information.
In particular, we need the fact that the full Fisher information can be re-written as

FΠn(λ) =

∫
Xn

dP0(xn) pXn(xn|λ)

(
∂ log pXn(xn|λ)

∂λ

)2

=

∫
Xn

dP0(xn) pXn(xn|λ)
n∑
k=1

(
∂ log pXk(xk|λ,xk−1)

∂λ

)2

=
n∑
k=1

∫
Xk

dP0(xk) pXk
(xk|λ)

(
∂ log pXk(xk|λ,xk−1)

∂λ

)2

=
n∑
k=1

∫
Xk−1

dP0(xk−1) pXk−1
(xk−1|λ) FΠk(λ,xk−1),

(3.37)

where the second equality follows from writing the sequential likelihood function as a
product and noticing that cross-terms vanish, the third equality follows from moving
the averaging within the sum, and the fourth equality follows from the decomposition
pXn(xn|λ) = pXk−1

(xk−1|λ)pXk(xk|λ,xk−1). Furthermore, we again note that x0 denotes
an empty vector such that

∫
X 0

dP0(x0) pX 0(x0|λ) = 1, and FΠk(λ,xk−1) is the Fisher
information associated with the likelihood function pXk(xk|λ,xk−1). Notice that if we are
considering a non-adaptive scenario, then the above expression becomes the standard
additivity property of the Fisher information.

Similarly to be MMSE we can obtain a sequential decomposition of the VTB. If
we take the above generalized additivity property of the full Fisher information, and
substitute it into the VTB, we obtain the following expression

VTB(n)−1 = Qprior +
n∑
k=1

∫
Xk−1

dP0(xk−1) pXk−1
(xk−1)

×
∫

Λ

dλ pΛ(λ|xk−1) FΠk(λ,xk−1)

= Qprior +
n∑
k=1

∫
Xk−1

dP0(xk−1) pXk−1
(xk−1) F̄Πk(xk−1),

(3.38)

where we have defined a prior-averaged Fisher information

F̄Πk(xk−1) :=

∫
Λ

dλ pΛ(λ|xk−1) FΠk(λ,xk−1). (3.39)

Similarly to the total variance decomposition of the MMSE given in Eq. (3.31), the
above expression for the VTB provides us with a sequential decomposition, in which
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each measurement performed adds a prior averaged Fisher information term. Lastly, we
note that in the special case of a non-adaptive estimation protocol in which the same
measurement Π is repeated n times, the VTB takes the form

VTB(n)−1 = Qprior + n

∫
Λ

dλ pΛ(λ)FΠ(λ), (3.40)

and thus reduce to evaluating the prior average of the Fisher information associated with
the implemented measurement. We will discuss the restriction imposed by considering
only non-adaptive estimation protocols further in chapter 5.

3.5 Adaptive measurement design

For adaptive estimation protocols, the measure of confidence in an estimate must be
supplemented by a criterion for optimal measurement design. If we focus on the kth mea-
surement step of the protocol, then a natural design criterion consists of identifying the
measurement, represented by a POVM with elements Πk = {Π(x) for x ∈ Xk}, for which
the associated added information is as large as possible. Typically the optimization
over measurements will be restricted to a constrained space of allowed measurements,
C. An example of such a constrained optimization space could be that the sample is
probed using a quantum probe, and the measurement can be optimized with respect to
interaction time, coupling strength, or the energy level structure of the probe. We can
then formally express our first design criterion as the maximization problem

Π
(1)
k,opt := arg max

Πk∈C
KΠk(xk−1), (3.41)

where we stress that the optimal measurement identified is a functional of the posterior
PDF resulting from the past measurement trajectory xk−1. We will refer to this design
strategy as MMSE optimization, as it corresponds to a direct sequential minimization
of the MMSE. Note that we can recover non-adaptive estimation protocols as a special
case, by restricting the optimization space C to consist of a single measurement.

3.5.1 Asymptotic expression for the added information

We now investigate the form that the added information takes in the asymptotic limit.
In particular we assume that the Bernstein-von Mises theorem holds, such that the
PDF pΛ(λ|xk−1) is a narrow Gaussian around the MMSE estimator. We first recall the
definition of the added information

KΠk(xk−1) =

∫
Xk

dP0(xk) pXk(xk|xk−1)
(
λ̄(xk)− λ̄(xk−1)

)2

=

∫
Λ

dλ pΛ(λ|xk−1)

∫
Xk

dP0(xk) pXk(xk|λ,xk−1)

×
(
λ̄(xk)− λ̄(xk−1)

)2
,

(3.42)

where the first equality is the definition of the added information in Eq. (3.30), and the
second equality follows from the definition of the evidence function in Eq. (2.18). If we
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focus on the difference of MMSE estimators, we find

λ̄(xk)− λ̄(xk−1) =

∫
Λ

dλ′ pΛ(λ′|xk−1)

(
pXk(xk|λ′,xk−1)

pXk(xk|xk−1)
− 1

)
λ′

≈ (∂λ log pXk(xk|λ,xk−1))

∫
Λ

dλ′ pΛ(λ′|xk−1)λ′(λ′ − λ),

(3.43)

where the first equality follows from the definition of the MMSE estimators in Eq. (3.4),
and the second approximation follows by locally Taylor-expanding the integrand around
a parameter value λ to first order. Evaluating this expression at λ = λ̄(xk−1), assuming
that the Bernstein-von Mises theorem in Eq. (3.21) provides an accurate description,
and substituting back into the added information above, we obtain the expression

KΠk(xk−1) =
FΠk(λ̄(xk−1))[
FΠk−1

(λ̄(xk−1))
]2 , as k →∞. (3.44)

Since only the numerator depends on the implemented measurement, it follows that
in the asymptotic limit, MMSE optimization comes down to maximization of the Fisher
information associated with the implemented measurement around the MMSE estimator.
This result is to be expected. However, it serves to illustrate that in the asymptotic
limit, MMSE optimization becomes equivalent to CRB optimization.

3.5.2 Alternative optimization strategy

While MMSE optimization is well-motivated, as it corresponds to a direct minimization
of the MMSE, it is generally associated with a substantial computational overhead. As an
alternative to the above design strategy, we could search for the POVM that maximizes
the prior averaged Fisher information

Π
(2)
k,opt := arg max

Πk∈C
F̄Πk(xk−1). (3.45)

We will refer to this design strategy as VTB optimization, as it corresponds to a direct
sequential minimization of the VTB. In this case we are minimizing a lower-bound
on the MMSE rather than the quantity itself. Computationally, VTB optimization is
preferable to MMSE optimization. This is due to the fact that computing the added
information associated with a given measurement requires computing the full posterior
ensemble and the associated MMSE estimators. On the other hand, VTB optimization
requires only the Fisher information, which in many cases is a simpler computational
task. Furthermore, we note that in the limit of a narrow prior pΛ(λ|xk−1), the VTB
optimization strategy simplifies to a local maximization of the Fisher information around
the MMSE estimator. This feature implies that although VTB optimization might differ
from MMSE optimization in the non-asymptotic regime, they become equivalent in the
asymptotic limit.

3.6 Concluding remarks
In this chapter we have developed the theory of precision bounds in the case of estimation
of a Euclidean parameter. Furthermore, we have described strategies for single-shot
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measurement design. Armed with these theoretical tools, we can explore fundamental
limits to parameter estimation in specific parameter estimation problems.

In the next chapter we take the insights gained on invariant estimation theory,
precision bounds and adaptive strategies, and apply them to the problem of quantum
thermometry, i.e. temperature estimation in quantum systems.



Chapter 4

Temperature Estimation Based on the
Thermodynamic Length

This chapter contains text and figures from Ref. [52]. We will explicitly
indicate when a given section or figure is taken from Ref. [52].

4.1 Introduction

4.1.1 Motivation

This subsection contains text from Ref. [52].

Measuring the temperature of a physical system is a fundamental task in science and
technology. At the micro- and nanoscale in particular, highly precise temperature mea-
surements are essential for a large number of current experiments. Examples include
real-time monitoring of temperature profiles within living organisms e.g., utilizing colour
centers in nanodiamonds [8, 9, 10], the preparation of ultracold atoms in optical lattices,
as well as mapping thermodynamic phase diagrams and exploring transport phenom-
ena [11, 16, 18, 19, 14, 13, 20], and studies of quantum thermodynamic phenomena
in microelectronic devices [25, 21, 22, 26, 23]. Temperature is not a directly measur-
able property of a system, and in contrast to e.g. interferometry, phase estimation, or
electromagnetic-field sensing [4, 77], thermometry is further complicated by the fact
that temperature is also not a Hamiltonian-encoded parameter. Rather, the tempera-
ture of a system is an entropic quantity which must be estimated indirectly from the
statistical behaviour of a variable that can be observed directly. The purpose of the
theory of quantum thermometry is both to guide the design of optimal measurement
processes, i.e., building good thermometers in the quantum regime, and to optimally
infer from the acquired measurement data the underlying temperature [45, 46].

The majority of previous works on quantum thermometric theory, with the notable
exception of the recent studies [78, 79, 80], have focused on local point estimation [56]
– termed for short the local paradigm – in which measurements are designed to detect
small variations around a known temperature value [45, 46]. Within the local paradigm,
the expected precision of a temperature estimate is typically quantified by the frequen-
tist mean-square error, with the associated signal-to-noise ratio providing a meaningful
notion of relative error [6]. Given that certain conditions are satisfied, e.g., that the
temperature estimate is unbiased, the frequentist mean-square error is lower bounded,

43
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and typically well approximated, by the so-called Cramér-Rao bound [62, 70, 48]. Fur-
thermore, optimal measurements applicable in the asymptotic (large data set) regime
can be identified via the local optimization of the Cramér-Rao bound.

Motivation for constructing a theory applicable beyond the local paradigm is twofold: (i)
it is typically an unjustified assumption that the temperature to be estimated is known
with sufficient precision a priori to justify working within the local paradigm, and (ii)
the optimal measurement protocol generally depends on the prior temperature infor-
mation, and cannot be identified via an optimization of the “asymptotic” Cramér-Rao
bound. Avoiding the restrictions of the local paradigm, i.e., providing a general approach
to quantifying thermometric performance, and designing optimal measurements, under
conditions of non-negligible prior uncertainty, requires a Bayesian framework [61, 55].

In this chapter we study a theory of Bayesian quantum thermometry, applicable for
any amount of prior information, which is based on the concept of a thermodynamic
length [65, 66, 49, 67]. The basic idea is that a meaningful measure of thermometric
precision should be based on the ability to distinguish states at different temperatures,
i.e., colder from hotter, and should be independent of the particular parameterization
of the states, e.g., temperature. This can be naturally achieved by introducing a dis-
tance function between the thermal states of the sample system considered. Such a
distance is exactly the thermodynamic length between thermal states [65, 66, 49, 67].
An interesting implication of the proposed framework is that any meaningful definition
of relative error, must be given with respect to the specific sample system considered.
In particular, we find that the standard signal-to-noise ratio, defined in terms of the
frequentist mean-square error, is only recovered as a meaningful relative error – within
the local regime – when the considered sample system can be effectively modelled as an
ideal heat bath.

4.1.2 Outline of chapter

The structure of the chapter is as follows: In Sec. 4.2 we introduce the canonical ther-
mal state, derive the associated quantum Fisher information, and describe a possible
statistical interpretation of the thermodynamic length. In Sec. 4.3 we consider perhaps
the most common scenario of quantum thermometry [45, 46], namely temperature es-
timation of an ideal heat bath. We argue for a logarithmic form of the thermodynamic
length, and thus connects our approach with previous results [81]. In addition we point
out that an ideal heat bath is a suitable description of a non-interacting Bose-gas well
above the critical temperature for condensation. In Sec. 4.4 we consider a specific ex-
ample involving thermal spin-1/2 particles. In particular we compare two scenarios:
one in which we are interested in thermometry of the thermal particles themselves, and
one in which the particles are employed as equilibrium probes of an underlying heat
bath. In Sec. 4.5 we first describe the relation between our approach to thermometry,
based on the thermodynamic length, and the standard approach in which temperature
differences are gauged by an absolute difference. We then illustrate the difference via
two examples: adaptive probe thermometry of a Bose-Einstein condensate and local
thermometry of a fermionic tight-binding chain. In particular we focus on the regime
of low temperature.
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4.2 Canonical thermal states

In a typical thermometry scenario, the sample system is associated with a Hamiltonian
operator Ĥ, and is taken to be in a thermodynamic equilibrium state [46, 45, 82]. The
question of why a thermal equilibrium state is a suitable description was discussed in
Sec. 1.2. We will not pursue the topic further here. Rather, the physical relevance of
the family of thermodynamic equilibrium states is taken as a phenomenological fact. To
be specific, we adopt the temperature parameterization Θ = R+, and take the quantum
state of the sample to be an element of the manifold of canonical thermal states

ρ̂(θ) =
exp

(
−Ĥ/kBθ

)
Z(θ)

, (4.1)

where kB is the Boltzmann constant, and Z(θ) = Tr
[
exp
(
−Ĥ/kBθ

)]
is the canonical

partition function. In this section we will not indicate the choice of parameterization ex-
plicitly. This is because we exclusively consider the temperature parameterization. Note
that the present setting is sufficiently general to account for a temperature-independent
chemical potential. Thus, we can consider the replacement Ĥ → Ĥ−µN̂ , where µ is the
chemical potential and N̂ is the particle-number operator. The inclusion of the chemical
potential term brings us into the manifold of grand-canonical thermal states. In a more
general estimation setting, we could make it explicit that the Hamiltonian operator is
generically a function of a number of parameters, e.g. coupling constants, and consider
the joint estimation of the temperature and the Hamiltonian parameters. Here, how-
ever, we focus exclusively on the temperature, and take the sample Hamiltonian to be
perfectly known.

4.2.1 Quantum Fisher information metric

Given the manifold of canonical thermal states, the first task we consider is to evaluate
the associated QFI metric, which will make it possible to construct a metric-based dis-
tance function. When considering equilibrium thermodynamic states the metric-based
distance is usually called the thermodynamic length [49, 67]. If we first compute the
temperature derivative of the canonical thermal state, and utilize the fact that the
Hamiltonian operator commutes with the state, then we find the relation

∂θρ̂(θ) =
Ĥ − E(θ; Ĥ)

2kBθ2
ρ̂(θ) + ρ̂(θ)

Ĥ − E(θ; Ĥ)

2kBθ2
, (4.2)

where for convenience we have defined the thermal energy by

E(θ; Ĥ) := Tr
[
ρ̂(θ)Ĥ

]
. (4.3)

If we recall the definition of the symmetric logarithmic derivative (SLD) in Eq. (2.37),
then the above expression for the derivative allows us to straightforwardly identify the
SLD associated with the canonical thermal state

L̂(θ) =
Ĥ − E(θ; Ĥ)

kBθ2
. (4.4)
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The measurement for which the associated Fisher information is given by the QFI, is a
projective measurement of the eigenstates of the SLD. Based on the obtained expression
for the SLD, we see that this corresponds to projectively measuring the energy of the
sample system, i.e. the Hamiltonian eigenstates. Since the Hamiltonian operator is
independent of the temperature, the projective energy measurement constitutes a valid,
temperature independent, reference measurement. For a projective measurement of the
sample-system energy, the associated QFI takes the form [83, 84]

FL(θ) = Tr
[
L̂(θ)2ρ̂(θ)

]
=
C(θ; Ĥ)

kBθ2
, (4.5)

where we have defined the heat capacity of the sample-system

C(θ; Ĥ) := ∂θE(θ; Ĥ). (4.6)

The second equality in the QFI above follows from substituting Eq. (4.4) for the SLD
and a few straightforward manipulations. Here we express the heat capacity as the
temperature derivative of the thermal energy, however, direct computation shows that
it could equivalently be given in terms of the energy variance of the canonical thermal
state. This property reveals that the best possible local distinguishability of canonical
thermal states is intimately connected to the presence of fluctuations in the statistics
associated with energy measurements.

4.2.2 Statistical interpretation of thermodynamic length

Given the QFI metric, we recall from Eq. (2.35) that the thermodynamic length between
canonical thermal states at temperatures θ0 and θ1 takes the form

D(θ0, θ1) =

∫ θ1

θ0

dθ
√
FL(θ),

=

∫ θ1

θ0

dθ

√
C(θ; Ĥ)

kBθ2
.

(4.7)

We now understand this as a measure of the number of thermal fluctuations in the
sample energy along the traversed path θ0 → θ1 [49]. Note that the thermodynamic
length is a dimensionless quantity, or in other words, it is a pure number. Before
proceeding we should pause and ask if we can attach an operational meaning to this
number, i.e. what does it mean to say that two canonical thermal states are separated
by a given thermodynamic length.

We can gain some intuition about the statistical meaning of the thermodynamic
length by considering the distinguishability of two probability distributions. Consider
a parametric set of probability distributions P = {Pλ for λ ∈ Λ} on the data space X
associated with the stochastic variable X. Here we write Pλ to refer to the full likelihood
measure dP(x|λ) for all x ∈ X given the parameter value λ ∈ Λ. Furthermore, we shift to
the Euclidean parameterization to simplify our analysis. If n measurement outcomes are
sampled according to one of these probability distributions, say Pλ, then the probability
Pconfusion that it will look as if the data was sampled according to a different distribution
Pλ′ , will decrease exponentially in n [85, 86]

Pconfusion(λ, λ′) = exp [−nS(Pλ′ ||Pλ)] , (4.8)
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where we have introduced the relative entropy, or Kullback–Leibler divergence [86]

S(Pλ′ ||Pλ) :=

∫
X
dP(x|λ′) log

dP(x|λ′)
dP(x|λ)

, (4.9)

between the considered probability distributions. Recall that dP(x|λ)/dP(x|λ) denotes
the Radon-Nikodym derivative [35], and we could equivalently write this as the ratio of
PDFs. The above result holds to first order in the exponent, i.e. when the relative entropy
is not too large [86]. The quantity Pconfusion should be interpreted as the probability
that an experimenter will accept a hypothesized distribution Pλ′ given that the true
distribution is Pλ after n measurements.

In the case of thermometry, we know the measurements that optimally resolve tem-
perature differences are projective measurements of the sample energy. We thus take
the stochastic variable X to be the sample energy. Note, however, that the analysis
below is valid for any arbitrary measurement. Consider a discrete ordered sequence of
Euclidean parameter values λj = λ0 + jδλ, where we have the introduced the increment
δλ = (λ1 − λ0)/N , and an index variable j = 0, 1, ..., N for some large number N .
Suppose a hypothesis test consisting of νN measurements is performed at each of these
increments, where ν is a positive integer, and define the total probability of confusion
P̃confusion as the probability that all of the intermediate hypothesized distributions are
accepted

P̃confusion(λ0, λ1) := ΠN−1
j=0 Pconfusion(λj, λj+1)

= exp

[
−νN

N−1∑
j=0

S(Pλj+1
||Pλj)

]
,

(4.10)

where the second equality follows from substituting Eq. (4.8). The quantity P̃confusion

is a measure of how likely we are to accept the string of intermediate hypothesized
distributions connecting one parameter value with another, given N tests and νN mea-
surements at each test. For a vanishing increment, N → ∞, it can be shown that the
relative entropy takes the form [63]

S(Pλj+1
||Pλj) =

δλ2

2
, as N →∞. (4.11)

If we substitute this expression into the total probability of confusion, make use of
the fact that Nδλ is simply the thermodynamic length, and shift into the temperature
parameterization, then we obtain a lower bound on the total probability of confusion in
terms of the squared thermodynamic length

P̃confusion(θ0, θ1) = exp
[
−ν

2
D(θ0, θ1)2

]
, (4.12)

which holds when N is sufficiently large that Eq. (4.11) is valid. Hence, the total
probability of confusion is given by a quantity vanishing exponentially in the squared
thermodynamic length between the endpoint temperatures. This expression is sufficient
if we want to have a heuristic interpretation of the statistical meaning of the thermo-
dynamic length. Given a certain value of the thermodynamic length we would need
to perform on the order of D(θ0, θ1)−2 hypothesis test ν, in order to allow for a total
probability of confusion significantly smaller than unity.
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4.3 The thermalizing channel
This section contains text and figures from Ref. [52]. The text contains
minor edits to conform to notation.

A common scenario in quantum thermometry, is that of a quantum probing-system sub-
ject to a thermalizing channel, i.e. a completely-positive and trace-preserving map taking
any initial state of the probing-system to a thermal state at the channel temperature. A
thermalizing channel can in general be modelled as induced by a sample-system that is
effectively an infinitely large heat reservoir. Here we model such an ideal heat reservoir
by a heat capacity that, either approximately or by definition, equals a constant value,
denoted kBV , across the range of relevant temperatures. In this case the sample energy
is a linear function of the temperature, and we can evaluate the thermodynamic length
analytically to find:

D(θ0, θ1) = |log(θ1/θ0)|, (4.13)

where for convenience we set V = 1. The form of the mean-square error (MSE) resulting
from this specific distance function is called the mean-square logarithmic error (MSLE).
The MSLE can be adopted whenever it can be assumed that the manifold of thermal
states is generated via a weak coupling to an infinite heat reservoir. In practice this
assumption might break down at low temperatures, and more fundamentally there are
cases where thermal behaviour cannot be linked to an infinite heat reservoir, e.g. sub-
system thermalization described by the eigenstate thermalization hypothesis [87, 43].

The MSLE was recently proposed by Rubio et al. [78] as a suitable credibility mea-
sure, in the special case of a reference measurement for which the associated likelihood
function satisfies the scale-invariance property [53, 61]:

pY(y|θ) =
g(y/kBθ)∫

Y dy
′ g(y/kBθ)

, (4.14)

where y denotes the outcome from a projective measurement of the sample energy
and g(y/kBθ) is a function only of the dimensionless ratio y/kBθ. This scale-invariance
property of the likelihood function is satisfied for sample-systems with a constant density
of states, or equivalently, a constant heat capacity.

When considering the MSLE, it follows that the reference QFI takes the form FL(θ) =
θ−2, and we then find that the associated asymptotic CRB (Eq. (3.33)), for n measure-
ments represented by the set of POVMs Πn, is given by

CRB(n)→
∫

Θ

dθ
p(θ)

θ2FΠn(θ)
, as n→∞. (4.15)

The quantity θ2FΠn(θ) provides an upper bound on the signal-to-noise ratio within
the frequentist estimation paradigm [51, 88]. This shows that when the sample can be
modelled as an ideal heat reservoir, the standard notion of relative error is recovered
in the local limit where p(θ) is sharply peaked. However, our analysis also points
out that the standard relative error is not suitable unless the sample-system has an
approximately constant heat capacity across the range of relevant temperature. This
condition typically breaks down at sufficiently low temperatures [51].

A specific system approximately realizing the above assumptions on an ideal heat
reservoir is a Bose gas at a fixed density well above the critical temperature [51]. As an
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Figure 4.1: This figure and caption is adopted from Ref. [52]. (a) Plot of the
QFI for a spin-1/2 particle (dashed blue line), a bosonic mode (dashed-dotted
red line), and for the ideal heat reservoir (solid green line). (b) Plot of the
λ-functions (Eq. (2.39)) for a spin-1/2 particle (dashed blue line), a bosonic
mode (dashed-dotted red line), and for the ideal heat reservoir (solid green
line).

illustration we consider a gas of bosonic modes with energy gap ε. In this case the QFI
per mode is given by [45]

FL,boson(θ) =
ε2/k2

Bθ
4

4 sinh2(ε/2kBθ)
. (4.16)

For this QFI the associated λ-function (see (2.39)) can be given an analytic expression

λboson(θ) = − log [tanh (ε/4kBθ)] , (4.17)

which implies that ΛL,boson = [0,+∞). The bosonic QFI and the associated λ-function
are shown in figure 4.1 (a) and figure 4.1 (b), together with the corresponding quantities
for an ideal heat reservoir. We observe that in the limit where the temperature is large
compared to the boson energy gap, the bosonic modes approximate the ideal heat
reservoir. This suggests that we can generically represent an ideal thermalizing channel
by a collection of low-frequency bosonic modes.

4.4 Non-interacting spin one-half particles
This section contains text and figures from Ref. [52]. The text and figure
contains minor edits to conform to notation.

We now consider N non-interacting spin-1/2 particles, or qubits, with identical energy
gaps ε. The spin-1/2 particles are in a canonical thermal state, and as above we take
the θ parameterization to be the temperature. We are going to compare and contrast
two scenarios: (i) the spin-1/2 particles are employed as equilibrium thermometers of
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an underlying heat reservoir, e.g. the particles could model impurities within an ultra-
cold gas, mapping motional information of gas atoms onto the quantum-spin state [20,
89], and (ii) the spin-1/2 particles themselves constitute the sample-system of interest,
e.g., we are interested in thermometry of the spin degrees of freedom of the ultracold
atoms themselves [14, 90].

In case (i), as argued above, the MSLE is the suitable measure of confidence, and the
QFI metric takes the form FL,res.(θ) = θ−2. In case (ii) we take the MSE resulting from
adopting the QFI metric of a thermal spin-1/2 particle as our reference – we denote this
MSD in this section1 — it takes the form [51]

FL,spin(θ) =
ε2/k2

Bθ
4

4 cosh2(ε/2kBθ)
, (4.18)

which, we recall, corresponds to a projective energy measurement of a single spin-
1/2 particle. When referring to the MSD below, we refer to the spin-1/2 particle QFI
metric. For the spin-1/2 reference, the inverse derivative function λ(θ) can be obtained
analytically, it takes the form

λspin(θ) = π − 2 arctan
(
eε/2kBθ

)
, (4.19)

and thus ΛL,spin = [0, π/2]. In figure 4.1(a) we plot the spin-1/2 QFI and compare it with
the heat reservoir reference, and in figure 4.1(b) we plot the associated λ-functions. We
observe that for temperature around kBθ/ε ≈ 0.3 the two λ-functions exhibit a similar
gradient, however away from this temperature regime the specific thermometric scenario
considered plays a role.

The estimation strategy employed consists of projectively measuring the energy of
a subset of µ particles. For thermalized spin-1/2 particles, projective energy measure-
ments maximize the associated FI for all temperatures [83], and it follows that the FI
associated with this measurement can be expressed as

FΠ(θ) = µFL,spin(θ). (4.20)

In figure 4.2(a), figure 4.2(b) and figure 4.2(c) we show stochastic simulations of mea-
surement trajectories sampled according to three different true temperatures. In all
cases we plot the MMSLE estimator and the MMSD estimator, and note that only neg-
ligible differences exist between these. This feature is to be expected as the respective
λ-functions rapidly become approximately constant across the posterior, when this is
the case the estimator is simply the maximum-a-posterior temperature, i.e., the tem-
perature at which the posterior takes its maximum value, independently of the specific
λ-function.

Although the various temperature estimates are only negligibly different, the confi-
dence assigned to the estimates depend on the thermometric scenario. In figure 4.2(e)
and 4.2(f) we show the MSLE and the MSD respectively as a function of the subset size
µ, and compare these with the associated VTB and the associated asymptotic CRB.
The MSLE and the MSD are evaluated using the corresponding smoothed Jeffrey’s priors
shown in figure 4.2(d). In the case of the MSLE we do not observe convergence to the

1This section has appeared in Ref. [52] in which the MSD label was used. Here we keep this notation,
and emphasize that it refers to the specific MSE resulting from the thermodynamic length with respect
to the spin-1/2 particle QFI metric.
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Figure 4.2: This figure and caption is adopted from Ref. [52]. (a,b,c) Simu-
lated stochastic measurement trajectories sampled according to a specific true
temperature (red horizontal line), the posterior probability density function
is shown as a colour map. Both the MMSLE and the MMSD estimators are
shown. (d) The smoothed Jeffrey’s prior (Eqs. (2.48) and (2.49)) for α = −2.5
and kBθ ∈ [ε/10, 5ε], corresponding to the spin-1/2 particle and the reservoir
reference metric. (e) Simulation of the MSLE for thermometry employing free
spin-1/2 particles. The simulation is performed by averaging over 250 stochas-
tic trajectories where the measurement data is generated with respect to a true
temperature sampled according to the prior density. The MSLE is compared
with the CRB, convergence is observed for ν & 103, and we note that the gen-
erated trajectories do not converge to the mean asymptotically. Furthermore,
we plot the VTB and observe that this is not a tight bound. Lastly, we plot
the adaptive MSLE. This is obtained by adapting the energy gap ε in each
repetition of the measurement. Here, we employ a VTB optimization strategy.
(f) Simulation of the MSD for thermometry of free spin-1/2 particles. The sim-
ulation is performed by averaging over 250 stochastic trajectories where the
measurement data is generated with respect to a true temperature sampled
according to the prior density. The MSD is compared with the VTB and con-
vergence is observed for ν & 102, furthermore we observe that the generated
trajectories converge to the average.

VTB. This is to be expected since FL,res./FΠ is generally not constant across the domain
of the employed prior. This feature also means that we do not observe a convergence
to be asymptotic CRB at the trajectory level, i.e. we observe fluctuations around the
average. For the MSD we observe rapid convergence to the VTB, and trajectory level
convergence to the asymptotic CRB. This is due to the fact that hL,spin/hΠ = 1/µ is a
constant independent of the temperature.

When considering the spin-1/2 particles as thermometers of a underlying heat reser-
voir, it is sensible to consider adaptation of the energy gap ε to optimize the thermomet-
ric performance. That is we consider a protocol consisting of thermalizing a spin-1/2
particle and projectively measuring the energy. Based on the observed outcome, the
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energy gap of the particle employed in the following measurement is adapted. In fig-
ure 4.2(e) we also show the adaptive MSLE, which is obtained via a VTB optimization
strategy of the spin-1/2 energy gap ε in each iteration of the protocol. Recall that
by a VTB optimization strategy we refer to a minimization of the VTB with respect to
the energy gap ε in each iteration. In this case we observe a rapid convergence to the
optimized local result, i.e., the adaptive MSLE ∼ maxθ[FL,res./FΠ]. Furthermore, the
adaptive MSLE converges to a lower bound on the set of MSLE trajectories. This is to
be expected as the energy gap can be tuned to the optimal ratio of the energy gap to
the temperature sampled from the prior.

