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Abstract

In measurement-based quantum computation (MBQC), or cluster state computation, gates are
implemented on a multi-mode entangled cluster state by projective measurements. In the optical
continuous variable (CV) regime, such cluster state can be deterministically generated while a class
of measurements is efficiently implemented by homodyne detection. This immediately allows for
the deterministic implementation of Gaussian gates in a scalable optical computation platform.

In this thesis, work towards the realization of CV MBQC is presented. In MBQC, a cluster state
of at least two dimensions is required, and in this thesis, the generation of such two-dimensional
(2D) cluster state is proposed and experimentally demonstrated. Assuming the availability of
Gottesman-Kitaev-Preskill (GKP) encoded input qubits, a universal computation scheme for the
2D cluster state is proposed, and noise analysis of the computation scheme is carried out and
compared to other computation schemes on 2D cluster states. Following the proposed computation
scheme, a universal Gaussian gate set is implemented on the generated cluster state by projective
measurements, and to demonstrate the programmability, gates are combined into a small quantum
circuit. Gate noise, caused by finite squeezing, is characterized, and the requirements for fault-
tolerant computation are discussed. Finally, a new computation scheme is proposed where gates
are implemented on a three-dimensional cluster state allowing topological error correction. Taking
finite squeezing in both the cluster state generation and approximate GKP-states into account,
fault-tolerant computation is shown to be possible by simulation when the squeezing level is above
a certain squeezing threshold.

To aid the experimental implementations, the focus throughout this thesis is on temporal en-
coding where resources are reused in time minimizing the required spatial resources, i.e. time
multiplexing. To this end, the thesis starts with a demonstration of two-mode squeezed state
generation in two spatial modes from a single time-multiplexed squeezed light source using opti-
cal switching and delay. In this demonstration, multiple experimental techniques are developed,
including efficient free-space to fiber coupling, in-fiber phase control, and fiber-based homodyne
detection, each of which plays important roles in the experimental demonstration of the following
cluster state generation and gate implementation.
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Resumé (danish)

I m̊alebaseret kvanteberegning (MBQC), eller klyngetilstandsberegning, implementeres gates p̊a
en multimode sammenvinklet klyngetilstand via projektive m̊alinger. I det optiske kontinuertvari-
able (CV) regime kan s̊adan klyngetilstand genereres deterministisk, mens en klasse af m̊alinger
effektivt implementeres med homodyne detektorer. Dette giver straks mulighed for deterministisk
implementering af Gaussiske gates i en skalerbar optisk beregningsplatform.

I denne afhandling præsenteres arbejde mod realisering af CV MBQC. I MBQC kræves en klyn-
getilstand p̊a mindst to dimensioner, og i denne afhandling foresl̊as og demonstreres genereringen
af en s̊adan todimensionel (2D) klyngetilstand eksperimentelt. Under forudsætning af tilgængelige
Gottesman-Kitaev-Preskill (GKP)-kodede input qubits foresl̊as en universelt beregningsprotokol
for 2D-klyngetilstanden, og støjanalyse af beregningsprotokollen udføres og sammenlignes med
andre beregningsprotokoller p̊a 2D-klyngetilstande. Med den foresl̊aede beregningsprotokol imple-
menteres et universelt Gaussisk gate-sæt p̊a den genererede klyngetilstand ved projektive m̊alinger,
og for at demonstrere programmerbarheden, kombineres gates til et lille kvantekredsløb. Gatestøj
for̊arsaget af begrænset klemning er karakteriseret, og kravene til fejltolerant beregning diskuteres.
Endelig foresl̊as en ny beregningsprotokollen, hvor gates implementeres i en tredimensionel klyn-
getilstand, der muliggør topologisk fejlkorrektion. Ved medregning af begrænset klemning i b̊ade
klyngetilstandsgenerering og approksimative GKP-tilstande, vises fejltolerant beregning ved simu-
lering at være mulig, n̊ar klemmeniveauet er over en bestemt klemmetærskel.

For at simplificere de eksperimentelle implementeringer, er der i hele denne afhandling fokuseret
p̊a tidsmæssig kodning, hvor ressourcer genbruges i tide og minimerer de nødvendige rumlige
ressourcer, dvs. tidslig multiplexing. Til dette form̊al starter afhandlingen med en demonstration
af to-mode klemte tilstand i to rumlige modes fra en enkelt tidslig multiplexet klemt lyskilde,
genereret vha. en optisk switch og optisk forsinkelse. I denne demonstration udvikles flere eksper-
imentelle teknikker, herunder effektiv kobling fra fritg̊aende lys til optisk fiber, fasekontrol i fiber
og detektering med fiberbaseret homodyne detektorer, som hver især spiller vigtige roller i den
eksperimentelle demonstration af følgende klyngetilstandsgenerering og gateimplementering.
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Chapter 1

Introduction

Since proposed in 2001 by Raussendorf and Briegel [1], measurement-based quantum computa-
tion (MBQC) has been a viable strategy towards scalable quantum computation. In MBQC,
gates are implemented by local projective measurements on a multi-mode entangled cluster state,
circumventing the coherent dynamics required in traditional gate-based quantum computation.
The principle is sketched in Fig. 1.1a,b. In Fig. 1.1b a cluster state is prepared with nodes cor-
responding to qubits prepared in |+〉 ∝ |0〉 + |1〉 states and edges corresponding to entangling
controlled-Z gates, ĈZ = |0〉 〈0| ⊗ Î + |1〉 〈1| ⊗ Ẑ. Here, Î and Ẑ are the identity and Pauli-Z
operators, respectively. Multi-qubit input states are then connected to the cluster state, possibly
by controlled-Z gates or other entangling gates. By projective measurements, the input states are
teleported through the entangled cluster state, and depending on the measurement basis settings,
a desired quantum algorithm (Fig. 1.1a) is implemented on the input states when teleported. As a
result, all the coherent dynamics of implementing an algorithm is packed away in the preparation
of the multi-mode entangled cluster state. Given the preparation of a universal cluster state, this
approach has the advantage that the cluster state is independent on the algorithm. We can then
focus on preparing a high-quality cluster state while implementing different algorithms by local
measurements becomes easy. Here, a universal cluster state refers to a cluster state of some struc-
ture and topology that allows for implementing arbitrary algorithms by local measurements. To
this, a cluster state of at least two dimensions is required: One dimension for encoding the input
information, and one dimension for encoding the desired algorithm. Finally, the output states may
be measured as well to reveal the computation outcome.

In 2006, Menicucci et al. proposed MBQC in the continuous variable (CV) regime [2]. In
the CV regime, qubits are replaced by bosonic qumodes, or just modes, each being a harmonic
oscillator. Each node of the cluster state in Fig. 1.1b is then prepared in an eigenstate of the mo-
mentum quadrature operator, p̂, while edges correspond to the CV version of the controlled-Z gate,
ĈZ = eix̂⊗x̂ with x̂ being the position quadrature. Similar to before, input states are teleported
through the cluster state by projective measurements with an applied algorithm dictated by the
measurement basis settings. In practice, this approach has advantages on optical platforms where
approximate CV cluster states can be deterministically generated, and a group of measurements,
specifically homodyne measurements measuring in the quadrature bases, is efficiently implemented.
Here, an approximate cluster state refers to finite squeezing in the cluster state preparation: The
momentum quadrature eigenstates are non-physical since they require infinite squeezing and thus
infinite energy. In approximate cluster states, the ideal quadrature eigenstates are replaced by
momentum squeezed states, and the approximate cluster state goes towards an ideal cluster state
for increasing squeezing levels. The price of using an approximate cluster state for computation
is computation noise caused by the finite squeezing, which eventually leads to computation er-
rors. Similar to other platforms, including gate-based computation, fortunately, such errors can
be corrected using quantum error correction [3].

Prior to this thesis, since proposed in Ref. [2], theory on CV MBQC and CV cluster states
has been developed and matured [3–6], and a toolbox of graphical calculus of Gaussian states

1
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c

Teleportation(A ,      )in
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Input states, in

Input states, in

Figure 1.1: (a) A quantum algorithm, A, with multi-mode input states, |ψin〉, sketched in a gate-
based fashion. (b) The principle of MBQC, where input states are connected to a cluster state,
here in two dimensions, and teleported through the cluster state by projective measurements while
the desired algorithm is implemented depending on the measurement bases. (c) Schematics of
temporal encoded MBQC comprising a cluster state generator and a measurement device. Each
node of the generated cluster state, here temporally encoded in a single spatial mode, occupy a
temporal mode in time with entangling edges between temporal modes at different times. The
measurement device is reused in time to measure each temporal mode with different basis settings
dictating the implemented algorithm, and the measurement results are recorded to analyze the
computation outcome.

has been presented in Ref. [7], which is used extensively in this thesis. Several MBQC schemes
for cluster state generation and computation have been proposed [8–12], each of which utilizes
temporal or frequency multiplexing to keep the required spatial resources low, and error correction
in the CV regime has been proposed [13–15] and applied in CV MBQC [3]. On the experimental
side, small cluster states were first generated [16–18], followed by the generation of large one-
dimensional cluster states based on time and frequency multiplexing [19–21], while quantum gates,
implemented by projective measurements, have been demonstrated on small cluster states [22–29].

In this thesis, comprising Refs. [30–34], I present both experimental and theoretical work further
towards the realization of CV MBQC. On the experimental side, this includes the demonstration
of a two-dimensional (2D) CV cluster state, implementation of a universal Gaussian gate set by
projective measurements, combining gates in a programmable fashion, and demonstration of optical
switching in a quantum setting. On the theoretical side, besides the theory behind 2D cluster state
generation and the derivation of a computation scheme for gate implementation, noise analysis of
different computation schemes on 2D cluster stated is carried out and compared, and a new fault-
tolerant computation scheme is proposed allowing topological error correction.

Throughout this thesis, the focus is on temporal encoded computation schemes where, by
temporal multiplexing, the number of required spatial resources is kept low [9]. This is mainly
to ease the proof-of-principle experiments of this work. A schematic of the principles in temporal
encoded MBQC is presented in Fig. 1.1c. The implementation consists of two parts: A cluster state
generator, generating a temporal encoded cluster state in few spatial modes, and a measurement
device that is reused in time to perform projective measurements on the spatial modes in which the
cluster state is encoded in time. For temporal encoded cluster states, the cluster state generator
often comprises optical delays, interfering beam-splitters, and an optical switch for coupling input
states into the cluster state. Depending on the configuration, cluster state in one, two, or more
dimensions can be generated with each dimension “folded” in time, such that cluster state edges
exist in time between different temporal modes. In Fig. 1.1c, for simplicity, the generated cluster
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state is sketched to occupy a single spatial mode, while for most schemes proposed, the temporal
encoded cluster state is generated in two or four spatial modes. Scalability of the cluster state size,
and thereby the computation size, is immediately obtained in the cluster state generation by scaling
optical delay lengths, while the number of spatial modes required remains fixed. As an example, in
this thesis, a 2D cluster state is generated with a cylindrical topology [31]. Here the cylinder length
and circumference represent the two dimensions, and while the length in principle is unlimited, the
circumference is increased by adjusting optical delays in the generation. Finally, each temporal
mode is measured using a measurement device with a number of inputs that equals the number of
spatial modes in which the cluster state is temporally encoded. By adjusting the measurement basis
for each temporal mode, a desired computation algorithm is implemented depending on the basis
settings, and the measurement result for each measurement is read out to analyze the computation
outcome classically. Note that no changes are required to the measurement device when scaling
the temporal encoded cluster state.

While temporal encoded MBQC has advantages with a fixed number of spatial resources when
scaling up the computation, temporal encoding, as well as frequency encoding, also possesses some
limitations that eventually limit the possible computation size. In temporal encoding, the maxi-
mum delay length that can be used for scaling up is naturally limited by propagation losses leading
to computation noise. Above a certain delay length depending on the quantum error correction
to be applied, fault-tolerant computation is no longer possible. To keep scaling up, the temporal
mode duration is shortened, such that more temporal modes fit into the longest possible delay.
This, on the other hand, requires increasing bandwidths of squeezing sources and experimental
control, which as well is limited. For frequency-encoded computation, it is the same limitation of
the squeezing bandwidth, together with spectral resolution, that limits scalability. Nevertheless,
temporal and frequency encoding allows for near-term realizations and applications using relatively
simple experimental setups, and scaling is straightforward until optical losses become detrimental
and the setup is operated with a maximum possible bandwidth. As of today, we are far from
this limit. Assuming realizations with recent experimental demonstrations of large detection and
squeezing bandwidths [35, 36] in the tera-hertz regime, and assuming comparable experimental
control (though this may be challenging), temporal encoded computation schemes can potentially
perform computation on information encoded in millions of modes.

During the work presented in this thesis, the field of CV quantum computation has advanced
rapidly aiding CV MBQC. In the following, I list few examples that are relevant to this thesis (note,
this is far from a complete list of all the exciting work carried out within CV quantum information
during the work of this thesis). On the experimental side, in parallel with 2D CV cluster state
generation in this work, a similar 2D cluster state was demonstrated using temporal encoding in
Ref. [37], while single-mode Gaussian gates were implemented by projective measurements on a
temporal encoded one-dimensional cluster state in Ref. [25]. As mentioned above, large bandwidth
detection and squeezed light sources have been demonstrated for temporal encoded computation
schemes [35, 36]. On the theoretical side, excess anti-squeezing in mixed squeezed states was shown
in Ref. [38] to not affect the squeezing threshold for fault-tolerant MBQC. To correct for finite
squeezing, Gottesman-Kitaev-Preskill (GKP) encoding [14] is widely accepted as a favorable qubit
encoding introducing the required redundancy for error correction. For such encoded GKP-qubits,
qubit magic states are shown in Ref. [39] to be distillable with only Gaussian gates, rendering
non-Gaussian gates unnecessary for universal quantum computation [40], and in Ref. [41] this
approach is even shown to be preferable over implementing the non-Gaussian cubic phase gate on
GKP-qubits. In Ref. [42] a GKP quadrature correction scheme suitable for optical platforms was
proposed, dispensing the need for on-line active coupling to ancilla GKP-qubits. While using GKP
quadrature correction to correct CV noise with the cost of inducing qubit errors, in Ref. [43] GPK
quadrature correction was proposed combined with topological qubit error correction to achieve
fault-tolerant computation with realistic squeezing thresholds. Such implementation requires three-
dimensional cluster states, and besides the proposal in the work of this thesis, such schemes were
proposed with frequency encoding in Ref. [44], temporal encoding in Ref. [45], and spatial encoding
in Ref. [46].



4 CHAPTER 1. INTRODUCTION

1.1 Thesis structure

This thesis is a compilation of Refs. [30–34], and each of the chapters 2–6 can be read independently.
As such, some of the same introduction and motivation is repeated in each chapter, while notation
may vary from chapter to chapter. The thesis is organized as described in the following:

Chapter 2 presents the paper “Fiber coupled EPR-state generation using a single temporally
multiplexed squeezed light source” of Ref. [30], in which two-mode entangled states in two
spatial modes are prepared from a single temporal multiplexed squeezed light source.

Chapter 3 presents the paper “Deterministic generation of a two-dimensional cluster state” of
Ref. [31] where a simple temporal encoded 2D cluster state generation scheme is proposed
and demonstrated.

Chapter 4 presents the paper “Architecture and noise analysis of continuous-variable quantum
gates using two-dimensional cluster states” of Ref. [32] where a computation scheme on the
cluster state in chapter 3 is presented. Furthermore, a noise analysis of the computation
scheme is carried out together with three other relevant computation schemes on 2D cluster
states, and their performances are finally compared.

Chapter 5 presents the paper “Deterministic multi-mode gates on a scalable photonic quantum
computing platform” of Ref. [33] where, following the proposed computation scheme in chap-
ter 4, Gaussian gates and a small quantum circuit is implemented on the cluster state of
chapter 3.

Chapter 6 presents the paper “A fault-tolerant continuous-variable measurement-based quantum
computation architecture” of Ref. [34], where a new scheme for generation and computa-
tion on a three-dimensional cluster state is proposed. The proposed scheme supports GKP
quadrature correction and topological qubit error correction, and fault-tolerant computation
is shown to be possible.

Chapter 7 summarizes and concludes the results, and an outlook of future work toward the
realization of CV MBQC is presented.

Besides these chapters, appendix A, B, and C of this thesis includes additional technical information
complementing the supplementary information in chapter 3 and 5, describing the experimental
setup for cluster state generation and gate implementation. The information in these appendices
is not published elsewhere.



Chapter 2

Fiber coupled EPR-state
generation using a single
temporally multiplexed squeezed
light source

In this chapter, the paper “Fiber coupled EPR-state generation using a single temporally multi-
plexed squeezed light source” of Ref. [30] is presented. This paper is authored by Mikkel V. Larsen,
Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen, and published
in npj Quantum Information 5, 46 (2019).

In this work, we prepare two-mode squeezed states in two spatial modes by interfering two
single-mode squeezed states from a single temporal multiplexed squeezing source. This is done
by utilizing an optical switch for guiding different temporal modes of the squeezing source into
different spatial modes, and further using an optical delay for aligning temporal modes in time.
As such, this is an experimental work, demonstrating the combination of temporal and spatial
multiplexing, as well as demonstrating optical switching and delay in a quantum setting with
quantum entanglement being a figure of merit.

On the practical side, experimental techniques are developed and demonstrated, including effi-
cient coupling of free-space light into optical fiber, efficient in-fiber phase control, and fiber-based
homodyne detection. These techniques have shown ot be useful in the following experimental
work and plays an important role in the experimental realizations of chapter 3 and 5 [31, 33].
Besides this, compensation of systematic electronic noise is demonstrated, while a useful model is
developed taking seed-noise in the squeezing source into account in the quadrature squeezing spec-
tra, and allows for more accurate estimation of squeezing levels, efficiencies, and phase fluctuations.

From npj Quantum Information 5, 46 (2019).

2.1 Abstract

A prerequisite for universal quantum computation and other large-scale quantum information
processors is the careful preparation of quantum states in massive numbers or of massive dimension.
For continuous variable approaches to quantum information processing (QIP), squeezed states are
the natural quantum resources, but most demonstrations have been based on a limited number of
squeezed states due to the experimental complexity in up-scaling. The number of physical resources
can however be significantly reduced by employing the technique of temporal multiplexing. Here,
we demonstrate an application to continuous variable QIP of temporal multiplexing in fiber: Using
just a single source of squeezed states in combination with active optical switching and a 200 m

5
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Figure 2.1: Quantum information processing architectures using optical switching and optical
delay. (a) Switching and delay lines applied to a single squeezed state resource in order to generate
multiple time-synchronized squeezed state. (b) Switching between homodyne detection and the
more demanding cubic-phase gate-teleportation measurement with |χ〉 being an ancillary cubic-
phase-state [12]. (c) Example of switching temporal modes into or out of a cluster state [58]. (d)
Loop-based architecture for fully temporally encoded MBQC utilizing switching and delay [60].

fiber delay line, we generate fiber-coupled Einstein-Podolsky-Rosen entangled quantum states.
Our demonstration is a critical enabler for the construction of an in-fiber, all-purpose quantum
information processor based on a single or few squeezed state quantum resources.

2.2 Introduction

The realization of quantum computation (QC) with demonstrated quantum supremacy requires a
scalable platform of quantum resources [47, 48]: Usually hundreds of logical qubits, or thousands
of physical qubits, are needed to reach this longstanding goal [49]. In one-way measurement based
quantum computation (MBQC) [1, 50], universal computation is performed with only single-qubit
projective measurements of an entangled cluster state [51]. Thereby, scalability is relaxed to the
generation of a cluster state of suitable size [5]. Cluster states of multiple modes of light are readily
accessible in continuous variable optical platforms, but most demonstrations have been limited
by the amount of spatial resources [52–56]. However, by time and frequency multiplexing with
squeezed states of light, large cluster states can be deterministically generated as demonstrated
with 60 frequency modes in [18, 20] and 106 temporal modes in [19, 21]. This allows for excellent
scalability, thereby rendering the need for spatially distributed resources unnecessary.

MBQC based on temporally encoded cluster states [9, 12] from a single squeezed state resource
[57] requires optical switching and passive optical storage (such as an optical delay line) in dif-
ferent configurations as illustrated in Fig. 2.1. Multiple time-synchronized squeezed states can
be generated in the network illustrated in Fig.2.1a, allowing 2D cluster state generation from a
single squeezing source [9, 12]. Moreover, in MBQC, sequential measurements are performed on
the cluster in which each measurement strategy is adaptively changed based on previous measure-
ment outcomes. In some cases, switching between completely different measurement schemes, e.g.
homodyne detection and a non-Gaussian measurement, is required [12] (Fig. 2.1b). As an alter-
native to switching between Gaussian and non-Gaussian measurement schemes, one might fix the
measurement setting to Gaussian homodyne detection and switch ancillary non-Gaussian states
into selected modes of the cluster state [58] (Fig. 2.1c). Finally, it is possible to realize MBQC by
applying optical switching in loop-based architectures [59, 60] as illustrated in Fig. 2.1d. No mat-
ter which of the strategies is chosen, switching and delay lines are key functionalities in managing
temporal modes in optical MBQC.

In this article, we demonstrate optical fiber switching combined with an optical fiber delay in
a continuous variable (CV) quantum setting in the telecom band. This enables us to generate
an Einstein-Podolsky-Rosen (EPR) state [61] between two fiber modes by time multiplexing of a
single source of squeezed states of light. Our demonstration of optical switching and optical delay
in a CV, fiber-integrated and low-loss setting is a critical step towards the realization of a scalable
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Figure 2.2: Schematics of the experiment. Bright amplitude squeezed states of light are generated
using type-0 parametric down conversion in an optical resonator (OPO) at the wavelength of
1550 nm, seeded with a coherent beam for phase locks. The squeezed states of light are coupled
into a single mode fiber network (marked by blue lines) in which the generation of two-mode
squeezing takes place: Using a fiber switch, two consecutive temporal modes (marked by green
and purple) are guided in different directions. Subsequently, the two modes are synchronized by a
fiber delay of 200 m in one of the modes. Finally, the two spatial modes interfere in a 50:50 fiber
coupler, thereby forming a two-mode squeezed state in the output as the phase difference of the
two input modes are locked to π/2 (using active feedback to a fiber-stretching device described
in the methods section 2.5). The quadratures of the two-mode squeezed state are measured with
two fiber-based homodyne detection stations, Alice and Bob. A typical measurement output in
time-domain is shown in the inset together with illustrations of the corresponding states in phase
space, alternating between two-mode squeezed states and vacuum states.

platform for CV quantum information processing and ultimately universal quantum computation.

2.3 Results

The quadrature entangled EPR-state is an important resource in numerous quantum information
and sensing protocols ranging from CV teleportation [62] and cryptography [63] to CV computing
[2]. The most wide-spread realization of quadrature entanglement is based on cavity-enhanced
spontaneous parametric down-conversion in an optical parametric oscillator (OPO). Correlations
can be established between different polarization or frequency modes from a single non-degenerate
OPO [64–71], or by combining the squeezed state outputs of two degenerate OPOs onto a balanced
beam splitter [62, 72–74]. Here we use the latter approach of combining two squeezed states on a
beam splitter, but instead of using two OPOs, we exploit time multiplexing of a single source.

2.3.1 Experimental setup

The experimental setup is sketched in Fig. 2.2. We inject a single ∼7 dB squeezed beam into a
fiber switch that alternately guides the squeezed beam into two different fibers at a frequency of
500 kHz; thereby delaying one mode by 1 µs with respect to the other. To compensate for the
delay and thus synchronize the two modes in time, the mode ahead propagates through a 200 m
fiber spool. The two modes interfere with a relative phase shift of π/2 in a balanced fiber coupler,
thereby forming a two-mode squeezed state.

For state characterization, we sample on an oscilloscope the quadratures of the fiber coupler
outputs measured by two homodyne detection stations, Alice and Bob. Typical time traces of such
measurements are shown in the inset of Fig. 2.2. A single data set consists of 16 000 time traces
triggered by the switching signal. Each time trace is affected by a frequency dependent response
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of the detector giving rise to the negative slope seen in the inset of Fig. 2.2, and a noisy oscillatory
response of the fiber switch. Besides this, there is a variation in the slope of each time trace
due to spurious interferences – both effects occur from the coherent amplitude of the initial bright
squeezed state together with limited detection, switching and feedback bandwidths. However, since
these effects are systematic, repeatable and synchronized with the switching process, they can be
tracked and compensated in the data processing – see methods section 2.5.

We have striven to reduce the loss of all components to maintain as much of the non-classicality
as possible. We used an anti-reflection coated graded-index lens to couple the squeezed light into
the fiber with an efficiency of 97% (by matching counter-propagating light in the OPO cavity),
we spliced together all fiber components to minimize fiber-to-fiber coupling losses and by using
the wavelength of 1550 nm, fiber propagation loss was negligible: Even through the 200 m fiber
delay (standard SMF-28e+ fiber), the propagation loss is ≤ 1%. The largest loss contribution is
caused by the fiber switch (Nanona by Boston Applied Technologies Inc.), where light is coupled
into a bulk electro-optic material and back into fiber leading to 17% loss. Including OPO escape
efficiency, detection efficiency and various tapping for phase locks, the total transmission from the
squeezed state source to the detected signal becomes η ≈ 68% (for more details see methods section
2.5).

2.3.2 Experimental results

To perform partial tomography of the generated two-mode squeezed states, we measure the quadra-
tures q̂A(θ) ± q̂B(−θ) and q̂A(θ) ± q̂B(θ − π/2) as a function of the local oscillator phase θ. Here
q̂i(θ) = xi cos θ+p̂i sin θ where x̂i is the amplitude and p̂i the phase quadrature at Alice (i = A) and
Bob (i = B). The resulting noise variances at the 3 and 10 MHz side band frequencies are shown
in Fig. 2.3 together with theoretical predictions. We observe a maximum shot noise suppression of
3.8 dB. The very small discrepancy of the measurements at 3 MHz results from technical noise of
the seed beam as well as additional noise added in the delay line—both noise effects are discussed
and analyzed below and in the supplementary information section 2.6.4.

The variances of q̂A(θ)± q̂B(−θ),

〈∆(q̂A (θ) + q̂B(−θ))2〉
= 2

(
〈∆x̂2

1〉 cos2 θ + 〈∆x̂2
2〉 sin2 θ

)
,

〈∆(q̂A (θ)− q̂B(−θ))2〉
= 2

(
〈∆p̂2

2〉 cos2 θ + 〈∆p̂2
1〉 sin2 θ

)
,

(2.1)

associated with the maximally squeezed and anti-squeezed quadratures, respectively, are seen to
be constant with θ, indicating symmetric two-mode squeezing. This is expected as the individual
single mode squeezed states in the direct (x̂1, p̂1) and delay (x̂2, p̂2) line originate from the same
squeezing source, that is 〈∆x̂2

1〉 = 〈∆x̂2
2〉 and 〈∆p̂2

1〉 = 〈∆p̂2
2〉. From the data sets at θ = 0◦ and

90◦, entanglement can be verified by the inseparability criterion [75] which reads

〈∆(x̂A + x̂B)2〉+ 〈∆(p̂A − p̂B)2〉 = 1.72V0 < 4V0 , (2.2)

at 3 MHz, and 2.42V0 < 4V0 at 10 MHz. Here V0 is the variance of the vacuum state.
When measuring the variances of

q̂A(θ)± q̂B(θ − π/2) = x̂A cos θ ± x̂B sin θ

+ p̂A sin θ ∓ p̂B cos θ
(2.3)

as a function of θ, we trace out one specific projection that in particular realizes the squeezed
and anti-squeezed quadratures. Maximum squeezing and anti-squeezing are measured at θ = 45◦

where correlations are strongest, corresponding to the measurements of q̂A(θ)± q̂B(−θ). At θ = 0◦

and 90◦ we expect no correlations and measure the variances (〈∆x̂2
1〉+ 〈∆p̂2

1〉+ 〈∆x̂2
2〉+ 〈∆p̂2

2〉)/2
corresponding to the added noise of thermal states at Alice and Bob when tracing out one mode.
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Figure 2.3: Partial tomography of the generated two-mode squeezed state. We plot the noise
variance (normalized to the shot noise variances) of the quadratures q̂A(θA) ± q̂B(θB) with θA
restricted to θA = θ and θB restricted to θB = −θ (blue and red), and θB = θ − π/2 (green and
black). Each point corresponds to one dataset of 16 000 processed time traces as in Fig. 2.5. To
extract the 3 and 10 MHz frequency modes, each time trace is digitally mixed with a 3 or 10 MHz
sine curve and integrated to one value. The noise is then the variance of these 16 000 values,
added/subtracted for Alice and Bob. With the time trace length of about 900 ns, the frequency
mode bandwidth is around 1 MHz. The solid and dashed line shows theoretical noise predicted
from measured efficiency, OPO bandwidth, pump power and fitted phase fluctuations in Fig. 2.4.
The predictions include 1.7◦ phase offset. The inset illustrates the measured quadratures in a
phase-space diagram.

From the partial tomography, we reconstruct the covariance matrix of the two-mode squeezed
state at the 3 MHz side band frequency [76]:

γ = V0


4.36 - −3.84 0.36

- 4.43 0.45 3.92
−3.84 0.45 4.17 -
0.36 3.92 - 4.26

 . (2.4)

Here, the entries with ‘-’ were not measured as it would require a more elaborate measurement
scheme, but they should in principle be zero due to the symmetry of the states. However, due
to uncertainties in the phase control and non-perfect phase-space alignments, the values will in
practice be slightly different from zero. This is also clear from the off-diagonal correlation terms
〈x̂Ap̂B〉 and 〈x̂B p̂A〉 which in practice are non-zero as seen in the measured co-variance matrix
but in theory should be zero for a perfectly aligned system (see supplementary information section
2.6.6). Finally, from the covariance matrix we determine the conditional variances between Alice
and Bob’s measurements from which we test the EPR-criterion [77]:

∆2
inf.x̂A|B ·∆2

inf.p̂A|B = 0.69V 2
0 < V 2

0 ,

∆2
inf.x̂B|A ·∆2

inf.p̂B|A = 0.64V 2
0 < V 2

0 ,
(2.5)

where ∆2
inf.q̂i|j = ming 〈∆(q̂i − gq̂j)2〉 = 〈∆q̂2

i 〉 − 〈q̂iq̂j〉
2
/ 〈∆q̂2

j 〉 is the conditional uncertainty in

predicting q̂i when measuring q̂j . Since both conditional variance products are below V 2
0 , the

generated states are EPR entangled in both directions.
As seen from Eq. (2.1) for θ = 0◦ and 90◦, the measured two-mode squeezing is equivalent to

the squeezing of the single mode states in the direct and delayed paths, respectively. The spectra of
such measurements are shown in Fig. 2.4. The squeezing spectra are Lorentzian and resemble that
of the OPO cavity. Furthermore, the anti-squeezing is seen to be symmetric, while the squeezing
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Figure 2.4: Spectrum of squeezing. Noise spectrum of x̂1 = (x̂A + x̂B)/
√

2, p̂1 = (p̂A + p̂B)/
√

2,
x̂2 = (p̂A − p̂B)/

√
2 and p̂2 = (x̂A − x̂B)/

√
2 relative to shot noise. Solid points correspond

to the average of Fourier transformed time traces in the measured datasets q̂A(θ) ± q̂B(−θ) for
θ = 0◦ and 90◦. Here, coloured points are with pumped OPO, while gray points are the seed
noise when blocking the pump. Hollow points are the result of fitting a squeezing spectrum with
phase fluctuations σ1 and σ2 in the direct and delay line respectively. From the fit, the solid lines
indicates the expected squeezing when compensating for seed noise, while the dashed lines indicates
the expected squeezing in case of no phase fluctuation, and thus the best squeezing achievable with
the given efficiency.

has degraded slightly in the delay line due to additional phase noise. To characterize this, we
measure the seed spectrum by blocking the pump to the squeezing cavity. The low frequency noise
that can be observed in the direct line results from technical noise of the seed beam. Even more
low frequency noise is apparent in the squeezed state of the delay line. We believe it originates
from phase noise generated by the 200 m fiber and amplitude noise from the fiber switch which is
most prominent at 5–6 MHz.

To infer the phase fluctuations, σi, associated with the direct (i = 1) and delay (i = 2) line, the
squeezing spectra including a normal distributed phase with σi standard deviation, approximated
to 〈∆x̂2

i 〉 cos2(θ+σi)+ 〈∆p̂2
i 〉 sin2(θ+σi) for θ = 0 and π/2 [78], is fitted with σi as the only fitting

parameter. Here, following [79] with additional seed noise coupled into the OPO and V0 = 1/2,

〈∆q̂2
i 〉 =

1

2
∓ 2εγη

(γ ± ε)2 + ω2
+

Kq

(γ ± ε)2 + ω2
, (2.6)

where q = x, p, ε is the pump rate, γ is the total OPO decay rate, η is the overall efficiency and
ω is the angular frequency, while Kq = 4γγsηi(〈∆q̂2

s〉 − 1/2) with γs being the decay rate due
to the seed beam coupling mirror and 〈∆q̂2

s〉 is the seed beam quadrature noise before injection
into the OPO (for detailed derivation see supplementary information section 2.6.5). We find a
decay rate of γ/2π = 8.1 MHz by measuring the OPO intracavity losses (0.55%), the cavity length
(320 mm) and the transmissivity of the coupling mirror (10%), and we estimate the pump rate to
ε/2π = 5.2 MHz for a pump power of 350 mW and a measured OPO threshold power of 833 mW.
Kq is estimated as Kq = (γ2 + ω2)(〈∆q̂2

0〉 − 1/2) where 〈∆q̂2
0〉 is the quadrature noise measured

with no pump (ε = 0, gray points in direct line of Fig. 2.4). Finally, to include excess noise of the
delay line, the seed noise difference of the direct and delay line is added to the fit in the delay line.
The fit is shown as hollow points in Fig. 2.4, and is seen to fit very well with the measured data.
The resulting phase fluctuations obtained from the fit are σ1 = 1.9± 1.2◦ and σ2 = 4.1± 0.6◦ with
uncertainties estimated as the 95% confidence interval. These values are included in the theoretical
model used for Fig. 2.3.

From the theoretical model with fitted phase fluctuations, the solid lines in Fig. 2.4 indicate
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the expected squeezing spectra if the seed beam were shot noise limited and no additional noise
existed in the delay line. In that case, we can expect more than 4 dB two-mode squeezing. The
phase fluctuation in the delay line, σ2 = 4.1 ± 0.6◦, is more than double that in the direct line,
σ1 = 1.9± 1.2◦. This is mainly due to limited phase control bandwidth of the fiber delay and low
signal-to-noise ratio of the feedback signal. Finally, the dotted line in Fig. 2.4 shows the squeezing
spectrum we would expect if we had perfect phase control, and thus the optimum squeezing we
may measure with the given efficiency.

2.4 Discussion

The fast switching frequency of 500 kHz demonstrated here is suitable for encoding temporal modes
of megahertz bandwidth and is thus applicable in the optical schemes in Fig. 2.1. Similarly, the
low loss of the 200 m fiber allows for an efficient delay of almost 1µs, compatible with the temporal
modes defined by the switching. However, the 17% loss of the particular switch used here, as well as
the phase fluctuations of 4◦ standard deviation in the fiber delay, leads to decoherence and results
in some limitations when used in quantum settings: For cluster state generation from a temporal
multiplexed source, as in Fig. 2.1a, or when switching modes in and out of a cluster state, as in
Fig. 2.1c, the switching loss and phase fluctuation leads to limited entanglement even when large
amount of initial squeezing is available. Yet, it does not accumulate through the cluster state as
the loss and phase fluctuation on each mode is local, and so it does not limit the cluster state size.
It will be more detrimental in loop based architectures, as in Fig. 2.1d, where a temporal mode
passes through the same switch and delay line multiple times, and so the switch efficiency and
delay phase fluctuations limit the number of passes possible and thereby the computation depth.

High efficient fast switching is demonstrated in free-space [80], while one can imagine more
compact fiber coupled switching based on Mach-Zehnder interferometry. However, in either case
care must be taken not to compromise the high switching frequency, as this leads to longer delay
lines necessary and thereby larger phase fluctuations. In work towards temporal encoded optical
quantum information processing, faster switching is preferable as it minimizes the required delay
lengths and increases the computational speed. Thus the ideal switch, besides being efficient, is as
fast as the detection or squeezing source bandwidth.

In conclusion, using a single squeezing source with optical switching and delay, we have suc-
cessfully generated in-fiber EPR-states with nearly 4 dB of two-mode squeezing, characterized by
fiber-coupled homodyne detection. Our setup has great scalability potentials: Adding an additional
delay line, it is possible to extend the setup to generate one-dimensional cluster states [19, 21],
and by adding a multi-port switch and more delay lines, two-dimensional cluster states [9, 12] can
be generated from a single squeezing source. Moreover, by inserting the switch inside a loop, as
in Fig. 2.1d, combined with dynamical control, various entangled states can be generated and in
principle universal quantum computation can be realized. Since all switches and delay lines are
fiber components, the setup remains very small and flexible despite the increasing complexity in
generating more complex states. Moreover, since fiber propagation losses are extremely low at the
operating wavelength of 1550 nm, decoherence is not a big issue despite the increasing number of
fiber delays. The largest decoherence source in the current setup is the optical switch which intro-
duces a loss of 17%. However, with future developments of the optical switch, we expect that the
in-fiber temporal multiplexing technique demonstrated here will play a significant role in reducing
the resources in future large-scale photonic circuits for continuous variable quantum information
processing, including quantum computing [5], quantum teleportation [81], distributed sensing [82]
and multi-partite quantum key distribution.
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2.5 Methods

Squeezing source

The experimental setup is outlined in Fig. 2.2. As squeezing source, we use an optical parametric
oscillator (OPO) based on a periodically poled potassium titanyl phosphate (PPKTP) crystal in
a bowtie shaped cavity, locked by a counter propagating coherent beam. A pump beam at a
wavelength of 775 nm is used to drive the parametric process and thus produce squeezed light at
1550 nm via type-0 phase matching. The OPO has a bandwidth of γ/π = 16 MHz. Stable phase
locking at different stages of the experiment is facilitated by an excitation of the squeezed state,
realized by injecting a bright seed beam into the OPO. To lock the phase of the input pump beam to
the deamplification point of the parametric process, thereby producing amplitude squeezed states,
we tap off and detect 1% of the excited squeezed beam for feedback to a piezo-mounted mirror in
the pump beam. This, as well as all other feedback controls in the experiment, is realized by the
open-source software package PyRPL [83] running on Red Pitaya boards that integrate an FPGA
system-on-chip with fast ADCs and DACs.

In-fiber phase control

For locking the π/2 relative phase difference when interfering the two beams of bright squeezed
states in a balanced fiber coupler for EPR-state generation, 1% is tapped off one of the fiber coupler
output arms, and fed back to a homemade fiber stretcher in the delay line based on [84]. Here,
using a piezoelectric actuator, a phase shift is induced by stretching the fiber. For more details,
see the supplementary information section 2.6.2. The optical transmission efficiency is near unity,
as it simply depends on the fiber which has negligible loss at 1550 nm wavelength. This allows
high-efficient in-fiber phase control, and the same design is used for phase control of the local
oscillators in the homodyne detection.

Fiber-coupled homodyne detection

To detect quadratures of the in-fiber generated EPR-state, we developed a fiber-coupled homodyne
detector (HD) where signal and local oscillator (LO) is interfered in a balanced fiber coupler before
detection. For schematics and details, see supplementary information section 2.6.2. This has the
benefit of being mobile, and the visibility between signal and LO is easily optimized to near unity
due to the single mode nature of the fiber used.

The fiber coupler is not exactly symmetric, but has a coupling ratio of approximately 48:52. To
compensate for this, the HD is balanced by attenuation in the fiber coupler output arm of stronger
LO by inducing bending losses. With an asymmetry of 4% in the fiber coupler, after balancing
this leads to 4% loss.

Finally, to couple and focus light from the fiber onto the HD photo diodes of 100 µm diameter
(Laser Components Nordic AB), anti-reflective coated graded-index (GRIN) lens are used in front
of the diode, leading to a free-space waist diameter of 13 µm at 5 mm from the GRIN lens facet.
The quantum efficiency is measured to be 97%, and so together with 4% loss from balancing and
99% visibility, the total HD efficiency achieved is 91%.

Overall efficiency

With the OPO escape efficiency of 95%, and 1% tapping for gain lock, the efficiency in free-space
before fiber coupling is 94%. In fiber, including 97% fiber coupling efficiency, 17% loss in the
fiber switch and 1% tapping for phase control, the efficiency is 80%. Finally, with 91% detection
efficiency, the overall efficiency becomes

η = 0.94 · 0.80 · 0.91 = 68% . (2.7)
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Figure 2.5: Temporal filtering by data processing. (left) Temporal histogram of a data set with
16 000 time traces associated with amplitude quadratures of a two-mode squeezed state at Alice
(red) and Bob (blue) compensated for slope variations and decaying detector response. The solid
lines show the dataset average time trace indicating the remaining repeating oscillations from
the switching process. (right) Temporal histogram of the dataset in (left) compensated for any
systematic and repeatable noise responses from the switching process. Here, the solid lines indicate
a single pair of synchronized time traces (at Alice and Bob) in which quadrature anti-correlations
are visible (note the inverted axis on Bob).

Temporal data processing

To recover two-mode squeezing from the acquired time traces affected by a frequency dependent
detector response (leading to a negative slope), spurious interference (leading to slope variations)
and an oscillating response from the switch, we use the statistic of 16 000 time traces in a dataset
synchronized with the switching process. To compensate for the negative and varying slope of each
time trace, linear regression lines (as the dashed lines in the inset of Fig. 2.2) are subtracted from
each individual trace of the dataset. The result is shown in Fig. 2.5(left). Here, the repeatable
oscillating noise is visible, and compensated for by subtracting the average time trace of the dataset
from every single time trace. The final processed dataset is seen in Fig. 2.5(right) with a constant
temporal histogram and a single time trace at Alice and Bob showing anti-correlations as in [85].
For detailed discussion on the data processing, see supplementary information section 2.6.3.

2.6 Supplementary information

This section includes the supplementary information of Ref. [30].

2.6.1 Quadrature relations

To generate two-mode squeezed states from a single squeezer, two amplitude squeezed states from
the same squeezing source, but in different temporal modes, are guided into two different spatial
modes, synchronized in time by a delay in one spatial mode, and finally interfered on a symmetric
beam splitter with a π/2 phase difference. The phase-space in the two spatial modes after the
temporal modes of squeezing are synchronized, after π/2 rotation, and after interfering the two
modes, are illustrated in Fig. 2.6a. In the following quadrature relations of the generated two-
mode squeezed states are derived, assuming the input states being squeezed vacuum, perfect phase
control, and the beam splitter (or fiber coupler) being symmetric.

After synchronization, the two spatial modes—the direct (x1, p̂1) and delay (x2, p̂2) line—are
both amplitude squeezed states, i.e.

〈∆x̂2
1〉 , 〈∆x̂2

2〉 < V0 , 〈∆p̂2
1〉 , 〈∆p̂2

2〉 > V0 ,
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Figure 2.6: (a) Quadrature transformations of the two-mode squeezed state generation, where si-
multaneous amplitude squeezed states in the direct and delay line are interfered at a symmetric
beam splitter (fiber coupler) with a π/2 phase difference in the delay line. (b) Quadrature covari-
ance in Eq. (2.11) with red and blue indicating areas of correlation and anti-correlation respectively,
and solid coloured lines indicates maximum correlations. The two measured sets of quadratures
for partial tomography are marked by the black solid and dotted line for set 1 (θB = −θA) and set
2 (θB = θB − π/2) respectively.

where V0 is the vacuum variance. After a π/2 phase-space rotation in the delay line, the new
quadratures read

x̂′1 = x̂1 , p̂′1 = p̂1 ,

x̂′2 = −p̂2 , p̂′2 = x̂2 .

Finally, after a beam splitter transformation of the symmetric fiber coupler, we get

x̂A =
1√
2

(x̂′1 + x̂′2) =
1√
2

(x̂1 − p̂2) , p̂A =
1√
2

(p̂′1 + p̂′2) =
1√
2

(p̂1 + x̂2) ,

x̂B =
1√
2

(x̂′1 − x̂′2) =
1√
2

(x̂1 + p̂2) , p̂B =
1√
2

(p̂′1 − p̂′2) =
1√
2

(p̂1 − x̂2) .

(2.8)

Thus, when measuring the noise of x̂A + x̂B =
√

2x̂1 and p̂A − p̂B =
√

2x̂2, the squeezing of x̂1

and x̂2 are visible, while when measuring the noise of x̂A − x̂B = −
√

2p̂2 and p̂A + p̂B =
√

2p̂1,
the anti-squeezing of p̂1 and p̂2 are visible. Or in other words: x̂A and x̂B are correlated while
p̂A and p̂B are anti-correlated, both below the standard quantum limit demonstrating quadrature
entanglement.

The two modes of the two-mode squeezed state at the fiber coupler output are sent to two
homodyne detection stations, Alice and Bob, where an arbitrary quadrature, q̂i(θi), is measured
depending on the local oscillator phase θi at Alice (i = A) and Bob (i = B),

q̂A(θA) = x̂A cos θA + p̂A sin θA =
1√
2

(x̂1 − p̂2) cos θA +
1√
2

(p̂1 + x̂2) sin θA , (2.9)

q̂B(θB) = x̂B cos θB + p̂B sin θB =
1√
2

(x̂1 + p̂2) cos θB +
1√
2

(p̂1 − x̂2) sin θB . (2.10)

The quadrature entanglement can then be illustrated as correlations, or covariance, between q̂A(θA)
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and q̂B(θB):

cov {q̂A(θA), q̂B(θB)} = 〈q̂A(θA)q̂B(θB)〉 − 〈q̂A(θA)〉 〈q̂B(θB)〉 = 〈q̂A(θA)q̂B(θB)〉

=
1

2

〈
[(x̂1 − p̂2) cos θA + (p̂1 + x̂2) sin θA]×

[(x̂1 + p̂2) cos θB + (p̂1 − x̂2) sin θB ]
〉

=
1

2

(
〈x̂2

1〉 − 〈p̂2
2〉
)

cos θA cos θB +
1

2

(
〈p̂2

1〉 − 〈x̂2
2〉
)

sin θA sin θB

=
1

2

(
〈∆x̂2

1〉 − 〈∆p̂2
2〉
)

cos θA cos θB −
1

2

(
〈∆x̂2

2〉 − 〈∆p̂2
1〉
)

sin θA sin θB ,

where it is used that 〈q̂A(θA)〉 = 〈q̂B(θB)〉 = 0 for two-mode squeezed states, 〈q̂1q̂2〉 = 0 for
q̂1 = (x̂1, p̂1) and q̂2 = (x̂2, p̂2) since the amplitude squeezed states before interfering are separable
squeezed vacuum states, 〈x̂ip̂i〉 = 0 for i = (1, 2) as amplitude and phase quadrature are indepen-

dent for squeezing exactly along x̂ or p̂, and 〈∆q̂2
i 〉 = 〈q̂2

i 〉−〈q̂i〉
2

= 〈q̂2
i 〉 for q = (x, p) and i = (1, 2)

as 〈q̂i〉 = 0 for squeezed vacuum. Thus, since 〈∆p̂2
1〉 , 〈∆p̂2

1〉 > 〈∆x̂2
1〉 , 〈∆x̂2

1〉, we expect strong
anti-correlation when both θA and θB equals πn with n being an integer number, while strong
correlation when both θA and θB equals π(n+ 1/2). This is easier seen in the ideal case where the
direct and delay line are identical so that 〈∆x̂2

1〉 = 〈∆x̂2
2〉 ≡ Vx and 〈∆p̂2

1〉 = 〈∆p̂2
2〉 ≡ Vp, in which

case the above covariance can be simplified using cos(α+ β) = cosα cosβ − sinα sinβ:

cov {q̂A(θA), q̂B(θB)} = 〈q̂A(θA)q̂B(θB)〉 =
1

2
(Vx − Vp) cos(θA + θB) . (2.11)

The quadrature covariance for the ideal case in (2.11) is shown in Fig. 2.6b. Here, two-mode
squeezing and anti-squeezing can be measured in areas of strong correlations, and is constant along
constant θA + θB . As a result, for partial tomography of the generated two-mode squeezed state,
we measure two sets of quadratures (q̂A(θA), q̂B(θB)): Set 1 along constant correlation (maximum
squeezing and anti-squeezing) with θA = −θB = θ; set 2 perpendicular to constant squeezing
(across maximum squeezing and anti-squeezing) with θA = θB + π/2 = θ. Both set are measured
with θ in the range from 0 to π/2, and is marked in Fig. 2.6b. By adding and subtracting q̂A and
q̂B of these two measured sets, we observe two-mode squeezing, anti-squeezing and all in between.

When adding/subtracting quadratures from Alice and Bob measured in set 1 (θB = −θA), from
Eq. (2.9-2.10) the added and subtracted quadrature noise becomes

〈∆(q̂A(θ) + q̂B(−θ))2〉 = 2
(
〈∆x̂2

1〉 cos2 θ + 〈∆x̂2
2〉 sin2 θ

)
, (2.12)

〈∆(q̂A(θ)− q̂B(−θ))2〉 = 2
(
〈∆p̂2

2〉 cos2 θ + 〈∆p̂2
1〉 sin2 θ

)
, (2.13)

and thus we expect to measure two-mode squeezing and anti-squeezing for all θ, and constant
squeezing levels in the case of symmetric two-mode squeezing where 〈∆x̂2

1〉 = 〈∆x̂2
2〉 and 〈∆p̂2

1〉 =
〈∆p̂2

2〉.
Finally, when adding/subtracting quadratures from Alice and Bob measured in set 2 (θB =

θA − π/2) we obtain

q̂A(θ)± q̂B(θ − π/2) = x̂A cos θ + p̂A sin θ ± x̂B cos(θ − π/2)± p̂B sin(θ − π/2)

= x̂A cos θ + p̂A sin θ ± x̂B sin θ ∓ p̂B cos θ .

For θ = π/4 we extract again two-mode squeezing and anti-squeezing:

〈∆q̂A(π/4) + q̂B(π/4− π/2))2〉 =
1

2
〈∆(x̂A + p̂A + x̂B − p̂B)2〉 = 2

(
〈∆x̂2

1〉+ 〈∆x̂2
2〉
)
,

〈∆q̂A(π/4)− q̂B(π/4− π/2))2〉 =
1

2
〈∆(x̂A + p̂A − x̂B + p̂B)2〉 = 2

(
〈∆p̂2

1〉+ 〈∆p̂2
2〉
)
,
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Figure 2.7: (a) Schematics of the fiber coupled homodyne detection (HD) setup, where blue lines
indicates single mode fiber. (b) Illustration of the homemade fiber stretcher consisting of a top
and bottom part around a piezoelectric actuator. Pre-load can be applied by tightening the screw
with O-rings attaching the top part to the bottom part.

using (2.8). Moving away from θ = π/4 we measure less and less two-mode squeezing and anti-
squeezing, until θ = 0 or π/2 where, using (2.8),

〈∆(q̂A(0)± q̂B(0− π/2))2〉 = 〈∆(x̂A ∓ p̂B)2〉) =
1

2

(
〈∆x̂2

1〉+ 〈∆p̂2
2〉+ 〈∆p̂2

1〉+ 〈∆x̂2
2〉
)
,

〈∆(q̂A(π/2)± q̂B(π/2− π/2))2〉 = 〈∆(p̂A ± x̂B)2〉) =
1

2

(
〈∆p̂2

1〉+ 〈∆x̂2
2〉+ 〈∆x̂2

1〉+ 〈∆p̂2
2〉
)
,

and we simply measure added uncorrelated noise at Alice and Bob corresponding to thermal states
when tracing out one mode of the two-mode squeezed state.

2.6.2 Experimental methods

The experimental setup is outlined in section 2.3.1. In Fig. 2.7a schematics of the fiber-coupled
homodyne detection (HD) is seen. Here, the local oscillator (LO) phase is controlled by a fiber
stretcher illustrated in Fig. 2.7b, and mixed with the signal in a ∼50:50 fiber coupler. The HD is
balanced by inducing bend loss in one fiber coupler output arm: The fiber is coiled up in between
two plates, which are squeezed towards each other with a micrometer screw. Finally, light is
coupled from fiber onto the photo diodes using anti-reflective coated graded-index (GRIN) lenses.

The fiber stretcher based on [84] is illustrated in Fig. 2.7b. With a piezoelectric actuator the
fiber stretcher top and bottom part are pushed away from each other, stretching a single mode
fiber coiled around it. The bandwidth is set by the mechanical resonance frequency of the top part
and optimized to 2.5 kHz by applying pre-load. This can be improved by a lighter design of the
top-part, but it is sufficient for our purpose.

2.6.3 Temporal data processing

As two-mode squeezing is generated by temporal multiplexing a single squeezing source, we need to
filter temporal modes for analysis. Due to the switching and synchronization of temporal modes,
two-mode squeezing at the 50:50 fiber coupler output is only present half of the time in a switching
period (whereas vacuum is present the other half time, which is the cost of using a single squeezing
source).

The HD signal from Alice and Bob is shown in Fig. 2.8a (left) as function of time, where the
two-mode squeezing is seen with an offset due to the coherent seed beam transmitted through the
setup for phase locks. Here we can select time traces of 900 ns well within the temporal region of
two-mode squeezing with 1 µs length. Doing so, one measurement set consist of such 16 000 time
traces, with the temporal histogram shown in Fig. 2.8a (center). The quadratures measured in
Fig. 2.8 are x̂A and x̂B , and thus by adding and subtracting the measured quadrature traces, we
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(a) Raw data

(b) Slope compensated

(c) Repeating noise compensated

Figure 2.8: Example of the temporal post processing procedure of measured data, here of x̂A and
x̂B . (a) Raw data with HD signals from Alice and Bob shown in (left), temporal histogram of 16 000
time traces of 900 ns length as indicated in (left) shown in (center), and spectrum of added and
subtracted signals in (right). (b) Data in (a) compensated for non-zero slope by subtracting linear
regression lines as shown in (a,left). (c) Data in (b) compensated for repeating noise by subtracting
the average of the 16 000 slope compensated time traces shown as solid lines in (b,center). Here, the
solid lines in (center) is a single time trace from Alice and Bob indicating quadrature correlations,
while the final two-mode squeezing spectrum after processing is shown in (right).
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expect squeezing and anti-squeezing according to Eq. (2.12–2.13). However, as seen in Fig. 2.8a
(right) where the Fourier transform of x̂A ± x̂B is shown, this is not the case. This is due to the
slope seen on each time trace in Fig. 2.8a (left) and (center), which is caused by a decaying detector
response when the coherent seed beam is turned on and off in the detector.

To compensate for the non-zero slope on each time trace, we cannot simply high pass filter the
HD signals, as the slope includes frequency components in the MHz-regime, and we would filter out
the two-mode squeezing. Instead, we subtract the slope from each individual time trace. However,
due to spurious interference of the coherent seed beam and small phase fluctuations, the slope
of each time trace varies, and we cannot subtract the same slope from each time trace. Instead,
assuming the decaying detector response is linear on this time scale, a linear regression line is fitted
to each time trace, as shown on the last three pulses in Fig. 2.8a (left), and subtracted.

The result of compensating for non-zero slope on each time trace is shown in Fig. 2.8b, where
the HD signals in (left) are effectively high pass filtered without affecting the squeezing spectrum,
and two-mode squeezing below added shot noise is visible in (right). Yet, peaks are seen in the
spectrum due to oscillations visible in the temporal histogram in Fig. 2.8b (center). These are
caused by the switching process and maybe oscillating detection response. However, since they are
repeating with the switching process, they can be compensated for by subtracting an average of
the 16 000 time traces, indicated by the solid lines in Fig. 2.8b (center).

Finally, the result of compensating for the repeating noise is shown in Fig. 2.8c, where in
(center) the temporal histogram is seen to be nicely constant, and a two-mode squeezing spectrum
in (right) resembling the OPO spectrum without additional noise peaks. Here the degrading of
squeezing in the first frequency component shown is due to the coherent seed beam not being shot
noise limited, and limiting bandwidth of ∼ 1 MHz due to the 900 ns short time traces. The solid line
shown in Fig. 2.8c (center) is a single time trace at Alice and Bob showing quadrature correlations.
To observe stronger correlations, only frequency components within the OPO bandwidth should
be observed, which is the case in Fig. 2.3.

2.6.4 Sources of noise and theoretical prediction

To theoretically predict the measured two-mode squeezing, we include several sources of noise.
Besides the squeezed vacuum noise itself, the seed beam transmitted through the optical parametric
oscillator (OPO) contains noise, while additional noise is added after the OPO. Besides this, due
to phase fluctuations, when measuring one quadrature, noise of the other quadrature is observed
as well. Finally, electronic noise is also considered. When adding and subtracting the measured
x̂- or p̂-quadrature of the two-mode squeezed state at Alice and Bob, the single mode squeezed
states in the direct or delay line is extracted according to (2.12-2.13) for θ = 0 and π/2. So, for
simplicity, in the following discussion we consider the case of measuring single mode squeezing in
the direct and delay line. The different sources of quadrature noise are summarized in Fig. 2.9 as
a function of the pump power.

