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Summary

After the first exfoliation of graphene in 2004, the field of two-dimensional (2D)
materials has received a lot of research attention due to their unique properties.
2D materials are just one layer thick and they exhibit novel features compare to
their bulk counterpart and they have become a platform for discovering exotic
phenomena and developing innovative applications.
At the same time, the last few years have seen a renewed interest in studying

defects in materials. This happened with a paradigm shift: from an unintended
and ubiquitous presence in materials to a source for developing new applications.
Therefore, defects are no longer considered to limit the material’s performance,
but more as a tool to design specific target properties.

In this thesis, from the title E�ects of lattice imperfections on the optical and
electronic properties of two-dimensional materials, the methods to investigate the
e�ects of defects in 2D materials from first principles were developed with the
electronic structure code GPAW.

The electronic properties were characterized by describing the symmetry of
new defect states that appear in the material’s band gap. A symmetry analysis
of such states was performed for thousands of defects states, for vacancy and
antisite defects in 2D materials. Then, it was also considered the impact of
the defects on the optical properties. This was done by studying the optical
transitions between defect states and looking at the interaction of the defects
with vibrations, an important aspect for application of defects. The focus was
also on the nonradiative recombination of photo-excited charge carriers to the
defect states, which is the main loss mechanism in opto-electronic devices. The
modern state of the art methods to describe such transitions from first principles
were implemented with GPAW and within the ASR framework.

A part of the work was also spent in predicting new 2D materials with a high
throughput approach. This method was applied to a new class of 2D material,
the Janus monolayers. These materials exhibit an intrinsic finite dipole moment
that comes from the di�erence in electronegativity in the chemical elements
on the two sides of the layer. A set of new possible monolayers of this class
was proposed. Finally, the structural instabilities of 2D materials were also
considered. A simple method was used and validated to assess the stability of
a monolayer without more expensive calculations, that are not suitable for high
throughput computational studies. The e�ect of the lattice distortion on the
electronic properties was studied for a set of distorted monolayers.
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Resume

Efter den første eksfoliering af grafen i 2004 har forskningsfeltet to-dimensionale
(2D) materialer modtaget megen opmærksomhed på grund af deres unikke egen-
skaber. 2D-materialer er kun et atomart lag tykke og udviser unikke egenskaber
i forhold til deres bulk-modstykke, og de er blevet en platform for opdagelsen af
eksotiske fænomener og udvikling af innovative applikationer.

Samtidig har de sidste par år oplevet en fornyet interesse for at studere de-
fekter i materialer. Dette skete med et paradigmeskifte: fra en utilsigtet og
allestedsnærværende tilstedeværelse i materialer til en kilde til udvikling af nye
applikationer. Derfor anses defekter ikke længere for at begrænse materialets
evne, men mere som et værktøj til at designe specifikke egenskaber.

I denne afhandling med titlen E�ects of lattice imperfections on the optical
and electronic properties of two-dimensional materials blev metoder til at under-
søge e�ekterne af defekter i 2D-materialer fra første principper udviklet med
elektronisk struktur-koden GPAW.

De elektroniske egenskaber blev karakteriseret ved at beskrive symmetrien i
nye defekttilstande, der optræder i materialets båndgab. En symmetri-analyse
af sådanne tilstande blev udført for tusinder af defekttilstande, for vakance- og
antisite-defekter i 2D -materialer. Derefter blev defekternes indvirkning på de
optiske egenskaber også betragtet. Dette blev gjort ved at studere de optiske
overgange mellem defekttilstande og ved at se på defekternes interaktion med
vibrationer, hvilket er et vigtigt aspekt for anvendelse af defekter. Fokus var også
på den ikke-radiative rekombination af foto-eksiterede ladningsbærere til defekt-
tilstandene, som er den vigtigste tabsmekanisme i opto-elektroniske enheder. De
moderne metoder til at beskrive sådanne overgange fra de første principper blev
implementeret med GPAW inden for ASR-rammen.

En del af arbejdet blev også brugt på at forudsige nye 2D-materialer med
en storskala DFT-tilgang. Denne metode blev anvendt på en ny klasse af 2D
-materiale; Janus-monolagene. Disse materialer udviser et intrinsisk finit dipol-
moment, der kommer fra forskellen i elektronegativitet i de kemiske elementer
på de to sider af laget. Et sæt af nye mulige monolag i denne klasse blev
foreslået. Endelig blev 2D-materialers strukturelle ustabilitet også overvejet. En
simpel metode til at vurdere stabiliteten af et enkeltlag uden tungere beregninger,
der ikke er egnede til storskala-undersøgelser, blev brugt og valideret. E�ekten
af gitterforvrængninger på de elektroniske egenskaber blev undersøgt for et sæt
forvrængede monolag.
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1 j Introduction and Outline

After Galileo Galilei said that Nature, the book that lies before our eyes is written
in the mathematical language [1], scientists realized that this language assumes
di�erent dialects that depend on what scale it is observed. For example, the
description of quantum mechanics required a new mathematical formalism that
made it possible to understand the behavior of microscopic particles.