4.5 Difficulty of thermometry at low temperatures
In this section we present two further examples illustrating the application of the devel-
oped framework for thermometry. In particular, we study the regime of low tempera-
tures. First we contrast the conventional approach to temperature estimation with our
approach based on the thermodynamic length. We then study two examples: 1) Probe
thermometry of a Bose-Einstein condensate and 2) local thermometry of a fermionic
tight-binding chain.

4.5.1 Relation to conventional thermometry

In this section we discuss the relation between our approach to temperature estimation,
based on the thermodynamic length, and the more conventional approach in which the
distance between temperatures is gauged by the absolute difference. Our main focus
is on the regime of low temperatures. In the literature on quantum thermometry [45,
46] it is common to analyse the performance of an estimation protocol in terms of the
frequentist mean-squared error attributed to a computed temperature estimate

∆2θ̃n(θ) :=

∫
Xn

dP0(xn) p(xn|θ) (θ̃(xn)− θ)2. (4.21)

In what follows we will refer to this as the absolute error on a temperature estimate [51].
This quantity was discussed in Sec. 2.3, where we considered n independent repetitions
of a measurement Π. Evaluating the absolute error requires specifying a temperature
estimator. Regardless of the choice of estimator, however, the resulting error satisfies
the frequentist Cramér-Rao bound

∆2θ̃n(θ) >
1

nFΠ(θ)
+O(〈δ3

n 〉), (4.22)

where it should always be stressed that this lower bound is valid in the asymptotic
limit, i.e. for sufficiently large n. If we adopt a maximal-likelihood estimator for the
temperature, then the bound is tight in the asymptotic limit [6, 54]. This feature implies
that the performance of a temperature-estimation protocol can typically be analysed by
studying the associated Fisher information [45, 46].

In many cases the Fisher information associated with a given measurement is found
to vanish as the temperature approaches absolute zero [45, 83], indicating that in this
regime the observed measurement statistics become increasingly insensitive to the exact
temperature. It is thus tempting to conclude that thermometry becomes increasingly
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challenging in the low-temperature regime, and some authors even speak of a diver-
gence of the absolute error [51, 88, 91]. A statement which should be understood in
reference to the frequentist Cramér-Rao bound. Taken literally, such a statement is
nonsensical. A more careful articulation of the intended message is as follows: As the
temperature tends to absolute zero, we observe a divergence in the number of indepen-
dent measurements, which must be performed for the frequentist Cramér-Rao bound to
be valid, i.e. for higher-order correction terms to be negligible. In other words: As the
observed measurement statistics become increasingly insensitive to the exact value of
the temperature, there is a corresponding growth in the amount of measurement data
which must be collected to enter the local regime of estimation. For brevity, and with
the more careful statement implied, we will also speak of a diverging absolute error in
what follows.

With this potential semantic confusion out of the way, we can focus on the problem
of designing measurements retaining maximal temperature sensitivity deep into the low-
temperature regime. However, in light of the previous chapters of this thesis, we must
ask ourselves whether the absolute error on the temperature is a suitable measure of
error. First of all it is not an invariant, and secondly its physical interpretation requires
additional knowledge of the sample being measured. These concerns were exactly the
motivation for considering the thermodynamic length, rather than the absolute tem-
perature difference, when gauging the difference of two temperatures. In Sec. 2.3 we
considered the estimation of an arbitrary bijective function of the temperature, and
those results apply if we consider the estimation of the Euclidean parameter λ. In par-
ticular from Eq. (2.15) we obtain an invariant version of the frequentist Cramér-Rao
bound:

∆2λ̃n(θ) >
FL(θ)

nFΠ(θ)
+O(〈δ3

n 〉), (4.23)

where we have used Eq. (2.39) relating the Euclidean parameter and the quantum Fisher
information of the sample. Note that the bound depends directly on the specific sample-
system via the Fisher information ratio. Expressing the error in terms of such a ratio
is sensible, as the temperature sensitivity of a given measurement must be determined
relative to the temperature sensitivity of the sample itself. For this reason, we will refer
to the left-hand side above as the relative error.

In contrast to our usage here, the concept of a relative error on the temperature
estimate, typically refers to the noise-to-signal ratio defined by θ−2∆2θ̃n(θ) [45, 46].
From the frequentist Cramér-Rao bound on the absolute error, Eq. (4.22), we can lower
bound the noise-to-signal ratio as:

θ−2∆2θ̃n(θ) >
1

nθ2FΠ(θ)
+ θ−2O(〈δ3

n 〉). (4.24)

In the above we mentioned that the Fisher information associated with a given measure-
ment typically vanish as the temperature tends to absolute zero [45, 83], giving rise to
a diverging lower-bound on the absolute error. Adopting the noise-to-signal ratio does
not improve on this situation, as we merely face a more severe divergence. However,
having put into question the suitable of the absolute error, we must also question the
noise-to-signal ratio derived from it. A natural first question might be whether any sce-
nario can be identified, in which the noise-to-signal ratio is recovered as a special case of
the relative error. In Sec. 4.3 we discussed the problem of estimating the temperature
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of an ideal heat bath, and argued that the quantum Fisher information associated with
such a sample-system takes the form FL ∝ θ−2. Thus within this scenario, we see from
Eq. (4.23) that the relative error reduces to the noise-to-signal ratio. This is encourag-
ing as in dealing with a heat bath we found that the temperature is a scale parameter,
implying that only the ratios of temperatures are meaningful, and such cases are exactly
the ones in which a noise-to-signal ratio is well motivated [53, 78].

Recovering the noise-to-signal ratio in the case of temperature estimation of a heat
bath, justifies our relative error as a generalized concept applicable beyond the heat
bath scenario. Armed with this concept, we may return to a discussion of the challenges
associated with thermometry in the low-temperature regime. The key quantity is the
ratio of the quantum Fisher information to the Fisher information associated with the
implemented measurement. From the definition of the quantum Fisher information it
follows directly that:

∀θ ∈ R+,
FL(θ)

FΠ(θ)
> 1, (4.25)

where equality is attained if the sample energy is projectively measured. Hence, it is in
principle possible to obtain a relative error which tends to a constant as the temperature
approach absolute zero, avoiding any diverging behaviour. Achieving this requires that
the Fisher information associated with the measurement, vanish no more rapidly than
the quantum Fisher information of the sample itself. In the following two sections we
will study two illustrative examples: 1) Probe thermometry of a non-interacting Bose
gas below the critical temperature in which the relative error is found to improve as
the temperature decrease, and 2) local thermometry of a Fermionic tight-binding chain
in which the relative error diverge as the temperature decrease, albeit at a slower rate
than the corresponding noise-to-signal ratio.

To conclude this section we point out the connection between the frequentist quanti-
ties discussed above, and the Bayesian mean-squared error. This connection is of course
well-known [92]. From the definition of the Bayesian mean-squared error, Eq. (3.26), it
follows directly that:

MMSE(n) =

∫
dθ p(θ)∆2λ̄n(θ), (4.26)

where the relative error is now specified with respect to the MMSE estimator. Thus,
the Bayesian mean-squared error is equal to the prior-averaged relative error. If we
ask instead about the connection with the posterior mean-squared error of Eq. (3.3),
then we mention that due to local asymptotic normality the asymptotic form of the
posterior Cramér-Rao bound given in Eq. (3.24), exactly coincides with the frequentist
Cramér-Rao bound of Eq. (4.23).

4.5.2 Thermometry of a Bose-Einstein condensate

As our first example we consider an adaptive thermometry protocol of a Bose-Einstein
condensate (BEC). This example is interesting as it illustrates a setting in which ther-
mometry becomes increasingly easy as the temperature decreases. The condensate
consists of a large number N of non-interacting Bose particles of mass m in three di-
mensional space with a fixed density. As our reference measurement we consider a
projective energy measurement of the full sample. This gives the quantum Fisher in-
formation metric FL(θ) = C(θ; ĤBEC)/kBθ

2, where C(θ; ĤBEC) is the heat capacity
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associated with the BEC Hamiltonian ĤBEC. The BEC is associated with a critical
temperature θc for condensation at the fixed BEC density %, given by [51]:

kBθc =
2π~2

m

(
%

ζ(3/2)

)2/3

, (4.27)

where ζ denotes the Riemann Zeta function and ~ is the reduced Planck constant. Below
the critical temperature, the BEC heat capacity takes the form [51]:

C(θ; ĤBEC) = γkBN

(
θ

θc

)3/2

, for θ ≤ θc, (4.28)

where γ = 15ζ(5/2)/4ζ(3/2). Above the critical temperature the heat capacity rapidly
tends to a constant value, and the BEC approximates an ideal heat reservoir. This case
will be discussed further in the following chapter. Here we will focus on the regime
below the critical temperature. From the BEC heat capacity, Eq. (4.28), we find that
the inverse derivative function can be obtained analytically:

λ(θ) =
4

3

√
γkBN

(
θ

θc

)3/4

, for θ ≤ θc. (4.29)

We note that strongly interacting Bose gases have been cooled down to ∼ 0.02θc [89].
Studying strongly interacting systems brings with it a host of complications, e.g. it
might not be possible to analytically obtain the equation of state [16]. Therefore, here
we focus on the non-interacting case, and investigate the performance of the adaptive
protocols proposed in the previous chapter.

We consider a probe-based measurement, in which m interacting qubits, i.e. two-
level quantum systems, are fully thermalized by the BEC. The Fisher information of the
thermalized probe is maximized for a projective measurement of the probe energy [50],
and can be written as FΠ(θ) = CΠ(θ;E)/kBθ

2 where E = {E1, ..., E2m} denotes the
energy eigenspectrum of the probe, and CΠ(θ,E) is the probe heat-capacity. The most
general formulation of the optimization problem, assuming no restrictions on our design
capabilities, is to optimize the measurement with respect to the eigenspectrum of the
probe.

The number of energy levels grows geometrically in m, and the general optimization
problem becomes intractable for moderately large m. To simplify the optimization
problem we restrict the optimization space to that of locally optimal spectra, i.e. we
consider the asymptotic CRB and find the energy-level structure minimizing this bound.
This problem has been solved by Correa et al. [50], and the answer is that the optimal
spectrum takes the form of an effective two-level system with a 2m−1 degenerate excited
state, and an energy gap ~ωopt = xoptθtrue, where xopt is the solution to a transcendental
equation. This will be discussed in greater detail in the following chapter. Furthermore,
for this probe structure the heat capacity takes the form CΠ = x2

opt/4 − 1, and is thus
temperature independent. Given these restrictions, the free parameter to be optimized
is the probe frequency ω, and we have a one-dimensional optimization problem. In
restricting ourselves to this optimization space, we are assuming that the energy-level
structure of the interacting probe system can be arbitrarily designed. The optimization
space considered can be approximately realized for a spin-chain probe described by the
longitudinal-field Ising model [80].
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Figure 4.3: Stochastic simulation,averaged over 150 generated trajectories, of a
thermalized probe measurement using VTB optimization of the probe frequency.
The probe is an effective two-level system with a 2m − 1 degenerate excited
state. For the performed simulations we employ the smoothed Jeffrey’s prior
(Eqs. (2.48) and (2.49)) with respect to the BEC QFI metric. We impose a
boundary of θ/θc ∈ [0.05, 0.95], and take α = −10. (a) Plot of the simulated
MMSE (solid lines) for probes build of m qubits. The semi-transparent lines
gives the individual trajectories. The dot-dashed lines gives the asymptotic
CRB. (b) Plot of the simulated xopt averaged over the prior. The optimal value
can be obtained analytically [50], and are shown by horizontal dot-dashed lines.
We observe that the VTB optimization strategy converges to the local optimum.

To further simplify our analysis we adopt an optimization strategy based on mini-
mizing the van Trees bound (VTB), or equivalently on maximizing the prior average of
the quantity FΠ/FL. We consider ν repetitions of the probe-based measurement, and
perform an optimization of the probe frequency in each repetition. Assuming that the
adaptive strategy converges to the local optimum, we expect that, in the asymptotic
limit, the MMSE is well approximated by the asymptotic CRB:

CRB(xν)
γkBN

→ 1

ν(x2
opt/4− 1)

(
θ̄(xν)
θc

)3/2

, as ν →∞, (4.30)

where xν denotes the sequence of measurement outcomes, and θ̄(xν) is the associated
MMSE estimator. We note that the CRB vanishes as θ̄3/2 in the low-temperature limit.
This indicates that thermometry becomes easier as the true temperature of the sample
approaches zero. This conclusion is reached under the assumption that the probe fre-
quency can be tuned to arbitrarily small values. In practice this is not the case, and the
above result is only valid in the regime where the BEC temperature is large compared
to the minimal attainable probe frequency.

In Fig. 4.3 (a) we show stochastic simulations of the adaptive thermometry protocol.
We observe convergence of the MMSE to the CRB. Furthermore, we see that generated
trajectories do not converge to the mean, which reflects the θ̄3/2 behaviour of the CRB.
In Fig. 4.3 (b) we show stochastic simulations of the optimized probe-frequency, and
observe convergence to the local optimum. Furthermore, we point out that convergence
seems to require fewer adaptive steps ν as the number of qubits making up the probe in-
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crease. This makes sense, as one will typically learn more from single-shot measurements
based on a larger number of qubits.

4.5.3 Thermometry of a tight-binding chain

As our next example we consider thermometry of a fermionic tight-binding chain, and
focus on the regime of low temperatures. This example is interesting as it illustrates
a setting in which improving the attained thermometric precision becomes increasingly
difficult as the temperature decreases. The chain is made up of N sites, and is found
in a grand-canonical thermal state with a temperature-independent chemical potential
µ. For convenience we adopt periodic boundary conditions for the chain. However, in
the thermodynamic limit N → ∞ this choice has negligible effect. As above, the Θ
parameterization is taken to refer to the temperature of the chain. In diagonalized form
the Hamiltonian of the tight-binding chain takes the simple form [51]:

Ĥ =
N∑
k=1

εkĈ
†
kĈk, (4.31)

where we have defined the eigenenergies εk = ε − 2t cos(k2π/N) in terms of the on-
site energy ε, which is the same for all sites, and the hopping strength t, quantifying
the strength of the interaction between nearest-neighbour sites. Furthermore, Ĉk (Ĉ†k)
denotes an annihilation (creation) operator acting on the eigenmode of the chain with
quasi-momentum k:

Ĉk :=
1√
N

N∑
j=1

e2πijk/N ĉj, (4.32)

where ĉj denotes the annihilation operator for a fermion at site j of the chain.
For simplicity, we consider the regime of half filling µ = ε, and focus on the low-

temperature regime kBθ � t. In this regime all the physics of the chain is determined
by the partially filled eigenmodes with energies within kBθ of the chemical potential µ.
As our reference measurement we adopt a projective energy-measurement of the chain,
and the associated metric is then the quantum Fisher information. For convenience
we work with the QFI per site, which in the thermodynamic limit N → ∞ takes the
form [51]

FL(θ) =
πkB
6tθ

. (4.33)

Note that this expression diverges as θ−1 in the low-temperature limit. This divergent
behaviour holds as long as the temperature is much greater than the minimal energy
gap of the chain ∆ = 4πt/N (see Ref. [51]), and is thus a good approximation in the
thermodynamic limit of N → ∞. Given this QFI metric we can compute the inverse
derivative function λ(θ) analytically:

λ(θ) =

(
2πkBθ

3t

)1/2

, (4.34)

which indicates that the thermodynamic length between thermal states at different
temperatures grows as the difference of the square roots of the respective temperatures.
The λ-function is shown in Fig. 4.4 (d).
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Following Ref. [51] we will consider a thermometry protocol employing a local mea-
surement. In particular, the available measurement, denoted Π, is restricted to access
only two neighbouring sites of the effectively infinite chain. This measurement is re-
peated ν times. The optimal POVM turns out to be a measurement of the occupation
numbers of the modes c± = (c1 ± c2)/

√
2 of the accessible sites (here we adopt sites

j = 1 and j = 2), and the quantum Fisher information associated with this optimal
two-site measurement is given by [51]:

FΠ(θ) =
π4k2

B

18(π2 − 4)

(kBθ)
2

t4
+O(k6

Bθ
4/t6), (4.35)

where the O(•) denotes higher-order terms in the temperature contributing negligibly in
the low-temperature regime. Note that the Quantum Fisher information metric scales
as
√
FL(θ) ∝ θ−1/2, indicating that grand-canonical states of the full chain become more

distinguishable as the temperature decreases. On the other hand, the Fisher information
metric associated with the two-site measurement vanishes linearly in the temperature,
i.e.

√
FΠ(θ) ∝ θ. This indicates that the two-site measurement becomes insensitive to

the temperature in the low-temperature limit, even though the states of the full sample
exhibit a growing sensitivity to temperature.

In the asymptotic limit ν → ∞ we expect the attained credibility to be well ap-
proximated by the asymptotic form of the CRB. Including only the leading term in
temperature, the asymptotic CRB takes the form:

CRB(xν)→
FL(θ̄(xν))
νFΠ(θ̄(xν))

, as ν →∞

=
6(π2 − 4)

νπ3

(
kB θ̄(xν)

t

)−3

,

(4.36)

where we recall that θ̄(xν) denotes the MMSE estimator resulting from the observed
measurement data. Note that the CRB diverges as the third power of the temperature
in the low-temperature limit. In the literature [45, 51, 88, 91], it is common to take
such a diverging behaviour as a sign that the error in the attained temperature estimate
diverges as the temperature tends to zero. In practice, it is never the case that the
acquisition of measurement data results in a posterior distribution with a diverging
variance. What is really going on is simply that the number of measurements ν we need
to perform to reach the asymptotic regime diverges as the temperature tends to zero.
We can obtain a rough estimate of the threshold data-size νth., by which we refer to
the number of measurements that must be performed before we expect the CRB to be
relevant, by comparing the CRB with the inverse prior information Q−1

prior. In particular,
if we require equality of these two quantities we find the threshold:

νth. := Qprior

∫
Θ

dθ p(θ)
FL(θ)

FΠ(θ)
, (4.37)

which is a functional of the initial prior PDF. Roughly speaking, this threshold reflects
the number of measurements that must be performed before the asymptotic CRB is
expected to be smaller than the CRB, when computed with respect to the initial prior
PDF.

In Fig. 4.4(a,b,c) we show stochastic simulations of the posterior distribution and
the MMSE estimator, resulting from optimal two-site measurements of the tight-binding
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Figure 4.4: Thermometry of the tight-binding chain: (a,b,c) Simulated stochas-
tic measurement trajectories sampled according to a specific true temperature
(red horizontal line), the posterior probability density function is shown as a
colour map, and the posterior mean is shown as the blue solid line. (d) Plot
of the λ-function associated with the QFI of the full tight-binding chain, and
of the smoothed Jeffrey’s prior PDF (Eqs. (2.48) and (2.49)) employed for the
performed simulations. The prior is taken to have support on the interval
kBθ/t ∈ [0.25, 0.75], and we take α = −10. (e) Simulation of the MMSE via
optimal measurements of two neighbouring sites. The simulation is performed
by averaging over 250 stochastic trajectories where the measurement data is
generated with respect to a true temperature sampled according to the prior
density. The MMSE is compared with the CRB and its asymptotic approxima-
tion, convergence is observed for ν & 3× 103, and we note that convergence to
the mean is not observed at the trajectory level (both MMSE and CRB trajecto-
ries are shown). Furthermore, we plot the VTB and observe that this bound is
not even asymptotically tight. (f) Plot of the logarithm base 10 of the threshold
data-sample-size (Eq. (4.37)) for α = −10, and δθ := θmax − θmin. The white
dashed line indicates the limit θmin + δθ = 1.

chain at three different true temperatures. Both in terms of the convergence rate, and
the attained posterior variance, thermometry becomes increasingly challenging as the
true temperature decreases. This is to be expected as the temperature sensitivity of the
two-site measurement, when quantified by the associated Fisher information, vanishes
quadratically in the temperature. The initial prior PDF used for the simulations is shown
in Fig. 4.4(d). In Fig. 4.4(e) we show stochastic simulations of the MMSE resulting from
the optimal two-site measurement, and compare it with the CRB, the asymptotic CRB
and the VTB. For the prior employed, we find that the VTB is not tight. This is to be
expected since the quantity FL/FΠ exhibits a θ−3 dependence on temperature across
the domain of the prior. For the VTB to be tight, this should be a constant function.
In Fig. 4.4(f) we show a contour plot of the threshold data-size νth. as the prior domain
is varied. Recall that this threshold is a measure of the number of measurements that
must be implemented for the acquired data to impact our temperature estimate. We



Chapter 4. Estimation based on Thermodynamic Length 60

observe that the threshold increases as the interval decreases (δθ → 0). This is intuitive.
The better prior information, the more data is required to improve our information
further. We also observe that as the lower boundary of the prior interval decreases,
the threshold increase. This is a result of the Fisher information vanishing. As the
temperature decreases the amount of extractable information decreases.

4.6 Concluding remarks
In this chapter we have explored quantum thermometry using an approach based on
the thermodynamic length. In particular, we have highlighted the importance of taking
into account the specific sample system under study. The key quantity, when it comes
to the capacity, of a given measurement strategy Π, to distinguish thermal states of
the sample being measured, is the associated Fisher information. In previous studies
on quantum thermometry [83, 51, 91, 45, 46, 84], it was claimed that the quantum
Fisher information associated with the sample provides an ultimate lower bound on the
attainable temperature estimation precision via the frequentist Cramér-Rao bound on
the absolute error. If we employ an unbiased estimator, θ̄, the bound is tight [6], and
can be expressed as

n∆2θ̄n(θ) = 1/FΠ(θ) +O(〈nδ3
n 〉)

> 1/FL(θ) +O(〈nδ3
n 〉).

(4.38)

Based on the behaviour of the Fisher information, we can judge whether a given mea-
surement strategy constitutes a good method for thermometry. In many cases it is
found that the Fisher information vanish as the temperature tends to absolute zero.
This feature has lead to the conclusion that low-temperature thermometry becomes in-
creasingly difficult as we move into the ultracold regime. In this chapter we pointed out
why a focus on the absolute error might be misguided. Instead it is suggested that the
suitable measure of the attainable precision is the generalized relative error

n∆2λ̄n(θ) = FL(θ)/FΠ(θ) +O(〈nδ3
n 〉)

> 1 +O(〈nδ3
n 〉).

(4.39)

As mentioned in the main text: Expressing the error in terms of the Fisher information
ratio is sensible, as the temperature sensitivity of a given measurement strategy must
be determined relative to the temperature sensitivity of the sample itself. In particular,
it might be the case that the Fisher information FΠ vanish as the temperature tends
to zero. However, this would only lead to a “diverging” relative error, if the quantum
Fisher information FL of the sample itself, vanish at a slower rate than FΠ.

Conversely, the model under study might exhibit a classical phase transition at a
certain critical temperature θc. In this case the quantum Fisher information FL might
exhibit diverging behaviour around the critical temperature. When basing the analysis
on the absolute error, a large QFI would signify a temperature which could be easily
determined. When instead considering the relative error, we see that a large QFI might
be associated with a large relative error, unless a measurement strategy can be devised
exhibiting a similar diverging behaviour around the critical temperature.

In the next chapter, we take up the subject of attaining the fundamental bounds to
precision via adaptive strategies, in the specific case of equilibrium probe thermometry.
We then return to the problem of exploring the fundamental precision bounds in chapters
6 and 7.



Chapter 5

Fundamental Limits in Bayesian
Thermometry and Attainability via
Adaptive Strategies

This chapter is composed almost entirely of text and figures from Ref. [93].
In the appendix section, Sec. 5.6.1, Sec. 5.6.5 and Fig. 5.4 are new. Ev-
erything else has appeared in Ref. [93].

The chapter is self-contained. The notation does not correspond to
the conventions of the previous chapters in all cases. In particular, what
was called Bayesian credibility measures in previous chapters, is called
expected credibility measures here. Furthermore, no mentioning is made
of the reference measure, and we simply write dP0(x) = dx.

5.1 Introduction

Preparing quantum systems at low temperatures is an essential task for development
of quantum technologies [94, 95, 96]. Measuring temperature precisely is necessary
to validate cooling and ensure the performance of quantum protocols, and has been
demonstrated in cutting-edge experiments [97, 20, 98, 89, 99, 100, 17, 101, 102]. How-
ever, measuring the temperature of quantum systems is often challenging. On the one
hand, due to the scarcity of thermal fluctuations at such low temperatures, the relative
statistical error on thermometry, i.e. the signal-to-noise ratio, can be exceptionally no-
table. On the other hand, the fragility of quantum systems, requires additional forward
planning in order to minimise disturbance while maximising the information obtained.
The theory of quantum thermometry is built to address this pivotal task [19, 46].

When quantum systems are used as thermometers or probes, they offer resources
such as entanglement, coherence, and many-body interactions, that can improve preci-
sion [103, 50, 83, 104, 105, 106, 91, 107, 108, 109, 110, 19, 111, 112, 18, 113, 51, 88, 114].
To date, such enhancements have been developed in the context of local thermometry,
aiming at designing a thermometer that detects the smallest temperature variations
around a known temperature [19, 46]. In many practical situations, however, one might
not know the temperature accurately beforehand. Rather, one has only limited prior
knowledge about the temperature of the sample. Under such circumstances, Bayesian
estimation is a more suitable approach to thermometry, and has been the subject of a
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Figure 5.1: This figure is taken from Ref. [93]. Schematic representation of
the adaptive scenario. A total of N probes are used in groups of n to estimate
the temperature of the sample, θ0. Initially, our prior temperature distribution
is given by p(θ), according to which we choose the Hamiltonian of the first
n probes to be H

(1)
n that minimises the expected mean square logarithmic

error. The probes interact and thermalise with the sample followed by an
energy measurement, yielding an outcome, say x1. Our knowledge about the
temperature will be reflected in the posterior distribution p(θ|x1). This will be
used as the prior for the second round—in order to find the optimal Hamiltonian
H

(2)
n . This process is repeatedm = N/n times. In contrast, in the non-adaptive

scenario the Hamiltonian is fixed H(k)
n = Hn ∀k.

few recent studies [78, 79].
The goal of this work is to set the ultimate bounds of Bayesian equilibrium ther-

mometry, and to develop adaptive strategies to saturate them. It is insightful to first
recall analogous results in the local approach to equilibrium thermometry [19, 46]. In
that case, for any unbiased estimator θ̃ of the temperature θ0, the absolute error is
inversely proportional to the heat capacity of the probe: ∆θ̃ ∝ 1/C [84, 83, 50, 107].
For n-body probes, C can scale super-extensively with n in the vicinity of a critical
point, with the ultimate bound C ≈ n2/4 [50, 115]—a quadratic scaling with the num-
ber of resources reminiscent of the Heisenberg scaling in quantum metrology [3]. Here,
we show that similar bounds hold in the Bayesian approach, but that adaptive strate-
gies are needed to saturate them in contrast to the local case. In fact, we prove that
any non-adaptive strategy necessarily leads to ∆θ̃ ∝ 1/n for sufficiently large n—i.e., a
shot-noise-like scaling [3]—a no-go result that holds even when arbitrary control over the
n-body probe Hamiltonian is allowed. This shows that adaptive measurement strategies
are a crucial ingredient for optimal quantum thermometry whenever the temperature
value is a priori not perfectly known.
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5.2 Preliminaries and setup.

We consider estimation of temperature of a sample, denoted as θ0, given some prior
distribution p(θ) reflecting our initial knowledge on θ0. We assume we have at our
disposal N copies of a d-dimensional system that we use as probes. The temperature
is inferred by letting the probes reach thermal equilibrium at θ0, and then measuring
them—corresponding to the framework of equilibrium thermometry [19, 46]. In order to
establish fundamental bounds, we assume full control on the Hamiltonian of the probes,
and in particular the ability to make them interact. Therefore, alternatively one can
think of a dN -dimensional probe, which constitutes our resource.

The thermometry process is divided into m rounds, each involving n = N/m probes.
Every round consists of: (I) preparation of the n-body probe, (II) interaction with the
sample and thermalisation, (III) measurement/data acquisition, and (IV) data analysis
(see Fig. 5.1). In the first round, we start by engineering the Hamiltonian H(1)

n of the
n-body probe into any desired configuration based on the prior distribution p(θ). That
is, we arrange the energy distribution of the n-body probe to become most sensitive
to the relevant temperature range. Next, in step (II), this n-body system is put in
contact with the sample, reaching a Gibbs state ωθ0(H

(1)
n ) = exp

[
−H(1)

n /θ0

]
/Z, with

Z = Tr(exp
[
−H(1)

n /θ0

]
) the partition function. Then, in step (III), a measurement is

performed that yields an outcome x1. We focus on energy measurements since they are
optimal as the Gibbs state is diagonal in the energy basis. In the data analysis (step
(IV)), the measurement outcome is used to obtain the posterior distribution through
Bayes’ rule:

p(θ|x1) =
p(x1|θ)p(θ)
p(x1)

, (5.1)

where p(x|θ) is the likelihood function (which depends on the temperature and the
Hamiltonian), p(θ) is the prior probability distribution on θ, and p(x) =

∫
dθ p(θ) p(x|θ)

is the outcome probability. The next round proceeds in an analogous way, but replacing
the prior p(θ) by p(θ|x1) and H(1)

n by H(2)
n . Likewise, in round k > 1, p(θ) is replaced by

p(θ|xk−1) with xk−1 ≡ {xk−1, ..., x2, x1} and H(1)
n is replaced by H(k)

n . Such a strategy
is adaptive since H(k)

n depends on xk−1. In contrast, a non-adaptive strategy satisfies
H

(k)
n = Hn ∀k, where Hn is chosen according to the initial prior p(θ) only. At the end

of the thermometry process (round m), the final estimate θ̃(xm) of θ0 is computed.
In order to gauge the quality of the estimator, we need to introduce some figure

of merit, or an error quantifier that describes how far θ̃ is from θ0, on average. A
natural measure which is suitable for equilibrium probes is the expected mean-square
logarithmic error (EMSLE) (see [78] for justification and the accompanying paper [52]
for a deeper analysis and generalisation)

EMSLE :=

∫
dθ p(θ)

∫
dxm p(xm|θ) ln2

[
θ̃(xm)

θ

]
, (5.2)

with dxm := dxm...dx1. Moreover,

θ̃(xm) = exp

[∫
dθ
p(θ)p(xm|θ)
p(xm)

ln θ

]
, (5.3)
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is the optimal temperature estimator, i.e., it minimises the EMSLE [78].
We wish to find lower bounds for EMSLE, as well as optimal strategies to saturate

them, for both adaptive and non-adaptive measurements. More precisely, our aim is to
minimise EMSLE as a function of the number N of probes, with N = mn. We will pay
particular attention to the relevant case where m� 1 is large (asymptotic regime) but
n is limited due to e.g. experimental limitations on the amount of probes that can be
collectively processed. In this case, we will focus on the scaling of EMSLE with n for a
fixed but large m.