Electronic noise is present in both measured quadratures and shot noise. It is independent on
pump power, and we deal with it by subtracting the electronic noise variance from both measured
quadrature variance and shot noise variance. However, the electronic noise is less than −20 dB
relative to shot noise, and can in principle be neglected.

Noise unrelated to the squeezing process is characterized by measuring the seed spectrum by
blocking the pump to the OPO, and the result is seen in Fig. 2.4 (grey points). From the direct
line, low frequency noise resulting from technical noise of the seed beam is observed. Even more
low frequency noise is apparent in the squeezed state of the delay line, and we believe it originates
from phase noise generated by the 200 m fiber, and amplitude noise from the fiber switch which is
most prominent at 5-6 MHz.

The measured seed beam noise undergoes squeezing in the OPO, and thus depends on the
pump power. The squeezed and anti-squeezed quadrature noise spectrum from the OPO including
the noisy seed beam is derived below in section 2.6.5 to be

〈∆q̂2〉 =
1

2
∓ 2εγη

(γ ± ε)2 + ω2
+

Kq

(γ ± ε)2 + ω2
, q = x, p, (2.14)
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(a) (b)

Figure 2.9: Illustration of quadrature noise when measuring single mode squeezing in the direct
or delay line, including vacuum squeezing, squeezing of seed beam noise, added noise after the
OPO and electronic noise. (a) Illustrates how the different noise sources behave in the squeezed
quadrature when increasing the pump power, and in (b) the anti-squeezed quadrature is illustrated.
The sources or noise shown here are not to scale.

where ε is the pump rate, γ is the total OPO decay rate, η is the overall efficiency and ω is the
angular frequency. The first two terms corresponds to vacuum squeezing when subtracted and anti-
squeezing when added (with 1/2 being the vacuum variance), while the third term corresponds to
squeezing/anti-squeezing of the seed beam noise 〈∆q̂2

s〉 with Kq = 4ηγγs(〈∆q̂2
s〉 − 1/2), where γs

is the coupling rate of the mirror through which the seed beam is leaked into the OPO. From the
measured seed beam spectrum when blocking the pump (ε = 0), Kq can be estimated as

Kq = (γ2 + ω2)(〈∆q̂2
0〉 − 1/2) ,

where 〈∆q̂2
0〉 then corresponds to grey points in the direct line of Fig. 2.4. Notice how the squeezed

vacuum in (2.14) (the first two terms) goes towards 0 for ε→ γ and η = 1 at ω = 0, while the seed
beam noise goes towards (〈∆q̂2

0〉 − 1/2)/4, and thus the seed beam noise can only be eliminated
when 〈∆q̂2

0〉 = 1/2 is shot noise limited. The OPO decay rate is estimated to γ = 2π8.1 MHz by
measuring the OPO intracavity losses (0.55%), the cavity length (320 mm) and the transmittivity
of the coupling mirror (10%), while we estimate the pump rate to ε = 2π5.2 MHz for a pump power
of 350 mW and an estimated OPO threshold power of 833 mW. The overall efficiency is η = 68%
as discussed in section 2.6.2.

To predict the squeezing, the direct line Eq. (2.14) is sufficient, since negligible noise is added
after the OPO. However, as apparent in Fig. 2.4 and discussed above, both amplitude and phase
noise is added in the delay line, and is independent on the pump power. To encounter this, the
difference in measured noise spectrum in the direct and delay line when blocking the pump (grey
points in Fig. 2.4) is added to Eq. (2.14) for the squeezing spectrum in the delay line.

Finally, phase fluctuations are included by applying a normal distribution P (σ, θ) of width σ
to the measured quadrature as

〈∆x̂2
σ(θ)〉 =

∫
P (σ, θ)

(
〈∆x̂2〉 cos2 θ + 〈∆p̂2〉 sin2 θ

)
dθ

≈ 〈∆x̂2〉 cos2(θ + σ) + 〈∆p̂2〉 sin2(θ + σ) ,

and similar for 〈∆p̂2〉 with cos(θ+σ) and sin(θ+σ) interchanged, and with the the approximation
valid for small σ [78]. Since we expect different phase fluctuations in the direct line and the 200 m
long delay line, different normal distributions of width σ1 and σ2 are used respectively. By using
σ1 and σ2 as fitting parameters, the theoretical predicted squeezing in Eq. (2.14), with additional
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Figure 2.10: Schematic model of the OPO as squeezing source. Here, γc is the decay rate due to
the cavity coupling mirror of 10% transmission, while γs is the decay rate due to the high reflective
mirror through which the seed is leaked into the cavity. The internal cavity loss is modelled by
a beams splitter transformation leading to the decay rate γl. â is the annihilation operator of
the cavity mode, âi for i = in, out, s, l are annihilation operators of modes mixing with the cavity
mode, and ε is the effective pump intensity which is treated classically. Dotted line corresponds to
modes with vacuum.

added noise in the delay line, is fitted to the experimental data, and shown as hollow points in
Fig. 2.4. From the fitting we get σ1 = 1.9 ± 1.2◦ and σ2 = 4.1 ± 0.6◦ (uncertainty estimated as
95% confidence interval), and the theoretical prediction is seen to agree excellent with measured
data.

2.6.5 Squeezing spectrum with seed beam noise

In order to derive the squeezing spectrum of the OPO in Eq. (2.14) with a seed beam leaked
into the cavity, we follow the approach in [79] where the spectrum is derived from the quantum
Langevin equations of a cavity. However, in [79] the leakage of a seed beam into the cavity is
not considered, and so the model is here extended for this purpose – a schematic of the model is
sketched in Fig. 2.10.

Treating the pump power classically with the effective pump intensity ε, and frequency of
double the cavity resonant mode frequency ω0, the system Hamiltonian of the OPO cavity mode
is

Ĥsys = ~ω0â
†â+

1

2

(
εe−i2ω0tâ†2 − ε∗ei2ω0tâ2

)
,

where â is the annihilation operator of the cavity mode. Here the second term is the Hamiltonian
of the parametric down conversion process of the pump in a second order non-linear crystal,
and the pump is assumed non-depleted (i.e. far below the OPO threshold). Using [â, Ĥsys] =
~ω0â+ i~εe−i2ω0tâ†, the Langevin equations becomes

dâ

dt
= − i

~
[â, Ĥsys]− γâ+ Γ̂

= −iω0â+ εe−i2ω0tâ† − γâ+ Γ̂ ,

(2.15)

where γ is the cavity damping rate, and Γ̂ is the noise operator. Cavity damping is caused by
out coupling of the cavity mode, internal cavity loss, and leakage through the high reflective
mirror through which the seed is coupled, each leading to corresponding decay rates γc, γl and γs
respectively so that γ = γc+γl+γs. Where light is coupled out, vacuum in the mode âin is coupled
in. Similar, the cavity internal loss can be modelled by a beam splitter transformation coupling
vacuum in mode âl into the cavity mode. Finally, with the seed beam in mode âs leaked through
a high reflector, the noise operator is Γ̂ =

√
2γcâin +

√
2γlâl +

√
2γsâs. With the mirror between

âs and â being high reflective, we have γs � γc, γl and so γ ≈ γc + γl. However, we cannot choose
γs = 0 so that Γ̂ =

√
2γcâin +

√
2γlâl, as then no seed beam leaks into the cavity mode and the

model simplifies to that in [79].
Moving to a rotating frame with frequency ω0,

â→ âe−iω0t ,
dâ

dt
→ d

dt

{
âe−iω0t

}
=
dâ

dt
e−iω0t − iω0âe

−iω0t ,
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Eq. (2.15) simplifies to
dâ

dt
= (A− γ1)a+ Γ̂ , (2.16)

where

â =

(
â
â†

)
, A =

(
0 ε
ε∗ 0

)
, Γ̂ =

(
Γ̂

Γ̂†

)
.

Eq. (2.16) is easiest solved in frequency domain, and by the Fourier transform,

â(t) =
1√
2π

∫ ∞
−∞

ˆ̃a(ω)e−iωtdω ,

â†(t) =
1√
2π

∫ ∞
−∞

ˆ̃a†(ω)eiωtdω =
1√
2π

∫ ∞
−∞

ˆ̃a†(−ω)e−iωtdω ,

Eq. (2.16) becomes

− iω ˆ̃a = (A− γ1) ˆ̃a+ ˆ̃Γ , (2.17)

ˆ̃a =

(
ˆ̃a(ω)

ˆ̃a†(−ω)

)
, ˆ̃Γ =

(
ˆ̃Γ(ω)

ˆ̃Γ†(−ω)

)
.

Solving for ˆ̃a in (2.17),

ˆ̃a = − (A + (iω − γ)1)
−1 ˆ̃Γ ,

leads to the solution

ˆ̃a(ω) =
(iω − γ)ˆ̃Γ(ω)− εˆ̃Γ†(−ω)

|ε|2 − (iω − γ)2
,

ˆ̃a†(−ω) =
(iω − γ)ˆ̃Γ†(−ω)− εˆ̃Γ(ω)

|ε|2 − (iω − γ)2
,

(2.18)

of the annihilation and creation operator of the cavity frequency modes.
With the solution of the Langevin equations in (2.18), and writing the effective pump intensity

as ε = |ε|eiφ, the cavity mode quadrature in frequency domain, q̃a(θ), becomes

ˆ̃qa(θ) =
1√
2

(
e−iθ ˆ̃a(ω) + eiθ ˆ̃a†(−ω)

)
=

1√
2

e−iθ
[
(iω − γ)ˆ̃Γ(ω)− |ε|eiφ ˆ̃Γ†(−ω)

]
+ eiθ

[
(iω − γ)ˆ̃Γ†(−ω)− |ε|e−iφ ˆ̃Γ(ω)

]
|ε|2 − (iω − γ)2

=
(iω − γ) 1√

2

[
e−iθ ˆ̃Γ(ω) + eiθ ˆ̃Γ(−ω)

]
− |ε| 1√

2

[
e−i(φ−θ) ˆ̃Γ(ω) + ei(φ−θ) ˆ̃Γ†(−ω)

]
|ε|2 − (iω − γ)2

=
(iω − γ)ˆ̃qΓ(θ)− |ε|ˆ̃qΓ(φ− θ)

|ε|2 − (iω − γ)2
.

Here,

ˆ̃qΓ(θ) =
1√
2

(
e−iθ ˆ̃Γ(ω) + eiθ ˆ̃Γ†(−ω)

)
=

1√
2

(
e−iθ

[√
2γcˆ̃ain(ω) +

√
2γlˆ̃al(ω) +

√
2γsˆ̃as(ω)

]
+eiθ

[√
2γcˆ̃a

†
in(−ω) +

√
2γlˆ̃a

†
l (−ω) +

√
2γsˆ̃a

†
s(−ω)

])
=
√

2γc ˆ̃qin(θ) +
√

2γl ˆ̃ql(θ) +
√

2γs ˆ̃qs(θ)
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Figure 2.11: Illustration of the phase space transformation under squeezing with arbitrary φ (grey).
Red illustrates how noise initially in the x̂-quadrature is mixed into the p̂-quadrature when squeez-
ing, and similar (by blue) how noise in the p̂-quadrature is mixed into the x̂-quadrature.

is a weighted sum of quadratures in the modes of the noise operator Γ. Writing the noise operator
quadrature in terms of amplitude and phase quadrature, ˆ̃qΓ(θ) = ˆ̃xΓ cos θ+ ˆ̃pΓ sin θ, the amplitude
and phase quadrature of the cavity mode becomes

ˆ̃xa = ˆ̃qa(0) =
(iω − γ)ˆ̃qΓ(0)− |ε|ˆ̃qΓ(φ)

|ε|2 − (iω − γ)2
=

(iω − γ − |ε| cosφ)ˆ̃xΓ − |ε| sinφ ˆ̃pΓ

|ε|2 − (iω − γ)2
(2.19)

ˆ̃pa = ˆ̃qa(π/2) =
(iω − γ)ˆ̃qΓ(π/2)− |ε|ˆ̃qΓ(φ− π/2)

|ε|2 − (iω − γ)2
=

(iω − γ + |ε| cosφ)ˆ̃pΓ − |ε| sinφˆ̃xΓ

|ε|2 − (iω − γ)2
, (2.20)

where it is used that ˆ̃qΓ(φ− π/2) = ˆ̃xΓ sinφ− ˆ̃pΓ cosφ. In conclusion, when φ = 0 or π the cavity
mode amplitude quadrature does not depend on the external noise phase quadrature, and similarly,
the cavity phase quadrature does not depend on the external noise amplitude quadrature. This is
expected, as for φ = 0 and π we have squeezing exactly along the p̂- and x̂-quadrature respectively.
However, when that is not the case (φ 6= 0, π), the quadratures mix as the phase space is stretched
in some direction not along x̂ or p̂. This is illustrated in Figure 2.11.

In the experimental setup, we have squeezing in the p̂-quadrature, φ = π, and (2.19) and (2.20)
simplify to

ˆ̃xa =
iω − γ + |ε|
|ε|2 − (iω − γ)2

ˆ̃xΓ =
ˆ̃xΓ

γ + ε− iω
,

ˆ̃pa =
iω − γ − |ε|
|ε|2 − (iω − γ)2

ˆ̃pΓ =
ˆ̃xΓ

γ − ε− iω
.

The output field mode, aout, is related to the cavity mode by aout =
√

2γca − ain [79], and the
quadrature of the electric field coupled out of the cavity through the coupling mirror becomes

ˆ̃xout =
√

2γc
ˆ̃xΓ

γ + ε− iω
− ˆ̃xin =

γc − γl − γs − ε+ iω

γ + ε− iω
ˆ̃xin +

2
√
γcγl

γ + ε− iω
ˆ̃xl +

2
√
γcγs

γ + ε− iω
ˆ̃xs ,

ˆ̃pout =
√

2γc
ˆ̃pΓ

γ + ε− iω
− ˆ̃pin =

γc − γl − γs + ε+ iω

γ − ε− iω
ˆ̃pin +

2
√
γcγl

γ − ε− iω
ˆ̃pl +

2
√
γcγs

γ − ε− iω
ˆ̃ps .

Finally, when the cavity output field is detected by homodyne detection, where x̂out and p̂out are
measured in the rotating frame, it is the photo current we measure. Here, the photo current is
a direct measure of x̂out and p̂out, and the photo current power spectrum is proportional to the
spectral density Sq(ω) of the quadrature q(θ) defined by Sq(ω)δ(ω + ω′) = 〈ˆ̃q(ω)ˆ̃q(ω′)〉 [86]. Using
that 〈q̂iq̂j〉 = 〈q̂i〉 〈q̂j〉 for independent modes i and j, and that the only input mode to the cavity
which is not simply vacuum is the seed, i.e. 〈q̂in〉 = 〈q̂l〉 = 0 and 〈∆q̂2

in〉 = 〈∆q̂2
l 〉 = 1/2 for q = x, p,

the spectral density of x̂out and p̂out becomes, after some cumbersome simplification,

Sx(ω) = 〈ˆ̃xout(ω)ˆ̃xout(−ω)〉 =
1

2
− 2γcε

(γ + ε)2 + ω2
+

4γcγs
(γ + ε)2 + ω2

(
〈∆x̂2

s〉 −
1

2

)
, (2.21)
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Sp(ω) = 〈 ˆ̃pout(ω)ˆ̃pout(−ω)〉 =
1

2
+

2γcε

(γ − ε)2 + ω2
+

4γcγs
(γ − ε)2 + ω2

(
〈∆p̂2

s〉 −
1

2

)
. (2.22)

In conclusion, for the seed beam simply being vacuum or a pure coherent state, i.e. 〈∆x̂2
s〉 =

〈∆p̂2
s〉 = 1/2, (2.21) and (2.22) reduces to the well known squeezing spectra, where the first term is

the vacuum noise, to which the second term add or subtract to form an anti-squeezed or squeezed
spectrum respectively. However, for seed beam noise larger than the vacuum noise, the third term
in (2.21) and (2.22) becomes positive and adds to the squeezing spectra. To encounter any loss in
experimental setup, the decay rate γc in the numerators of the two last terms in (2.21) and (2.22)
can be replaced by ηγ, where η is the total efficiency of the experimental setup, ranging from the
OPO escape efficiency, γc/γ, to the homodyne detection efficiency.

In the experimental setup, even with the mirror through which the seed beam is coupled into
the cavity being a high reflector (γs being small), the seed beam noise is large enough for the third
term in (2.21) and (2.22) to be visible. To take this into account when predicting the squeezing
spectra, we need to estimate γs and 〈∆q̂2

s〉 for q = x, p. To do this the spectral density of x̂ and p̂
are measured without pump power in the cavity (ε = 0), S0

q (ω), leading to

S0
q (ω) =

1

2
+ 4

4ηγγs
γ2 + ω2

(
〈∆q̂2

s〉 −
1

2

)
=

1

2
+

Kq

γ2 + ω
, q = x, p

m

Kq = 4ηγγs

(
〈∆q̂2

s〉 −
1

2

)
= (γ2 + ω2)

(
S0
q (ω)− 1

2

)
, (2.23)

where the total efficiency, η, of the setup is included. Here, since γs � γc, γl,

γ = γc + γl + γs ≈ γc + γl =
1−
√

1− Tc
τ

+
1−
√

1− L
τ

= 2π8.1 MHz

with Tc = 10% coupling mirror transmission, L = 0.55% intracavity losses and a OPO round trip
time of τ = 320 mm/(3× 108 m/s). Thus by measuring S0

q (ω) and γ we get Kq from (2.23), we
predict the squeezed and anti-squeezed spectra as

Sq(ω) =
1

2
∓ 2εγη

(γ ± ε)2 + ω2
+

Kq

(γ ± ε)2 + ω2
, q = x, p .

2.6.6 Bound on covariances

From measurements we got the covariance matrix for the operators ξ = (x̂A, p̂A, x̂B , p̂B)T to be

γ = V0


4.36 a −3.84 0.36
a 4.43 0.45 3.92

−3.84 0.45 4.17 b
0.36 3.92 b 4.26

 , (2.24)

where V0 = 1/2 is the vacuum variance.
In the experiment, we aim at setting the phase angles such that a = b = 0, but since a and b are

not directly measured they could in principle deviate from zero. In the following we first estimate
the allowed range of values for a and b using the uncertainty relation and given the actual measured
entries of the covariance matrix. Second, we investigate how a phase off-set of the individually
squeezed beams will lead to non-zero values of a and b.

To determine the bounds of a and b for γ to be physical, we use the covariance matrix uncer-
tainty relation [87]

γ +
i

2
Ω ≥ 0 , (2.25)
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Figure 2.12: Numerical calculations of the eigenvalues of γ + i
2Ω for the covariance matrix shown

in (2.24).

where the elements of Ω are given by the commutator relations [ξi, ξj ] = iΩij , hence

Ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (2.26)

From (2.25), all eigenvalues of γ + i
2Ω must be non-negative. In Fig. 2.12 the 4 eigenvalues of

γ+ i
2Ω for a and b in the range of −2 to 2 is shown. In this interval only the first eigenvalue is seen

to limit a and b in (2.25). The bounds of a and b are seen not to be independent, but they both
share an absolute lower bound of zero (corresponding to the ideal case of x̂ and p̂ being completely
uncorrelated). The lower and upper bound of a (depending on b) and b (depending on a) is

a ∈ [−1.24, 1.17] (2.27)

b ∈ [−1.10, 1.21] . (2.28)

It is thus clear that by using a bona fide criterion for the covariance matrix, the range of
possible xp-covarainces is quite large. In the following, we instead estimate the potential values
for a and b by propagating a phase off-set of the input squeezed state through the system. We
consider the setup in Fig. 2.13. Two squeezed states undergo a phase rotation, σ, and loss, 1− η,
and interfere on a balanced beam splitter 90◦ out of phase to produce a two-mode squeezed state.
If the phase off-set is zero, the xp-covariances will be exactly zero. However, for a phase rotation,
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Figure 2.13: Two modes of vacuum, x̂0
1, p̂

0
1 and x̂0

2, p̂
0
2, are squeezed by S(r1) and S(r2) before they

are subjected to loss (1 − η1 and 1 − η2) and some phase change (σ1 and σ2). Finally they are
interfered on a beam splitter to form two-mode squeezing. Here, mode 1 and 2 corresponds to the
direct and delay path in the experimental setup. Notice, in the experimental setup the two modes
1 and 2 share the same temporal multiplexed squeezing source, such that the squeezing parameters
r1 = r2.

the quadratures are transformed as

x̂1 =
(√

η1e
−r1 x̂0

1 −
√

1− η1x̂
L
1

)
cosσ1 −

(√
η1e

r1 p̂0
1 +

√
1− η1p̂

L
1

)
sinσ1

p̂1 =
(√

η1e
−r1 x̂0

1 −
√

1− η1x̂
L
1

)
sinσ1 +

(√
η1e

r1 p̂0
1 +

√
1− η1p̂

L
1

)
cosσ1

x̂2 =
(√

η2e
r2 x̂0

2 −
√

1− η2x̂
L
2

)
cosσ2 −

(√
η2e
−r2 p̂0

2 +
√

1− η2p̂
L
2

)
sinσ2

p̂2 =
(√

η2e
r2 x̂0

2 −
√

1− η2x̂
L
2

)
sinσ2 +

(√
η2e
−r2 p̂0

2 +
√

1− η2p̂
L
2

)
cosσ2

and with x̂A = 1√
2
(x̂1 + x̂2), x̂B = 1√

2
(x̂1− x̂2), p̂A = 1√

2
(p̂1 + p̂2), p̂B = 1√

2
(p̂1− p̂2), we find the

correlation

Cx̂Ap̂B =
1

2
(〈x̂1p̂1〉 − 〈x̂2p̂2〉)

=
1

2
η1(e−2r1 − e2r1)V0 cosσ1 sinσ1 +

1

2
η2(e−2r2 − e2r2)V0 cosσ2 sinσ2

It is thus clear that a phase off-set of the individually squeezed modes results in non-zero xp-
covariances. Interestingly, the covariances are identical to the intra-mode covariances:

Cx̂Ap̂A = Cx̂B p̂B = Cx̂Ap̂B = Cx̂B p̂A

which means that the expected off-set values of a and b should be similar to the measured values
for Cx̂Ap̂A and Cx̂B p̂B under the above mentioned assumptions. We have now seen how a phase
off-set will give rise to non-zero covariances. It is however important to note that symmetric phase
diffusion noise centered around the perfectly aligned phase will not produce non-zero values of the
covariances.
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Chapter 3

Deterministic generation of a
two-dimensional cluster state

In this chapter, the paper “Deterministic generation of a two-dimensional cluster state” of Ref. [31]
is presented. This papers is authored by Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S.
Neergaard-Nielsen, and Ulrik L. Andersen, and published in Science 366, 369 (2019) back-to-back
with a similar work by Asavanant et al. in Ref. [37].

In this work, we propose and demonstrate generation of a continuous-variable cluster state in
two dimensions. With the motivation being scalable measurement-based quantum computation
without requiring similar scaling of spatial resources, the cluster state is generated using temporal
multiplexing of a minimum of spatial resources. As such, this work is partly experimental, and
partly theoretical. The experimental setup is mainly based on optical fiber components operated
at the telecom wavelength, and we utilize experimental techniques presented in chapter 2 [30].

While two-dimensional cluster state generation is realized in this work, computation on this
cluster state is only discussed briefly in this chapter. In chapter 4 [32] an efficient computation
scheme on the cluster state generated here is proposed, while in chapter 5 [33] gates, implemented
by projective measurements of the cluster state, is demonstrated.

Appendix A and B (page 147 and 149) complements the method section 3.3 of this chapter,
describing the optical table and phase lock configurations for cluster state generation. Experimental
data and analysis code are freely available at figshare.com [88].

From Science 366, 369 (2019). Reprinted with permission from AAAS.

3.1 Abstract

Measurement-based quantum computation offers exponential computational speed-up via simple
measurements on a large entangled cluster state. We propose and demonstrate a scalable scheme for
the generation of photonic cluster states suitable for universal measurement-based quantum compu-
tation. We exploit temporal multiplexing of squeezed light modes, delay loops, and beam-splitter
transformations to deterministically generate a cylindrical cluster state with a two-dimensional
(2D) topological structure as required for universal quantum information processing. The gener-
ated state consists of more than 30 000 entangled modes arranged in a cylindrical lattice with 24
modes on the circumference, defining the input register, and a length of 1250 modes, defining the
computation depth. Our demonstrated source of 2D cluster states can be combined with quantum
error correction to enable fault-tolerant quantum computation.

27
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3.2 Main text

Quantum computing represents a new paradigm for information processing that harnesses the
inherent non-classical features of quantum physics to find solutions to problems that are computa-
tionally intractable on classical processors [89]. In measurement-based, or cluster state, quantum
computing (MBQC), the processing is performed via simple single-site measurements on a large
entangled cluster state [1]. This constitutes a simplification over the standard gate-based model
of quantum computing, as it replaces complex coherent unitary dynamics with simple projective
measurements. However, one of the outstanding challenges in realizing cluster state computation
is the reliable, deterministic and scalable generation of non-classical entangled states suitable for
universal information processing.

Several candidate platforms for scalable cluster state generation have been proposed and some
experimentally realized, including solid state superconducting qubits [90], trapped ion qubits [29,
91] and photonic qubits or qumodes, in which qubits can be encoded, generated by parametric
down-conversion [19, 20, 28, 92] or by quantum dots [93]. However, none of these implementations
have demonstrated true scalability combined with computational universality. The largest cluster
state generated to date is a temporally multiplexed photonic state comprising entangled modes in a
long chain which however does not allow for universal computation due to its one-dimensional (1D)
topological structure [19, 21]. To achieve universality, the dimension of the cluster state must be at
least two. Several proposals for generating two-dimensional (2D) cluster states in different systems
have been proposed [9, 11, 94, 95] but due to technical challenges, scalable and computationally
universal cluster states have yet to be produced in any physical system.

We propose and demonstrate a highly scalable scheme for the generation of cluster states for
universal quantum computation based on quantum continuous variables (CV) where information
is encoded in the position or momentum quadratures of photonic harmonic oscillators [76]. We use
a temporally multiplexed source of optical Einstein-Podolsky-Rosen (EPR) states [61] to generate
a long string of entangled modes that is curled up and fused to form a 2D cylindrical array of
entangled modes. Specifically, we generate a massive cluster state of more than 30 000 entangled
modes comprising an input register of 2×12 = 24 modes on which the input state may be encoded,
and a length of 1250 modes for encoding operations by projective measurements, only limited by
the phase stability of our setup. In addition to being universal and deterministically generated, the
source is operated under ambient conditions in optical fibers at the low-loss telecom wavelength of
1550 nm. These favorable operational conditions and specifications significantly facilitate further
upscaling of the entangled state as well as its use in applications and fundamental studies.

The canonical approach to CV cluster state generation is to apply two-mode controlled-Z gates
onto pairs of individually prepared eigenstates of the momentum (or phase quadrature) operators
p̂i, p̂j in adjacent modes i, j. The gate is described by the unitary operation ĈZ = eigx̂ix̂j where
x̂i, x̂j are the position (amplitude quadrature) operators of mode i and j, while g is the interaction
strength. Applying this gate to two modes leads to entanglement in the form of quantum correla-
tions of the two modes’ quadratures. The operations and resulting state can be represented by a
graph in which the nodes represent the momentum eigenstates while the edges (links) between the
nodes represent the application of a controlled-Z operation where the interaction strength is given
by the edge weight. In a practical implementation, the unphysical momentum eigenstates are re-
placed by highly squeezed states while the controlled-Z operations can be imitated by phase shifts
and beam splitter transformations. To enable scalability, it has been suggested to use multiplexing
of spatial modes [17], frequency modes [8, 96], or temporal modes [9, 12]. For example, Menicucci
suggested using temporal multiplexing to form a 2D cluster state combining four squeezed state
generators, five beam splitters, and two delay lines [9].

We propose a simpler approach to 2D cluster state generation lowering the experimental re-
quirements (Fig. 3.1). The state is produced in four steps: i) Pairs of squeezed vacuum states are
generated at 1550 nm wavelength from two bow-tie shaped optical parametric oscillators (OPOs)
by parametric down conversion [57]. The states are defined in consecutive temporal modes of
duration τ of the continuously generated OPO output. ii) The squeezed vacuum pairs in spatial
modes A and B are interfered on a balanced beam splitter (denoted BS1). This produces a train
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Figure 3.1: Scheme of 2D cluster state generation. Squeezing is produced by two OPOs (OPOA and
OPOB), and coupled into fiber with 97% coupling efficiency. There, temporal modes are interfered
with fiber coupled beam splitters to generate a 2D cluster state. The corresponding graph is
shown: Temporal modes of squeezing with mode index k in two spatial modes A and B (bright
and dark nodes) are interfered to generate EPR-states at BS1. The EPR pairs are entangled to
form a 1D cluster state using a τ delay in mode B and BS2, and the 1D cluster state is curled
up to a 2D cluster state by another delay of Nτ and BS3. Using homodyne detectors (HDA and
HDB), the temporal mode quadratures are measured from which the nullifiers are calculated. In
the experimental implementation, the short delay is a 50.5 m fiber leading to temporal modes of
247 ns duration, while the long delay is a 606 m fiber such that N = 12 as the illustrated graph.
The temporal modes are defined by an asymmetric shaped temporal mode function within the
247 ns duration which filters out low frequency noise and leads to less than 10−3 mode overlap [21].
For more information, see the methods section 3.3.

of pairwise EPR-entangled temporal modes exhibiting quantum correlation between the position
and momentum quadratures. Each EPR pair can be represented by a simple graph of a single
edge connecting two nodes. iii) A 1D cluster state is formed by delaying one arm of the interfer-
ometer by τ with respect to the other arm and interfering the resulting time-synchronized modes
on another balanced beam splitter (denoted BS2). The interference entangles EPR pairs along an
indefinitely long chain creating a 1D graph. iv) In the final step, the 2D cluster state is produced
by introducing another delay to one interferometer arm of duration Nτ and interfering the result-
ing time-synchronized modes on a final beam splitter (denoted BS3). This effectively curls up the
graph and fuses the modes into an indefinitely long cylinder with N nodes on the circumference
as illustrated in Fig. 3.1 for N = 12, leading to 2 × N = 24 input modes distributed on the two
spatial modes A and B. For detailed description of experimental implementations see the methods
section 3.3.

All states and operations involved are Gaussian, meaning they can be described by Gaussian
distributions of the quadrature variables in phase space. In the formalism of graphical calculus
for Gaussian states [7], the generated graphs are so-called H-graphs as they can be generated
from vacuum by a single Hamiltonian, and have an edge weight of g = i sinh(2r)G where r is the
squeezing parameter of the two squeezing operations and G = −1 for the EPR-states, ±1/2 for the
1D graph and ±1/4, 1/2 for the 2D graph. Due to the particular structure of theH-graph generated
here (it is self-inverse and bipartite—see the supplementary information section 3.4.1 for details),
it can be transformed into a cluster state by π/2 rotations in phase space leading to real edges of
weight g = tanh(2r)G→ G for r →∞. Finally, as the π/2 phase space rotations can be absorbed
into the measurement basis, or simply by appropriate re-definitions of quadratures on the rotated
modes, the generated H-graph state and its corresponding cluster state are completely equivalent.
See the supplementary information section 3.4.2 for details on the cluster state generation scheme.

The produced cylindrical 2D cluster state can be shown to be a universal resource for quantum
computing: In Fig. 3.2, the generated cylindrical cluster state is unfolded and projected into a
square lattice by projective measurements in the position basis and π/2 phase-space rotations of
different modes. Such a square lattice is a well-known universal resource for quantum computing [5],
and thus the initial cylindrical cluster state is itself universal. For computation it is not necessary
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Figure 3.2: Universality of generated 2D cluster state. (A) Graph of the generated 2D cluster
state. Measuring the nodes marked by red in the position basis removes all edges connected to the
measured nodes, and the cylindrical graph unfolds to a plane. (B) Resulting plane 2D cluster state
after the projective measurements in (A), consisting of two bilayer square lattices (double BSL)
connected by edges of weight 1/2. (C) Single BSL after projective measurement of half the modes
in (B) in the position basis. (D) Square lattice (SL) after projective position measurements of all
modes in spatial mode B (dark nodes), and applying the Fourier gate (π/2 phase delay) on half
the modes in spatial mode A (bright nodes). This SL is a traditional universal resource state for
MBQC.

to project the generated cluster state into a square lattice—rather, one would in general optimize
the detector settings required for the gate to be implemented. For instance, with proper settings
the cluster state can be projected into 1D dual-rail wires along the cylinder, an efficient resource for
one-mode computation [12, 19] and with possible two-mode interactions between them—for details
see supplementary information section 3.4.4. Doing so requires fast control of the measurement
bases in between temporal modes, while in this work the cluster state is measured in fixed bases
for state verification.

Multi-partite cluster state inseparability can be witnessed through the measurement of the
uncertainties of the state nullifiers—linear combinations of position and momentum operators for
which the cluster states are eigenstates with eigenvalue 0. E.g. for the ideal two-mode EPR state,
the well-known nullifiers are n̂xEPR = x̂A − x̂B and n̂pEPR = p̂A + p̂B since n̂xEPR |EPR〉 = 0 and
n̂pEPR |EPR〉 = 0. For our 2D cluster state, |2D〉, the nullifiers consist of 8 modes and are given by

n̂xk = x̂Ak + x̂Bk − x̂Ak+1 − x̂Bk+1

− x̂Ak+N + x̂Bk+N − x̂Ak+N+1 + x̂Bk+N+1 ,
(3.1)

n̂pk = p̂Ak + p̂Bk + p̂Ak+1 + p̂Bk+1

− p̂Ak+N + p̂Bk+N + p̂Ak+N+1 − p̂Bk+N+1 ,
(3.2)

as n̂xk|2D〉 = 0 and n̂pk|2D〉 = 0 (derived in the supplementary information section 3.4.3), where the
subscript indicates the temporal mode index with N being the number of temporal modes in the
cluster state circumference.

The practically realizable cluster state is never an exact eigenstate of the nullifiers since such
a state is unphysical. The measurement outcomes of the nullifiers are therefore not exactly zero
in every measurement but possess some uncertainties around zero. A condition for complete
inseparability of the 2D cluster state (derived in the supplementary information section 3.5) leads
to a bound on the variances of all nullifiers of 3 dB squeezing below the shot noise level. Therefore,
to witness full inseparability, we must observe more than 3 dB squeezing for all nullifiers. In
Fig. 3.3, the measured nullifier variances are shown for a dataset of 1500 nullifiers and they are
all observed to be well below the −3 dB bound; we measure an averaged variance of −4.7 dB and
−4.3 dB for n̂xk and n̂pk, respectively. In the inset of Fig. 3.3, we present the measurement of
a longer cluster state of 15 000 temporal modes corresponding to a measurement time of 4 ms.
Although phase instabilities are clearly seen to affect the performance in terms of variations of the
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Figure 3.3: Experimental result. On the right graph, the nullifiers in Eq. (3.1) and (3.2) are shown
on the 2D cluster state lattice with the measured variance of 1500 consecutive nullifiers shown in the
left plot. Here, the variance is calculated from 10 000 measurements of each nullifier. All nullifier
variances are seen to be well below the −3 dB inseparability bound derived in the supplementary
information section 3.5, and thus the generated cluster state is completely inseparable. In the
insert, the nullifier variance of a larger data set with 2× 15 000 = 30 000 modes are shown. Again,
with all modes below the −3 dB inseparability bound, we conclude the successful generation of a
30 000 mode 2D cluster state. The rapid increase of the variance in n̂xk and its periodic variation is
caused by phase fluctuation of the squeezing sources as described in the supplementary information
section 3.7.

nullifier variances, all variances stay below the −3 dB bound. The 2D cluster of 2×15 000 = 30 000
modes is thus fully inseparable. Note that not all 30 000 modes of the cluster state need to exist
simultaneously when performing projective measurements for computation. In fact, only a single
temporal mode of the cluster state needs to exist while the remaining modes of the state are under
construction. Hence, the cluster state can be immediately consumed for computation while being
generated, with no additional state storage necessary—see supplementary information section 3.4.4
for a possible measurement scheme for computation on the cluster state.

With the deterministic generation of a universal 2D cluster state, we have for the first time (in
parallel with Asavanant et al. [37]) in any system constructed a platform for universal MBQC.
Its scalability was demonstrated by entangling 30 000 optical modes in a 2D lattice that includes
24 input modes and allows for a computation depth of 1250 modes. Since only a few modes
exist simultaneously, we are not limited by the coherence time of the light source, and thus the
number of operations depends only on the phase stability of the system. The computational depth
can therefore be unlimited by implementing continuous feedback control of the system for phase
stabilization as demonstrated for the 1D photonic cluster state in [21]. The results presented
here and in [37] are similar: Both 2D cluster states are generated deterministically in the CV
regime with comparable size and amount of squeezing in the nullifier variance. However, with only
two squeezing sources, three interference points, and operation in fiber, the experimental setup
demonstrated here is simpler, while in [37] larger bandwidth OPOs are demonstrated resulting
in shorter delay lines. In both systems, the number of input modes can be readily increased by
using OPOs with larger bandwidths, possibly combined with a longer time delay of the second
interferometer. E.g. using OPOs with a 1 GHz bandwidth (65 times wider) and a twice as long
interferometer delay, a state with ∼ 1500 input modes can be generated. Large bandwidth OPOs
have been demonstrated, but phase stability and losses in the delay lines are more challenging.
While phase fluctuation is only a matter of experimental control on which we expect to improve with
continuous phase stabilization, delay losses are unavoidable and increasing the OPO bandwidth
may be a better solution than increasing the delay lengths.

CV cluster states are described by Gaussian statistics, but it is known that an element (state,
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operation, or measurement) of non-Gaussian quadrature statistics is required for universal quan-
tum computing [97]. Such an element could be a photon number resolving detector (PNRD) or
an ancillary cubic-phase state [12, 14]. Despite recent experimental efforts in developing high-
efficiency PNRD [98] and deterministically generating optical states with non-Gaussian statistic
[99], the formation of the required non-Gaussianity of the cluster state still constitutes an impor-
tant challenge to be tackled in the future. Another currently limiting factor towards quantum
computation is the existence of finite squeezing in the cluster leading to excess quantum noise and
thus computational errors. However, these errors can be circumvented using Gottesman-Kitaev-
Preskill (GKP) state encoding [14] concatenated with traditional qubit error correction schemes
leading to fault-tolerant computation with a 15–17 dB squeezing threshold [38]. Another recently
discovered advantage of the GKP encoding is that in addition to fault-tolerance, it also allows for
universality without adding extra non-Gaussian states or operations [39]. While GKP states have
recently been produced in the microwave regime [100] and in trapped-ion mechanical oscillators
[101], their production in the optical regime remains a task for future work. For further discussion
on quantum computation using the generated cluster state, see supplementary information sec-
tion 3.4.4. Although a path towards fault-tolerant universal quantum computing using CV cluster
states has been established, it is highly likely that the first demonstrations of CV quantum com-
putation will be non-universal algorithmic sub-routines such as boson sampling and instantaneous
quantum computing [102]. With the large, but noisy cluster state demonstrated here, interesting
future work will be to implement basic Gaussian circuits and investigate e.g. the attainable circuit
depth. Furthermore, the technique of folding a 1D cluster state into a 2D structure could be ex-
tended, using an additional interferometer, to form 3D cluster states which might be suitable for
topologically protected MBQC.

3.3 Methods

The experimental setup is shown in detail in Fig. 3.4. Amplitude squeezed light at 1550 nm
wavelength is generated by type-0 parametric down conversion in two bow-tie shaped optical
parametric oscillators (OPOA and OPOB) with periodically poled potassium titanyl phosphate
(PPKTP) crystals, pumped by light at 775 nm wavelength generated from a second harmonic
generator (SHG). For cavity and phase locking throughout the setup, we use a sample-hold locking
scheme where the two OPOs are periodically seeded with a coherent probe chopped by two acousto-
optic modulators (AOM): During the sample-time the probe is left on and active feedback is used
for cavities and phase locks. After 10 ms of sample-time with active feedback, the probe is turned
off for 5 ms (denoted hold-time) where all feedback loops are kept constant and quadrature data of
the generated 2D cluster state is acquired from the two homodyne detectors (HDA and HDB). The
cavities are locked by the Pound-Drever-Hall locking technique using a counter propagating lock
beam with 28 MHz phase modulation by an electro-optic modulator (not shown in Fig. 3.4). For the
generation of amplitude squeezing, the classical parametric gains in OPOA and OPOB are locked
to de-amplification using an AC-locking scheme: Phase modulated probe beams (at frequencies
fA = 90 kHz and fB = 55 kHz) are injected into the OPOs, a fraction (1%) is measured and
subsequently fed back to piezoelectric mounted mirrors.

The beams of squeezed light are coupled into single mode fibers (SMF) using gradient-index
(GRIN) lenses with 97% coupling efficiency. Here, the two beams of squeezed light are interfered
in a 50:50 fiber coupler (BS1), where 1% of one output arm is tapped, detected, and fed back to a
phase controlling fiber-stretcher for locking the relative phase between the two input beams. For
more information on this fiber-stretcher, see previous experimental work described in section 2.6.2
[30]. Using a manual polarization controller, the visibility is optimized to near unity. By locking
the relative phase difference to π/2 using a DC-locking scheme, EPR-states are generated.

Using a short delay line consisting of 50.5 m SMF-28e+ fiber, one spatial mode is delayed
by τ = 247 ns. This delay defines the temporal mode width. Again, the two spatial modes are
interfered on a 50:50 fiber coupler (BS2) with phase control by tapping and detecting 1% of the
output and feeding back to a fiber-stretcher, while visibility is optimized with a manual polarization
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Figure 3.4: Detailed schematic of the experimental setup for 2D cluster state generation. Here the
free space squeezing sources are marked by red (besides second harmonic generated light at 775 nm
wavelength which is marked by blue), while optical fibers in which the cluster state is generated are
marked by blue. Electronics for experimental control are marked by black. A function generator
(FG) generates a logic signal (TTL) for switching on and off the probe and activating/deactivating
feedback for cavity and phase locks. Data is acquired on an oscilloscope (Scope) when the probe
is turned off and feedback is kept constant. The fiber components marked by P and θ represents
manual polarization controllers and phase control by fiber-stretchers respectively.

controller. Locking the phase with a DC-locking scheme leads to a 1D cluster state with temporal
modes defined by the short τ -delay.

Finally, using a long delay of 606 m, one spatial mode is delayed by N = 12 temporal modes.
Interfering the two spatial mode in the 50:50 fiber coupler (BS3) corresponds to “coiling up” the
1D cluster state generated in BS2, leading to a 2D cluster state as illustrated in the main text
Fig. 3.1 and described in the supplementary information section 3.4.2.3. Here, too, the relative
phase is locked by tapping and detecting 1% of the output and feeding back to a fiber-stretcher,
while polarization is controlled with a manual polarization controller.

For characterizing the generated 2D cluster state, amplitude (x̂) and phase (p̂) quadratures of
the two spatial modes are continuously measured by two fiber-based homodyne detectors (HD). For
more information on these fiber-based HDs, see previous experimental work described in section
in section 2.6.2 [30]. The local oscillator phases for the two HDs are locked using an AC-locking
scheme, where for measuring in the x̂- and p̂-basis, demodulation by fA and fB are used, respec-
tively.

For more details and characterization of the experimental implementation given here, see sup-
plementary information section 3.6. Furthermore, the corresponding optical table is shown in
appendix A (page 147), while in appendix B (page 149) the configurations of phase locks are
described in more detail.

3.4 Suppl. Inf.: Theory on cluster state

In this section, cluster states are first introduced in section 3.4.1 before the generated 2D cluster
state is derived in section 3.4.2 and its nullifiers in section 3.4.3. We use the convention of ~ = 1.

3.4.1 Introduction

Cluster states are a resource for measurement based quantum computation (MBQC) and are well
described in [5] for the case of continuous variables (CV). For CV a cluster state is a set of modes,
all initially in the momentum eigenstate |0〉p, entangled by a number of controlled-Z operations of

weight g, ĈZ = exp [igx̂⊗ x̂] where x̂ is the position quadrature. In the following we follow the
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Figure 3.5: Adjacency matrix with its corresponding graph and equivalent circuit model.

conventions of graphical calculus for Gaussian pure states outlined in [7], and more details on the
theory summarized here can be found in [5, 7, 9].

A cluster state |ψA〉 of m modes can be defined by a symmetric real valued m×m adjacency
matrix A as

|ψA〉 = ĈZ [A] |0〉⊗mp =

m∏
j=1

m∏
k=j

eiAjkx̂j x̂k |0〉⊗mp = exp

[
i

2
x̂TAx̂

]
|0〉⊗mp , (3.3)

where x̂ = (x̂1, x̂2, · · · , x̂m)T is vector of position operators. For ideal cluster states, A is zero in
the diagonal, while the off-diagonal term Ajk describes a link (an edge) between mode j and k

by the ĈZ-operator of weight Ajk. We can picture a cluster state as a graph from its adjacency
matrix as in Fig. 3.5.

The cluster state in Eq. (3.3) is most easily described in the stabilizer formalism in which
p̂j −

∑
k Ajkx̂k is a nullifier:

(p̂−Ax̂) |ψA〉 = 0 , (3.4)

where p̂ = (p̂1, p̂2, · · · , p̂m)T is a vector of momentum operators. In conclusion, when measuring
the nullifier p̂j −

∑
k Ajkx̂k we expect vanishing variance. A gives a complete description of the

state |ψA〉.

3.4.1.1 Approximate cluster states

Eq. (3.4) is only valid for true momentum eigenstates as in Eq. (3.3), which require infinite squeezing
and are not physical. Finite squeezing leads to non-zero variance when measuring the nullifier,
and the variance increases with decreasing squeezing. Finite squeezing can be accounted for in the
adjacency matrix by allowing it to be complex. We denote this complex adjacency matrix

Z = V + iU ,

where V and U are real valued and symmetric. Again, V is zero in its diagonal and corresponds
to A in the ideal case, while most often U is non-zero in the diagonal and corresponds to the
deviation from the ideal case. We can still illustrate the corresponding graph state as in Fig. 3.5,
but with complex weight and with self-loops on each node corresponding to the imaginary non-zero
diagonal terms of Z.

The physical graph state described by Z is said to be an approximate cluster state with adja-
cency matrix A if

lim
r→∞

Z(r) = A ,

where r is the squeezing parameter of the initial states. As an example, applying ĈZ [A] to a
number of finitely squeezed momentum states leads to

Z = A + ie−2rI→ A for r →∞ .

Here V = A and U = e−2rI.



3.4. SUPPL. INF.: THEORY ON CLUSTER STATE 35

3.4.1.2 H-graph states

The controlled-Z operation, ĈZ , for entanglement generation is not easily implemented experi-
mentally. Instead, quadrature entanglement (two-mode squeezing) is generated directly by non-
degenerate down conversion or by interference of squeezed states, and the resulting graph state
can be expressed by the adjacency matrix

Z = ie−2rG (3.5)

where G is a real symmetric matrix. The state is called an H-graph state, since it can be generated
by the Hamiltonian

Ĥ(G) = ~κ
(
x̂TGp̂ + p̂TGx̂

)
, (3.6)

with κ being the squeezing parameter per unit time, r = 2κt. It is not easy to illustrate this
graph state with its exponential map, but in the case of G being self-inverse (G2 = I), Eq. (3.5)
simplifies to

Z = i cosh(2r)I− i sinh(2r)G , (3.7)

and it can be pictured as in Fig. 3.5 with complex weights. However, it is not an approximate
cluster state as Z does not go to some real valued matrix with zero in the diagonal for r → ∞.
But in the case of G also being bipartite (meaning the nodes can be separated into two sets with
no connecting edges in between modes of the same set), it can be transformed into an approximate
cluster state by applying the Fourier gate (π/2 rotation in phase-space) on some of its modes.
Finally, since this Fourier gate can be absorbed into the measurement basis when measuring each
mode of the graph state, we consider generation of a self-inverse bipartite H-graph state as cluster
state generation.

3.4.2 Cluster state generation

In the approach to cluster state generation, we start with modes of quadrature squeezed light to
which we apply beam-splitters and Fourier gates. Traditionally, the starting point is the complex
adjacency matrix for m modes squeezed in the phase (or momentum) quadrature,

Z = ie−2rI , (3.8)

with r being the squeezing parameter. In the experimental implementation we start with states
squeezed in the amplitude (or position) quadrature, but this makes no difference to the theoretical
derivation of the cluster state, and is merely a question on quadrature definition or π/2 phase-space
rotation. The quadrature transformation under beam-splitter transformations and/or phase-space
rotations in the Heisenberg picture can be expressed by a 2m× 2m symplectic matrix S as(

x̂′

p̂′

)
= S

(
x̂
p̂

)
, S =

(
A B
C D

)
,

where A, B, C and D are real m×m matrices. The corresponding transformation of the adjacency
matrix Z is shown in [7] to be

Z′ = (C + DZ) (A + BZ)
−1

, (3.9)

with the resulting graph described by Z′.
The scheme of 2D cluster state generation in the main text Fig. 3.1 is summarized in Fig. 3.6.

First a 1D H-graph state is generated as in [19], by applying a π/2 phase-space rotation in the
spatial mode B, beam-splitter transformation, delay of one spatial mode and another beam-splitter
transformation. The phase-space rotation and beam-splitter is described by symplectic operations,
while the delay is included by keeping track of the temporal mode index of simultaneously existing
temporal modes in the two spatial modes A and B. In the following sections, each step is described
in detail.
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Figure 3.6: Sketch of setup for 2D cluster state generation. Following [19], first a 1D cluster state
(H-graph state) is generated with temporal modes separated by the time τ using beam-splitters
BS1 and BS2 together with the optical delay τ . This 1D cluster state is then coiled up in a cylinder
with the Nτ delay, such that temporal modes at times kτ in the spatial mode A overlap in time
with the temporal modes of initial times (k − N)τ in the spatial B, where k is an integer. From
the side of the cylinder, we can see it as parallel 1D cluster states, which are then connected by
the last beam-splitter BS3 to form a 2D cylindrical cluster state. The arrows on the beam-splitters
points from the first to the second mode of the beam-splitter transformation SABBS in Eq. (3.10).

3.4.2.1 EPR-state generation

As the first step in Fig. 3.6, consider two modes A and B squeezed in the phase quadratures. To
generate an EPR-state, mode B is rotated by π/2 in phase-space, and we apply the beam-splitter
transformation BS1 between A and B. The symplectic matrix is

S = SABBS SBπ/2 , SBπ/2 =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 , SABBS =
1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 . (3.10)

Identifying A, B, C and D in (3.9) from (3.10) and inserting (3.8) we get

ZEPR =

(
i cosh(2r) −i sinh(2r)
−i sinh(2r) i cosh(2r)

)
, (3.11)

which is an H-graph with the exact form of (3.7) where

G =

(
0 1
1 0

)
.

Note that the same EPR-state can then be generated by the Hamiltonian in (3.6), corresponding
to non-degenerate parametric down conversion as expected. G is self-inverse and bipartite, and if
we were to rotate mode B (applying SBπ/2) we would get

Z′EPR =

(
i sech(2r) tanh(2r)
tanh(2r) i sech(2r)

)
→
(

0 1
1 0

)
≡ A for r →∞ ,

and so the H-graph for the EPR-state has a corresponding approximate cluster state. From
Eq. (3.4), the nullifiers of this cluster state are p̂A− x̂B and p̂B− x̂A, which transform into p̂A+ p̂B
and x̂B − x̂A after rotating mode B by π/2. These relations are expected for an EPR-state.

3.4.2.2 1D cluster states

To generate 1D cluster states as in [19], we continue with pairs of EPR-states as described by the
adjacency matrix in Eq. (3.11). Instead of the matrix notation, we will use the more convenient
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graph notation:

-i sinh(2r)
i cosh(2r)

Time

A

B
,

with the beam-splitter transformation marked by red arrows corresponding to BS2 in Fig. 3.6.
Here, the bright and dark grey nodes symbolize temporal modes of the two different spatial modes
of A and B respectively, and has no other meaning than distinguishing spatial modes. Note also
that ZEPRs is the graph just after the delay, τ , in Fig. 3.6. After the beam-splitter transformation
connecting the pairs of EPR-states, we attain the 1D H-graph state

-i sinh(2r)/2
i sinh(2r)/2
i cosh(2r)

,

which is self-inverse and bipartite, and so it can be transformed into an approximative cluster state
by applying the Fourier gate on all modes in one of the bipartitions: Rotating every second pairs
of spatial modes marked with red in Z1D leads to

-tanh(2r)/2
tanh(2r)/2
i sech(2r)

,

with only real edges and vanishing self-loops when r →∞ as tanh(2r)/2→ 1/2 and i sech(2r)→ 0.
By determining the nullifiers in the limit r → ∞, and rotating every second pair of modes back
again (as for the EPR-state in section 3.4.2.1) we can determine the nullifiers of Z1D, which each will
include 5 modes according to Eq. (3.4) (all modes connected to a single mode). These nullifiers can
be simplified, as all linear combinations of nullifiers are also nullifiers, and the nullifiers including
the least modes are

x̂Ak + x̂Bk − x̂Ak+1 + x̂Bk+1 , p̂Ak + p̂Bk + p̂Ak+1 − p̂Bk+1 ,

where the index k and k+1 denote different temporal mode numbers. Since the nullifiers are linear
combination of x̂ or p̂, they are easily measured in order to verify the entanglement of the cluster
state.

3.4.2.3 2D cluster states

After the Nτ delay in Fig. 3.6, the 1D cluster, Z1D, is coiled up into a cylinder as illustrated in
Fig. 3.7. To begin with, we consider only a section of the cylinder:

-i sinh(2r)/2
i sinh(2r)/2

Nτ

τ

Time

,
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Figure 3.7: Complex adjacency matrix, Z1Ds, of the coiled up 1D H-graph state just after the Nτ
delay in Fig. 3.6 with N = 12 as in the experimental implementation. For simplicity, self-loops of
i cosh(2r) are omitted, but they are still present in the diagonal of Z1Ds.

Time
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i sinh(2r)/2

Figure 3.8: 2D H-graph, Z2D, generated in Fig. 3.6 with N = 12. Self-loops of i cosh(2r) are
omitted for simplicity, but they are present in the diagonal of Z2D.
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where each parallel 1D cluster state is separated by Nτ in time corresponding to one circumference
of the cylinder. Note that the self-loops of i cosh(2r) have been omitted, and will be omitted in the
following, but they are still present in the diagonal of Z1Ds. Here, two closer spaced spatial modes
A and B overlap in time, and the red arrows represent the last beam-splitter transformation BS3

in Fig. 3.6, leading to the 2D H-graph state

-i sinh(2r)/4
i sinh(2r)/4
i sinh(2r)/2

.

Z2D is self-inverse, and if we consider Z2D as a infinite plane instead of a cylinder it is also bipartite,
and by π/2 phase-space rotations on all modes in one bipartion, namely every second horizontal
row shown in Z2D above (corresponding to every second pair of modes arriving simultaneously at
the homodyne detectors in Fig. 3.6), we get the approximate cluster state

-tanh(2r)/4
tanh(2r)/4
-tanh(2r)/2

,

where again we have omitted self-loops of i sech(2r)→ 0 for r →∞.

Finally, considering the Z2D as a cylinder, the resulting H-graph state is shown in Fig. 3.8 with
N temporal modes in the cylinder circumference. Only in the case of even N , Z2D is a bipartite
graph, and can be transformed as described above into the approximate cluster state Z′2D by π/2
phase-space rotation on half of its modes. As previously mentioned, such π/2 phase-space rotation
of modes in the generated state can be absorbed into the measurement basis in the homodyne
detection, and therefore the generated self-inverse bipartite H-graph state is considered equivalent
to its corresponding cluster state. In the experimental implementation we have chosen N = 12 as
in Fig. 3.8.

3.4.3 Nullifiers

The nullifiers of the generated 2D cluster state can be determined from its graph Z′2D in the same
way as for the 1D cluster state in section 3.4.2.2. However, to give a clear picture of the quadrature
transformation, here we will calculate the quadrature relations throughout the setup, from which
we can finally derive the resulting nullifiers.

Consider the circuit in Fig. 3.9 corresponding to the experimental setup in Fig. 3.6, but with
temporal modes and the effect of optical delays clearly illustrated. Here, different stages of the
setup are numbered from 0 to 7, where at stage 0 all modes are initially in a vacuum state, while
at stage 1 each mode are squeezed in the amplitude quadratures:

x̂
A(1)
k = e−rA x̂

A(0)
k , p̂

A(1)
k = erA p̂

A(0)
k , x̂

B(1)
k = e−rB x̂

B(0)
k , p̂

B(1)
k = erB p̂

B(0)
k ,

where rA and rB are the squeezing coefficients in spatial modes A and B and the stage is indicated
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Figure 3.9: Corresponding circuit diagram of the experimental setup in Fig. 3.6 for 2D cluster
state generation.

in the superscript. At stage 2, the spatial mode B is rotated by π/2 in phase space such that

x̂
A(2)
k = x̂

A(1)
k = e−rA x̂

A(0)
k , p̂

A(2)
k = p̂

A(1)
k = erA p̂

A(0)
k ,

x̂
B(2)
k = −p̂B(1)

k = −erB p̂B(0)
k , p̂

B(2)
k = x̂

B(1)
k = e−rB x̂

B(0)
k .

From stage 2 to 3, a beam-splitter interaction is applied onto the spatial modes A to B,

x̂
A(3)
k =

1√
2

(
x̂
A(2)
k − x̂B(2)

k

)
=

1√
2

(
e−rA x̂

A(0)
k + erB p̂

B(0)
k

)
,

p̂
A(3)
k =

1√
2

(
p̂
A(2)
k − p̂B(2)

k

)
=

1√
2

(
erA p̂

A(0)
k − e−rB x̂B(0)

k

)
,

x̂
B(3)
k =

1√
2

(
x̂
A(2)
k + x̂

B(2)
k

)
=

1√
2

(
e−rA x̂

A(0)
k − erB p̂B(0)

k

)
,

p̂
A(3)
k =

1√
2

(
p̂
A(2)
k + p̂

B(2)
k

)
=

1√
2

(
erA p̂

A(0)
k + e−rB x̂

B(0)
k

)
.

From stage 3 to 4, the spatial mode B is delayed by one temporal mode index,

x̂
A(4)
k = x̂

A(3)
k =

1√
2

(
e−rA x̂

A(0)
k + erB p̂

B(0)
k

)
,

p̂
A(4)
k = p̂

A(3)
k =

1√
2

(
erA p̂

A(0)
k − e−rB x̂B(0)

k

)
,

x̂
B(4)
k = x̂

B(3)
k−1 =

1√
2

(
e−rA x̂

A(0)
k−1 − e

rB p̂
B(0)
k−1

)
,

p̂
B(4)
k = p̂

B(3)
k−1 =

1√
2

(
erA p̂

A(0)
k−1 + e−rB x̂

B(0)
k−1

)
.
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From stage 4 to 5, a beam-splitter interaction is applied on the spatial modes A to B,

x̂
A(5)
k =

1√
2

(
x̂
A(4)
k − x̂B(4)

k

)
=

1

2

(
e−rA

[
x̂
A(0)
k − x̂A(0)

k−1

]
+ erB

[
p̂
B(0)
k + p̂

B(0)
k−1

])
,

p̂
A(5)
k =

1√
2

(
p̂
A(4)
k − p̂B(4)

k

)
=

1

2

(
e−rB

[
−x̂B(0)

k − x̂B(0)
k−1

]
+ erA

[
p̂
A(0)
k − p̂A(0)

k−1

])
,

x̂
B(5)
k =

1√
2

(
x̂
A(4)
k + x̂

B(4)
k

)
=

1

2

(
e−rA

[
x̂
A(0)
k + x̂

A(0)
k−1

]
+ erB

[
p̂
B(0)
k − p̂B(0)

k−1

])
,

p̂
B(5)
k =

1√
2

(
p̂
A(4)
k + p̂

B(4)
k

)
=

1

2

(
e−rB

[
−x̂B(0)

k + x̂
B(0)
k−1

]
+ erA

[
p̂
A(0)
k + p̂

A(0)
k−1

])
.

From stage 5 to 6, the spatial mode B is delayed by N temporal modes indices,

x̂
A(6)
k = x̂

A(5)
k =

1

2

(
e−rA

[
x̂
A(0)
k − x̂A(0)

k−1

]
+ erB

[
p̂
B(0)
k + p̂

B(0)
k−1

])
,

p̂
A(6)
k = p̂

A(5)
k =

1

2

(
e−rB

[
−x̂B(0)

k − x̂B(0)
k−1

]
+ erA

[
p̂
A(0)
k − p̂A(0)

k−1

])
,

x̂
B(6)
k = x̂

B(5)
k−N =

1

2

(
e−rA

[
x̂
A(0)
k−N + x̂

A(0)
k−N−1

]
+ erB

[
p̂
B(0)
k−N − p̂

B(0)
k−N−1

])
,

p̂
B(6)
k = p̂

B(5)
k−N =

1

2

(
e−rB

[
−x̂B(0)

k−N + x̂
B(0)
k−N−1

]
+ erA

[
p̂
A(0)
k−N + p̂

A(0)
k−N−1

])
.

Finally, from stage 6 to 7, a beam-splitter interaction is executed from spatial mode A to B,

x̂Ak =
1√
2

(
x̂
A(6)
k − x̂B(6)

k

)
=

1

2
√

2

(
e−rA

[
x̂
A(0)
k − x̂A(0)

k−1 − x̂
A(0)
k−N − x̂

A(0)
k−N−1

]
+ erB

[
p̂
B(0)
k + p̂

B(0)
k−1 − p̂

B(0)
k−N + p̂

B(0)
k−N−1

])
,

p̂Ak =
1√
2

(
p̂
A(6)
k − p̂B(6)

k

)
=

1

2
√

2

(
e−rB

[
−x̂B(0)

k − x̂B(0)
k−1 + x̂

B(0)
k−N − x̂

B(0)
k−N−1

]
+ erA

[
p̂
A(0)
k − p̂A(0)

k−1 − p̂
A(0)
k−N − p̂

A(0)
k−N−1

])
,

x̂Bk =
1√
2

(
x̂
A(6)
k + x̂

B(6)
k

)
=

1

2
√

2

(
e−rA

[
x̂
A(0)
k − x̂A(0)

k−1 + x̂
A(0)
k−N + x̂

A(0)
k−N−1

]
+ erB

[
p̂
B(0)
k + p̂

B(0)
k−1 + p̂

B(0)
k−N − p̂

B(0)
k−N−1

])
,

p̂Bk =
1√
2

(
p̂
A(6)
k + p̂

B(6)
k

)
=

1

2
√

2

(
e−rB

[
−x̂B(0)

k − x̂B(0)
k−1 − x̂

B(0)
k−N + x̂

B(0)
k−N−1

]
+ erA

[
p̂
A(0)
k − p̂A(0)

k−1 + p̂
A(0)
k−N + p̂

A(0)
k−N−1

])
,

(3.12)
where the superscript (7) has been omitted on this final stage. Solving for the initially squeezed

amplitude quadratures e−rA x̂
A(0)
k and e−rB x̂

B(0)
k , a set of nullifiers are found to be

n̂xk = x̂Ak + x̂Bk − x̂Ak+1 − x̂Bk+1 − x̂Ak+N + x̂Bk+N − x̂Ak+N+1 + x̂Bk+N+1 = 2
√

2e−rA x̂
A(0)
k , (3.13)

n̂pk = p̂Ak + p̂Bk + p̂Ak+1 + p̂Bk+1 − p̂Ak+N + p̂Bk+N + p̂Ak+N+1 − p̂Bk+N+1 = −2
√

2e−rB x̂
B(0)
k , (3.14)

with the variance

〈∆n̂x2
k 〉 = 4e−2rA , 〈∆n̂p2k 〉 = 4e−2rB (3.15)

going towards zero when r →∞ in the spatial modes A and B. With ~ = 1, 〈∆x̂A(0)
k 〉 = 〈∆x̂B(0)

k 〉 =
1/2.
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3.4.4 Cluster state computation

In the main text Fig. 3.2, the generated double bilayer square lattice cluster state (2xBSL), Z′2D,
is projected into a regular square lattice using mode deletion by measuring in the x̂-basis. This
serves as a proof of the generated cluster state being a universal cluster state: As the square lattice
extracted from the 2xBSL is a universal resource [5], the 2xBSL is itself a universal resource, also
without projective measurements into a square lattice. In fact, one would in general optimize the
projective measurements required for the specific quantum circuit to be implemented. In this sec-
tion we will give an example of such optimized setting, and discuss the experimental requirements
for universal quantum computation.

Modes are wasted when projecting the cluster state into a square lattice, but more important
is the resulting 1/4 edge weights of the square lattice (in the simplified picture of infinite squeezing
levels). For each computation step, edge weights less than unity leads to squeezing of the state
in computation as a known byproduct of the computation. In the ideal case of the cluster state
prepared from momentum eigenstates, this is not a problem as the amount of byproduct squeezing
is known, and can be compensated for in the following computation steps. Yet, the resource states
for physical cluster state generation are finitely squeezed approximated momentum eigenstates
leading to noise in the measurements of each computation step and thereby errors. These errors
can be corrected by error correction (which we will come back to), thereby enabling fault-tolerant
computation, as long as the squeezing of the initial resource states surpasses a given threshold.
However, with the squeezing of the state in computation as byproduct in each computation step
due to edge weights less than unity, less noise is required in the measurements of the computation,
thereby increasing the squeezing threshold of the initial resource states for fault-tolerance. As a
result, when projecting the 2xBSL into a regular square lattice with 1/4 edge weights, not only
modes are wasted, but squeezing is wasted as well.

To avoid squeezing waste when deleting modes by x̂-measurements, entanglement from the
modes can be rearranged in the cluster state by phase delay before measurements, or in other
words, by measuring in different bases, q̂(θ) = x̂ cos θ + p̂ sin θ. That way, the 2xBSL can be
projected into a simpler lattice without wasting squeezing. One example of this is shown in [11]
for the bilayer square lattice cluster state (BSL), and a similar approach can be used here for the
2xBSL: Measuring the two spatial modes A and B for every second temporal mode k+ 2n in basis
q̂((−1)nπ/4) leads to dual-rail wires of edge weights ±1/2 as illustrated in Fig. 3.10. Such dual-rail
wires are well known efficient resources for single mode computation, where each wire corresponds
to a one-mode computer [19] with input states encoded in the macronodes consisting of spatial
modes A and B within the same temporal mode as indicated in Fig. 3.10. Another benefit of
projecting into these dual-rail wires is that the wires are along the length of the cylindrical structure
of 2xBSL, and so it is unnecessary to “cut up” the cylinder while the one-mode computation length
can be as long as the cylinder itself. For the generated 2xBSL with N = 12 temporal modes in the
circumference, 6 parallel dual-rail wires can be constructed.

With two spatial modes A and B in each temporal macronode of the dual-rail wire, the macron-
odes include a symmetric (+) and an anti-symmetric mode (−) via

â±k =
1√
2

(
âAk ± âBk

)
, (3.16)

where âi is the annihilation operator of mode i, and â±k corresponds to the two spatial modes before
the beam splitter BS3. Thus, as in [11], to encode information in a macronode, a switch can be
placed before BS3 as illustrated in Fig. 3.11, switching the input state |ψ〉in into the anti-symmetric
macronode with the given direction of BS3 used in Fig. 3.6 (alternatively, we can switch into the
symmetric macronode by placing the switch in spatial mode A before BS3). With this encoding,
the multiple edges of ±1/2 weight between each macronode of the dual-rail wire correspond to an
edge of weight 1 between the encoded logic mode of each macronode, allowing efficient computation
without squeezing waste.

Concurrently with the projection of the state into dual-rail wires, one-mode computation is
performed in each wire by measuring the macronodes in an adaptive basis depending on the
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Figure 3.10: Depending on the measurement basis of control modes, the double bilayer square
lattice can efficiently be projected into dual-rail wires with possible entanglement in between
neighbouring wires depending on the basis in which the modes in the control line is measured.
It is convenient to define macronodes of the two spatial modes A and B in the same temporal
mode. In the situation depicted here, the spatial modes A and B of the first 5 macronodes in the
control lines have been measured in bases (x̂± p̂) /

√
2 leading to separated dual-rail wires.
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BS3

θ
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χ
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Figure 3.11: With a switch before beam splitter BS3, input states can be encoded into the symmet-
ric or anti-symmetric macronode given by Eq. (3.16), while Gaussian computation is performed
with homodyne detectors HDA and HDB . With a switch after BS3 we can change to non-Gaussian
measurements when required, necessary for universal quantum computation. One proposal for
non-Gaussian detection is illustrated in the grey shaded area with |χ〉 being the cubic-phase state
[12].

gate to be implemented and previous measurement outcomes. However, with the cluster state
being a Gaussian state (fully described by the first and second moments of the quadratures), only
Gaussian computation is possible using homodyne detectors which project Gaussian states into
Gaussian states. For universal computation, some non-Gaussian element is needed. As proposed
in [12], a universal gate set can be realized using the measurement scheme illustrated in the shaded
area of Fig. 3.11. A switch in spatial mode B will enable the choice between this measurement
and the homodyne detection as needed for the computation. With the ancillary input |χ〉 being

the highly non-Gaussian cubic-phase state, |χ〉 =
∫
eiχs

3 |s〉x ds, this measurement implements the
cubic-phase gate which, together with Gaussian gates, completes the universal one-mode gate set.
Like the infinitely squeezed momentum eigenstate, the cubic-phase state is unphysical due to its
infinite energy, while approximate cubic-phase states are demanding to prepare, and have not yet
been generated in optical settings. Other possibilities for non-Gaussian operations exist, such as
non-Gaussian projection by photon counting [14], and non-Gaussian operations for a universal gate
set is today an active research topic.

For a universal multi-mode gate set, we need interaction between the dual-rail wires in Fig. 3.10.
By measuring macronodes between two wires in a different basis than q̂((−1)nπ/4), entanglement
between the wires can be prepared depending on the measurement basis used. This is an appealing
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setting, where by measuring the so-called control macronodes, we can control the connectivity
between neighbouring wires. However, the basis required in a macronode measurement for a given
two-mode interaction is not trivial, and the detailed implementation of the ĈZ-gate, which together
with the universal single mode gate set constitutes a universal multi-mode gate set, is left for future
work.

Finally, for fault-tolerant computation error correction is necessary: With finite squeezing of
the approximate momentum eigenstates from which the cluster state is generated and without
error correction, only a limited number of computational steps are possible before the encoded
state is lost in noise from the finite squeezing. While error correction in continuous variables is
challenging, a possible way around this is to encode the information in a discrete subspace of
the continuous variables concatenated with a conventional discrete error correction code. One
popular example is the Gottesman-Kitaev-Preskill (GKP) encoding and correction, where a qubit
is encoded as periodic peaks in the quadrature wave functions [14]. The squeezing level required for
fault-tolerant quantum computation with the GKP-encoding depends on the error rate threshold
of the concatenated error correction code to be used. For a rather conservative error correction
scheme with 10−6 error rate threshold, a squeezing level of 20.5 dB is required [3]. With more
modern error correction codes, this threshold can be brought down to 15–17 dB of squeezing [38],
while the required squeezing using topological error correction is shown to be even lower [43].

An advantage of GKP-encoding of qubits is the recent result by B. Baragiola et al. [39] showing
that the magic state can be distilled in the encoded subspace of the qubit allowing universal
computation in the qubit subspace, rendering the need for non-Gaussian measurements discussed
above unnecessary. However, with GKP-encoded states being highly non-Gaussian, they are as
the cubic-phase state difficult to prepare, and their generation is as well an active research topic
with recent demonstration in the microwave regime [100] and in trapped-ion mechanical oscillators
[101].

3.5 Suppl. Inf.: Inseparability criterion

In this section, we derive an upper bound on nullifier variance for complete inseparability of modes
in the generated cluster state based on the van Loock-Furusawa criterion [103]. In the van Loock-
Furusawa criterion, a number of modes are divided into two or more sets from which an inequality
with combined quadrature variance is derived. A violation of this inequality means that the sets
are inseparable.

For simplicity, we will consider only two sets of modes, S1 and S2, and define

X̂ =
∑

j∈S1∪S2

hj x̂j , P̂ =
∑

j∈S1∪S2

gj p̂j , (3.17)

for arbitrary coefficients hj and gj . The van Loock-Furusawa criterion for separability then reads

〈∆X̂2〉+ 〈∆P̂ 2〉 ≥
∣∣∣ ∑
j∈S1

hjgj

∣∣∣+
∣∣∣ ∑
j∈S2

hjgj

∣∣∣ , (3.18)

with ~ = 1. The goal is to find suitable hj and gj such that Eq. (3.18) is violated, thus proving
inseparability of the two sets. Doing so for all possible bipartitions of modes then proves complete
inseparability.

Since the generated cluster state is periodic, it is only necessary to consider the modes of a
single unit cell of the cluster state lattice, and show complete inseparability of the modes within
this unit cell. A good example of this approach is shown in the supplementary material of [21]
for a 1D cluster states. The 8 modes of the nullifiers n̂xk and n̂pk in Eq. (3.13) and (3.14) make
up a unit cell of the generated 2D cluster state, and is illustrated in Fig. 3.12 with the modes
numbered from 1 to 8. Hence, complete inseparability of the 2D cluster state can be proven by
demonstrating a violation of the separability inequality in Eq. (3.18) for each of the 28−1−1 = 127
possible bipartitions of these 8 modes. Below, we give three examples with different bipartitions.
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Figure 3.12: Graph of the generated 2D cluster state with the nullifier n̂k (n̂xk or n̂pk) and its
neighbouring nullifiers indicated. In the van Loock-Furusawa inseparability criterion we consider
a unit cell of 8 modes in common with n̂k, numbered as (A, k) → 1, (B, k) → 2, (A, k + 1) → 3,
(B, k + 1)→ 4, (A, k +N)→ 5, (B, k +N)→ 6, (A, k +N + 1)→ 7 and (B, k +N + 1)→ 8.

The mode numbering in Fig. 3.12 is used to shorten the notation:

Example 1: Consider the two sets of modes S1 = {1, 2, 5, 6} and S2 = {3, 4, 7, 8}. Choosing

X̂ = n̂xk = x̂1 + x̂2 − x̂3 − x̂4 − x̂5 + x̂6 − x̂7 + x̂8

such that (h1, h2, h3, h4, h5, h6, h7, h8) = (1, 1,−1,−1,−1, 1,−1, 1), and

P̂ = n̂pk = p̂1 + p̂2 + p̂3 + p̂4 − p̂5 + p̂6 + p̂7 − p̂8

such that (g1, g2, g3, g4, g5, g6, g7, g8) = (1, 1, 1, 1,−1, 1, 1− 1), then Eq. (3.18) becomes

〈∆X̂2〉+ 〈∆P̂ 2〉 = 〈∆nxk2〉+ 〈∆npk
2〉 ≥

∣∣∣ ∑
j∈S1

hjgj

∣∣∣+
∣∣∣ ∑
j∈S2

hjgj

∣∣∣
= |1 · 1 + 1 · 1 + (−1) · (−1) + 1 · 1|

+ |(−1) · 1 + (−1) · 1 + (−1) · 1 + 1 · (−1)|
= 8 .

We may measure different variances of n̂xk and n̂pk, but if we measure both below 4, the above in-
equality will for sure be violated and the two mode sets S1 and S2 are inseparable. From Eq. (3.15)
this requires 4e−2ri < 4 for i = A,B, and thus measuring the variance of n̂xk and n̂pk with more
than 0 dB squeezing below shot noise.

Example 2: Consider now the two mode sets S1 = {1, 2, 3, 4} and S2 = {5, 6, 7, 8}. Choosing X̂
and P̂ as in example 1 leads to

〈∆X̂2〉+ 〈∆P̂ 2〉 = 〈∆n̂xk2〉+ 〈∆n̂pk
2〉 ≥|

∑
j∈S1

hjgj |+ |
∑
j∈S2

hjgj |

= |1 · 1 + 1 · 1 + (−1) · 1 + (−1) · 1|
+ |(−1) · (−1) + 1 · 1 + (−1) · 1 + 1 · (−1)|

= 0 ,

which is impossible to violate. If we instead choose

P̂ = n̂pk+1 = p̂3 + p̂4 − p̂7 + p̂8 + p̂Ak+2 + p̂Bk+2 + p̂Ak+N+2 + p̂Bk+N+2 ,
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such that (g1, g2, g3, g4, g5, g6, g7, g8) = (0, 0, 1, 1, 0, 0,−1, 1), Eq. (3.18) becomes

〈∆X̂2〉+ 〈∆P̂ 2〉 = 〈∆n̂xk2〉+ 〈∆n̂p2k+1〉 ≥|
∑
j∈S1

hjgj |+ |
∑
j∈S2

hjgj |

= |1 · 0 + 1 · 0 + (−1) · 1 + (−1) · 1|
+ |(−1) · 0 + 1 · 0 + (−1) · (−1) + 1 · 1|

= 4 ,

(3.19)

which is violated if the variance of the two nullifiers n̂xk and n̂pk are less than 2, requiring 3 dB

of squeezing. The additional modes included in P̂ , (A, k + 2), (B, k + 2), (A, k + N + 2) and
(B, k + N + 2), are not included in the above inequality since they are not common modes with
any in X̂ = n̂xk, and thus will not contribute to the right hand side of Eq. (3.18). However, when
including 4 extra modes, we should consider all new possible bipartitions: Given the two sets S1

and S2, we can add the additional 4 modes into these two sets in any arbitrary way without any
change to Eq. (3.18). As a result, by violating Eq. (3.18) we prove inseparability of all bipartitions
where each of the 4 extra modes are added to S1 or S2 in all possible ways.

Example 3: Consider the two mode sets S1 = {3, 5} and S2 = {1, 2, 4, 6, 7, 8}. For this bi-
partition, there exists no single nullifier for X̂ and P̂ of the form in Eq. (3.13) and (3.14) which
forms an inequality we can hope to violate experimentally. However, since linear combinations of
nullifiers are also nullifiers, more exotic choices for X̂ and P̂ exist which leads to an inequality we
can violate experimentally:

X̂ = −n̂xk + n̂xk+N = −x̂1 − x̂2 + x̂3 + x̂4 + 2x̂5 − 2x̂8 − x̂Ak+2N + x̂Bk+2N − x̂Ak+2N+1 + x̂Bk+2N+1

P̂ = n̂pk−1 + n̂pk+N + n̂pk+N+1 + n̂pk+N−1

= p̂1 + p̂2 + 3p̂5 + p̂6 + 2p̂7 + 2p̂8 + p̂Ak−1 + p̂Bk−1 + 2p̂Bk+N−1

+ p̂Ak+N+2 + p̂Bk+N+2 − p̂Ak+2N−1 + p̂Bk+2N−1 + p̂Ak+2N+2 − p̂Bk+2N+2

leading to
(h1, h2, h3, h4, h5, h6, h7, h8) = (−1,−1, 1, 1, 2, 0, 0,−2) ,

(g1, g2, g3, g4, g5, g6, g7, g8) = (1, 1, 0, 0, 3, 1, 2, 2) ,

and so (3.18) becomes

〈∆X̂2〉+ 〈∆P̂ 2〉 = 〈∆n̂x2
k 〉+ 〈∆n̂x2

k+N 〉+ 〈∆n̂p2k−1〉+ 〈∆n̂p2k+N 〉+ 〈∆n̂p2k+N+1〉+ 〈∆n̂p2k+N−1〉

≥|
∑
j∈S1

hjgj |+ |
∑
j∈S2

hjgj |

=|1 · 0 + 2 · 3|+ |(−1) · 1 + (−1) · 1 + 1 · 0 + 0 · 1 + 0 · 2 + (−2) · 2| = 12 ,

which is violated if the variance of each of the 6 nullifiers in the inequality is less than 2, corre-
sponding to 3 dB of squeezing. Here, the cross terms between different nullifiers in 〈∆X̂2〉 and
〈∆P̂ 2〉 are zero, as the nullifiers in Eq. (3.13) and (3.14) correspond to different temporal modes
at the squeezing sources before BS1, and thus there are no correlations between different nullifiers.
Notice how the nullifiers in X̂ and P̂ are chosen such that the 4 and 9 extra modes included in X̂
and P̂ , respectively, are not the same. Thus, by the same argument as in example 2, violating the
above inequality proves inseparability of all bipartitions where each of the 4 + 9 extra modes are
added to S1 or S2 in all possible ways.

Using the same approach as in the above three examples, nullifiers for X̂ and P̂ are found for all
127 possible bipartitions of the 8 modes in the studied unit cell, resulting in a sufficient condition for
the squeezing degree among all nullifiers of 3 dB below shot noise. As a result, with the generated
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Figure 3.13: Standard deviation of the phase fluctuations in different parts of the setup measured
by sending a coherent probe through the particular part of the setup while feedback is kept constant
(hold-time). The phase fluctuations of the short and long delay lengths are measured by coupling
a probe into the setup before BS1 and BS2 while measuring the interference after BS2 and BS3

respectively. The relative phase fluctuation of the two probes from OPOA and OPOB is measured
by the interference after BS1. The local oscillator (LO) phase fluctuations are measured by coupling
a probe into the setup before BS3 and measuring the probe quadrature.

2D cluster state being periodic with this unit cell, measuring every temporal nullifier (n̂xk and n̂pk
for every k) with a variance less than 3 dB below shot noise leads to complete inseparability of the
cluster state. The resulting X̂ and P̂ for every bipartition are listed in table 3.1, page 54, and as
pointed out in example 2 and 3, each choice of X̂ and P̂ are made such that they do not share any
modes outside the studied unit cell.

3.6 Suppl. Inf.: Experimental setup

In this section, more details and characterization is given on the experimental implementation
described in the methods section 3.3.

3.6.1 Efficiency and phase stability

In the following, all loss contributions are summarized, and a combined efficiency of the setup is
estimated: The OPOA and OPOB escape efficiencies are measured to be 0.98 and 0.95, respectively,
while 1% is tapped off in both squeezing sources for gain locks. The two spatial modes, A and
B, are coupled from free-space into fiber with a 0.97 coupling efficiency, where 3 × 1% is tapped
off for phase locking the three interference points at BS1, BS2 and BS3, each with an estimated
visibility of 0.99. To minimize the propagation losses, all fibers are spliced together, while short
and long delay lines of SMF-28e+ fiber with 0.2 dB/km attenuation each leads to 0.2% and 2.7%
propagation loss, respectively. Finally, the fiber based homodyne detectors each have a detection
efficiency of 0.91. For more information on the OPO, fiber coupling and homodyne detection
efficiencies, see previous experimental work in chapter 2 [30]. In total, the estimated efficiencies
add up to 0.81 and 0.78 in spatial mode A and B, respectively.

Besides loss, the generated 2D cluster state is affected by phase fluctuations. In Fig. 3.13, the
standard deviation of the phase is shown. The phases were measured while probing different parts
of the setup with a coherent beam while turning off the feedback for cavity or phase locks. As
expected, we see around 6 times more phase fluctuation of the long delay line compared to the
short delay line. Another, and maybe more surprising, contribution to the phase fluctuation is
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Figure 3.14: Power spectrum of the temporal encoded cluster state measured at the homodyne
detectors in the spatial mode A and B. The solid lines shows the result of fitting the power spectra
in Eq. (3.21) with the squeezing spectra in Eq. (3.22) including phase fluctuations by Eq. (3.23)
and measured electronic noise. The resulting fitting parameters are listed in Eq. (3.24).

from the probe phase which is seen to fluctuate fast as soon as the feedback is kept constant (hold-
time). This is explained by the strong phase dependence in the OPO cavities around resonance.
Furthermore, the probe phase standard deviation is seen to fluctuate, indicating systematic phase
fluctuations which we believe are due to mechanical resonance and limited feedback bandwidth
leading to a large impulse response when the feedback is suddenly kept constant when changing
from sample- to hold-time. However, from this phase measurement, it is not clear whether the
large phase fluctuation is from the probes of both OPO cavities, or if mainly one OPO cavity
is more unstable. Finally, the standard deviation of the local oscillator (LO) phases appears to
decrease during hold-time. This is simply caused by the fact that the probe quadrature fluctations
(in addition to the LO noise) are measured during the sample-time while during the hold-time,
only the LO noise is measured.

3.6.2 Spectrum

The generated 2D cluster state is temporally encoded in 2 spatial modes, A and B. As a result,
modes of the cluster state are measured by acquiring time traces from the two homodyne detectors
in A and B, on which a temporal mode function is applied for each mode as will be described in
section 3.6.3. However, by analyzing the acquired time traces in frequency domain, we can obtain
useful information about the setup and the two squeezing sources. In Fig. 3.14 the power spectra
of the acquired time traces are shown, calculated by fast Fourier transform of 320µs long time
traces corresponding to 1300 consecutive temporal modes. To understand these power spectra, we
derive them theoretically in the following.

According to the Wiener-Khinchin theorem, the quadrature power spectrum is expressed by
the Fourier transform of the quadrature autocorrelation function,

Sqj (ω) =

∫ ∞
−∞
〈q̂j(t)q̂j(0)〉 eiωt dt , j = A,B , q = x, p , (3.20)

where ω is the angular frequency. The time dependent amplitude and phase quadratures, x̂(t)
and p̂(t), are derived in the exact same way as the temporal mode quadratures in Eq. (3.12), and
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the result is the same but with time dependency instead of temporal mode index, i.e. q̂j,k−m →
q̂j(t − mτ) with m = 0, 1, N,N + 1, as neighbouring temporal modes are spaced in time by τ .
Considering first the x̂-quadrature in mode A, the autocorrelation function, using the quadratures
expressed in Eq. (3.12), becomes

〈x̂A(t)x̂A(0)〉 =
1

8

(
4 〈x̂(1)

A (t)x̂
(1)
A (0)〉 − 〈x̂(1)

A (t+Nτ + τ)x̂
(1)
A (0)〉+ 〈x̂(1)

A (t+Nτ − τ)x̂
(1)
A (0)〉

+ 〈x̂(1)
A (t−Nτ + τ)x̂

(1)
A (0)〉 − 〈x̂(1)

A (t−Nτ − τ)x̂
(1)
A (0)〉

)
+

1

8

(
4 〈p̂(1)

B (t)p̂
(1)
B (0)〉+ 〈p̂(1)

B (t+Nτ + τ)p̂
(1)
B (0)〉 − 〈p̂(1)

B (t+Nτ − τ)p̂
(1)
B (0)〉

− 〈p̂(1)
B (t−Nτ + τ)p̂

(1)
B (0)〉+ 〈p̂(1)

B (t−Nτ − τ)p̂
(1)
B (0)〉

)
,

where the property of the autocorrelation 〈q̂j(t)q̂j(y)〉 = 〈q̂j(t− y)q̂j(0)〉 is used. Substituting
〈x̂A(t)x̂A(0)〉 into Eq. (3.20), and using that∫ ∞

−∞
〈q̂j(t+ y)q̂j(0)〉 eiωt dt =

∫ ∞
−∞
〈q̂j(t)q̂j(0)〉 eiω(t−y) dt = e−iωySqj (ω) ,

the power spectrum measured in mode A in the x̂-quadrature becomes

SxA(ω) =
1

8

(
4− e−iω(Nτ+τ) + e−iω(Nτ−τ) + e−iω(−Nτ+τ) − e−iω(−Nτ−τ)

)
S
x(1)
A (ω)

+
1

8

(
4 + e−iω(Nτ+τ) − e−iω(Nτ−τ) − e−iω(−Nτ+τ) + e−iω(−Nτ−τ)

)
S
p(1)
B (ω)

=
1

4

(
2− cos(ωNτ + ωτ) + cos(ωNτ − ωτ)

)
S
x(1)
A (ω)

+
1

4

(
2 + cos(ωNτ + ωτ)− cos(ωNτ − ωτ)

)
S
p(1)
B (ω) ,

where S
x(1)
A and S

p(1)
B are power spectra at stage 1 in Fig. 3.9, and corresponds to the squeezing

and the anti-squeezing spectrum of the amplitude squeezing sources in mode A and B respectively.
Following the same approach for the p̂-quadrature and for the quadratures in mode B, and using
that 2∓ cos(ωNτ + ωτ)± cos(ωNτ − ωτ) = 2± 2 sin(ωNτ) sin(ωτ), the power spectra displayed
in Fig. 3.14 are expressed as

SxA(ω) =
1

2

(
1 + sin(ωNτ) sin(ωτ)

)
S
x(1)
A (ω) +

1

2

(
1− sin(ωNτ) sin(ωτ)

)
S
p(1)
B (ω) ,

SpA(ω) =
1

2

(
1− sin(ωNτ) sin(ωτ)

)
S
x(1)
B (ω) +

1

2

(
1 + sin(ωNτ) sin(ωτ)

)
S
p(1)
A (ω) ,

SxB(ω) =
1

2

(
1− sin(ωNτ) sin(ωτ)

)
S
x(1)
A (ω) +

1

2

(
1 + sin(ωNτ) sin(ωτ)

)
S
p(1)
B (ω) ,

SpB(ω) =
1

2

(
1 + sin(ωNτ) sin(ωτ)

)
S
x(1)
B (ω) +

1

2

(
1− sin(ωNτ) sin(ωτ)

)
S
p(1)
A (ω) .

(3.21)

Finally, the squeezing spectra S
q(1)
j from the OPO squeezing sources, squeezed in the amplitude

quadrature, are derived in [79] to be

S
x(1)
j (ω) =

1

2
− 2εjγjηj

(γj + εj)2 + ω2
, S

p(1)
j (ω) =

1

2
+

2εjγjηj
(γj − εj)2 + ω2

, j = A,B , (3.22)

where εj , γj and ηj is the pump rate, total OPO decay rate and squeezing source efficiency,
respectively, in mode j = A,B.

To include phase fluctuations in the spectra, we should ideally include phase fluctuation in the
quadrature transformation at every stage in Fig. 3.9. However, for simplicity, we include all phase
fluctuations either before or after the beam-splitter array from stage 2 to 7. Since the sensitive OPO



50 CHAPTER 3. DETERMINISTIC GENERATION OF A TWO-DIMENSIONAL...

cavities are one of the dominating sources of phase fluctuations, here we include phase fluctuations
in the squeezing source, i.e. at stage 1. Assuming the statistics of the phase fluctuations to follow
a normal distribution of phase, θ, with the width σ, P (θ, σ), the phase fluctuations are included
in the squeezing spectrum as

S
x(1)
j (ω, σ) =

∫
P (σj , θ)

(
S
x(1)
j (ω) cos2 θ + S

p(1)
j sin2 θ

)
dθ

≈Sx(1)
j (ω) cos2 σj + S

p(1)
j sin2 σj , j = A,B ,

(3.23)

where the approximation holds for small σ, and the same for S
p(1)
j (ω, σ) with cos and sin inter-

changed.
In Fig. 3.14, we present the fitted power spectra of Eq. (3.21) accounting for phase fluctuations

(as in Eq. (3.23)) and electronic noise by including a frequency dependent electronic efficiency
determined from a measured electronic power spectrum. The fitting parameters are εj , γj , ηj and
σj (j = A,B) and we use N = 12 and 247 ns. The result of the fitting routine is

εA = 2π × 5.38± 0.02 MHz εB = 2π × 5.57± 0.02 MHz

γA = 2π × 7.59± 0.02 MHz γB = 2π × 7.80± 0.02 MHz

ηA = 0.789± 0.004 ηB = 0.764± 0.004

σA = 5.17± 0.12◦ σB = 5.90± 0.10◦ ,

(3.24)

where uncertainties are estimated as the 95% confidence interval. The fit is seen to agree very
well with the measured data, and supports N = 12 with τ = 247 ns. The fitted ηA and ηB differ
by 0.025, which is expected due to 3% lower escape efficiency of the OPOB compared to OPOA.
The fitted OPO decay rates are as expected for the OPO design, while OPOB is pumped slightly
harder to compensate for the lower escape efficiency. Both OPOs are pumped to around half the
threshold (ε2/γ2 = 0.50 for OPOA and 0.51 for OPOB). The fitted phase fluctuations, σA and σB ,
are seen to be comparable with the measured phase fluctuations in Fig. 3.13. However, with the
model used for the phase fluctuations, σA and σB do not represent the phase fluctuation of the
squeezing sources only, but a combination of phase fluctuations throughout the setup, and thus
we cannot conclude the squeezing sources to have similar phase fluctuation from this fit. Finally,
ηA and ηB are not only the efficiency of the squeezing sources, but includes efficiency throughout
the setup, and can be compared with the estimated efficiencies in section 3.6.1 of 0.81 and 0.78
in spatial mode A and B respectively. The fitted efficiency is slightly lower than the estimated
efficiency, which may be explained by experimental imperfections (e.g. lossy fiber splicing and
polarization drift) which are not included in the estimation.

3.6.3 Temporal mode function

A temporal mode k is defined by its temporal mode function fk(t). In the experimental setup a
quadrature, q̂(t), is continuously measured by homodyne detection, and by integrating the acquired
quadrature time trace weighted by the temporal mode function, we obtain the measured quadrature
of the corresponding temporal mode,

q̂k =

∫
fk(t)q̂(t) dt .

Defined by the short delay length, the temporal mode function is restricted to a temporal
window of τ = 247 ns to avoid temporal overlap with neighbouring modes. However, within this
window, the shape of the mode function may be optimized to exploit the squeezing spectrum of
limited bandwidth and to avoid low frequencies where technical noise dominate. In this work,
inspired by [21], we use an uneven temporal mode function given by

fk(t) =

{
N (t− kτ)e−κ

2(t−kτ)2/2 , |t− kτ | < τ
2

0 , otherwise
(3.25)
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(a) (b)

Figure 3.15: (a) Temporal mode function of three neighbouring modes with the form in Eq. (3.25),
together with an acquired quadrature time trace (grey). The insert shows the corresponding
spectrum of a temporal mode function. (b) Correlations of neighbouring temporal modes with the
mode function in (a). Here, the grey area indicates overlap of less than 10−3. The insert shows
the normalized autocorrelation function with the shaded area indicating the time window of a
temporal mode.

where N is a normalization factor of unit s−1, and κ = 2π × 2.7 MHz is optimized to reduce the
nullifier variance. Three neighbouring temporal mode functions are shown in Fig. 3.15(a) together
with an acquired time trace. The mode function is a product of a Gaussian function and a linear
term t − kτ : The Gaussian function width defines the mode function bandwidth κ which should
be within the squeezing source bandwidth, γA, γB , while the linear term filters out noisy low
frequencies. The mode function spectrum is shown in the insert of Fig. 3.15(a).

Even though different temporal mode functions do not overlap in time, neighbouring temporal
modes may show some overlap due to electronic filtering in the homodyne detectors and electronic
noise which can be correlated across multiple temporal modes. To quantify the mode overlap, we
measure correlations between different temporal modes of shot noise and the overlap is defined as
this correlation squared,

[Overlap] = C2
kl =

(
〈q̂kq̂l〉
〈q̂2
k〉

)2

.

In Fig. 3.15(b), correlations between neighbouring modes from a set of 10 000 quadrature measure-
ments are shown, indicating mode overlap of less than 10−3. This low overlap is achieved with
the uneven mode function where any offset of the acquired data is cancelled, together with little
electronic filtering leading to zero autocorrelation outside the temporal mode function window as
shown in the insert of Fig. 3.15(b).

3.7 Suppl. Inf.: Results

Two sets of data are acquired: A small set comprising 1500 temporal modes acquired over 371µs,
and a large set of 15 000 modes with an acquisition time of 3.71 ms. Each set includes 10 000 time
traces measured both in the x̂- and p̂-basis for building up quadrature statistics to calculate the
variances. The sets are acquired with a sampling rate of 250 MHz in order to have a large resolution
and thus large flexibility in optimizing the delay times.

Using the temporal mode functions described in Eq. (3.25), the 10 000 quadrature measurements
for each temporal mode are extracted from the 10 000 time traces and normalized to shot noise.
Finally, the nullifiers n̂xk and n̂pk are calculated from the measured quadratures by Eq. (3.13-3.14)
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(a) (b)

Figure 3.16: Nullifier variance from (a) a short data set of 371 µs long time traces, and from (b) a
long data setup of 3.71 ms long time traces. In both figures, the −3 dB separability bound, derived
in section 3.5 from the van Loock-Furusawa criterion, is marked. With all nullifier variances below
this bound, the generated 2D cluster state is completely inseparable.

and the nullifier variance is determined. In Fig. 3.16(a) and (b), the resulting nullifier variances
are shown for the short and long data set, respectively.

From the short data set, the average variance of n̂xk and n̂pk is −4.7 dB and −4.3 dB below shot
noise, respectively, while the maximum nullifier squeezing measured (an average of 10 neighbouring
nullifiers) is −4.8 dB and −4.4 dB respectively. All measured nullifiers show a variance below the
−3 dB separability bound derived in section 3.5, and we conclude that the generated 2D cluster
state is completely inseparable. For completeness, we plot in Fig. 3.17, page 57, the combined
variances 〈∆X̂2〉 + 〈∆P̂ 2〉 from the van Loock-Furusawa criterion, Eq. (3.18), for the specific
choice of nullifier combinations X̂ and P̂ used in each of the 127 bipartitions. For all cases, the
variances are below the right-hand side of Eq. (3.18), as indicated by the gray areas, hence explicitly
demonstrating the inseparability.

In an attempt to reach a point where the generated cluster state does not violate the −3 dB
separability bound due to phase drift when the feedback of cavity and phase locks are kept constant
during hold-time, the large data set was acquired. As expected, the nullifier variance increase with
time, but even after 15 000 temporal modes (3.71 ms) the phase is stable enough to stay below the
separability bound, and we conclude that also the generated 2 × 15 000 = 30 000 mode (2 spatial
modes) 2D cluster state is completely inseparable, while we expect that even larger cluster states
may be generated before reaching the separability bound. In the large data set, the average nullifier
squeezing of n̂xk and n̂pk are −3.8 dB and −4.4 dB below shot noise, respectively, while up to (an
average of 10 neighbouring nullifiers) −5.0 dB and −4.5 dB of squeezing are measured, respectively.

The periodic variation observed in the nullifier variance in Fig. 3.16(b) is explained by the
systematic phase drift from the OPO cavities as discussed in section 3.6.1. We observe a rapid
increase of the variance associated with n̂xk which may be explained by phase fluctuations of one
of the squeezing sources: From Eq. (3.12) it can be seen that when measuring in the x̂-basis, we
measure squeezing from the squeezing source in the spatial mode A and anti-squeezing from the
the spatial mode B (whereas when measuring in the p̂-basis, squeezing and anti-squeezing from the
the spatial modes B and A are measured, respectively). When calculating the nullifiers, the anti-
squeezing cancels, and we are left with squeezing from one of the two squeezing sources. However,
when phases from the squeezing sources drifts, anti-squeezing is mixed into the otherwise squeezed
quadrature, and since n̂xk only includes squeezing from spatial mode A (and n̂pk from spatial mode
B), we suspect the large relative probe phase fluctuation seen in Fig. 3.13 to be mainly caused by
phase drift from the OPO cavity in mode A, leading to a rapid increase of 〈∆n̂x2

k 〉 but not 〈∆n̂p2k 〉.
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Hence, we expect OPOA to be the dominant source of phase fluctuations that contaminates the
measured nullifiers, and not the 606 m long fiber delay since we would expect this to affect both
n̂xk and n̂pk. Thus, the setup stability may be improved simply by keeping the feedback to cavity
locks active at all times. Unfortunately, this was not possible with the current version of the
experimental setup, as the cavity lock beams were chopped together with the probe beams in the
sample-hold locking scheme described in the methods section 3.3.
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Table 3.1: In the table below, modes of the studied unit cell in the van Loock-Furusawa criterion
discussed in the supplementary information section 3.5 are numbered as indicated in Fig. 3.12.
Every bipartition is systematically given an ID between 1 and 127: Consider the 8 bit long binary
form of this ID with the least significant bit to the left (e.g. ID = 3 = [1 1 0 0 0 0 0 0]binary). We
then let S1 include modes with mode number equal to the bit number of bits equal 1 in this binary
form of the ID (e.g. ID = 3⇒ S1 = {1, 2} and thus S2 = {3, 4, 5, 6, 7, 8}). The table includes Var.,
the combined variance 〈∆X̂2〉+ 〈∆P̂ 2〉; f , the right hand side of Eq. (3.18); and Sq., the required
variance squeezing of each nullifier below shot noise to violate Eq. (3.18) with the listed choice
of X̂ and P̂ . For clarity, the resulting combined variance 〈∆X̂2〉 + 〈∆P̂ 2〉 from acquired data is
plotted and compared with f for each bipartition in Fig. 3.17, page 57. Note that the squeezing
levels listed here are not necessarily the lowest squeezings required to show inseparability for the
given bipartition, and for each bipartition a better choice of X̂ and P̂ may exist which lowers the
necessary squeezing. (Table ends on page 56)

ID S1 X̂ P̂ Var. f Sq.
1 1 −n̂x

k + n̂x
k−1 −n̂p

k + n̂p
k−N 16e−2r 8 3 dB

2 2 −n̂x
k + n̂x

k−1 n̂p
k + n̂p

k−N 16e−2r 8 3 dB

3 1, 2 n̂x
k n̂p

k 8e−2r 4 3 dB
4 3 −n̂x

k + n̂x
k+1 n̂p

k + n̂p
k−N 16e−2r 8 3 dB

5 1, 3 n̂x
k n̂p

k−N 8e−2r 4 3 dB

6 2, 3 −n̂x
k+1 + n̂x

k−1 n̂p
k + n̂p

k−N 16e−2r 8 3 dB

7 1, 2, 3 n̂x
k n̂p

k−1 8e−2r 4 3 dB

8 4 −n̂x
k + n̂x

k+1 −n̂p
k + n̂p

k−N 16e−2r 8 3 dB

9 1, 4 −n̂x
k+1 + n̂x

k−1 −n̂p
k + n̂p

k−N 16e−2r 8 3 dB

10 2, 4 n̂x
k n̂p

k−N 8e−2r 4 3 dB

11 1, 2, 4 n̂x
k n̂p

k−1 8e−2r 4 3 dB

12 3, 4 n̂x
k n̂p

k 8e−2r 4 3 dB
13 1, 3, 4 n̂x

k n̂p
k+1 8e−2r 4 3 dB

14 2, 3, 4 n̂x
k n̂p

k+1 8e−2r 4 3 dB

15 1, 2, 3, 4 n̂x
k n̂p

k+1 8e−2r 4 3 dB

16 5 n̂x
k + n̂x

k−1 −n̂p
k + n̂p

k+N 16e−2r 8 3 dB

17 1, 5 n̂x
k n̂p

k 8e−2r 4 3 dB
18 2, 5 n̂x

k n̂p
k 8e−2r 4 3 dB

19 1, 2, 5 n̂x
k n̂p

k 8e−2r 6 1.2 dB
20 3, 5 −n̂x

k + n̂x
k+N n̂p

k−1 + n̂p
k+N + n̂p

k+N+1 + n̂p
k+N−1 24e−2r 12 3 dB

21 1, 3, 5 n̂x
k n̂p

k−N 8e−2r 4 3 dB

22 2, 3, 5 −n̂x
k + n̂x

k+N −n̂p
k + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

23 1, 2, 3, 5 n̂x
k n̂p

k 8e−2r 4 3 dB
24 4, 5 −n̂x

k + n̂x
k+N n̂p

k−1 + n̂p
k+N + n̂p

k+N+1 + n̂p
k+N−1 24e−2r 12 3 dB

25 1, 4, 5 −n̂x
k + n̂x

k+N −n̂p
k + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

26 2, 4, 5 n̂x
k n̂p

k−N 8e−2r 4 3 dB

27 1, 2, 4, 5 n̂x
k n̂p

k 8e−2r 4 3 dB
28 3, 4, 5 n̂x

k n̂p
k+1 8e−2r 4 3 dB

29 1, 3, 4, 5 n̂x
k n̂p

k+1 8e−2r 4 3 dB

30 2, 3, 4, 5 n̂x
k n̂p

k+1 8e−2r 4 3 dB

31 1, 2, 3, 4, 5 n̂x
k n̂p

k+1 8e−2r 4 3 dB

32 6 n̂x
k + n̂x

k−1 n̂p
k + n̂p

k+N 16e−2r 8 3 dB

33 1, 6 n̂x
k n̂p

k 8e−2r 4 3 dB
34 2, 6 n̂x

k n̂p
k 8e−2r 4 3 dB

35 1, 2, 6 n̂x
k n̂p

k 8e−2r 6 1.2 dB
36 3, 6 n̂x

k + n̂x
k+N −n̂p

k−1 + n̂p
k+N + n̂p

k+N+1 + n̂p
k+N−1 24e−2r 12 3 dB

37 1, 3, 6 n̂x
k n̂p

k−N 8e−2r 4 3 dB

38 2, 3, 6 n̂x
k + n̂x

k+N n̂p
k + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

39 1, 2, 3, 6 n̂x
k n̂p

k 8e−2r 4 3 dB
40 4, 6 n̂x

k + n̂x
k+N −n̂p

k−1 + n̂p
k+N + n̂p

k+N+1 + n̂p
k+N−1 24e−2r 12 3 dB

41 1, 4, 6 n̂x
k + n̂x

k+N n̂p
k + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

42 2, 4, 6 n̂x
k n̂p

k−N 8e−2r 4 3 dB

43 1, 2, 4, 6 n̂x
k n̂p

k 8e−2r 4 3 dB
44 3, 4, 6 n̂x

k n̂p
k+1 8e−2r 4 3 dB

45 1, 3, 4, 6 n̂x
k n̂p

k+1 8e−2r 4 3 dB

46 2, 3, 4, 6 n̂x
k n̂p

k+1 8e−2r 4 3 dB

47 1, 2, 3, 4, 6 n̂x
k n̂p

k+1 8e−2r 4 3 dB



3.7. SUPPL. INF.: RESULTS 55

48 5, 6 n̂x
k n̂p

k 8e−2r 4 3 dB
49 1, 5, 6 n̂x

k n̂p
k 8e−2r 6 1.2 dB

50 2, 5, 6 n̂x
k n̂p

k 8e−2r 6 1.2 dB
51 1, 2, 5, 6 n̂x

k n̂p
k 8e−2r 8 0 dB

52 3, 5, 6 n̂x
k n̂p

k−1 8e−2r 4 3 dB

53 1, 3, 5, 6 n̂x
k n̂p

k 8e−2r 4 3 dB
54 2, 3, 5, 6 n̂x

k n̂p
k 8e−2r 4 3 dB

55 1, 2, 3, 5, 6 n̂x
k n̂p

k 8e−2r 6 1.2 dB
56 4, 5, 6 n̂x

k n̂p
k−1 8e−2r 4 3 dB

57 1, 4, 5, 6 n̂x
k n̂p

k 8e−2r 4 3 dB
58 2, 4, 5, 6 n̂x

k n̂p
k 8e−2r 4 3 dB

59 1, 2, 4, 5, 6 n̂x
k n̂p

k 8e−2r 6 1.2 dB
60 3, 4, 5, 6 n̂x

k n̂p
k+1 8e−2r 4 3 dB

61 1, 3, 4, 5, 6 n̂x
k n̂p

k+1 8e−2r 4 3 dB

62 2, 3, 4, 5, 6 n̂x
k n̂p

k+1 8e−2r 4 3 dB

63 1, 2, 3, 4, 5, 6 n̂x
k n̂p

k 8e−2r 4 3 dB
64 7 n̂x

k + n̂x
k+1 n̂p

k + n̂p
k+N 16e−2r 8 3 dB

65 1, 7 n̂x
k + n̂x

k+N −n̂p
k+1 + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

66 2, 7 n̂x
k + n̂x

k+N −n̂p
k+1 + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

67 1, 2, 7 n̂x
k n̂p

k−1 8e−2r 4 3 dB

68 3, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
69 1, 3, 7 n̂x

k n̂p
k−N 8e−2r 4 3 dB

70 2, 3, 7 n̂x
k + n̂x

k+N n̂p
k + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

71 1, 2, 3, 7 n̂x
k n̂p

k−1 8e−2r 4 3 dB

72 4, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
73 1, 4, 7 n̂x

k + n̂x
k+N n̂p

k + n̂p
k+N + n̂p

k+N+1 + n̂p
k+N−1 24e−2r 12 3 dB

74 2, 4, 7 n̂x
k n̂p

k−N 8e−2r 4 3 dB

75 1, 2, 4, 7 n̂x
k n̂p

k−1 8e−2r 4 3 dB

76 3, 4, 7 n̂x
k n̂p

k 8e−2r 6 1.2 dB
77 1, 3, 4, 7 n̂x

k n̂p
k 8e−2r 4 3 dB

78 2, 3, 4, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
79 1, 2, 3, 4, 7 n̂x

k n̂p
k−1 8e−2r 4 3 dB

80 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

81 1, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

82 2, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

83 1, 2, 5, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
84 3, 5, 7 n̂x

k n̂p
k+N 8e−2r 4 3 dB

85 1, 3, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

86 2, 3, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

87 1, 2, 3, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

88 4, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

89 1, 4, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

90 2, 4, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

91 1, 2, 4, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

92 3, 4, 5, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
93 1, 3, 4, 5, 7 n̂x

k n̂p
k+N 8e−2r 4 3 dB

94 2, 3, 4, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

95 1, 2, 3, 4, 5, 7 n̂x
k n̂p

k+N 8e−2r 4 3 dB

96 6, 7 −n̂x
k+1 + n̂x

k−1 n̂p
k + n̂p

k+N 16e−2r 8 3 dB

97 1, 6, 7 −n̂x
k + n̂x

k−N n̂p
k − n̂p

k−N + n̂p
k−N+1 + n̂p

k−N−1 24e−2r 12 3 dB

98 2, 6, 7 n̂x
k + n̂x

k−N −n̂p
k − n̂p

k−N + n̂p
k−N+1 + n̂p

k−N−1 24e−2r 12 3 dB

99 1, 2, 6, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
100 3, 6, 7 n̂x

k + n̂x
k−N −n̂p

k − n̂p
k−N + n̂p

k−N+1 + n̂p
k−N−1 24e−2r 12 3 dB

101 1, 3, 6, 7 n̂x
k n̂p

k−N 8e−2r 4 3 dB

102 2, 3, 6, 7 −n̂x
k+1 + n̂x

k−1 −n̂p
k+N + n̂p

k−N 16e−2r 8 3 dB

103 1, 2, 3, 6, 7 −n̂x
k + n̂x

k−N n̂p
k − n̂p

k−N + n̂p
k−N+1 + n̂p

k−N−1 24e−2r 12 3 dB

104 4, 6, 7 −n̂x
k + n̂x

k−N n̂p
k − n̂p

k−N + n̂p
k−N+1 + n̂p

k−N−1 24e−2r 12 3 dB

105 1, 4, 6, 7 −n̂x
k+1 + n̂x

k−1 n̂p
k+N + n̂p

k−N 16e−2r 8 3 dB

106 2, 4, 6, 7 n̂x
k n̂p

k−N 8e−2r 4 3 dB

107 1, 2, 4, 6, 7 n̂x
k + n̂x

k−N −n̂p
k − n̂p

k−N + n̂p
k−N+1 + n̂p

k−N−1 24e−2r 12 3 dB

108 3, 4, 6, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
109 1, 3, 4, 6, 7 n̂x

k + n̂x
k−N −n̂p

k − n̂p
k−N + n̂p

k−N+1 + n̂p
k−N−1 24e−2r 12 3 dB

110 2, 3, 4, 6, 7 −n̂x
k + n̂x

k−N n̂p
k − n̂p

k−N + n̂p
k−N+1 + n̂p

k−N−1 24e−2r 12 3 dB
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111 1, 2, 3, 4, 6, 7 −n̂x
k+1 + n̂x

k−1 −n̂p
k + n̂p

k+N 16e−2r 8 3 dB

112 5, 6, 7 n̂x
k n̂p

k−1 8e−2r 4 3 dB

113 1, 5, 6, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
114 2, 5, 6, 7 n̂x

k n̂p
k 8e−2r 4 3 dB

115 1, 2, 5, 6, 7 n̂x
k n̂p

k 8e−2r 6 1.2 dB
116 3, 5, 6, 7 n̂x

k n̂p
k−1 8e−2r 4 3 dB

117 1, 3, 5, 6, 7 n̂x
k n̂p

k−N 8e−2r 4 3 dB

118 2, 3, 5, 6, 7 −n̂x
k + n̂x

k+N −n̂p
k + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

119 1, 2, 3, 5, 6, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
120 4, 5, 6, 7 n̂x

k n̂p
k−1 8e−2r 4 3 dB

121 1, 4, 5, 6, 7 −n̂x
k + n̂x

k+N −n̂p
k + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

122 2, 4, 5, 6, 7 n̂x
k n̂p

k−N 8e−2r 4 3 dB

123 1, 2, 4, 5, 6, 7 n̂x
k n̂p

k 8e−2r 4 3 dB
124 3, 4, 5, 6, 7 n̂x

k n̂p
k−1 8e−2r 4 3 dB

125 1, 3, 4, 5, 6, 7 −n̂x
k + n̂x

k+N n̂p
k+1 + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

126 2, 3, 4, 5, 6, 7 −n̂x
k + n̂x

k+N n̂p
k+1 + n̂p

k+N + n̂p
k+N+1 + n̂p

k+N−1 24e−2r 12 3 dB

127 1, 2, 3, 4, 5, 6, 7 n̂x
k + n̂x

k+1 −n̂p
k + n̂p

k+N 16e−2r 8 3 dB
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Figure 3.17: Plot of the van Loock-Furusawa separability criterion’s left-hand-side, 〈∆X̂2〉+〈∆P̂ 2〉,
for each bipartition and chosen nullifier combination listed in table 3.1 using acquired data. Here,
the gray area marks values less than the van Loock-Furusawa criterion right-hand-side, f , listed
in table 3.1, and corresponds to the given bipartition being inseparable.
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Chapter 4

Architecture and noise analysis of
continuous-variable quantum gates
using two-dimensional cluster
states

In this chapter, the paper “Architecture and noise analysis of continuous-variable quantum gates
using two-dimensional cluster states” of Ref. [32] is presented. This paper is authored by Mikkel
V. Larsen, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen, and published in Physical Review
A 102, 042608 (2020).