5.3 Main results

Our main results are (i) an ultimate precision limit for Bayesian thermometry that holds
for both adaptive and non-adaptive strategies, which in principle allows for a quadratic
(Heisenberg-like) scaling with n, (ii) a no-go theorem that forbids super-extensive scaling
in any non-adaptive scenario, and (iii) an adaptive strategy that reaches the ultimate
limit. These results are derived in what follows (some technical details are given in the
Appendix).

Given the prior distribution p(θ), one may utilise the Van Trees inequality [54, 55]
to construct a lower bound on the estimation error after m rounds of the protocol

EMSLE−1 6 Q[p(θ)]

+
m∑
k=1

∫
dxk−1 p(xk−1)

∫
dθ p(θ|xk−1)C(θ;H(k)

n ), (5.4)

where p(θ|x0) = p(θ), p(x0) = p(x0|θ) = 1, and
∫
dx0 = 1 are introduced to compress

our notation. Here, Q[p(θ)] quantifies the prior information given by

Q[p(θ)] :=

∫
dθ p(θ) [1 + θ∂θ log p(θ)]2 , (5.5)

while the second term takes into account the information acquired through all measure-
ments. The heat capacity of the probe at round k of the measurement is denoted
C(θ;H

(k)
n ), with the Hamiltonian H

(k)
n designed according to the prior and the in-

formation acquired so far. Recall that, by definition, C(θ;Hn) := ∂θE(θ;Hn) where
E(θ;H) = Tr[Hωθ(H)] is the energy of the probe at thermal equilibrium. In order to
bound Eq. (5.4), we first define the maximum of the integrand over {H(k)

n }mk=1 for a
given specific trajectory xm:

Γ(xm) := max
{H(k)

n }k

m∑
k=1

∫
dθp(θ|xk−1)C(θ;H(k)

n )

≤
m∑
k=1

∫
dθp(θ|xk−1)CD = mCD (5.6)

where CD := maxHn C(θ;Hn), i.e., the maximum heat capacity of an n-body probe,
and in the last line we used that CD is independent of θ (see [50] and the Appendix for
an explicit expression for CD). Furthermore, it is bounded by CD ≤ n2

4
log2 d, which is
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quickly saturated as n is increased. Putting everything together, we obtain from (5.4)
the following chain of inequalities:

EMSLE−1 6 Q[p(θ)] +mCD

6 Q[p(θ)] +m
n2

4
log2 d. (5.7)

This gives an ultimate bound on Bayesian thermometry [Result (i)], which both adaptive
and non-adaptive strategies should respect. This bound implies that any Bayesian
thermometry protocol is ultimately limited by a quadratic Heisenberg-like scaling.

The ultimate bound (5.7) becomes tight and can be saturated by adaptive strategies
in the regime m � 1 (see results below). However, let us comment that any non-
adaptive strategy fails to saturate it, and in fact EMSLE−1 can increase at most linearly
with n [Result (ii)]

EMSLE−1
non−adaptive

6 Q[p(θ)] + f [p(θ)]mn logd, (5.8)

This is rigorously proven in the supplementary materials, but let us here mention the
intuition behind it. It has already been noted in the literature that engineered probes
for thermometry show enhanced sensitivity only in a small temperature range ∆ [50, 19,
116, 117, 80]. In fact, finite-size scaling theory tells us that if C ∝ n1+α, then ∆ ∝ n−γ

with γ ≥ α in order to ensure that the energy density of an equilibrium state remains
finite [118]. This implies that, for any p(θ) with a finite width (independent of n), the
figure of merit

∫
dθ p(θ)C(θ) entering into (5.4) can grow at most linearly with n for

sufficiently large n. In other words, optimal n-body probes require priors with a width
smaller than O(1/n) to obtain super-linear scaling, and conversely a finite width in p(θ)
will eventually kill any super-linear scaling. The no-go result (5.8) makes this intuition
rigorous. We also note that (5.8) is a particular case of a more general family of bounds
where the prior-dependent quantity f [p(θ)] can be replaced by other functionals which
can become tighter for some p(θ); this is discussed in the Appendix.

The above reasoning also explains why adaptive protocols can potentially saturate
(5.7). By updating the prior p(θ) to the posterior p(θ|xj−1) in each step of the process
(j = 1, ...,m), the posterior can stay inside the optimal region for sufficiently large m,
thus enabling super-linear thermometry precision. Furthermore, as a result of sharp-
ening the prior knowledge, we are getting closer to a local thermometry scenario [119].
This suggests using optimal probes for local thermometry as an ansatz for the Bayesian
thermometry with adaptive strategies. The optimal thermometer in the local scenario
is an effective two-level system with dn − 1-fold degeneracy in the excited state, with
an energy gap that depends both on n and the temperature [50]. For large n its heat
capacity reads CD ≈ (n2/4) log2 d, as already mentioned [115]. Inspired by this, at
the kth round we restrict to the class of Hamiltonians H(k)

n with the aforementioned
two-level structure, and tune the energy gap such that the EMSLE (5.2) is minimised.
As we shall see in the example below, we are able to achieve a quadratic scaling with n
and saturate (5.7) through this strategy [Result (iii)].

5.4 Case study
The results presented here are valid for a broad class of priors, but in what follows we
stick to a specific choice in order to illustrate their usage. In any relevant application
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Figure 5.2: This figure is taken from Ref. [93]. Left—Contour plot of the
prior versus the number of simulation rounds m (logarithmic scale), and the
ratio θ/θ0 between the estimated θ̃ and true temperature θ0. As m increases,
the prior sharpens around the true temperature, and θ̃/θ0 approaches unity.
Here, we have set n = 1, α = 1, θmin = 1, and θmax = 10 in arbitrary units.
Right—Loglog plot of the expected mean square logarithmic error (EMSLE)
attained by the adaptive strategy vs. the total number of qubits N . Dark
solid lines represent different values of n. They show that, for sufficiently large
N , the bigger n is the smaller the error can get. The red-dashed line is the
(not necessarily tight) bound on non-adaptive strategies: only the shaded area
can be achieved using non-adaptive protocols. One can cross the border with
adaptive strategies for n > 10.

of thermometry, the temperature is known a priori to lie within a certain range, i.e.,
θmin 6 θ0 6 θmax. We use a family of probability distributions that are suitable in this
case and were proposed in [69]:

p(θ) =
1

kα(θmax − θmin)

[
e
α sin2

(
π

θ−θmin
θmax−θmin

)
− 1

]
(5.9)

with
kα := eα/2I0(α/2)− 1, (5.10)

where I0 is the modified Bessel function of the first kind. In the limit α → −∞ the
above prior becomes a constant over the domain, while in the limit α → 0 we have
p(θ) ∝ sin2(2θ).

The adaptive strategy works as follows. We consider as a resource N qubits, which
are divided in m groups of n qubits. In each group, the n-qubit Hamiltonian is engi-
neered to become a two-level system with degeneracy (2n− 1) and with a tunable gap ε
(recall that this structure is optimal for local thermometry). In the first round, we tune
the gap to ε(1) to minimise the single shot EMSLE, that is we set m = 1 in (5.2). Then,
we measure the energy of the system. Given the outcome x1 is observed, we update the
prior to p(θ)→ p(θ|x1), and implement the same procedure to choose ε(2) in the second
round (i.e., we minimise (5.2) replacing p(θ)→ p(θ|x1)). This process is repeated until
all probes are used.
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Figure 5.3: This figure is taken from Ref. [93]. (Dashed red) Loglog plot of the
normalised expected mean square logarithmic error (EMSLE) after m rounds
of the adaptive scheme—for sufficiently large m—vs n. This shows that for
large enough n the error vanishes quadratically with n, which can be better
seen from the inset. (Blue) The minimum achievable EMSLE given by the r.h.s
of (5.7). The perfect agreement shows the efficiency of the proposed adaptive
protocol.

In our simulations, we apply the adaptive process for a given θ0 sampled from p(θ),
which yields a trajectory as illustrated in the left panel of Fig. 5.2. We see that the
prior peaks around the true temperature as m increases, and the estimated temperature
gets closer to the true temperature, i.e., θ̃/θ0 → 1. The average over a large amount
of trajectories enables us to compute EMSLE in Eq. (5.2) with high accuracy (in the
numerical simulations, we consider O(1000/m) trajectories, which is enough to ensure
convergence). This is used in the right panel of Fig. 5.3, where we plot EMSLE in
the adaptive scenario for various values of n, benchmarked against the no-go bound for
non-adaptive scenarios—only the shaded area can be accessed by non-adaptive strategies
given any n ≤ N . We see that as we increase n the error gets smaller for large enough N .
In particular, there exist some threshold n (in this example n > 10) for which one can
beat the no-go bound via adaptive strategies. As an example, given N = 103 and
θmax/θmin = 10 in Eq. (5.9) (with α = 1), adaptive strategies using n ≈ 10 interacting
qubits outperform arbitrary non-adaptive strategies, even ones involving full control of
all the 103 qubits.

Finally, we ask whether the adaptive strategy can reach the Heisenberg-like scaling,
EMSLE−1 ∝ mn2. To this aim, we study the behaviour of the error with the resources
n for a sufficiently large number of repetitions m. The results are depicted in Fig. 5.3,
where we see Eq. (5.7) is saturated and therefore the proposed adaptive scheme reaches
the ultimate bound on thermometry.
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5.5 Conclusions and future directions
We derived fundamental limitations of the Bayesian approach to equilibrium thermom-
etry, which shows a Heisenberg-like quadratic scaling with the number of probes. We
showed that non-adaptive strategies cannot saturate this bound and, in fact, are limited
to shot-noise-like scaling whenever the initial prior is not sharp. We also constructed a
simple adaptive protocol which can saturate the ultimate bound, thus highlighting the
crucial role of adaptivity in quantum thermometry. This role is importantly different
to the setting of Bayesian quantum phase-estimation protocols [120], in which the cor-
responding Heisenberg limit that applies to most general adaptive protocols [121] can
be attained by resorting only to measurements being adaptively varied in between the
phase-encoding channel uses [122]. In contrast, in equilibrium thermometry the form of
probe states (Gibbs) and measurement (energy-basis) is fixed, and it is the thermalising
channel (i.e. the probe Hamiltonian) that must be adaptively adjusted for the quadratic
scaling indicated by the local approach [50] to become reachable.

While these results were obtained by taking the expected mean square logarithmic
error as the precision quantifier, it is important to note that any reasonable error measure
leads to the same main conclusions [78, 119]. The optimal strategy relies on using a
highly degenerate two-level system as a probe, as in the local regime [50]. Although this
is a very idealised Hamiltonian, Hamiltonians that achieve similar sensitive precision
have been proposed in the low-temperate regime through a one-dimensional fermionic
system [115], and in an upcoming work we will discuss a Hamiltonian probe reaching
quadratic scaling with n based on the Ising model. We leave as interesting future work
the establishment of similar Bayesian bounds in nonequilibrium thermometry [103, 123,
124] and critical metrology [125, 126].

5.6 Appendix

5.6.1 Van Trees inequality in equilibrium thermometry

The van Trees inequality was derived in chapter. 3. To derive the expression used in
the main text, we simply have to evaluate the van Trees inequality (Eq. (3.38)) in the
specific case λ(θ) = log(θ). This gives:

EMSLE−1 6 Q[p(θ)] +
m∑
k=1

∫
dxk−1p(xk−1)

∫
dθ p(θ|xk−1) C(θ;H(k)

n ). (5.11)

where
Q[p(θ)] =

∫
dθ p(θ) [1 + ∂θ log p(θ)]2 . (5.12)

Our interest is in finding the probe Hamiltonian, for which the van Trees inequality is
minimal. The optimal probe is then the one maximizing the averaged heat capacity

Γ(xk−1) := max
H

(k)
n

∫
dθ p(θ|xk−1)C(θ;H(k)

n ). (5.13)

Note that Γ is in general a functional of the past measurement trajectory, i.e., the opti-
mal probe structure depends on the prior knowledge of the parameter to be estimated.
In the following sections we derive model-independent upper bounds on Γ.
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5.6.2 Model-independent super-extensive upper bound on Γ

In this section we derive a super-extensive bound on Γ(x). Starting with Eq. (5.13),
we note that since the integrand is positive we can provide an upper bound by moving
from a global maximization to a local maximization, i.e.

Γ(x) 6
∫
dθ p(θ|x) max

H
C(θ;H). (5.14)

The problem of maximizing the heat capacity, over all possible probe Hamiltonians at a
given temperature, has been solved by Correa et al. [50]. The solution can be formulated
as the temperature-independent tight upper bound

C(θ;H) 6

[
ξD
2

]2

− 1, (5.15)

where ξD is the solution to the transcendental equation

eξD = (D − 1)
ξD + 2

ξD − 2
. (5.16)

This equation does not have a closed form solution. However, a general feature of the
solution is that ξD > log(D − 1), and that ξD approach log(D − 1) from above as D
becomes large. From this it follows that Γ(x) satisfies the super-extensive upper bound

Γ(x) 6 (ξD/2− 1) (ξD/2 + 1)

∫
dθ p(θ|x), (5.17)

which grows super-extensively in log(D). If we average Γ(x) over the past measurement
trajectory we find ∫

dxp(x)Γ(x) 6 (ξD/2− 1) (ξD/2 + 1) := CD. (5.18)

This bound is expected to be approximately tight in the limit where the prior is local
with respect to the width of the heat capacity. As we will see in the next section,
designing a probe with a critical heat capacity at a certain temperature, i.e. one attain-
ing the maximal heat capacity, will result in the width of the heat capacity decreasing
as 1/ log(D). We thus see that saturating the super-extensive bound requires a prior
probability distribution confined to a domain θ ∈ [θc −∆/2, θc + ∆/2] where θc is the
critical temperature and ∆ = 1/ log(D). As D increase this corresponds to an increasing
amount of prior information.

5.6.3 Tight upper bound on the thermal energy density

In this section we want to derive an upper bound on the thermal energy at a given tem-
perature for any probe structure, subject to the dimensionality constraint dimH = D
on the considered probes. We will find that the thermal energy density is upper bounded
by the temperature. Define the maximum thermal energy for any probe structure as

Emax(θ) := max
H

E(θ;H), (5.19)
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E(θ;H) := Tr{Hω(θ;H)}, (5.20)

where ω(θ;H) is a thermal state at temperature θ. We denote the energy eigenvalues
of the probe Hamiltonian by {εl}, and for convenience set the ground-state energy to
zero. If we take the derivative of the thermal energy, and equate to zero we obtain the
condition

εl = θ + E(θ;H) := ε, (5.21)

which implies a D − 1 degeneracy in the first excited state. Evaluating the above
condition for this probe structure leads to a transcendental equation for ε/θ which can
be solved. The result is the temperature-dependent upper bound

E(θ;H) 6 θWD (5.22)

WD := W

(
D − 1

e

)
, (5.23)

where W denotes the product logarithm, also called the Lambert W function. In the
limit of large D the behaviour of the product logarithm is such that WD tends asymp-
totically to log(D) from below. We stress that the above bound on the thermal energy
can be saturated by an effective two level probe with a D− 1 degenerate excited state,
and a temperature-dependent energy gap.

5.6.4 Extensive bounds for the non-adaptive scenario

W start with the second term in Eq (4) of the main text. Since the Hamiltonian remains
constant throughout the protocol, i.e., H(k)

n = Hn ∀k, this term can be rewritten as

Γ̄ :=
m∑
k=1

∫∫
dθdxk−1 p(θ) p(xk−1|θ)C(θ;Hn)

= m

∫
dθ p(θ)C(θ;Hn). (5.24)

Integrating by parts—recall that C(θ;Hn) = ∂θE(θ;Hn)—and maximising overHn gives

Γ̄ 6 mmax
Hn

∫
dθ [−∂θp(θ)]E(θ;Hn), (5.25)

where we assumed that p(θ)E(θ;Hn) is smooth and vanishes at the boundaries. By
defining R as the temperature domain where ∂θp(θ) 6 0 we have

Γ̄ 6 mmax
Hn

∫
R
dθ [−∂θp(θ)]E(θ;Hn)

6 m

∫
R
dθ [−∂θp(θ)] max

Hn
E(θ;Hn) (5.26)

To make further progress, we use the upper bound on the energy of an n-body system
at thermal equilibrium (with total dimension D = dn) that is given by Eq. (5.22):

max
Hn

E(θ;Hn) 6 θWD 6 θn log d (5.27)
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where the second equality is saturated as n � 1. Plugging these results back into Eq.
(4) of the main text we obtain a no-go theorem for non-adaptive strategies [Result (ii)]

EMSLE−1
non−adaptive

6 Q[p(θ)] + f [p(θ)]mn logd, (5.28)

where f [p(θ)] =
∫
R dθ [−∂θp(θ)]θ is a functional of the prior. Crucially, the bound

(5.8) implies that, even with arbitrary control over the n-body Hamiltonian, one cannot
go above a linear scaling in n with non-adaptive strategies (compare with the general
bound given by Eq. (7) of the main text).

Our alternative bound follows the exact same procedure, except we first recall that
the thermal energy can be expressed as θ2∂θΨ(θ;H), where the Massieu potential reads
Ψ(θ;H) := logZ(θ;H) with Z(θ;H) being the partition function of the probe. Starting
from Eq. (5.24) and by performing twice integration by parts we get

Γ̄ = m

∫
dθ p(θ)C(θ;Hn) = −m

∫
dθ [∂θp(θ))]E(θ;H)

= m

∫
dθ
[
∂θ
(
θ2∂θp(θ)

)]
Ψ(θ;H), (5.29)

where again we take the vanishing and differentiablity of the boundary terms in both
integrations—that is p(θ)E(θ;Hn) and θ2∂θp(θ)Ψ(θ;H)—as a restriction on the choice
of parameterization. We can derive an upper bound on the optimal solution by noting
that Ψ(θ;H) > 0—recall that the ground state energy is set to zero—and by introducing
R̄ = {θ | ∂θ (θ2∂θp(θ)) > 0}. Then

Γ̄ 6 mmax
H

∫
R̄
dθ
[
∂θ
(
θ2∂θp(θ)

)]
Ψ(θ;H). (5.30)

As the integrand is now positive we can maximize the Massieu potential locally. Since
the logarithm is monotonically increasing in its argument, this corresponds to substi-
tuting the largest value of the partition function, i.e. the Hilbert space dimension. The
bound then takes the form

Γ̄ 6 m log(D)

∫
R̄
dθ
[
∂θ
(
θ2∂θp(θ)

)]
6 m log(D)

{
θ2∂θp(θ)

}
R̄

:= m log(D)g[p(θ)],

(5.31)

where g[p(θ)] is a functional of the prior distribution but independent of the probe.
This gives two complementary bounds on Γ̄, i.e. one expressed in terms of f [p(θ)] as
presented in the main text, and one in terms of g[p(θ)]. Which of these two is tighter
depends on the specific prior.

5.6.5 Model-independent bound for a Gaussian prior

For illustration purposes we will study the behaviour of the model-independent extensive
bounds derived above for the specific case of a Gaussian prior over λ(θ) = log(θ). If we
assume that the mean λ̄ and the variance σ2 are known, then the maximum entropy
principle—see Ref. [53]— tells us that a normal distribution is a suitable prior

p(θ; θ̄, σ) =
1√

2πθσ
e−

1
2σ2

(log θ/θ̄)2 . (5.32)
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Figure 5.4: Illustration of non-adaptive no-go result for a Gaussian prior. (a)
The model-independent extensive upper bound evaluated for a Gaussian prior
on log(θ). The red line gives the optimal Γ̄ found through a direct numerical
optimization of the probe structure in the case of an effective two-level probe
consisting of n = 60 qubits.

Note that we are adopting a normal distribution over the parameter λ, this does not
generally translate directly to a normal distribution over temperature.

We are going to compare the extensive bounds to a direct numerical optimization
of Γ̄, given a probe structure which is an effective two-level system. The solution to
this optimization problem is simplified by the fact that the optimization of the probe
structure will only depend on temperature ratios, i.e.

Γ̄ = max
H

m

∫
dθp(θ; θ̄, σ)C(θ;Hn)

= max
H

m

∫
dθp(θ; γθ̄, σ)C(θ;Hn),

(5.33)

where γ is a real positive constant. This shows that Γ̄ is independent of the mean θ̄
and only depends on the variance σ. In the case of the Gaussian prior we can evaluate
both the model-independent extensive bounds straightforwardly, the results are plotted
in figure 5.4 alongside a direct maximization over the locally optimal probe structure,
i.e. an effective two-level probe with a D − 1 degenerate excited state.

In the case of the Gaussian prior we can furthermore evaluate the van Trees inequality
analytically. First of all we have Q[p(θ; θ̄, σ)] = 1

σ2 . Furthermore the model-independent
extensive bound fR, which turns out to be relevant in the regime of small σ, can be
evaluated. The resulting bound takes the form

EMSLE−1
6

1

σ2
+mn log(d)

[
1 +

1√
2πσ

e−σ
2/2

]
. (5.34)

We then observe that in the limit of a prior distribution with a vanishing variance σ → 0,
the model-independent bound is dominated by the contribution from Q[p(θ; θ̄, σ)] unless
n log(d) is on the order of σ−1. This illustrated the general point that the extensive
bound in relevant when the prior width exceeds the critical domain, i.e. σ & log(D)−1.



Chapter 6

Tight bound on finite-resolution
quantum thermometry at low
temperatures

This chapter is composed entirely of text and figures from Ref. [88] ©
2020 American Physical Society. The numerical simulations performed
for the spin-boson model are in essence an extension of work initiated
during my MSc studies and completed during the first year of my PhD
studies. The work published in Ref. [127] © 2019 American Physical
society, was worked out fully during my PhD. The paper is reproduced in
appendix B

The chapter is self-contained. In particular the notation does not con-
form to previous chapters. In addition the term relative error, refers to
the noise-to-signal ratio in this chapter. This chapter takes a conven-
tional approach to thermometry, i.e. one based on the absolute error and
the associated noise-to-signal ratio. The technical results of the chapter
are valid. However, the physical implications should be judged in light of
the results of chapter 4.

6.1 Introduction

Sensitive measurements of temperature are essential throughout natural science and
modern technology. Increasingly detailed studies of biological, chemical, and physical
processes, the miniaturisation of electronics, and emerging quantum technology drive a
need for new thermometry techniques applicable at the nanoscale and in regimes where
quantum effects become important. Many new approaches are being developed [128, 19,
90, 129, 130, 8, 131, 25, 132, 133, 134, 98], however the fundamental limits to precision
thermometry are not yet fully understood. Here, we determine a tight bound on the best
possible precision with which temperature can be estimated in cold quantum systems,
which accounts for limitations due to imperfect measurements.

The classical picture of thermometry is that of a thermometer which is brought into
thermal contact with a sample. Observing the state of the thermometer after some
time conveys information about the sample temperature. A similar picture can be
applied in the quantum regime, where an individual quantum probe, e.g. a two-level
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system, may interact with a sample system in a thermal state, and subsequently be
measured to estimate the temperature. If the probe reaches thermal equilibrium with
the sample, or a non-equilibrium steady state, optimal designs of the probe and of the
probe-system interaction can be determined [50, 106, 19, 109, 82, 113]. Outside of
the steady state regime, it was found that access to the transient probe dynamics may
outperform the steady-state protocols [103, 135, 136], that dynamical control acts as a
resource [137, 138, 139], and that thermometry can in some cases be mapped to a phase
estimation problem [140, 141]. These findings have spurred further investigations into
non-equilibrium thermometry [123, 142, 110].

Any thermometric technique will be subject to constraints due to finite measurement
resolution. In the probe-sample picture, the size of the probe will limit the amount of
information which can be extracted about the sample. More generally, any measurement
on the sample, implemented using a finite-sized apparatus, comes with a lower bound
on the attainable resolution of e.g. the system energy spectrum [143, 51, 144]. Similar
restrictions apply in situations where measurements can be made on only part of a
large sample [145, 91, 104], and clearly such finite-resolution constraints must play
an important role in formulating fundamental bounds on the attainable thermometric
sensitivity.

Here, we derive a bound on the precision scaling with temperature, as the tem-
perature approaches zero, for thermometers with finite energy resolution. Our bound
applies to any thermometric technique based on measurements which do not resolve the
individual energy levels of the sample energy spectrum. We furthermore demonstrate
that this scaling can be attained using a single-qubit probe, showing that the bound is
tight. To derive our bound, we build upon the framework for finite-resolution quantum
thermometry introduced by Potts, Brask, and Brunner in Ref. [51].

Our results also demonstrate that thermometry with a vanishing absolute error at
low temperature is possible with finite resolution, answering an interesting question left
open by previous work [51, 91, 105]. For systems with a heat capacity that vanishes at
low temperatures, a property often included in the third law of thermodynamics, the
relative error must diverge, regardless of the available resolution [51]. The absolute error
may either also diverge, stay constant, or vanish, with the latter thus being the best
behaviour one can hope for. However, for gapped systems, even the absolute error in any
unbiased temperature estimate must diverge when the temperature becomes comparable
to the gap [83]. A constant or vanishing absolute error, on the other hand, has been
seen in gapless systems, when employing a measurement with a continuous outcome
implying an infinite resolution [91]. Our results show that a vanishing absolute error
may be obtained with a finite-resolution measurement having as little as two outcomes.

This paper is organized as follows. In Sec. 6.2 we introduce a general temperature
estimation procedure, following [51], and discuss the fundamental precision bounds im-
posed by the third law of thermodynamics. In Sec. 6.3 we propose a finite-resolution
criterion, and show how this criterion leads to a tight bound on the attainable precision.
In Sec. 6.4 we generalize the framework to include noisy measurements, and finally in
Sec. 6.5 we investigate a single-qubit thermometer coupled to a bosonic bath, show-
ing that our bound can be saturated in a physical scenario. Our analytical results are
supported by numerical simulations of the temperature estimation procedure.
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6.2 Temperature estimation
We consider a quantum system described by the canonical thermal state

ρβ = exp [−βH] /Zβ, (6.1)

with H the Hamiltonian operator of the system, and Zβ ≡ Tr {exp [−βH]} the canon-
ical partition function. The thermal state is parameterized by an inverse temperature
β = 1/kBT where kB is the Boltzmann constant. For convenience we adopt units in
which kB = 1, such that temperature has the units of energy. The task we consider
is how to estimate the temperature T of the system. We remark that throughout we
consider thermal states where the temperature does not itself fluctuate. However, since
temperature is not directly measurable (it is not a quantum mechanical observable),
there are fluctuations in any temperature estimate based on indirect measurements.

6.2.1 Quantifying the estimation precision

A general temperature estimation procedure consists of first performing a measurement
on the system. The most general N -outcome measurement is represented by a positive-
operator valued measure (POVM) with N elements Πm. Such POVMs capture any pos-
sible measurement in quantum mechanics, including scenarios in which information is
obtained through a probe interacting with the system, as well as those exploiting quan-
tum coherence [131, 103, 135]. Each POVM element Πm corresponds to a measurement
outcome m which is observed with probability

pm;β = Tr {Πmρβ} , (6.2)

and the resulting probability distribution encodes the system temperature as a statistical
parameter. The second step in estimating the temperature is to construct an estimator
Test. A general prescription for doing this does not exist [62]. However, it can be shown
that for any unbiased estimator the variance is lower bounded through the Cramer-
Rao inequality δT 2

est ≥ 1/νFT [76], where ν is the number of independent measurement
rounds and

FT :=
N∑
m=1

pm;β [∂T ln pm;β]2 , (6.3)

is the Fisher information. We note that the Cramer-Rao inequality is asymptotically
tight for Bayesian or maximum likelihood estimators [62]. Throughout, motivated by the
Cramer-Rao inequality, we adopt the Fisher information as the quantifier of precision.

Identifying measurement strategies for which the temperature estimate can achieve
minimal variance corresponds to maximizing the Fisher information over all possible
measurements (POVMs). This results in a measurement-independent quantity, the
quantum Fisher information FQT [48] . Within the canonical ensemble, it can be shown
that a projective measurement of the system energy is optimal [83, 51]. The quantum
Fisher information is then related to the variance of the system energy

T 4FQT =
〈
H2
〉
− 〈H〉2 , (6.4)

where 〈O〉 = Tr {Oρβ}. This expression provides a fundamental upper bound on the
attainable value of the Fisher information for any measurement at any temperature. As a
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Figure 6.1: This figure and caption is taken from Ref. [88] ©2021 American
Physical Society. The chapter is self-contained. Finite measurement resolution
is interpreted as an inability to sharply distinguish between consecutive sys-
tem energy eigenstates and results in a non-trivial constraint on the attainable
thermometric precision. For a macroscopic system with an effectively continu-
ous energy spectrum, any measurement is subject to finite resolution and thus
limited by the bound in Eq. (6.27).

consequence of the third law of thermodynamics, or more explicitly the assumption that
the heat capacity vanishes at zero temperature, the variance of the system energy must
vanish at least quadratically in temperature as absolute zero is approached [51]. Hence it
follows that T 2FQT must vanish in the low-temperature limit, and that the relative error
δT 2

est/T
2 must diverge by virtue of the Cramer-Rao inequality. This relation constitutes

the ultimate bound on the optimal low-temperature scaling behaviour of the Fisher
information, applicable for any system and for any measurement strategy.