In this theoretical work, we propose and analyze a quantum computation scheme based on
projective measurements of the cluster state generated in chapter 3 [31]. The analysis is extended to
include similar computation schemes on two-dimensional cluster states, including the demonstrated
cluster state by Asavanant et al. in Ref. [37], and we finally compare their performances.

With the computation scheme proposed in this work, in chapter 5 [33] the implementation
of quantum gates is demonstrated by projective measurements on the cluster state generated in
chapter 3 [31]. Besides proposing an efficient computation scheme, in this work, we demonstrate a
search method to determine the required basis settings for implementing desired gates by projec-
tive measurements. This method has shown useful to search for basis settings to implement gates
on various cluster states, and the method is applied in both chapter 5 and 6 [33, 34].

From Physical Review A 102, 042608 (2020). c© American Physical Society.

4.1 Abstract

Due to its unique scalability potential, continuous variable quantum optics is a promising platform
for large scale quantum computing. In particular, very large cluster states with a two-dimensional
topology that are suitable for universal quantum computing and quantum simulation can be readily
generated in a deterministic manner, and routes towards fault-tolerance via bosonic quantum
error-correction are known. In this article we propose a complete measurement-based quantum
computing architecture for the implementation of a universal set of gates on the recently generated
two-dimensional cluster states [31, 37]. We analyze the performance of the various quantum gates
that are executed in these cluster states as well as in other two-dimensional cluster states (the
bilayer-square lattice and quad-rail lattice cluster states [9, 11]) by estimating and minimizing the
associated stochastic noise addition as well as the resulting gate error probability. We compare
the four different states and find that, although they all allow for universal computation, the

59
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quad-rail lattice cluster state performs better than the other three states which all exhibit similar
performance.

4.2 Introduction

Measurement-based quantum computation (QC) [1] on continuous variable (CV) cluster states [2,
5], also known as cluster state computation, shows great potential for scalable quantum information
processing. This is due to the simplicity of generating a deterministic and scalable cluster state
resource, and the efficiency by which Gaussian gates can be implemented with high-efficiency
homodyne detection as already experimentally demonstrated on few-mode cluster states [22–24,
104, 105]. The generation of large one-dimensional (1D) cluster states was realized several years
ago [19–21], but for QC at least two dimensions are required—one for encoding and another for
computation. There are multiple feasible proposals for the generation of two-dimensional (2D)
cluster states [8, 9, 11, 12, 106], and recently two different 2D cluster states were experimentally
realized [31, 37] (with Ref. [31] being the content of chapter 3). A natural question is then, how
do the different 2D cluster states compare with regards to their suitability for QC?

Computation schemes for some of the popular 2D cluster states already exist [11, 12, 58,
107]. Here, we summarize these schemes and propose new computation schemes for the recently
experimentally realized states. Since physical CV cluster states always include noise due to finite
squeezing, we furthermore perform a noise analysis of the discussed computation schemes. While
similar noise analyses have been done for the 1D dual-rail wire cluster state [10] and the regular
2D square lattice cluster state [3], such analysis on experimentally feasible 2D cluster states has
not yet, to our knowledge, been carried out. Here, we aim to find the best noise performance for
QC with the discussed schemes on each cluster state.

As such, this work is partly a review of existing computation schemes, an introduction to
new computation schemes of experimentally realized cluster states, a detailed noise analysis of
QC on the different 2D CV cluster states, and a comparison of these. The paper begins with
an introduction to the notation and a review of basic concepts in section 4.3. In section 4.4, we
introduce a new computation scheme for the 2D cluster state experimentally realized by us in
[31], as described in chapter 3, and perform a noise analysis of this scheme. In section 4.5, we
describe corresponding computation schemes on three other popular 2D cluster states, namely the
quad-rail lattice [107], the bilayer square lattice [11], and the recently generated cluster state by
Asavanant et al. [37]. For each of them, we repeat the same noise analysis as presented in section
4.4. In section 4.6, we compare the topology and noise performance of the different cluster states
and discuss the requirements for universal QC. Finally, we conclude on the results in section 4.7.
Depending on the reader’s motivation and prior knowledge of cluster state computation, the reader
may skip sections and jump to that of interest—we have carefully cross-referenced the sections of
this work.

4.3 Prerequisite

In this section we review the basic concepts of continuous variable cluster state quantum compu-
tation that we will be using in this work. In case the reader is familiar with these concepts, the
section can be skipped.

4.3.1 Definitions

Throughout the paper we assume that ~ = 1 and [x̂, p̂] = i such that the light field amplitude, x̂,
(or position) and phase, p̂, (or momentum) quadratures can be written as x̂ = (â + â†)/

√
2 and

p̂ = −i(â− â†)/
√

2, respectively, where â is the annihilation operator. With these definitions, the
variance of the vacuum is 1/2. We will make use of six different unitary operators: The identity

operator Î, the phase rotation operator R̂(θ) = e−iθ(x̂
2+p̂2)/2 (where θ is the rotation angle) with
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the Fourier operator F̂ = R̂(π/2) as a special case, the squeezing operator Ŝ(s) = ei ln(s)(x̂p̂+p̂x̂)/2

(where r = − ln(s) is the standard squeezing parameter), the shear operator P̂ (p) = eipx̂
2/2

(where p is a shearing parameter), the controlled-Z operator ĈZ(g) = eigx̂⊗x̂ (where g is the
coupling coefficient), and the balanced beam splitter operator B̂ = e−iπ(x̂⊗p̂−p̂⊗x̂)/4. Each of these
operators are Gaussian and can be described by symplectic matrices representing the evolution
of the quadrature operators, arranged in a vector (x̂1, · · · , x̂n, p̂1, · · · , p̂n)T for n modes, in the
Heisenberg picture:

I =

(
1 0
0 1

)
, R =

(
cos θ sin θ
− sin θ cos θ

)
, S =

(
1
s 0
0 s

)
, P =

(
1 0
p 1

)
,

CZ =


1 0 0 0
0 1 0 0
0 g 1 0
g 0 0 1

 ,

and

B =
1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 , (4.1)

for Î, R̂(θ), Ŝ(s), P̂ (p), ĈZ(g) and B̂, respectively.
To allow for quantum error correction, in this paper we consider the encoding of qubits in

bosonic modes of computation, |ψin〉. Numerous different qubit encodings have been proposed
such as encoding in cat states [13, 108] and binomial states [15, 109] but here we will consider the
efficient Gottesman-Kitaev-Preskill (GKP) encoding [14]. For these codes, a qubit is encoded on a
square lattice in phase-space in a way that allows for the suppression of relevant errors (such as loss)
to a certain extend. To combat residual qubit errors, the GKP code must be concatenated with
another qubit error correction code such as the 7-qubit Steane code [110] or Knill’s C4/C6 code
[111]. GKP-encoding is the only known bosonic code for which a universal Gaussian gate set allows
logic Clifford computation and error correction of encoded qubits. A logic single-mode Clifford gate
set is realized by the Gaussian gate set {Î , F̂ , P̂ (1)} together with displacements, while two-mode
gates are enabled by the ĈZ(1)-gate. A non-Clifford gate completes the universal encoded qubit
gate set. While the non-Clifford gate requires challenging non-Gaussian transformations, practical
proposals do exists which are further discussed in section 4.6.2. Here in section 4.3, and in section
4.4 and 4.5, we will focus on the implementations of the Gaussian gates Î, F̂ , P̂ (1) and ĈZ(1).

Gaussian gates are implemented on a cluster state by quadrature measurement of each mode in
different bases rotated by θ with respect to the x̂-quadrature, i.e. measuring x̂(θ) = x̂ cos θ+ p̂ sin θ.
In this paper we use the Heisenberg picture, in which we simulate the evolution of the quadrature
operators and where the noise contributions simply appear as additive Gaussian noise terms. In
the following we consider the generalized teleportation circuit as an example, which as well plays
an important role in the quantum computation schemes presented in section 4.4 and 4.5.

4.3.2 Generalized teleportation

An arbitrary Gaussian transformation on a single bosonic mode can be realized by means of
the generalized teleportation circuit, as diagrammatically depicted in Fig. 4.1a. Here, the term
generalized teleportation is in terms of the generalized measurement bases, where different gates
are implemented on a teleported state depending on the basis setting. Generalized teleportation
consists of an input state, an entangled multi-mode ancillary state, and a measurement device.
In conventional single-mode teleportation, the ancillary entangled state is a two-mode squeezed
state [62], while traditionally for MBQC we consider a cluster state. The two-mode squeezed
state and two-mode cluster state are equivalent (up to a phase rotation), but since well-developed
theoretical tools exist for cluster states in the language of graphical calculus [7], here we focus on
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Figure 4.1: (a) Generalized teleportation circuit implementing single mode Gaussian operation
on the input state |ψin〉 by joint measurement of the input state with one mode of an ancillary
approximate cluster state using a two-mode measurement device (meas. dev.). The measurement
device consists of a beam splitter, with the arrow pointing from the first to the second mode in
Eq. (4.1), followed by homodyne detection measuring in bases x̂i(θi) = x̂i cos θi + p̂i sin θi. (b)
Short graphical notation of the circuit in (a) used in this paper, with the nodes representing the
modes in (a). Here, ε = e−2r. The node colors have no physical meaning and are only used to
identify the modes in (a). The graphical notation can be thought of as a “snap-shot” of the logic
level in (a) where the computation takes place.

cluster states. In practice the ancillary entangled state is an approximate cluster state composed
of finitely momentum-squeezed states that are entangled by a controlled-Z gate of weight t [5]. In
Fig. 4.1a, the momentum variance is ε/2 where ε = e−2r with r being the squeezing parameter.
To implement a gate, a joint measurement is performed on the input state and one mode of the
cluster state using the measurement device marked on Fig. 4.1a consisting of a beam splitter
and two homodyne detectors. The resulting transformation of the quadratures in the Heisenberg
picture is (

x̂′3
p̂′3

)
= G

(
x̂1

p̂1

)
+ N

(
p̂2

p̂3

)
+ D

(
m1

m2

)
. (4.2)

Here, the first term represents the implemented Gaussian gate with G corresponding to the gate
symplectic matrix. The second term, with N being a matrix, represents noise added to the quadra-
tures due to finite squeezing in the cluster state; it vanishes in the infinite squeezing limit as
〈p̂2,3〉 = 0 and Var(p̂2,3) = e−2r/2 → 0 for r → ∞. This term represents the gate noise. The
last term, with D being a matrix, is the computational by-product in the form of a displacement,
where m1 and m2 are the measurement outcomes of mode 1 and 2, respectively. G, N, and D are
each described in detail in the following subsections.

When considering multi-mode computing schemes with large cluster states, the circuit model
in Fig. 4.1a becomes tedious. Instead it is customary to use a graph notation as illustrated in
Fig. 4.1b, where the cluster state is represented by its corresponding graph with imaginary self-loops
indicating the finite squeezing of the cluster state modes [7], the beam splitter of the measurement
device is represented by an arrow, and the input state is represented by a free node. For the schemes
presented in this work, we assume that all cluster state modes are equally squeezed. Hence, we
will omit the identical iε self-loops on the cluster state nodes—they are always there, and only
vanish in the non-physical infinite squeezing limit. Finally, we will define the logic level as being
the level in the circuit diagram where the computation takes place, i.e. after the cluster state
generation where the input state appears, and before the measurement device for computation.
The logic level is marked on Fig. 4.1a, and the graph notation in Fig. 4.1b is a “snap-shot” of this
logic level with the arrow indicating the subsequent beam splitter operation of the measurement
device. An alternative formulation is to use macronodes as in [10, 11], where, instead of joint
measurements of localized modes in the logic level, one considers single-mode measurements of
distributed modes. In Fig. 4.1a this macronode formulation corresponds to locating the logic level
right after the beam-splitter transformation, and keeping in mind, that in the logic level the mode
under computation is distributed between mode 1 and 2 as (â1 + â2)/

√
2.

In the following we describe each term of Eq. (4.2) in more detail:
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4.3.2.1 Gate

The implemented gate in Eq. (4.2) depends on the measurement bases of the two quadrature
measurements (defined as θ1 and θ2) as

G =
1

sin θ−

(
1
t cos θ+ + 1

t cos θ−
1
t sin θ+

−t sin θ+ t cos θ+ − t cos θ−

)
,

where θ± = θ1 ± θ2, and corresponds to the operation [6]

Ŝ(t)R̂

(
θ+

2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+

2

)
. (4.3)

By implementing such operation twice—corresponding to two consecutive runs of the teleportation
circuit in Fig 4.1a—it is possible to induce an arbitrary single mode Gaussian transformation [10],
U(x̂, p̂)T + c, where U = G2G1 while the displacement c is ubiquitous and simply implemented
by shifting the measurement result and updating the bases of the subsequent measurements [2, 5].
However, in the following we consider only the subset of single-mode Gaussian transformation that
is required for GKP state computation, namely the set {Î , F̂ , P̂ (1)}.

The identity operator, Î, can be executed in a single computation step of the teleportation
circuit in Fig. 4.1a by choosing

(θ+, θ−)I = (0, 2 arctan 1/t) ,

as easily seen from Eq. (4.3). For the Fourier gate, F̂ , and the P̂ (1)-gate two computation steps
are necessary: If we let the output state |ψ〉out of the first computation step in Fig. 4.1a, with
bases (θ+1, θ−1), be the input state on a second identical circuit, but with bases (θ+2, θ−2), the
gate

Ŝ(t)R̂

(
θ+2

2

)
Ŝ

(
tan

θ−2

2

)
R̂

(
θ+2

2

)
× Ŝ(t)R̂

(
θ+1

2

)
Ŝ

(
tan

θ−1

2

)
R̂

(
θ+1

2

)
is implemented. Choosing

(θ+1, θ−1, θ+2, θ−2)F =

(
π

2
,
π

2
, 0, 2 arctan

1

t2

)
implements the F̂ -gate, while

(θ+1, θ−1, θ+2, θ−2)P =
(

arctan 2,− arctan 2,
π

2
,
π

2

)
implements the P̂ (1)-gate. To implement the two-mode ĈZ-gate a scheme with at least two input
modes is required. This will be discussed in section 4.4 and 4.5, where we find that also two
teleportation steps are necessary.

4.3.2.2 Gate noise

The second term in Eq. (4.2) represents the gate noise and is governed by the matrix

N =

(
− 1
t 0

0 1

)
,

which is independent on the measurement bases. However, for gates realized in two steps, as the
F̂ - and P̂ (1)-gate described above, the gate noise of the first step enters the gate of the second
step, leading to the final gate noise that depends on the bases of the second computation step. For
two concatenated circuits of the type in Fig. 4.1a, with the cluster state of the second circuit being
denoted mode 4 and 5, the combined gate noise becomes

G2N1

(
p̂2

p̂3

)
+ N2

(
p̂4

p̂5

)
≡ N


p̂2

p̂3

p̂4

p̂5

 , (4.4)
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where N1(p̂2, p̂3)T is the gate noise of the first step, and G2 and N2(p̂4, p̂5)T is the gate symplectic
matrix and gate noise of the second step. Here, the combined gate noise matrix N is a 2×4 matrix.
Note, that in the following sections III and IV, N is in general the combined gate noise matrix
of an implemented gate in one or more teleportation steps, with the number of columns equal to
the number of quadratures in the output mode(s), and the number of rows equal to the number
of ancillary cluster state modes involved in the implemented gate.

Assuming that all cluster state modes in Eq. (4.4) are equally squeezed, Var(p̂l) = ε/2 for

l = 2, 3, 4, 5, the gate noise variance amounts to
∑4
j=1N

2
ijε/2 for i = 1, 2. From this expression,

it is clear that the gate noise can be reduced by both increasing the degree of squeezing of the
cluster state modes (reducing ε/2) and by minimizing the sums

∑4
j=1N

2
ij , i = 1, 2. We will refer

to these two sums as the quadrature noise factors, one for each quadrature. In the schemes for
gate implementation presented in section 4.4 and 4.5, the focus is on optimizing the quadrature
noise factors for the gate set {Î , F̂ , P̂ (1), ĈZ(1)} in order to minimize the probability of inducing
errors on the GKP-encoded qubit as discussed in section 4.3.3.

4.3.2.3 Displacement by-product

The displacement matrix in Eq. (4.2) reads

D =

√
2

sin θ−

(
− 1
t cos θ2 − 1

t cos θ1

t sin θ2 t sin θ1

)
,

and so, since we know the measurement bases, (θ1, θ2), together with the measurement outcome,
(m1,m2), the amount of displacement of a single computation step is known. By keeping track of
the displacements in each computation step, the displacement can be accounted for in the following
steps by updating the measurement bases and results (i.e. feed-forward) [5]. When all gates are
Gaussian, the displacement by-product can be compensated for in the measurement result of the
final output state |ψout〉, known as Gaussian parallelism [2].

In this work we will ignore the displacement by-product as it has no effect on the gate noise
performance. However, for the actual experimental implementations of the schemes discussed in
this work, the compensation for the displacement is important.

4.3.2.4 Wigner function representation

To understand the effect of the quadrature transformation and gate noise in Eq. (4.2), it is use-
ful to analyse the generalized teleportation in the Wigner function representation. This does not
add anything new, but considering the gate noise from a different perspective helps to under-
stand it. Here, the Wigner function of the input state to the teleportation circuit in Fig. 4.1,
|ψin〉1 Ŝ(e−r) |0〉2 Ŝ(e−r) |0〉3, is

Win(x1, p1)G1/ε(x2)Gε(p2)G1/ε(x3)Gε(p3) ,

where Gδ is a normalized Gaussian function of variance δ/2, and Win is the Wigner function
corresponding to |ψin〉1, but not necessarily of a pure state. After the quadrature transformation
in the generalized teleportation circuit and measurement of x̂1(θ1) and x̂2(θ2), the output Wigner
function corresponding to |ψout〉 on mode 3 in Fig. 4.1 becomes

Wout(x3, p3) = NG1/ε(x3)

∫
dη2Gε (η2)Gt2/ε (p3 − η2)×∫

dη1Gε/t2 (η1)Win

(
G−1

(
x3 − dx − η1

p3 − dp − η2

))
,

(4.5)

whereN is a normalization factor depending on the basis setting (θ1, θ2) and measurement outcome
(m1,m2), and (dx, dp)

T = D(m1,m2)T subtracted from the (x3, p3)T argument in Win corresponds
to the displacement by-product. Here, each index in the vector argument of Win should be un-
derstood as the two arguments in Win(·, ·). It is clear from the expression that the input state
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undergoes an operation of symplectic matrix G by the transformation of its Wigner function ar-
guments by G−1. This corresponds to the implemented gate. The gate noise N(p̂2, p̂3)T with
variance (ε/t2, ε)T /2 is seen to become a Gaussian convolution of the Wigner function with cor-
responding variance after applying the gate G. Finally, the Wigner function is subjected to a
Gaussian envelope in both quadratures: One of variance t2/2ε in the p̂-quadrature after convolu-
tion in x̂-quadrature with Gε/t2 , followed by one of variance 1/2ε in x̂-quadrature after convolution
in p̂-quadrature with Gε. These envelopes in each quadratures are the result of convolutions in
orthogonal quadratures, as the quadratures are related by the Fourrier transform: Convoluting
a Wigner function in x̂-quadrature with Gδ leads to an envelope of the Wigner function in the
p̂-quadrature of G1/δ(p), and vice versa.

Two limits of Eq. (4.5) are interesting: In the ideal infinite squeezing limit, the convolution
functions Gε/t2 and Gε becomes delta functions, while the Gaussian envelopes becomes infinitely

broad, and so Wout(x3 + dx, p3 + dp)
T = Win

(
G−1(x3, p3)T

)
. In the limit t = 0, where we expect

no information to transfer from Win to Wout, the envelope on Win

(
G−1(x3, p3)T

)
becomes a delta

function in p̂-quadrature, which is then convoluted by Gε, while the x̂-quadrature is convoluted by
an infinitely broad Gaussian followed by an envelope of G1/ε. As a result, for t = 0, Wout(x3, p3) =
G1/ε(x3)Gε(p3) corresponding to the initial input squeezed state in the cluster state as expected.

4.3.3 Error correction

It is now clear that cluster state quantum computation will inevitably suffer from gate noise
that will accumulate throughout the computation. To avoid noise accumulation, quadrature error
correction is required in between every implemented gate. For this purpose, symmetric GKP states
are particularly useful, not only as the qubit but also as ancillaries for error correction. GKP states
have been thoroughly reviewed in several places [112, 113], while here it is reviewed in terms of
MBQC focusing on the added gate noise caused by finite squeezing in the cluster states. The GKP
state Wigner function, Win(x) (with x = (x1, · · · , xn, p1, · · · , pn)T for a n-mode state), consists of
delta functions arranged on a square lattice in phase space of each mode with a lattice constant of√
π, and its qubit eigenstates of the Pauli-Z and -X operators are |jL〉X,Z =

∑
i∈Z |(2i+ j)

√
π〉x,p

in the quadrature eigenstate basis, |s〉x and |s〉p [14].

As a result of the execution of a n-mode gate G in one or more computation steps, the gate
noise N(p̂c1, p̂c2, · · · )T (where pci are ancillary cluster state modes) leads to a broadening of the
GKP delta functions into Gaussian functions of variances in σ2 = Var{N(p̂c1, p̂c2, · · · )T } in the
2n quadratures (σ2 is a 2n vector). Furthermore, as the ideal GKP-encoding with vanishing vari-
ance (represented by delta functions) is non-physical, we instead consider the physical approximate
GKP-states in Win(x) with delta functions replaced by symmetric Gaussian functions of identi-
cal variance, δ, in x̂- and p̂-quadrature. The quadrature variance of the Gaussian spikes in the
approximate GKP-state after the implementation of a noisy gate is then

δ′ = Var{Gx̂δ}+ σ2 , (4.6)

where x̂ is decomposed into a sum, x̂0+x̂δ, where x̂0 and x̂δ are the centers and variance of the GKP
spikes, respectively. Note that for ideal GKP states x̂ = x̂0. As examples, Var{Gxδ} = (δ, δ)T for
the Î- and F̂ -gate, Var{Gxδ} = (δ, 2δ)T for the P̂ (1)-gate, and Var{Gxδ} = (δ, δ, 2δ, 2δ)T for the
two-mode ĈZ(1)-gate.

To avoid gate noise accumulating on the GKP-encoded qubit state, after every implemented Î-,
F̂ -, P̂ (1)- and ĈZ(1)-gate, we measure the quadratures x̂ mod

√
π and p̂ mod

√
π using ancillary

GKP-states, and perform quadrature error correction by displacing back the state depending on
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the measurement outcome:

, (4.7)

where |0L〉 are approximate GKP-states with spike variances in both quadratures of δ. Note that
while this circuit illustrates the correction algorithm for a single mode of Wout, similar circuits are
required for each other mode. After the two measurements with outcome mx and mp, the encoded
qubit is projected into a “fresh” GKP-state, but displaced in x̂- and p̂-quadrature depending on the
values of mx and mp: If mx(p) mod

√
π is smaller than

√
π/2, the encoded state is displaced back

by mx(p) mod
√
π in x̂(p̂), while if it is larger than

√
π/2, the encoded states is displaced forward by√

π− (mx(p) mod
√
π), and so we obtain an error corrected version of Wout(x)→W erc.

out (x), which
is then the input to the next gate. The possible values of mx and mp are Gaussian distributed
with variance δ′i + δ, where δ′i in δ′ of Eq. (4.6) is the corresponding spike quadrature variance of
the encoded state after gate implementation, Wout, and δ is the spike variance of the |0L〉 ancillary
states. As a result, for large δ′i and/or δ, there is a risk of measuring a GKP spike closer to its
neighbouring spikes of the orthogonal qubit state, i.e. outside the bin range [x0−

√
π/2;x0 +

√
π/2]

where x0 is the spike center, and thereby inducing a qubit error when “correcting” the state by
displacing it in the wrong direction. The combined probability of displacing a n-mode encoded
state with 2n quadrature corrections in the wrong direction is shown to be [3]

Perr.(δ
′, δ) = 1−

2n∏
i=1

erf

( √
π

2
√

2(δ′i + δ)

)
, (4.8)

where each factor in the product term is the probability of a successful quadrature correction. It is
important to mention that Perr. is not a true qubit error probability, as it does not account for the
probability of measuring a spike at its neighbours neighbour bin range, [x0± 3

√
π/2;x0± 5

√
π/2],

which leads to a 2
√
π displacement of the GKP state when corrected, and thereby not a qubit

error although it is an error. This leads for example to Perr. → 1 for large δ′i + δ while the actual
error probability should be 1/2. Furthermore, Eq. (4.8) does not account for the overall envelope
on the spikes of the GKP-state, and for the fact that the error probability is qubit-dependent:
Displacing the p̂-quadrature by

√
π leads to an error on |+L〉, but no error on |0L〉. Therefore,

for a true estimation of the qubit error probability, we need to take these effects into account.
However, despite these issues, in this work (as in [3]) we will use Perr. as a figure of merit as it
constitutes a good approximation to the actual error probability for reasonably large squeezing
levels in which δ′i + δ is small enough for 2

√
π (or larger) displacements to be neglected during

quadrature corrections.

Since the two-mode ĈZ(1)-gate requires four quadrature corrections, while the Î-, F̂ - and P̂ (1)-
gate only requires two, the error probability after the ĈZ(1)-gate is in general larger. In the schemes
presented in section 4.4 and 4.5, when possible, we search for a basis setting for the ĈZ(1)-gate
that minimizes Perr..

4.4 Double bilayer square lattice

Having discussed the general concept of CV quantum computation and the associated error anal-
ysis, we are now equipped with the relevant tools to rigorously analyze the performance of cluster
state computation based on different types of cluster states. In this section, we will consider the
double bilayer square lattice (DBSL) cluster state while in the following section 4.5 we will consider
three other known clusters states.
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Figure 4.2: (a) Temporal encoded DBSL cluster state generation and computation setup. While
the DBSL cluster state is generated after the third beam splitter, for computation we consider the
cluster state in the marked logic level, and the third beam splitter as part of a joint measurement
device for computation. The cluster state temporal mode duration τ is defined by the short delay
line. The device marked by asterisk is an identity gate when implementing gates (1.), an optical
switch when switching in a state for computation (2.), or the circuit in Eq. (4.7) for correcting gate
noise after each implemented gate (3.). (b) Cluster state in the logic level: A dual-rail wire coiled
up by the Nτ long delay, leading to a cylinder with N temporal modes in the circumference—the
temporal mode indices are written in grey. Computation is performed in wires including the modes
in the marked grey areas, while modes in between the grey areas are control modes. Measuring the
control modes in an alternating basis of (−1)iθc induces edges between the wire modes as shown
in (c), allowing single mode computation in each N/2 wire with one computation step marked
in red. Measuring a control mode in a different basis creates coupling between the neighbouring
two wires as shown in Fig. 4.3 allowing multi-mode gates. The edge weights shown here is in the
limit of infinite squeezing and θc = π/4. For finite squeezing the edge weights are multiplied by
tanh(2r) while self-loops of isech(2r) are present on each cluster state mode. For easy comparison,
the experimental setup, logic cluster state and its projection into wires are shown in the appendix
section 4.10 together with the schemes considered in section 4.5.

The cylindrical 2D cluster state produced in chapter 3 [31], can be straightforwardly projected
into a universal DBSL cluster which will be analysed in the following. The cylindrical DBSL cluster
state with a 2D topology of Ref. [31] (corresponding to a cylindrical H-graph state) was generated
by “coiling up” a 1D cluster state (a dual-rail wire [19]) of temporal mode duration τ using a Nτ
long delay line, and interfering it with itself—the generation setup is summarized in Fig. 4.2a. As
this H-graph state is self-inverse and bipartite for even N , it is transformed into a DBSL cluster
state through π/4 phase rotations of all modes. Since this transformation simply corresponds to a
redefinition of the quadratures, the DBSL H-graph state and the corresponding cluster state are
equivalent [7, 31]. In the following we will therefore only consider the DBSL cluster state.

It is also important to note that in chapter 3 [31], it was shown that the DBSL cluster state can
be projected into a regular square lattice cluster state which is known to be a universal resource
for quantum computing. However, due to the resulting low edge weights of this square lattice,
this approach is rather inefficient and leads to unnecessary large gate noise. In the following, we
present a more efficient computation scheme of the DBSL and quantify it by a gate noise analysis.

4.4.1 Efficient computation scheme

Similar to the generalized teleportation scheme in section 4.3, we define a multi-mode measurement
device that includes the third beam splitter as marked in Fig. 4.2a. The resulting logic level is
located just before the measurement device, where the generated 1D cluster state is coiled up, but
not yet interfered with itself. A section of the cylindrical coiled up 1D cluster state at the logic
level is shown in Fig. 4.2b. Here the horizontal direction follows the cluster state cylinder axis
while the vertical direction corresponds to the circumference of the cylinder whose size is limited
by the long delay line to N temporal modes.
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In the following we assume that the cylindrical cluster state has an even number of temporal
modes in the circumference (N is an even number which is necessary for the generated H-graph
state to be bipartite), each with a temporal mode index k. Every second temporal mode (k + 2i
for i ∈ Z) form wires for computation along the cylinder (shaded area in Fig. 4.2b), while the
remaining temporal modes (k + 2i − 1 for i ∈ Z) are control modes that are used to control
couplings between wires. In this way we have N/2 wires, and thereby N/2 modes for computation.
We will further assume that the number of wires is even, i.e. N/2 being an even number. As an
example, the experimental realization of the DBSL in chapter 3 had N = 12 leading to 6 wires.
Using an optical switch in the lower spatial mode at point B in the logic level in Fig. 4.2a, an input
state can be switched into the circuit. It corresponds to adding input states to the blue nodes in
Fig. 4.2b. Optical switches have previously been demonstrated in quantum settings [30, 114] with
Ref. [30] being the content of chapter 2.

By inducing certain phase rotations, (−1)iθc, of the control modes it is possible to create
new edges along the wires as illustrated in Fig. 4.2c [7]. If these phase rotations are followed by
measurement of the control modes in the x̂-basis, the modes and their edges are “deleted”, and we
are consequently left with N/2 parallel wires suitable for single mode computation of N/2 modes.
It is also worth noting that this combination of phase rotation and x̂-measurement corresponds to
measuring the quadrature x̂((−1)iθc) on each control mode individually:

, (4.9)

where the beam-splitter of the left-hand-side is the beam-splitter of the measurement device, and
m± = (m1 ±m2)/

√
2. As an example, we may consider the case of infinite squeezing as pictured

in Fig. 4.2c. Here the edge weights of the wires tend towards the optimal values of ±1 (where
the sign alternates between neighbouring wires) by choosing θc = π/4. For finite, thus practical,
squeezing levels, the induced wire edge weight is lower, while θc may be optimised for minimizing
the gate noise. For simplicity, in the computation scheme presented here, we keep θc = π/4 for all
squeezing levels while in section 4.4.3 we discuss the effect of varying θc.

The projected wires in Fig. 4.2c are now suitable for single mode Gaussian computation: One
computation step (one horizontal time step from temporal mode k to k + N) corresponds to the
generalized teleportation circuit in section 4.3.2 with an input from the previous computation
step, or switched into the cluster using an optical switch as previously mentioned. Similar to the
generalized teleportation, the resulting operation of one single-mode computation step on a wire
is

Ŝ
(
(−1)i4t2

)
R̂

(
θ+

2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+

2

)
, (4.10)

where θ± = θBk ± θAk, and t is the absolute edge weight in the logic dual-rail wire cluster state
in Fig. 4.2b which equals 1/2 in the infinite squeezing limit, while the case of finite squeezing is
discussed in section 4.4.2. For derivation of (4.10) see appendix section 4.8. The negative edge
weight on every second wire (uneven i) leads to a π phase rotation in each computation step which
then cancels out in every second step, or can be compensated for in the required basis setting
for the desired gate. As for the generalized teleportation, any Gaussian single-mode gate can be
implemented in two steps.

Now let us discuss how a two-mode gate can be implemented by coupling two neighboring wires.
In Fig. 4.3a all control modes except one has been measured in the basis (−1)iθc = (−1)iπ/4 in
order to separate wires as described above—the remaining two central control modes in Fig. 4.3a
have only been phase shifted by π/4, but not measured. Phase rotating these remaining control
modes further before measurements (i.e. measuring them in another bases than the neighbouring
control modes), leads to coupling between the two neighbouring wires which is seen as direct
edges in Fig. 4.3b. In this way, controlling the measurement bases of a temporal control mode,
together with the measurement bases of its neighbouring wires, a desired two-mode gates can be
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Figure 4.3: (a) Logic cluster state after measuring all temporal control modes in Fig. 4.2c except
control modes in temporal mode k + N − 1. (b) Cluster state after further phase rotation and
measurement of the remaining two control modes in (a), leading to direct edges between the
neighbouring two wires. The edge weights shown here is for the case of infinite squeezing, θc = π/4,
and the central control modes further phase rotated by arctan(1/2), i.e. g = 1 in Eq. (4.11).

implemented. As an example, in the infinite squeezing limit of Fig. 4.3, the base setting

θθθ ≡



θAk−2

θBk−2

θAk
θBk

θAk+N−2

θBk+N−2

θAk+N−1

θBk+N−1

θAk+N

θBk+N


=



(−1)i3π/8
−(−1)iπ/8
(−1)i3π/8
−(−1)iπ/8

(−1)iπ/4− arctan(g/2)
−(−1)iπ/4

(−1)iπ/4 + arctan(g/2)
(−1)iπ/4 + arctan(g/2)
(−1)iπ/4− arctan(g/2)

−(−1)iπ/4


(4.11)

leads to an implementation of the gate (R̂(π/4)⊗ R̂(π/4))ĈZ(g) between the blue input modes in
temporal mode k − 2 and k, where R̂(π/4) ⊗ R̂(π/4) can be compensated for with the following
single mode gates.

In summary, we have now shown that a universal Gaussian gate set can be efficiently imple-
mented on a DBSL cluster state: Single mode gates can be realized along parallel wires in the
cluster while the two-mode controlled-Z gate can be realized between neighboring wires.

4.4.2 Gate noise analysis

As mentioned previously, if the squeezed states used to construct the cluster state are infinitely
squeezed, the gates will be realized perfectly without noise addition, thus without adding any
processing errors. However, in a realistic setting, the degree of squeezing is finite which inevitably
will result in processing noise. In the following we will be analysing the impact it has when using
the DBSL for computation.

Assuming that the two squeezed inputs states of the circuit in Fig. 4.2a have squeezed variances
of e−2r in the x̂- or p̂-quadrature, the edge weights and self-loops of the coiled up 1D cluster state
at the logic level becomes ±t = ± tanh(2r)/2 and iε = i sech(2r) respectively [7, 31]. Note that
the existence of self-loops is a result of the finite input squeezing while

√
ε can be considered as

the effective momentum squeezing in the cluster state modes.
The finite squeezing leads to two effects: Gate noise appearing in each computation step and

distortion of the implemented gate. As seen in Eq. (4.10), for single mode gates the distortion is
caused by an additional squeezing transformation, Ŝ((−1)i tanh2(2r)), on the output of each com-
putation step. However, as for generalized teleportation, the unwanted squeezing transformation
can be compensated for simply by tuning the basis settings. The gate noise (introduced in section
4.3.2 and corresponding to the second term of Eq. (4.2)) of one single-mode computation step from
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temporal mode k to k + N (derived in the appendix section 4.8) is represented by the following
quadratures

N(p̂Ak−1, p̂Ak, p̂Ak+1, p̂Bk+N−1, p̂Bk+N , p̂Bk+N+1)T

with

N =

(
1
4t

−1
4t2

−1
4t

1
4t 0 1

4t
t 0 t t 1 −t

)
,

leading to quadrature noise factors (introduced in section 4.3.2) of

Nx =
∑
j

N2
1j =

1

tanh4(2r)
+

1

tanh2(2r)

Np =
∑
j

N2
2j = tanh2(2r) + 1

(4.12)

in x̂ and p̂ respectively.
To avoid accumulating gate noise during computation, we consider the usage of GKP-encoded

qubit states, in which the gate noise is translated into qubit errors by quadrature corrections
after each implemented gate using auxiliary GKP-states as described in section 4.3.3. To prevent
erroneous computation, the qubits may then be error corrected by including a qubit error correction
scheme in the computation. Within the GKP-encoded qubit subspace, a logic complete Clifford
gate set is realized by the Gaussian gate set {Î , F̂ , P̂ (1), ĈZ(1)} on the bosonic modes. We therefore
only consider the implementation of this gate set in the noisy cluster state. An additional non-
Clifford gate in the GKP-qubit subspace completes the gate set for universal qubit computation,
and is further discussed in section 4.6.2.

Similar to the generalized teleportation circuit in section 4.3.2 (Eq. (4.3)), but by substituting
the edge weights, t, with (−1)i tanh2(2r), the single-mode Î-gate is implemented from temporal
mode k to k +N with the basis setting(

θ+

θ−

)
I

=

(
0

(−1)i2 arctan
(
tanh−2(2r)

)) ,

where θ± = θBk ± θAk, and with gate noise variance of Nxε/2 and Npε/2 in x̂- and p̂-quadrature

respectively. The F̂ - and P̂ (1)-gate are implemented in two computation steps from mode k to
k + 2N : Choosing 

θ+1

θ−1

θ+2

θ−2


F

=


π/2
π/2
0

2 arctan
(
tanh−4(2r)

)


implements F̂ with equal gate noise variance of (Nx +Np)ε/2 in x̂ and p̂, while
θ+1

θ−1

θ+2

θ−2


P

=


arctan 2
− arctan 2

π/2
π/2


implements P̂ (1) with gate noise variance of 2Nxε/2 and 2Npε/2 in x̂ and p̂ respectively. Here

θ±1 = θBk±θAk and θ±2 = θBk+N ±θAk+N . For the two-mode ĈZ-gate, the gate distortion due to
finite squeezing, and how it is compensated for, is less trivial. In the following, we search for basis
settings that compensate for finite squeezing and optimizes the gate noise in order to minimize the
error probability of the encoded qubit after quadrature corrections.

The GKP quadrature corrections can be realized by implementing the circuit in Eq. (4.7) at
mode B in the logic level in Fig. 4.2 where the processed state is encoded. This may be challenging,
as it requires tunable ĈZ(g)-coupling strengths with g = 1 when performing error correction, and
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otherwise g = 0. An alternative is to occupy the free wires with ancillary |0L〉 GKP-states, and
then implement the required ĈZ(1)-gates through measurements. However, with this approach, the
error-correcting gate is subjected to the same kind of gate noise as we are trying to correct for in the
encoded state. For simplicity, we assume successful implementation of the quadrature correction
circuit in Eq. (4.7) at the logic level using a supply of ancillary GKP-states with quadrature
symmetric spike variance equal the variance of the resource squeezing, δ = e−2r/2.

As discussed in section 4.4.1 and illustrated in Fig. 4.3, the ĈZ(1)-gate between two wires
is implemented in two computation steps, and while staying within the encoded qubit subspace,
we are allowed to implement any ĈZ(1)-gate with a bi-product of gates in {F̂ , P̂ (1)} in order
to minimize the resulting GKP-encoded qubit errors. The P̂ (1)-gate transforms quadratures as
(x̂, p̂) → (x̂, x̂ + p̂), which, before adding gate noise, already leads to an increase of the spike
variances in the GKP-encoded state as (δ, δ)→ (δ, 2δ), where the first and second index corresponds
to variance in the x̂- and p̂-quadrature respectively. Thus adding P̂ (1)-gates to ĈZ(1) will hardly
improve the error probability. On the other hand, the F̂ -gate transforms the quadratures as
(x̂, p̂) → (p̂,−x̂), and the GKP-spike variance in each quadrature (before adding gate noise) is
unchanged. Hence, we may improve the error probability if we can improve the resulting gate
noise by adding F̂ -gates to the ĈZ(1)-gate. We have investigated the gates (F̂n ⊗ F̂m)ĈZ(1)
for all n,m ∈ {−1, 0, 1, 2}, and find that gates with n,m = ±1 are optimal. We choose n = 1
and m = (−1)i, where the index i denotes the control modes between the two coupled wires. The
improvement on the ĈZ(1) gate noise by adding F̂⊗F̂±1 may be explained intuitively: The F̂ -gates
rotate the states in computation during the two computation steps implementing (F̂ ⊗ F̂±1)ĈZ(1),
and leads to the gate noise being better distributed on the quadratures, similar to the symmetrical
distributed gate noise when implementing the single-mode F̂ -gate as described above. The bi-
product of F̂ ⊗ F̂±1 can then be compensated for by applying the associated single mode gates
after GKP error correction. In the following, we first consider the case for even i, and to shorten
the notation we write F̂ F̂ ĈZ where the tensor product and ĈZ-weight have been ignored.

To implement the F̂ F̂ ĈZ-gate between two neighbouring wires as in Fig. 4.3, we adjust the
basis setting θθθ in Eq. (4.11). Using a global search algorithm, we search for θθθ minimizing the
objective function

f(θθθ) = ||G−T||1 + w logPerr.(δ
′, δ) , (4.13)

where G and T are the symplectic matrices of the implemented gate, governed by θθθ, and the target
gate, F̂ F̂ ĈZ (see appendix section 4.8 for the procedure of calculating G), ||A||1 =

∑
i,j |Aij | is

the entrywise matrix 1-norm, and Perr. is the error probability in Eq. (4.8). Here, δ = e−2r/2 for
the ancillary GKP states, and δ′ = (2δ, 2δ, δ, δ)T +σ2 for the F̂ F̂ ĈZ-gate with gate noise variance
σ2 = (Nx1, Nx2, Np1, Np2)T sech(2r)/2 where Ni are basis-dependent quadrature noise factors. The
first term of f(θθθ) in Eq. (4.13) is minimized for G = T, and thus helps us find the basis setting
implementing the target gate T. Since multiple solutions, θθθ, leading to G = T may exist, we search
for a solution that also minimizes the error probability, Perr., which is the purpose of the second
term in Eq. (4.13). To well resolve Perr. close to 0 we use the logarithm of Perr., while the weight
w is varied in the range 10−8 to 1 for different resource squeezing in order for the global search
algorithm not to favour one term in (4.13) while ignoring the other term. Finally, the objective
function is considered successfully minimized only when the resulting gate is close to the target
gate. To check this, we use the condition

||G−T||1 < 10−5 ,

with all results not satisfying this condition being discarded. Depending on the global search algo-
rithm used, we are not guaranteed to find the best basis settings minimizing the error probability.
However, repeating the algorithm many times with different w and starting points increases the
confidence of the resulting basis settings being optimal.

The resulting bases minimizing the objective function f(θθθ) for the F̂ F̂ ĈZ target gate (with
even i for the central control mode) is presented in Fig. 4.4a for different resource squeezing levels
as input in Fig. 4.2a. In the following we will refer to the mode numbering labelled in Fig. 4.4a.
According to Eq. (4.10), with (θ1,3, θ2,4) = (−π/4, π/4) in the first computation step, ignoring
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Figure 4.4: (a) Basis settings as function of resource squeezing found by mimizing f(θθθ) in Eq. (4.13)
for implementing the ĈZ(1)-gate as (F̂⊗F̂ )ĈZ(1) (in short F̂ F̂ ĈZ) for even i on the central control
modes. The mode numbers are labelled on the graph to the right, where control modes outside
the shaded area are measuring in basis (−1)iθc = (−1)iπ/4. For uneven i, (F̂ ⊗ F̂−1)ĈZ(1) is
implemented with the same gate noise by changing the sign of the bases in mode 3, 4, 6, 7,
8, and 10. (b) Resulting error probabilities of Eq. (4.8) for the Î- F̂ - and P̂ (1)-gate and the
(F̂ ⊗ F̂±1)ĈZ(1)-gate implemented with the basis settings in (a). (c) Gate noise responsible for the
error probability in (b) together with appriximate ancillary GKP states of e−2r/2 spike variance.
Here the resource variance squeezing, e−2r, and effective variance squeezing in the cluster state
modes, sech(2r), is shown as well (black and grey respectively). The resource squeezing and gate
noise in dB-scale is relative to vacuum variance of 1/2. Note that the p̂-quadrature gate noise
of the P̂ (1)- and F̂ F̂ ĈZ-gate overlap. For easy comparison, the gate noise here is shown in the
appendix section 4.10 together with gate noise of the schemes considered in section 4.5.

the coupling between wires, the input mode is simply teleported to the second computation step
with a bi-product (beside displacement) of Ŝ(tanh2(2r)). Here, control mode 8 is measured in the
same θc = π/4 basis used for separating wires, while control mode 7 is measured in a different
basis in order to couple the two wires. With the combined basis setting of mode 5, 6, 7, 9 and
10 the bi-product squeezing of the first step is compensated, and the F̂ F̂ ĈZ-gate is implemented.
Finally, for uneven i on the control modes between the two coupled wires, the (F̂⊗F̂−1)ĈZ(1)-gate
is implemented by changing the sign on mode 3, 4, 6, 7, 8, and 10. The resulting gate noise and
error probability is the same as for F̂ F̂ ĈZ with even i.

After quadrature correction in the GKP-scheme the resulting error probability of the above
described basis settings for the Î, F̂ and P̂ (1) single-mode gates and the two-mode F̂ F̂ ĈZ-gate
is shown in Fig. 4.4b. As expected, the error probability is seen to go towards 0 for increasing
resource squeezing, and towards 1 for vanishing squeezing. Furthermore, the F̂ F̂ ĈZ-gate is seen to
have the highest error probability due to four successful quadrature corrections necessary to avoid
qubit error, while the Î-gate leads to the lowest error probability as it is implemented in a single
computation step. In section 4.6.1 these error probabilities are compared with error probabilities
when using other relevant cluster states and computing schemes.

To gain a better understanding of the error probabilities, we consider the responsible gate
noise. The gate noise variance, for the basis settings in Fig. 4.4a and described above, is plotted
in Fig. 4.4c. In the large squeezing limit, the effective variance squeezing in the cluster state
modes of sech(2r) is a factor of 2 (3 dB) larger than the resource variance squeezing of e−2r, which
is the cost of preparing the cluster state with off-line squeezing [5]. The Î-gate, implemented
in a single computation step, has a gate noise in the range two times higher than the effective
squeezing due to Nx, Np → 2 for r →∞. The F̂ - and P̂ (1)-gate have further gate noise of around

a factor two, since they are implemented in two computation steps. Finally, the F̂ F̂ ĈZ-gate,
also implemented in two computation steps, has similar gate noise, but slightly higher due to the
noise of an additional control mode included in the gate to couple two neighbouring wires. The
gate noise is in general asymmetric in the quadratures (besides for the F̂ -gate with equal noise
factor in the two quadratures), also for the F̂ F̂ ĈZ-gate with optimized basis settings: Since Perr. in
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that of Fig. 4.4a. (b) Resulting error probabilities using variable θc in (a) optimized for F̂ F̂ ĈZ ,
relative to the corresponding error probabilities in Fig. 4.4b for fixed θc = π/4.

Eq. (4.8) rely on the product of quadrature correction success, and because the encoded GKP spike
noise is also asymmetric after the F̂ F̂ ĈZ- and P̂ (1)-gate, the error probability is not necessary
minimum with quadrature symmetric gate noise, and at low squeezing we see the majority of the
gate noise in one quadrature. Finally, in the vanishing squeezing limit the gate noise diverges.
To understand this, consider the Wigner function transformation of the generalized teleportation
in Eq. (4.5): With the diverging gate noise variance, the Wigner function is convoluted with
infinitely broad Gaussian functions in x̂ and subjected to corresponding delta function envelopes
in p̂, erasing all information of the encoded state. Together with convolutions in the p̂-quadrature
and corresponding envelopes in the x̂-quadrature, the Wigner function is ensured to go towards
vacuum for 0 dB resource squeezing. This is further described in the appendix section 4.9 with the
Wigner function transformation of single-mode gates on the DBSL.

4.4.3 Variable control mode basis

For simplicity, so far we fixed control mode basis to θc = π/4, which only leads to unity wire edge
weight in the infinite squeezing limit. Allowing variable θc implements

Ŝ
(
(−1)i4t2 tan θc

)
R̂

(
θ+

2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+

2

)
single-mode gates in each computation step with

N =

(
1
4t

−1
4t2 tan θc

−1
4t

1
4t 0 1

4t

t tan θc 0 t tan θc t tan θc 1 −t tan θc

)
for the gate noise leading to

Nx =
∑
j

N2
1j =

1

tanh4(2r) tan2 θc
+

1

tanh2(2r)

Np =
∑
j

N2
2j = tanh2(2r) tan2 θc + 1

noise factors. As a result, by varying θc we are able to distribute the gate noise between the
quadratures in order to minimize the GKP-encoded qubit errors.

To prevent unwanted couplings between wires, θc needs to be the same for all gates. With the
two-mode ĈZ(1)-gate being the gate of largest error probability, we may optimize θc to minimize



74 CHAPTER 4. ARCHITECTURE AND NOISE ANALYSIS OF...

the error probability of the (F̂ ⊗ F̂±1)ĈZ(1)-gate. In Fig. 4.5 optimized basis settings, and cor-
responding error probabilities relative to the error probabilities for fixed θc = π/4, is shown as
function of resource squeezing when including θc in the objective function in Eq. (4.13). The error
probability for the (F̂ ⊗ F̂±1)ĈZ(1)-gate, for which θc is optimized, is seen at best to decrease to
0.97 of the error probability with fixed θc, and thus the gain of variable θc is little. Furthermore,
since θc is only optimized for the (F̂ ⊗ F̂±1)ĈZ(1)-gate, for some ranges of resource squeezing,
the error probabilities for the Î-, F̂ - and P̂ (1)-gate is seen to becomes worse. In conclusion, there
may be a small advantage of optimizing θc, but this depends on the amount of resource squeezing
available, and what gates dominate the quantum algorithm to be implemented.

4.5 Other cluster states

Besides the DBSL, there are three other interesting cluster states with corresponding self-inverse
and bipartite H-graph states and thus realizable with off-line squeezing and linear optics. It
counts the quad-rail lattice (QRL) [9] with the efficient computation scheme in Ref. [107]; the
bilayer square lattice (BSL) [11, 12], also with an efficient computation scheme; and the recently
demonstrated cluster state by Asavanant et al. [37]. In the following, we refer to this last cluster
state as the modified bilayer square lattice (MBSL) since computation on this state is similar to
computation on the BSL with few modifications. Below, we summarize the computation schemes
for each cluster state focusing on the {Î , F̂ , P̂ (1), ĈZ(1)} gate set which, together with

√
π dis-

placements in x̂- and p̂-quadratures, constitute a universal Clifford gate set in the GKP-encoded
qubit subspace. Here, we apply the same search for basis settings that optimize the gate noise in
order to minimize qubits errors—as figure of merit, we use the the error probability of Eq. (4.8).
For easy comparison, the figures summarizing the different considered schemes and the resulting
gate noise are also put together in the appendix section 4.10. The resulting error probabilities are
then compared with the error probabilities for the DBSL in the section 4.6.1, while universality
through the implementation of a non-Clifford gate in the various schemes is discussed in section
4.6.2.

4.5.1 Bilayer square lattice

The 2-dimensional BSL can be generated in the time-frequency domain using a single optical
parametric oscillator [11] or solely in time domain using four squeezing sources [12] as summarized
in Fig. 4.6a. We emphasize that the time-only encoding of the BSL in [12] is not necessarily more
favourable than the frequency-time encoding in [11]—one may even argue that the frequency-time
encoding has a better scaling performance. Here, we simply present the time-only encoded version
of the setup, since it is comparable to that of the QRL and the MBSL, but it is important to note
that the analysis presented in this work holds also for the time-frequency encoded BSL.

The setup in Fig. 4.6a produces a self-inverse and bipartite H-graph state, which under phase
rotations is transformed into a cluster state. An efficient universal computation scheme is well
described by Alexander et al. [11, 12] in the language of macronodes in which each macronode
corresponds to the logic level marked in Fig. 4.6a. The computation takes place at this level
and the logic cluster state consists of square cluster states as presented in Fig. 4.6b with ±t =
± tanh(2r)/

√
2 edge weight and iε = isech(2r) self-loops. The measuring system comprises two

joint measurements for each temporal mode k: A joint measurement of the control modes B
and C in basis (−1)kθc to project the cluster state into wires as shown in Fig. 4.6c, and a joint
measurement of the wire modes A and D to implement gates on these wires. As for the DBSL, we
find that θc = π/4 is near optimal. Measuring wire modes A and B of temporal mode k in bases
θAk and θDk implements the single mode gate

Ŝ
(
(−1)k+12t2

)
R̂

(
θ+

2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+

2

)
(4.14)

from temporal mode k to k +N (1 computation step) where θ± = θDk ± θAk. The resulting gate
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Figure 4.6: Bilayer square lattice (BSL): (a) Experimental setup for generating the H-graph
state corresponding to the BSL cluster state [11, 12]. Here the device marked by asterisk is
described in Fig. 4.2 for the DBSL, and represents a switch for switching in and out states or
a GKP quadrature correction circuit. The logic level in which the computation takes place is
marked, and the corresponding logic cluster state is shown in (b) with arrows representing the
beam splitters of the measurement device, while in (c) the logic cluster state is projected into
wires for computation. The edge weights shown here are in the limit of infinite squeezing and
θc = π/4. (d) Basis setting implementing the (F̂ ⊗ F̂−1)ĈZ(1)-gate for even temporal modes k
with a minimum error probability. For uneven k, (F̂ ⊗ F̂ )ĈZ(1) is implemented by changing the
sign of the bases. The error probability in Eq. (4.8) of the single mode Î-, F̂ -, P̂ (1)-gate with
θc = π/4, and the (F̂ ⊗ F̂±1)ĈZ(1)-gate, are presented in (e) with the corresponding gate noise
shown in (f)—here, F̂ F̂ ĈZ is short for (F̂ ⊗ F̂±1)ĈZ(1). The experimental setup, logic cluster
state and its projection into wires, and the resulting gate noise, is shown together with the other
considered schemes in the appendix section 4.10 for easy comparison.
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noise for one computation step is N(p̂Ak, p̂Bk, p̂Ck+1, p̂Dk+N )T where

N =

(
1

2t2
1
2t − 1

2t 0
0 −t −t 1

)
. (4.15)

Thus, the variance of the gate noise added to the output quadratures in each computation step is
Nxε/2 and Npε/2 for the x̂- and p̂-quadrature respectively, where

Nx =
1

tanh4(2r)
+

1

tanh2(2r)

Np = tanh2(2r) + 1

are quadrature noise factors,
∑
j N

2
ij , introduced in section 4.3.2.2, and we note that they are

identical to the noise factors of the DBSL. The Î-gate is implemented in a single computation step
by choosing (

θ+

θ−

)
I

=

(
0

(−1)k+12 arctan
(
tanh−2(2r)

)) .

The F̂ - and P̂ (1)-gate are implemented in two computation steps from temporal mode k to k+2N .
Choosing basis settings 

θ+1

θ−1

θ+2

θ−2


F

=


π/2
π/2
0

2 arctan
(
tanh−4(2r)

)


F̂ is implemented with equal gate noise variance of (Nx + Np)ε/2 in x̂- and p̂-quadrature, while

P̂ (1) is realized with 
θ+1

θ−1

θ+2

θ−2


P

=


arctan 2
− arctan 2

π/2
π/2


resulting in gate noise variances of 2Nxε/2 and 2Npε/2 in x̂- and p̂-quadrature, respectively. Here
θ±1 = θDk ± θAk and θ±2 = θDk+N ± θAk+N . Notice the similarity with the DBSL: The basis
settings and gate noises are identical, and the BSL and DBSL are expected to perform single mode
gates equally well.