6.2.2 Accounting for measurement limitations

In many settings of interest, it is not realistic to implement a projective measurement of
the system energy. For instance, whenever the gaps in the energy spectrum are below
the energy resolution of the available measurement [91], which happens, e.g., when the
system is large enough to appear continuous while the measurement apparatus has a
finite size, or whenever only a finite part of the full system can be interacted with within
a finite time (see Fig. 6.1). Under such conditions of constrained experimental access,
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it is useful to introduce the POVM energies [51]

Em;β :=
1

pm;β

Tr {ΠmHρβ} , (6.5)

where Em;β may be interpreted as the best guess of the system energy before the mea-
surement, given that outcome m was observed [51]. In the case of projective energy
measurements on the system, the POVM energies coincide with the system energy eigen-
values. In general however, the POVM energies are temperature dependent.

For convenience we may identify a specific POVM energy E0;β, defined as the smallest
POVM energy in the low-temperature limit. We can then introduce the POVM energy
gaps ∆m;β := Em;β−E0;β, which by definition are non-negative at low temperatures. In
terms of these gaps, the Fisher information for a general measurement is given by

FT =

∑
m pm;β∆2

m;β − (
∑

m pm;β∆m;β)2

T 4
. (6.6)

Similarly to the quantum Fisher information, the above expression takes the form of an
energy variance. However for general measurements the energy spectrum of the system is
replaced by the spectrum of POVM energies, and the Boltzmann probabilities associated
with projective energy measurements are replaced by the POVM probabilities. These
changes incorporate restrictions due to limitations of the measurement on top of those
imposed by the system itself.

In investigating the scaling behaviour we are implicitly assuming that the Fisher
information is a continuous function of temperature, which implies that the POVM
energy gaps ∆m;β must also be continuous functions. Following Ref. [51], we are going
to study the scaling behaviour of the Fisher information when the POVM energy gaps
have a well-defined power-series expansion in temperature around absolute zero

∆m;β = ∆m,0 +
∞∑
k=1

∆m,kβ
−k. (6.7)

By virtue of Weierstrass’ approximation theorem, any continuous function can be ap-
proximated arbitrarily well by such a power series [146]. Note that this formulation
does not exclude the case of projective energy measurements as this would be described
by a series with only the constant term. For more general measurements, however, the
expansion might contain non-zero higher-order coefficients.

Following Potts et al. [51] we can make use of the relation between the POVM energies
and the associated probabilities (Eq. (6.5)) to write ∆m;β = −∂β ln pm;β/p0;β. Given the
power-series expansion of the POVM energy gaps, we can integrate this equation and
express the ratio of the probabilities for outcomes m and 0 as

pm;β

p0;β

= gme
−β∆m,0β−∆m,1

∞∏
k=1

e∆m,k+1β
−k/k, (6.8)

where gm is a temperature-independent integration constant. We stress that as a con-
sequence of how we defined E0;β, the probability p0;β is the largest probability at zero
temperature and must be non-vanishing in this limit. We thus obtain an expression for
the probability of obtaining outcome m given fully in terms of the expansion coefficients
of the corresponding POVM energy gap (note that the explicit dependence on p0;β could
be avoided by using the fact that the full distribution must be normalised).
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6.2.3 Low-temperature scaling behaviour

The above model of limited measurements allows us to obtain, by substituting Eqs. (6.7)
and (6.8) into Eq. (6.6), an expression for the Fisher information given fully in terms
of the POVM energy gaps. Based on this, we can analyse the possible scaling behaviour
of the Fisher information, as the system approaches zero temperature. First of all, we
note that Eq. (6.6) can be rewritten as

FT =
1

2T 2

∑
m,n

pm;βpn;β (β∆m;β − β∆n;β)2 . (6.9)

Notice that all terms on the right-hand side are positive, and because of this the scaling
behaviour of the Fisher information is determined by the term in the sum (or the set of
terms) which vanishes least rapidly as the temperature goes to zero. We now consider
the scaling that arises from different terms in Eq. (6.9). We focus on terms that result
in sub-exponential scalings, referring the reader to Ref. [51] for a discussion of the
remaining terms.

For convenience, we define the ground-state set of measurement outcomes, as those
for which the probability of obtaining that outcome remains finite at zero temperature
(note that the outcome m = 0 is in the ground-state set by definition). From Eq. (6.8),
we see that formally this set can be defined as Ω = {m |∆m,0 = ∆m,1 = 0}. Now
consider those terms in the Fisher information above where both outcomes belong to
the ground-state set. To leading order in temperature, the contribution from these
terms takes the form

1

2T 2

∑
m,n∈Ω

pm;βpn;β (∆m,j −∆n,j)
2 T 2(j−1), (6.10)

where j labels the lowest order for which the expansion coefficient of any element in
the ground-state set is non-zero (j ≥ 2). These terms in the sum thus vanish at
least quadratically, giving at best a constant contribution to the Fisher information.
Notice that if the ground-state set contains only a single outcome (m = 0), then the
contribution is identically zero.

Next we consider the terms in the Fisher information where one of the outcomes be-
long to the ground-state set but the other one does not. To this end, we define the set of
outcomes Ω̃ = {m |∆m,0 = 0 and ∆m,1 6= 0}, for which the associated probability vanish
sub-exponentially as the temperature goes to zero. The set of outcomes Ω̃ has an asso-
ciated POVM energy coinciding with that of the ground-state set at zero-temperature,
but exhibits a linear degeneracy splitting at finite temperature. To leading order in
temperature, the contribution from the corresponding terms is

1

T 2

∑
m∈Ω̃

gm∆2
m,1T

∆m,1 , (6.11)

which vanishes at a rate determined by the the first-order expansion coefficients ∆m,1.
It is straightforward to show that all other contributions vanish exponentially in the
low-temperature limit.

The (sub-exponential) low-temperature behaviour of the right-hand side of the Fisher
information (6.9), is generally given by the sum of Eq. (6.10) and Eq. (6.11). Which of
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these two dominate depends on the smallest first-order expansion coefficient. If the set
Ω̃ is not empty, and at least one element in the set has a value ∆m,1 < 2(j − 1), where
j denotes the lowest order with non-vanishing expansion coefficient within the ground-
state set, then the low-temperature behaviour of the Fisher information is captured
by

FT =
∑
m∈Ω̃

gm∆2
m,1T

∆m,1−2. (6.12)

In principle the first-order coefficient can take any positive value without violating the
scaling bound imposed by the third law of thermodynamics (ensuring divergence of the
relative error). Notice that even a divergent low-temperature behaviour of the Fisher
information can in principle be realised, if ∆m,1 can take a value smaller than 2.

6.3 Scaling bound for large systems

In this section, we propose a finite-resolution criterion characterizing realistic measure-
ments. We aim to capture any situation in which the available measurements cannot
resolve the individual gaps in the system energy spectrum, which therefore appears
continuous. Below, we make this statement precise. We then go on to show how this
criterion leads to a lower bound on the first-order coefficient ∆m,1, constraining the low-
temperature scaling of the error in any temperature estimation scheme. Furthermore we
present an example of a measurement saturating the finite-resolution bound, showing
that the bound is tight.

6.3.1 Finite-resolution criterion

In the regime where the system has an effectively continuous energy spectrum (as the
measurement only resolves energy differences much larger than the gaps in the spectrum,
it is convenient to work with the system density of states D(ε) :=

∑
k dkδ(ε − εk),

where the sum is over distinct system energy eigenvalues and dk is the corresponding
degeneracy. Throughout, we adopt the convention that the smallest system energy
eigenvalue is set to zero (ε0 = 0).

Now, we introduce a filtered density of states Dm for each measurement outcome m,
as the system density of states filtered through the corresponding POVM element

Dm(ε) :=
∑
k

dkδ(ε− εk) Tr

[
Πm

1εk

dk

]
, (6.13)

where 1εk is the projection operator onto the eigenspace with energy εk. Notice that
the sum of all the filtered densities of states adds up to the total density of states.
Furthermore, we introduce the continuous filter function fm(ε), formally defined by the
values fm(εk) = Tr [Πm1εk/dk] and the straight-line segments connecting these values.
In addition we note that the density of states can be expressed as the rate of change of
the number of states with energy below ε σ(ε) =

∑
k dkθ(ε − εk), where θ denotes the

Heaviside step function. Given these, the filtered density of states decompose into the
product

Dm(ε) = fm(ε)
dσ(ε)

dε
, (6.14)
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where the filter function fully characterizes the implemented measurement. Importantly
we notice that the function σ(ε) is non-decreasing for all energies. If we compute the
Laplace transform in β of the filtered density of states, the result takes the form of a
Stieltjes integral over a measure given by σ(ε) [147]

D̂m(β) :=

∫ ∞
0

dσ(ε)fm(ε)e−βε = Zβpm;β. (6.15)

The last equality can be obtained directly from equation (6.2), and relates the Laplace
transformed filtered density of states to the product of the probability and the canonical
partition function. Notice that the measure σ(ε) is a discontinuous function of energy.

For macroscopic systems the measure can often be approximated by an effective
continuous measure, when σ(ε) and fm(ε) vary on widely separated energy scales. To
see this, we first define the averaged measure with respect to an energy window ω by

σω(ε) = θ(ε)
1

ω

∫ ε+ω/2

ε−ω/2
dsσ(s), (6.16)

which for non-zero ω is a continuous function of energy except at ε = 0, and which
tends to a differentiable function of energy as ω is increased. The inclusion of the step
function at zero energy is important if we are to capture the zero temperature limit
correctly, since it ensures that the ground-state of the averaged model coincides with
that of the exact model. For the purposes of low-temperature thermometry only the
low-energy behaviour is of importance, and to leading order in energy we adopt an
effective measure given by

dσω(ε) =
[
d0;ωδ(ε) + αωγωε

γω−1 +O(εγω)
]
dε, (6.17)

where d0;ω is an effective ground-state degeneracy and αω,γω are positive, real-valued
constants. The coefficient γω > 0 characterizes the low-energy growth in the total
number of states with energy less than ε.

If we compute the Laplace transform with respect to this averaged measure (which
now takes the form of a standard Riemann integral) we obtain to leading order in energy

D̂m;ω(β) = d0;ωfm(0)

+ αωγω

∫ ∞
0

dεεγω−1fm(ε)e−βε.
(6.18)

The averaged measure tends to overestimate the number of low-energy states as ω is
increased, however this effect becomes negligible in the limit ω � T . Now if we assume
that fm(ε) does not vary significantly across an energy range ω, then D̂m(β) is well
approximated by the averaged function D̂m;ω(β). More quantitatively we can state this
condition in the form of an inequality

| fm(ε+ ω)− fm(ε) |
ω

� 1

ω
, (6.19)

which bounds the rate of change of the filter function with energy. For macroscopic sys-
tems we can take the limit ω → 0, and in this case we are going to adopt the following
finite-resolution criterion (FRC):



81 6.3. Scaling bound for large systems

FRC: In the limit of a macroscopic system, the filter function fm(ε) tends
to a continuous, right-differentiable function of the system energy.

This is nothing more than a restatement of equation (6.19) for vanishing ω, which
restricts the rate of change of the filter function to a finite value. We note that at ε = 0,
the filter function may be discontinuous and Eq. (6.19) tends to the right derivative for
ω → 0.

6.3.2 Finite-resolution bound

Having characterized what we mean by a finite-resolution measurement, we ask what
the consequences of our finite-resolution criterion are for the behaviour of the POVM
energy gaps in the macroscopic limit. By making use of equation (6.8), we obtain the
relation (we now drop the dependence on the energy window ω and write simply d0,α
and γ)

D̂m(β) = Ĝm(β)D̂0(β), (6.20)

where for convenience we have defined the transfer function

Ĝm(β) := gme
−β∆m,0β−∆m,1

∞∏
k=1

e∆m,k+1β
−k/k. (6.21)

Now this is a relation at the level of the Laplace-transformed, filtered densities of states.
We can obtain a relationship directly between the filtered densities of states by taking
the inverse Laplace transform of both sides of Eq. (6.20). By applying the Laplace
convolution theorem [148, 149], we derive the relation

Dm(ε) =

∫ ε

0

ds Gm(ε− s)D0(s). (6.22)

We now focus on the specific case of m ∈ Ω̃. For these outcomes, the inverse Laplace
transform can be computed straightforwardly, and to leading order in energy we obtain

Gm(ε) =
gm

Γ(∆m,1)
ε∆m,1−1 +O(ε∆m,1), (6.23)

where Γ(∆m,1) denotes the Gamma function [148]. As we saw in the preceding section,
the outcomes within Ω̃ are exactly the ones with potential to provide optimal low-
temperature scaling of the Fisher information.

Recall, that the reference outcome m = 0, was chosen such that the associated
probability approaches a constant value at zero temperature. This implies that the
overlap of the POVM element Π0 with the system ground state is non-zero, and therefore
f0(0) is non-zero. On the other hand for outcomes m ∈ Ω̃ the probability vanishes in
the low-temperature limit, implying a vanishing overlap fm(0) = 0. Hence in this case
we find from equations (6.18) and (6.22) that to leading order in energy

fm(ε) =
gmd0f0(0)

αγΓ(∆m,1)
ε∆m,1−γ +O(ε∆m,1+1−γ). (6.24)

Based on this expression we can infer constraints on the linear coefficient. First, the
requirement that fm(0) = 0 gives the weakest constraint ∆m,1 > γ. This simply ex-
presses the fact that the Fisher information is upper bounded by the the quantum Fisher
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information, which scales as T γ−2 for a density of states scaling as εγ−1. Further, the
finite-resolution criterion restricts the rate of change to be bounded, d

dε
fm(ε) <∞. This

implies a tightened scaling bound

∆m,1 ≥ 1 + γ, for m ∈ Ω̃. (6.25)

Since γ > 0 by definition, this implies that the Fisher information must grow slower
than 1/T , i.e.,

lim
T→0

TFT = 0. (6.26)

Further note that a diverging Fisher information in the low-temperature limit can only
be realized through a σ(ε) that grows sub-linearly with energy, i.e., γ < 1. As an
example of a system exhibiting such a sub-linear growth we mention systems of massive
non-interacting particles at zero chemical potential [51]. For such systems γ = 1/2 for
one-dimensional geometries.

By virtue of the Cramer-Rao bound, Eq. (6.26) implies that the absolute error
(squared) must vanish more slowly than T

lim
T→0

δT 2
est

T
=∞. (6.27)

The equivalent Eqs. (6.26) and (6.27) constitute the main result of our paper. They
imply that for an effectively continuous spectrum, the low-temperature scaling of the
precision is not only bounded by the third law, which demands a diverging relative error,
but by a tighter bound. Interestingly, our bound still allows for a vanishing absolute
error, a scenario that can be physically realized as illustrated below.

6.3.3 Proving tightness of bound

We now illustrate that the proposed finite-resolution bound is tight. Consider a binary
measurement which resolves the system ground state exponentially well in the sense
that it has POVM elements

Π0 = e−κH , Π1 = 1− e−κH , (6.28)

where κ > 0. Note that the overlap of Π0 with the system energy eigenstates decays
exponentially away from zero. This feature makes is straightforward to write down the
filtered density of states. Focusing on m = 1 we find

D1(ε) =
[
1− e−κε

]
D(ε), (6.29)

where nothing has been assumed about the form of the system density of states. We thus
see that the corresponding filter function takes the form f1(ε) = κε +O(ε2) to leading
order in energy. If we adopt the density of states introduced in the preceding subsection,
that is D(ε) = d0δ(ε) + αγεγ−1 +O(εγ), then upon comparison with equation (6.24) we
find ∆1,1 = 1 + γ. Hence the binary exponential resolution measurement saturates the
finite-resolution bound.

For good measure we now show how the same conclusion can be derived directly
from the probabilities. The probability of obtaining outcome m = 0 can be written in
terms of the system partition function as

p0;β = Zκ+βZ−1
β . (6.30)
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Substituting the probabilities p0;β and p1;β = 1−p0;β into the general form of the Fisher
information (Eq. 6.3), one finds that

T 4FT =
Zκ+β

Zβ − Zκ+β

(
〈H〉β − 〈H〉κ+β

)2

. (6.31)

The partition function is given by the Laplace transform of the density of states, hence
we find Zβ = d0 exp (αγΓ(γ)β−γ/d0) (in App. 6.7.1 we show how this form of the
partition function describes a system of non-interacting bosonic modes). From this form
of the partition function we can derive the low-temperature behaviour of the average
energy

〈H〉β =
αγ2Γ(γ)

d0

β−(1+γ). (6.32)

If we substitute these into the above Fisher information, we find that to leading order
in temperature (assuming that κ/β � 1)

FT = ακγ2Γ(γ)(1 + γ)2T γ−1 +O(T 2γ), (6.33)

which takes the form of Eq. (6.12) with ∆1,1 = 1 + γ and g1 = ακγ2Γ(γ). Since γ can
in principle take any positive value, the exponential-resolution measurement saturates
the finite-resolution bound and asymptotically attains a Fisher information scaling as
1/T in the limit γ → 0.

6.4 Generalization to noisy measurements

In this section we extend the thermometry framework above to include noisy measure-
ments. As the framework is general, one might ask if noise effects are not already
accounted for. The answer is that in principle noise effects are described. However,
for some noisy measurements, the POVM energy gap does not have a Taylor expansion.
While one may still approximate the energy gap by a polynomial, a physically appealing
extension of the formalism allows for circumventing this approximation. We find that
our bound given in Eq. (6.27) also holds for noisy measurements.

6.4.1 Noisy temperature measurements

To model noisy measurements, we consider the case where the observed outcomes m
correspond to coarse graining over a fine-grained POVM with elements Πmµ. The prob-
ability of observing m is then

pm;β =
∑
µ

pmµ;β =
∑
µ

Tr {Πmµρβ} . (6.34)

Physically this could correspond to a measurement implemented using a sensor, where
only a subset of the sensor degrees of freedom (or a subspace of the full sensor Hilbert
space) is experimentally accessible. If we were to compute the Fisher information di-
rectly using the fine-grained distribution pmµ, we recover the noiseless results, and obtain
an upper bound on the Fisher information computed from the coarse-grained distribu-
tion. This fact follows directly from the relation between the relative entropy of two
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probability distributions differing by an infinitesimal temperature δT and the Fisher
information

S (pT ||pT+δT ) = FT δT 2 as δT → 0. (6.35)

Since the relative entropy is monotonically decreasing under coarse-graining [150], we
conclude that noise always reduces the Fisher information.

The question we now address is, how it impacts the attainable scaling with temper-
ature. Following the approach developed above, we introduce the fine-grained POVM
energies

Emµ;β :=
1

pmµ;β

Tr {Πmµρβ} , (6.36)

which may be interpreted as the best guess of the system energy before the measurement,
given the outcome (m,µ) [51]. For convenience we identify the smallest POVM energy
in the low-temperature limit with the outcome E00;β, and then define the fine-grained
POVM energy gap ∆mµ;β := Emµ;β − E00;β, which by definition is non-negative at low
temperatures. Modelling the fine-grained POVM energy gaps by a power-series expan-
sion around zero temperature as in Eq. (6.7), we are led to a probability distribution
identical to (6.8), but with m replaced by the compound index mµ.

Since the Fisher information is not defined with respect to the fine-grained proba-
bilities, but rather with respect to the coarse-grained probabilities, the relevant energies
are the coarse-grained POVM energy gaps defined by

∆
(c)
m;β :=

∑
µ

pmµ;β

pm;β

∆mµ;β. (6.37)

In terms of these, the Fisher information can be written in the same form as the fine-
grained Fisher information of Eq. (6.9), but with the fine-grained probability and the
fine-grained POVM energy gaps replaced by their coarse-grained versions

FT =
1

2T 2

∑
m,n

pm;βpn;β

(
β∆

(c)
m;β − β∆

(c)
n;β

)2

. (6.38)

Notice that all terms in the sum are positive. Hence, the scaling behaviour of the Fisher
information is determined by the term (or set of terms) which vanishes least rapidly as
the temperature approaches zero.

From Eq. (6.37), we can anticipate that fine-grained energy gaps that have a Taylor
expansion may result in coarse-grained gaps that do not. This may result in qualita-
tively different behaviour of the fine- and coarse-grained Fisher information. In partic-
ular, noise may render the scaling of the Fisher information worse. In appendix 6.7.2
we discuss in general terms how noise impacts the attainable Fisher information scal-
ing. In particular, we show that the noise can never result in a better scaling for the
Fisher information, implying that the bound given in Eq. (6.27) also holds for noisy
measurements. Here we illustrate the effect of noise with an example.

6.4.2 Illustration of noisy measurement

A simple example illustrating noise is obtained by adding white noise to the binary,
exponential-resolution measurement of Sec. 6.3.3. That is, we study a binary POVM
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Figure 6.2: This figure and caption is taken from Ref. [88] © 2020 Amer-
ican Physical Society. The chapter is self-contained. Illustration of filtered
density of state for a noisy binary exponential resolution measurement using
D(ε) = L−1 [exp (αβ−1)] (dotted red line) with α = 0.2. (a) The white noise
measurement corresponds to swapping the observed measurement outcomes
with some probability, such that each coarse-grained outcome has contribu-
tions both from elements within and elements not within the ground-state set.
The dashed green lines gives D00 and D01 (their sum is shown with the solid
green line), and the blue dashed-dotted lines correspond to elements D10 and
D11 (with their sum given by the solid blue line). (b) In App. 6.7.2 we show
that an alternative noise model consists of a mixing of several similar measure-
ment outcomes. In the specific case depicted here, the fine-grained outcomes
to be summed are almost identical except for projecting onto slightly different
energy distributions.

defined by Π0 = η exp (−κH) + (1− η)1/2. To understand how this noise model arises
from coarse graining a fine-grained measurement, we consider the fine-grained POVM

Π00 =
1 + η

2
e−κH , Π01 =

1− η
2

(
1− e−κH

)
,

Π10 =
1 + η

2

(
1− e−κH

)
, Π11 =

1− η
2

e−κH ,
(6.39)

such that Π0 = Π00 + Π01 and Π1 = Π10 + Π11. As in the noiseless case, we suppose
that the average energy exhibits a power-law behaviour 〈H〉β = αβ−(1+γ) at low tem-
peratures in the macroscopic limit, with α and γ both positive. The corresponding
partition function (at low temperatures) is then Zβ = exp (αβ−γ/γ). For the fine-
grained measurement outcomes, we find that to leading order in temperature (assuming
that κ/β � 1 and η < 1), the POVM energy gaps with respect to the reference E00;β,
take the form

∆00;β = ∆11;β = 0,

∆10;β = ∆01;β = (1 + γ)T +O(T 2+γ).
(6.40)
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We see that the fine-grained measurement outcomes have an associated set of POVM
energy gaps that have a Taylor series in the low-temperature limit. Furthermore, they
exhibit a linear degeneracy splitting. It then follows from Eq. (6.12) that the Fisher
information takes the form

FT = ακ(1 + γ)2T γ−1 +O(T 2γ), (6.41)

which is equivalent to the noiseless form found above [cf. Eq. (6.33)]. Notice that when
having access to the fine-grained distribution, both the POVM energies and the resulting
Fisher information is independent of the parameter η quantifying the amount of white
noise.

The picture changes when considering the coarse-grained energy gap (Eq. (6.37)).
To leading order in temperature this is given by

∆
(c)
1;β =

1 + η

1− η
ακ(1 + γ)T 2+γ +O(T 3+2γ). (6.42)

Notice that in contrast to the fine-grained energy gaps, this coarse-grained gap does not
have a Taylor expansion. Computing the Fisher information over the coarse-grained
gaps and probabilities (making use of Eq. (6.38)) gives

FT =
4η2

1− η2
(ακ(1 + γ))2 T 2γ +O(T 1+3γ). (6.43)

This example thus illustrates how noise can result in a coarse-grained gap that has no
Taylor expansion and how this may result in a different (worse) scaling for the Fisher
information at low-temperatures. Qualitatively we can understand the altered scaling
by studying the coarse-grained filtered density of states. For the example considered
here we have

D00(ε) = f00(ε)D(ε) =
1 + η

2
e−κεD(ε),

D01(ε) = f01(ε)D(ε) =
1− η

2

(
1− e−κε

)
D(ε),

(6.44)

and under coarse-graining these are added together. Notice that whereas the filter
function f01(ε) goes to zero as ε→ 0, this is not true of f00(ε) + f01(ε) (the same feature
is found for the m = 1 outcomes). Hence in this case the noise removes outcomes from
the set Ω̃, resulting in the worse scaling (note that a vanishing filter function at ε = 0
implies a vanishing probability at T = 0 and vice versa, cf. Eq. (6.15)). This effect is
illustrated in Fig.6.2a. In App. 6.7.2 we study an alternative noise model. In this model
each coarse-grained outcome can be seen as the sum of several similar (in the sense
of preparing similar energy distributions) fine-grained outcomes. This is illustrated in
Fig.6.2b.

The noisy framework put forward here shows that our finite-resolution bound, as
well as the results of Ref. [51] apply for any POVM that can be written as a coarse
graining over a fine-grained POVM which has a spectrum with a well defined Taylor
series. As the coarse-grained POVM itself may not have a spectrum with a well defined
Taylor series, this extends the applicability of the results of Ref. [51] (as long as we do
not want to rely on approximate Taylor series in the spirit of the Weierstrass theorem).
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6.5 Single-qubit probe

6.5.1 Measurement protocol

We now illustrate our results by considering temperature estimation of a system of
non-interacting bosons using a single qubit as a probe. The system is described by
a spectrum of single-particle energies ωk (we take ~ = 1). Consider the following
measurement strategy: (i) first we initialise the probe qubit in its ground state |0〉, (ii)
then an interaction is turned on between the probe and the system for a short time t,
and (iii) we perform a projective measurement of the qubit energy. Given this protocol,
the probability of finding the qubit in the excited state |1〉 is

p1;β = Tr
{
〈0|U †t |1〉〈1|Ut |0〉 ρβ

}
. (6.45)

We take the time-evolution operator Ut to be generated by a time-independent Hamil-
tonian

H =
∑
k

ωka
†
kak +

Ω

2
σz +Hint, (6.46)

where a†k, ak denotes the bosonic creation and annihilation operators. The probe qubit
is characterised by the three Pauli operators {σx, σy, σz}, and we take the probe energy
to be proportional to the σz operator.

Computing the outcome probabilities requires specifying an interaction Hamiltonian
and determining the resulting dynamics. This task is complicated by the fact that the
low-temperature and short-time regime is generally not accessible via standard Marko-
vian master equations [151, 19]. However, if the interaction time is sufficiently short we
can make analytical progress by approximating the probability up to second order in t.
In this case we find that

p1;β = t2 Tr {〈0|Hint |1〉〈1|Hint |0〉 ρβ}+O(t4). (6.47)

We consider a linear interaction Hamiltonian consisting of an excitation-preserving part
and a non-excitation-preserving part. Introducing the raising and lowering operators
σ± = 1

2
(σx ± iσy) for the probe qubit, the interaction Hamiltonian takes the form

Hint =
∑
k

gk

[
σ+ak + σ−a

†
k

]
+
∑
k

λk

[
σ−ak + σ+a

†
k

]
,

(6.48)

where {gk, λk} are real-valued coupling coefficients. In the limit of a macroscopic system,
these coupling coefficients are taken to approach continuous functions. Physically this
means that the interaction cannot selectively probe an individual system mode (ensuring
that the finite resolution criterion is satisfied).

GivenHint, it becomes straightforward to show from Eq. (6.47) that the excited-state
probability at short times takes the form

p1;β = t2
∑
k

(
g2
k + λ2

k

)
nβ(ωk) + t2

∑
k

λ2
k, (6.49)
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where nβ(ωk) denotes the Bose-Einstein distribution. We see that the probability con-
sists of two contributions: a temperature-dependent term, in which the probability is
directly related to the occupation of the bath modes, and a temperature-independent
term. The presence of the temperature-independent term means that the probability
of finding the probe qubit in the excited state is generally non-zero even at arbitrarily
low temperatures. As in the example in Sec. 6.4.2, this prevents a scaling of the form
of Eq. (6.12) and can be captured by our framework for noisy thermometry.

6.5.2 Excitation-preserving interaction

We now focus on the excitation-preserving case (λk = 0), and consider an interaction
characterised by a continuous spectral density of the form

ρ(ω) =
∑
k

g2
kδ(ω − ωk) = 2αω1−s

c ωse−ω/ωc , (6.50)

where α is the dissipation strength, s is the ohmicity and ωc is the cutoff energy [37,
38, 152, 151]. The sum in the excited-state probability (6.49) is then replaced by an
integral, which can be solved analytically. In the low-temperature limit we find

p1;β = 2α (ωct)
2 Γ(1 + s)

(
T

ωc

)1+s

+O(T 2+s). (6.51)

We see that this protocol gives a probability vanishing sub-exponentially as the tem-
perature goes to zero, and comparing with the general expression Eq. (6.8), we see that
to lowest order, the POVM gap scales as ∆1 = (1 + s)T . The case of an excitation-
preserving interaction can thus (for short time at least) be described within our noiseless
thermometry framework.

From the value of the linear expansion coefficient, ∆1,1 = 1 + s, it follows that
for ohmicity approaching zero, the finite-resolution bound ∆1,1 ≥ 1 is approached.
The corresponding Fisher information scales as FT ∝ T s−1 and thus diverges for sub-
Ohmic baths in the low-temperature limit. This serves as an illustration that the finite-
resolution bound is in principle attainable via an excitation-preserving interaction in the
short-time limit, and thus the bound is tight. Realising such an excitation-preserving
interaction may however be challenging.