Measuring control modes B and C of one temporal mode in different bases leads to coupling
between the two neighbouring wires and thus allow for the implementation of two-mode gates. In
Ref. [11], the basis setting for implementing the ĈZ(g)-gate is given for the case of infinite squeezing.
Here, we extend this analysis by searching the basis setting that minimizes the error probability
of two encoded qubits after the ĈZ(1)-gate for the more relevant case of finite squeezing. To do
so, we use the same technique as for the DBSL by minimizing the objective function in Eq. (4.13).
Note that to compensate for finite squeezing distortion (as Ŝ(± tanh2(2r)) in Eq. (4.14) for single
mode gates), two computation steps are required to implement ĈZ(1). For all (F̂n ⊗ F̂m)ĈZ(1)-
gates with n,m = 0, 1, 2, 3 we find the lowest error probability for n,m = ±1 and we choose
(n,m) = (1, (−1)k+1) where k is the temporal mode index of the control modes coupling the two
wires. The resulting basis settings implementing the (F̂ ⊗ F̂−1)ĈZ(1)-gate are shown in Fig. 4.6d
for even k, while for uneven k the (F̂ ⊗ F̂ )ĈZ(1)-gate is implemented with equal error probability
by changing the sign of all bases in Fig. 4.6d. In case we allow for a variable θc in the objective
function of Eq. (4.13), we find no improvement of the error probability, and we conclude there will
be no gain of a variable θc when implementing the (F̂ ⊗ F̂±1)ĈZ(1)-gate.

Note how the basis settings in Fig. 4.6d, different from the DBSL in Fig. 4.4a and the MBSL
later in Fig. 4.7d, seem to depend on the resource squeezing in the full shown squeezing range.
The reason for this is that there exist multiple solutions for basis settings that implement a desired
ĈZ(1)-gate with a minimum error probability. The same is the case for the DBSL and MBSL,
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however, in Fig 4.4a and 4.7d a more consistent solution set of basis settings as function of resource
squeezing is shown, while here for the BSL a slightly inconsistent solution set is shown. This effect
often occurs when unnecessarily large degrees of freedom in the basis settings are used when
minimizing the objective function in Eq. (4.13). However, this does not mean that the basis
settings in Fig. 4.6d are not optimal, but is rather an example of the existence of multiple basis
setting solutions and proper use of Eq. (4.13) to derive a suitable solution for a given experimental
implementation.

The resulting error probabilities of Eq. (4.8) when correcting the quadratures after the Î-, F̂ -,
P̂ (1)- and (F̂ ⊗ F̂±1)ĈZ(1)-gate as described above are presented in Fig. 4.6e. As expected, the
two-mode ĈZ(1)-gate is seen to have the highest error probability since four successful quadrature
corrections are necessary to avoid inducing an error on the encoded qubits. Finally, the gate noise
variances are presented in Fig. 4.6f, and here we clearly see similar behavior as for the DBSL:
For infinite squeezing, the Î-gate in one computation step has a gate noise variance of twice the
effective variance squeezing, sech(2r) (as Nx, Np → 2 when r →∞), while the F̂ - and P̂ (1)-gates
implemented in two computation steps have gate noise variances of four times that. In the other
extreme of vanishing squeezing, the gate noise diverges in the x̂-quadrature, thereby erasing all
information of the encoded state as previously explained for the DBSL. This can also be seen from
the corresponding Wigner function transformation in the appendix section 4.9.

4.5.2 Modified bilayer square lattice

The experimental setup of the MBSL cluster state, recently generated by Asavanant et al. [37]
and summarized in Fig. 4.7a, is very similar to the setup of the all-time encoded BSL in Fig. 4.6a,
and we can therefore adopt the computation scheme for the BSL with only a few changes. The
corresponding cluster state at the logic level is shown in Fig. 4.7b in which we see that the square
clusters of the BSL have been replaced with “butterfly” clusters. As for the BSL, the edge weight
and self-loops are ±t = ± tanh(2r)/

√
2 and iε = isech(2r) respectively. The spatial modes C and

D of each temporal mode k constitutes wire modes, while A and B are control modes. In contrast
to the square clusters in the BSL, the butterfly clusters already contain direct edges in the wires
before potential phase rotation of the control modes. Thus we can directly “delete” the control
modes by measuring them in the x̂-basis, i.e. θc = 0, and implement the operations

Ŝ(t)R̂

(
θ+

2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+

2

)
(θc = 0)

in one computation step from temporal mode k to k+N with θ± = θCk± θDk. The resulting gate
noise is N(p̂Dk, p̂Ak, p̂Bk+1, p̂Ck+N )T with

N =

(
− 1
t 0 0 0

0 0 0 1

)
(θc = 0)

such that the gate noise variance is Nxε/2 and Npε/2 in x̂- and p̂-quadrature respectively with
quadrature noise factors of

Nx = 2/ tanh2(2r)

Np = 1
(θc = 0) .

Alternatively, we can measure the control modes in the p̂-basis, i.e. θc = π/2, rearranging the
edge weights of the butterfly cluster states to increase the edge weight between wire modes as
shown in Fig. 4.7c. In this case, the operation

Ŝ(2t)R̂

(
θ+

2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+

2

)
(θc = π/2)

is implemented with the gate noise,

N =

(
− 1

2t − 1
2t 0 0

0 0 −1 1

)
(θc = π/2) (4.16)
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Figure 4.7: Modified bilayer square lattice (MBSL): (a) Experimental setup for generating the
H-graph state corresponding to the MBSL cluster state by Asavanant et al. [37]. Here the device
marked by asterisk is described in Fig. 4.2 for the DBSL, and represents a switch for switching in and
out states or a GKP quadrature corrections circuit. The logic level in which the computation takes
place is marked, and the corresponding logic cluster state is shown in (b) with arrows representing
the beam splitters of the measurement device, while in (c) the logic cluster state is projected
into wires for computation. The edge weights shown here are in the limit of infinite squeezing
and θc = π/2. (d) shows a basis setting implementing the (F̂ ⊗ F̂ )ĈZ(1)-gate with a minimum
error probability. The error probability in Eq. (4.8) of the single-mode Î-, F̂ -, and P̂ (1)-gate with
θc = π/2, and the (F̂ ⊗ F̂±1)ĈZ(1)-gate, is presented in (e) with the corresponding gate noise
shown in (f)—here F̂ F̂ ĈZ is short for (F̂ ⊗ F̂ )ĈZ(1). Note that the gate noise variance in the
p̂-quadratures of each mode for the (F̂ ⊗ F̂ )ĈZ(1)-gate each equals that of the P̂ (1) and F̂ gate.
The experimental setup, logic cluster state and its projection into wires, and the resulting gate
noise, is shown together with the other considered schemes in the appendix section 4.10 for easy
comparison.



4.5. OTHER CLUSTER STATES 79

such that
Nx = 1/ tanh2(2r)

Np = 2
(θc = π/2) .

Other values of θc are also possible, but in this case the implemented gate as well as gate noise is
less trivial. However, in the later analysis of the ĈZ(1)-gate we do find that θc = π/2 is indeed
optimal. Notice that—unlike the BSL with square cluster states—all control modes are measured
in the same basis without an alternating sign for different temporal modes. This is because the
wire modes are directly connected with equal edge weights for all temporal modes, or connected
with three edges through two control modes, while for the square cluster states, wire modes have
two connections, each through a single control mode, but with different sign on the edge weights
depending on whether the control mode is in the next or previous temporal mode.

For θc = π/2, the basis setting(
θ+

θ−

)
I

=

(
0

2 arctan
(
tanh−1(2r)/

√
2
))

with θ± = θCk ± θDk implements the Î-gate in one computation step from temporal mode k to
k + N and gate noise variance Nxε/2 and Npε/2 in x̂- and p̂-quadrature respectively. The basis
setting 

θ+1

θ−1

θ+2

θ−2


F

=


π/2
π/2
0

2 arctan
(
tanh−2(2r)/2

)


implements the F̂ -gate in two computation steps with equal (Nx + Np)ε/2 gate noise variance in
x̂- and p̂-quadrature, while 

θ+1

θ−1

θ+2

θ−2


P

=


arctan 2
− arctan 2

π/2
π/2


implements the P̂ (1)-gate in two computation steps with 2Nxε/2 and 2Npε/2 gate noise variance
in x̂- and p̂-quadrature respectively. Here, θ±1 = θCk ± θDk and θ±2 = θCk+N ± θDk+N when
implementing F̂ and P̂ (1) from temporal mode k to k + 2N .

To couple pairs of wires for the implementation of a two-mode gate, one measures the control
modes A and B of one temporal mode k in different bases by which a coupling between the wires in
temporal modes k− 1 and k is induced. The ĈZ(1)-gate is again implemented in two computation
steps, and similar as for the BSL and the DBSL, we search the basis setting that minimizes the
objective function in Eq. (4.13) and thus the error probability in Eq. (4.8) of that particular gate.
Again, we need to investigate all (F̂n ⊗ F̂m)ĈZ(1)-gates for n,m = 0, 1, 2, 3 and find n = m = 1
to be optimal. The resulting basis setting is shown in Fig. 4.7d where θc = π/2 is found to be
optimal. Note that, unlike the DBSL and BSL, this basis setting is independent on the temporal
mode index k, as the control basis does not have an alternating sign governed by k.

The resulting error probability of the single mode Î-, F̂ - and P̂ (1)-gate, and the two-mode
(F̂ ⊗ F̂ )ĈZ(1)-gate, with the basis settings described above and in Fig. 4.7d, is shown in Fig. 4.7e.
The single mode gates are all seen to have a lower error probability than in computations with the
DBSL and BSL cluster states. This is explained by the lower quadrature noise factors, Nx and Np,
due to the structure of the butterfly cluster states with initial edges between wire modes before
projecting the logic cluster state into wires. As expected, due to the four quadrature corrections,
the error probability of the (F̂ ⊗ F̂ )ĈZ(1)-gate is largest. Gate noise variances are shown in
Fig. 4.7f. For single mode gates, in general we see lower gate noise variance than for the DBSL and
BSL, and in the large squeezing limit where Nx → 1 for r → ∞ and θc = π/2, while Np = 2, we

see the gate noise variances in x̂-quadratures of the Î-gate to equal the effective squeezing variance
of sech(2r). For vanishing squeezing, the gate noise variance diverges in the x̂-quadrature, erasing
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Figure 4.8: Quad-rail lattice (QRL): (a) Experimental setup for generating the H-graph state
corresponding the the QRL cluster state. Here, the devices marked by asterisk are described in
Fig. 4.2 and represent optical switches switching in and out states or GKP quadrature correction
circuits as in Eq. (4.7). The logic level in which the computation takes place is marked, with the
corresponding logic cluster state shown in (b) with arrows representing the beam-splitter network
of the measurement device. The edge weight shown is in the infinite squeezing limit, while for finite
squeezing it is t = tanh(2r), while iε = isech(2r) self-loops are present on all nodes. Temporal mode
indices are written in grey, while a single computation step is marked with input modes ‘in1’ and
‘in2’ and output modes ‘out1’ and ‘out2’. (c) Example of single mode computation along the cluster
state cylinder by restricting the bases with θAk = θDk and θBk = θCk, thereby implementing Û in
Eq. (4.17) in each computation step. With two computation steps, the Ŝ(t) distortion in Eq. (4.17)
due to finite squeezing can be compensated in the second step by implementing Ŝ(t−1). Or, more
generally, any single-mode Gaussian gate can be implemented as Ĝ = Û1Û2. Here, input modes
in spatial modes B (blue) are ignored. After implemention of gates, the output modes marked
with a pink circle are quadrature corrected. (d) Example of implementing the (F̂ ⊗ F̂ )ĈZ(1)-gate
between input modes ‘in2’ and ‘in3’. Since all gates are implemented on pairs of modes, first one
computation step is required to guide the in2 and in3 modes to the (F̂ ⊗ F̂ )CZ(1)-gate, while gates
of the form Ŝ(t−1)Û can be implemented on other computation modes. After the (F̂ ⊗ F̂ )CZ(1)-
gate, all computation modes are aligned to the same vertical position in the lattice using Î-gates
(notice that Ŝ(t±1)Ŝ(t∓1) = Î). To prevent accumulating gate noise, GKP quadrature correction
are performed after every implemented gate on modes marked with pink circle. The experimental
setup and logic cluster state is shown together with the other considered schemes in the appendix
section 4.10 for easy comparison.

all information of the encoded state as is also the case for computing with BSL and DBSL (also
eluded by the Wigner function transformation in the appendix section 4.9). Notice that, unlike
the DBSL and BSL, the gate noise of the (F̂ ⊗ F̂ )ĈZ(1)-gate is not symmetric in the quadratures
of the two modes.

4.5.3 Quad-rail lattice

In Ref. [8], it was proposed to generate a cluster state with a quad-rail lattice (QRL) structure in
the frequency domain from a single optical parametric oscillator while in Ref. [9] it was suggested
to construct a time domain version of the QRL clusters state. With temporal encoding, the
generated state has a cylindrical topology reminiscent of the DBSL, BSL and MBSL, allowing for
computation along the cylinder with information encoded on the circumference of the cylinder.
The scheme for generating the temporally encoded QRL state is summarized in Fig. 4.8a. Since
the QRL is self-inverse and bipartite, this QRL H-graph state has a corresponding QRL cluster
state (under phase rotations) which we consider in the following.
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An efficient computation scheme on the QRL cluster state is presented in [107] in the language
of macronodes. It corresponds to the logic level marked on Fig. 4.8a which is followed by a
measurement device consisting of a beam-splitter network of four beam splitters (BS1–4) and four
homodyne detections. The cluster state at the logic level is shown in Fig. 4.8b. With the logic level
at a beam-splitter depth of only one, the edge weight of t = tanh(2r) is larger than in the DBSL,
BSL and MBSL, while the self-loops are equal, iε = isech(2r). The logic cluster state consists
of two-mode entangled states as in the generalized teleportation circuit in section 4.3.2, and no
projection of the cluster state into wires before computation is necessary. This, together with the
larger edge weight, reduces the gate noise and thus makes computation on the QRL more efficient.
On the other hand, the increased complexity of the measurement device (a joint measurements of
four modes) makes the computation scheme presented here more tricky and may seem less intuitive.

One computation step is marked in Fig. 4.8b. It implements a two-mode operation from input
modes Ck (in1) and Bk (in2) to the output modes Ck + N (out1) and Bk + 1 (out2). In the
following, we will refer to the mode in computation from in1(2) to out1(2) as computation mode
1(2). It is possible to decouple the two computation modes 1 and 2 by restricting the basis settings
to θAk = θDk and θBk = θCk. In the same way as in Eq. (4.9), this effectively cancel the the beam
splitter BS3 and BS4, since equal phase shifts commute with the beam splitter. Then, single-mode
gates can be implemented using BS1 and BS2 in the same way as for the generalized teleportation
in section 4.3.2, but the same gate will be applied to both computation modes 1 and 2 due to the
basis restriction. That is, Û ⊗ Û will be implemented, where

Û = Ŝ (tanh(2r)) R̂

(
θ+

2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+

2

)
(4.17)

with θ± = θCk±θDk. Similarly, using the basis permutation rules in [107], restricting to θDk = θBk
and θAk = θCk implements Û ⊗ Û on modes from in1 and in2 to out2 and out1, respectively. As
a result, when implementing Û ⊗ Û , the modes in computation may travel straight across each
other on the cluster state lattice or they may do a 90◦ change in their computation direction on
the lattice depending on the basis restriction. For implementation of single mode gates, we will
mainly focus on the former case in which one mode (computation mode 1) travels in the direction
of the cluster state cylinder, while the other mode (computation mode 2), travelling around the
cylinder, is ignored as illustrated in Fig. 4.8c. Regardless of the basis restriction, the gate noise of
one computation step is N(p̂Ak, p̂Dk, p̂Bk+1, p̂Ck+N )T with

N =


− 1

tanh(2r) 0 0 0

0 − 1
tanh(2r) 0 0

0 0 1 0
0 0 0 1

 ,

leading to equal quadrature noise factors in the two computation modes of

Nx =
1

tanh2(2r)

Np = 1

in x̂- and p̂-quadratures, respectively.

As for the generalized teleportation circuit, the single-mode Î-gate is implemented in a single
computation step with basis setting(

θ+

θ−

)
I

=

(
0

2 arctan
(
tanh−1(2r)

))

with gate noise variance Nxε/2 and Npε/2 in x̂- and p̂-quadratures. The F̂ - and P̂ (1)-gates are
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implemented in two computation steps: With basis setting
θ+1

θ−1

θ+2

θ−2


F

=


π/2
π/2
0

2 arctan
(
tanh−2(2r)

)


F̂ is implemented with equal gate noise variance in x̂ and p̂ of (Nx +Np)ε/2, while
θ+1

θ−1

θ+2

θ−2


P

=


arctan 2
− arctan 2

π/2
π/2


implements P̂ (1) with gate noise variances of 2Nxε/2 and 2Npε/2 in x̂ and p̂, respectively. Here,
for the mode in computation travelling straight along the cylinder, θ±1 = θCk ± θDk and θ±2 =
θCk+N ± θDk+N while (θBk, θAk) = (θCk, θDk) and (θBk+N , θAk+N ) = (θCk+N , θDk+N ).

To implement the ĈZ(1)-gate, we have investigated (F̂n ⊗ F̂m)ĈZ(1) for n,m = 0, 1, 2, 3 and
find that n = m = 1 leads to the lowest error probability in Eq. (4.8) of the GKP-encoded qubits.
With the basis setting 

θAk
θBk
θCk
θDk


CZ

=


π/2− arctan(1/2)

0
π/2 + arctan(1/2)

0

 ,

(Ŝ(t) ⊗ Ŝ(t))(F̂ ⊗ F̂ )ĈZ(1) is implemented in a single computation step, where the two modes
in computation goes from in1 and in2 to out2 and out1 respectively (i.e. they do not cross, but
each mode is redirected 90◦). Here, (Ŝ(t) ⊗ Ŝ(t)) is the distortion due to finite squeezing, and is
compensated for in each computation mode in a second computation step with basis setting(

θ+

θ−

)
S(t−1)

=

(
0

2 arctan
(
tanh−2(2r)

)) .

As a result, (F̂ ⊗ F̂ )ĈZ(1) is implemented in two computation steps with equal gate noise variance
in all four quadratures of (Nx + Np)ε/2 as for the F̂ -gate. As gates on the QRL are in general
performed on pairs of modes in computation and requires two computation steps (with the excep-
tion of the Î-gate), implementing (F̂ ⊗ F̂ )ĈZ(1) among other computation modes may be tricky.
However, an example of a possible implementation is shown in Fig. 4.8d.

The gate noise variance for each of the implemented gates in {Î , F̂ , P̂ (1), (F̂⊗F̂ )ĈZ(1)} is shown
in Fig. 4.9a as a function of the initial squeezing of the p̂-quadrature variance in the resource state,
e−2r. Notice that in the high squeezing limit, the gate noise of the Î-gate is equal to the effective
variance squeezing of the cluster state modes, sech(2r), which is better than seen for the other
computation schemes presented in this work, and is due to the large edge weight in the logic
cluster state with no projection of the cluster state necessary before computation. The F̂ - and
P̂ (1)-gate, implemented in two computation steps, naturally has double gate noise compared to
the Î-gate, and so does the (F̂ ⊗ F̂ )ĈZ(1)-gate, unlike the ĈZ(1)-gates implemented on the DBSL,
BSL and MBSL. This improvement for the (F̂ ⊗ F̂ )ĈZ(1)-gate happens because no extra control
modes are included when coupling two computation modes. In the limit of vanishing resource
squeezing, the gate noise variance of each computation diverges in the x̂-quadrature, erasing all
information of the encoded state as for the generalized teleportation circuit in Eq. (4.5).

To prevent gate noise accumulating on the GKP-encoded qubits, quadrature corrections as
described in section 4.3.3 should be performed on modes in computation after each implemented
gate. Here, with two computation modes in each computation step, two quadrature correction
devices are necessary: One in each spatial mode B and C as marked in Fig. 4.8a. After quadrature
correcting modes as shown on the examples in Fig. 4.8c and d, the error probabilities of Eq. (4.8)
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Figure 4.9: (a) Gate noise variance of the Î-, F̂ -, P̂ (1)- and (F̂ ⊗ F̂ )ĈZ(1)-gate (in short F̂ F̂ ĈZ)
on the QRL cluster state as functions of input resource squeezing in Fig. 4.8a. Here, e−2r and
sech(2r) marks the resource and effective squeezing variance. Note that the gate noise variance in
each of the four quadratures when implementing F̂ F̂ ĈZ is equal to the gate noise variance when
implementing the F̂ -gate. The gate noise here is shown together with the other considered schemes
in the appendix section 4.10 for easy comparison. (b) Resulting error probabilities of Eq. (4.8)
after quadrature corrections.

are shown in Fig. 4.9b for each of the four gates Î, F̂ , P̂ (1) and (F̂ ⊗ F̂ )ĈZ(1). As expected, with
four successful quadrature corrections required to avoid qubit error, the (F̂ ⊗ F̂ )ĈZ(1)-gate has
the highest error probability. In the following section 4.6.1, it is compared with the DBSL, BSL
and MBSL.

4.6 Discussion

Below, in section 4.6.1 we compare the cluster states and computation schemes presented and
discussed in section 4.4 and 4.5, while the figures summarizing the different computation schemes
and resulting gate noise is shown side-by-side in the appendix section 4.10. In section 4.6.2 we
then comment on computation universality with these cluster states.

4.6.1 Cluster state comparison

For all the four cluster states considered in section 4.4 and 4.5, the implemented two-mode ĈZ(1)-
gates lead to the highest error probability of the GKP-encoded qubits among the gates of the
set {Î , F̂ , P̂ (1), ĈZ(1)}. An indicative measure of the performance of a particular cluster state
for quantum computing is thus the error probability associated with the implementation of the
ĈZ(1)-gate. In Fig. 4.10a, these are plotted for the DBSL, BSL, MBSL and the QRL. Here, the
error probability of ĈZ(1) implemented on a canonically generated square lattice (SL) cluster state
in [3] is plotted for comparison.

As discussed in section 4.3.3, the error probability in Eq. (4.8) is fuelled by the gate noise, the
noise of the GKP qubits as well as the noise introduced in quadrature error correction. Gate noise
is governed by the amount of squeezing of cluster state while the noise of the qubits and correction
is produced by the finite squeezing of the peaks in the GKP state. Here, as described in section
4.4.2, we have assumed the peak variances of both quadratures in the GKP-states to equal the
squeezing resource variance of e−2r/2. To see how much the finite squeezing in the GKP-encoding
and correction contributes to the error probability, the ĈZ(1) error probability in the case of zero
gate noise (corresponding to setting σ2 = 0 in Eq. (4.6)) is also plotted in Fig. 4.10a. No matter
what computation scheme is considered with the GKP-encoding used here, we will not be able to
perform better than the case of zero gate noise, as the noise contributions from the GKP-encoding
and quadrature correction are unavoidable.
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Figure 4.10: (a) Error probabilities for ĈZ(1)-gates implemented on the DBSL in section 4.4, the
BSL, MBSL and QRL in section 4.5, and on the canonically generated square lattice (SL) cluster
state in [3]. Depending on the cluster state, the implemented ĈZ(1)-gates have a Fourier gate bi-
product on each mode. Note that the error probabilities for the DBSL and BSL are overlapping.
The grey area marks the error probability in case of zero gate noise, where qubit errors are caused
only by the available squeezing in the GKP-encoding. (b) Error probabilities in (a) relative to that
of the DBSL.

The DBSL, BSL and MBSL are seen to have similar performance, while the QRL is superior
and almost match the performance of the canonically generated SL cluster state. Approximately
2.5 dB additional squeezing is necessary in the squeezing resources for the DBSL and BSL to match
the performance of the QRL. This performance advantage of the QRL is due to the larger cluster
state edge weight in the logic level, and that the cluster state needs no projection by measurement
of control modes, which adds additional noise to the state in computation. It is worth considering
whether similar computation schemes can be developed for the DBSL, BSL and MBSL, possibly
by placing the logic levels closer to the squeezing sources in the setups after the first beam-splitters
(leading to temporally delocalized macronodes in the macronode language).

To quantify further the performance difference of the DBSL, BSL and MBSL, the ĈZ(1) er-
ror probabilities are plotted in Fig. 4.10b relative to the ĈZ(1) error probability of the DBSL.
Here, the BSL and DBSL are seen to have very similar performance in the investigated range of
resource squeezing. The MBSL performs better with an error probability down to 70% of the
error probability in the DBSL at 21 dB resource squeezing, while the relative error probability is
approximately 83% using the currently achievable squeezing of 15 dB [115]. However, in practice
one also has to account for experimental imperfections and setup complexity when deciding which
setup to use: The generation scheme of the DBSL is technically simpler than that of MBSL as
it requires only two squeezing sources and three interference points contra four squeezing sources
and five interference points.

At first sight, with only two squeezing sources, the DBSL seems to require less resources than
the BSL and MBSL. However, in the DBSL cluster state, only every second temporal mode holds
control modes, while for the BSL and MBSL every single temporal mode includes both control
and wire modes. As a result, the DBSL only contains half as many modes for computation in
the same number of temporal modes. Doubling the long delay, Nτ , in the generation setup in
Fig. 4.2a doubles the cylindrical cluster state circumference and compensates for only having wire
modes in every second temporal modes. However, by doubling the circumference, the time needed
to implement gates doubles as well. As a result, there is a cost of using only two squeezing sources
in the DBSL, which unfolds as fewer computation modes or longer computation time, but not as
additional computation noise.

Finally, we compare the architecture of the computation schemes on the considered cluster
states. The DBSL, BSL and MBSL all use the same principles of measuring control modes to
control coupling between wires with modes in computation. Turning on and off coupling between
wires makes it intuitive to implement multi-mode gates decomposed into single- and two-mode
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gates, while on the QRL one has to take care of the surrounding modes when implementing two-
mode gates as for the ĈZ(1)-gate in Fig. 4.8d. However, the control-mode based architectures only
allow coupling between neighbouring wires, whereas the QRL is more “flexible” as introduced in
[107]. As an example, consider an arbitrary swap-gate, X̂ij , swapping the modes in computation
on wires i and j. On the DBSL, a swap-gate (with an unimportant Fourier gate applied to the two
output modes) can be performed between two neighbouring wires in two computation steps from
temporal mode (k − 2, k) to (k + 2N, k + 2N − 2) with the basis setting

θAk−2

θBk−2

θAk
θBk

θAk+N−2

θBk+N−2

θAk+N−1

θBk+N−1

θAk+N

θBk+N


X

=



π/4
−π/4
π/4
−π/4
π/2
0
π/2
0
π/2
0


independent on the amount of resource squeezing, and with a gate noise variance of Nxε/2 and
Npε/2 in x̂- and p̂-quadratures, respectively, where Nx = tanh−4(2r) + 3 tanh−2(2r) and Np =
tanh2(2r) + 3. Thus, to swap two modes on wires separated by n wires in-between, n + 1 swap-
gates are required on each mode leading to 2(n+ 1) required computation steps. On the QRL, on
the other hand, using vertically travelling modes in Fig. 4.8, two modes can be swapped in only
a single horizontal computation step independent on the initial distance between the modes on
the cluster state lattice. This is illustrated in Fig. 4.11 for X̂14 with a mode distance of 2. As a
result, depending on the interconnectivity required in the quantum algorithm to be implemented,
computation times can be shorter on the QRL than on the DBSL, BSL and MBSL.

Lastly, we want to comment on the performance of the QRL compared to the canonically
generated SL cluster state. It is clear that the QRL performs almost as well as the SL, while the SL
is much more challenging to generate since it requires on-line squeezing to perform canonical ĈZ(g)
operations and the total squeezing cost is in general larger [5, 116]. However, for a fair comparison,
it should be mentioned that the ĈZ(1) implemented in [3] on the SL was not optimised. It was
implemented with four computation steps, where each of the x̂- and p̂-quadrature corrections in the
GKP-scheme were performed in two different computation steps, both leading to more noise on the
GKP-encoded qubits. The ĈZ(1) error probability on the SL may be improved by optimizing the
required basis settings to implement the ĈZ(1)-gate in fewer computation steps, and performing
GKP quadrature corrections of both the x̂- and p̂-quadrature on the last cluster state mode as for
the computation schemes considered in this work.

4.6.2 Towards universality and fault-tolerance

The four different computation schemes in section 4.4 and 4.5 involve only Gaussian measurements
(in the form of homodyne detection) on Gaussian cluster states. In this pure Gaussian realm, one
is only able to perform universal Gaussian computation [5], which with Gaussian input-modes
may be simulated classically [97, 117]. To achieve universal quantum computation, non-Gaussian
operations or resources are required [118]. There exist different proposals on how to achieve a
universal gate set, which we summarize and discuss in the following. Non-Gaussianity of states
and operations has been obtained in numerous systems [119], including some recent results on
optical non-Gaussian state preparation [99] and non-Gaussian transformations on cluster states
[120].

In many CV quantum computing architecture proposals, the Gaussian gate set is complemented
with the non-Gaussian cubic phase gate, K̂(χ) = eiχx̂

3/3 [5, 14] to achieve universal quantum com-
putation on the bosonic modes [118]. Such a non-Gaussian gate can for example be implemented
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Figure 4.11: Implementation of a swap-gate between computation mode 1 and 4, X̂14, separated
by computation mode 2 and 3, on (a) the DBSL and on (b) the QRL. Since only coupling between
neighbouring wires is possible on the DBSL in (a), a circuit depth of 3 is required, corresponding
to 6 horizontal computation steps necessary along the cylindrical cluster state. The same goes for
the BSL and the MBSL. On the QRL in (b), the same swap-gate can be implemented in a single
horizontal computation step using crossing identity gates, Î. Here, computation mode 1 crosses
computation mode 2 and 3, while computation mode 4 is lead all the way around the cluster state
cylinder to appear in the next horizontal computation step, crossing other computation modes on
its way.

by redirecting specific modes of the cluster to a photon counter, thereby realizing a measurement
induced non-Gaussian gate transformation [5]. Moreover, in [12] it is shown how K̂(χ) may be

implemented on the BSL using an ancillary cubic phase state, |χ〉 =
∫

ds eiχs
3/3 |s〉x, as a non-

Gaussian resource switched into the logic level of the computation scheme as an input state. Such
cubic phase state may be prepared using photon counting [14]. Given the similarities between
computation on the BSL, the DBSL and the MBSL, it is straight forward to adopt this method of
implementing K̂(χ) by inputting |χ〉 in these computation schemes. A similar approach may also
be viable on the QRL.

Using GKP-states with symmetric quadrature noise, one can expect bad performance of the
cubic phase gate due to the applied phase by K̂(χ) on the finitely squeezed GKP peaks being a cubic
function of x̂ [14, 41]. A more efficient approach to quantum universality is to consider a gate set
that is only universal in the encoded logic space rather than in the full, infinite-dimensional Hilbert
space. This requires an ample supply of qubit magic states such as the Hadamard eigenstates,
|HL〉 = cosπ/8 |0L〉 + sinπ/8 |1L〉. By injecting these states into the computation wires as input
states using an optical switch, the non-Clifford π/8-gate can be executed with only Gaussian
transformations of the bosonic modes [14, 40]. Such magic GKP states may be prepared similarly
to the GKP-encoded input states, or directly distilled using GKP |0L〉-states [39]. In conclusion, the
inherent non-Gaussianity of the GKP-states is sufficient to achieve universal quantum computation
in the GKP-encoded qubit subspace using solely Gaussian transformations. Moreover, adding
magic state distillation to the scheme may not increase the experimental requirements significantly
since the squeezing needed for the distillation is expected to be lower than the squeezing already
required to reach fault-tolerant Clifford computation [3, 39].

Finally, for fault-tolerant computation, the qubit error correction scheme—concatenated with
the GKP error correction scheme—should be considered when estimating the required squeezing.
With the quadrature corrections of states in computation after each implemented gate, gate noise
and finite squeezing in the approximate GKP-encoded qubit states are translated to qubit errors.



4.7. CONCLUSION 87

For fault-tolerant computation, these qubit errors are corrected with an appropriate qubit error
correction scheme, where a logic qubit is encoded in multiple GKP-qubits. Here, it is not ap-
propriate just to choose a qubit error correction scheme with a large qubit error threshold, as
considerations on how to practically implement the scheme are also of critical importance. For
this reason, here we will not estimate a squeezing threshold for fault-tolerance. As an example,
the 7-qubit Steane code with a ∼ 10−3 error threshold requires two-mode gates between arbitrary
modes in computation [110], while the discussed computation schemes in section 4.4 and 4.5 only
implement two-mode gates between neighbouring computation modes. Thus, to implement the
7-qubit Steane code a number of swap-gates are required for each syndrome measurement, each
leading to an increase in the combined qubit error probability before qubit error correction. The
QRL may have an advantage when considering the implementation of a qubit error correction
scheme owing to its flexibility as previously discussed and illustrated for a swap-gate in Fig. 4.11.
Future work includes considerations on the practical implementation of qubit error correction on
a suitable and realizable cluster states—such proposal is outlined in chapter 6.

4.7 Conclusion

In summary, we have reviewed the principles of CV measurement-based QC based on generalized
teleportation, we have proposed an efficient computation scheme for the DBSL cluster state that
was experimentally generated in chapter 3 [31], and we have carefully analysed and compared
quantum computation based on that state with the BSL, QRL, and MBSL cluster states.

Through a careful study of the added gate noise for the different cluster states, we find that
the DBSL, the BSL and the MBSL exhibit similar performance. We also find that the QRL is
superior in terms of performance and flexibility, allowing implementation of quantum circuits in
a minimum number of time steps. Finally, we have reviewed proposals for implementation of a
universal gate set, either on the bosonic modes or just in the GKP-encoded qubit subspace, and
conclude that universal qubit computation is possible in all four considered cluster states, given
the availability of GKP-states.

To optimise the performance of the various computation schemes, we introduced a tool to find
the basis setting implementing a desired gate with minimum GKP-encoded qubit errors. We believe
that this technique for finding the optimal basis settings will be important for future developments
and optimizations of new types of gates and algorithms. It should however be noted that the
technique of optimizing the basis setting might not be the only strategy for minimizing the error
probability: We have only considered GKP-qubit encodings on a square grid in phase space which
is appropriate for symmetric noise addition among conjugate quadratures. However, since the
considered computation schemes in general add noise asymmetrically in the quadratures, it may
be beneficial to encode the qubits in a rectangular lattice. Since different gates have different gate
noise asymmetry in x̂- and p̂-quadrature, the optimal lattice ratio depends on which gates dominate
the circuit to be implemented: As an example, the Fourier gate, F̂ , in general adds symmetric gate
noise in which case a square lattice is optimal, while the gate noise asymmetry of the identity gate,
Î, depends on the resource squeezing. One can argue, that with the ĈZ-gate being the noisiest
gate, the GKP lattice ratio should be optimized to minimize qubit error for this gate. In this case,
for the DBSL, BSL and MBSL, the optimal ratio again depends on the resource squeezing, while
for the superior QRL with symmetric gate noise, the square lattice seems optimal. However, one
further complication is that when performing the ĈZ-gate or the P̂ -gate, not only gate noise is
added, but also noise from the state in computation is added due to the addition of quadratures
in these gates. Thus, the optimal lattice ratio depends as well on the noise performance of the
states in computation, and to determine a general optimal lattice ratio for a given application is
outside the scope of this work. Finally, one has to keep in mind that changing the lattice ratio
also alters the logic operators in the GKP-encoding. As an example, with a rectangular lattice the
logic Hadamard gate becomes a combination of the Fourier and squeezing gates.

Throughout this article, we have assumed all cluster states to be pure, while in practice, the
cluster state will have some degree of mixedness in the form of excess noise in the anti-squeezed
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Figure 4.12: (a) Graph notation of a single-mode computation step on the DBSL. For an input in
temporal mode k, the mode numbering translates as (1, 2, 3, 4, 5, 6, 7) = (Bk,Ak,Ak−1, Bk+N −
1, Ak+ 1, Bk+N + 1, Bk+N) where A and B are spatial modes in Fig. 4.2a. (b) Corresponding
circuit where the blue and yellow two-mode gates represent ĈZ(g)-gates of weights t and −t,
respectively. (c) Outline of the symplectic matrix S = SRSBSSCZ representing the quadrature
transformation in (b).

quadratures. However, it has been shown in Ref. [38] that excess noise in the anti-squeezed quadra-
ture does not affect the performance of the computation, and thus our purity assumption in this
article is well justified. It is however worth mentioning that in practice it is still favorable to
produce highly pure squeezed states as large excess noise will decrease the amount of squeezing
due to inevitable phase instabilities of the experimental setup.

In this chapter, we have not studied the actual implementation of qubit error correction. Thus,
as an outlook, it would be interesting to study how a qubit error correction algorithm is most
efficiently implemented such that the squeezing threshold for fault-tolerant quantum computation
is minimized. An interesting solution could be topological QC, for which the resulting squeezing
threshold is within the already experimental demonstrated range [43, 121]. In topological QC, the
qubits are encoded in a two-dimensional plane while the actual computation takes place in a third
dimension, thus rendering the need for the construction of 3D cluster states. Proposals do exist
for the generation of 3D cluster states [44, 45], and the next interesting step is thus to analyse the
performance of these states using the techniques developed in this article.

4.8 Appendix: Calculation of quadrature tansformations

In this appendix section, we present an example of the quadrature transformation of the single-
mode computation step on the DBSL that leads to the expressions Eq. (4.10) and (4.12) in section
4.4. The modes involved are shown on the graph in Fig. 4.12a with the corresponding circuit in
Fig. 4.12b. We will use the mode numbering labelled in Fig. 4.12a.

The approximate cluster state (ancillary mode 2–7) consists of vacuum states squeezed by
√
ε

and connected by ĈZ(g)-operations of weights that are described by the adjacency matrix

A =



0 0 0 0 0 0 0
0 0 t t t −t 0
0 t 0 0 0 0 −t
0 t 0 0 0 0 −t
0 t 0 0 0 0 t
0 t 0 0 0 0 −t
0 0 −t −t t −t 0


.

Thus, in the Heisenberg picture, we consider the generation of the cluster state as a quadrature
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transformation described by the symplectic matrix

SCZ =

(
I 0
A I

)
on the input and initially squeezed ancillary modes, where I and 0 are the 7× 7 identity and zero
matrix, respectively (note that the quadratures of the input mode 1 are left unchanged by SCZ).
The input mode 1 is then connected to the cluster state by a beam-splitter (the beam-splitter of
the measurement device in Fig. 4.2a), leading to the quadrature transformation

SBS =

(
B 0
0 B

)
,

where

B =



1/
√

2 −1/
√

2 0 0 0 0 0

1/
√

2 1/
√

2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

Here we have ignored beam-splitter operations on the control modes 3–6, as these operations can
be directly compensated for by adding/subtracting the measurement outcomes of the homodyne
detectors as shown in Eq. (4.9). Finally, each mode j, except the output mode 7, is measured
in basis x̂(θj). This is represented first by a phase rotation, R̂(θj), followed by a homodyne
measurement of x̂j . Thus, before the x̂-measurements, the quadratures are transformed as

SR =

(
c s
−s c

)
,

where c and s are matrices with (cos θ1, · · · , cos θ7) and (sin θ1, · · · , sin θ7) in the diagonal, respec-
tively, and zero elsewhere. For implementing single-mode gates, the control mode measurement
bases are set to (θ3, θ4, θ5, θ6) = (−1)iθc(1, 1,−1,−1), where θc = π/4 for simplicity, and the out-
put mode cannot be phase rotated, θ7 = 0. Here, i is the wire number as shown in Fig. 4.2b.
The total quadrature transformation of the input and squeezed cluster state modes just before
measurements is then

q̂′ = SRSBSSCZ q̂ = Sq̂ ,

where q̂ = (x̂1, · · · , x̂7, p̂1, · · · , p̂7)T and q̂′ = (x̂′1, · · · , x̂′7, p̂′1, · · · , p̂′7)T are vectors of quadrature
operators before and after the transformation as marked in Fig. 4.12b. It should be noted that
for the cluster state prepared as a H-graph with off-line squeezing only, the effective amount of
squeezing of the cluster state modes is ε = sech(2r), where r is the squeezing parameter of the
initially prepared off-line squeezed state with variance e−2r [5].

Next, we solve for the anti-squeezed x̂-quadratures of the cluster state, x̂anc. = (x̂2, · · · , x̂7)T ,
as a function of the measured x̂-quadratures, x̂meas. = (x̂′1, · · · , x̂′6)T :

x̂meas. = Ux̂anc. + Vq̂in

m
x̂anc. = U−1x̂meas. −U−1Vq̂in ,

where q̂in = (x̂1, p̂1, · · · , p̂7)T while U and V are the parts of S that transform x̂anc. and q̂in to
x̂meas. as shown in Fig. 4.12c. Finally, we substitute the x̂-quadratures of the cluster state with
the quadratures of output mode 7, q̂out = (x̂′7, p̂

′
7):

q̂out = Yx̂anc. + Zq̂in

= Y
(
U−1x̂meas. −U−1Vq̂in

)
+ Zq̂in

=
(
Z−YU−1V

)
q̂in + YU−1x̂meas. .
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With x̂meas. → (m1, · · · ,m6) when measuring, YU−1x̂meas. corresponds to the by-product dis-
placement, while M ≡ Z − YU−1V of size 2 × 8 corresponds to the combined gate symplectic
matrix G and gate noise matrix N in Eq. (4.2) as M = (G N). Extracting G as the first two
columns of M transforming (x̂1, p̂1) to (x̂′7, p̂

′
7), we get

G =
1

sin θ−

(
1
t′ cos θ+ + 1

t′ cos θ−
1
t′ sin θ+

−t′ sin θ+ t′ cos θ+ − t′ cos θ−

)
which is the symplectic matrix corresponding to the operation in Eq. (4.10) where t′ = (−1)i4t2

and θ± = θ1 ± θ2. N is associated with the remaining 6 columns of M;

N =

(
− 1

4t2
1
4t

1
4t − 1

4t
1
4t 0

0 t t t −t 1

)
, (4.18)

which leads to the quadrature noise factors coined in Eq. (4.12) when t = tanh(2r)/2.
The procedure shown here for calculating the gate symplectic matrix, G, and gate noise matrix,

N, is not limited to the single-mode one computation step on the DBSL, but represents a general
procedure that can be used to analyse the noise of all gates in this work (irrespective of the
cluster state) as done in section 4.4 and 4.5: If SCZ represents the construction of any cluster
state and SRSBS represents any Gaussian measurement, we can determine the resulting linear
quadrature transformation corresponding to an arbitrary Gaussian operation on a single- or multi-
mode input state. For each case, we need to keep track of the following quadratures: x̂anc. including
anti-squeezed x̂-quadratures of the cluster state; q̂in including the input mode quadratures and
squeezed p̂-quadratures of the cluster state leading to gate noise; x̂meas. including the transformed
x̂-quadratures to be measured; and q̂out including the output mode quadratures of non-measured
modes.

4.9 Appendix: Wigner function transformations

In this appendix section we discuss the single-mode computation step in the DBSL, BSL and MBSL
in the Wigner function representation. Here, for simplicity, the basis setting for implementing the
Î-gate is chosen, while to shorten the notation, we have post-selected on measurement outcomes
equal zero. As described in the section 4.3.2, non-zero measurement outcomes lead to an unim-
portant displacement in phase-space. For the QRL, the two-mode cluster state corresponds to
the one considered for the generalized teleportation in section 4.3.2, and so the Wigner function
transformation is similar to that presented in Eq. (4.5).

For a single-mode Î-gate performed on the DBSL in one computation step, described in sections
4.4, the transformation of the Wigner function can be calculated in the same way as we did for
the generalized teleportation in section 4.3.2, resulting in

Wout(x, p) = NG1/ε(x)

∫
dη4Gε(η4)G4t2/ε(p− η4)

∫
dη3Gε/(4t2)(η3)G1/(4t2ε)(x− η3)×∫

dη2G4t2ε(η2)G16t4/ε(p− η2 − η4)

∫
dη1Gε/(16t4)(η1)Win

(
x− η1 − η3

p− η2 − η4

)
,

where N is a normalization factor and Gδ is a normalized Gaussian function of δ/2 variance. The
transformation includes two convolutions in each quadrature and corresponding envelopes in the
conjugate quadrature due to the Fourier relation between quadratures. Comparing with Eq. (4.18),
and referring to the mode numbering in Fig. 4.12a, in the x̂-quadrature the first convolution with
Gε/(16t4) corresponds to noise from the finitely squeezed mode 2, while the third convolution
with Gε/(4t2) corresponds to noise of control modes 3, 4, 5 and 6. In the p̂-quadrature, the
second convolution with G4t2ε corresponds to noise from the control modes 3, 4, 5 and 6, while
the last convolution with Gε corresponds to the finite squeezing noise of the output mode 7.
In the limit of infinite squeezing, r → ∞, (assuming t 6= 0) the convolution functions become
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delta functions since ε = sech(2r) → 0, while their corresponding envelopes in the orthogonal
quadratures become infinitely broad, and so Wout(x, p) → Win(x, p). In the limit of t = 0 where
we expect no information to pass from the input mode 1 to the output mode 7, the first three
convolutions lead to the Wigner function of an infinitely squeezed state in p̂, erasing all information
of the input state, while the last convolution with Gε in p̂-quadrature ensures that the output
Wigner function equals the initial squeezed Wigner function of mode 7, Wout(x, p) = G1/ε(x)Gε(p),
which equals vacuum for no squeezing as ε = sech(2r) = 1 when r = 0.

On the BSL, the single-mode Î-gate performed in one computation step transforms the Wigner
function as

Wout(x, p) = NG1/ε(x)

∫
dη4Gε(η4)G2t2/ε(p− η4)

∫
dη3Gε/(2t2)(η3)G1/(2t2ε)(x− η3)×∫

dη2G2t2ε(η2)G4t2/ε(p− η2 − η4)

∫
dη1Gε/(4t4)(η1)Win

(
x− η1 − η3

p− η2 − η4

)
.

Similar to the DBSL, comparing with N in Eq. (4.15), the convolutions with Gε/(4t4) and Gε/(2t2)

in the x̂-quadrature correspond respectively to noise added from the first wire mode Ak and the
two control modes Bk + 1 and Ck + N in a square cluster of the BSL in Fig. 4.6a,b. In the
p̂-quadrature, the convolutions with G2t2ε corresponds to noise from the control modes Bk + 1
and Ck +N , while the convolution with Gε corresponds to noise from the output mode Dk +N .
Again, in the limit of infinite squeezing, Wout(x, p)→Win(x, p), while for t = 0 the output Wigner
function becomes Wout(x, p) = G1/ε(x)Gε(p) as expected.

For the MBSL, the Wigner function transformation of the Î-gate in one computation step with
the control basis θc = π/2 is

Wout(x, p) = NG1/ε(x)G2ε+4t2/ε(p)

∫
dη3Gε/(4t2)(η3)G1/ε(x− 2η3)

∫
dη2G2ε(η2)×

G4t2/ε(p− η2)

∫
dη1Gε/(4t2)(η1)Win

(
x− η1 − η3

p− η2

)
.

Due to the direct edges along the computation wires of the butterfly cluster states in Fig. 4.7,
the Wigner function transformation becomes less intuitive. Here, the envelope G2ε+4t2/ε(p) corre-
sponds to an envelope of G4t2/ε(p) convoluted with G2ε. Comparing with Eq. (4.16), the first and
third convolution in the x̂-quadrature, both with Gε/(4t2), correspond to noise added from wire
mode Dk and control mode Ak. The second convolution with G2ε in the p̂-quadrature corresponds
to noise from both control mode Bk+1 and the output mode Ck+N . In the infinite squeezing limit,
Wout(x, p)→Win(x, p). For t = 0 we get Wout(x, p) = G1/ε(x)G2ε(p)G2ε(p) = G1/ε(x)Gε(p).

If, instead of the identity gate Î, an arbitrary single-mode Gaussian gate of one computation
step is implemented with symplectic matrix G, the resulting Wigner function transformation cor-
responds to that presented above, but with the arguments of Win transformed by G−1 as shown
in Eq. (4.5) for the generalized teleportation. For single-mode gates implemented in two compu-
tation steps, the output Wigner function of the first step becomes the input Wigner function of
the second step, leading to addition of the gate noise variance since a convolution of two Gaussian
functions is a Gaussian function with the combined variance, i.e. additive Gaussian gate noise. For
multi-mode gates, more modes are involved leading to more convolutions in the expression of the
output Wigner function, and the Wigner function representation becomes tedious. However, the
principle is the same as for single-mode gates: The gate noise leads to convolutions with Gaussian
functions of variance equal the gate noise variance.

4.10 Appendix: Cluster state comparison cheat sheet

In section 4.4 and 4.5 the computation schemes on the different cluster states are analysed sep-
arately in order to facilitate easy lookup of a specific cluster state. The different schemes are
discussed and compared in section 4.6, while in this appendix section the schemes are arranged
side by side in Fig. 4.13 for easy comparison.
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Figure 4.13: Setup, cluster state in the logic level, and resulting gate noise of each the DBSL,
BSL, MBSL, and QRL cluster states studied in the sections 4.4 and 4.5. For the DBSL, BSL, and
MBSL, the projection into wires is shown as well, while this is not required for computation on
the QRL.



Chapter 5

Deterministic multi-mode gates on
a scalable photonic quantum
computing platform

In this chapter, the paper “Deterministic multi-mode gates on a scalable photonic quantum com-
puting platform” of Ref. [33] is presented. This paper is authored by Mikkel V. Larsen, Xueshi
Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen, and is submitted for
publication.

In this work, following the computation scheme presented in chapter 4 [32] with few variations,
we implement quantum gates by projective measurements on the cluster state generated in chapter
3 [31]. We then characterize the implemented gates by multi-mode gate tomography using entangle
inputs. This work is partly experimental and partly theoretical.

Both single- and two-mode gates are demonstrated, and together they constitute a univer-
sal multi-mode Gaussian gate set that allows for universal quantum computation if combined
with Gottesman-Kitaev-Preskill encoded qubits [14]. However, with the inherent noise from fi-
nite squeezing, the implemented gates are noisy, and we study the gate performance as gate noise
comprising additive Gaussian noise in the quadratures of the computation modes. In this work
we characterize gate noise by gate tomography, and we discuss how to reduce and correct the
gate noise, while in chapter 6 [34] a complete implementation of quantum error correction for
fault-tolerant computation is proposed.

Appendix A and C (page 147 and 153) complements the supplementary information section 5.3
of this chapter, describing the experimental optical table and optimization of basis control.

From www.arXiv.org as pre-print arXiv:2010.14422 (2020).

5.1 Abstract

Quantum computing can be realized with numerous different hardware platforms and computa-
tional protocols. A highly promising approach to foster scalability is to apply a photonic platform
combined with a measurement-induced quantum information processing protocol where gate op-
erations are realized through optical measurements on a multipartite entangled quantum state—a
so-called cluster state [1, 2]. Heretofore, a few quantum gates on non-universal or non-scalable
cluster states have been realized [22–29], but a full set of gates for universal scalable quantum
computing has not been realized. We propose and demonstrate the deterministic implementation
of a multi-mode set of measurement-induced quantum gates in a large two-dimensional (2D) opti-
cal cluster state using phase-controlled continuous variable quadrature measurements [2, 5]. Each
gate is simply programmed into the phases of the high-efficiency quadrature measurements which

93
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execute the transformations by teleportation through the cluster state. Using these programmable
gates, we demonstrate a small quantum circuit consisting of 10 single-mode gates and 2 two-mode
gates on a three-mode input state. The demonstrated quantum computing platform operates
at the telecom wavelength and is therefore easily network connectable. Moreover, fault-tolerant
and universal quantum computing can be realized by increasing the amount of entanglement and
combining it with error-correctable Gottesman-Kitaev-Preskill qubits [14, 39–41].

5.2 Main text

Recent remarkable advances in developing fully programmable quantum computing platforms have
led to a plethora of groundbreaking results in quantum information science including the demon-
stration of fault-tolerant operations on an error-corrected logical ion-trap qubit [122] and the
demonstration of quantum sampling at a super-classical rate in a 53-qubit superconducting quan-
tum computer [123]. Albeit marked progress, the currently realized qubit-based platforms for
quantum computing are still strongly limited in size while the proposed methods for up-scaling are
stymied by significant technical challenges.

An alternative is the continuous variable (CV) photonic platform which has recently gained in-
terest due to its proven scalability potential for measurement-based quantum computation (MBQC)
as exemplified by the generation of 2D cluster states with thousands of modes [31, 37] (where
Ref. [31] is the content of chapter 3) and the sequential operation of one hundred single-mode
gates [25]. In CV quantum computing [2, 14, 108, 118], information is encoded and processed
in bosonic harmonic oscillators—e.g. the optical field—that are described by states in infinite-
dimensional Hilbert spaces [76, 119]. Although the idea of using CVs for quantum computing
dates back more than 20 years [118], it is only within the last few years that feasible models for
fault-tolerant large-scale CV MBQC were conceived [3, 39, 40, 43, 121]. Our demonstration rep-
resents a critical step towards these CV computing models. It constitutes the first realization of a
fully deterministic and programmable multi-mode computation platform for MBQC.

5.2.1 Architecture and hardware

In CV MBQC, quantum information processing is realized by teleporting the constituent gates
through a computationally universal cluster state, comprising quadrature entangled modes in a
2D grid [2]. For Gaussian gates, these teleportation protocols are effectuated by quadrature mea-
surements of the cluster state modes, where the determined gate or sequence of gates is fully
programmed into the phases of the quadrature measurements, i.e. the measurement bases. The
reconfigurable and programmable nature of the cluster state quantum computer is illustrated in
Fig. 5.1a by the different layers of operation from software to hardware. First, the quantum algo-
rithm is specified and subsequently resolved into a certain sequence of single- and two-mode gates,
such as the rotation, shear, squeezing and the controlled-Z gate. This sequence of gates is then
converted into a sequence of phases that finally controls the consecutive quadrature measurements
to effect the quantum algorithm on the cluster state.

At the hardware level, the processor comprises a 2D cluster state of time-encoded entangled
modes generated by injecting squeezed light (produced by optical parametric oscillators (OPOs) at
the wavelength of 1550 nm) to a setup of two consecutive highly asymmetric fiber Mach-Zehnder
interferometers as shown in Fig. 5.1b. The first interferometer with a delay of τ produces a time-
encoded one-dimensional (1D) cluster state [9, 19] with two spatial modes, A and B, while the
second interferometer of delay Nτ coils up the 1D cluster state to form a 2D cluster state [31]
represented by a cylindrical graph as illustrated in Fig. 5.1c. The computational logic level of the
cluster state is located just prior to the termination of the second interferometer. Each node of
the graph corresponds to spatial modes A and B in different temporal modes, k, with duration
τ , and the number of temporal modes on the cylinder circumference is N . We have chosen fiber-
interferometer delays of 50 m and 600 m leading to a temporal mode duration of τ ≈ 250 ns and
N = 12.
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Figure 5.1: Experimental setup and computation scheme. (a) Decomposition of a quantum circuit
in a quantum processing unit (QPU) into gates implemented on a cluster state by projective
measurements of the input and cluster state modes. (b) Experimental setup generating a coiled-up
1D cluster state in the logic level where quantum information is encoded. The −π/4 phase-shifts
transforms the generated H-graph state into a cluster state [32]. Computation takes place in
the logic level using a two-mode measurement device (MD) consisting of a beam-splitter (BS3)
and two homodyne detectors (HDA and HDB) with basis settings controlled using electro-optical
modulators (EOM) driven by an arbitrary wavefrom generator (AWG). Measurement outcomes are
acquired using a digital storage oscilloscope (DSO). The experimental setup is further described
in the supplementary information section 5.3. (c) Coiled-up 1D cluster state in the logic level on
which input states, |ψ0,··· ,5〉, can be encoded on the circumference. By measuring control modes,
the cluster state is projected into wires on which single- and two-mode gates can be implemented
by gate teleportation. Bright and dark nodes indicate spatial modes A and B respectively, while
the red arrows indicate BS3-operation of the MD. (d,e) Cut-outs of the cluster state showing
implementations of single- and two-mode gate operations, Û and V̂ , defined by the MD basis
settings. Here the coiled-up cluster state at (1) is seen to be projected into wires at (2) prior to
the implementation of gates at (3). The corresponding circuits are shown as well and are further
described in supplementary information section 5.4 together with the computation scheme.

5.2.2 Computation scheme

Input quantum states for computation may be encoded on the circumference of the cluster state,
and for the implementation of the desired quantum gates, they are teleported along the cylinder by
projective measurement of each mode. The actually implemented gate depends on the measurement
bases of the teleportation protocols. Note that the measurements are performed chronologically—
swirling around the cylinder—and that the order of the measurements is inconsequential. In the
following, we summarize the computation scheme with details described in the supplementary
information section 5.4.

At the logic level, a joint measurement is performed on spatial modes A and B of every temporal
mode k. The two-mode measurement device consists of a beam-splitter (BS3) followed by two
homodyne detectors each measuring in a basis determined by a phase θ—i.e. measuring the
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quadrature x̂(θ) = x̂ cos θ + p̂ sin θ where x̂ and p̂ are the electric field amplitude and phase (or
position and momentum) quadratures, respectively. Temporal modes of odd k are used as control
modes: Measuring these in basis θc = (−1)(k−1)/2π/4 of A and B, the cluster state is projected
into N/2 wires along the cylinder as illustrated in Fig. 5.1c [7]. These wires, which at the logic
level consist of segments of two-mode entangled states, can be used for single-mode computation
by gate teleportation [10]. Performing a joint measurement between mode B, k representing an
input state and one mode, A, k, of a wire segment, the input state is teleported through a gate,
Û , to mode B, k + N of the same wire where the operation Û depends on the measurement
basis setting, (θA,k, θB,k)U (see Fig. 5.1d). To implement two-mode gates, modes of neighboring
wires must be coupled which can be done by changing the measurement basis, θc, of some of the
control modes [11, 32]. Depending on the basis setting on the wire modes and the coupling control
mode, ({θA,i, θB,i}i=k,k+2,k+N,k+N+1,k+N+2)V , a two-mode gate operation V̂ is implemented as
illustrated in Fig. 5.1e.

In the Heisenberg picture, an implemented Gaussian n-mode gate operation transforms the
quadratures as

q̂′ = Gq̂ + Np̂i + Dm , (5.1)

where q̂ = (x̂1, · · · , x̂n, p̂1, · · · , p̂n)T and q̂′ = (x̂′1, · · · , x̂′n, p̂′1, · · · , p̂′n)T are 2n vectors of quadra-
tures of the gate input and output modes, respectively. For single- and two-mode gates, n = 1
and 2. In Eq. (5.1), the first term represents the Gaussian gate with G being the corresponding
symplectic matrix that depends on the measurement basis setting. The last term, Dm, represents
a teleportation by-product of displacements with m being a vector of measurement outcomes,
transformed by the basis setting dependent matrix D. Finally, the middle term, Np̂i, represents
noise occurring in the gate with p̂i being a vector of initial momentum squeezed quadratures of
the cluster state modes, transformed by the gate noise matrix N. G, N and D are given in the
supplementary information section 5.4 for different basis settings.

An ideal gate transformation is performed when the gate noise and displacement terms are zero.
Since the measurement outcomes, m, are known, the displacement by-product can be compensated
for by feedforward, which is done here by adding −Dm to the measurement outcomes of output
state quadratures, q̂′. The gate noise, however, is only negligible for cluster states generated from
infinitely squeezed vacuum states, i.e. Var{p̂i} = 0. Such states are however nonphysical and in
practice, non-zero additive Gaussian noise will inevitably occur and must eventually be accounted
for by quantum error-correction. It is interesting to note that while the gate noise critically depends
on the amount of multi-mode squeezing in the cluster, the transformation matrix G can be perfectly
realized independent on this squeezing. This feature is similar to conventional CV teleportation
[124].

5.2.3 Quantum gates

For single-mode gates, the implemented operation corresponding to G in Eq. (5.1) is

(−1)wR̂(θ+/2)Ŝ(tan θ−/2)R̂(θ+/2) , (5.2)

where w = (k mod N)/2 ∈ {0, · · · , 5} is the wire number, R̂(θ) = eiθ(x̂
2+p̂2)/2 and Ŝ(s) =

ei ln(s)(x̂p̂+p̂x̂) are rotation and squeezing operations, and θ± depends on the basis settings as θ± =
±θA,k + θB,k. With the basis settings described in the supplementary information section 5.4.1 we

implement the rotation gate, R̂(θ), a modified shear gate, F̂ jP̂ (σ) = F̂ jeiσx̂
2/2, and the squeezing

gate, Ŝ(er). Note, this modified version of the shear gate, with F̂ j = R̂(jπ/2) where j = (−1)w,
makes it possible to implement shear in a single computation step of Eq. (5.2), while F̂ j can be
compensated for in a second computation step if necessary. {R̂(θ), Ŝ(er)} constitutes a universal
single-mode Gaussian gate-set [6], while {R̂(π/2), F̂ jP̂ (1)} constitutes a universal single-mode
Clifford gate-set on GKP-encoded qubits [14]. Note that phase-space displacements are ubiquitous
in MBQC, and they are simply accounted for in the measurement results.

We characterize the implemented gates with gate tomography by letting the input mode be
entangled to a reference mode and measuring the quadrature correlations between the reference and
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Figure 5.2: Single-mode gates. (a) Symplectic matrices corresponding to G in Eq. (5.1) for the
implemented rotation, shear (modified by F̂ ), and squeezing gates, measured by gate tomography
as described in supplementary information section 5.5 and summarized in (b). (c) Measured gate
noise variance in each output quadrature for each implemented gate (solid points). Also, gate noise
compensated by −6 dB to account for the effect of the gate noise matrix N in Eq. (5.1) is shown
(hollow points), in which case it should agree with the initial momentum squeezing variance, which
is independently measured to be −4.4 dB (dashed line). Each point in (a) and (c) is extracted from
10 000 measurements, while the error bars are estimated as standard deviation when binning the
10 000 measurements into smaller datasets. The same is the case for datapoints in Fig. 5.3 and
5.4. (d) Single-mode gate noise as a function of pump power, where zero pump power corresponds
to no squeezing in which case the cluster state is replaced by vacuum. Here the measured gate
noise (solid points) is for R̂(θ), averaged over θ, x̂ and p̂, and error bars are estimated as standard
deviation hereof. Black-solid line represents the estimated gate noise using the setup parameters,
while the dashed line corresponds to the case with no correlations. Green and purple lines show the
expected gate noise for more optimal parameters with ≥ 90% optical efficiencies and for 7.7 MHz
squeezing bandwidth as in the experimental setup (green), together with a broader squeezing
bandwidth of 100 MHz (purple)—see supplementary information section 5.6 for a derivation and
further discussion.

the gate-teleported output modes [25]. The resulting symplectic matrices are shown in Fig. 5.2a
with the corresponding circuit summarized in Fig. 5.2b—for details, see supplementary information
section 5.5.1. The symplectic matrix elements are seen to agree well with the theoretical values.
The gate noise is shown in Fig. 5.2c. For our computation scheme, we expect a gate noise of
Var{Np̂i} = 4e−2rV0 (supplementary information section 5.4.1) which is four times larger than
the initially squeezed state variance of e−2rV0 (where V0 is the vacuum variance). Therefore, by
compensating the measured gate noise by the four vacuum units, 1/4 ≈ −6 dB, we expect to regain
the initially measured squeezing variance of 4.4 dB. The compensated noise level is illustrated in
Fig. 5.2c and is seen to agree well with the expected value except for the squeezing gate where the
squeezing level, er = tan θ−/2, becomes highly sensitive to phase fluctuations in θ− = −θA,k+θB,k
for large |r|.

To further demonstrate the impact of the cluster state entanglement, the measured gate noise is
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circuit shown in (b). (c) Measured gate noise in the four output quadratures for each implemented
controlled-Z gate (solid points), together with gate noise compensated for the effect of the gate
noise matrix N in Eq. (5.1) (hollow points). The values for compensation are given in the supple-
mentary information Fig. 5.10 for each value of g. The compensated gate noise can be compared
with the initial squeezing variance for cluster state generation, measured to be −4.4 dB (dashed
line). Estimation of error bars are described in Fig. 5.2.

plotted in Fig. 5.2d as a function of the OPO pump power that controls the squeezing process. For
vanishing squeezing (zero pump power) where the cluster state is simply a vacuum state, gate noise
of 6 dB is measured, corresponding to the classical limit of our scheme. When increasing the OPO
pump power, the gate noise reduces below this limit due to the increasing cluster state entangle-
ment. The measured gate noise agrees well with that estimated from the experimental parameters
of the setup described in section 3.6.2 [31]. Obviously, for fault-tolerant computation, much lower
gate noise is required. Gate noise with potential improvements of the setup are estimated and plot-
ted in Fig. 5.2d as well. It is clear that higher optical efficiencies and larger squeezing bandwidth
significantly decrease the gate noise and can bring the system towards fault-tolerant computation.
See supplementary information section 5.6 for a more comprehensive discussion on gate noise.

To complete the universal Gaussian gate set, we implemented a two-mode gate—a modified
version of the controlled-Z gate, (F̂ ⊗ F̂ j)ĈZ(g) = (F̂ ⊗ F̂ j)eigx̂⊗x̂. Here w in j = (−1)w is the
lower wire number of the two wires on which the gate is implemented. The required basis setting
and resulting gate noise is derived in supplementary information section 5.4.2. To shorten the
notation, in the following we denote (F̂ ⊗ F̂ j) simply as F̂ F̂ . Note that the transformation F̂ F̂
can be easily reversed in subsequent transformations to realize a pure ĈZ(g) gate [32]. Together
with the implemented single-mode gates, {F̂ F̂ ĈZ(g), R̂(θ), Ŝ(er)} constitutes a universal multi-
mode Gaussian gate-set [118], while {F̂ F̂ ĈZ(1), R̂(π/2), F̂ jP̂ (1)} constitutes a multi-mode Clifford
gate-set on GKP-encoded qubits [14]. For gate tomography of the implemented F̂ F̂ ĈZ(g)-gate,
quadrature correlations of the output state and reference states entangled to the input states are
measured (see supplementary information section 5.5.2). The resulting symplectic matrix, together
with the corresponding gate tomography circuit, is shown in Figs. 5.3a and b, and the measured
symplectic matrix elements are seen to agree well with the expected values. The gate noise, shown
in Fig. 5.3c, is larger than for single-mode gates since two-mode gates are implemented in two
computation steps and depend on g. By compensating for the effect of N, we again retrieve the
expected squeezing variance of −4.4 dB with good agreement.
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Figure 5.4: Quantum circuit. (a) Circuit encoding a logic qubit in the 3-qubit bit-flip error
correction code, rewritten in terms of the CV F̂ F̂ ĈZ(1) and F̂±1 = R̂(±π/2) gates to take GKP-
encoded qubits as input. (b) Implementation of the encoding circuit (marked by gray area in (a)) on
three coupled cluster state wires, together with the corresponding circuit for circuit tomography
described in supplementary information section 5.5.3. (c) Resulting circuit symplectic matrix
estimated from quadrature correlations of input and reference modes in the circuit tomography.
Here green pads show the expected values, listed for Scircuit in (a). (d) Measured gate noise (green
bars), compared to expected gate noise for vacuum in place of the cluster state (dashed bars).
Also, gate noise compensated for the combined circuit gate noise matrix N is shown (purple bars),
with compensated values given in supplementary information Fig. 5.11. The compensated gate
noise can be compared with the initial squeezing variance for cluster state generation of −4.4 dB
(dashed gray line). Estimation of error bars are described in Fig. 5.2.

5.2.4 Quantum circuit

To demonstrate the flexibility of combining gates into a quantum circuit, here we implement as
an example a three-mode circuit, which for GKP qubits as inputs states encodes a logical qubit in
the three-qubit bit-flip error correction code (see Fig. 5.4a). The implementation of the circuit on
the cluster state is illustrated in Fig. 5.4b. It includes two F̂ F̂ ĈZ(1) gates corresponding to qubit
controlled-Z and Hadamard gates, two F̂±1 = R̂(±π/2) gates corresponding to qubit Hadamard
gates, and eight identity gates which can be thought of as qubit memory and may be unnecessary
depending on the surrounding circuit. The details of the implementation and associated gate noise
are discussed in supplementary information section 5.4.3.

To characterize the performance of the implemented circuit, we perform circuit tomography
similar to the strategy applied for gate transformations (see supplementary information section
5.5.3). The resulting gate symplectic matrix, shown in Fig. 5.4c, is seen to resemble the desired
matrix. In Fig. 5.4d, the measured gate noise is shown and compared to the expected gate noise
for a cluster state with no entanglement. It is clear that the entanglement of the cluster state leads
to a reduction of the gate noise. To verify the measured gate noise values, we back-propagate the
combined gate noise through the circuit by compensating for N (as presented in supplementary
information Fig. 5.11) with the result shown in Fig. 5.4d, and the estimated values agree well with
the initially measured degree of squeezing of 4.4 dB. Note that the large total circuit noise stems
from the accumulation of gate noise associated with multiple concatenated gates and the lack of
error correction. To prevent gate noise accumulation as required for fault-tolerant computation,
GKP quadrature error correction should be performed as often as possible, preferably in between
each implemented gate [32].
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5.2.5 Outlook

We have demonstrated the machinery for performing MBQC on our cluster state architecture,
which relies on comparatively low-tech photonic technology at room temperature, and illustrated
its computational flexibility by combining 12 gates into a simple quantum circuit. The single- and
two-mode gates can be organized in any order on the six input modes of the cluster state, thereby
allowing for the implementation of an arbitrary six-mode circuit transformation of, in principle,
infinite depth. The demonstrated platform is currently restricted to a six-mode circuit, but due
to its inherent deterministic nature, the platform can be efficiently up-scaled to allow for large-
scale computation. This can be attained by increasing the bandwidth of the optical squeezing
process and complement it with broadband homodyne detectors. Bandwidths of several GHz are
possible [35, 125], so the number of input modes can be increased to several thousands, bringing
the platform well into NISQ (noisy intermediate-scale quantum technology) territory [102, 126].
Furthermore, with the platform’s telecom compatibility, multiple processing units may straight-
forwardly be combined and scaled up without the need of complex quantum transduction. More
generally, instead of the all-temporal encoding used here for constructing and scaling the optical
cluster state, it is also possible to use spectral [20, 96] and spatial [17] degrees of freedom.

To attain fault-tolerant universal quantum computing on our platform, the gate noise must
be significantly decreased and the quantum information must be encoded as qubits, such as GKP
qubits. Fault-tolerance is attained by increasing the amount of squeezing of the cluster state to
lower the gate noise and by using GKP ancilla states for quantum error-correction to prevent the
accumulation of noise. The squeezing threshold for fault-tolerance of similar MBQC schemes has
been estimated to be in the range of 10–17 dB [38, 43] which should be compared to the state-
of-the-art of squeezing of 15 dB [115]. GKP states have been generated in vibrational modes of
trapped ions [101] and in microwave cavity fields [100], but it remains a challenge to produce them
in the optical spectrum [112, 127–130]. Once this challenge has been solved, all ingredients for
fault-tolerant, universal, scalable quantum computing are available.

5.3 Suppl. Inf.: Experimental setup

The experimental setup in Fig. 5.1b is shown here in Fig. 5.5 with more details of the measurement
device including control of the basis settings for different temporal modes. The cluster state
generation scheme is similar to the scheme presented in chapter 3 [31], where a detailed description
of the cluster state generation setup can be found in the corresponding methods section 3.3. The
optical table of the experimental realization is presented in appendix A (page 147). To summarize:
Two-mode squeezing in spatial mode A and B is generated by interfering two single mode squeezed
states in a beam splitter denoted BS1. By delaying one mode of the two-mode squeezed states by
τ and subsequently interfering the two modes (A and B) at beam-splitter BS2, a one-dimensional
(1D) cluster state, namely a dual-rail wire [9, 19] with temporal mode duration of τ , is formed.
The 1D cluster state is coiled up by a long delay of Nτ to form a cylinder with N temporal modes
in the circumference. Locally on the cylinder surface the coiled-up cluster state can be pictured
as a 2-dimensional (2D) cluster state of parallel 1D cluster states. In chapter 3 the coiled-up 1D
cluster state is then interfered with itself by beam-splitter BS3 to form a double bilayer square
lattice [31, 32]. However, for cluster state computation, here we will consider the coiled-up cluster
state just before BS3, while BS3 is part of a joint measurement device for implementing quantum
gates by projective measurements. As such, in the experimental setup, the modes in computation
are located just before BS3, and is marked as the logic level in Fig. 5.5. A computation scheme
in this logic level is presented in chapter 4 [32], while here we use a slightly modified scheme as
presented in section 5.4.

In chpater 3 [31], the generated coiled up 1D cluster state is in practice a H-graph state [7].
Here, we rotate the phases of every mode in the logic level by −π/4 to transform this H-graph
state into a cluster state with real edges. The −π/4 phase-rotations on both spatial mode A
and B commutes with BS3, and thus for simplicity, in the experimental realization we apply the
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Figure 5.5: Schematics of the experimental setup showing the details of the measurement device
for gate implementation by projective measurements, while details on the setup for cluster state
generation can be found in the methods section 3.3 [31]. Red and blue represents free-space and
single-mode fiber optics respectively. In the measurement device P indicates polarization control
while θ indicates active phase control using a fiber stretcher [30]. The required basis setting
sequence in the homodyne detectors (HD) to implement a desired gate is controlled using electro-
optical modulators (EOM) in the local oscillators (LO). The EOM is driven using an amplified
two-channel arbitrary waveform generator (AWG), and the measured quadrature time traces are
acquired on a digital storage oscilloscope (DSO). The AWG, scope and sample/hold locking scheme
is triggered from a function generator (FG).

−π/4 phase-rotations directly onto the the local oscillators, LOA and LOB , of the two homodyne
detectors HDA and HDB . Thus, in the following, the generated state is considered as a cluster
state, and not a H-graph state.

In the measurement device, the phase relation of the input modes of BS3 is actively locked by
tapping off and detecting about 1% of the power in spatial mode A, and the DC measurement
value is fed back via a PID to a fiber phase controller—a so-called DC-lock. The LO phases
of the homodyne detectors are phase-locked in similar fashion using DC-locks, thereby enabling
stable measurements of the p̂- and x̂-quadrature of the spatial modes A and B. Finally, using an
electro-optical phase modulator (EOM) in each local oscillator, the homodyne detector bases can
be individually and dynamically controlled in each spatial mode for different temporal modes. To
prevent technical noise from the probe beams used for phase-locking of BS1–3 and the homodyne
detectors, a sample/hold locking scheme is used, where a probe beam is chopped on and off as
described in the methods section 3.3 [31]. All phase locks are activated when the probe is on, while
when the probe is off, the phase-lock feedback is kept constant while acquiring data with basis
settings controlled for each mode by the EOMs to implement a desired gate. Quadrature time
traces from the homodyne detectors are acquired on a digital storage oscilloscope (DSO), and for
each temporal mode k the measurement outcome is extracted using the corresponding temporal
mode function

fk(t) =

{
N (t− kτ)e−κ

2t2 , |t− kτ | < τ/2

0 , otherwise
, (5.3)

where N is a normalization factor of units s−1. Here, κ is optimized to be 2π × 2.0 MHz to
minimize the gate noise. In the data acquisition we measure 228 temporal modes, consecutively,
corresponding to 19 turnarounds of the cylindrical cluster state for N = 12. As shown in section
5.5, this allows us to implemented and characterize multiple gates at once in parallel.

The experimental setup is operated at the telecom wavelength of 1550 nm to minimize propa-
gation losses in optical fibers (blue lines in Fig. 5.5). For the short delay line a 50 m fiber is used
leading to τ ≈ 250 ns temporal mode duration, while for the long delay line 600 m is used leading
to N = 12. For phase locks, fiber stretchers of negligible optical losses are used as introduced in
section 2.6.2 [30]. The EOMs for setting the homodyne detection bases are of model MPZ-LN-10
from iXblue with 10 GHz bandwidth. To control the EOMs, a two channel arbitrary waveform
generator (AWG) of model M4i.6631-x8 from Spectrum Instruments with 1.25 GS/s sampling rate
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and 400 MHz bandwidth is used to generate the required waveforms to measure in a basis set-
ting sequence implementing a desired gate. The waveform signals from the AWG driving the
EOMs are amplified using THS3491 operational amplifiers (op-amps) from Texas Instrument with
a 8000 V/µs slew rate. To compensate for electrical responses in the AWG, op-amps and EOMs,
before the experiment is carried out the AWG waveforms are optimized by inserting each EOM in
a Mach–Zehnder interferometer, and feeding back the resulting applied phase shift from the EOMs
to the AWG in order to update the waveform targeting a desired phase shift sequence. As a result,
we are able to switch the homodyne detection basis from −π/2 to π/2 (both stable within 1% of
the value) within 8 ns, followed by a constant phase of the desired value after switching. More
details on optimization of waveforms are presented in appendix C (page 153).

5.4 Suppl. Inf.: Computation scheme

In the experimental setup shown in Fig. 5.1b, and explained in detail in section 5.3, a dual-rail
1D cluster state [9, 19] is generated and coiled up into a cylinder with N temporal modes in the
circumference to form a cluster state with a local 2D topology. The 1D cluster state can be used
for computation along the cluster state [10, 25], but here, with the cluster state coiled up, the goal
is instead to perform computation with information flowing along the cylinder, i.e. across the 1D
cluster state. The scheme for doing so is explained in the following, and the required basis settings
for implementing single-mode and two-mode gates are described in section 5.4.1 and 5.4.2, while
in section 5.4.3 we combine single- and two-mode gates to implement a circuit.

In the language of graphical calculus of Gaussian states [7], the generated 1D cluster state
has edge weights of ±t = ± tanh(2r)/2 and self-loops of isech(2r) [9], where r is the squeezing
parameter of the initial momentum squeezed states. This is an approximate cluster state with the
variance of the nullifiers,

n̂A,i = p̂A,i − t (−x̂A,i−1 − x̂A,i+1 − x̂B,i+N−1 + x̂B,i+N+1)

n̂B,i = p̂B,i − t (x̂A,i−N−1 − x̂A,i−N+1 + x̂B,i−1 + x̂B,i+1) ,
(5.4)

vanishing in the limit of infinite squeezing:

Var{n̂A,i} = Var{n̂B,i} = V0sech(2r)→ 0 , for r →∞ , (5.5)

where V0 = 1/2 is the variance of vacuum for ~ = 1, and the subscript indicates the mode numbering
in Fig. 5.6. Since the edge weight, t, depends on the squeezing parameter, r, the required basis
setting for implementing a desired quantum gate will in general depend on r. Such scheme is
described in detail in chapter 4 [32] for the cluster state considered here, namely the double bilayer
square lattice (DBSL). However, in practice, it is inconvenient to have the basis settings depend
on r, as the exact initial squeezing most often is unknown at the point the experiment is carried
out and may vary slightly from time to time. Instead, here we redefine the generated state to have
the same graph but with edge weights ±t = ±1/2, i.e. we drop the squeezing dependent tanh(2r)
in the edge weights. The resulting 1D graph state is by the definition in Ref. [4] a cluster-type
state1 with the variance of the nullifiers in Eq. (5.4) equal

Var{n̂A,i} = Var{n̂B,i} = 2V0e
−2r → 0 , for r →∞ , (5.6)

which as well vanish in the limit of infinite squeezing. Note that at high squeezing levels where
sech(2r) ≈ 2e−2r, the nullifier variances for the approximate cluster state in Eq. (5.5) and the
cluster-type state in Eq. (5.6) are equal, while for vanishing squeezing, (5.5) approaches the vacuum
variance, V0, while (5.6) approaches 2V0. Thus, for finite squeezing, the redefined cluster-type state

1A cluster-type state, with graph vertices a ∈ G and connected nodes b ∈ Na to a, is defined in [4] as a multi-mode
Gaussian state where the variance of p̂a −

∑
b∈Na

tbx̂b (here the non-zero variable tb is added by us to generalize

the cluster-type states to have variable edge weights) vanishes in the limit of infinite squeezing. Thus, cluster-type
states are a more general group of states allowing cluster state approximations not covered by graphical calculus for
Gaussian pure states [7].



5.4. SUPPL. INF.: COMPUTATION SCHEME 103

-π/4

-π/4

-π/4

-π/4

-π/4

-π/4

-π/4

-π/4

-π/4

-π/4

π/2

π/2

π/2

π/2

π/2

A,–1:

B,N–1:

S(e-r) 0

S(e-r) 0

S(e-r) 0

S(e-r) 0

S(e-r) 0

S(e-r) 0

S(e-r) 0

S(e-r) 0

S(e-r) 0

S(e-r) 0

A,0:

B,N:

A,1:

B,N+1:

A,2:

B,N+2:

A,3:

B,N+3:

S(√2)

S(√2)

-π/4

-π/4-π

S(e-r) 0

S(e-r) 0

S(√2)

S(√2) -π/4

-π/4

π/2S(e-r) 0

S(e-r) 0

=

=

=

–π/4

–π/4

π/4

Wire projection

a)

c)

–t = –1/2
t = 1/2

–2t = –1

2t = 1

-π/2

BS1 BS2τ

–π/4

–π/4

–π/4

–π/4

π/4

π/4

+N+2N +0

–1

+0

+1

+2

+3

+N+2N +0

Temporal mode, k

–1

+0

+1

+2

+3

b)

Temporal mode, k

w=0

w=1

d)

(xA(B),k , pA(B),k)
i i

(xA(B),k , pA(B),k)

A B
BS3

k

Figure 5.6: (a) Section of the coiled-up dual-rail 1D cluster state in the logic level of Fig. 5.1b,
forming a local 2D cluster state of parallel vertical 1D cluster states. Here the bright and dark
modes represent spatial mode A and B, respectively, while temporal mode k = 0 is marked as a
red area. Modes in the gray shaded area are control modes, which are measured in basis x̂(±π/4)
to project the 2D cluster state into wires. The red arrow in each temporal mode indicates the
beam-splitter of the measurement device, BS3, and can for the control modes be compensated for
as shown in Eq. (5.10). (b) After measuring control modes, the cluster state is projected into
wires with wire number w = (k mod N)/2. (c) Shows the 1D cluster state generation and wire
projection, while (d) shows the corresponding simplified circuit after measurements. Here D and
N corresponds to displacements and noise as described in Eq. (5.7), (5.8) and (5.9).

with t = 1/2 is more noisy than the more traditional approximate cluster state with t = tanh(2r)/2.
Fortunately, we find that the noise produced by gates implemented on the generated graph state
considered as a cluster-type state is at the same level or, in some cases, even lower than if we use
the graph state as an approximate cluster state. In the following, unless it may lead to confusion,
we will use the term ‘cluster state’ for both cluster-type states and approximate cluster states.

The rules for graphical calculus of Ref. [7] applies to approximate cluster states and are there-
fore, to our knowledge, not necessarily valid for the more general cluster-type states. As a result,
here we will derive the necessary graph transformation. A section of the coiled-up 1D cluster state
is shown in Fig. 5.6a. To perform computation, we need to project the cluster state into wires
along the cylinder, on which gates can be implemented [32]. To do so, control modes (in the grey
shaded areas of Fig. 5.6a) are measured in alternating bases of (−1)(k−1)/2π/4 where odd k is the
mode number of the temporal control modes in Fig. 5.6a, i.e. measuring x̂(±π/4) = (x̂ ± p̂)/

√
2

of control modes by homodyne detection. From standard graphical calculus of Ref. [7], we expect
this measurement to form new edges of weight ±2t as shown in Fig. 5.6b. To see that this is
indeed the case for the cluster-type state with t = 1/2, we consider the 1D cluster state generation
scheme in Fig. 5.6c: After measuring the control modes, the generation scheme can be simplified
to separate the generation of two-mode entangled states as shown in Fig. 5.6d (to derive this, we
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have used the method of calculating quadrature transformations outlined in section 4.8 [32]). Here
D symbolises a displacement in phase-space, D̂(α), by Re{α} and Im{α} in x̂- and p̂-quadrature,
respectively, depending on the control mode measurement outcomes as

D̂A,k(α) , α =
1

2
√

2

[
(j − i)mA,k−1 + (−j − i)mA,k+1

+ (j − i)mB,k+N−1 + (j + i)mB,k+N+1

]
,

D̂B,k+N (β) , β =
1

2
√

2

[
(−j + i)mA,k−1 + (−j − i)mA,k+1

+ (−j + i)mB,k+N−1 + (j + i)mB,k+N+1

]
,

(5.7)

where j = (−1)w with w = (k mod N)/2 being the wire number, while i is the imaginary unit, i2 =
−1. Since the measurement outcomes, mA(B),k, are known, this displacement can be compensated
for by feeding the measurement results forward to displacement operations displacing the wire
modes back. Or, we can simply keep track of the displacements and compensate for them in the
final measurement outcomes since all operations implemented here are Gaussian operations [2, 5].
N symbolises a quadrature symmetric noise operator, and originate from finite squeezing in the
1D cluster state generation. In the Heisenberg picture, this is represented by adding initial finite
squeezed momentum quadratures, p̂iA(B),k, to the the wire cluster state quadratures x̂A(B),k and

p̂A(B),k. Here (x̂iA(B),k, p̂
i
A(B),k) and (x̂A(B),k, p̂A(B),k) are marked on Fig. 5.6c,d. The resulting

quadrature evolution of N on the wire mode quadratures is
x̂A,k

x̂B,k+N

p̂A,k
p̂B,k+N

 N−→


x̂A,k

x̂B,k+N

p̂A,k
p̂B,k+N

+
1

2
√

2


−1 −1
−1 1
1 −1
1 1

( p̂iA,k
p̂iB,k+N

)
(5.8)

for even wires (w = (k mod N)/2 = even), and
x̂A,k

x̂B,k+N

p̂A,k
p̂B,k+N

 N−→


x̂A,k

x̂B,k+N

p̂A,k
p̂B,k+N

+
1

2
√

2


1 −1
−1 −1
−1 −1
1 −1

( p̂iA,k−1

p̂iB,k+N+1

)
(5.9)

for odd wires (w = (k mod N)/2 = odd). Since the initial momentum squeezed quadratures,
p̂iA(B),k, squeezed by e−r, has a Gaussian quadrature distribution with variance Var{p̂iA(B),k} =

e−2rV0 and mean 〈p̂iA(B),k〉 = 0, the N -operation adds noise to the wire mode quadratures de-
pending on the initial momentum squeezing, which vanish in the limit of infinite squeezing. From
Eq. (5.8) and (5.9) the noise added by N is seen to be correlated in the quadratures between two
connected wire modes. This is exactly in such a way, that N can be brought to the left side of
the beam-splitter and phase shifts in Fig. 5.6d, in which case N adds uncorrelated noise in the
two wire-modes before the beam-splitter. Fortunately, for the same reason, the quadrature noise
added by N cancels out in the wire cluster state nullifiers and when implementing gates, as we
will see later. Finally, note the

√
2 anti-squeezing on the initial momentum squeezed states in

Fig. 5.6d. This anti-squeezing leads to a degradation of the “effective” initial momentum squeezed
variance which becomes 2e−2rV0 instead of e−2rV0, and is the cost of projecting the cluster state
into another cluster state useful for computation [32].

Similar to the 1D cluster state with edge weights ±t = ±1/2, the projected two-mode entangled
states in Fig. 5.6b,d are cluster-type states with edge weights ±2t = ±1: After compensating for
the displacements D, the nullifiers are

n̂A,k = p̂A,k − (−1)x̂B,k+N = −
√

2p̂iA,k−1 −
√

2p̂iB,k+N+1

n̂B,k+N = p̂B,k+N − (−1)x̂A,k =
√

2p̂iA,k−1 −
√

2p̂iB,k+N+1
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for even wires with −2t = −1 edge weight, and

n̂A,k = p̂A,k − x̂B,k+N = −
√

2p̂iA,k +
√

2p̂iB,k+N

n̂B,k+N = p̂B,k+N − (−1)x̂A,k =
√

2p̂iA,k +
√

2p̂iB,k+N

for odd wires with 2t = 1 edge weight, such that the variances of all nullifiers become

Var{n̂A(B),k} = 4V0e
−2r → 0 for r →∞ ,

and thus vanish in the limit of infinite squeezing as required for cluster-type states. Note that the
quadratures added by N in Eq. (5.8) and (5.9) are not present as they cancel out due to their
(anti-)correlations between the connected wire modes in (even)odd wires.

During the projection of the wires in Fig. 5.6c,d we ignored the beam splitter of the measurement
device, BS3, marked by red arrows in Fig. 5.6a,b (here we define a balanced beam-splitter operation
as B̂ = e−iπ(x̂⊗p̂−p̂⊗x̂)/4 similarly as in chaoter 3 and 4 [31, 32], and its direction-dependency is
marked below by an arrow pointing from the first to the second mode of the tensor products).
This is possible when the two spatial modes A and B of the same temporal mode, k, are measured
in the same basis, as is the case for the control modes, since

. (5.10)

Thus, the hypothetical measurement outcomes of the control modes before BS3, mA(B),k, are
extracted from the homodyne measurement outcomes of the measurement device after BS3 as
mA,k = (m+,k + m−,k)/

√
2 and mB,k = (m+,k − m−,k)/

√
2. Note that, since we consider the

computation from the logic-level point of view, the notation used here is opposite to that used
in the language of macro-nodes in [10, 11, 107]. Here ‘A’ and ‘B’ refer to spatial mode A and B
before BS3, while ‘−’ and ‘+’ refer to spatial mode A and B after BS3, respectively.

The wire modes in Fig. 5.6b, projected into two-mode cluster states, are now suitable for the
implementation of gates. With N = 12 temporal modes in the circumference of the cluster state
cylinder generated in this work, the coiled-up 1D cluster state is projected into N/2 = 6 wires,
numbered as w ∈ {0, 1, 2, 3, 4, 5} with edge weight −(−1)w. As a result, the generated cluster
state may hold 6 modes in computation, while this can be scaled up simply by increasing N
corresponding to the ratio between the long and short delay lines in the experimental setup.

5.4.1 Single mode gates

Single-mode gates are implemented on each wire, and a single computation step is shown in Fig. 5.7.
The input mode may be switched into the spatial mode B at the logic level using an optical switch,
or is, most often, the output mode of the previous computation step. With a joint measurement of
the input mode and one mode of the two-mode wire cluster state, using the measurement device
consisting of BS3 and two homodyne detectors, the input mode is teleported to the second mode
of the wire cluster state. Depending on the basis setting the input mode undergoes a Gaussian
operation, Û , while teleported:

|ψout〉B,k+N = Û |ψout〉B,k .

Here, Û consists partly of a desired gate, Ĝ, a displacement by-product, and a noise operation due
to finite squeezing. In the Heisenberg picture, Û transforms the quadratures of the input mode
B, k to the output mode B, k +N as(

x̂′B,k+N

p̂′B,k+N

)
= G

(
x̂B,k
p̂B,k

)
+ N

(
p̂eiA,k

p̂eiB,k+N

)
+ D

(
m̃−,k
m̃+,k

)
, (5.11)
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=
θB,k

θA,k

ψininout
B,k

ψout B,k+N
ψin B,k = U

m+,k

m–,kA,k

B,k+N

∈ , 1–1

(odd)(even)

Figure 5.7: A single computation step from mode B, k to B, k+N on an even (purple with −1 edge
weight) or odd (green with 1 edge weight) projected wire in Fig. 5.6, leading to the implemented
operation with the quadrature transformation shown in Eq. (5.11). The black node represents the
input mode, which may be switched into mode B, k using an optical switch in the logic level at
spatial mode B, or may, as most often, be the output of the previous computation step. The red
arrow indicates the beam-splitter BS3 of the measurement device.

where the prime denotes the output mode quadratures after gate implementation. In the following
we discuss each of the three terms on the right-hand-side. G is the symplectic matrix corresponding
to the implemented gate and can be derived to be

Ĝ = (−1)wR̂

(
θ+,k

2

)
Ŝ

(
tan

θ−,k
2

)
R̂

(
θ+,k

2

)
, θ±,k = ±θA,k + θB,k , (5.12)

where R̂(θ) = e−iθ(x̂
2+p̂2)/2 and Ŝ(s) = ei ln(s)(x̂p̂+p̂x̂)/2 are the rotation and squeezing operations,

respectively, with the squeezing parameter r = ln(s) (leading to squeezing in the x̂-quadrature for
positive r). Note, here θA,k and θB,k are basis settings of the homodyne detectors in spatial mode
A and B after BS3 and should not be confused with the hypothetical measurement outcomes mA,k

and mB,k before BS3. The subscripts ‘+’ and ‘−’ of θ±,k simply notes the addition and difference of
θA,k and θB,k. The term N(p̂eiA,k, p̂

ei
B,k+N )T represents the gate noise due to finite squeezing in the

cluster state generation. Here p̂eiA,k and p̂eiB,k+N are the “effective” initial momentum quadratures

for the two-mode wire cluster state including the
√

2 anti-squeezing contribution from the wire
projection shown in Fig. 5.6d, and so, when including the wire projection, the second term in
Eq. (5.11) is

N

(
p̂eiA,k

p̂eiB,k+N

)
=



√
2

(
−1 −1

1 −1

)(
p̂iA,k−1

p̂iB,k+N+1

)
, for w = even

√
2

(
−1 1

1 1

)(
p̂iA,k

p̂iB,k+N

)
, for w = odd .

(5.13)

Note, as mentioned previously, the noise added by N does not appear in the implementation of
gates as the added noise is correlated between two connected wire-modes. As a result, with p̂iA(B),k

being squeezed by e−r, symmetric quadrature noise of variance 4V0e
−2r is added as gate noise in

each computation step, independent on the basis setting and wire number. Here,
∑
iN

2
qi = 4, with

Nqi being the elements of the gate noise matrix N and q = 1, 2 for single-mode gates, are gate noise
factors. Assuming identical squeezing in all cluster state modes, the gate noise variances of each
quadrature can in general be written as the initial momentum squeezing variance scaled by the
gate noise factors of each corresponding quadrature. Finally, D(m̃+,k, m̃−,k)T is a displacement by-
product depending on the measurement outcomes. Here, the tilde indicates that the displacements
in the wire projection D in Fig. 5.6 are included. Writing this out, the third term in Eq. (5.11) is

D

(
m̃−,k
m̃+,k

)
=

j
√

2

sin θ−,k

(
− cos θA,k cos θB,k
sin θA,k − sin θB,k

)(
m+,k

m−,k

)

+
1√
2

(
−j −j −j j
1 −1 1 1

)
mA,k−1

mA,k+1

mB,k+N−1

mB,k+N+1


(5.14)
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where j = (−1)w. Here, the first term is the displacement by-product from the gate implemented
by teleportation, while the second term includes displacements from the wire projection. Note
that m±,k are the measurement outcomes in Fig. 5.7 after BS3, while mA(B),k are measurement
outcomes of control modes before BS3 extracted using Eq. (5.10).

We implemented three single-mode gates, namely the rotation gate, R̂(θ) = e−iθ(x̂
2+p̂2)/2, the

shearing gate P̂ (σ) = eiσx̂
2/2, and the squeezing gate Ŝ(er) = eir(x̂p̂+p̂x̂)/2, each with symplectic

matrices

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
, Pσ =

(
1 0
σ 1

)
, Sr =

(
e−r 0
0 er

)
transforming a quadrature vector (x̂, p̂)T . {R̂(θ), Ŝ(er)} constitute a universal single-mode Gaus-
sian gate set together with displacements in phase-space [6], while for GKP-encoded qubits on
square grids in phase-space {R̂(π/2), P̂ (1)}, together with

√
π displacements in phase-space, leads

to a single-mode Clifford gate set in the encoded qubit subspace [14]. Note, phase-space displace-
ments are ubiquitous in measurement-based quantum computation, but they are simply absorbed
into the measurement results.

From Eq. (5.12), R̂(θ) is implemented from mode B, k to B, k +N with basis setting(
θA,k
θB,k

)
R

=
1

2

(
θ − (−1)wπ/2
θ + (−1)wπ/2

)
,

such that (θ+,k, θ−,k) = (θ, (−1)wπ/2). Note that (−1)w in θ−,k compensates for (−1)w in

Eq. (5.12). From Eq. (5.12), P̂ (σ) cannot be implemented in a single computation step. How-
ever, F̂ jP̂ (σ) = R̂(jπ/2)P̂ (σ) can be implemented in a single computation step, in which F̂ j

keeps a GKP-encoded qubit within the qubit subspace for σ = 1, and may be compensated for
in a following computation step if necessary. Here, with j = (−1)w, F̂ j = F̂ for even wires and
F̂ j = F̂−1 = F̂ † for uneven wires. F̂ jP̂ (σ) is implemented from mode B, k to B, k + N with the
basis setting (

θA,k
θB,k

)
P

=

(
0

π/2− arctan(σ/2)

)
,

such that θ+,k = θ−,k = π/2 − arctan(σ/2). Finally, Ŝ(er) is implemented from mode B, k to
B, k +N with basis setting (

θA,k
θB,k

)
S

= (−1)w arctan er
(
−1
1

)
,

such that (θ+,k, θ−,k) = (0, (−1)w2 arctan er). For each of the implemented gates, the displacement
by-product is compensated for in the measurement outcomes using Eq. (5.14), while with gate noise
factors of 4 in each quadrature, we expect gate noise variance of 4V0e

−2r (with r here being the
initial squeezing parameter in the cluster state generation) added to each quadrature, corresponding
to 6 dB relative to the initial momentum squeezed quadrature variance.

5.4.2 Two-mode gate

If, instead of measuring the spatial modes A and B in the same basis for every temporal control
mode, we measure them in different bases (such that Eq. (5.10) does not apply), two neighboring
wires will be coupled [32]. This can then be used to implement two-mode gates as illustrated in
Fig. 5.8.

In Fig. 5.8, the projected cluster state corresponds to the cluster-type state discussed for wire
projection in Fig. 5.6. However, instead of measuring all control modes in the ±π/4-basis, one
temporal control mode is only phase-rotated by (−1)(k−1)/2π/4 but is left unmeasured. The result
is a 10-mode projected cluster state, which is then connected to two input modes, B, k and B, k+2,
via the joint measurement of the measurement device. Measuring all modes, except the output
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–t√2 = –1/√2

–π/4

–π/4

π/4

in2out2

in1out1

in2out2

in1out1 k

=

m+,k

m–,k

m+,k+2

m–,k+2

m+,k+N

m–,k+N

m+,k+N+1

m–,k+N+1

m+,k+N+2

m–,k+N+2

P
ro

je
ct

e
d
 C

S

Projected CS

A,k

A,k+2

B,k+N

A,k+N

B,k+N+1

A,k+N+1

B,k+N+2

A,k+N+2

B,k+2N

B,k+2N+2

=

BS1

BS2

BS3 –2t = –1

2t = 1
t√2 = 1/√2

ψin (B,k),(B,k+2)

B,k

B,k+2

ψout (B,k+2N),(B,k+2N+2)

ψin (B,k+2N),(B,k+2N+2)V=

Figure 5.8: Scheme for implementing two-mode operations. Due to the many modes involved, the
circuit for the cluster state generation and projection is shown graphically to the left with each
beam splitter represented by an arrow. Here, control modes in the grey shaded areas are phase
rotated by ±π/4, followed by measuring x̂ of the faded modes. The resulting projected cluster-type
state is shown in the center, consisting of two wires (here an even and odd wire on top and below)
and a temporal control mode to couple the wires. By joint measurement of the input using the
measurement device with BS3, as shown to the right, a two-mode operation, V̂ , with a desired
two-mode gate is implemented depending on the basis setting.

modes B, k + 2N and B, k + 2N + 2, the states of the input modes are teleported to the output
modes with a two-mode Gaussian operation, V̂ , applied depending on the basis settings,

|ψout〉(B,k+2N),(B,k+2N+2) = V̂ |ψin〉(B,k),(B,k+2) .

In general, V̂ transforms the quadratures of the input to the output modes as
x̂′B,k+2N

x̂′B,k+2N+2

p̂′B,k+2N

p̂′B,k+2N+2

 = G2


x̂B,k
x̂B,k+2

p̂B,k
p̂B,k+2

+ Np̂i + Dm , (5.15)

where, again, prime marks the output mode quadratures. Here G2 is the symplectic matrix cor-
responding to the implemented desired two-mode Gaussian gate, Ĝ2. Np̂i is the gate noise term
with N being a gate noise matrix and p̂i being a vector of initial momentum squeezed quadratures
in the cluster state generation. Finally, Dm is the displacement by-product with D being a dis-
placement matrix and m being a vector of measurement outcomes. Here, to shorten the discussion,
instead of writing the quadrature transformation initially in terms of the projected cluster state
quadratures and following measurement outcomes as for the single-mode operations in Eq. (5.11)
(i.e. in terms of p̂A(B),k and m̃±,k), in the following we will write the quadrature transformation
directly from the initial momentum squeezed quadratures and measurement outcomes including
the cluster state projection, similar to Eq. (5.13) and (5.14).

The two-mode controlled-Z gate, ĈZ(g) = eigx̂⊗x̂ with g being a coupling constant, constitutes,
together with the single-mode gate set {R̂(θ), Ŝ(er)} in section 5.4.1, a universal multi-mode Gaus-
sian gate set. Furthermore, for GKP-encoded qubits on square grids in phase-space, ĈZ(1) leads,
together with {F̂ = R̂(π/2), P̂ (1)}, to a multi-mode Clifford gate set in the encoded qubit subspace
[14]. However, on the cluster state architecture considered here, ĈZ(g) cannot be implemented di-
rectly. Instead, we implement (F̂ ⊗ F̂ j)ĈZ(g), with short notation F̂ F̂ jĈZ(g), where j = (−1)w

with w being the wire number of the input mode B, k (again F̂+1 = F̂ and F̂−1 = F̂ †). Here, F̂
and F̂ j on the two output modes keep a GKP-encoded qubit within the encoded qubit subspace for
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g = 1, and may be compensated in a subsequent computation step if necessary. The basis setting
to implement F̂ F̂ jĈZ(g) from modes B, k and B, k + 2 to modes B, k + 2N and B, k + 2N + 2 is

θA,k
θB,k
θA,k+2

θB,k+2

θA,k+N

θB,k+N

θA,k+N+1

θB,k+N+1

θA,k+N+2

θB,k+N+2


=



π/4
−π/4

(−1)wπ/4
−(−1)wπ/4

(−1)w[π/2− arctan(g/2)]
0

(−1)wπ/4
(−1)w[π/4 + 2 arctan(g/2)]
(−1)w[π/2− arctan(g/2)]

0


. (5.16)

This basis setting includes the settings for the temporal control mode k +N + 1 coupling the two
wires w and w + 1 for the desired two-mode gates, while all other control modes surrounding the
two wires are measured in the regular ±π/4 control mode basis as described at the beginning of
section 5.4.

The displacement matrix, D, and corresponding vector of measurement outcomes, m, is shown
in Fig. 5.9 for the different coupling constants g implemented. For the measurement outcomes inm
corresponding to the modes in Eq. (5.16), the direct homodyne measurement outcomes, m±,k, are
used, while for control modes used to form the projected cluster state in Fig. 5.8, the measurement
outcomes before BS3, mA(B),k, are used, extracted using Eq. (5.10). In the characterization of
the gate, the displacement is compensated for in the measurement outcomes of the output modes
B, k + 2N and B, k + 2N + 2.

Finally, the gate noise matrix, N, and corresponding vector of initial momentum squeezed
quadratures, p̂i, is shown in Fig. 5.10. Assuming all initial momentum squeezed quadratures,
p̂iA(B),k, are equally squeezed by e−r such that the variances of the momentum quadrature distri-

butions are e−2rV0, gate noise of variance e−2rV0

∑
iN

2
qi is added in each output quadrature. Here,

again,
∑
iN

2
qi are gate noise factors scaling the initial momentum squeezing variance into gate noise

variance with q = 1, 2, 3, and 4 for the output quadratures x̂B,k+2N , x̂B,k+2N+2, p̂B,k+2N and
p̂B,k+2N+2, respectively. The resulting gate noise factors are shown in Fig. 5.10.

5.4.3 Circuit

Besides implementing individual gates of a multi-mode universal Gaussian gate set, the cluster
state computation architecture in this work allows quantum gates to be combined universally, with
single-mode gates on each wire by teleportation as described in section 5.4.1, and two-mode gates
between neighboring wires coupled by control modes as described in section 5.4.2. To demonstrate
this, we implement a quantum circuit consisting of 10 single-mode gates and 2 two-mode gates
distributed on 3 modes as shown in Fig. 5.4b of the main text section 5.2. For GKP-encoded
qubits encoded on square grids in phase-space, the implemented circuit corresponds to the encoding
scheme of a logical qubit in the 3-qubit bit-flip error correction code as shown in Fig. 5.4a.

The circuit is implemented with the three input states on mode (B, k), (B, k+2) and (B, k+4),
and output states on mode (B, k + 6N), (B, k + 6N + 2) and (B, k + 6N + 4). Since in this work
the displacement by-product is compensated for in the measurement outcomes, the displacement
of each gate will accumulate throughout the computation. By keeping track of each measurement
outcome, and how they propagate through the subsequent gates towards the output modes, the
displacements are compensated for in the measurements of the circuit’s three output states. Here,
using the expressions for displacements in single- and two-mode gates in Eq. (5.7) and in Fig. 5.9
for g = 1, an accumulated displacement term, Dm, on the circuit output modes is derived, and the
resulting displacement matrix, D, and vector of measurement outcomes, m, are shown in Fig. 5.11.

Each gate of the implemented circuit adds gate noise to the quadratures of the modes in
computation proportional to the initial momentum squeezing in the cluster state generation. To
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avoid gate noise accumulation, the noise must be removed after each gate implementation. This
can be done by using GKP-encoded qubits for computation and applying GKP error correction
of the computation mode quadratures [14] as often as possible, preferably after each implemented
gate depending on the magnitude of the gate noise. In the work here, however, GKP-encoding
and error correction is not implemented and as a result, the gate noise accumulates during the
computation and thus adds to the circuit output modes. This noise is measured and compared
to the theoretically expected accumulated gate noise which depends on the initial momentum
squeezing. Using the expression for single- and two-mode gate noise in Eq. (5.13) and in Fig. 5.10
for g = 1, and keeping track of the gate noise propagation through each gate of the implemented
circuit, a combined circuit noise term of accumulated gate noise, Np̂i, is derived with the noise
matrix, N, and the vector of initial momentum squeezed quadrature, p̂i, presented in Fig. 5.11.
The resulting noise factors,

∑
j N

2
qj , of the output quadratures x̂B,k+6N , x̂B,k+6N+2, x̂B,k+6N+4,

p̂B,k+6N , p̂B,k+6N+2, and p̂B,k+6N+4 for q = 1, 2, 3, 4, 5, and 6 are also shown. Note that the large
circuit noise is due to the lack of error correction. In fault-tolerant quantum computation the
purpose of error correction is to prevent gate noise to accumulate into such large values.

5.5 Suppl. Inf.: Gate tomography

In section 5.4 we described how quantum gates and circuits are implemented by projective mea-
surements on the generated cluster state presented in section 5.3. Here, we describe the method
of gate and circuit characterization which is based on gate tomography. The procedure is based
on probing the gates using entangled states as input and subsequently determine the quadrature
correlations that remain after the gate operation. This method was also used in Ref. [25] but here
we generalize it to multi-mode gates and circuits.

The implemented n-mode Gaussian gate/circuit, or operation, can be represented by a 2n×2n
symplectic matrix S (referred to in section 5.4.1 and 5.4.2 as G and G2) plus gate noise. Here,
we consider the case where the displacement by-products have been compensated for, either by
feed-forward or, as in this work, in the measurement results. Thus, the goal is to estimate S and
the variance of the gate noise in each quadrature. To do so, each of the n input modes to the
implemented operation is entangled to one of n reference modes, and from measuring correlations
of the reference modes and the operation’s output modes we can extract S, while the gate noise
variance can be estimated from measured variances of the input and output modes together with
the estimated S. The corresponding circuit is presented in Fig. 5.12.

The entanglement probes in Fig. 5.12 are prepared by the wire projections shown in Fig. 5.6,
and the resulting two-mode entangled states are formed as two-mode wire cluster states. One mode
of each of the n two-mode cluster state wires serves as an input mode to the implemented n-mode
operation, while the other mode serves as the corresponding reference. The projected wires are
two-mode squeezed states obtained by interfering two squeezed states, as shown in Fig. 5.6d, with
the corresponding quadrature transformations

,

for a w = odd wire, with a similar transformation for an even wire. Here, the displacement, D, is
compensated for, while the

√
2 momentum anti-squeezing contribution and the effect of N (after

moving N to the left of the beam-splitter and phase shifts in Fig. 5.6d where it adds uncorrelated
noise in connected wire modes as discussed in section 5.4) are combined in an effective squeezing
of s > e−r of the initial input and reference mode momentum quadratures such that

〈(x̂ref.
j )2〉 = 〈(x̂in

j )2〉 = aV0/s
2 ,

〈(p̂ref.
j )2〉 = 〈(p̂in

j )2〉 = s2V0 ,
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Figure 5.12: Corresponding circuit of the gate tomography. Here the controlled-Z gates applied to
the input and reference modes correspond to the projected two-mode wire cluster states in Fig. 5.6,
where s is a combined squeezed coefficient including additional noise from the wire projection. By
measuring the output and reference modes in x̂- and p̂-quadrature, the implemented gate/circuit
symplectic matrix S can be extracted using Eq. (5.19), while the gate noise can be estimated from
the quadrature variances of the input and output modes. The primed and non-primed quadratures
used in the text are marked with a dashed line.

V0 = 1/2 is the variance of vacuum for ~ = 1, and a = 1 for pure states while excess anti-squeezing
is described by a > 1. Note that here we assume the reference and input modes to be equally
squeezed, while the exact values of s and a are unimportant for the purpose here. The resulting
quadrature correlations between the input and reference modes are
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(5.17)

for odd wires with positive edge weight, while similar for even wires with opposite sign of εj .
Here the first line shows quadrature correlations between input and reference modes of different
two-mode wire states which are naturally zero.

After the gate/circuit operation the input mode quadratures are transformed by the symplectic
matrix S with entries si,j while gate noise is added to the output quadratures as
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Here the gate noise vector of the initial momentum squeezed quadrature vector, p̂i, transformed by
the gate noise matrix, N, is described in section 5.4. Using Eq. (5.17) the quadrature correlations
between the input and reference modes can then be used to extract si,j since
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for i, j ∈ {1, · · · , n}. Thus, finally, the symplectic matrix of the implemented operation can be
estimated from quadrature correlations of output and reference modes as
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(5.19)

Here, εj is estimated from the measurements of the quadrature correlations between input and
reference modes on even and odd wire states individually side by side with the implemented
operations. As such, within even and odd wires, we assume εj to be identical for different j. This
is a valid assumption, as the gate tomography of each implemented gate (including estimating εj
for even and odd wires) in this work is carried out within 19N = 228 temporal modes, i.e. within
a time period of 228× 247 ns = 56.3 µs, while the setup stability allows for a stable setup without
changes for much longer time periods.

Using the estimated symplectic matrix in Eq. (5.19), the variance of the gate noise in Eq. (5.18)
can be estimated as the difference of the quadrature variance on the output modes and the expected
quadrature variance from the input modes as

Var{Np̂i} = Var
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Here the reference mode is traced out. Similar to εj , Var{x̂in
j
′} and Var{p̂in

j
′} are estimated by

measurements on wire cluster state individually for even and odd wires, both before and after the
gate tomography, but within 19N = 228 temporal modes.

5.5.1 Single-mode gates

In Fig. 5.13 the basis setting layout on the generated cluster state for single-mode gate imple-
mentation and tomography is shown. Since S is a 2 × 2 matrix for single-mode gates, 4 different
measurements of quadrature correlations of the output-reference mode are required to estimate S.
Thus, with a section of 19N = 228 temporal modes, 8 different single-mode gates can be imple-
mented and characterized at once in parallel on 4 wires. The remaining 2 of the 6 wires are used
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Figure 5.13: Basis setting layout with 19N = 228 temporal modes for implementation and char-
acterization by gate tomography of 8 different single-mode gates on wire w = 0–3, each in the
regions marked by (1–8). In each region the gate is implemented 4 times in order to measure px-,
xx-, xp- and pp-correlations between the reference and output modes to estimate the indices s1,1,
s1,2, s2,2 and s2,1, respectively, of the implemented gate symplectic matrix S by Eq. (5.19). Here,
modes marked by red and blue are measured in x̂- and p̂-basis, respectively, while faded modes are
control modes measured in the ±π/4 basis to form wires. The faded edges to control modes are
only shown to indicate the initial coiled up 1D cluster state before wire projection, and has now
physical meaning here. Even though present in all temporal modes, the beam splitter BS3 is only
shown between spatial modes measured in different basis in order to implement the desired gates.
The measurement outcomes before BS3 on all other modes are extracted using Eq. (5.10). Wire
w = 4 and 5 are used to estimate the quadrature correlations between input and reference modes,
εj , together with the quadrature variance of input modes in order to estimate the gate noise vari-
ance by Eq. (5.20). To the right of the cluster state basis layout, the corresponding single-mode
gate tomography circuit of input, output, and reference modes is shown.
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to estimate the correlations between input and reference modes, εj , of the two-mode wire states
in both odd and even wires, together with the input mode variance when tracing out the reference
modes. To build up statistics, measurements with the layout in Fig. 5.13 are repeated 10 000 times.
In the following we will refer to such 10 000 repeated measurements of the same layout as a set of
measurements.