6.5.3 Excitation-non-preserving interaction

We now turn to the arguably more realistic excitation non-preserving case. The case
λk = gk corresponds to the well-known spin-boson model [153, 37, 152, 38]. Adopting
the same spectral density as above, the excited-state probability in this case takes the
form

p1;β = 4α (ωct)
2 Γ(1 + s)

(
T

ωc

)1+s

+ 2α (ωct)
2 Γ(1 + s) +O(T 2+s).

(6.52)

In contrast to the excitation-preserving case, this probability does not in general corre-
spond to the noiseless version of Eq. (6.8) since the POVM energy gap ∆1 ∝ T s+2, does
not have a Taylor expansion for arbitrary s at low temperatures. However, as shown
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Figure 6.3: This figure and caption is taken from Ref. [88] ©2020 American
Physical Society. The chapter is self-contained. Numerically computed Fisher
information for (a) the sub-Ohmic (s = 1/2), and (b) the Ohmic (s = 1)
spin-boson model, with δt = 0.1/Ω, α = 0.1 and ωc = 10Ω. The solid black
lines display the short-time analytical results at time Ωt = 0.2, showing good
agreement with the numerical simulations. In case (b) the simulations exhibit
a quadratic temperature scaling at low temperatures, while in case (a) a linear
scaling is obtained. The solid grey line gives the Fisher information obtained
from the steady state of a secular Born-Markov master equation, which scales
exponentially at low temperatures [51].

in App. 6.7.3, this scenario can be described using a fine-grained POVM with energy
gaps that do have a Taylor expansion. Therefore, the scenario is captured by the noisy
framework.

Given the probability (6.52), a short calculation shows that the Fisher information
has a low-temperature scaling given by FT ∝ T 2s. Again, this is in full agreement with
the general noisy theory developed above. Within the spin-boson model, the Fisher
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information thus vanishes quadratically for an Ohmic spectral density with s = 1, and
linearly for a sub-Ohmic spectral density with s = 1/2.

To corroborate the analytical results based on the short-time approximation, we
turn to a numerical simulation of the Fisher information for the spin-boson model. To
perform the simulations we made use of the recently developed tensor-network TEMPO
algorithm and its extension to multi-time measurement scenarios [154, 127]. Details of
the simulations are provided in App. 6.7.4. Making use of this algorithm has the benefit
that the temperature derivative of the excited state can itself be expressed as a tensor
network and computed to the same level of accuracy as the probability itself.

Results for the Ohmic and the sub-Ohmic cases are shown in Fig. 6.3. Generally
we find that the short-time approximation provides a good description of the observed
scaling behaviour at sufficiently short times. Even more interesting we note that the
scaling behaviour predicted within the short-time approximation is valid even at times
well beyond the regime in which the short-time approximation is expected to hold
(αδt2Γ(1 + s)ω2

c � 1). This indicates that the predicted precision scaling is experimen-
tally relevant, even without the requirement of being able to probe the non-equilibrium
qubit dynamics at very short-times. Notice that the low-temperature Fisher informa-
tion tends to initially increase with time as information about the environment state is
extracted by the qubit. After some time the low-temperature Fisher information starts
to decrease. This can be understood as the qubit reaching a stationary state, such that
a one-time measurement performed on the qubit can no longer probe the relaxation
dynamics induced by the coupling with the thermal bath (see also [50, 19]).

Finally, we note that at sufficiently low temperatures the simulated Fisher informa-
tion differs from the Markovian result, even for the rather weak coupling and long times
considered here. A similar effect was observed in the context of temperature estima-
tion via the Kubo-Martin-Schwinger-like relations obeyed by emission and absorption
spectra of multichromophoric systems [155]. There it was pointed out that faithfully
recovering the temperature from observed spectra requires taking into account system-
environment correlations. This is true even at very low coupling strengths, where these
correlations are generally weak.

6.6 Conclusion

In this paper we have discussed precision scaling for thermometry in cold quantum
systems. In particular, we have investigated how finite measurement resolution, mean-
ing that states that are close in energy cannot be perfectly distinguished, impacts the
precision scaling. We have proposed a finite-resolution criterion characterising such mea-
surements. Based on this, we derived a tightened bound on the scaling of the Fisher
information. Furthermore, we showed that this bound is tight as it can be saturated
via both an exponential resolution measurement as well as an excitation-preserving,
single-qubit measurement on a sample of non-interacting bosons. We validated the
approximations involved in demonstrating tightness for the single-qubit measurement
by performing a numerical simulation of the sub-Ohmic spin-boson model. Here, we
provided an illustration of a Fisher information scaling linearly with temperature. In-
terestingly, as far as we are aware, this is the best scaling which has been found in any
concrete physical model subject to finite-resolution constraints.
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6.7 Appendix

6.7.1 Density of states for a bosonic bath

Consider a collection of non-interacting bosonic modes with HamiltonianH =
∑

k ωkb
†
kbk.

The partition function of this system takes the form

lnZβ = −
∑
k

ln
[
1− e−βωk

]
. (6.53)

In the continuum limit, the sum over modes can be approximated by the integral over
a continuous density of modes g(ω)

lnZβ = −
∫ ∞

0

dωg(ω) ln
[
1− e−βω

]
. (6.54)

Expanding the logarithm in powers of e−βω and re-scaling each term in the resulting
series, we can write the above as

lnZβ =

∫ ∞
0

dω

[
g(ω) +

g(ω/2)

2
+ ...

]
e−βω (6.55)

In the low-temperature limit, this integral is dominated by the low-energy part of the
density of modes. If we assume that at low-energies the density of modes takes the form
g(ω) = αωγ, where α and γ are positive constants, then the integral takes the form

lnZβ = α

(
∞∑
n=1

1

n1+γ

)∫ ∞
0

dωωγe−βω

= αζ(γ + 1)Γ(γ + 1)β−(1+γ),

(6.56)

where ζ denotes the Riemann zeta function and Γ the gamma function. Thus

Zβ = exp
(
αζ(γ + 1)Γ(γ + 1)β−(1+γ)

)
. (6.57)

This expression has the general form used in the main text if we make the identification
1 + γ → γ.

6.7.2 Scaling behaviour for the noisy model

In the low-temperature limit, the dominant fine-grained probabilities are those with a
vanishing zeroth-order coefficient in the POVM energy-gap expansion, and only coarse-
grained probabilities containing contributions from such terms are relevant. For conve-
nience we introduce two sets of fine-grained outcomes: First Ωm = {µ |∆mµ,0 = ∆mµ,1 =
0}, which is the set of fine-grained outcomes giving a non-vanishing contribution to the
coarse-grained probability of obtaining outcome m. Second, Ω̃m = {µ |∆mµ,0 = 0 and
∆mµ,1 6= 0}, which is the set of fine-grained outcomes for which the contribution to
the coarse-grained probability for m vanishes sub-exponentially. Lastly, to simplify the
later discussion, we denote the specific outcome within Ω̃m which realises the smallest
value of the first-order coefficient by µ̃m.

We now note that if there exists some coarse-grained outcome m such that Ωm

is empty while Ω̃m is non-empty, then the arguments presented for the noiseless case
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also apply to the noisy case, and the same optimal scaling behaviour of the Fisher
information can be attained. Thus, in this case, the noise is not detrimental for the
scaling. On the other hand, if no such m exists, then we refer to detrimental noise
(assuming that Ω̃m is non-empty for at least one outcome). For detrimental noise we
are then left with outcomes for which Ωm is non-empty, while Ω̃m may or may not be
non-empty. We now show that detrimental noise results in a worse scaling compared to
the noise-free scenario. This implies that our finite-resolution bound is also applicable
to noisy measurements.

Consider the right-hand side of Eq. (6.38) for the case of detrimental noise. For
terms where both Ω̃m and Ω̃n are empty, the scaling behaviour is identical with that of
the corresponding noiseless terms (Eq. (6.10)), except that the noiseless coefficients of
the POVM energy gap must be replaced by the coarse-grained version

∆
(c)
m,j ≡

∑
µ∈Ωm

pmµ;β

pm;β

∆mµ,j. (6.58)

If a coarse-grained second-order POVM energy gap exists (that is ∆
(c)
m,2 −∆

(c)
n,2 6= 0 for

some m and n), then the same scaling behaviour of the Fisher information as given by
Eq. (6.10) is attainable and this scaling is optimal (note that the probabilities considered
here tend to nonzero constants at zero temperature). If a second-order gap does not
exist, then the optimal scaling is instead provided by terms for which Ω̃m is non-empty
for some m. A straightforward calculation shows that the contribution from such terms
takes the form

[gmµ̃m∆mµ̃m,1]2∑
µ∈Ωm

gmµ
T 2∆mµ̃m,1−2, (6.59)

which should be summed over all outcomesm for which both Ωm and Ω̃m are non-empty.
Assuming that the finite-resolution criterion applies (∆mµ̃m,1 ≥ 1), this contribution is
at best constant. Hence under the conditions of finite resolution and detrimental noise,
a diverging Fisher information is impossible.

As a second example of a noisy measurement we can consider the coarse-graining of
a fine-grained measurement of the form

Π00 =
1

2
e−κH , Π01 =

1− η
2

e−κH ,

Π10 =
1

2

(
1− e−κH

)
, Π11 =

1

2
1− 1− η

2
e−κH .

(6.60)

This fine-grained model is illustrated in Fig. 6.2b. For this measurement we find ∆00;β =
∆01;β = 0 and

∆10;β ≈ (1 + γ)T + (1 + γ)ακT 2+γ

∆11;β ≈ (1 + γ)
ακ

η
T 2+γ.

(6.61)

Hence, as in the previous example, the fine-grained measurement gives a Fisher infor-
mation scaling as T γ−1 to leading order, and the coarse-grained measurement gives a
T 2γ scaling,

FT =
(2− η) (ακ)2

η
(1 + γ)2T 2γ +O

(
T 1+3γ

)
. (6.62)

Thus the same scaling behaviour of the Fisher information is observed for this alternative
example of a noisy model. Note that both models exhibit detrimental noise which results
in the different scalings for the fine- and coarse-grained Fisher information.
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6.7.3 The non-excitation-preserving interaction as a noisy POVM

From Eq. (6.47), we find that the POVM elements can be written as

Π1 = t2 〈0|Hint |1〉〈1|Hint |0〉 , (6.63)

and Π0 = 1 − Π1. In the thermal state under consideration, there are no coherences
between different bosonic modes and there is no squeezing. Therefore, many terms in
Eq. (6.63) do not contribute to the probabilities. Dropping these terms, we can write
a slightly simpler POVM that results in the exact same probabilities, capturing the full
effect of the measurement

Π̃1 = t2
∑
k

(
g2
k + λ2

k

)
a†kak + t2

∑
k

λ2
k, (6.64)

and Π̃0 = 1− Π̃1. This POVM has an energy gap that has no Taylor expansion, scaling
as T 2+s in the low temperature limit for gk = λk and the spectral density given in
Eq. (6.50). We can however write the POVM in Eq. (6.64) as a coarse graining over the
fine-grained POVM (note the similarity to Eq. (6.39))

Π̃11 =
1 + η

2
X, Π̃10 =

1− η
2

(1−X),

Π̃00 =
1 + η

2
(1−X), Π̃10 =

1− η
2

X,
(6.65)

such that Π̃1 = Π̃11 + Π̃10 and Π̃0 = Π̃00 + Π̃01. Here we introduced

η = 1− 2t2
∑
k

λ2
k, (6.66)

and

X =
t2
∑

k(g
2
k + λ2

k)a
†
kak

1− 2t2
∑

k λ
2
k

. (6.67)

The fine-grained POVM elements are of the same form as the POVM elements for the
excitation-preserving case. Indeed, setting λk = 0, only Π̃00 and Π̃11 remain finite but
do not change their form. We therefore find the same POVM gaps as for the excitation-
preserving case

∆00 = ∆10 = 0, ∆11 = ∆01 = (1 + s)T. (6.68)

The Fisher information for the fine-grained POVM thus scales as T s−1. The coarse
grained POVM gap is determined by Eq. (6.37) and reads

∆1 =
p11

p11 + p10

(1 + s)T, (6.69)

which scales as T s+2 for the scenario considered in the main text.

6.7.4 Tensor network simulation

The numerical simulations performed for the spin-boson model are in
essence an extension of work initiated during my MSc studies and com-
pleted during the first year of my PhD studies. The work was published in
Ref. [127] ©2019 American Physical society. This paper is reproduced in
appendix B.
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Here we provide details of the numerical methods behind the result shown in Fig. 6.3.
We consider the ground state probability

p
(k)
0;β = Tr

{
P̂0 Ukδt

[
P̂0 ⊗ ρβ

]}
, (6.70)

where P̂0 is a projection operator onto the qubit ground state |0〉, and we have decom-
posed the unitary evolution into k-steps of duration δt. Furthermore we consider the
spin-boson model

Ĥ =
∑
k

ωkâ
†
kâk +

1

2
Ωσ̂z +

1

2
σ̂x
∑
k

gk

(
ak + a†k

)
. (6.71)

The spin-boson model can be numerically simulated using recently developed tensor
network methods [154, 127]. Taking each unitary step to be of a short duration we can
make the approximation (Trotter-Suzuki decomposition)

Uδt = Wδt/2VδtWδt/2 +O(δt3), (6.72)

whereWδt = exp
(
−iδt(Ĥ − Ωσ̂z/2)

)
describes the influence of the sample on the probe

qubit, and Vδt = exp (−iδtΩσ̂z/2) describes the free evolution of the probe qubit. As
the interaction term is diagonal in the eigenstates of the operator σ̂x, we can expand
the ground state probability in terms of these eigenstates. This gives rise to a discrete
Feynman-Vernon Influence functional, which can be summed analytically. The ground
state probability then takes the form

p
(k)
0;β =

∑
{α}

P̂
α2k+1

0 Vα2kα2k+1

δt ...Vα2α1
δt P̂α0

0

×
[
Π2k
i=1Πi

j=1A
αiαj
β

] [
Πk
l=0δα2l+1,α2l

]
.

(6.73)

where we have introduced a compound index α = (s, r) of spin-x eigenvalues, δαi,αj
denotes the Kronecker delta function, P̂α

0 = 〈s|P̂0|r〉, and V are the Liouville operators
representing the free dynamics of the ancilla qubit

Vαα′δt = 〈s|Vδt |s′〉〈r′|V †δt |r〉 . (6.74)

The influence tensors, Aαiαjβ , describe the influence of the sample on the state of the
qubit and contain all the temperature dependence of the probability. For linearly cou-
pled models, the individual tensors depend only on the time separation (i− j)δt/2. The
influence tensors are given by

Aαiαjβ = e−(si−ri)(ηi−jsj−η∗i−jrj), (6.75)

expressed in terms of the memory kernel elements

ηi−j =

{∫ ti
ti−1

∫ tj
tj−1

dt′dt′′C(t′ − t′′) , i 6= j∫ ti
ti−1

∫ t′
ti−1

dt′dt′′C(t′ − t′′) , i = j
, (6.76)

which are themselves defined in terms of the bath auto-correlation function

C(t) =
1

π

∫ ∞
0

dωρ(ω)
cosh [ω(β − it)]

sinh (βω/2)
. (6.77)
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The bath auto-correlation function is given in terms of the spectral density ρ(ω) intro-
duced in the main text.

The attainable temperature estimation precision depends not only on the ground
state probability, but also on the derivative of this probability. Computing the derivative
of the distribution with respect to the inverse temperature gives

∂βp
(k)
0β =

2k∑
i=1

i∑
j=1

µij
∑
{α}

[
Πk
l=0δα2l+1,α2l

]
× P̂α2k+1

0 Vα2kα2k+1

δt ...Vα2α1
δt P̂α0

0

×
[
Π2k
i=1Πi

j=1A
αiαj
β

]
α−i α

−
j

(6.78)

where we have defined α− = s− r. It turns out that the same tensor network methods
used to compute the probability can be used to compute the derivative of the prob-
ability. Furthermore we have defined µij = −∂βηi−j, the square of which gives the
Fisher information scaling at low-temperatures. At low temperatures, all the tempera-
ture dependence of the ground-state probability comes from these coefficients. We can
approximate them by the series

µij =
αδt2

4βγ+2
×
[
Γ(γ + 2)− δt2

8β2
(i− j)2Γ(γ + 4)

+
δt4

376β4
(i− j)4Γ(γ + 6)− ...

] (6.79)

This shows that, to leading order, the exact expressions reproduce the low-temperature
Fisher-information scaling obtained within the short-time approximation.
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Chapter 7

Optimal Quantum Thermometry with
Coarse-grained Measurements

This chapter is composed entirely of text and figures from Ref. [124] ©
2021 American Physical Society. The appendix of the published paper [124]
contains technical results and has not been included.

The chapter is self-contained. In particular the notation does not con-
form to previous chapters. This chapter takes a conventional approach
to thermometry, i.e. one based on the absolute error and the associated
noise-to-signal ratio. The technical results of the chapter are valid. How-
ever, the physical implications should be judged in light of the results of
chapter 4.

7.1 Introduction

Thermometry is a basic metrological task, vital throughout science and technology.
Estimating temperature is important on all scales, ranging from astronomical bodies
with temperatures in the millions of Kelvin to atomic systems near absolute zero. In
particular, applications of thermometry in nano- or micro-scaled devices are becoming
increasingly relevant as technology advances [26, 156, 45, 157]. Examples include, for
instance, accurate temperature estimation of ultra-cold gases [158, 159, 160, 19, 20],
in electronic systems [25, 22, 161], or the use of atomic-size devices, such as colour
centers in diamond or quantum dots, as probes to be employed in a variety of systems
[162, 8, 130, 163]. At these scales, quantum effects have significant influence on the
achievable precision. It is therefore important to understand what the fundamental
limits for temperature estimation in quantum systems are.

Quantum features offer both advantages and challenges to thermometry [46, 45].
Advantages range from measurement enhancements due to strong coupling [106, 91,
19], correlated probes [110, 114], or nonequilibrium probes [164, 165, 103, 166, 123, 167,
168, 169]. The challenges are related to the inherent difficulty of accessing information
in quantum systems, due, for instance, to measurement backaction or natural limitations
in performing high-resolution measurements [51, 88].

When the measurement resolution is unlimited, the ultimate precision of temper-
ature estimation allowed by quantum mechanics is obtained by performing projective
measurements of energy [50, 83, 170]. However, for large (or even moderately-sized)

97
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many-body systems, one seldom has access to measurements which distinguish individ-
ual energy levels. Instead, one usually measures only a local subsystem of the sample
[104, 133, 91] or performs a global measurement with only a finite resolution [51, 88]
[see Fig. 7.1(a)]; alternatively, one addresses the sample indirectly, by measuring a probe
that has interacted with it [106, 91, 171, 167, 169] [see Fig. 7.1(b)]. All of these cases
are examples of a coarse-grained measurement, which from an abstract point of view
can be described by a d-outcome generalized quantum measurement of a D-dimensional
system, with d < D. The fact that d� D in most physically relevant cases may reduce
the precision significantly. It is hence natural to ask what the optimal measurement
strategy and the associated precision of temperature estimation are under such limita-
tions. In this paper, we put forth a framework for addressing this question in detail.
The framework is based on ideas from signal processing and parameter-estimation the-
ory, and provides a simple, easy-to-use toolbox for studying coarse-grained thermometry
of both few- and many-body systems. We illustrate the framework by applying it to
paradigmatic many-body models of spin lattices, both close to and far from criticality.

In a second part of the article, these abstract ideas are applied to probe-based tem-
perature measurements. Here, the temperature of a sample is estimated by letting it
interact with a probe (and possibly some auxiliary system), and then measuring the
probe, as illustrated in Fig. 7.1(b). These type of measurements are particularly ap-
pealing since they provide a natural way to overcome one of the main challenges in
thermometry: the design of noninvasive measurements, , e.g., for ultra-cold atomic
gases [17, 172, 173, 174, 175, 20]. In such probe-based measurements, a natural strat-
egy is to let the probe reach thermal equilibrium with the sample [50]. Yet, it has been
shown that the precision can be considerably enhanced by nonequilibrium strategies,
where the probe either interacts with the sample for a finite time [164, 165, 103, 176,
166, 123, 177, 167, 168, 20], couples strongly to the sample [106, 91], or uses an ancillary
catalytic system [169]. Here, we use our framework to obtain a fundamental bound on
any such nonequilibrium strategy. We map the problem of probe-based thermometry
to that of coarse-grained thermometry, and determine the maximal sensitivity that can
be obtained with a probe of dimension d. We construct a specific fine-tuned sample-
probe interaction that always saturates the bound, and notably show that it can also
be reached in relevant experimental situations. In particular, when the sample and
the probe are described by a harmonic oscillator and a qubit, respectively, the optimal
nonequilibrium estimation scheme in the low-temperature regime can be obtained via
the Jaynes-Cummings Hamiltonian. This is of direct relevance to temperature measure-
ments of Bose-Einstein condensates [178] or micromechanical resonators [164, 165] via
qubit probes.

7.2 Framework

To be specific, we consider a system S living in a D-dimensional Hilbert space, described
by a Hamiltonian H, and initially in a canonical thermal state

τ =
1

Z
e−βH , (7.1)

where β = 1/T is the inverse temperature (we adopt units such that kB = 1) and
Z = Tr e−βH is the partition function. This is a family of states parameterized by



99 7.2. Framework

Figure 7.1: This figure and caption is taken from Ref. [124] ©2021 American
Physical Society. (a) Thermometry with coarse-grained energy measurements.
The measurement can be understood as resulting from post-processing of a fine-
grained, projective energy measurement. Energies are grouped into bins and
a single outcome is assigned to each bin. (b) Thermometry with probe-based
measurements. A probe interacts unitarily with a target system. A measure-
ment is then performed on the probe alone and used to infer the temperature
of the target.

the temperature, and the smallest variance in estimating this parameter, based on any
measurement, is hence lower bounded by the quantum Cramér-Rao bound [48] (see also
[179, 180])

∆T 2 ≥ 1

nF(τ)
, (7.2)

where n is the number of repetitions of the measurement and F is the quantum Fisher
information with respect to T , which we refer to as the ‘thermal Fisher information’. It
is given by

F(τ) = β4 δ(H) = β2C, (7.3)

with δ(H) := 〈H2〉τ − 〈H〉2τ , where the angle brackets denote averaging over the quan-
tum state: 〈Ô〉τ := Tr

(
Ôτ
)
, and C is the heat capacity of the system (C := d〈H〉/dT ).
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The optimal measurement, attaining the thermal Fisher information, is a projective
measurement onto the eigenbasis of H, i.e., a projective measurement of the system
energy. In this optimal scenario, the more the energy fluctuates, the more precise the
measurement can be in principle. The optimal measurement saturates the inequality
(7.2) for arbitrary n when the temperature estimator is unbiased. When an unbiased
estimator is not available, a large class of generic biased estimators will still asymp-
totically saturate the inequality (7.2) in the limit of many repetitions (n → ∞) [74].
Moreover, in the specific case of temperature estimation in many-body systems consist-
ing of N � 1 particles, one can go even further and explicitly construct an estimator
that, despite being biased for any finite N , will saturate the Cramér-Rao bound (7.2)
as N →∞, even for n = 1 [84].

However, when fine-grained measurements of energy are not available, while remain-
ing valid, the bound (7.2) will in general become too loose. We formalise the problem
as follows. Suppose the resolution of the experiment is limited to d < D measure-
ment outcomes. What is then the maximal precision for estimating the temperature of
S and which is the optimal d-outcome measurement achieving it? Below, we provide a
systematic way to identify the optimal measurement.

Moreover, in Sec. 7.5, we prove that the highest Fisher information achievable by a
d < D dimensional probe undergoing an arbitrary interaction with the sample is equal to
the optimal d-outcome coarse-grained Fisher information in the above sense. We thus
provide a fundamental benchmark for any conceivable protocol of probe-based ther-
mometry. In particular, this includes any standard thermometric technique in current
experimental setups.

7.3 Optimal coarse graining

We consider coarse-grained thermometry on a D-dimensional system. We take coarse
graining to mean that only generalised measurements, i.e., positive operator-valued
measures (POVM) with at most d < D outcomes are available. We then construct a
framework for identifying the optimal POVM for thermometry in two steps.

First, we show that the optimal POVM is a projection onto energy subspaces of the
system. This means that we can split the system spectrum into d subsets and study
measurements which project onto the corresponding eigensubspaces.

Second, we show that the optimal choice of subsets consists of consecutive “bins,”
i.e., the sets are not interspersed. We then lay down a method for constructing the
optimal choice of bins, for any given system spectrum. This is done by casting the
problem in the language of an analogous signal-processing problem, known as Lloyd-
Max quantization [181].

7.3.1 Optimal POVM

We take a d-outcome POVM M = {Mα}dα=1 and a system in the thermal state τ of
Eq. (7.1). Each outcome α then occurs with probability

pα = Tr(Mατ). (7.4)
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This distribution contains information about the temperature T , as quantified by the
Fisher information [182]

C =
d∑

α=1

1

pα

(
∂pα
∂T

)2

, (7.5)

which, for a thermal state, becomes [51]

C = β4
∑
α

1

pα

[
Tr
(
τMα(H − 〈H〉τ )

)]2
. (7.6)

Note that, after coarse graining, pα is no longer in the so-called exponential family with
respect to T 1, which means that no temperature estimator can satisfy the Cramér-Rao
bound for any finite number of repetitions n [74]. However, the Fisher information (C)
is still a key precision quantifier as, for all unbiased and certain generic biased estima-
tors, such as the maximum likelihood estimator, the Cramér-Rao bound is saturated
asymptotically in the n→∞ limit. Moreover, in the same limit, the Fisher information
retains its key role even in the Bayesian estimation approach2.

We thus set as our goal to determine the optimal d-outcome POVM which maximises
the Fisher information C. We first observe that the POVM elementsMα can be taken to
be diagonal in the energy eigenbasis. Because τ is diagonal in this basis, only diagonal
elements of Mα contribute to the probability pα in Eq. (7.4). Dropping all off-diagonal
elements from each Mα results in a valid POVM since the operators remain positive
and still sum to identity. Hence, for every POVM, there exists a diagonal POVM which
achieves the same pα and thus the same Fisher information. It is therefore sufficient to
consider diagonal POVMs when looking for an optimal POVM maximising C.

Next, let us note that C is convex with respect to the POVM. That is, denoting by
CM the Fisher information corresponding to a particular POVM and considering two
POVMsM and N and a mixing parameter 0 ≤ λ ≤ 1, we have

CλM+λN ≤ λCM + λCN , (7.7)

where λ = 1− λ. This can be seen by rewriting Eq. (7.6) as

C = β4
∑
α

1

pα

(
Wα

)2
, (7.8)

where Wα = Tr
(
τMα[H − 〈H〉τ ]

)
. Both pα and Wα are linear in the POVM operators.

Hence, when mixing POVMs, W (λM+λN )
α = λW

(M)
α + λW

(N )
α and p(λM+λN )

α = λp
(M)
α +

λp
(N )
α . Equation (7.7) is then an immediate consequence of the fact that 1

p
W 2 is a jointly

convex function of p and W (see, e.g., Ref. [184]).
Finally, we show that the optimal POVM is necessarily a collection of non-overlapping

projectors onto eigensubspaces of H. Indeed, take a POVM M such that, for some

1In that pα cannot be written as exp[K(α)f(T ) + L(T ) + M(α)], where f , K, L, and M are some
functions.

2Indeed, it follows from the van Trees inequality [183] that, for any estimator, in the n→∞ limit,
∆T & 1/

[
n
∫
dT p(T )C(T )

]
, where p(T ) is the prior distribution of T .
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eigenstate |k〉 of H, there are at least two POVM elements for which 〈k|Mα |k〉 > 0.
Define

ςα = 〈k|Mα |k〉 . (7.9)

Now, construct d new POVMs N (γ), with elements

N (γ)
α = Mα + (δαγ − ςα) |k〉 〈k| . (7.10)

EachN (γ) has the property that onlyN (γ)
γ has a nonzero k’th diagonal, namely 〈k|N (γ)

γ |k〉 =

1 while 〈k|N (γ)
α 6=γ |k〉 = 0. Furthermore, we note that∑

γ

ςγN (γ) =M. (7.11)

Since the Mα form a POVM, we have ςα ≥ 0 and
∑

α ςα = 1. By convexity (7.7) of the
Fisher information,

CM ≤
∑
γ

ςγCN (γ) , (7.12)

and it follows that there must be at least one γ for which CN (γ)(T ) ≥ CM(T ). This means
that the optimal POVM will have to be one that consists of non-overlapping projectors
on eigensubspaces of H. Given a (possibly degenerate) Hamiltonian H =

∑
iEi |i〉 〈i|

the optimal POVM will thus be of the form

Πα =
∑
Ei∈Iα

|i〉 〈i| , (7.13)

where the Iα define a partition of the set of all eigenenergies into non-overlapping subsets
(“bins”). To summarize, optimal, coarse-grained thermometry can always be achieved
by considering projective measurements onto non-overlapping eigenenergy subspaces.

7.3.2 Optimal binning

We now construct a method for determining the optimal eigenenergy subsets, defining
the optimal POVM. For convenience, we choose the basis of H such that

E1 ≤ E2 ≤ · · · ≤ ED, (7.14)

and write the probability of finding the system in bin Iα as [cf. Eq. (7.4)]

pα = Tr(Πατ) =
∑
Ei∈Iα

qi, (7.15)

where qi = exp(−βEi)/Z. Next, we introduce the “bin energies” (normalized average
energy within each bin),

εα =
1

pα

∑
Ei∈Iα

qiEi, (7.16)



103 7.3. Optimal coarse graining

and, with these definitions, reexpress the Fisher information in Eq. (7.6) for the corre-
sponding measurement as

C = β4

d∑
α=1

pα(εα − 〈H〉)2. (7.17)

We shall henceforth refer to this as the coarse-grained Fisher information. Compared
with Eq. (7.3), the expression for C describes how each of the energies εα fluctuates away
from the average.

As a first step towards finding the optimal sets Iα, in the appendix of Ref. [124],
applying a result from Ref. [185], we prove that the best choice of Iα is given by a binning
into consecutive intervals: Iα = {Eiα−1 , Eiα−1+1, . . . , Eiα−1+|Iα|−1}, where 1 ≤ iα−1 ≤ D
and the iteration rule is iα = iα−1 + |Iα|. Introducing the “boundaries” bα := Eiα , we can
conveniently write Iα = [bα−1, bα), with the proviso that b0 = E1 and bd = ED+1 = ED
(the extra level ED+1 will not enter into any physical quantity and is introduced just so
that ED enters Id despite [bd−1, bd) having an open end). Note that, for discrete spectra,
the boundaries bα need not be exactly at energy eigenvalues. Positioning a boundary
anywhere between neighbouring eigenvalues results in the same POVM in Eq. (7.13).
The remaining task is then to find the optimal intervals Iα = [bα−1, bα) which maximize
C. This will give the best strategy for temperature estimation using a d-outcome POVM.

Before carrying out this optimization, it is useful to recast the problem in terms of
the density of states (DOS)

Ω(E) =
∑
i

δ(E − Ei), (7.18)

where δ denotes the Dirac’s delta function (note that this definition does not assume
a continuous spectrum). Expectation values of any function g(H) of the Hamiltonian
may then be written as

〈g(H)〉 =
∑
i

g(Ei)qi =

∫
dEg(E)Ω(E)

e−βE

Z
. (7.19)

This means that we can define the distribution of energy as

q(E) = Ω(E)
e−βE

Z
, (7.20)

so that expectation values can be computed simply in terms of integrals over q(E).
This way, the probabilities pα in Eq. (7.15) and the bin energies in Eq. (7.16) can be
conveniently written as

pα =

∫ bα

bα−1

dE q(E) and εα =
1

pα

∫ bα

bα−1

dE q(E)E.

(7.21)

These quantities are therefore all expressed explicitly as functions of the boundaries bα.
The advantage of introducing the DOS is twofold. First, it allows for a unified

treatment of Hamiltonians with discrete and quasi-continuous spectra (as one would
expect in quantum many-body systems). Second, it allows us to frame the problem in
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the language of signal processing. A common task in signal processing is to transmit a
continuous function q(E) through a channel. Often, in order to do so, the function must
be discretized into a finite set of bins Iα = [bα−1, bα). The question is then which choice
of bins leads to the optimal transmission. This problem is solved by using the scheme
known as Lloyd-Max quantization (see Ref. [181], Chapter 3). If one uses the mean
squared variations of energy as a figure of merit, one sees that the maximization of the
Fisher information [see Eq. (7.17)] becomes entirely analogous to this signal processing
problem.

To proceed, we introduce the quantity

D = β4

d∑
α=1

bα∫
bα−1

dEq(E)(E − εα)2. (7.22)

It can be directly verified that the thermal Fisher information given by Eq. (7.3) can
be decomposed as

F = C +D, (7.23)

which means that the task of maximizing C, for a fixed F , is tantamount to that of
minimizing D.

The minimization can be carried out in the usual way, by equating to zero the
derivatives of D with respect to bα. A straightforward calculation shows that the minima
ofD occur when the intervals bα satisfy the implicit (and generally nonlinear) equations,3

bα =
εα+1 + εα

2
, α = 1, . . . , d− 1. (7.24)

These equations are implicit because εα itself is a function of the {bα} [Eq. (7.16)]. This
summarises the core of our framework. Equation (7.24) provides a recipe for how to
optimize the energy bins in a d-outcome POVM in order to maximize the thermometric
precision.

7.3.3 Illustrative examples

Let us now present two examples using our framework for optimal coarse-grained ther-
mometry.

Noninteracting qubits

A simple, but illustrative example, is a system of N identical, noninteracting qubits.
The system is in a thermal state, and take the ground- and excited-state energies to be
0 and 1, respectively. The energy levels of the system will thus range from 0 to N in
integer steps. The probability to find the system in a state with energy j is then

qj =

(
N

j

)
sjrN−j, (7.25)

3The solutions to this equation are also guaranteed to be an actual minimum of D, never a maximum.
First, ∂2D/∂bαbα′ = 0 for α′ 6= α. Second, at bα = (εα+1 + εα)/2, we have ∂2D/∂b2α = 2β4(εα+1 −
εα)q(bα) > 0, since q(bα) > 0 by construction and εα+1 > εα by hypothesis.
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where we have defined the excited-state population s = 1/(eβ + 1) and r = 1 − s. For
a d-outcome measurement, the probabilities and bin energies take the form

pα =
bα−1∑
j=bα−1

(
N

j

)
sjrN−j,

εα =
1

pα

bα−1∑
j=bα−1

(
N

j

)
jsjrN−j,

(7.26)

where the bin positions bα, which are integers in this case, are determined from Eq. (7.24)
(with b0 = 0). Note that, for this system, the average energy is simply 〈H〉 = Ns, while
the thermal Fisher information (7.3) is F = β4Nrs. In Fig. 7.2, we show the ratio
between C/F as a function of the bin positions bα, for the cases d = 2, 3. The bins bα
which maximize C/F are precisely the solutions of Eq. (7.24).

According to the De Moivre–Laplace theorem [59], in the N � 1 limit, the distribu-
tion qj becomes Gaussian. Using this, we show in the appendix of Ref. [124] that, for
binary measurements (d = 2) and N � 1, optimal binning strategy leads to

C =
2

π
F , (7.27)

and is achieved when the boundary is inserted at b = 〈H〉 = Ns. This result is
noteworthy, it shows that, irrespective of the number of qubits N , it is always possible
to construct a dichotomic measurement strategy which captures (2/π) ≈ 0.63 of the full
thermal Fisher information.

Linear density of states

To contrast with the N qubits case, we now consider an example of a system with a
continuous spectrum. Namely, we assume the system has a linear density of states:
Ω(E) ∝ E. Such a DOS is met, for instance, in a noninteracting, ultra-relativistic gas
in two dimensions. If the system is in a thermal state [Eq. (7.1)], the average energy
is simply 〈H〉 = 2/β and the variance is δ(H) = 2/β2. Thus, the thermal Fisher
information given in Eq. (7.3) is F = 2β2.

We first consider the case of binary measurements, d = 2, defined by a single bound-
ary b. The probabilities p1 and p2 [Eq. (7.21)] are then given by

p1 = 1− p2, p2 =

∞∫
b

dE q(E) = (1 + βb)e−βb,

and the corresponding bin energies become

ε1 =
2

β
+

βb2

1 + bβ − ebβ
, ε2 =

2

β
+

βb2

1 + βb
.

Thus, the Fisher information for the measurement, Eq. (7.17), is

C =
β6b4

(1 + βb)(eβb − 1− βb)
. (7.28)
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Figure 7.2: This figure and caption is taken from Ref. [124] ©2021 American
Physical Society. Ratio between the coarse-grained and thermal Fisher infor-
mations C/F at β = 0.6. (a) The case of d = 2, plotted as a function of the
partition (b1−〈H〉)/N and the number of qubits N . The ratio reaches a maxi-
mum value of approximately 0.64 in the large N limit. (Inset) Cross section at
N = 170. (b) The case of d = 3 for N = 170, plotted as a function of the lower
partition (b1 − 〈H〉)/N and the upper partition (b2 − 〈H〉)/N . The ratio has
a maximum value of approximately 0.82. The dashed lines gives the optimal
partitions as predicted by a symmetric partition around the mean energy.

To find the optimal partition, we solve Eq. (7.24) for b, i.e., b = (ε1 + ε2)/2. This is a
nonlinear equation which can be solved numerically. A plot of C/F is shown in the inset
of Fig. 7.3(a). It attains a maximum at βb ≈ 2.589. At this point C ≈ 0.643F , i.e., the
binary measurement reaches approximately 64% of maximal Fisher information for any
possible measurement (this is slightly higher than in Eq. (7.27)).

The dependence of C on the number of outcomes d, for optimal binnings, is shown
in Fig. 7.3(a). Quite remarkably, even with as little as 8 bins, one can already reach
a precision of ≈ 97% of F—the maximal possible precision. An illustration of the
probabilities pk and the corresponding bins bk is given in Fig. 7.3(b) for d = 8.
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Figure 7.3: This figure and caption is taken from Ref. [124] ©2021 American
Physical Society. Optimal thermometry binning for a system described by a
linear density of states: Ω(E) ∝ E. (a) Optimal binned Fisher information,
Eq. (7.17), as a function of d. The curves are normalized by the full Fisher
information, which in this case reads F = 2β2. Inset: ratio C/F as a function
of the binning position b for d = 2. The optimal bin occurs at βb = 2.58975.
The points in the main plot are already optimized over the binning positions.
(b) Illustration of the corresponding probabilities pk and average bins bk for
d = 8.

7.3.4 General remarks and extension to imperfect measurements

The two examples in Sec. 7.3.3 carry an important general message: even measurements
so coarse-grained as to have only two outcomes can estimate the temperature of a generic
system with precision (as quantified by the Fisher information) that is proportional to
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the ultimate precision—the thermal Fisher information [Eq. (7.3)]. In the appendix of
Ref. [124], we show that this is not a coincidence, by proving that any system for which
the energy distribution is unimodal and has sufficiently fast decaying tails, displays a
proportionality C ∝ F . More specifically, we prove that there exists a finite number
Ξ ∈ [0, 1] such that C ≥ ΞF .

As will be discussed in Sec. 7.4, the relevance of these results lies in the fact that
unimodal energy distributions with quickly decaying tails are a generic behaviour ex-
pected in finite-temperature many-body systems with short-range interactions, both at
and away from criticality. In fact, we will show that Ξ = 2/π, as in Eq. (7.27), actu-
ally happens for a large variety of interacting lattice models. It is of course possible to
conceive non-unimodal energy distributions for which the proportionality C ∝ F breaks
down. This is illustrated in the appendix of Ref. [124], where we construct an example
for which C/F → 0 when N →∞.

Our framework can also be adapted to scenarios where the ideal energy binning
cannot be implemented and imprecisions are present. In the simplest case, one could
have some imprecision in determining the optimal bins through Eq. (7.24), which would
lead to a decrease in C. For the case d = 2, this is illustrated in the inset of Fig. 7.3(a),
which shows how C/F decreases as the bin position deviates from its optimal value.

Another way in which imprecisions can enter our framework is when the POVMs (7.4)
are noisy. For instance, experimental errors may cause energies close to a bin edge to
sometimes result in outcomes corresponding to neighbouring bins. Such effects can be
accounted for within our framework by modifying Eq. (7.21). To see that, we first
rewrite Eq. (7.21) as

pα =

∫ ∞
−∞

dE q(E)Bα(E), (7.29)

and similarly for εα. Here Bα(E) is a boxcar function, with value 1 when E ∈ Iα =
[bα−1, bα), and 0 otherwise. A similar analysis can also be done at the discrete represen-
tation of Eq. (7.15). In this case, we would have pα =

∑
iBα,iqi, where Bα,i is a matrix

with entries 1 when Ei ∈ Iα and zero otherwise. However, it is more convenient to work
with the continuous-energy representation (7.29).

It is now straightforward to generalize Eq. (7.29) to include the effects of noise
by replacing Bα(E) by a different function. For instance, a smoothed boxcar as de-
picted in Fig. 7.4(a). Since

∑
α pα = 1 for any initial distribution q(E), it follows that∑

αBα(E) = 1 for all E. This can be viewed as a normalization condition for Bα(E).
In fact, Bα(E) is actually a combination of a stochastic matrix (whose columns add up
to one), plus an isometry, which reduces the dimension from a continuous energy E, to
a discrete set of outcomes α. The precise form of Bα(E) will depend on the details of
the experiment.

Measurement errors can cause not only a loss of precision, but also systematic shifts
in energy by, e.g., falsely displacing the energies εα by a certain amount. For simplic-
ity, we shall study these kinds of imprecision separately. We defer the discussion of
robustness to energy shifts to Sections 7.4.1 and 7.4.2, while here we choose Bα(E) to
be symmetric in the interval [bα−1, bα), and centered at the midpoint (bα−1 + bα)/2, so
that the εα’s are not displaced.

The remaining feature to describe is errors associated with imperfect binning. This
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can again be done using the smoothed boxcar of Fig. 7.4(a)

Bα(E) =
1

2
erf

(
bα − E
σ
√

2

)
− 1

2
erf

(
bα−1 − E
σ
√

2

)
, (7.30)

where erf(x) is the error function and σ is a parameter measuring the degree of im-
precision (a sharp boxcar is recovered when σ → 0). A function of this form defines a
certain energy window 2σ, where measurements associated to one bin can be recorded
in another. For this reason, the wider bins tend to be less affected than the thinner
ones, which is physically reasonable.

We illustrate the above ideas with the linear DOS example of Sec. 7.3.3. In Fig. 7.4(b)
we present C/F as a function of d for binning strategies computed using the smoothed
boxcars (7.30), with different values of σ. This is contrasted with the ideal case, shown
in red, which coincides with the red curve in Fig. 7.3(a). As can be seen, unsharp bin
edges necessarily decrease the coarse-grained Fisher information. That said, C/F is
surprisingly robust: even when the smearing occurs over a large part of the bin width
(e.g., 30%), C/F does not decrease much (only about 7%).

7.4 Many-body lattice models

We now proceed to analyze quantum systems on a lattice, which is one of the most
physically relevant settings where the coarse-grained measurements could be useful. We
start with general considerations and a tight-binding chain as an illustrative example.
Then we show a general result for all noncritical spin models and conclude with an
analysis of a system undergoing a thermal phase transition.

7.4.1 Gaussian density of states

In many-body lattice models, the energy distribution (7.20) often displays an approxi-
mate Gaussian form in the thermodynamic limit [186, 187, 188] (see also the detailed
discussion in Sec. 7.4.2 and in the appendix of Ref. [124]). As a simple, illustrative
example of this principle, consider a fermionic one-dimensional tight-binding chain with
N sites, under periodic boundary conditions:

H =
N∑
k=1

εĉ†kĉk − t
N∑
k=1

(ĉ†k+1ĉk + ĉ†kĉk+1), (7.31)

where ĉk is the fermionic annihilation operator at site k, ε is the on-site energy, t is
hopping (tunnelling) strength, and ĉk+N = ĉk ensures periodic boundary conditions.
When diagonalized, the Hamiltonian of this model takes the form [189, 51]

H =
N∑
a=1

εaĈ
†
aĈa, (7.32)

with the (linearly) transformed Ĉa’s satisfying standard fermionic anti-commutation
relations, and with eigenenergies given by εa = ε− t cos(2πa/N).
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Figure 7.4: This figure and caption is taken from Ref. [124] ©2021 American
Physical Society. The role of imperfect measurements in optimal thermometry.
(a) Example if smoothed boxcars, Eq. (7.30), for σ = 0.2. (b) Illustration of
the worsening of the coarse-grained Fisher information C for the linear DOS
example studied in Sec. 7.3.3. The red curve is the same as in Fig. 7.3(a),
while the other curves were computed using the smoothed boxcars (7.30) with
σ = 0.2, 0.3 and 0.4 (in units of β = 1).

In Fig. 7.5(a), we numerically compute the energy distribution (7.20) of this model,
and compare the results to a continuous Gaussian distribution with average energy 〈H〉
and variance µ2 ≡ δ(H) = −∂〈H〉/∂β (both of which depend implicitly on T ); i.e.,

q(E) =
1√

2πµ2
e
− (E−〈H〉)2

2µ2 . (7.33)
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We observe that the Gaussian distribution is a good approximation already with a
modest number of sites and a modest hopping strength. The approximation, in fact,
improves with the number of sites and becomes exact in the thermodynamic limit (see
Refs. [187, 188]).

Let us now take a Gaussian distribution as a given and compute the Fisher infor-
mation for different coarse-grainings of the continuous distribution (7.33). In this case,
the probabilities and bin energies in (7.21) become

pα =
1

2

[
erf
(
b̃α
)
− erf

(
b̃α−1

)]
,

εα = 〈H〉 − µ

pα
√

2π

(
e−b̃

2
α − e−b̃2α−1

)
,

(7.34)

where b̃α := (bα − 〈H〉)/
√

2µ (with b0 = −∞, bd =∞) are the shifted and rescaled bin
positions. The full Fisher information is simply F = β4µ2. For a d-outcome measure-
ment, one can then numerically perform the optimization according to Eq. (7.24) to
find the best such measurement and the corresponding coarse-grained Fisher informa-
tion (7.17). The results for C/F for different numbers of bins d, are shown in Fig. 7.5(b).
As in the linear density of states case, one sees a quick growth of C with d towards the
maximum value F .

The particular case of d = 2 can be obtained by setting b0 = −∞, b2 = ∞ and
b1 = b. We then get

p1,2 =
1± erf(b̃)

2
, ε1,2 = 〈H〉 ∓ µ√

2πp1,2

e−b̃
2

,

so that the coarse-grained Fisher information [Eq. (7.17)] becomes

C =
2F
π

e−2b̃2

1− [erf(b̃)]2
. (7.35)

The result is expressed solely in terms of the shifted bin position b̃; therefore, the
minimization procedure is independent of 〈H〉 or µ. In fact, as one may readily verify,
the function in Eq. (7.35) is maximized at b̃ = 0. That is, the bin should be placed
symmetrically, at b = 〈H〉. The corresponding maximum is

C =
2

π
F . (7.36)

This relation is robust with respect to imprecise identification of the optimal boundary
(which can be understood as a systematic error in the energy measurement, as mentioned
in Sec. 7.3.4). Indeed, Taylor-expanding the right-hand side of Eq. (7.35) with respect
to small b̃ around it optimal value, b̃ = 0, we find that CF = 2

π
[1− 2b̃2(1− 2/π) +O(b̃4)].

Even for a significant deviation of |b− 〈H〉| = 0.3µ, C/F degrades only by ≈ 3.3%.
Not coincidentally, the relation in Eq. (7.36) also appears in the case of non-interacting

qubits in the limit of large N (Sec. 7.3.3). This is because the energy distribution in
that case also becomes Gaussian in the N � 1 limit, due to the central limit theorem.

In Fig. 7.5(c), we illustrate the optimal bins and the corresponding probabilities for
the distribution (7.33) in the case of d = 8. In this case, the optimal bins have to be
located numerically. Unsurprisingly, it is found that the optimum is symmetric around
the average energy.
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Figure 7.5: This figure and caption is taken from Ref. [124] ©2021 American
Physical Society. (a) Energy distribution for a fermionic tight-binding chain
with 20 sites. The hopping strength is t = 0.3, and the temperature is T/ε = 2.
The numerical results are compared to the Gaussian distribution (Eq. (7.33)).
(b) Optimal binned Fisher information for the general Gaussian distribution
as a function of d. The curves are normalized by the thermal Fisher infor-
mation (Eq. (7.3)). (c) Illustration of optimal binning, and the corresponding
probabilities, for the general Gaussian distribution with d = 8.

7.4.2 Noncritical, interacting systems on lattices

Now we will show how some of the conclusions of Sec. 7.4.1 actually hold universally in
the thermodynamic limit. Intuitively speaking, the idea is that generic lattice models
with finite-range interactions, when away from criticality, tend to have Gaussian energy
distribution due to the many-body Berry-Esseen theorem [186, 187, 188]. Therefore,
the same behaviour as in Fig. 7.5 is expected to occur when coarse-graining to different
partitions in such lattice models.

In fact, in the appendix of Ref. [124], we prove that the maximal C/F achievable by
two-outcome measurements (d = 2) is 2

π
+O(ln−1N), and the boundary of the optimal

partition I1 = [E0, b] and I2 = (b, ED] is near the average energy:

b− 〈H〉 = O(ln−1/2N)
√
δ(H). (7.37)

Moreover, when b = 〈H〉 exactly, one still has CF = 2
π

+ O(ln−1N). In the the ther-
modynamic limit, this coincides with the results for the exact Gaussian distribution
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(Sec. 7.4.1) and for independent qubits (Sec. 7.3.3). We expect that, for d ≥ 3 par-
titions, one should be able to prove results identical to those obtained for the exact
Gaussian energy distribution in Sec. 7.4.1 by using arguments along the lines of those
given in the appendix of Ref. [124].

In order to prove Eq. (7.36), we need to assume that the thermal state of the lattice
satisfies the following two generic conditions: (i) Exponential decay of correlations: For
arbitrary regions X ,Y separated by a distance l on the lattice, and some constant ξ,

max
X∈X ,Y ∈Y

∣∣∣∣〈X ⊗ Y 〉 − 〈X〉〈Y 〉||X|| ||Y ||

∣∣∣∣ ≤ e−l/ξ, (7.38)

and (ii) The variance in energy scales linearly with the number of lattice sites: δ(H) =
〈H2〉 − 〈H〉2 = s2N . Assumption (i) is expected to hold for a very large class of
systems away from criticality. Indeed, it has been rigorously proven for 1D translation-
invariant thermal states [190], finite-range fermionic lattice systems of arbitrary spatial
dimension at nonzero temperatures [191], and all finite-range lattice systems above a
threshold lattice-dependent temperature [192]. Assumption (ii) is expected to hold for
most systems at a high enough temperature. In fact, note that (i) already implies that
δ(H) = O(N) [193].

The detailed proof of Eq. (7.36), provided in the appendix of Ref. [124], is based on
the Berry-Esseen theorem for local Hamiltonians which relies on the two assumptions
above and is proven in Refs. [187, 188]. This result can be seen as a strengthening of
the central limit theorem, which gives a precise notion of how the energy distribution
of lattice models converges to a Gaussian in the thermodynamic limit. It allows us to
estimate functions of the form of Eq. (7.19), in this case, the bin energies εk.

Lastly, the Gaussian behaviour of noncritical many-body lattice systems also extends
to the problem of how robust C/F = 2/π is to imprecise identification of the optimal
binning boundary. Indeed, as we show in the appendix of Ref. [124], for small b̃ =
b−〈H〉√

2δ(H)
,

C
F

=
2

π
[1− 2b̃2(1− 2/π) +O(ln−1N) +O(b̃3)],

so, as in Sec. 7.4.1, for e.g. |b− 〈H〉| = 0.3
√
δ(H) (and N � 1), C/F will degrade only

by ≈ 3.3%.

7.4.3 Critical systems

The thermal Fisher information (7.3) is proportional to the heat capacity of the system,
which scales as C = Nc(β), where c(β) is the specific heat. For noncritical systems,
c(β) is intensive. However, at a finite-temperature phase transition, it diverges as the
temperature of the system approaches the critical temperature Tc > 0, according to
c(β) ∝ |t|−α, where t := (β − βc)/βc and α ≥ 0 is the so-called critical exponent
[194]. When α = 0, the divergence is logarithmic: c(β) ∝ ln |t|−1 [194]. In large
but finite systems, there are of course no infinities and, at the phase transition point,
cN(βc) ∝ N

α
2−α when α > 0 [195] and cN(βc) ∝ lnN when α = 0 [195, 196]. Since cN =

β2 δ(H) /N [Eq. (7.3)], the divergence of cN(βc) with N implies that critical systems
do not satisfy the condition (ii) of Sec. 7.4.2. In general, critical systems also feature
diverging correlation lengths [194], thereby violating the condition (i) of Sec. 7.4.2 as
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well. Therefore, the many-body Berry-Esseen theorem becomes inapplicable for critical
systems.

In the appendix of Ref. [124], building on several rigorous results on translation-
invariant lattices with finite-range interactions in Refs. [197, 189, 198], we develop an
alternative approach towards determining the energy distribution of such lattices in
arbitrary spatial dimensions. Fist of all, for noncritical lattices, we show that the
energy distribution approximates a Gaussian in a way that complements the many-
body Berry-Esseen theorem [187, 188]. Moreover, for this wide but specific class of
lattices, our approach allows us to access the energy distribution even at criticality.

For critical lattices with α = 0, we show in the appendix of Ref. [124] that the energy
distribution still tends to a Gaussian in the N → ∞ limit; however, the convergence
does not include the tails of the distribution, which are O(

√
N) standard deviations

away from 〈H〉. In a sense, for translation-invariant lattices, this result suggests that
the Gaussianity of the distribution holds beyond assumptions (i) and (ii) above [187,
188]. Thus, Eq. (7.36) applies in the thermodynamic limit, both at criticality (with
α = 0) and away from it. We illustrate these ideas below in Sec. 7.4.3, with a detailed
study on the classical 2D Ising model on a square-lattice, a paradigmatic model with
α = 0.

The case 1 > α > 0 is treated in the appendix of Ref. [124]. We show that the en-
ergy distribution is Gaussian only in a neighbourhood of the peak that is much smaller
than the standard deviation. Hence, it is not Gaussian as a whole. Notwithstanding,
we show that it is unimodal with exponentially decaying tails, which means that the
considerations in the appendix of Ref. [124] are applicable; that is, a two-bin measure-
ments with the boundary placed at 〈H〉 will yield a C that scales proportionally to F .
In other words, since F = β2NcN , we will have C ∝ β2N

2
2−α .

2D Ising model

The square-lattice 2D Ising model is defined on an L×L square lattice where each site
i is characterized by a Pauli matrix σiz, with i = 1, . . . , N (N = L2). The spins interact
according to the Hamiltonian

H = −J
∑
〈i,j〉

σizσ
j
z, (7.39)

where the sum is over all nearest neighbours. Since the interactions only involve σz
operators, the Hamiltonian is already diagonal in the computational basis, with energy
eigenvalues

E(σ) = −J
∑
〈i,j〉

σiσj, (7.40)

where σ = (σ1, . . . , σN) and σi = ±1 are the eigenvalues of σiz. Here, we will im-
pose periodic boundary conditions. The model presents a phase transition at Tc/J =
2/ ln

(
1 +
√

2
)
[201, 202, 199]. This can be seen, for instance, in terms of the magneti-

zation m = 1
N

∑
i〈σi〉, as plotted in Fig. 7.6(a).

For not very large N ’s, the full energy distribution q(E) can be computed exactly
using a method developed in Ref. [200]. Results for L = 8, 16, 32, and 64 are shown in
Fig. 7.6(b)-(e). Although irregular for small sizes, it can be seen that the distribution
visually appears to approach a Gaussian as the lattice size increases.
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Figure 7.6: This figure and caption is taken from Ref. [124] ©2021 Ameri-
can Physical Society. Classical two-dimensional Ising model [Eq. (7.40)]. (a)
Magnetization as a function of temperature for different lattice sizes, showing
the phase transition at Tc/J = 2.26919. The dashed curve corresponds to the
thermodynamic limit (where the exact solution is m =

[
1 − sinh−4(2J/T )

]1/8
[199]). (b)-(e) Exact energy distributions q(E) for T = Tc, computed using the
method of Ref. [200]. Each curve corresponds to a different lattice size, L = 8,
16, 32, and 64 (same color code as image (a)). (f)-(h) Cumulants κ2, κ3, and κ4

of q(E), as a function of temperature, for different lattice sizes. The the third
and fourth cumulants scale, respectively, as N3/2 and N2, where N = L2 is the
number of sites. The second cumulant, on the other hand, scales as N lnN .

In order to rigorously prove that this is indeed the case, one needs to show that the
higher-order (≥ 3) cumulants of the energy distribution, κk, become irrelevant as N
becomes large. As discussed in the appendix of Ref. [124], the cumulants of the energy
distribution can be found from the free energy FN through the simple relation

κk = (−1)k−1∂
k(βFN)

∂βk
. (7.41)

Moreover, for the 2D Ising model, an exact expression for FN , for finite N , is avail-
able [203]. Using these facts, we show in the appendix of Ref. [124] that κ2 ∝ N lnN [194,
196], while κk ∝ Nk/2, for k ≥ 3 (these results are also illustrated in Fig. 7.6(f)-(h)).
As a consequence, we therefore have that

κ
1/k
k

κ
1/2
2

∝ ln−1/2N, (7.42)

showing that the higher-order cumulants do indeed become negligible as compared to
κ2 = δ(H); i.e., the distribution tends to a Gaussian as N →∞. Note that the previous
discussion refers to the scaling at the vicinity of the critical point. Away from it, due
to the extensivity and analyticity of FN in the limit of N → ∞, we simply have from
Eq. (7.41) that κk ∝ N for k ≥ 1. Hence, κ1/k

k /κ
1/2
2 ∝ N−

k−2
2k , i.e., away from criticality,

q(E) approaches its Gaussian limit polynomially, as compared to the slow logarithmic
convergence at criticality.
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7.5 Probe-based measurements
Whereas the previous section allowed for arbitrary global measurements, in this sec-
tion, we look at measurement schemes (both idealized and more realistic) which can be
realised by the interaction of a probe with the system, possibly some auxiliary system
of arbitrary size, and the subsequent measurement of the probe alone. We compare
the performance of such probe-based measurements to the upper bounds obtained in
Section 7.3.2.

First of all, we observe that the maximal thermometric precision achievable by mea-
suring a d-dimensional probe P that has unitarily interacted with the system S in a
thermal state τ , and an auxiliary system A in some state ρA, is the same as the maxi-
mal precision of a d-outcome measurement on S. Here we assume that d < D, because
otherwise one can simply transfer all of the state of S—and the (Fisher) information
on β, F , along with it—to P ; however, when d < D, even the best possible strategy of
encoding the state of S into that of P will bear losses. Indeed, if the initial state of P
is some σ, then, whatever the optimal unitary U , standard quantum metrology tells us
[4] that the optimal POVM on

σ′ = TrSA
{
U(σ ⊗ τ ⊗ ρA)U †

}
(7.43)

will have to have d outcomes. On the other hand, the probability distribution generated
by any d-outcome POVM on σ′ can also be generated by a d-outcome POVM on S.
Thus, denoting the quantum Fisher information of σ′ on β by C(P ), we have C(P ) ≤ C.