Each of the implemented single-mode gates, R̂(θ), P̂ (σ) and Ŝ(e−r), are implemented in dif-
ferent sets of measurements with 7 different values of θ, σ and r. To fill out one set, which can
implement and characterize 8 different gates, the value θ, σ, r = 0 are repeated twice in each
set. From wire w = 4 in each set the input-reference quadrature correlations are estimated to be
εj = −2.14± 0.03, −2.15± 0.03 and −2.14± 0.03 for the sets with R̂(θ), P̂ (σ) and Ŝ(e−r), respec-
tively, and are used for gate tomography on w = even wires with negative edge weight. Similarly,
from wire w = 5, εj = 2.11 ± 0.04, 2.12 ± 0.03 and 2.11 ± 0.02 are estimated and used for gate
tomography on w = odd wires with positive edge weight. The uncertainties on εj are estimated as
the standard deviation of the 16 measured quadrature correlations in each wire w = 4 and 5 for
each measurement set. The resulting symplectic matrix for each implemented single-mode gates,
extracted using Eq. (5.19), are shown in Fig. 5.2a as a function of θ, σ and r.

Also, using wires w = 4 and 5, the quadrature variances of the input modes when tracing
out the reference mode (i.e. ignoring the reference mode measurement outcome) are estimated
to be (Var{xin

j
′},Var{pin

j
′}) = (2.28 ± 0.04, 2.67 ± 0.05), (2.33 ± 0.03, 2.64 ± 0.03) and (2.31 ±

0.02, 2.66 ± 0.02) on wire w = 4 for measurement sets with R̂(θ), P̂ (σ) and Ŝ(e−r) respectively,
and similarly (Var{xin

j
′},Var{pin

j
′}) = (2.30 ± 0.03, 2.78 ± 0.04), (2.34 ± 0.03, 2.75 ± 0.03) and

(2.31 ± 0.03, 2.75 ± 0.03), respectively, on wire w = 5. The uncertainties in the variances of
the x̂ and p̂ quadratures in each measurement set are estimated as standard deviation of the 8
measurements of input modes in each quadrature on wires w = 4 and 5. The resulting gate noise
variances, extracted using Eq. (5.20) with the variance of the output modes measured in each gate
tomography, are shown in Fig. 5.2c. Also, the gate noise variance compensated by the theoretical
gate noise factor of 6 dB is shown, in which case it agrees with the initial momentum squeezing of
4.4 dB below the vacuum variance as discussed at the end of section 5.4.1 (a more general discussion
of gate noise is presented in section 5.6).

To show how the gate noise behaves as a function of squeezing, in Fig. 5.2d of the main text
section 5.2 the gate noise of R̂(θ), averaged over x̂ and p̂ and over the 7 different implemented
values of θ, is shown as a function of pump power relative to the OPO thresholds. The measured
gate noise is seen to agree well with the gate noise expected for the estimated properties of the
experimental setup and is discussed further in section 5.6.

5.5.2 Two-mode gate

When performing gate tomography on the two-mode controlled-Z gate, ĈZ(g), the 4 × 4 = 16
entries si,j of the corresponding symplectic matrix S can be estimated by executing the ĈZ(g)
gate four times, since 4 different input-reference mode quadrature correlations can be estimated
simultaneously using the two reference and output modes of each implementation. The basis setting
layout of 228 temporal modes is shown in Fig. 5.14, in which ĈZ(g) can be implemented with three
different values of g. In total, ĈZ(g) is implemented with 5 different values of g distributed on two
sets of measurements with g = 0 repeated twice to fill out the sets.

Similar to the gate tomography of single-mode gates in section 5.5.1, the input-reference quadra-
ture correlations, εj , averaged on the two measurement sets, are estimated from wires w = 4 and 5
to be εj = −2.15± 0.04 and 2.13± 0.03, respectively, with uncertainties estimated as the standard
deviation of 16 measured quadrature correlations in each wire. From the gate tomography, the
resulting symplectic matrix estimated using Eq. (5.19) is shown in main text section Fig. 5.3a as
a function of g.

From wires w = 4 and 5 the input mode variances, averaged over the two measurement sets,
are estimated to be (Var{xin

j
′},Var{pin

j
′}) = (2.36± 0.06, 2.72± 0.04) and (2.34± 0.03, 2.65± 0.04)

on even and odd wires respectively, with uncertainties estimated as the standard deviation of the
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Figure 5.14: Basis setting layout for implementation and characterization by gate tomography of
the two-mode ĈZ(g)-gate. The notation is the same as in Fig. 5.13 for single-mode gates. The same
ĈZ(g)-gate is implemented 4 times for gate tomography. As a result, 3 different ĈZ(g)-gates can
be implemented and characterized within one measurement set of 19N = 228 temporal modes in
the regions marked (1–3). ĈZ(g) is implemented and characterized for 5 different values of g in two
sets of measurements. To the right, the corresponding circuit of the two-mode gate tomography
circuit of input, output, and reference modes is shown.

8 measured input modes per x̂- and p̂-quadrature of each wire. Using this, and the estimated S,
the gate noise variance is estimated using Eq. (5.20), and shown in Fig. 5.3c as a function of g.
Here, the gate noise variance is also compensated for by the theoretical gate noise factor presented
in Fig. 5.10, in which case the gate noise agrees well with the initial momentum squeezed variance
of 4.4 dB below the vacuum variance.

5.5.3 Circuit

The quantum circuit, described in section 5.4.3, is implemented on wires w = 1, 2 and 3 as shown
in the basis setting layout in Fig. 5.15. Similar to the ĈZ(g)-gate in section 5.5.2, all 6 × 6 = 36
entries of the corresponding symplectic matrix S can be extracted from implementing the circuit
4 times, as 3 × 3 = 9 indices can be estimated from the three reference and output modes of
one implementation. Two measurement sets are required for full gate tomography of the circuit
implemented on wires w = 1, 2 and 3: One as in Fig. 5.15 where the first 6 columns of S are
estimated, and a similar set where the x̂- and p̂-basis settings are swapped on the reference and
output modes in order to estimate the last 6 columns of S.

The first and last two time steps on all wires, w = 0–5 (though only wire w = 1, 2 and 3 are
shown in Fig. 5.15), are used to estimate the input-reference mode quadrature correlations, εj ,
and are estimated to be εj = −2.14 ± 0.03 and 2.12 ± 0.06 on even and odd wires, respectively,
averaged over the two measurement sets. Uncertainties are estimated as the standard deviation
of 12 measured quadrature correlations each for even and odd wires. The resulting estimated
symplectic matrix using Eq. (5.19) is shown in the main text Fig. 5.4c.

Similar to εj , the quadrature variances of input modes are estimated from the first and last two
time steps in each wire when tracing out reference modes by ignoring the reference mode measure-
ment outcomes. The input mode quadrature variances are estimated to be (Var{xin

j
′},Var{pin

j
′}) =

(2.34±0.05, 2.72±0.03) and (2.34±0.04, 2.68±0.08) on even and odd wires respectively. Uncertain-
ties are estimated as the standard deviation from 6 measured input modes per x̂- and p̂-quadrature
each in even and odd wires. Using this, and the estimated S, the gate noise variance is estimated
using Eq. (5.20), and shown in Fig. 5.4d. The gate noise is also shown when compensating for the
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Figure 5.15: Basis setting layout for implementation and characterization of the circuit described
in section 5.4.3, here implemented on wire w = 1, 2 and 3, while wire w = 0, 4 and 5 are not
shown here. The notation is the same as in Fig. 5.13 for single-mode gates. For full tomography
the circuit is implemented 4 times, distributed on two sets of measurements. Here, the first set
is shown from which the first 6 columns of the symplectic matrix, S, is estimated. In the second
set for estimating the last 6 columns of S, the x̂- and p̂-basis settings on all output and reference
modes are swapped. Below the basis setting layout, the corresponding circuit of the multi-mode
circuit tomography with input, output, and reference modes is shown.

theoretical gate noise factors presented in Fig. 5.11, and the resulting gate noise agrees well with
the initial momentum squeezed variance of 4.4 dB below the vacuum variance.

5.6 Suppl. Inf.: Gate noise

In this section, we discuss the performance with respect to measured gate noise in the cluster state
computation scheme of this work. Ideal cluster states have nullifiers of zero variance. However, such
ideal cluster states, generated from infinite squeezed states, are non-physical. Instead, as discussed
in section 5.4, we generate approximate cluster states, or cluster-type states, from finitely squeezed
states with nullifier variances that vanish in the limit of infinite squeezing but are otherwise non-
zero. When implementing gates on the cluster state by projective measurement, the inherent noise
in the cluster state from finite squeezing leads to gate noise proportional to the initial squeezing
in the cluster state generation as discussed in section 5.4.1 and 5.4.2—the gate noise variance in
each quadrature is the product of the initial squeezing variance and the corresponding gate noise
factor.

To prevent gate noise from accumulating on the states in computation, error correction is
required. This can be achieved by encoding the computational states as qubits using Gottesman-
Kitaev-Preskill (GKP) encoding, where qubits are encoded in the bosonic mode quadratures [14].
The gate noise, which appears as noise in the quadratures, can then be corrected with GKP
quadrature error correction with a success probability depending on the amount of squeezing. In
the event of an error in the quadrature error correction, a bit-flip and/or phase-flip error is induced
on the encoded qubit, which can then be corrected with a concatenated qubit error correction code.
A detailed review of GKP encoding and error correction can be found in [14, 112, 113], while in
[3, 32] GKP error correction and resulting qubit error probability is reviewed in terms of gate
noise. To achieve fault-tolerant quantum computation, the probability of inducing a qubit error
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on the GKP-encoded qubits should be lower than the error probability threshold allowed by the
concatenated qubit error correction code. Since this qubit error probability depends on the gate
noise and thereby the initial squeezing, the amount of required squeezing for fault-tolerance depends
on the error probability that the concatenated qubit error correction code can tolerate. Different
squeezing levels have been estimated in the settings of cluster state computation, ranging from at
highest 20 dB below the vacuum variance [3], to 17 dB in [38] where excess anti-squeezing is shown
to not affect the squeezing threshold, and further to 10 dB in [43] using topological qubit error
correction codes (though this requires a 3-dimensional cluster state instead of the 2-dimensional
cluster state used in this work).

In the other limit of no squeezing, the generated cluster state is simply a vacuum state. In
this case, a desired gate can still be implemented, as the quadrature transformation is mainly
realized by the feedforward of the displacement by-product, and as such, this is equivalent to
classical teleportation [124]. In this limit, considering single-mode gates, the gate noise is 4 units
of vacuum noise, 4V0, as discussed in section 5.4.1, i.e. 6 dB above the vacuum variance. Though
single-mode gates can be implemented with less gate noise in classical teleportation, in the cluster
state computation scheme in this work, it is not possible to lower the gate noise below 4V0 =
6 dB without squeezing in the cluster state generation leading to quantum correlations between
the cluster state modes. With e−r momentum quadrature squeezing, the single-mode gate noise
becomes 4e−2rV0. In chapter 3 [31] the cluster state modes are shown to be inseparable when the
cluster state is generated with more than 3 dB of squeezing, while in the work here the cluster
state is generated with 4.4 dB of squeezing, which leads to expected single-mode gate noise of
−4.4 dB + 6 dB = 1.6 dB = 1.4V0. This expected gate noise agrees with the measured gate noise
shown in the main text Fig. 5.2c, where the gate noise compensated for by 6 dB (hollow points)
is compared to the 4.4 dB initial squeezing (dashed line). The same analysis is shown for the two-
mode ĈZ(g)-gate and accumulated gate noise of the implemented circuit in the main text Fig. 5.3c
and 5.4d.

In conclusion, even though the gate noise measured in this work is larger than what can be
achieved with different architectures, it is less than what can be achieved with the computation
scheme used here without the presence of a cluster state [32]. In the cluster state computation
scheme here, the function of the cluster state can be thought of as to decrease the gate noise
depending on the cluster state quality in terms of initial squeezing. In the main text Fig. 5.2d, the
measured single-mode gate noise is shown as a function of pump power. At zero pump power where
the cluster state is simply vacuum, we measured 6 dB gate noise as expected, while increasing the
pump power, generating a cluster state, decreases the gate noise. At some point the gate noise
saturates due to optical losses and phase fluctuations, limiting the cluster state quality achievable in
the given setup. This is not a fundamental limit but merely a technical challenge. For fault-tolerant
computation, optical losses and phase control need to be optimized to improve the cluster state
quality, while the computation scheme will remain the same as demonstrated here. Even though
some cluster state architectures, like the quad-rail lattice [9, 107], can offer an improvement in the
gate noise by 3 dB [32], to achieve fault-tolerant computation it is not enough to simply measure
gate noise less than the vacuum variance, V0 = 0 dB; optical losses and phase control need to be
optimized for any architecture. As such, although the gate noise is a good figure of merit, a gate
noise below V0 is not the target—it is gate noise below some fault-tolerant squeezing threshold
which is the target. Below we estimate how the gate noise would scale in more optimal settings of
the computation scheme in this work.

5.6.1 Gate noise in optimal settings

To estimate the gate noise, it is sufficient to estimate the initial quadrature squeezing in the
cluster state generation and multiply with the gate noise factors

∑
iN

2
qi with Nqi being entries of

the gate noise matrix N as discussed in section 5.4. For single-mode gates, the gate noise factor
is
∑
iN

2
1i =

∑
iN

2
2i = 4 in both x̂- and p̂-quadrature, corresponding to adding 6 dB to the initial

squeezing, while the gate noise factor for the ĈZ(g)-gate is given in Fig. 5.10. Thus, we need to
first estimate the initial momentum squeezing in the cluster state temporal modes.
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The temporal modes are defined by the temporal mode function, fk(t), in Eq. (5.3). For the
initial momentum squeezed states in the cluster state generation 〈x̂〉 = 〈p̂〉 = 0, and the quadrature
variance of a temporal mode k becomes

Var{q̂k} = 〈q̂2〉 =

〈∫
fk(t)q̂(t) dt

∫
fk(t′)q̂(t′) dt′

〉
=

∫∫
fk(t)fk(t′) 〈q̂(t)q̂(t′)〉 dtdt′ , q̂ = x̂, p̂ ,

(5.21)

where 〈x̂(t)x̂(t′)〉 and 〈p̂(t)p̂(t′)〉 are the quadrature auto-covariance functions. For momentum
squeezed states generated as output from an optical parametric oscillator (OPO) pumped below
threshold, the quadrature auto-covariance functions are

〈x̂(t)x̂(t′)〉 =
1

2
δ(t− t′) +

ηγε

γ − ε
e−(γ−ε)|t−t′| ,

〈p̂(t)p̂(t′)〉 =
1

2
δ(t− t′)− ηγε

γ + ε
e−(γ+ε)|t−t′| ,

(5.22)

where η, γ, and ε are the overall efficiency, the OPO decay rate (or bandwidth), and pump rate,
respectively [79]. In the experimental setup γ = 2π×7.7 MHz on average for the two OPO squeezing
sources [31].

Inserting Eq. (5.3) and (5.22) into Eq. (5.21), and using that ε = γ
√
P/Pthr. where P/Pthr. is

the pump power relative to the OPO threshold, we estimate the quadrature squeezing and anti-
squeezing as a function of pump power for different efficiencies. Adding 6 dB to the noise variance,
we estimate the resulting single-mode gate noise, which is presented in the main text Fig. 5.2d
for some optimal settings with high efficiencies of η ≥ 90%. Here, the gate noise is presented
with two different OPO bandwidths, namely γ = 2π × 7.7 MHz as in the experimental setup, and
γ = 2π × 100 MHz for more optimal settings. Predicted gate noise for the current experimental
efficiency of η = 77.7% (an average of 78.9% and 76.4% of two fitted efficiencies in section 3.6.2
[31]), together with an estimated phase fluctuation of σ = 4◦, is shown as well and is seen to agree
well with the experimentally measured gate noise. The same analysis is possible for the two-mode
ĈZ(g)-gate using the gate noise factors in Fig. 5.10. In general, the gate noise is seen to decrease
with increasing efficiencies and pump power. Furthermore, the gate noise is also seen to decrease
with increasing squeezing bandwidth. This is explained by a better coverage of the temporal mode
frequency response by the wider squeezing bandwidth of 100 MHz.

In conclusion, for high enough efficiency and phase control where the gate noise decrease per-
sistently with increasing pump power instead of saturating, the gate noise in the cluster state
computation scheme here can be brought down and eventually allow fault-tolerant computation,
depending on the squeezing threshold set by the concatenated qubit error correction code. Besides
this, the squeezing source bandwidth should be broad enough to cover the temporal modes in the
frequency domain well. This latter condition is especially important to keep in mind when scaling
up the number of encoded modes by reducing the short delay line, τ , shortening the temporal
modes in time domain and thereby broadening them in frequency domain.
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Chapter 6

A fault-tolerant
continuous-variable
measurement-based quantum
computation architecture

In this chapter, the paper “A fault-tolerant continuous-variable measurement-based quantum com-
putation architecture” of Ref. [34] is presented. This paper is authored by Mikkel V. Larsen,
Christopher Chamberland, Kyungjoo Noh, Jonas S. Neergaard-Nielsen, and Ulrik L. Andersen,
and is submitted for publication.

Throughout chapter 3, 4, and 5 [31–33] the focus has been on cluster state generation and
implementation of gates by projective measurements. Due to finite squeezing in the cluster state
generation, the implemented gates will always be noisy, and quantum error correction is required
for fault-tolerant computation. In this final theoretical work, we study efficient implementation of
error correction, and we propose a complete and fault-tolerant computation scheme.

While this work utilizes the experience of chapter 2, 3, and 5 [30, 31, 33] to propose an experi-
mentally feasible computation scheme, this work has largely come forward through the theoretical
study in chapter 4 [32]. Note, in this work, instead of x̂ as in chapter 2–5, q̂ represents the electric
field amplitude (or position) quadrature operator—I apologize for any inconvenience this change
of notation brings the reader.

From www.arXiv.org as pre-print arXiv:2101.03014 (2021).

6.1 Abstract

Continuous variable measurement-based quantum computation on cluster states has in recent years
shown great potential for scalable, universal, and fault-tolerant quantum computation when com-
bined with the Gottesman-Kitaev-Preskill (GKP) code and quantum error correction. However, no
complete fault-tolerant architecture exists that includes everything from cluster state generation
with finite squeezing to gate implementations with realistic noise and error correction. In this
work, we propose a simple architecture for the preparation of a cluster state in three dimensions
in which gates by gate teleportation can be efficiently implemented. To accommodate scalability,
we propose architectures that allow for both spatial and temporal multiplexing, with the temporal
encoded version requiring as little as two squeezed light sources. Due to its three-dimensional
structure, the architecture supports topological qubit error correction, while GKP error correction
is efficiently realized within the architecture by teleportation. To validate fault-tolerance, the ar-
chitecture is simulated using surface-GKP codes, including noise from GKP-states as well as gate

123



124 CHAPTER 6. A FAULT-TOLERANT CONTINUOUS-VARIABLE...

noise caused by finite squeezing in the cluster state. We find a fault-tolerant squeezing threshold
of 13.2 dB with room for further improvement.

6.2 Introduction

In measurement-based quantum computation (MBQC), gates are implemented by projective mea-
surements on a multi-mode entangled cluster state, circumventing the complex coherent unitary
dynamics required in conventional gate-based quantum computation [1]. As such, the cluster state
is a critical resource for MBQC, and its number of modes and structural design defines the size
of a potential measurement-induced algorithm. A particularly promising platform for scaling and
controlling the structure of a cluster state is the optical continuous variable (CV) platform [2, 5],
where large cluster states can be deterministically generated and controlled, and efficiently mea-
sured by homodyne detection. This has been proven by the realizations of large-scale CV cluster
states in both one dimension [19, 20] and two dimensions [31, 37] (where Ref. [31] is the content
of chapter 3). Moreover, the versatility of the CV optical platform has been further corroborated
by the recent demonstrations of single- and multi-mode gates using high-efficiency projective mea-
surements on one-dimensional [25] and two-dimensional cluster states [33] (where Ref. [33] is the
content of chapter 5).

MBQC based on CV is however inherently noisy due to the impossibility of generating maxi-
mally entangled CV cluster states: The generation of maximal CV entanglement requires squeezed
states of infinite squeezing and thereby infinite energy, which is not feasible. Therefore, inevitably,
Gaussian noise will be added to the quantum information during computation. To combat this
additive noise, information is encoded as special qubits in CV bosonic modes of infinite dimension
[13–15]. These CV qubits introduce a certain structure that makes them correctable against noise
using tailored syndrome measurements. However, this comes with the cost of inducing bit-flip
and phase-flip errors on the encoded qubits which must then be corrected by some qubit quantum
error correction scheme. Implementing qubit error correction efficiently in MBQC puts stringent
requirements on the underlying cluster state. As an example, the local connectivity in the cluster
states support only coupling between nearest-neighbor modes, so topological error correction is a
natural choice for qubit error correction [131]. This, in turn, requires a three-dimensional (3D)
cluster state for MBQC [132–134].

Different proposals on 3D cluster state generation and topological MBQC exist. Fukui et al.
[43] suggested a scheme for fault-tolerant MBQC based on topological error correction, but their
scheme assumes the availability of a highly complex 3D cluster state of encoded qubits. Wu et
al. [44] proposed an optical setup for the generation of a 3D cluster state using time and frequency
multiplexing. However, in their proposal gates are implemented by gate teleportation through
four-mode square cluster states leading to increased gate noise. In another work of Fukui et
al. [45], an all-temporally encoded 3D cluster state is proposed, but this scheme is experimentally
highly challenging as it requires the construction of 12 squeezing sources and real-time feed-forward
operations. Moreover, no schemes for qubit encoding and qubit error correction was put forward.
The most complete work on CV MBQC to date is carried out by Bourassa et al. in Ref. [46] in
which a computation architecture for the generation of a 3D cluster state combined with topological
MBQC is proposed. However, the suggested architecture is based on spatial encoding, rendering
the number of spatial resources very large (as this number scales linearly with the computation
size). Moreover, their scheme relies on a very large number of experimentally challenging on-line
swap and sum gates which they assume to be ideal.

In our work, we propose a simple, scalable, and complete architecture for topological MBQC and
validate the fault-tolerance of the computation scheme. It is based on gate teleportation on parallel
one-dimensional (1D) cluster states, or wires, arranged in a 3D lattice and coupled by variable
beam-splitters for two-mode gates. As such, the setup is a variation of the well-demonstrated 1D
cluster state generation [19, 25, 31] with added variable beam-splitters. Combined with Gottesman-
Kitaev-Preskill (GKP) encoded qubits [14], the scheme allows for universal computation, while
fault-tolerance is achievable by encoding logical qubits in the topological surface code [135–137].
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Furthermore, the scheme, being based on gate teleportation, is compatible with a recently proposed
GKP correction protocol that dispenses with demanding coupling to ancillary GKP-qubits [42].
We validate the fault-tolerance of the full scheme by a thorough simulation that includes both
noise in the GKP-qubits and gate noise caused by finite squeezing in the cluster state. As a result,
when combining the topological surface code with GKP error correction in the surface-GKP code
[121], we find a squeezing threshold of 17.3 dB. We continue to propose a variation of the surface-
GKP code—the surface-4-GKP code with four GKP corrections during the surface code syndrome
measurements—by which we upgrade the squeezing threshold to 13.2 dB while leaving room for
further improvements. If gate noise is ignored, the threshold drops to 10.6 dB, which is comparable
to that found in [43, 46].

The paper is organized as follows. In section 6.3 we present the computation scheme and
describe the implementation of the required gates. In section 6.4 we focus on GKP error correction
within the computation scheme, and in section 6.5 we implement the surface code for qubit error
correction and validate the fault-tolerance properties by performing simulations. In section 6.6 we
discuss the results and conclude the paper.

6.3 Computation scheme

Our computation scheme supports temporal as well as spatial encoding of the cluster state nodes.
The architectural design of the setups for temporal and spatial encoding are shown in Fig. 6.1a
and Fig. 6.2, respectively. Despite the significant architectural differences of the two designs, the
computation schemes for temporal and spatial encoding are identical. Therefore, while focusing on
the temporally encoded scheme in this paper, all the presented methods, results, and conclusions
also hold true for the spatially encoded scheme—even a combination of the spatial and temporal
encoding architectures might lead to a similar computation scheme with identical conclusions.

The temporally encoded scheme consists of three parts: the preparation of resource states,
the injection of input states at the computational level, and the measurements, enabled by a
temporally delocalized measurement device (TDMD). Note, the term ‘computational level’ refers
to the location in the setup at which information is encoded and computation takes place. In
some of our previous works (chapter 4 and 5) this computational level is referred to as a ‘logic
level’ [32, 33]. However, in this chapter we reserve the term ‘logic’ for qubit error correction in
section 6.5. As ancillary input for the resource preparation, we switch between squeezed vacuum
states, |0〉sq, when implementing gates by projective measurements, and GKP qunaught states [42],
|∅〉GKP, when performing GKP error correction. In section 6.4, GKP error correction with ancillary
|∅〉GKP-states is described, while throughout this section we focus on gate implementation with
ancillary |0〉sq-states.

At the resource preparation stage, the spatial modes A and B are initially occupied by squeezed
vacuum states, |0〉sq, which are squeezed along the orthogonal quadratures (q̂ − p̂)/

√
2 and (q̂ +

p̂)/
√

2, respectively. Here, q̂ and p̂ are the electric field amplitude and phase (or position and
momentum) quadratures for which we use the ~ = 1 convention, corresponding to a vacuum
variance of 1/2. Each pair of squeezed states is then interfered on a balanced beam-splitter,
leading to two-mode entanglement with q̂p̂-correlations. This is an approximate cluster state
equivalent to a conventional two-mode squeezed state (with q̂q̂- and p̂p̂-correlations) that is phase-
rotated by π/4 in both modes [4, 7]. As a unitary operator for the balanced beam-splitter, we use
B̂ = e−iπ(q̂i⊗p̂j−p̂i⊗q̂j)/4 with corresponding symplectic matrix

B =
1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 (6.1)

acting on (q̂i, q̂j , p̂i, p̂j)
T quadrature vectors, and represented graphically with an arrow pointing

from mode i to j. Note, in this work we prepare two-mode cluster states, however, we could
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Figure 6.1: (a) Temporally encoded computational setup of our scheme. The scheme consists of
three parts: The resource preparation (res. prep.); the computational level where the computation
takes place; and the temporally delocalized measurement device (TDMD) for gate implementation
by projective measurements. This scheme utilizes temporal multiplexing of two spatial modes, A
and B, marked in the computational level. (b) Wires of two-mode entanglement at the computa-
tional level shown in the time domain, here for the simple case of nm = 9. Bold lines represent
two-mode entanglement, while thin lines indicate the temporal overlap of A and B. The wires
begin with nm input states in temporal modes 0 to 8, switched in using an optical switch in A of
the computational level. The colors of the wires have no physical meaning and are merely used to
indicate different wires. (c) Wires rearranged into a 3D time lattice where the input is encoded
onto the n ×m end surface while gates are implemented by teleportation along the wires in the
third dimension. Here, the red arrows represent the first beam-splitter of the TDMD, while the
dotted blue and green arrows represent the variable beam-splitters of the TDMD. The first 10
temporal modes of (b) from 0 to 9 are labeled in (c).

as well have considered preparation of conventional two-mode squeezed states (with q̂q̂- and p̂p̂-
correlations) which are equivalent to cluster states under phase-rotation that may be absorbed into
the measurement bases.

After the interference at the beam splitter, the modes of A are delayed by nm temporal modes,
leading to synchronization of the modes A and B of two-mode entangled states that initially are
separated by nm temporal modes.1 The result is nm decoupled wires of two-mode entangled
states, illustrated in the time domain in Fig. 6.1b for nm = 9. Here, each color indicates different
wires with the bold lines indicating two-mode entanglement, while the thin lines indicate temporal
overlap of A and B. The nm wires constitute the computational level in which computation is
performed. Using an optical switch, nm input modes to the computation can be switched into
the computational level at A—optical switching has been demonstrated in a continuous variable
quantum setting in [30, 114]. In Fig. 6.1b nine input modes have been switched into A in temporal
modes 0 to 8.

The nm wires can be arranged in a 2D grid such that they form a 3D square lattice, as shown in
Fig. 6.1c. The third dimension is in principle arbitrarily deep. As such, information is encoded on
a surface while computation proceeds along the third dimension by teleportation using the TDMD.
The TDMD consists of a balanced beam-splitter, two variable beam-splitters (VBS), two delays
of 1 and n − 1 temporal modes, and two homodyne detectors (HD) measuring A and B in bases
q̂(θ) = q̂ cos θ + p̂ sin θ. The arrangement is illustrated in Fig. 6.1a. Each VBS can vary between
two settings: when implementing single-mode gates, the VBSs are left ‘open’ such that the modes
A and B do not interfere, corresponding to ÎA⊗ ÎB ; when implementing two-mode gates, one of the
two VBSs are ‘enabled’ to be functioning as a balanced beam-splitter with the symplectic matrix
in Eq. (6.1) interfering A and B. Such a variable beam-splitter may be implemented in various
ways, for instance as a Mach–Zehnder interferometer with a controllable phase in one arm, or by

1We assume the temporal mode duration and spacing to be equal. In practice, for a pulsed scheme, the temporal
mode duration corresponds to the pulse width, while the nm-delay corresponds to a delay of nm times the temporal
pulse spacing.
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Figure 6.2: Spatially encoded version of the computation scheme illustrated in Fig. 6.1. Here, the
wires originate from individual resource preparations and are coupled through a grid of variable
beam-splitters (VBS). The resulting computation scheme is exactly the same as in Fig. 6.1, but
with the 3D lattice of Fig. 6.1c being encoded in (space)2×time instead of (time)3. Spatial encoding
has the advantage of the computation time not being affected when scaling up the lattice. However,
this comes at the cost of requiring spatially scalable resources. As such, spatial encoding may be
possible on platforms with integrated photonics, whereas temporal encoding may be advantageous
in free-space and fiber optical platforms.

polarization control combined with polarization-dependent beam-splitters [114, 138, 139].
When the VBSs are left open, the TDMD simply implements a two-mode joint Bell mea-

surement which enacts a single-mode gate teleportation through the two-mode entangled resource
state [10, 25]. The state in computation is teleported from temporal mode k in A, (A, k), to mode
(A, k+nm). In this process, depending on the HD basis settings, θA,k and θB,k, the gate operation

R̂ (θ+) Ŝ (tan θ−) R̂ (θ+) (6.2)

is implemented on the teleported state, where θ± = (±θA,k + θB,k)/2.2 Here R̂(θ) = e−iθ(q̂
2+p̂2)/2

and Ŝ(s) = ei ln(s)(q̂p̂+p̂q̂)/2 are the rotation and squeezing operators. Note, k labels the temporal
modes at the computational level, while at the HDs, modes in A are delayed by n temporal modes
relative to modes in B. All single-mode Gaussian gates can be implemented with two iterations of
Eq. (6.2) [6].

Enabling one of the two VBSs, two-mode gates can be implemented between nearest neighbours
in the 3D time lattice. Two-mode gates between (A, k) and (A, k+1) are implemented by enabling
the first VBS, while enabling the second VBS allows two-mode gates between (A, k) and (A, k+n).
In the 3D time lattice of Fig. 6.1c, the VBSs are represented by dotted arrows. To encode the
surface code described in section 6.5, we implement two different symmetric two-mode gates:
ĈZ(g) = eigq̂⊗q̂ and ĈX(g) = e−igp̂⊗p̂. They are controlled-phase gates that displace one mode
in p̂ (or q̂) by an amount gq̂ (or gp̂) controlled by the other mode. We note that ĈX(g) does
not correspond to a controlled-not gate. ĈZ(g), or ĈX(g), constitutes together with Eq. (6.2) a
universal Gaussian gate set. In practice, ĈZ(g) and ĈX(g) cannot be implemented in a single
computation step without some Fourier by-products of π/2 phase-rotations, F̂ = R̂(π/2). To
implement the surface code in section 6.5 with a minimum number of computation steps, we make
use of 4 variations of ĈZ(g) and ĈX(g) with different by-products, each listed in table 6.1 with
their required basis settings for implementation. These are with by-products of F̂ ⊗ F̂ † or F̂ † ⊗ F̂
when implemented on modes (A, k+ nm)⊗ (A, k+ nm+ j) where j = 1 or n depending on which
VBS is enabled. When implementing the surface code, the gates are arranged such that the Fourier
by-products cancel.

2Comparing with Ref. [10], a squeezing operator, dependent on the squeezing of the ancillary |0〉sq-states, is

missing in Eq. (6.2). This is because in this work the two-mode entangled states prepared in the resource preparation
are considered cluster-type states with edge weight 1 [4], similar to in chapter 5 [33], instead of approximate cluster
states in the language of Ref. [7].
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Two-mode gate Basis setting, (θA,k, θB,k, θA,k+j , θB,k+j)

(F̂ † ⊗ F̂ )ĈZ(g)
(
− arctan 2

g , 0, 0, arctan 2
g

)
ĈZ(g)(F̂ ⊗ F̂ †)

(
−π2 + arctan 2

g ,
π
2 ,−

π
2 ,

π
2 − arctan 2

g

)
(F̂ ⊗ F̂ †)ĈX(g)

(
−π2 + arctan 2

g ,
π
2 ,−

π
2 ,

π
2 − arctan 2

g

)
ĈX(g)(F̂ † ⊗ F̂ )

(
− arctan 2

g , 0, 0, arctan 2
g

)
Table 6.1: Two-mode gates with input and output in modes (A, k)⊗ (A, k+ j) and (A, k+nm)⊗
(A, k + nm + j), respectively, and their required basis settings. Here, j = 1 when enabling the
first VBS (marked by blue in Fig. 6.1), and j = n when enabling the second VBS (marked by
green in Fig. 6.1). The order of the tensor products are arranged with earlier temporal modes first.
Note, as apparent from the basis settings, (F̂ †⊗ F̂ )ĈZ(g) = ĈX(g)(F̂ †⊗ F̂ ) and ĈZ(g)(F̂ ⊗ F̂ †) =
ĈX(g)(F̂ † ⊗ F̂ ). However, when implementing the gates in the surface code in section 6.5, it is
useful to consider them individually, as we will have the Fourier by-products to cancel.

Finally, as the resource squeezed states |0〉sq are finitely squeezed, all gate implementations
will inevitably produce excess noise which accumulates on the computational modes throughout
the computation. Due to the Gaussian nature of the quadrature distribution of |0〉sq, this gate
noise leads to a Gaussian convolution of the quadratures of all computational modes [10, 32, 33].
Assuming the variance of the squeezed quadrature of |0〉sq to be σ2 = e−2r/2 (where r is the
squeezing parameter), the uncorrelated gate noise is

σ2
gate = 2σ2 = e−2r (6.3)

which will be added symmetrically in each quadrature of the computational modes. In addition
to gate noise, an implemented gate also results in a displacement of the computational modes
depending on the projective measurement outcomes. Since the measurement outcomes are known,
this displacement can be compensated for by another cancelling displacement operation. However,
in practice, these ubiquitous displacement operations need not be executed directly onto the out-
put modes; they can simply be accounted for in post-processing of the measurement outcomes.
Therefore, in this work, we will ignore these displacements, while for practical implementation,
one has to keep these in mind when analysing the measurement outcomes.

For a derivation of implemented gates considered in this section, together with their resulting
gate noise and displacements, see appendix section 6.7.

6.4 GKP quadrature correction

As mentioned above, noise will be added to the computation modes at each gate implementation
due to the finite amount of squeezing of the resource states. To correct for this noise and thus
prevent noise accumulation, we consider a quadrature noise correction scheme that relies on bosonic
qubit encoding in the infinite-dimensional Hilbert space. This noise correction scheme, however,
comes with the cost of introducing qubit errors which must be subsequently corrected by a qubit
error correction scheme. The first correction layer, the quadrature correction scheme, will be
discussed in this section while the second correction layer, the qubit error correction, will be the
subject of section 6.5.

Several schemes for encoding qubits into bosonic harmonic oscillators of infinite Hilbert space
dimension exist, including cat-codes [13], binomial codes [15], and the Gottesman-Kitaev-Preskill
(GKP) code [14]. Since the gate noise of our computation scheme is additive quadrature noise,
GKP-encoding where a qubit is encoded in the mode quadratures as Dirac combs is most suitable.
The GKP code is also suitable for correcting excitation loss errors since excitation loss can be
converted via quantum-limited amplification into additive quadrature noise [109, 140–142]. Fur-
thermore, as the gate noise (with variance given in Eq. (6.3)) is added symmetrically in phase
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space, we consider GKP qubits encoded on square grids in phase space with a 2
√
π × 2

√
π unit

cell. For such encoded qubits, a universal Clifford gate set is realized by the Gaussian gates
{R̂(π/2), P̂ (1), ĈZ(1)} together with

√
π displacements in phase space. For a comprehensive re-

view of the GKP code, see [14, 112, 113].
Information encoded in GKP qubit states, |ψin〉GKP, is launched into the computation scheme

at the computational level as shown in Fig. 6.1a. These states are not ideal as they are subjected
to the finite energy constraints (similar to the squeezed states). This means that the uncertainties
of the individual spikes of the quadrature comb of the GKP state are not zero but have a finite
value. Mathematically, the delta functions of the Dirac comb in the GKP state quadrature wave
function are replaced by finitely squeezed Gaussian functions, each with a variance of σ2

GKP, and
an overall envelope that satisfies the Fourier relations between the orthogonal q̂ and p̂ quadratures
with equally squeezed spikes. In the following, we ignore the overall envelope, which is valid for
sufficiently high squeezing, while we assume that the squeezing of the GKP spikes is the same as
that of the |0〉sq states in the resource preparation,

σ2
GKP = σ2 = e−2r/2 . (6.4)

The Gaussian noise accompanying gate implementation results in the variance of the GKP
spikes increasing by σ2

gate in both quadratures for every single gate. To prevent this, GKP quadra-
ture correction is performed, preferably after every gate. Traditionally, this is done by coupling
each quadrature to ancillary GKP states, which are then measured, and the result is fed forward to
displacements of the computational qubit (or compensated for in following measurement outcomes)
[14]. This approach, however, requires active two-mode gates which are experimentally hard to
realize online and noisy to implement by projective measurements. Instead, we use the new ap-
proach by Walshe et al. [42] where GKP quadrature correction is realized by qubit teleportation
using ancillary GKP qunaught states and is directly compatible with our computation scheme.
The GKP qunaught state, |∅〉GKP, is the 1-level version of the generalized GKP qud it state with

a
√

2π spacing between the spikes in the quadrature wave functions [42, 143]. As such, |∅〉GKP

holds no information, but interfering two |∅〉GKP states on a beam-splitter results in a two-mode
GKP-qubit Bell state. This state can then be used for GKP-qubit teleportation with support only
on the GKP grid in phase-space so that a noisy GKP qubit is projected into a purified GKP qubit
by the teleportation.

The implementation of the GKP quadrature correction in [42] is shown in Fig. 6.3. In the
resource preparation, we switch from |0〉sq to |∅〉GKP states. After interference on the first beam-
splitter, a GKP Bell state is prepared at the computational level instead of a two-mode CV cluster
state. For teleportation of a noisy GKP qubit through the GKP Bell state, a Bell-measurement of
the noisy GKP qubit and one mode of the Bell state should be carried out by the TDMD. This is
done by leaving the two VBSs open and measuring in the q̂ and p̂ basis in spatial modes A and B,
respectively. The corresponding graph in a small section of the 3D time lattice is shown in Fig. 6.3
together with the corresponding circuit. The resulting Kraus operator,

K̂(mA,mB) = N ˆ̄ΠGKPX̂(−mA

√
2)Ẑ(−mB

√
2) , (6.5)

projects the noisy input state into a purified GKP qubit state. Here, X̂(−mA

√
2) = eimA

√
2p̂ and

Ẑ(−mB

√
2) = e−imB

√
2q̂ are displacements in the q̂ and p̂ quadratures, respectively, depending

on the measurement outcomes mA and mB , N is a normalization factor, also depending on the
measurement outcomes, and

ˆ̄ΠGKP = |0̄GKP〉 〈0̄GKP|+ |1̄GKP〉 〈1̄GKP|

is a noisy GKP projector. |j̄GKP〉 (where j = 0, 1) are approximate GKP Pauli-Z eigenstates with
spike variance identical to that of the initial |∅〉GKP states. For simplicity, we assume the spikes in
the |∅〉GKP states—and hence also the newly projected GKP qubit—to have variance σ2

GKP, just
as we did for |ψin〉GKP.
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Figure 6.3: Implementation of GKP quadrature correction by qubit teleportation. Qunaught
states, |∅〉GKP, are injected at the resource preparation state, thereby preparing a two-mode GKP-
qubit Bell state shown as two connected rectangles before the nm-delay. In the computational level
after the nm-delay, one part of the Bell state overlaps in time with the GKP-qubit state to be
corrected, |ψ〉GKP, shown as a circle. Setting the TDMD to perform a Bell measurement (the two
VBSs are open and left out in the figure) |ψ〉GKP is teleported through the Bell state and projected
into a purified GKP qubit state by the Kraus operator in Eq. (6.5). Below is the corresponding
graph as it will appear in the 3D time lattice of Fig. 6.1c as well as the corresponding circuit
diagram.

The output values, mA and mB , are integer multiples of
√
π/2 plus some noise associated

with the finite squeezing of the GKP qubit and qunaught states. As such, the X̂(−mA

√
2) and

Ẑ(−mB

√
2) displacements in Eq. (6.5) mainly corresponds to Pauli-X and Pauli-Z operations on

the encoded qubit, and is a natural result of the teleportation similar to regular qubit teleportation.
These displacements may be compensated for by unitarily displacing the teleported state back in
q̂(p̂) by mA(B)

√
2 rounded to the nearest integer of

√
π, or simply by shifting the final measurement

outcomes. However, due to the inevitable noise in mA and mB , occasionally mA(B)

√
2 will be

rounded to the wrong integer of
√
π which then results in a faulty displacement operation. This

induces a qubit error. The probability for this error to occur is [121]

pσ(z) =

∑
n∈Z exp

[
−(z − (2n+ 1)

√
π)2/(2σ2)

]∑
n∈Z exp [−(z − n

√
π)2/(2σ2)]

(6.6)

where the residual analogue information, z = R(mA(B)

√
2), when rounding is given by

R(mA(B)

√
2) = mA(B)

√
2−
√
π

⌊
mA(B)

√
2

√
π

+
1

2

⌋
, (6.7)

In Eq. (6.6), σ2 = σ2
in + σ2

GKP is the variance of z with σ2
in being the spike variance of the GKP

qubit before teleportation. For example, if the GKP qubit to be corrected has gone through one
gate, then σ2

in = σ2
GKP + σ2

gate where σ2
GKP was the GKP qubit spike variance before the gate

and σ2
gate is the gate noise variance in Eq. (6.3). Using the analogue information from the GKP

quadrature correction to improve the concatenated qubit error correction was proposed in [144],
and here, similar to in [121], we use this information through the probability in Eq. (6.6) to improve
the second layer of error correction, the surface code, which is the subject of the next section.

6.5 Surface code

In section 6.4, we showed how to project the continuous variable noise from the finite squeezing in
section 6.3 into qubit Pauli errors by GKP quadrature correction. However, in order to perform
fault-tolerant quantum computation, such Pauli errors must be corrected using an outer quantum
error correcting code. Given the nearest neighbour interactions of the computation scheme in
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section 6.3, topological error correction is a natural choice to use as an outer code. With information
encoded on a surface of the computation scheme’s 3D time lattice, and gates implemented in the
third dimension, we consider the surface code [135–137]. Specifically, to compute logical X or
Z error rates, we implement the simulation methods of [121] applied to the rotated surface code
[145, 146]. Such simulation methods are adapted to the computation scheme as described in the
appendix section 6.8. We note that the rotated surface code may not be the most resource-efficient
code for our computation scheme since it is rotated 45◦ with respect to the 3D time lattice, and
thereby, computation modes located in the corner of the 3D time lattice may not be utilized—
the rotated surface code was chosen for straightforwardly reusing the simulation method of [121].
Below, in section 6.5.1, we first describe the implementation of the surface code, and then consider
it combined with GKP quadrature correction. In section 6.5.2, we then present simulation results
of logical error rates and provide a squeezing threshold.

6.5.1 Implementation of the rotated surface code

A logical qubit is shown in Fig. 6.4a for a distance d = 5 rotated surface code. Information is
encoded in d2 data qubits (white and gray circles). The stabilizers of the code are measured using
(d2− 1)/2 ancilla qubits prepared in |+〉GKP (green circles) and (d2− 1)/2 ancilla qubits prepared
in |0〉GKP (red circles). In what follows, we refer to green and red ancillas as measure-Z and
measure-X ancillas.

One round of Z and X-type stabilizer measurements is shown in Fig. 6.4b,c. Each stabilizer
measurement consists of four two-qubit gates and is thus implemented in four time steps along
the third dimension of the 3D time lattice in which the surface code is implemented as shown in
Fig. 6.4d. Using the optical input-switch in spatial mode A of the setup described in section 6.3,
the ancilla qubits, initialized beforehand in the |0〉GKP and |+〉GKP ∝ |0〉GKP + |1〉GKP states, are
switched into the computational level in the temporal modes corresponding to ancillary modes of
the surface code. The measure-Z and -X ancillas are then coupled to neighbouring data qubits
using ĈZ(1) = eiq̂⊗q̂ and ĈX(±1) = e∓ip̂⊗p̂ gates, before being measured in the p̂ and q̂ basis,
respectively. To measure such ancillas using the TDMD, the VBSs are left open while the same
basis is chosen in spatial modes A and B in which case the measurements commute with the beam-
splitter of the TDMD. Note that the state initialization and measurement basis for the ancillas
are opposite of what is traditionally used in the surface code since they are coupled to data qubits
via ĈZ and ĈX gates instead of sum-gates, ĈNOT = e−iq̂⊗p̂. The reason for not using sum-gates is
that such gates cannot be implemented in the MBQC scheme considered in this work in a single
set of projective measurements. As such, using sum-gates would lead to larger gate error rates
compared to the error rates of the ĈZ and ĈX gates.

While the measure-Z ancillas are coupled to data qubits with a constant coupling rate through
ĈZ(1), the measure-X ancillas are coupled to data qubits with ĈX(1) in step 1 and 4 and ĈX(−1)
in step 2 and 3. This is to prevent the propagation of finite squeezing noise among measure-qubits
[121] (though this does not matter in the case of GKP quadrature correction during the stabilizer
measurements as discussed later). Furthermore, since the ĈZ(1) and ĈX(±1) gates cannot be
implemented in a single computation step without Fourier by-products as described in section 6.3,
the surface code is implemented with the two-mode gates listed in table 6.1, and so, for the different
two-mode gates in Fig. 6.4 we use

=

{
(F̂ † ⊗ F̂ )ĈZ(1) , step 1 & 3

ĈZ(1)(F̂ ⊗ F̂ †) , step 2 & 4
,

=

{
(F̂ ⊗ F̂ †)ĈX(1) , step 1

ĈX(1)(F̂ † ⊗ F̂ ) , step 4
,

=

{
(F̂ ⊗ F̂ †)ĈX(−1) , step 3

ĈX(−1)(F̂ † ⊗ F̂ ) , step 2
,

(6.8)

where the first term in the tensor products is the earlier temporal mode in the computational level.
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Figure 6.4: a Illustration of a logical qubit for the d = 5 rotated surface code. White and gray
circles represent odd and even data qubits, respectively. Green and red circles represent Z- and
X-measure qubits, respectively. The two-mode gate operations are listed in Eq. (6.8) and the
labels 1 to 4 indicate the time steps in which those gates are implemented. (b,c) Illustration of one
round of syndrome measurements including the initialization of the encoded GKP ancilla qubits,
4 time steps for the coupling between the data and ancilla qubits by 4 measurement-induced two-
mode gates, and a measurement using the TDMD. For the surface-GKP code, GKP corrections
are performed on data qubits at the beginning of a surface code syndrome measurement cycle. For
the surface-4-GKP code, GKP quadrature corrections are performed on all data and ancilla qubits
after each gate. (d) Orientation of the surface code in the 3D time lattice of the computation
scheme in Fig. 6.1. Here, the surface code is encoded in two dimensions of the time lattice with
vertices corresponding to encoded GKP qubits, while gates are encoded in each step along the
third dimension of the time lattice. (e,f) Example of qubit errors induced by GKP quadrature
correction in the surface-4-GKP code. In (e), an X̂ Pauli error occurs on a measure-Z ancilla after
the first two-mode gate of a surface code syndrome measurement round. The error then propagates
to neighbouring data and measure-X ancillas via the subsequent two-mode gates used to measure
the surface code stabilizers. In (f), a Ẑ Pauli error occurs on a data qubit after the first two-mode
gate and propagates to two measure-X ancillas.
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In this way, the Fourier by-products of step 1(3) and 2(4) cancel as F̂ F̂ † = F̂ †F̂ = Î on measure-
Z and odd data qubits, and becomes F̂ F̂ = F̂ †F̂ † = −Î on measure-X and even data qubits.
Hence such terms have no influence on the encoded information and do not propagate errors.
For CV noise, −Î on even data qubits cancels with −Î on measure-X qubits when phase-space
displacements propagate in-between measure qubits.

We proceed to combine the surface code with GKP quadrature correction, the so-called surface-
GKP code. Commonly, in the surface-GKP code, each round of syndrome measurements consists
of correction of the GKP data qubits followed by measurements of the surface code stabilizers.
In this way, qubit errors induced in the GKP quadrature correction is corrected by the surface
code [43, 121, 147]. However, in the usual surface-GKP code, gate noise accumulates during all
four gates of the stabilizer measurements in Fig. 6.4b,c. We propose to modify the scheme to
perform GKP quadrature correction of each mode after every implemented gate. In other words,
for each Z- and X-stabilizer measurement, GKP quadrature correction is performed four times,
and we refer to this as the surface-4-GKP code. Unfortunately, when doing so, qubit errors are
induced during the surface code stabilizer measurements with a large impact on the fault-tolerant
error threshold [137]. Two examples of induced qubits errors, and how they propagate during
the stabilizer measurements, are shown in Fig. 6.4e,f. Here, a qubit X̂ error on a measure-Z
qubit, induced in the GKP quadrature correction after the first gate of the stabilizer measurement,
propagates to three data qubits as Ẑ errors through the ĈZ gates (while an initial Ẑ error will not
propagate through ĈZ). From there it further propagates to two measure-X qubits through ĈX
gates. Similarly, a Ẑ error on a data qubit after the first two-mode gate propagates as X̂ errors
to measure-X qubits through ĈX . These errors lead to faulty syndrome measurements, and may
therefore lead to wrong error recovery inducing logic errors, but even then, we will find a significant
improvement of the surface-4-GKP code over the surface-GKP code. Note, in the case here with
GKP quadrature correction after every gate, having −1 coupling rate in ĈX(−1) of step 2 and 3 is
unnecessary, as all CV noise is immediately corrected. However, since a −1 coupling rate requires
no extra resources and is solely controlled by the basis settings in table 6.1, we keep it like this to
compare with the surface-GKP code.

Finally, the surface code Z- and X-stabilizer measurement outcomes from d rounds of syndrome
measurements are recorded in 3D Z- and X-spacetime graphs. Here, ‘space’ traditionally refers to
the plane of qubits in the surface code, but in our implementation this ‘space’-plane is encoded in
time on a surface of the 3D time lattice. Minimum-weight perfect matching (MWPM) [148, 149] on
these graphs is then used as the decoding algorithm to determine data qubit errors and the resulting
error recovery. In practice, the error recovery is simply handled by using and updating a Pauli
frame [111, 150–152], similar to how feed-forward can be handled in MBQC by compensating for
by-products in the following measurement outcomes [2, 5]. Using the residual analogue information
from the GKP quadrature correction to infer the probability of inducing a qubit error, the edges
of the spacetime graphs are weighted for the MWPM algorithm to find error paths of highest
probability. With four GKP quadrature corrections of each mode in one round of syndrome
measurements, multiple error probabilities are combined in each edge weight as

ptot =
1

2

(
1−

∏
i

[1− 2pi]

)
,

where pi is the probability given by Eq. (6.6) for one GKP quadrature correction taking values
between 0 (no error) and 1/2 (minimal error information). With propagating qubit errors, it
is not straightforward how to combine error probabilities of different GKP qubits, but here we
have done as follows: Errors on a measure qubit, both induced by GKP quadrature correction
and propagated from other modes, are combined on the corresponding vertical edge representing
a measurement error. Errors on a data qubit, both induced by GKP quadrature correction and
propagated from other modes, are combined on the corresponding horizontal edge of the following
round of syndrome measurements where the data qubit errors will be detected, except for Ẑ(X̂)
errors on odd(even) data qubits induced in the first step, which are instead included in horizontal
edges of the current round of syndrome measurements as they will be correctly detected there. For



134 CHAPTER 6. A FAULT-TOLERANT CONTINUOUS-VARIABLE...

d = 3
d = 5
d = 7
d = 9
d = 11

0 0.2 0.4 0.6 0.8 1
–30

–25

–20

–15

S
q
. 
v
a
r.

th
re

sh
o
ld

 (
d
B

)

–15 –14 –13 –12
Squeezed variance (dB)

10-5

10-4

10-3

10-2

10-1

100

Lo
g
ic

 Z
 o

r 
X

 e
rr

o
r 

ra
te

–13.2 dB(a) (b)

replacement probabilityØ GKP

Figure 6.5: (a) Simulated logic Ẑ and X̂ error probability of the surface-4-GKP code as a function
of the (identical) squeezing of the |0〉sq-states used for gate implementation, the GKP qubits
encoding the surface code and the |∅〉GKP-states used for quadrature correction. The logic error
probability is shown for different code distances d, and the fault-tolerant threshold where the logic
error rate decreases with increasing code distance is seen to be at 13.2 dB of squeezing. Error bars
of standard deviations are estimated by bootstrapping. (b) Squeezing threshold of the surface-4-
GKP code as a function of the probability with which a |∅〉GKP-state is replaced with a |0〉sq-state
in the resource preparation. Here, the threshold is estimated as the crossing point of the d = 7
and d = 9 logic error rates. For zero replacement probability, the threshold is that of (a).

the probabilities to correctly add up in the MWPM, the edge weights in the spacetime graphs are
taken to be log2(ptot).

6.5.2 Simulation results

To establish a fault-tolerant error threshold, we numerically simulate the complete scheme. The
GKP-encoded data and measure qubits and the qunaught states, |∅〉GKP, are all initialized with
σ2

GKP = σ2 = e−2r/2 variance of the wave functions’ GKP spikes as described in section 6.4.
The ancillary squeezed vacuum states for gate implementation, |0〉sq, are equally squeezed by

σ2 = e−2r/2 leading to quadrature-symmetric gate noise of variance σ2
gate = 2σ2 = e−2r as

described in section 6.3. Using the Monte Carlo method, logical qubit error rates are simulated
as a function of squeezing using up to 100 000 simulation samples with a stopping condition at
the occurrence of 500 combined logic Ẑ and X̂ qubit error events. The resulting logical Ẑ or X̂
error rate (they are equal) is shown in Fig. 6.5a for different code distances d as a function of
squeezing level, while the logical Ŷ error rate is smaller. The decibel scale is defined relative to
the vacuum variance, 10 log10[σ2/(1/2)]. The resulting squeezing threshold from where the logic
error rate decrease with increasing code distance is found to be 13.2 dB of squeezing.