To show that C(P ) = C, let us note that C is delivered by a projective measurement
on the system corresponding to some binning I1 ∪ · · · ∪ Id which yields measurement
statistics pα =

∑
qj∈Iα qj. Now, let us choose σ = |1〉 〈1|, so that, in the {|α〉 ⊗ |Ej〉}

basis, σ ⊗ τ = diag
(
~q, ~0, ..., ~0

)
. Here, ~q = (q1, ..., qD) and ~0 is made of D zeroes. Then,

the permutation unitary acting on σ ⊗ τ that permutes all the qj’s in I2 from ~q with
some of the zeroes from the ~0 next to ~q, all the qj’s in I3 with zeroes from the second
~0, etc., will render σ′ = diag(p1, ..., pd). And this distribution will produce a C(P ) that
is = C. Note that, to show that C(P ) can be made equal to C, there was no need to
involve any auxiliary systems.

For the case of d = 2, where the optimal POVM on S is defined by the bins I1 =
{Ej : Ej < b} and I2 = {Ej : Ej ≥ b}, with b being the boundary, we will now show
that such a permutation can be generated by the quantum-optics-inspired Hamiltonian

H =
D∑
k=1

Ek |Ek〉 〈Ek|+ b |⇑〉 〈⇑|

+ λ
∑

Ek≤ED−b

(|⇓〉 〈⇑| ⊗ |Ek + b〉 〈Ek|+ H.c.) ,

(7.44)

where |⇓〉 and |⇑〉 are the eigenstates of the probe spin, with the corresponding eigen-
values E⇓ = 0 and E⇑ = b. This Hamiltonian may not be easily realizable in practice.
However, the point is that, as we will show, it is guaranteed to provide the best possible
precision using a two-level probe. This can then be used as a benchmark to compare
against when using other interactions. Furthermore, we take the system’s ground state
to be at energy E1 = 0, and since ultimately we are going to be interested in the case
where the system’s energy spectrum is effectively continuous, we will also assume that
|Ek + b〉 is a valid eigenstate.
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Let us initialize the system and the probe in the joint state ρ(0) = |⇓〉 〈⇓| ⊗ τ . The
simplest way to characterize its evolution under H is to describe how the pure states
comprising it, |Ψj(0)〉 = |⇓〉 ⊗ |Ej〉, evolve under H. It is easy to show that, in the
interaction picture (labelled by the superscript I),

∣∣ΨI
j(t)
〉

= |⇓〉 ⊗ |Ej〉 for Ej < b, and∣∣ΨI
j(t)
〉

= cos(λt) |⇓〉 ⊗ |Ej〉 − i sin(λt) |⇑〉 ⊗ |Ej − b〉

for Ej ≥ b. Thus, transitioning back to the Schrödinger picture, from

ρ(t) =
∑
j

1

Z
e−βEj |Ψj(t)〉 〈Ψj(t)| (7.45)

we find the probability of finding the probe qubit in the spin-up state, P⇑, when mea-
suring it at the moment of time t, to be

P⇑(t) = sin2(λt)
∑
Ej≥b

e−βEj

Z
. (7.46)

Hence, for tmeas = π/(2λ), the ideal projective measurement of the probe qubit’s spin
produces a probability distribution identical to that produced by the ideal binary mea-
surement of the system corresponding to the binning I1 ∪ I2.

Note that realizing this idealized scheme experimentally is far from being straight-
forward; we study a specific model realization in the next subsection, describing both
its capabilities and limitations.

7.5.1 Jaynes–Cummings model

As a specific illustration of quantum probe-based thermometry, we consider an exper-
imentally relevant system consisting of a superfluid Bose-Einstein condensate (BEC)
reservoir in a shallow confining trap interacting with an atomic quantum dot [178].
Generally, the physics of this system is well-captured by a spin-boson model, in which
the atomic quantum dot interacts with the phononic excitations of the BEC superfluid.
Given suitably engineered boundary conditions, the spectral density will be such that
a quantum dot with frequency ωd will in effect couple only to the phonon modes which
comes closest to be resonant with the quantum dot frequency (for simplicity we suppose
all relevant phonon modes have the same frequency ωa).

We can then ask the question of how well one can estimate the BEC temperature
by measurements on the quantum dot probe. In Fig. 7.7(a) we plot the coarse-grained
vs thermal Fisher information ratio for the optimal binary measurement within the
effectively resonant subspace. The ratio is given as a function of the number of effectively
resonant modes, which would be expected to increase in proportion to the width of the
spectral density. From the figure we see that the ratio approaches a value of 0.64 as the
number of modes increase. This provides an optimal value against which to compare
specific binary measurement strategies. Interestingly we see that the obtained ratio
agrees with the optimal ratio found for a binary measurement on a system described by
a Gaussian density of states.

If we now consider the specific case where the effectively resonant subspace consist
of a single phononic mode, and furthermore make a rotating wave approximation, the
resulting system is modelled by the paradigmatic Jaynes-Cummings Hamiltonian [204]:

H = ωdσ
†σ + ωaa

†a+ g
(
σ†a+ σa†

)
, (7.47)



Chapter 7. Optimal Coarse-Grained Measurements 118

Figure 7.7: This figure and caption is taken from Ref. [124] ©2021 American
Physical Society. (a) Optimal binary-outcome thermometry on a collection of
bosonic modes of frequency ωa as a function of the number of oscillators. The
top line corresponds to βωa = 0.7, the bottom line to βωa = 0.1 and inter-
mediate temperatures are contained within the shaded area. (b) Comparison
between the optimal binary measurement strategy, and the two-level Jaynes-
Cummings model probe, optimized over the measurement time gt, in the single
oscillator case. The shaded area represents the range δ/g = [0, 1.2] of the de-
tuning. (c) Optimal measurement time (gtopt) as a function of temperature for
the Jaynes-Cummings model.

where a, a† are the creation and annihilation operators of the bosonic cavity mode, g
is the coupling strength, and σ = |g〉〈e| where the excited and ground states of the
quantum dot are denoted by |e〉 and |g〉 respectively. Experimental work has shown
how such models arise for specific thermometry protocols [159], and our results makes
it possible to evaluate how close such a strategy is to being optimal.

Consider a measurement protocol in which the quantum dot is initialized in its
ground state. The quantum dot then evolves jointly with the BEC for a time t, after
which the probability of finding the quantum dot in its excited state is give by

Pe(t) =
∞∑
n=0

e−βωa(n+1)

Zβ

g2(n+ 1)

λ2
n

sin2 (λnt) , (7.48)

where we have defined λn =
√
δ2/4 + g2(n+ 1) in terms of the detuning δ = ωd − ωa.

From this probability we can compute the coarse-grained Fisher information, see also
[164]. In Fig. 7.7(b) we show the ratio of the coarse-grained Fisher information computed
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from Eq. (7.48) and optimized over the measurement time at each temperature, with
the thermal Fisher information of the phononic mode itself. Inspection of the results
show that the probe-based measurement gives a Fisher information which never falls
below 45% of the optimal binary measurement strategy. In Fig. 7.7(c) we plot the
optimal measurement time as a function of temperature, and we observe an inverse
relationship between the optimal measurement time and the temperature. Notice that
as the temperature approach absolute zero, the optimal measurement time for zero
detuning approach π/2g in agreement with known results [164].

It is interesting to note that similar considerations for the Fisher information have
been obtained for temperature measurements of micromechanical resonators via a qubit
probe, whose interaction can also be described by the Jaynes-Cummings (7.47) [164];
and more general interaction Hamiltonians, either dropping the rotating wave approx-
imation or considering interactions far off resonance, have also been considered [165,
162]. In all such cases, our considerations provide upper bounds on the maximal preci-
sion estimation with a qubit probe, as shown in Fig. 7.7. Indeed, the strength of our
bounds is that they apply to arbitrary nonequilibrium strategies.

7.6 Conclusions

We considered the precision limits on temperature estimation when having access to
coarse-grained measurements which have at most d outcomes. Using tools from sig-
nal processing, we derived the structure of the optimal POVM measurement. These
abstract considerations have been applied to two physically relevant scenarios: temper-
ature measurements of many-body systems and nonequilibrium thermometry.

For many-body systems, we considered spin lattices, both away from and at critical-
ity, and found that the Fisher information C can grow extensively with the system size
even when d does not. In particular, for d = 2, we obtain that it is in principle possible
that C/F ≈ 2/π in the thermodynamic limit N → ∞ even for systems at criticality.
While this will decrease for realistic strategies where the POVM are smoothed out (see
the discussion in Sec. 7.3.4 and Fig. 7.4 specifically), we expect that the extensive scal-
ing will be preserved as long as the binary measurement can distinguish system energies
that are O(

√
δ(H)) apart (see the discussion on displaced boundary in Sections 7.4.1

and 7.4.2).
Along the way, we also derived new results on the energy distribution of many-body

systems in the regime of criticality, which might be of independent interest. These
generic considerations were illustrated on the 2D Ising model, the energy distribution
of which becomes well-approximated by a Gaussian distribution except in the tails of
the distribution. We expect more pronounced non-Gaussian features in the energy
distribution of other critical models, which we leave as interesting future research.

For nonequilibrium thermometry, we used our results to devise the optimal probe-
system interaction and interrogation time, thus providing general guidelines on the
design of optimal nonequilibrium thermometry strategies. This result also provides an
upper bound on specific experimentally motivated protocols. This was illustrated for a
temperature measurement of a Bose-Einstein condensate through a quantum dot via a
Jaynes-Cummings interaction [164, 165]. It remains an exciting open question to find a
realistic implementation of the optimal probe-sample interaction (7.44).

Lastly, in this work, we focused on asymptotic metrology, where one has access
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to full measurement statistics and can possibly run the experiment many times. This
may not always be feasible in practice, and the Fisher information may then no longer
be an adequate precision quantifier. In such cases, alternative approaches are needed,
such as global Bayesian estimation [78]. Analyzing the effect of coarse-graining in such
situations is another interesting research direction.



Appendix A

Probability theory

A stochastic experiment is a repeatable physical process in which a random outcome is
realized. In this section, following the treatment of U. Thygesen [36] and S. Gammel-
mark [35], we provide a brief introduction to the measure-theoretic probability theory
used to model such experiments.

Probability measure spaces

We begin with the concept of a sample space M , which contains all possible outcomes
m of an experiment, and note that this space could be discrete or continuous. In any
realization of the experiment, exactly one of the potential outcomes is realized. Next
we define events: an event is a subset of outcomes in the sample space, identified by an
affirmative answer to a yes/no question. As an example we could consider the roll of
a die, the sample space is {1, 2, 3, 4, 5, 6}, a question could be whether or not the die
shows an even number and the corresponding event is the subset {2, 4, 6} of the full
sample space.

Our aim is to construct a framework in which we can assign probabilities to events.
The first difficulty encountered, is that it is not generally possible to assign a probability
to any conceivable event. The subset of measurable events, i.e. those to which proba-
bilities can be assigned, forms the σ-algebra of events, denoted M. A valid σ-algebra
satisfies a number of requirements: it includes the certain event M ∈ M, it is closed
under set complements, and it must be closed under countable operations of union and
intersection.

Given a sample space and a σ-algebra, the map which takes an event in the σ-
algebra to a probability is called a probability measure. Generally, a measure is a map
P :M → [0,∞) which is countably additive i.e. given a countable family of events
which are mutually exclusive we have P(∪iAi) =

∑
i P(Ai). A probability measure

furthermore satisfies that P(M) = 1, i.e. the probability that any outcome is obtained
is one. The triple (M,M,P) is called a probability measure space, and it constitutes
the basic mathematical model of any stochastic experiment.

Measurable functions & Random variables

We now introduce a function which maps an outcome from the measurable space (M,M)
into an element of another measurable space (N,N ). Just as in the case of events, there
are functions which are not measurable. To explain the meaning of measurable in this

121
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context we define the pre-image: given a function X :M →N and a set A ⊂ N , the
pre-image of the function is defined as the set of outcomes in M which maps to A, i.e.

X−1(A) ≡ {m ∈M : X(m) ∈ A} . (A.1)

Notice that the pre-image is not equivalent to the inverse of the function, this point will
be important later. Now given the pre-image, we say that a function X is measurable
if the pre-image of any event in N is an event inM, i.e.

X−1(A) ∈M for all A ∈ N . (A.2)

Measurable functions are particularly interesting when dealing with a probability mea-
sure space (M,M,P). If we define an image measure on (N,N ) with respect to a
measurable function X by PX(A) ≡ P(X−1(A)), then the image measure will itself be
a probability measure. A special case of particular interest, is that of measurable func-
tions mapping outcomes in the sample space into the space of real numbers Rn. In this
case, the measurable function is called a random variable. When considering the space
of real numbers the standard σ-algebra is the Borel-algebra, denoted B(Rn), which is
defined as the smallest σ-algebra containing all open sets [36].

Integration & Expectation values

We now make use of the above ideas to construct the integral of a random variable.
The integral of a one-dimensional random variable X :M → R over a measure space
(M,M,P), is constructed as follows: the measure assigns weights to the set of outcomes
in M and weighs the random variable X accordingly, the integral is then the sum of
these weighted contributions. If the integral is to be computed over a specific event
A ∈M, then we write it as ∫

A

dP(m) X(m) ∈ R. (A.3)

If we compute the integral over the full sample space, then the computed quantity is
called the expectation value of X. Among other things, we can define the cumula-
tive distribution function of a real-valued random variable in one-dimension: FX(x) ≡
PX((−∞, x]). The probability density is then the Radon-Nikodym derivative of the
image measure with respect to the Lebesgue measure, i.e. pX(x) = dPX/dµL(x) where
µL is the Lebesgue measure on R [35]. In these terms we can write the expectation
value of X as

E{X} =

∫
M

dP(m)X(m)

=

∫
R
dµL(x)pX(x)x,

(A.4)

which corresponds to the standard formula for an expectation value. The above ideas
generalize naturally to functions of random variables, and random variables in higher
dimensions. A more formal introduction to the concept of integration has been given
by Thygesen [36].
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Available & Generated information

We now consider how to model an observer, or multiple observers, with only partial
knowledge about the outcome of a stochastic experiment, e.g. two dice are cast and the
observer is only told the larger of the two outcomes. Recall that an event is a subset
of outcomes in the sample space, identified by an affirmative answer to a question. We
say that an observer can resolve an event, if her partial knowledge about the realized
outcome allows her to know if the event has occurred or not. The set of events which
can be resolved, forms a sub-σ-algebra toM, and we say that the partial information
available to an observer is represented by this sub-σ-algebra of events1.

In almost all cases of physical interest, the knowledge available about the realized
outcome is obtained by observing a random variable (e.g. measuring a current). If we
let X : M → Rn be a random variable on the probability space (M,M,P), then we
define the information generated by X as the sub-σ-algebra:

σ(X) ≡
{
A ∈M : A = X−1(B)

}
(A.5)

for some event B in the Borel-algebra B(Rn). The generated information represents
the subset of questions which can be answered based on the observation of the realized
value of the random variable.

One could also ask the related question: under what conditions will an observer with
available information represented by the sub-σ-algebra H, be able to infer the value of
a random variable X which was realized. When this can be done we say that X is
H-measurable. If we suppose that one observer measures a random variable X and that
another observer measures a random variable Y , such that the generated information is
σ(X) and σ(Y ) respectively. Then the answer to the above question is provided by the
Doob-Dynkin lemma which states: If X :M → Rm and Y :M → Rn are both random
variables on a probability measure space (M,M,P), then X is σ(Y )-measurable if and
only if there exist a Borel-measurable function g :Rn → Rm such that X(m) = g◦Y (m)
for all m ∈M .

On the other extreme, we could have complete independence of information. In
contrast to the concepts above, independence depends on the probability measure. We
say that two events A,B ∈M are independent if P(A∩B) = P(A)P(B). Two σ-algebras
are independent if all events in one are independent of events in the other. Lastly, we
say that two random variable are independent if the information algebras they generate
are independent.

Conditional expectations

We now ask what does an observer want to do with the available information? Basi-
cally, the available information is used in the construction of conditional expectations of
random variables. Formally, conditioning is with respect to a sub-σ-algebra H, and is
written

E{X |H} . (A.6)

We define it as follows: given a random variable X on (M,M,P) and a sub-σ-algebra
H, the conditional expectation of X w.r.t. H is the almost surely unique random

1Notice that we use knowledge and information as distinct concepts here. Knowledge refers to the
specific realization of the experiment, information refers to the set of questions which can be answered
based on our knowledge of the realization.
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variable Z ≡ E {X |H} which is measurable w.r.t. H and which satisfies the consistency
requirement

E{Z · 1H} = E{X · 1H} , (A.7)

for any H ∈ H. Here we have introduced the indicator function 1H of H defined
such that 1H(m) equals one if m ∈ H and zero otherwise. Informally, we can think
of the conditional expectation as the effective random variable which is obtained after
everything but H has been averaged out.

Leaving the question of how to compute the conditional expectation aside for now,
we can discuss some key properties. First of all, the conditional expectation satisfies a
number of important mathematical relations [35]:

E{aX + bY |H} = aE{X |H}+ bE{Y |H} (A.8)
E{E{X |G}} = E{X} (A.9)
E{E{X |G}|H} = E{X |H} for G ⊂ H (A.10)
E{X |H} = X if X H-meas. (A.11)
E{XY |H} = XE{Y |H} if X H-meas. (A.12)
E{X |H} = E{X} if X H-indep. (A.13)

If we consider two measures Pµ and Pν , and suppose that Pµ is absolutely continuous
with respect to Pν . The Radon-Nikodym derivative is written as Rµν = dPµ/dPν . When
the Radon-Nikodym derivative is well-defined, we have the important relation:

Eµ{X |H}Eν{Rµν |H} = Eν{RµνX |H} , (A.14)

where Eµ labels the measure employed. This relation can be interpreted as the measure-
theoretic version of Bayes rule. Lastly we mention that in the case where H = σ(Y ), we
know from the Doob-Dynkin lemma that there must exist a Borel-measurable function
such that E {X |H} = g ◦ Y , i.e. the conditional expectation is a function of Y .

The introduction of conditional expectations makes it possible to construct other
conditional statistics as well. In particular we can define the conditional probability of
an event:

P(A |H) ≡ E{1A |H} , (A.15)

which must be understood as a random variable, and we recall that 1A is the indicator
function of A. From the conditional probability we could furthermore define conditional
distribution functions and conditional probability densities. In addition we can consider
the conditional variance of a random variable:

Var{X |H} ≡ E{X2 |H} − E{X |H}2 . (A.16)

There exist a useful decomposition formula for the variance known as the law of total
variance [36]

V{X} = E{V{X |H}}+ V{E{X |H}} . (A.17)

This decomposition formula can be given a natural interpretation in terms of estimators
of random variables and estimation error.



Appendix B

Exploiting the Causal Tensor Network
Structure of Quantum Processes to
Efficiently Simulate Non-Markovian
Path Integrals

This chapter is composed entirely of text and figures from Ref. [127] ©
2019 American Physical Society. The chapter is self-contained, in partic-
ular the notation does not conform to the main chapters of the thesis.

B.1 Introduction

All nanoscale quantum systems are open, meaning they inevitably interact with their
environments, exchanging energy and generating correlations. If the system and its
environment remain approximately uncorrelated, then the reduced system dynamics is
well described by a Markovian model [37, 152, 38]. However, in physical systems such as
photosynthetic complexes, nanoscale lasers and quantum thermal machines [205, 206,
207], the need to go beyond a Markovian description has long been recognized, and
techniques accounting for non-Markovian physics have been developed, with greater
or lesser breadth of applicability. Analytical methods involving time-local equations
of motion exist, but tend to be highly restricted to specific parameter regimes [208,
209, 210]. Exact simulation often requires numerical methods, e.g. discrete path inte-
grals [211, 212, 213, 214, 215], time non-local memory kernels [216, 217, 218, 219, 220,
221, 222], hierarchical equations of motion [223, 224] and others [225, 226, 227, 218].
Overall these methods tend to scale unfavourably with both the simulation time and
the system size [228], making them inapplicable to important processes involving large
complexes or when long time dynamics is important.

Recently, tensor network methods have been applied to the simulation [229, 230, 231,
232] and characterization [233, 234] of open quantum dynamics. Physically, these meth-
ods incorporate the fact that typical open quantum systems are only finitely correlated
with their environments, massively reducing their description [235]. In particular, Strat-
hearn et al. [154] reformulated the discrete path integral for open systems with Gaussian
environments in terms of matrix product operators; the resulting time-evolving matrix
product operator (TEMPO) algorithm is numerically exact and has an efficiency com-
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Figure B.1: (Color online) (a) An arbitrary process with interventions can be
represented as a matrix product form tensor network, the process tensor (upper
row), that contracts with a filter function consisting of a sequence of superop-
erators (lower row). This makes it possible to separate implemented control
operations from the underlying uncontrolled process. (b) In the infinitesimal
time step limit, the uncontrolled process can be further decomposed into free
evolution of the system (middle row) and a generalized influence functional
capturing the influence of the environment.

parable to other state of the art methods. By effectively only considering the most
important non-Markovian contributions to the dynamics, the algorithm circumvents
the exponential memory scaling of the bare path integral representation, in a similar
spirit to earlier path-filtering techniques [236, 237, 238]. Motivated by this success, it is
natural to ask if tensor network methods can be efficiently generalized from the simu-
lation of reduced system density operators, to the simulation of general non-Markovian
processes and multi-time correlations, which typically require many realizations of the
dynamics to characterize.

In this Letter, we propose such a generalization, by making a formal connection
between the path integral structure and the recently developed process tensor framework
for characterizing general non-Markovian quantum processes [233]. We then use this
to argue for an alternative formulation of the TEMPO algorithm, where we exploit the
symmetry of the underlying tensor network to better account for the causal structure
inherent in the dynamics. This not only allows us to efficiently compute multi-time
correlation functions – the simulation need only run once to extract all multi-time
observable properties – but also opens the door to the simulation of more general models.
Our alternative formulation is demonstrated to significantly improve the efficiency of the
method, which we use to straightforwardly compute non-Markovian emission spectra for
the spin-boson model, beyond the point where the commonly used quantum regression
theorem breaks down [239].
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B.2 Process tensor framework
We consider stationary unitary dynamics of the system S we are interested in along
with its environment E, and suppose the system is transformed by superoperators Aj
at the discrete times {tk−1, ..., t0}, which we take to be at evenly spaced intervals of
δt = tj − tj−1. In an experiment, these superoperators could correspond to actual
interventions on the system as it evolves, i.e. unitary rotations, measurements etc., in
which case they are completely-positive and, if the interventions are not conditional
on a particular measurement outcome, trace preserving. Otherwise, the set {Aj} could
represent more abstract transformations useful in the computation of physical quantities
such as operator expectation values or emission spectra. The reduced, and potentially
subnormalized, state of the system at time tk is given by

ρk({Aj}) = TrE {UδtAk−1 ... UδtA0 [χ0]} , (B.1)

where Uδt is a superoperator representation of the unitary evolution of duration δt, i.e.
Uδt[ρ] = UδtρU

†
δt, with Uδt a unitary matrix, and χ0 is the initial system-environment

state. The inclusion of intermediate transformations makes it possible for us to consider
a much broader class of physical properties than free evolution of the density operator
(corresponding to Aj = I the identity superoperator ∀j) would allow.

Since the state at time tk in Eq. (B.1) is linearly related to each of the set of
superoperators {Aj} it can be written as a linear function of the tensor product of their
Choi state representationsAk−1:0 = Ak−1⊗· · ·⊗A1⊗A0, with Aj :=

∑
srAj[|s〉〈r|]⊗|s〉〈r|

obtained via the Choi-Jamiołkowski isomorphism [240, 34, 150]; here, {|s〉} forms an
orthonormal basis for S. Specifically, ρk({Aj}) = trk−1:0{Υk:0(1k ⊗AT

k−1:0)}, with the
trace over all subsystems on which Ak−1:0 acts. As we detail explicitly in Appendix B.7,

Υk:0 =
∑

~s′,~r′,~s,~r

tr
{
U (s′k,r

′
k,sk−1,rk−1)

δt . . . U (s′1,r
′
1,s0,r0)

δt

[
χ

(r′0,s
′
0)

0

]}
× |s′ksk−1 . . . s

′
1s0s

′
0〉〈r′krk−1 . . . r

′
1r0r

′
0| , (B.2)

with environment superoperators U (s′,r′,s,r)
δt [ρE] = 〈s′|Uδt(|s〉〈r| ⊗ ρE)U †δt |r′〉 and opera-

tors χ(r′,s′)
0 = 〈r′|χ0 |s′〉, is the Choi representation of the process tensor [233], a many-

body operator (on 2k+1 copies of S) containing all information about the system’s evolu-
tion that is independent of the transformations {Aj}. Correlations between subsystems
of Υk:0 correspond to temporal correlations between observables, and a representation in
terms of process tensors has been shown to consistently generalize stochastic processes,
and related notions such as the Markov property and Markov order, to the quantum
case [241, 242, 243, 244]. The process tensor is illustrated graphically in Fig. B.1, and
can be thought of simply as a sequence of correlated maps on the system [245]. Unlike
in a conventional open quantum systems picture, where density operators are mapped
to density operators, this operational formulation stresses that the proper input to a
quantum process is the set of interventions Ak−1:0, and that the intermediate dynamics,
and the initial state, are features of the process itself.

B.3 Gaussian influence functional
Here, we consider the specific structure of the process tensor for systems interacting
with Gaussian environments, where the system-environment Hamiltonian and initial
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state depend at most quadratically on environment creation and annihilation operators.
For concreteness, we focus on spin-boson type models, but our results would extend to
fermionic baths as well [30]. Working in natural units (~ = kB = 1), we consider a spin
system, with Hilbert space dimension d, interacting linearly with a bath of harmonic
oscillators described by the Hamiltonian H = H0 +HB. Here, H0 describes the free spin
system and the full bath influence is collected inHB = ŝ

∑
n

(
gnân + g∗nâ

†
n

)
+
∑

n ωnâ
†
nân.

A bath mode n has energy ωn, and is created (annihilated) by the bosonic operator
â†n (ân). The system operator ŝ interacts with the bath with coupling constants gn.
Additional linear interaction terms to different system operators could be included, as
long as all these system operators commute. For simplicity, we take the initial state
to be product, such that χ0 = ρ0 ⊗ τβ, with the environment initially described by
a thermal state τβ = exp

[
−β
∑
ωna

†
nan
]
/Z at inverse temperature β, where Z =

tr{exp
[
−β
∑
ωna

†
nan
]
}. This choice is not essential, and other, possibly correlated,

Gaussian initial states of the environment could be considered.
In the limit that the time difference δt is small, the generated unitary dynam-

ics can be approximately separated into contributions arising from H0 and HB as
Uδt ' V1/2

δt WδtV1/2
δt , where Vδt describes the free dynamics of S and Wδt describes the

environment influence. The discrepancy between the approximate unitary maps and the
actual ones vanishes as O(δt3) for this symmetric decomposition [246]. Note that the
approximate model does not break unitarity, and so corresponds to a valid physical pro-
cess independently of step size. Moreover, since the Hamiltonian only contains a single
interaction term, the interaction unitary preserves the eigenbasis of the corresponding
system operator ŝ =

∑
s λs |s〉〈s|: 〈s′|Wδt[|s〉〈r|] |r′〉 = δss′δrr′W(s,r)

δt . Together with the
decomposition of unitary maps, this allows us to write the approximate process tensor
Choi state as

Υ̃k:0 =
(
V1/2
δt ⊗ V

∗
δt

1/2
)⊗k

[Fk:0]⊗ ρ0 , (B.3)

where Fk:0 is an operator representation of the discretized Feynman-Vernon influence
functional [247] encoding environment induced correlations

Fk:0 =
∑
~s,~r

trE

{
W(sk,rk)

δt . . .W(s1,r1)
δt [τβ]

}
× |sksk . . . s1s1〉〈rkrk . . . r1r1| .

(B.4)

For Gaussian environments, the bath degrees of freedom can be traced over an-
alytically using standard path integral techniques [211, 212, 248, 215]. In this case,
introducing the d2 compound indices α = (s, r), an element of the influence functional
Fαk...α1

k:0 := 〈sksk . . . s1s1| Fk:0 |rkrk . . . r1r1〉 can be decomposed as

Fαk...α1

k:0 =
k∏
i=1

i∏
j=1

[
b(i−j)

]αiαj , (B.5)

where b(i−j) is called an influence tensor; the exact form, which can often be approxi-
mated by an analytic function [249], is given in Appendices B.7 and B.7 along with a full
derivation of Eqs. (B.4) and (B.5). The influence tensors connect the dynamics around
time step i with that around step j, quantifying the temporal correlations mediated by
the environment between those two points; that is, they describe memory effects. Since
the Hamiltonian is time-independent, the individual tensors [bl] depend only on the tem-
poral separation lδt, simplifying the potential complexity considerably. However, since
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Figure B.2: (Color online) Tensor network representation of the influence func-
tional on five time steps, with nodes representing influence tensors and labelled
by time step separation. Before contraction, indices are constrained to be equal
along rows and columns in the network; the open boundary can therefore be
shifted to any tensor in the same column (panels (a) and (b)) or row (panels (c)
and (d)). (a) With the non-local boundary choice of Ref. [154], the free indices
are attached to influence tensors encoding memory effects over all different
time-scales. (b) The full network is contracted iteratively from below, row by
row, down to a boundary MPO, with the full influence functional changing
at each step. (c) With the local boundary choice, the free indices are always
attached to the time-local influence tensors. (d) Contraction proceeds as indi-
cated, with the causal influence of each open leg sequentially incorporated into
the wider network. The influence functional on an open leg is fixed once the
corresponding layer has been contracted over.

the influence functional is a k index tensor, it is still potentially exponentially complex;
we now show how viewing Eq. (B.5) as a tensor network can make its calculation more
tractable.