For comparison, in the appendix section 6.8 we also simulate the error rates of other scenarios
with the simulation results shown in Fig. 6.6. For the surface-GKP code with a single GKP
quadrature correction before the surface code stabilizer measurements, the squeezing threshold
increases to 17.3 dB. This is significantly higher than the 13.2 dB squeezing threshold of the
surface-4-GKP code due to accumulation of gate noise during the stabilizer measurements. To
compare with other MBQC schemes with topological error correction where gate noise is typically
not taken into account, and so only includes finite squeezing noise from GKP states, we simulate the
surface-4-GKP code with σ2

gate = 0. The resulting threshold is 10.6 dB of squeezing which agrees
well with the 10 dB reported in [43] and the 10.5 dB reported in [46]. Finally, to see the impact of
using the residual analogue information of the GKP quadrature correction in the weighting of the
spacetime graphs for MWPM decoding, we simulate the surface-4-GKP code with fixed weighting
based on variances of each mode at each point in the code similar to [121]. As expected, the result
is a slightly larger squeezing threshold of 14.1 dB.
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While the GKP code has been experimentally realized in trapped-ion and circuit QED systems
[100, 101, 153], GKP state generation in optical platforms is yet to be demonstrated, although there
are many recent proposals [112, 128–130, 154–156]. At first, GKP state generation is most likely
going to be probabilistic. In [46] it is proposed to combine multiple GKP state generators with
optical switches, and then switch between generators with a successful preparation of a GKP state.
In this way, the success probability of the GKP state generation, p∅, can in principle be brought
arbitrarily close to 1. Since the surface-4-GKP code requires a large supply of |∅〉GKP states, we
consider as our final analysis the multi-GKP state generation scheme of [46] for |∅〉GKP resource
state preparation. If all the generators fail to prepare a |∅〉GKP state in a given temporal mode
for GKP correction, a deterministically generated squeezed vacuum state, |0〉sq, is used instead. In
this case, if |∅〉GKP is replaced by |0〉sq in spatial mode A(B), only the q̂(p̂) quadrature is corrected
in the GKP quadrature correction, while the other quadrature accumulates gate noise of variance
σ2

gate during the correction [42]. The resulting fault-tolerance squeezing threshold is shown in
Fig. 6.5b as a function of the probability 1− p∅ of replacing |∅〉GKP states by |0〉sq states. Here,
for each point, the threshold is estimated as the crossing point of the logic error rates for surface
code distances d = 7 and d = 9. For zero replacement probability, 1 − p∅ = 0, where |∅〉GKP

states are always successfully generated, the squeezing threshold is the same as in Fig. 6.5a. For
increasing replacement probability, the squeezing threshold level increases as expected, while it
seems to converge to infinite squeezing around 1−p∅ ≈ 0.95. Note, here we still assume successful
encoding of the surface code. I.e., the data and measure qubits switched into the setup as |ψin〉GKP

in Fig. 6.1a are successfully prepared as GKP qubit states. With probabilistic optical GKP state
generation, this may be possible using state storage of a probabilistically prepared GKP state until
it is switched into the computation scheme [157–160].

6.6 Discussion and conclusion

In this work, we have proposed a simple but complete architecture for optical CV MBQC that
includes quadrature noise correction and qubit error correction using topological codes. The setup
consists of simple optical devices such as beam-splitters, delays, optical switches, and variable
beam-splitters, where the latter two can be decomposed into beam-splitters and optical phase
shifters. The scheme allows for both spatial and temporal encoding, with the temporally encoded
version requiring just two squeezing sources. A universal Gaussian gate set is directly imple-
mentable, while universal qubit computation is made possible by feeding the setup with GKP
states, thereby supplying the required non-Gaussianity [39–41]. As the computation scheme is
based on gate teleportation on wires of two-mode entangled states, the setup naturally supports
the new GKP quadrature correction scheme in Ref. [42], circumventing the need for on-line active
two-mode gates coupling to ancillary GKP states. Finally, by arranging the GKP qubits in a 2D
plane of the cluster state that allows for nearest-neighbor interactions, topological codes can be
realized. By encoding a variation of the surface-GKP code—the surface-4-GKP code—we show
fault-tolerant computation to be possible above a certain squeezing threshold by simulating a logic
qubit memory, or an identity gate, of the surface-4-GKP code. In the surface code, Clifford gates
can be implemented by braiding [137] or lattice surgery [161] implemented by regulating the sur-
face code syndrome measurements, while non-Clifford gates may be realized using magic states
distilled from GKP qubits prepared in a magic state [39, 40] and injected into the surface code as
input states [137, 162].

The fault-tolerant squeezing threshold is found to be 13.2 dB. The estimation of this number
takes into account the finite squeezing values of GKP states as well as the gate noise stemming
from the finite squeezing values of the generated cluster state on which gates are implemented
by projective measurements. However, this squeezing threshold leaves room for improvements:
The decoding algorithm from Ref. [121] used here is optimized to detect qubit errors occurring
in between the surface code stabilizer measurements. For the surface-4-GKP code, due to the
repeated GKP stabilizer measurements in one surface-code cycle, Pauli errors arising from gate
failures are induced during the stabilizer measurements which can result in errors that are correlated
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on both data and ancilla qubits and can reduce the effective code distance of the surface code.
However, the full effective code distance of the surface code can be retained by adding space-time
correlated edges to the spacetime matching graphs of the surface code decoder, which may also
improve the squeezing threshold [163–166]. Note, that such modifications are solely implemented
at the software level of the error correction decoder and thus requires no modifications to the
setup. Another improvement may be found in the gate implementation: Due to the similarity
of the GKP quadrature correction and gate implementation, it might be possible to combine the
two transformations in one step, that is, implementing a gate while correcting the quadratures.
Although the quadrature correction is only considered on single wires [42], it might be possible
to generalize it to the two-wire case by which two-mode gates could be implemented during GKP
quadrature correction, thereby eliminating gate noise coursed by finite squeezing. If this is possible
while maintaining the GKP quadrature correction quality of Ref. [42], the resulting squeezing
threshold reduces to 10.6 dB as shown in the appendix section 6.8.

The squeezing thresholds in this work are derived by assuming a particular noise model in
which all resource states are finitely squeezed while all optical propagation and detection losses
are set to zero. In practice, however, losses cannot be neglected. Let us denote the transmission
of the setup by η. For Gaussian states, 0 < η < 1 leads to the formation of mixed states with
reduced effective squeezing. This can be reformulated as an ideal, loss-less setup (η = 1) with
mixed squeezed vacuum states as input having a lower effective squeezing, and some excess anti-
squeezing that does not affect the measurement-based computation [38]. As a result, for η < 1
the 13.2 dB squeezing threshold corresponds to the effectively measured squeezing. Now, for the
GKP states, besides a Gaussian convolution in the quadratures, η < 1 leads to a “shrinking” of
a GKP state in phase-space. To see this, consider the Heisenberg picture with η modeled as a
beam-splitter of η transmission. In this case, an amount 1− η of vacuum is mixed into the state,
adding noise to the quadratures, while a share 1 − η of the state is lost, “shrinking” the state in
the quadratures by

√
η. The quadrature shrinking is more detrimental to GKP spikes far from

the phase-space origin, which are naturally delimited in GKP states of finite squeezing due to the
overall envelope in the quadrature wave function. For GKP-states with 13.2 dB of squeezing, we
assume this effect to be negligible on the qubit error probabilities for reasonably high efficiencies—
we estimate η & 0.95 to be doable on optical platforms. We also note that the shrinking effect can
be counteracted by linear amplification which on the other hand will further reduce the amount
of squeezing [109, 140–142], effectively resetting η to unity at the cost of lowering the effective
squeezing of the GKP state. Again, the estimated threshold of 13.2 dB refers to the required
squeezing after such actions have been implemented. Another detrimental effect that has not
been directly accounted for is interferometric phase fluctuations. Similar to optical loss, phase
fluctuations lead to mixed squeezed states of reduced squeezing and excess anti-squeezing as well
as mixed GKP states with an impact that increases with the quadrature value.

Finally, we comment on the scalability of the computation scheme. For the temporal encoding
in Fig. 6.1, the number of modes in which GKP qubits can be encoded for computation, i.e. the
size of the encoding plane in the 3D time lattice, depends on the nm-delay in the resource prepa-
ration. Increasing the delay length increases the number of encoding modes. However, doing so
also increases the optical propagation loss, which puts a limit on the useful delay length. Thus, to
continue scaling up, nm must be increased by shortening the temporal modes, in turn increasing
the demands on the squeezing and detection bandwidth. In [35], squeezed light with a band-
width of 2.5 THz was demonstrated, limited by the phase-matching condition of the non-linear
down conversion process, while in [36], detection of squeezing up to 3 THz sideband frequency
was demonstrated. Assuming proper squeezing, experimental control, and detection in a 2.5 THz
bandwidth defining temporal modes of ∼ 1/2.5 THz duration, and assuming a propagation effi-
ciency above 0.95 (0.23 dB attenuation) in a low-loss optical fiber with low optical attenuation
of 0.15 dB/km, up to nm ≈ 107 computation modes may be realized in the temporally encoded
computation scheme. For the spatial architecture in Fig. 6.2, scalability is similar to other schemes
based on spatial encoding. It relies on the availability of resources, and is suitable for integrated
photonics [167]. Finally, temporal and spatial encoding may be combined: Consider multiple tem-
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porally encoded computational devices, each as in Fig. 6.1. Using the optical switch at the setup
computational level, computation modes can be switched in and out between different devices.
Since the setup is optical, the devices are simply connected by optical fibers between the switches
of each device without the need of quantum transducers. Furthermore, with the switch being mode
selective, each mode of an encoded logical qubit in the surface code can be transferred without
the need of decoding and re-encoding the logical quantum state, while measurement of the surface
code stabilizers after transfer may be used for error-correcting the transfer line. This is not only
suitable for combining temporal and spatial encoding for up-scaling, but is also useful in a quan-
tum internet scheme [168, 169], and is made possible by the optical architecture combined with
temporal multiplexing on the transfer lines.

6.7 Appendix: Gates by projective measurements

To derive the gates implemented by projective measurements in section 6.3, consider one compu-
tation step on two parallel wires,

A,k B,k A,k+nm

A,k+nm+jA,k+j B,k+j

in1

in2

out1

out2
,

(6.9)

where the red arrows represent the first beam-splitter in the TDMD, and the gray arrow represents
the blue or green VBS in the TDMD for j = 1 or j = n, respectively. Here, a two-mode input state
(separable or not) is encoded in modes (A, k), (A, k+ j), while the two–mode entangled states are
prepared at the resource preparation stage, and can be written as

0 q–p

0 q+p

0 q

0 p

π/4

π/4

0 q

0 p

π/4

π/4
= = =

,

where |0〉q±p is a squeezed vacuum state, squeezed along the (q̂± p̂)/
√

2 quadrature, and similarly,
|0〉q and |0〉p are squeezed along the q̂ and p̂, respectively. As such, the two-mode entangled
states correspond to two-mode squeezed states rotated in phase-space by π/4, turning them into
approximate cluster states with tanh 2r edge weight and isech2r self-loops, where r is the squeezing
parameter of the initial squeezed vacuum states [7, 44]. Alternatively, we can consider the two-
mode entangled states more generally as cluster-type states [4], here with edge weight 1, for which
the implemented gate is independent on the squeezing, r, which then only affects the gate noise [33].
The two situations are equivalent: One can change from the former to the latter by normalizing
the edge weight [10]. Here, we will consider cluster-type states, since implementing a desired gate
in practice (without considering the resulting gate noise) then requires no prior knowledge of the
squeezing level.

For single-mode gates the VBSs of the TDMD are left open, and the dashed arrow in Eq. (6.9)
represents ÎA,k⊗ ÎB,k+j . In this case, we can ignore the second wire, and focus on a joint projective
measurement of the input mode (A, k) and one mode of the two-mode entangled state, (B, k),
resulting in gate teleportation to the output mode (A, k + nm)—exactly the same derivation can
be made on the second wire of mode (A, k+ j), (B, k+ j), and (B, k+nm+ j). The corresponding
circuit is

0 p

π/4

π/4π/2

A,k

B,k

A,k+nm

ψ

0 p

ψU

θA,k

θB,k

q

mB,k

mA,k

q
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where |0〉q in (A, k + nm) is replaced by R̂(π/2) |0〉p only to follow the traditional convention of
cluster states with initial squeezing in p̂ quadratures. Using the method in the appendix section 4.8
[32] with (θA,k, θB,k) being the basis setting determining the implemented gate, the corresponding
quadrature transformation in the Heisenberg picture can be derived to be(

q̂′A,k+nm

p̂′A,k+nm

)
= G

(
q̂A,k
p̂A,k

)
+ N

(
p̂B,k

p̂A,k+nm

)
+ D

(
mA,k

mB,k

)
.

Here, G is the symplectic matrix corresponding to the desired single-mode gate operation in
Eq. (6.2),

N =

(
1 1
1 −1

)
is a gate noise matrix, and

D =

√
2

sin(2θ−)

(
− cos θB,k − cos θA,k
sin θB,k sin θA,k

)
is a displacement matrix. Since (θA,k, θB,k), mA,k and mB,k are known, D(mA,k,mB,k)T can be
compensated for by displacing the teleported state back by −D(mA,k,mB,k)T , or simply by taking
this displacement into account in the following measurement outcomes. With finite squeezing
in the ancillary modes such that Var{p̂B,k} = Var{p̂A,k+nm} = σ2 = e−2r/2, the noise term
N(p̂B,k, p̂A,k+nm)T leads to quadrature-symmetric gate noise in q̂′A,k+nm and p̂′A,k+nm of

σ2
gate = Var{p̂B,k}+ Var{p̂A,k+nm} = e−2r .

In the Wigner function picture, this gate noise corresponds to convolutions in both quadratures by
a Gaussian function of variance σ2

gate, each followed by the application of a corresponding Gaussian
envelope due to the Fourier relation between q̂ and p̂ [10, 32].

When implementing two-mode gates by enabling the first or second VBS of the TDMD, the
corresponding circuit is

0 p π/4π/2

A,k

B,k

A,k+nm

ψ

0 p

0 p

π/4

π/4π/2

A,k+j

B,k+j

A,k+nm+j

φ

0 p

θB,k mB,k
q

θA,k+j q mA,k

ψ
U

φ

π/4

θA,k q mA,k

θB,k+j mB,k
q

.

We do not derive a general expression for the implemented gate as a function of the basis setting
(θA,k, θB,k, θA,k+j , θB,k+j). Instead, we use the method introduced in chapter 4 [32]: A cost func-
tion is defined based on the implemented gate, a desired target gate, and the gate noise, which
is then used in a global search to find the basis setting that implements a desired gate with the
minimum gate noise. The resulting basis settings for the gates required to implement the surface
code are shown in Table 6.1. We note that those settings only implement two different gates since
(F̂ †⊗ F̂ )ĈZ(g) = ĈX(g)(F̂ †⊗F̂ ) and ĈZ(g)(F̂ ⊗ F̂ †) = ĈX(g)(F̂ †⊗F̂ ). The reason for considering
them as four different gates is to make the implementation of the surface code more intuitive. The
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basis settings are not unique: other settings exist that implement the same gates with equal gate
noise.

The quadrature transformation when applying the basis settings for two-mode gates is
q̂′A,k+nm

q̂′A,k+nm+j

p̂′A,k+nm

p̂′A,k+nm+j

 = G


q̂A,k
q̂A,k+j

p̂A,k
p̂A,k+j



+ N


p̂B,k

p̂A,k+nm

p̂B,k+j

p̂A,k+nm+j

+ D


mA,k

mB,k

mA,k+j

mB,k+j

 .

Again, G is the symplectic matrix corresponding the implemented two-mode gate.
D(mA,k,mB,k,mA,k+j ,mB,k+j)

T is a displacement in phase-space with

D =


−
√

5/2 0 1/
√

2
√

5/2

−
√

5/2 −1/
√

2 0 −
√

5/2

0 −
√

2 0 0

0 0
√

2 0


for (F̂ † ⊗ F̂ )ĈZ(g) and ĈX(g)(F̂ † ⊗ F̂ ), and

D =


0 −

√
2 0 0

0 0 −
√

2 0√
5/2 0 −1/

√
2
√

5/2√
5/2 −1/

√
2 0 −

√
5/2


for ĈZ(g)(F̂ ⊗ F̂ †) and ĈX(g)(F̂ †⊗ F̂ ), both of which can be compensated for, just like for single-
mode gates. N(p̂B,k, p̂A,k+nm, p̂B,k+j , p̂A,k+nm+j)

T represents gate noise where

N =


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1


leads to quadrature-symmetric gate noise of variance

σ2
gate =Var{p̂B,k}+ Var{p̂A,k+nm}

=Var{p̂B,k+j}+ Var{p̂A,k+nm+j}
=e−2r ,

which conveniently equals the gate noise variance of single-mode gates.

6.8 Appendix: Simulation

To simulate the logic qubit error rate of the surface code, we adopted and modified the simulation
in Ref. [121] to the computation scheme of this work. The simulation method is well-described in
appendix B of Ref. [121] and is summarized here with focus on the modifications. In the simulation,
quadrature noise is simulated as stochastic normally-distributed variables for each quadrature of
each mode i, ξiq and ξip. For GKP-states, ξiq and ξip are initialized with random samples from
N (0, σGKP), where N (0, σ) is a normal distribution of zero mean and σ2 variance. After each
gate, independent random samples from N (0, σgate) are added to ξiq and ξip as gate noise. As for
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homodyne measurements, ξiq or ξip is read out, and the logic value is determined from the closest
integer multiple of

√
π. Note that, unlike in Ref. [121], we do not consider measure noise or idle

noise. In optical platforms, homodyne measurements are carried out with near-unity efficiency
(any loss is assumed to just degrade the squeezing as discussed in section 6.6). Furthermore, in
MBQC no modes are idle since modes not performing any tasks still have to teleport through the
computation step and thereby acquire gate noise instead of idle noise.

For the two-mode gates in the surface code, the simulation here differs from Ref. [121] by using
ĈZ(1) and ĈX(±1) gates instead of sum-gates. For a two-mode gate between modes i and j, the
quadrature noise variables are updated as

ĈZ(1) :

ξiq ← ξiq + randG(σ2
gate)

ξiq ← ξip + ξjq + randG(σ2
gate)

ξjq ← ξjq + randG(σ2
gate)

ξjq ← ξjp + ξiq + randG(σ2
gate)

,

ĈX(±1) :

ξiq ← ξiq ± ξjp + randG(σ2
gate)

ξiq ← ξip + randG(σ2
gate)

ξjq ← ξjq ± ξip + randG(σ2
gate)

ξjq ← ξjp + randG(σ2
gate)

,

where randG(σ2) returns a random value from N (0, σ).
For GKP quadrature correction, instead of coupling to ancillary GKP qubits through sum gates

as in Ref. [121], the mode to be corrected is teleported through a two-mode GKP qubit Bell state
as described in section 6.4. The Bell state is prepared by interfering two GKP qunaught states,
denoted ∅1 and ∅2,

ξ∅1
q = randG(σ2

GKP)

ξ∅1
p = randG(σ2

GKP)
,

ξ∅2
q = randG(σ2

GKP)

ξ∅2
p = randG(σ2

GKP)

on a beam-splitter,
ξ∅1
q ← (ξ∅1

q − ξ∅2
q )/

√
2

ξ∅1
p ← (ξ∅1

p − ξ∅2
p )/

√
2

ξ∅2
q ← (ξ∅1

q + ξ∅2
q )/

√
2

ξ∅2
p ← (ξ∅1

p + ξ∅2
p )/

√
2 .

To teleport, the mode to be corrected, i, and ∅1 are interfered on a beam-splitter and measured
in q̂ and p̂, respectively, with outcomes

mA = (ξiq − ξ∅1
q )/

√
2 , mB = (ξip + ξ∅1

p )/
√

2 .

Finally, to compensate for the Pauli by-products of the qubit teleportation (displacements by
√
π),

mA

√
2 and mB

√
2 are rounded to the nearest integer multiple of

√
π,

P(mA(B)

√
2) =

√
π

⌊
mA(B)

√
2

√
π

+
1

2

⌋
, (6.10)

which is then used to displace the teleportation output mode, ∅2, back,

ξ∅2
q ← ξ∅2

q + P(mA

√
2)

ξ∅2
p ← ξ∅2

p + P(mB

√
2) .

For the sake of simulation, we pass the corrected output mode to the input mode, ξiq ← ξ∅2
q

and ξip ← ξ∅2
p , such that mode i can be reused in the following simulation. The probability of

having induced a qubit error by rounding to a wrong integer of
√
π in Eq. (6.10) due to input
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Figure 6.6: Simulation results of all four simulated cases. Here, the case of the surface-4-GKP
code using pσ(z) is the results shown in the main text Fig. 6.5. Error bars of standard deviation
are estimated by bootstrapping.

noise in ξiq and ξip, together with initialization noise of ξ∅1
q , ξ∅1

p , ξ∅2
q , and ξ∅2

p , is inferred using

the residual analogue information, R(mA(B)

√
2) = mA(B)

√
2−P(mA(B)

√
2), in Eq. (6.7) through

the probability in Eq. (6.6). Finally, it is used for weighting the spacetime graphs of stabilizer
measurement outcomes for the MWPM decoding. Here, σ2

in in σ2 = σ2
in + σ2

GKP of Eq. (6.6) is the
quadrature variance of the input mode, and is carefully kept track of in the simulation based on
previous gates and corrections.

In one simulation, d+ 1 rounds of surface code stabilizer measurements are carried out. Data
GKP qubits are initialized in round 1 with σ2

GKP variance. To stabilize the data qubits, measure
GKP qubits and qunaught states are initialized in round 1 to d with σ2

GKP variance, followed by
noisy gates and measurements to build up the spacetime graphs. In the last round, d+ 1, measure
GKP qubits and qunaught states are initialized with zero variance to carry out ideal syndrome
measurements for determining logic qubit errors induced in round 1 to d. To build up statistics,
for each squeezing level and code distance, d, this process is repeated 100 000 times, or until a total
of 500 logic X̂ and Ẑ errors are detected.

We have simulated four different cases, shown in Fig. 6.6. In three cases, GKP states (qubits
and qunaught states) and squeezed vacuum states are initialized with equal variance, σ2

GKP =
σ2 = e−2r/2, which from Eq. (6.3) and (6.4) leads to σ2

gate = 2σ2
GKP. In this way, the surface-GKP

code with GKP quadrature correction before the surface code stabilizer measurements, and the
surface-4-GKP code with four GKP quadrature corrections during the stabilizer measurements,
was simulated. To see the impact of using the analogue information from the GKP correction in
the weighting of the spacetime graphs, the surface-4-GKP code was simulated using

perr(σ) =
∑
n∈Z

1√
2πσ2

∫ (2n+ 3
2 )
√
π

(2n+ 1
2 )
√
π

dξ e−ξ
2/(2σ2) (6.11)

instead of Eq. (6.6) [121]. By integrating the wave function marginal distribution in the odd
GKP bins, perr(σ) infers the qubit error probability only based on variances without taking the
projective measurement outcome into account. Finally, to compare with other MBQC schemes
supporting topological error correction, but only taking noise from GKP-states into account, the
surface-4-GKP code is simulated using σ2

gate = 0.
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Chapter 7

Conclusion

In this thesis, work further towards the realization of continuous variable (CV) measurement-
based quantum computation (MBQC) in Ref. [30–34] was presented. This includes experimental
work on cluster state generation, gate implementation, and temporal multiplexing, as well as
theoretical work on noise performance analysis, error correctable computation schemes, and fault-
tolerant computation. In chapter 3, the generation of a two-dimensional (2D) cluster state was
realized, while a computation scheme on this cluster state was presented in chapter 4. In chapter
5, the implementation of a universal Gaussian gate set on the generated cluster state was then
presented. Both of these experimental demonstrations operates at the telecom wavelength, and
take advantage of fiber optics utilizing the developed techniques in chapter 2. The generated cluster
state and implemented gates are noisy due to finite squeezed and experimental imperfections as
optical inefficiencies and phase fluctuations. In chapter 4, a noise analysis was carried out of the
demonstrated computation scheme together with other proposed schemes [9, 11, 37]. From this
analysis, it was concluded that certain architectures are preferable for most efficiently utilizing the
available squeezing, and the requirements for error correction was discussed. Based on this, in
chapter 6 a new computation scheme was presented that allows error correction, and the scheme
was shown to be fault-tolerant for a certain amount of squeezing. Below, the work of each chapter
2–6 are summarized and concluded individually.

In chapter 2 [30], an optical switch was used for temporally multiplexing a single squeezing
source to prepare two-mode entangled states in two spatial modes. Although this is not directly
relevant to the following experimental work of this thesis, experimental techniques were developed
including optical delay, efficient in-fiber phase control, and fiber-based homodyne detection, each of
which has been applied in chapter 3 and 5. Furthermore, in fully functional MBQC architectures,
optical switching plays an important role in switching different quantum states in and out of a
computation, routing between different computations, and connecting to different detectors [5, 12,
46, 60, 170].

In chapter 3 [31], a 2D cluster state generation scheme was proposed and demonstrated. This
work was done in parallel with a similar work by Asavanant et al. demonstrating a 2D cluster
state [37]. A cluster state of two dimensions is the minimum number of dimensions required for
universal computation: One dimension for encoding a multi-mode input state in multiple cluster
state nodes, and another dimension for implementing gates by projective measurements. As such,
this work opens for the implementation of a programmable multi-mode quantum circuit. In the
validation of the generated cluster state using the van Loock-Furusawa separability criteria [103],
linear combinations of nullifiers are demonstrated to successfully bring down the required squeezing
threshold to 3 dB for validating genuine inseparability of the cluster state. This improvement is to
be compared with a squeezing threshold of 6 dB when following previous applications of the van
Loock-Furusawa separability criteria [19, 37] without considering linear combinations of nullifiers.

In chapter 4 [32], a computation scheme was proposed for the cluster state demonstrated in
chapter 3, and noise analysis was carried out on this scheme as well as on other computation
schemes on 2D cluster states, namely the cluster state demonstrated by Asavanent et al. [37], the
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bilayer-square lattice (BSL) in Ref. [11], and the quad-rail lattice (QRL) in Ref. [9]. All of the
considered schemes allow for universal computation when combined with the Gottesman-Kitaev-
Preskill (GKP) encoded qubits [14]. The three cluster states of chapter 3, by Asavanant et al., and
the BSL, are all shown to have similar noise performance. This is despite the fact that the cluster
state generation scheme in chapter 3 is experimentally simpler comprising only two squeezing
sources and three interfering beam-splitters. The QRL cluster state is shown to be optimal due to
a simpler entanglement structure in the logical level (or in between the corresponding macronodes
in the language of Ref. [9, 11]).

In chapter 5 [33], following the computation scheme proposed in chapter 4, a multi-mode Gaus-
sian gate set was implemented on the generated 2D cluster state by projective measurements.
Besides implementing a multi-mode gate set, in chapter 5 different gates are combined in a simple
quantum circuit to demonstrate the programmability of the scheme. The implemented gates and
circuit are characterized by multi-mode gate tomography. This was done by transmitting single
modes of two-mode entangled states through the gates/circuit and measuring the quadrature cor-
relations of the two-mode entangled states after applying the gates/circuit. Due to finite squeezing
in the cluster state generation, the implemented gates are noisy. To characterize the gate perfor-
mance, gate noise, comprising Gaussian noise added in the quadratures, is derived from the gate
tomography. Although the resulting gate noise is large, the gate noise is shown to agree well with
the available squeezing, and it was discussed how the gate noise can be made arbitrarily small by
improving optical efficiencies, phase fluctuations, and squeezing bandwidth.

Finally, in chapter 6 [34], a computation architecture was proposed, supporting error correction
to combat noise due to finite squeezing. Based on the analysis in chapter 4, the proposed scheme
is designed with a simple cluster state structure that matches the noise performance of the QRL.
With GKP states as inputs, the scheme supports the GKP quadrature correction scheme recently
proposed in Ref. [42], preventing active on-line coupling to ancillary GKP qubits. To correct GKP
qubit errors, gates are implemented on a three-dimensional cluster state supporting topological
qubit error correction. By combining GKP quadrature correction with the topological surface
code, the scheme is simulated to be fault-tolerant given 13.2 dB of squeezing in both the cluster
state generation and the supplied GKP states, with room left for further improvements.

7.1 Outlook

In recent years, multiple simplifications have appeared to ease the realization of universal and
fault-tolerant MBQC in the CV regime. These simplifications include cluster state generation by
linear optics and off-line squeezing [7], improved squeezing thresholds using the residual analog in-
formation from GKP quadrature correction [43, 144], GKP magic state distillation, and universal
computation with Gaussian gates rendering non-Gaussian gates unnecessary [39, 40], etc. However,
for universal fault-tolerant MBQC in the CV regime, important challenges are still to be tackled.
Most obvious is the preparation and preservation of high quality squeezing to minimize CV noise,
as well as the encoding of a qubit (or another discrete level system) into the infinite-dimensional
Hilbert space of bosonic modes to allow correction of CV noise. For the latter, GKP-states has
shown advantages [109, 112, 113, 140]. While GKP-states have been prepared in ion-traps [101]
and in the micro-wave regime [100], generation of GKP-states on an optical platform is still an ex-
perimental challenge although proposals exist [112, 128–130, 154–156]. For high-quality squeezing,
as of today, squeezing of 15 dB has been demonstrated [115], while maintaining similar squeezing
quality in a cluster state generation and computation setup is a matter of experimental improve-
ments. Below, few other, possibly less challenging, problems that deserve attention are discussed.

Throughout the work presented in this thesis, temporal encoding is considered by time mul-
tiplexing of the spatial resources. This has the advantage of keeping the number of required
spatial resources at a manageable level. In temporal encoded computation schemes, scalability is
achieved by adjusting the delay lengths. However, due to propagation losses, an upper bound on
the maximum delay length exist, and to keep scaling up, the temporal mode duration is reduced as
discussed in section 6.6. Doing so requires increasing the squeezing bandwidth, which is an active
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research topic with a 2.5 THz squeezing bandwidth recently demonstrated in Ref. [35], limited only
by phase-matching in the parametric down-conversion process. However, experimental control of
increasing bandwidth is required as well. The short temporal modes need to be detectable, and
towards achieving this, there have been recent demonstrations on the detection of squeezed light
in the tera-hertz regime using an optical parametric amplifier [36]. Additionally, phase control of
local oscillators, as well as other active components, is required to operate at an even larger band-
width to change settings in between temporal modes. In the proof-of-principle work in chapter 5,
basis settings are changed within 8 ns between temporal modes, while in Ref. [25], Asavanant et
al. managed to change basis settings within 2 ns. However, to properly utilize tera-hertz squeezing
bandwidths, the ability to change computation settings within pico-seconds is to be developed.

An alternative to all-temporal encoding is the frequency and spatial encoding. In spatial en-
coding, information is encoded in space while gates are typically implemented in time as proposed
in [46]. Such realization scales similar to other spatially encoded platforms including supercon-
ducting qubits and ion-traps, each based on coherent dynamics instead of gates implemented by
projective measurements. In frequency encoded platforms, information is encoded in frequency
modes, while gates can be implemented in the frequency or time domain [8, 11, 44, 171, 172].
Similar to all-temporal encoded schemes, scalability in frequency encoding is as well limited by the
squeezing bandwidth. 2D cluster states and implementation of programmable gates are still to be
demonstrated in spatial and frequency encoded schemes.

For optical switching of quantum states of light in and out of an optical computation device, an
efficient and fast optical switch is to be developed. In chapter 2, optical switching was demonstrated
with a switching time of ∼ 50 ns and 17% optical transmission loss. To achieve fault-tolerant
computation 17% loss is unacceptable, and fast optical switches with high transmission efficiency
are required. In Ref. [114] optical switching of < 7% loss and 10 ns switching time was realized
with polarization control and a polarizing beam-splitter (PBS), and similar performance can be
expected using phase control in an interferometer. In such settings, not just on/off-switching is
realized, but a variable beam-splitter is realized by the continuous polarization or phase control.
Thus, on the experimental side of the work presented in this thesis, a straightforward next step is
to implement such variable beam-splitter in the cluster state generation and gate implementation
setup of chapter 3 and 5, both for switching input states into the computation, but also to work
towards architectures with active on-line optical control as in the proposed schemes of chapter 6
and Ref. [46].

Another requirement to experimental control is the ability to feed measurement results forward
in the computation and use them to implement gates conditioned on the measurement results.
We may consider two kinds of feedforward: feedforward to implement conditioned displacement
gates, and feedforward to implement other conditioned operations. For circuits implemented with
all-Gaussian gates (remember, non-Clifford gates can be implemented using GKP magic states
and Gaussian gates [39–41]), conditioned displacement can simply be accounted for in the final
homodyne measurement outcomes, since displacements continue to be displacements when propoa-
gated through Gaussian gates (although with different displacement coefficients). As a result,
active feedforward is not required for conditioned displacement gates. This includes conditioned
displacements in GKP quadrature correction, compensation of by-product displacements when im-
plementing gates by projective measurements, and implementing Pauli operations on encoded GKP
qubits. For feedforward to implement other kinds of conditioned operations, active feedforward
is required when the conditioned operations cannot simply be taken into account in the measure-
ment results. An important example hereof is the case of non-Clifford gates implemented using
magic states. For instance, the qubit π/8-phase-gate implemented by gate teleportation using a
GKP qubit Hadamard eigenstate requires a conditioned shear-gate [14]. As a result, in this case,
active feedforward is required to adjust the basis settings of some following projective measure-
ments to implement the desired shear-gate based on previous measurement outcomes. The gates
implemented by projective measurements in chapter 5 are without active feedforward, while for
universal computation active feedforward becomes necessary, either if implementing non-Gaussian
gates [5], or if implementing non-Clifford GKP-qubit gates using magic states. Thus, future work
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can be the implementation of active feedforward on the setup presented in chapter 5 and requires
fast processing of the measurement outcomes and feedforward to dynamic phase control of the local
oscillators for homodyne detectors. While feedforward is applied in the field of quantum sensing
using fast processing with a field-programmable gate array (FPGA) [173–175], active feedforward
is still to be demonstrated in the settings of CV MBQC.

Finally, besides experimental improvements, it is important to keep developing the theoretical
side to simplify the experimental requirements. Examples hereof are the work by Baragiola et al.
by wich non-Gaussian gates has become unnecessary for universal computation on GKP encoded
qubits [39], and the work by Walshe et al. by witch active on-line coupling to ancilla GKP qubits
through sum-gates can be avoided in GKP quadrature correction [42]. A next step in the theoretical
work of this thesis would be to improve the squeezing threshold for fault-tolerant computation
in the architecture presented in chapter 6. As discussed in section 6.6, few improvements may
be considered. This includes optimizing the decoding applied in the topological surface error
correction code, while gate noise may be reduced if it is possible to combine two-mode gates
and GKP quadrature correction in a single computation step as similar to single-mode gates in
Ref. [42].



Appendix A

Optical table

The optical table with the experimental setup of 2D cluster state generation and gate implemen-
tation in chapter 3 and 5 is shown in Fig. A.2. Feedback and control electronics for the setup are
shown in Fig. A.1.

For demodulation and PI-controllers, the setup includes 9 RedPitayas (STEMlab 125-14) (RP)
FPGA boards as shown on Fig. A.1. Here the RPs of RP rack 1 are synchronized by using the
crystal oscillator of RP3 for RP5 and RP13 as well. This is in order to use the modulation of RP3,
driving the free-space EOM, to demodulate in RP5 and RP13 for the OPO cavity Pound-Drever-
Hall lock. Similar, in RP rack 2 the RPs are synchronized by using crystal oscillator of RP9 for
RP4, RP6, and RP11 as well. In this way, the modulation from the parametric gain lock (Probe-1
pzt. and Probe-2 pzt.) can be used for demodulation in a AC phase locks in RP4, RP6, and RP11
as well. This is used for the homodyne detector as described in appendix B.
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Figure A.1: Feedback and control electronics of the experimental setup in Fig. A.2. Abbreviations:
RedPitaya (RP); function generator (FG); computer (PC); arbitrary waveform generator (AWG);
digital storage digital storage oscilloscope (DSO). Inputs and outputs are shown in Fig. A.2.
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Appendix B

Phase locking in 2D cluster state
generation

In chapter 3, a 2D cluster state is generated by interfering two spatial modes three times with
optical delays in between. For each point of interference, the relative phase on the balanced beam-
splitters are controlled using phase locking. In this appendix the required configuration of each
phase lock is derived.

Part of the experimental setup for 2D cluster state generation is shown in Fig. B.1. The
input to the setup is squeezed vacuum states, squeezed along the x̂-quadrature, but for phase
locking, a coherent seed beam is injected into each of the two inputs during the locking period
of a sample/hold locking scheme as described in section 3.3. From the parametric gain lock of
the two squeezing sources, the seed beams are modulated with frequencies fA and fB in spatial
modes A and B. This modulation is shown in Fig. B.1 as arrows on the seed beams in phase-space.
In general, frequencies less than 100 kHz is used for modulation (in chapter 3 fA = 90 kHz and
fB = 55 kHz was used). For such modulation frequencies, in the following we can ignore the effect
of the two optical delays of 50 m and 600 m, corresponding to 250 ns and 3 µs, on the modulated
coherent seed beams.

To start with, we review the effect of a π/2 phase rotation and the balanced beam-splitter
in phase-space. We use the same definitions as in chapter 3–6 (in chapter 2 slightly different
definitions was used). The π/2 phase rotation transforms the quadratures as

. (B.1)

Here the quadrature transformation is shown in phase-space as well, which will become useful later.

2D1DEPR
A

B

Figure B.1: Schematics of the π/2 phase rotation and three beam-splitters in the 2D cluster state
generation. In the experimental implementation, the beam-splitters are implemented with 50:50
fiber-couplers. For more details on the setup, see section 3.3. For the used modulation frequencies,
fA and fB , the 50 m and 600 m delay can be ignored in this appendix.

149



150 APPENDIX B. PHASE LOCKING IN 2D CLUSTER STATE GENERATION

The balanced beam-splitter transforms the quadratures as

. (B.2)

We start with the first phase-lock used to prepare two-mode squeezed states (or EPR-states):

EPR
=

=

From the squeezing sources, the seed beams are located along the amplitude quadratures, x̂, and
modulated in the phase quadratures, p̂, as shown above (this is done by locking the parametric
gain in the squeezing sources to de-amplification of the seed beams). After the π/2 phase rotation
using Eq. (B.1), the seed in spatial mode B is along the −p̂-quadrature. Using Eq. (B.2), after
the beam-splitter the two seed beams are interfered as shown above to form seed beams in spatial
mode A and B along x̂ + p̂ and x̂ − p̂, respectively. Using a tapping mirror, the interference is
detected in spatial mode A and fed back to a phase-controller, θ, in spatial mode B before the
beam-splitter. The phase-controller consist of a fiber-stretcher driven by a piezoelectric actuator.
Here we will define, that when increasing the voltage to the piezoelectric actuator, Vpzt., it will
cause a delay leading to the seed beam rotating clockwise in phase-space. In this case the detected
signal, Vdet., will increase with increasing Vpzt. around the set point as shown above to the right.
To stabilize the phase, Vdet. is fed back through a PI-controller as

–

If Vdet. is above the set point, then the error signal, ε = Vdet. − [set point], is positive and Vpzt.

should be decreased. This is done using negative proportional and integration gain in the PI-
controller, p, i < 0. To summarize, the first phase lock for EPR-state generation is locked using
a DC lock with a set point set to the middle of an interference fringe, and using negative p- and
i-gain to lock on the positive slope.

The phase lock for generating a 1D cluster state (or H-graph state) is similar to the first phase
lock, but without π/2 phase rotation:

1D
=

=

Using Eq. (B.2), after the beam-splitter the seed beams are interfered to be along p̂ and x̂ in spatial
mode A and B, respectively. Following the same arguments as for the first phase lock, when Vpzt.

is increased, the detected tapped off signal, Vdet., increases. To stabilize the phase, a PI-controller
is used and, similar to the first phase-lock, the set point is the middle of an interference fringe
while negative p- and i-gains should be used to lock on the positive slope. Note how the mixed
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modulation frequencies cancels after the phase lock for 1D cluster state generation. This is expected
since two beam-splitter operations of Eq. (B.1) becomes

1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 1√
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

and the input quadratures are no longer mixed.
Finally, we consider the last phase lock for generating the coiled-up 2D cluster state (orH-graph

state):

2D
=

=

After applying Eq. (B.2) the seed beams are interfered to be along −x̂ + p̂ and x̂ + p̂ in spatial
mode A and B, respectively. Again, increasing Vpzt. leads to an increased detected interference
signal, Vdet.. Thus, again, the phase is locked to the middle of an interference fringe with negative
p- and i-gain.

Note how the modulation is mixed after the last phase lock. Both seed beams in spatial mode
A and B are modulated in x̂-quadrature by fB and in p̂-quadrature by fA. This is convenient for
AC-locking in the the following homodyne detection: To measure the x̂(p̂) quadratures of spatial
modes A and B, the detected signals in the two homodyne detectors are demodulated by fA(fB).
The resulting demodulated signals are fed back through a PI-controllers to phase controls in the
two local oscillator paths. To determine the sign of the p- and i-gains, consider first homodyne
detection in spatial mode B: The seed beam is along the x̂ + p̂ quadratures, so when measuring
the x̂- or p̂-quadrature, if p and i are set correctly, we expect to see a positive offset in the detected
signal before demodulation. If a negative offset is observed, the signs of p and i are swapped for
the local oscillator phase lock in spatial mode B. For spatial mode A the seed beam is along the
−x̂+ p̂ quadrature. As a result, if measuring the x̂-quadrature, we expect to see a negative offset of
the detected signal before demodulation, while, if measuring the p̂-quadrature, we expect to see a
positive offset. If not, the signs of p and i are swapped for the local oscillator phase lock in spatial
mode A.
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Appendix C

Waveform optimization for gate
implentation

In chapter 5, using two homodyne detectors (HD), Gaussian gates are implemented by projective
measurements on the 2D cluster state generated in chapter 3. This requires control of basis settings
in the two HDs to measure each temporal mode in different bases depending on the desired gate to
be implemented. For each HD this is done by controlling the phase of the local oscillator using an
electro-optic modulator (EOM). The two EOMs are driven from a two-channel arbitrary waveform
generator (AWG), and to implement a given bases sequence for a desired gate, we need to derive
the required waveforms on the two channels of the AWG, which is the topic of this appendix.

The two waveforms for the HDs are derived experimentally using the setup shown in Fig. C.1,
and the two waveforms are derived individually (one at a time). First, using a balanced fiber-
coupler, light is divided in two local oscillators (LO) for the two HDs, LOA and LOB. Each LO
passes through an EOM, polarization control (P), and phase control for phase-locking (θ). When
implementing gates, the LOs continue to each their HD, but to derive the optimal waveform for
a desired bases sequence, the two LOs are interfered in a second balanced fiber-coupler to form a
Mach-Zehnder-interferometer (MZI). One port of the MZI outputs is detected and used to phase-
lock the MZI using a DC lock. The other port is detected using a high-speed detector (Thorlabs
DET08CFC with 5 GHz bandwidth), and monitored on a digital storage oscilloscope (DSO) with
a 2.5 GHz sampling rate. When triggered from a function generator (FG), the AWG (Spectrum
Instruments M4i.6631-x8 with 1.25 GS/s sampling rate and 400 MHz bandwidth) drives an EOM

PC

EOM

EOM P

P θ

θ

LOA

LOB

DC phase lock

to HDA

to HDB

DSO
Laser

Tr
a
ce

WaveformAWG

C
h
. 

1

C
h
. 

2 FGTrigger

Control

Figure C.1: Setup used for optimizing the waveforms used in the AWG to drive the EOMs to
control the basis settings for gate implementation. Abbreviation and explanation are given in text.
Note, one waveform is optimized at a time.

153



154 APPENDIX C. WAVEFORM OPTIMIZATION FOR GATE IMPLENTATION

1

–1

Trace

arcsin and

Phase
Target

t

Target( )t

–

+Waveform(t)

p

Waveform(t)
(new)

Time, t

Sweep

average of 100

(a)

(b)
(avg.)

Phase( )t(avg.)

Figure C.2: Illustration of the data processing in the PC of Fig. C.1. (a) shows one acquired trace
including an appended sweep used for normalizing the trace. The waveforms used are at maximum
100 µs long including the appended sweep. After normalization using the sweep-part of the trace,
the corresponding phase is calculated by arcsin and any offset is removed. This is repeated by
acquiring 100 traces with the same waveform in order to build up statistics of the measured phase.
In (b) the resulting average phase is compared to a target, and the waveform is updated depending
on the difference.

(iXblue MPZ-LN-10 with 10 GHz bandwidth) based on a given waveform, and the DSO acquires
a trace. The waveforms used are at maximum 100 µs long and applied with a 100 Hz repetition
rate, and so it is not necessary to hold the DC phase lock during this process since the feedback is
low-pass filtered by few kilo-hertz and does not see the fast change in phase caused by the EOM.

The acquired trace from the DSO is processed in a computer (PC) to update the waveform used
by the AWG. This processing is illustrated in Fig. C.2. Every waveform has a “sweep” appended
to it that cause a sine-wave in the trace, which is first used for normalizing the trace. This is
done by fitting a sine-curve to the sweep, and the trace is normalized using the resulting fitting
parameters. Following the normalization, the corresponding phase is derived by

Phase = arcsin(Trace) .

A possible offset from the DC phase locking (not shown in Fig. C.2) is removed by subtracting an
average over time of the phase before the bases sequence (where the phase is flat and should be
zero if no offset is present). The process of driving an EOM, acquiring a trace, normalizing the
trace, calculating the corresponding phase, and removing any offset, is repeated 100 times with the
same waveform to build up statistics of the measured phase. The average phase is then compared
to a target phase, and at each time t the difference is calculated, scaled by a gain factor p and
added to the waveform in order to compensate for the difference:

Waveform(t)←Waveform(t) + p
[

Phaseavg.(t)− Target(t)
]

, for all t .

With this newly updated waveform the whole process is repeated, and the measured phase goes
towards the target for each iteration. The absolute value of the gain factor p depends on the
setup (optical power, electrical gain, etc.), and should be adjusted before optimizing a waveform.
The sign of p depends on which waveform is optimized: The same phase shift in each of the two
EOMs leads to opposite change in the acquired traces. The sign of p should be chosen such that
p[Phaseavg.(t) − Target(t)] compensates the waveform for the difference between the phase and
the target, while the absolute value should be chosen small enough to not overcompensate in each
iteration.
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There is a limit to how close an implemented phase sequence can be made to a target sequence
due mainly to limited bandwidths of the AWG and operational amplifiers between the AWG and
EOMs (Texas Instruments THS3491). To improve on this, the target should be made with soft
edges (transitions between bases), and in this work edges following error-functions was used with
a 8 ns transition time. With optimal gain factor, p, the change in the measured phase is observed
to become negligible after approximately 10 iterations.

Another limitation is the phase range to which the waveform can be optimized. If we are to
optimize the waveform to a phase close to π/2, we reach the ±1 limit in the trace (after normalizing
using the sweep of the trace), and the estimated phase is uncertain. Worse is it above π/2 since the
trace is periodic with the phase. Note though, π can always be added or subtracted to a basis with
absolute value larger than π/2 to move it into the range [−π/2;π/2] (such ±π added to the basis
setting is compensated in the measurement outcomes by changing the sign of the measurement
result of the corresponding mode when implementing gates). However, sometimes it is preferable
to keep one basis setting just outside this range to prevent large phase-shifts to a neighbouring
basis setting when adding/subtracting π. The waveform optimization is observed to work best in
a smaller range of around [−π/4;π/4] where the trace is close to linearly dependent on the phase.
Different parts of the waveform is therefore optimized separately: By adding an offset in the MZI
DC phase lock, the trace is moved up or down corresponding to adding a phase φ to the optimal
phase optimization range, [−π/4;π/4]+φ. In this way, we optimize different parts of the waveform
when it falls within the optimization phase range [−π/4;π/4] + φ for different φ set in the MZI
phase lock, while phases outside [−π/4;π/4] + φ are ignored.

With the waveform optimization method presented in this appendix, the resulting optimized
waveform takes electronic response into account and avoids capacitive effects, overshooting the
phase after each edge (unless too short transition times are used), as well as ringing and other
common electronic effects. An example of an optimized and non-optimized waveform is shown in
Fig. C.3 for a simple square phase shift. For the non-optimized waveform some capacitive effect
is seen in the resulting phase when changing the phase between 0 and π/4. This capacitive effect
is compensated for in the optimized waveform with some overshooting in the waveform, and the
resulting phase is seen to follow the target well. Note, here a transition time less than 8 ns is
possible due to the short phase shift of π/4, while for gate implementation in general larger phase
shifts are required and 8 ns transition time is used. Finally, in Fig. C.4 phase of a simple basis
setting sequence of {0, π/4, 0,−π/4, 0, π/8, 0} is shown using a non-optimized waveform of square
functions, and an optimized waveform. Again, the optimized waveform is seen to both compensate
for some capacitive effect as well as some ringing effect, and the resulting phase is seen to follow
the target well.
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Figure C.3: (a) Phase shift using a non-optimized waveform. To the left a square waveform with
1.25 GS/s is shown. In the middle the resulting phase is shown with a zoom-in around the rising
edge to the right. The phase is an average from 100 traces, and the corresponding 100 phases
are shown with grey points. (b) Similar to (a) but with an optimized waveform. The optimized
waveform is seen to have some overshooting after each edge to compensate for the capacitive effect
seen in (a). The resulting phase follows the target well (note that the target and phase overlap,
and the target is barely visible below the phase).
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waveform. The phase is shown to follow the target well (note that the target and phase overlap,
and the measured phase is barely visible below the target).



Bibliography

[1] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86,
5188 (2001).

[2] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen,
“Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett.
97, 110501 (2006).

[3] N. C. Menicucci, “Fault-tolerant measurement-based quantum computing with continuous-
variable cluster states,” Phys. Rev. Lett. 112, 120504 (2014).

[4] P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,”
Phys. Rev. A 76, 032321 (2007).

[5] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum com-
puting with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).

[6] R. Ukai, J.-i. Yoshikawa, N. Iwata, P. van Loock, and A. Furusawa, “Universal linear Bo-
goliubov transformations through one-way quantum computation,” Phys. Rev. A 81, 032315
(2010).

[7] N. C. Menicucci, S. T. Flammia, and P. van Loock, “Graphical calculus of Gaussian pure
states,” Phys. Rev. A 83, 042335 (2011).

[8] N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical
frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).

[9] N. C. Menicucci, “Temporal-mode continuous-variable cluster states using linear optics,”
Phys. Rev. A 83, 062314 (2011).

[10] R. N. Alexander, S. C. Armstrong, R. Ukai, and N. C. Menicucci, “Noise analysis of single-
mode Gaussian operations using continuous-variable cluster states,” Phys. Rev. A 90, 062324
(2014).

[11] R. N. Alexander, P. Wang, N. Sridhar, M. Chen, O. Pfister, and N. C. Menicucci, “One-way
quantum computing with arbitrarily large time-frequency continuous-variable cluster states
from a single optical parametric oscillator,” Phys. Rev. A 94, 032327 (2016).

[12] R. N. Alexander, S. Yokoyama, A. Furusawa, and N. C. Menicucci, “Universal quantum
computation with temporal-mode bilayer square lattices,” Phys. Rev. A 97, 032302 (2018).

[13] P. T. Cochrane, G. J. Milburn, and W. J. Munro, “Macroscopically distinct quantum-
superposition states as a bosonic code for amplitude damping,” Phys. Rev. A 59, 2631
(1999).

[14] D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A
64, 012310 (2001).

157



158 BIBLIOGRAPHY

[15] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and S. M.
Girvin, “New class of quantum error-correcting codes for a bosonic mode,” Phys. Rev. X 6,
031006 (2016).

[16] M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of
quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett. 030505,
107 (2011).

[17] S. Armstrong, J. Morizur, J. Janousek, B. Hage, N. Treps, P. K. Lam, and H. Bachor,
“Programmable multimode quantum networks,” Nat. Commun. 3, 1026 (2012).

[18] J. Roslund, R. Medeiros de Araújo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-
multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109
(2014).

[19] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki,
J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-
variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982 (2013).

[20] M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entan-
glement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112, 120505
(2014).

[21] J.-i. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and
A. Furusawa, “Invited article: Generation of one-million-mode continuous-variable cluster
state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).

[22] R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A. Politi, J.-i. Yoshikawa, P. van Loock,
and A. Furusawa, “Demonstration of unconditional one-way quantum computations for con-
tinuous variables,” Phys. Rev. Lett. 106, 240504 (2011).

[23] R. Ukai, S. Yokoyama, J.-i. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of
a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev.
Lett. 107, 250501 (2011).

[24] X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for
continuous variable one-way quantum computation,” Nat. Commun. 4, 2828 (2013).

[25] W. Asavanant, B. Charoensombutamon, S. Yokoyama, T. Ebihara, T. Nakamura, R. N.
Alexander, M. Endo, J.-i. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa, “One-
hundred step measurement-based quantum computation multiplexed in the time domain with
25 MHz clock frequency,” arXiv:2006.11537 (2020).

[26] C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. R. Cortés, Y. Zhang, B. Fischer, S. Loranger,
R. Kashyap, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, W. J. Munro, J. Azaña,
M. Kues, and R. Morandotti, “High-dimensional one-way quantum processing implemented
on d-level cluster states,” Nat. Phys. 15, 148–154 (2019).

[27] W. Gao, X. Yao, J. Cai, H. Lu, P. Xu, T. Yang, C. Lu, Y. Chen, Z. Chen, and J. Pan,
“Experimental measurement-based quantum computing beyond the cluster-state model,”
Nat. Photonics 5, 117–123 (2011).

[28] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer,
and A Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169 (2005).

[29] B. P. Lanyon, P. Jurcevic, M. Zwerger, C. Hempel, E. A. Martinez, W. Dür, H. J. Briegel,
R. Blatt, and C. F. Roos, “Measurement-based quantum computation with trapped ions,”
Phys. Rev. Lett. 111, 210501 (2013).



BIBLIOGRAPHY 159

[30] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Fiber
coupled EPR-state generation using a single temporally multiplexed squeezed light source,”
npj Quantum Information 5, 46 (2019).

[31] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deter-
ministic generation of a two-dimensional cluster state,” Science 366, 369 (2019).

[32] M. V. Larsen, J. S. Neergaard-Nielsen, and U. L. Andersen, “Architecture and noise analysis
of continuous-variable quantum gates using two-dimensional cluster states,” Phys. Rev. A
102, 042608 (2020).

[33] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen,
“Deterministic multi-mode gates on a scalable photonic quantum computing platform,”
arXiv:2010.14422 (2020).

[34] M. V. Larsen, C. Chamberland, K. Noh, J. S. Neergaard-Nielsen, and U. L. Andersen, “A
fault-tolerant continuous-variable measurement-based quantum computation architecture,”
arXiv:2101.03014 (2021).

[35] T. Kashiwazaki, N. Takanashi, T. Yamashima, T. Kazama, K. Enbutsu, R. Kasahara,
T. Umeki, and A. Furusawa, “Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth
from single-mode PPLN waveguide,” APL Photonics 5, 036104 (2020).

[36] N. Takanashi, A. Inoue, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki,
and A. Furusawa, “All-optical phase-sensitive detection for ultra-fast quantum computation,”
Opt. Express 28, 34916 (2020).

[37] W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexan-
der, S. Takeda, J. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa, “Generation
of time-domain-multiplexed two-dimensional cluster state,” Science 366, 373 (2019).

[38] B. W. Walshe, L. J. Mensen, B. Q. Baragiola, and N. C. Menicucci, “Robust fault toler-
ance for continuous-variable cluster states with excess antisqueezing,” Phys. Rev. A 100,
010301(R) (2019).

[39] B. Q. Baragiola, G. Pantaleoni, R. N. Alexander, A. Karanjai, and N. C. Menicucci, “All-
Gaussian universality and fault tolerance with the Gottesman-Kitaev-Preskill code,” Phys.
Rev. Lett. 123, 200502 (2019).

[40] H. Yamasaki, T. Matsuura, and M. Koashi, “Cost-reduced all-Gaussian universality with the
Gottesman-Kitaev-Preskill code: Resource-theoretic approach to cost analysis,” Phys. Rev.
Research 2, 023270 (2020).

[41] J. Hastrup, M. V. Larsen, J. S. Neergaard-Nielsen, N. C. Menicucci, and U. L. Andersen, “Cu-
bic phase gates are not suitable for non-Clifford operations on GKP states,” arXiv:2009.05309
(2020).

[42] B. W. Walshe, B. Q. Baragiola, R. N. Alexander, and N. C. Menicucci, “Continuous-variable
gate teleportation and bosonic-code error correction,” Phys. Rev. A 102, 062411 (2020).

[43] K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, “High-threshold fault-tolerant quantum
computation with analog quantum error correction,” Phys. Rev. X 8, 021054 (2018).

[44] B. H. Wu, R. N. Alexander, S. Liu, and Z. Zhang, “Quantum computing with multidi-
mensional continuous-variable cluster states in a scalable photonic platform,” Phys. Rev.
Research 2, 023138 (2020).

[45] K. Fukui, W. Asavanant, and A. Furusawa, “Temporal-mode continuous-variable three-
dimensional cluster state for topologically protected measurement-based quantum compu-
tation,” Phys. Rev. A 102, 032614 (2020).



160 BIBLIOGRAPHY

[46] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T. Matsuura, D. Su,
B. Q. Baragiola, S. Guha, G. Dauphinais, K. K. Sabapathy, N. C. Menicucci, and I. Dhand,
“Blueprint for a scalable photonic fault-tolerant quantum computer,” arXiv:2010.02905
(2020).

[47] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information”, Cam-
bridge University Press, England (2000).

[48] C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404,
247 (2000).

[49] A. M. Dalzell, A. W. Harrow, D. E. Koh, and R. L. La Placa, “How many qubits are needed
for quantum computational supremacy?” Quantum 4, 264 (2020).

[50] D. Gottesman and I. L. Chuang, “Quantum teleportation as a universal computational prim-
itive,” Nature 402, 390 (1999).

[51] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation
with cluster states,” Phys. Rev. A 68, 022312 (2003).
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