B.4 Tensor network simulation
In many cases, the environment interaction produces only finite length correlations in
Fk:0, a fact used by the authors of Ref. [154] to circumvent the exponential complexity
growth by representing it efficiently in terms of matrix product operators (MPOs) [250].
To introduce this representation we first extend our two-index influence tensors into
three-index tensors as

[
b(i−j)

]γαi
αj := δγαj

[
b(i−j)

]αi
αj , where by convention an upper

and a lower repeated index in a product of tensors is summed over (otherwise, tensor
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elements differing only through raising or lowering are treated as equal). In terms of
these, we then define the non-local time-evolving MPOs

Fαk...α1

k:0 =
k∏
i=1

[b0]αiβ1

i−2∏
j=1

[bj]
βj αi−j

βj+1
[bi−1]βi−1α1

=
k∏
i=1

,

(B.6)

where the outgoing (ingoing) arrows in the graphical representation indicate upper
(lower) indices, and lines running through a given row or column are fixed to have
the same index through Kronecker deltas. At the right boundary of the tensors shown
in the second line of Eq. (B.6), we end up with a redundant lower index which we can
trace over, while at the left boundary we impose that the two upper indices be equal.
The full influence functional can then be constructed by iteratively multiplying such
MPOs. If we label the individual MPOs in the product by Gαi...α1 , then we can express
the iterative multiplication as

Fαk...α1

k:0 = Gαkαk−1...α1

βk−1...β1
Fβk−1...β1
k−1:0 , (B.7)

with Gαkαk−1...α1

βk−1...β1
:= Gαk...α1δ

αk−1

βk−1
...δα1

β1
; this is represented graphically by the two-dimensional

tensor network shown in Fig. B.2a. Conceptually the use of time-evolving MPOs, allows
the state of the system to be propagated by updating indices to encode memory effects
from the past process. This type of propagation is analogous to a description in terms of
a time non-local memory kernel, since the open legs are connected to tensors describing
the influence of the state at various points in its history 1.

A key insight of this paper is that the decomposition of the influence functional into
MPOs is not unique. Kronecker deltas implicit in Eqs. (B.6) and (B.7) mean that the
open leg in a given row or column in Fig. B.2 could be shifted to any tensor in that
same row or column. In particular, the causal structure of the process tensor motivates
an alternative definition in terms of local time-evolving MPOs

Fαk...α1

k:0 =
k∏
i=1

[bk−i]
αk
βk−i

k−i−1∏
j=1

[bj]
βj+1 αj+1

βj
[b0]β1αi

=
k∏
i=1

,

(B.8)

where now we end up with a redundant index at the left boundary, which we trace over,
and at the right boundary we impose the condition that the lower index must equal αi.
As with the non-local propagators, the full influence functional is constructed iteratively
by locally contracting MPOs. Labelling the individual MPOs in the product by Cαk...αi ,
the iterative multiplication can be expressed as (for i ≥ 1)

F̃αk...α1

(k:i+1) := Cαk...αi+1

βk...βi+1
F̃βk...βi+1αi...α1

(k:i) , (B.9)

1This correspondence is not precise, however, and our usage of ‘(non-)local’ should not be confused
with that in the context of memory kernel convolution.
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with Cαk...αiγk...γi
:= Cαk...αiδαkγk ...δ

αi
γi

and F̃αk...α1

(k:1) := Cαk...α1 . The resulting network represen-
tation for the influence functional Fk:0 = F̃(k:k) is shown in Fig. B.2c. Conceptually,
the local time-evolving MPOs propagate the state by updating a set of effective mem-
ory space indices. These indices describe how the environment is conditioned by the
process at a given time, and this information on the conditioning can be propagated
locally. Since the process tensor, and hence the influence functional, has a well-defined
causal structure, this conditioning only occurs from the past to the future. This means
that, for a fixed evolution time, the size of the tensor to be updated decreases with each
iteration.

In contracting the network, efficiency is achieved by incorporating a tensor compres-
sion procedure of the obtained boundary in each iteration. In this work we make use
of the singular value compression procedure (see Appendix B.7) [250, 154]. Roughly
speaking, the local tensors of the boundary are subjected to a singular value decompo-
sition. The compression consists of discarding the eigenvalues below a specified singular
value cutoff λc, quantifying the hardness of the compression. For the non-local algo-
rithm (Fig. B.2a,b), the tensors contracted in each iteration encode information about
the influence of multiple time-steps on each other. When correlations become smaller
at longer time scales, as is typically the case, not all this information is relevant for
describing the process as a whole. The local algorithm (Fig. B.2c,d) incorporates this
insight, and separates out the most important contribution by including only the future
influence of the environment at each timestep. Generally the most local contributions
have the largest singular values, and therefore the separation means that the part of the
boundary being propagated in the local case is less correlated, which translates into a
more efficient algorithm.

B.5 Network complexity for a two level system

We now turn to the specific simulation of the dynamics of a two-level system, and
compare the performance of the non-local and local algorithms. Consider the free
Hamiltonian H0 = Ωσx/2 and ŝ = σz/2, where σx and σz are the usual Pauli op-
erators. The environment is fully characterized by its spectral density defined as
J(ω) =

∑
n |gn|2δ (ω − ωn) [37]. Here we consider a continuum bath model with the

spectral density
J(ω) = (αωc/2)(ω/ωc)

ν exp (−ω/ωc) , (B.10)

with coupling strength α, cutoff frequency ωc and Ohmicity ν, where for an Ohmic
spectral density ν = 1.

The computational complexity is quantified by the computation time required to
contract a network of a certain size with a fixed singular value cutoff (see Appendix B.7
for details on implementation). In general, this will depend on the overall magnitude
of the influence functional, as well as the characteristic memory time quantifying how
the elements of the influence tensors b(i−j) decrease in magnitude at large |i − j|. In
Appendix B.7, we show that, for a fixed evolution time, the memory time goes as
α/(βωc) when ωc is large, and that the overall coupling goes as αωct2max/β when ωc is
small. In Fig. B.3a, we plot the computation time for the local and non-local algorithms
as a function of coupling strength. We find that the local representation outperforms
the non-local one by one-to-two orders of magnitude, even at weak coupling, and that
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Figure B.3: (a) Variation of computation time with the inverse of the cutoff
frequency for the local algorithm at a coupling strength of α = 0.7, for an ohmic
spectral density with ωc = 10Ω, T = 0.01Ω and λc = 10−6. (b) Comparison
between the computation time of the non-local [Eq. (B.6)] and local [Eq. (B.8)]
time-evolving MPO algorithms for an Ohmic spectral density with ωc = 10Ω,
T = 0.01Ω and λc = 10−6 as a function of coupling strength. (c) Steady
state phonon emission spectrum at α = 0.7, the non-Markovian (numerically
converged) spectrum is simulated using the local algorithm, and is compared
with the spectrum obtained using the regression theorem (removing correlations
across non-trivial superoperators).

the improvement increases at larger coupling strengths (in Appendix B.7 we show that
there is an advantage everywhere across a wide range of parameters). Furthermore, in
Fig. B.3b, we illustrate that this computational efficiency is maintained as the charac-
teristic timescale of the bath (the inverse of the environment cutoff frequency) is varied,
consistent with our predictions.

It should be kept in mind that, unlike in most other quantum simulation methods,
including the original TEMPO algorithm, the object we are computing is the full process
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tensor, which encodes all multi-time correlations, and from which a host of properties
can be extracted efficiently. In particular, we can compute the steady state emission
spectrum S(∆ω) = Re

[∫∞
0
dτ(g(1)(τ)− g(1)(∞))e−i∆ωτ

]
, defined in terms of the two-

point correlation function g(1)(τ) = limt→∞
〈
σ†(t+ τ)σ(t)

〉
. The two-point correlation

function is defined in terms of the raising and lowering operators on the spin system.
To compute it, we take all superoperators which the process tensor acts on to be the
identity superoperator I (with action I[ρ] = ρ) except for two, which append a raising
or lowering operator respectively. In Fig. B.3c, we study the physical effects of system-
environment correlations by looking at the phonon emission spectrum. We compare this
with the spectrum computed using the quantum regression theorem, which approximates
intermediate dynamics with that from an initial product state and is valid in the weak-
coupling limit [206]. The regression theorem correlations are obtained by breaking all
correlations in the full process tensor Choi state across time steps at which the raising
and lowering operators are evaluated. In addition, we compare the exact spectrum
with a fully Markovian process in which correlations are broken after each time step.
Fig. B.3c shows that non-Markovian effects produce a phonon sideband in the spectrum
at positive frequencies, this is contrasted with the regression theorem result which gives
a symmetric sideband structure. Furthermore the fully Markovian spectrum contains
no phonon sidebands, but rather a resonant emission peak. These significant differences
illustrates the importance of accounting for non-Markovian physics.

B.6 Conclusion

In this Letter, we have established a direct connection between recent frameworks for
characterizing general non-Markovian quantum processes and the path integral formula-
tion of open quantum dynamics. By relating the influence functional to a process tensor
on an infinitesimal time grid, which has an explicit causal structure, we were able to
build on recent progress in the classical simulation of Gaussian open quantum systems
in terms of tensor networks. Specifically, we showed that the speed of the TEMPO al-
gorithm, when computing the multi-time properties encapsulated in the process tensor,
can be improved by orders-of-magnitude by shifting the boundary of the corresponding
tensor network from a temporally non-local to a local one. Our contribution is im-
mediately applicable to the efficient simulation of realistic complex open systems, and
additionally illustrates the utility of thinking about a time-local propagation of a con-
ditioned environment space, rather than a description resembling the use of a non-local
memory kernel.

The utility of the non-local TEMPO algorithm has been amply illustrated by com-
puting the Ohmic localization transition, and the dynamics of complex problems with
multiple separated timescales [154]. The improved algorithm presented here is capa-
ble of exploring the same physics more efficiently, and, in addition, easily extends to
the computation of multi-time observables, of the sort crucial to describing, for exam-
ple, multi-dimensional spectroscopy experiments [251]. Moreover, relating path inte-
gral techniques to the more general process tensor formalism indicates how they might
be generalized to more complex system-environment interactions, or even beyond the
Gaussian regime. Even within the spin-boson model, the freedom of boundary choice in
Fig. B.2 that we have identified could be further exploited in other contexts. While the
local choice appears optimal here, it may be that for other, structured spectral densities,
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where there are recurrent correlations, different boundary choices are more efficient, a
point whose exploration we leave for future work.

B.7 Appendix
Process tensor formalism.

As described in the main text, we consider the scenario characterized by Eq. (B.1),
where an open quantum system S is periodically interrogated as it evolves. The slightly
more general case involves an arbitrary time separation between interventions and a
possibly time-dependent SE Hamiltonian H(t), such that the state at the kth time is
given by

ρk({Aj}k−1
j=0) = trE {Uk:k−1Ak−1 ... U1:0A0 [χ0]} (B.11)

where Uj:j−1 is the time-evolution superoperator from time tj−1 to tj with action Uj:j−1[ρ] =

Uj:j−1ρU
†
j:j−1 in terms of the time-ordered exponential

Uj:j−1 = T← exp

{
−i
∫ tj

tj−1

dsH(s)

}
. (B.12)

As in the main text, χ0 is the potentially correlated initial SE state and each Aj can
be any superoperator, though only those that are completely positive correspond to
physically realizable transformations [240].

Any superoperator can be represented in terms of an operator sum as A[ρ] =∑
nXnρY

†
n (completely positive maps are characterized by Xn = Yn, in which case

the latter are called Kraus operators). As such, by taking the trace over the final state in
Eq. (B.11), any multi-time correlation function 〈B0(t0) . . . Bk−1(tk−1)Ak−1(tk−1) . . . A0(t0)〉χ0 ,
where {Aj(tj) = U †j:0AjUj:0} and {Bj = U †j:0BjUj:0} are Heisenberg picture operators on
S, can be obtained by choosing Aj[ρ] = AjρBj. In this way, with a sufficiently dense
set of times {tj}, any dynamically observable property of S can be represented in the
form of Eq. (B.11) (correlation functions involving fewer observables can be obtained
by choosing some of the {Aj} and {Bj} to be the identity operator). In addition, the
freely evolved final state ρk can be obtained by choosing all Aj = I, where the latter is
the identity superoperator with action I[ρ] = ρ.

As we will now show, all this information can be encoded in a single object, the
process tensor. While it is often introduced in terms of an abstract multi-linear map, we
will here express it solely in terms of a concrete matrix representation via a version of the
Choi-Jamiołkowski isomorphism. The Choi state (or Choi matrix) A of a superoperator
A is defined in terms of its action on one half of the (unnormalized) maximally entangled
state Ψ =

∑
sr |ss〉〈rr|, where {|s〉} forms an orthonormal basis for the d-dimensional

system, as
A = A⊗ I[Ψ] =

∑
srs′r′

A(s,r,s′,r′) |ss′〉〈rr′| , (B.13)

with A(s,r,s′,r′) = 〈s| A[|s′〉〈r′|] |r〉. Labelling the first and second copies of the original
system’s Hilbert space o (for output) and i (for input) respectively, the action of the
superoperator on an initial state ρ can be written in terms of this representation as
A[ρ] = tri[A1o ⊗ ρT ], where the trace is over the input subsystem.
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By expanding out the action of the superoperators in Eq. (B.11) and inserting a
resolution of the identity on S to the left and right of every unitary matrix, one arrives
at the equivalent expression

ρk({Aj}k−1
j=0) = trk−1:0

{
Υk:0(1k ⊗AT

k−1:0)
}
, (B.14)

with Ak−1:0 = Ak−1 ⊗ · · · ⊗ A1 ⊗ A0 and the trace over all (input and output) Hilbert
spaces on which Ak−1:0 acts. The positive operator Υk:0 is (the Choi state of) the process
tensor, and it can be expressed in terms of the underlying SE dynamics as

Υk:0 =
∑

~s′,~r′,~s,~r

tr
{
U (s′k,r

′
k,sk−1,rk−1)

k:k−1 . . . U (s′1,r
′
1,s0,r0)

1:0

[
χ

(r′0,s
′
0)

0

]}
× |s′ksk−1 . . . s

′
1s0s

′
0〉〈r′krk−1 . . . r

′
1r0r

′
0| , (B.15)

with U (s′,r′,s,r)
j:j−1 [ρE] = 〈s′|Uj:j−1(|s〉〈r| ⊗ ρE)U †j:j−1 |r′〉 and χ

(r′,s′)
0 = 〈r′|χ0 |s′〉. This ob-

ject can be directly constructed by swapping the system with one half of a maximally
entangled state at each point where a superoperator A is to be applied [233]. When the
SE Hamiltonian is time independent and tj−tj−1 = δt for all j, Eq. (B.15) is equivalent
to Eq. (B.2) of the main text.

A representation in terms of the process tensor separates the process and external
interventions, as illustrated in Fig. B.1 of the main text. The process tensor’s properties
reflect the necessary features of any physical open dynamics: Υk:0 is positive if and
only if the process is completely positive, and causality is encoded in the hierarchy of
trace conditions trj Υj:0 = Υj−1:0 ⊗ 1oj−1

. While we have expressed it in terms of SE
quantities, it is an operator only on copies of the Hilbert space of S and it has a natural
matrix product form, allowing for an efficient representation in many cases, a fact we
exploit in this paper.

Connection with influence functional

In the case where the time spacing is small (and the Hamiltonian varies relatively slowly),
the Trotter formula can be used to approximate the time evolution superoperators as
Uj:j−1 ' V1/2

j:j−1Wj:j−1V1/2
j:j−1, with Vj:j−1 generated by the S part of the Hamiltonian and

Wj:j−1 by the remainder. Expanding out the superoperators appearing inside the trace
in Eq. (B.15) and introducing further resolutions of the identity, one finds

U (s′,r′,s,r)
j:j−1 '〈s′| V1/2

j:j−1Wj:j−1V1/2
j:j−1 [|s〉〈r|] |r′〉

=
∑

t′,t,u′,u

〈s′| V1/2
j:j−1 [|t′〉〈u′|] |r′〉

× 〈s| V∗ 1/2
j:j−1 [|t〉〈u|] |r〉W(t′,u′,t,u)

j:j−1 , (B.16)

where W(s′,r′,s,r)
j:j−1 := 〈s′|Wj:j−1 [|s〉〈r|] |r′〉, and we have used that 〈t| V1/2

j:j−1 [|s〉〈r|] |u〉 =

〈s| V∗ 1/2
j:j−1 [|t〉〈u|] |r〉. Assuming a factorizing initial condition χ0 = ρ0⊗τ and substituting

Eq. (B.16) into Eq. (B.15) leads to the following slightly more general version of Eq. (B.5)
for the approximate process tensor Υ̃k:0:

Υ̃k:0 =
k⊗
j=1

(
V1/2
j:j−1 ⊗ V

∗ 1/2
j:j−1

)
[Fk:0]⊗ ρ0, (B.17)
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with

Fk:0 =
∑

~s′,~r′,~s,~r

trE

{
W(s′k,r

′
k,sk−1,rk−1)

k:k−1 . . .W(s′1,r
′
1,s0,r0)

1:0 [τ ]
}

× |s′ksk−1 . . . s1s
′
1s0〉〈r′krk−1 . . . r1r

′
1r0| . (B.18)

In the special case that the bath coupling part Hamiltonian can be written in the form
HB(t) =

∑
s |s〉〈s|⊗Bs(t) where

∑
s |s〉〈s| = 1S (the Hamiltonian of the main text takes

this form in the interaction picture with respect to the bath),W(s′,r′,s,r)
j:j−1 = δss′δrr′W(s,r)

j:j−1

with

W(s,r)
j:j−1[ρE] = W

(s)
j:j−1ρ

EW
(r) †
j:j−1 (B.19)

and

W
(s)
j:j−1 = T← exp

[
−i
∫ tj

tj−1

dxBs(x)

]
. (B.20)

For a time-independent Hamiltonian with even time spacing δt, Eq. (B.18) then reduces
to the operator representation of the discretized Feynman-Vernon influence functional
in Eq. (B.4) of the main text.

Explicit form of influence tensors in the spin-boson model

Further decomposing the influence functional into a product of the form of Eq. (B.5)
requires that the bath be composed of field modes coupled linearly to the system,
and that the Hamiltonian and initial state are quadratic in the corresponding cre-
ation and annihilation operators {â†n} and {ân}. In other words, the environment must
be Gaussian and the operators coupling to the system must take the form B̂s(t) =∑

n(gs,nâne
−iωnt + g∗s,nâ

†
ne
iωnt) in the interaction picture. In this case, Wick’s theorem

can be applied to express Eq. (B.18) as a product of exponentiated two point correlation
functions. Specifically, we use the fact that for any linear functional of bath operators
X̂, tr{T exp

[
X̂
]
ρ} = exp

[
1
2

tr{TX̂2ρ}
]
, with T any time ordering operator, when ρ is

Gaussian [248]. Treating the left and right appended operators in Eq. (B.19) as a single
contour ordered exponential under the trace, this results in the following expression:

Fαk...α1

k:0 = trE

{
W(sk,rk)

k:k−1 . . .W
(s1,r1)
1:0 [τ ]

}
= exp

[
−1

2

∑
i≥j

(
ζ

(si,sj)
i,j + ζ

(ri,rj) ∗
i,j

−ζ(ri,sj)
i,j − ζ(si,rj) ∗

i,j

)]
, (B.21)

where

ζ
(u,v)
i,j =

∫ ti

ti−1

dx

∫ tj

tj−1

dy tr
{
B̂u(x)B̂v(y)τ

}
(B.22)
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for i 6= j, else for i = j:

ζ
(u,v)
i,i =

∫ ti

ti−1

dx

∫ x

ti−1

dy tr
{
B̂u(x)B̂v(y)τ

}
. (B.23)

Restricting to the spin-boson type Hamiltonian considered in the main text, with
a single interaction term ŝ

∑
n(gnân + g∗nâ

†
n) and with a thermal (and hence Gaussian)

initial bath state τβ, we can compute the influence tensors explicitly. Here, the interac-
tion picture bath operators appearing in Eqs. (B.22) and (B.23) take the simple form
B̂u(t) = λu

∑
n(gnâne

−iωnt+g∗nâ
†
ne
iωnt), written in terms of the eigenvalues of the system

operator ŝ =
∑

u λu |u〉〈u|.
In this case, ζ(u,v)

i,j = 2λuλvηi−j, where the memory kernel elements

ηi−j =

{∫ ti
ti−1

∫ tj
tj−1

dt′dt′′C(t′ − t′′) , i 6= j∫ ti
ti−1

∫ t′
ti−1

dt′dt′′C(t′ − t′′) , i = j
, (B.24)

depend only on the difference between time steps and are expressed in terms of the
environment auto-correlation function [154, 215]

C(t) =
1

π

∫ ∞
0

dωJ(ω)
cosh [ω (β/2− it)]

sinh [βω/2]
. (B.25)

Here J(ω) =
∑

n |gn|2δ(ω − ωn) is the spectral density, as defined in the main text. In
terms of these quantities, the elements of the influence tensors b(i−j) that correspond
to each of the terms in the exponentiated sum in Eq. (B.21) (such that Fαk...α1

k:0 =∏
i≥j[b(i−j)]

αiαj), can be written[
b(i−j)

]αiαj = e−(λsi−λri )(ηi−jλsj−η
∗
i−jλrj ). (B.26)

These are the values that enter directly into our algorithm.

Tensor network compression

In contracting the network, efficiency is achieved by finding a minimal approximate
representation for the boundary matrix product operator in each iteration [250]. This
is obtained by replacing high rank tensors with small singular values by lower rank
approximations. These are found by performing a singular value decomposition (SVD)
of the local tensors in the matrix product state, and discarding the singular values
below a cutoff λc. Indicating an index partition by raised and lowered indices, the SVD
decomposed tensor takes the form

Fαk...αj+1
αj ...αi = Uαk...αj+1

γ Λγ
δ

(
V †
)
δ
αj ...αi , (B.27)

where the diagonal matrix Λγ
δ contains the singular values, and U , V are rectangular

isometric matrices satisfying U †U = 1 and V †V = 1 (see Fig. B.4a). Truncating the
singular values reduces the sizes of U and V (we will refer to the truncated versions
as Ū and V̄ ), and introduces a corresponding truncation error, whose magnitude is
determined by the cutoff. We truncate the singular values such that

λc ≤

√
Λ2 − Λ̃2

Λ2
, (B.28)
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where Λ̃ denotes the truncated diagonal matrix. Having truncated the singular values,
we contract the Ū and Λ̃ to give a new matrix Q with which to express the newly
compressed local tensor:

Fαk...αj+1
αj ...αi ' Qαk...αj+1

δ

(
Ṽ †
)
δ
αj ...αi . (B.29)

The singular value compression proceeds from one end of the boundary matrix prod-
uct operator. Say we begin the compression at the right boundary (see Fig. B.2), then
initially the first (farthest to the right) local tensor is singular value decomposed and
compressed. The matrix Ū in the above decomposition is then contracted with the
diagonal matrix Λ̄ to give Q, which is subsequently contracted with the second local
tensor to the left. The compressed V̄ tensor is stored as the new first local tensor (see
Fig.B.4b) and this procedure is repeated for the second local tensor, and so on until the
left boundary is reached. This constitutes a left sweep of the SVD compression proce-
dure. After this left sweep, an equivalent right sweep is performed, where the left-most
tensor is singular value decomposed and compressed, followed by the next left-most
and so on. To produce the figures in this paper, we implemented one left sweep and
one right sweep in each stage of the algorithm. Including more sweeps back and forth
would in principle improve the quality of the compression; however, as we discuss below
our implementation is sufficient to demonstrate an improvement of the local over the
non-local algorithm.

Scaling of memory effects with physical parameters

We now proceed to estimate the complexity of contracting the network. This depends
crucially on how quickly the memory decays, and hence the effective depth of the tensor
network in Fig. B.2c (as we will see, the overall size of memory effects is also impor-
tant). From Eq. (B.26), it is clear that non-trivial contributions of the b(i−j) tensors
to the influence functional depend on the magnitude of the memory kernel elements
ηi−j. Specifically, the effect of truncating the network in Fig. B.2c at a depth m, with
resulting influence functional elements [Fαk...α1

k:0 ]m, is to introduce a relative error:

εm :=
Fαk...α1

k:0

[Fαk...α1

k:0 ]m
− 1 =

k−m∏
i=1

i∏
j=1

[
b(i−j+m)

]αi+mαj − 1

'
k−m∑
i=1

i∑
j=1

(λri+m − λsi+m)(ηi−j+mλsj − η∗i−j+mλrj)

≤2‖ŝ‖op

k∑
l=m

(k − l)|ηl|, (B.30)

where ‖ŝ‖op := max {|λr|} (we will henceforth take ‖ŝ‖op = 1, effectively absorbing
it into the coupling strength); in the second line we have assumed m is sufficiently
large that the error is small. For a fixed error ε, the memory time tm = mδt, and
hence the complexity of our algorithm (we expect the error due to SVD compression
to scale similarly), will therefore depend on how quickly |ηl| decays with l. If it decays
exponentially with rate c, then in the limit of large k, it is relatively straightforward to
show that the memory time scales as tm ∼ δt(log k + log ε−1)/c. However, as we will
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now see, for the spectral density we have chosen, the memory kernel decays as a power
law.

When δt = tj − tj−1 is sufficiently small, we have

ηi−j '

{
δt2C ((i− j)δt) , i 6= j
1
2
δt2C(0) , i = j

. (B.31)

For the spectral density introduced in the main text J(ω) = (αωc/2)(ω/ωc)
ν exp (−ω/ωc)

with ν = 1 (i.e. the Ohmic case), the integral in Eq. (B.25) can be evaluated explicitly,
giving

C(t) =
αω2

c

2π

(
ω2
c t

2 − 1

(ω2
c t

2 + 1)2
+

2

β2ω2
c

Reψ(1)

[
1− iωct
βωc

]
−2i

ωct

(ω2
c t

2 + 1)2

)
,

with ψ(1)[z] :=
∫∞

0
dx xe−zx/(1 − e−x) the order-1 polygamma function. For large |z|,

the latter goes as ψ(1)[z] ∼ 1/z + 1/(2z2) [252]. Hence, in the limit that t � ω−1
c and

t� β, we can expand out Eq. (B.32) and combine with Eq. (B.31) to arrive at

|ηi−j| =
α

πβωc|i− j|2
+O(|i− j|−4), (B.32)

to leading order in |i − j|−1. Therefore, for sufficiently large m and k = tmax/δt, we
can perform the sum in Eq. (B.30), finding εm . αkψ(1)[m]/(πβωc) ' αk/(πβωcm).
For fixed error ε, we therefore have that the bound on the memory time, and hence the
complexity of the algorithm scales as

tm ∼
αtmax

πβωcε
. (B.33)

This explains the behaviour of Fig. B.3a and the large ωc behaviour of Fig. B.3b in
the main text. However, the onset of this limit depends on the parameter combinations
ωct and

√
(t2 + ω−2

c )/β2 both being large (these elicit expansions for the first and second
terms of Eq. (B.32) respectively). When ωc . t−1

max, the former limit is never reached,
and only the term involving the polygamma function contributes significantly to the
error. Specifically, the magnitude of the memory kernel is approximately constant,
going as

|ηi−j| =
αωcδt

2

πβ
+O(ω2

c ). (B.34)

Therefore, for small δt, Eq. (B.30) leads to εm . (αωc/πβ)(tmax − tm)2 and one can see
that, as long as tmax is fixed, the error is bounded by a number that goes to zero as ωc
does, even for very small memory times. Hence, in this limit, the effective coupling to the
bath is weak overall and even the local influence tensors do not contribute significantly
to the dynamics, explaining the behaviour at small ωc in Fig. B.3b.

Scaling comparison

In Fig. B.4c we compare the computation time per iteration of the non-local and the
local network representations for a fixed network size and SVD cutoff. We see that the
time per iteration of the non-local TEMPO algorithm increases approximately linearly.
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Figure B.4: (a) Singular value decomposition applied to input tensor. The
singular values are truncated, giving a smaller bond dimension (indicated by
red color). A new local tensor is defined and the contribution qc is ready
to be propagated along the matrix product state. (b) A local tensor of the
boundary MPS is subjected to a SVD compression. The compression procedure
is repeated iteratively across the full MPS. Here we illustrate a left compression
sweep, the full procedure includes compression sweeps in both directions. (c)
Comparison between the computation times per iteration for the local and non-
local algorithms at weak coupling. The parameters used are ωc = 5Ω, ν = 1,
δt = 0.04/Ω and a singular value cutoff of λc = 10−6. We see that the non-
local algorithm has a computation time increasing linearly with each iteration,
this is contrasted with the local algorithm where an approximately constant
computation time is observed. In addition we find a significant improvement in
the actual value of the computation time, as argued in the main text this is due
to a separation between relevant and irrelevant information in the compression.
(d) Log ratio of total computation time for the non-local (Tnonlocal) and the local
(Tlocal) algorithms for a range of couplings α and cutoff frequencies ωc. These
calculations were performed at zero temperature and otherwise for the same
parameters as in Fig. B.3.

For a finite network, the local TEMPO algorithm has a time per iteration which rapidly
goes to a non-increasing value. The growth of complexity in the non-local case is mainly
due to the build up of irrelevant information, rather than a genuine build-up of temporal
correlations. The observed decrease in the computation time per iteration for the local
case, is a consequence of working with a finite network. In the original TEMPO proposal
[154], it was argued that one could implement a truncation of the number of tensors
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in the propagators and obtain a constant scaling at long times. The same method
could be applied with the local TEMPO algorithm, only with a significantly reduced
time per iteration. More rigorously, we could combine the tools developed here with the
transfer tensor approach [218, 222], which infers long-time correlations from a short-time
simulation. The problem would then become efficiently contracting the full network up
to a sufficiently long-time. The advantage in contracting the network persists across a
wide range of parameters, as depicted in Fig. B.4d. Even in the easier regime of weak
coupling and small cutoff frequency, the non-local network takes longer to contract than
the local one.
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