A quote that well represents this complexity that comes from changing the
scale is: "More is di�erent" from Philip Warren Anderson [2], which summarizes
the fact that a complex system can not be explained by the sum of its parts, but
the observed phenomena is an interplay of individual components.

More recently, also within the same scale, di�erent characteristics seem to
emerge. In condensed matter, reducing the dimensionality of structures generates
materials with totally new properties. The best example in two dimensions is
graphene [3], that unlike to its three-dimensional version, i.e., Graphite, exhibits
new exotic behavior. Decreasing the dimensionality even more, results to one-
dimensional carbon nanotubes [4] and zero-dimensional with quantum dots [5].
Therefore, it seems that by fixing the scale in condensed matter and reducing
the dimensionality, one can also say that "less is di�erent".

This observation describes two-dimensional (2D) materials, which are atomi-
cally thin materials with novel properties, with reduced screening and enhanced
quantum confinement e�ects. Some examples of this class of materials are tran-
sition metal dichalcogenides (TMDs). A well-known TMD, MoS2 [6] has a direct
bandgap compared to the indirect in its bulk form. Using state-of-the-art exper-
imental techniques and exploiting the large surface-to-volume ratio, species on
the surface can be manipulated to discover new 2D monolayers with interesting
characteristics. For instance, if in MoS2 the sulphur atoms on one side of the
layer are replaced by selenium atoms, it leads to MoSSe structure [7]. Further in
this thesis, these materials are explored in great detail.

Additionally, these 2D materials are not only interesting in their pristine form,
their defective counterparts could also have promising applications. Recently,
the field of quantum defect design [8] shed light on the positive prospects of
defects, which were otherwise considered detrimental for material’s performance.
For example in bulk material, the negatively charged nitrogen impurity and
carbon vacancy in diamond (NV center) [9, 10] can be used for application in
quantum computations [11] and nanoscale sensing [12]. Another interesting host
material for defects for qubits applications is silicon carbide SiC in its di�erent
polymorphs [13, 14]. In 2D materials, promising color centers [15, 16] are found in

1



1 Introduction and Outline

hexagonal boron nitride [17], that could be used as single-photon emitters. In the
family of TMDs, the role of defects in single-photon emission in MoS2 [18, 19],
MoSe2 [20], WS2 [21],WSe2 [22], is still unclear and open for research.

In this thesis, we have developed methods to characterize the e�ect of defects
in 2D materials from first principles. In particular we explored their impact on
the electronic and optical properties for many materials.

The thesis has the following outline:

• Chapter 2 introduces the di�erent approximations and methods needed
to approach the many-body problem. Starting from the Born-Oppenheimer
approximation, where the dynamics of electrons and nuclei are decoupled,
to address each problem separately. Then density functional theory is
introduced, together with all the schemes and methods to practically solve
the electronic problem. At the same time, the dynamic of the nuclei is
described within the harmonic approximation, where the idea of phonons
is naturally introduced. Finally, the methods to study defects from first
principles are also presented in the last part of the chapter.

• Chapter 3 begins by stressing the importance of studying the symmetry of
the electronic states, even in the presence of defects, despite the symmetry
of the system is usually decreased. Consequently, the states introduced
inside the band gap will be analyzed under the symmetry transformations
of the point group. During the chapter, we will present the tools and
methods for carrying out this symmetry analysis and we will show two
practical applications at the end of the chapter.

• Chapter 4 analyzes the impact of defects on lattice vibrations of the crys-
tal. We will introduce how the phononic modes are a�ected and how to
quantitatively describe the new vibrations in the presence of defects. Con-
sequently, two observable e�ects of the interaction between defects and
phonons will be introduced. The first, in which defects induce nonradia-
tive transitions from the bands of the material to midgap states, without
the emission of light. The second, in which the emission of light between
two defect states in the gap is modulated by the interaction of defects with
the phonons.

• Chapter 5 introduces the concept of the high-throughput approach in
material discovery with first-principle methods. Examples will be presented
in relation to the published articles. In particular, how this approach

2



can propose new interesting materials (paper I), or systemically define the
structural instabilities of 2D materials (paper III), or study the impact of
defects for many materials (paper IV).

• Chapter 6 briefly summarizes the results obtained.

3



2 The many-body problem

2 j The many-body problem

The methods to describe electrons and atoms at the quantum level are addressed
in this chapter. This is done by presenting the approximations needed to prac-
tically solve the many body problem, to then make the comparison between
experiments and first principles calculations possible. The main results and for-
malism are also introduced, which will be used in the following chapters of this
thesis.

2.1 j Born-Oppenheimer approximation

The description of the many-body problem is, at least in principle, obtained from
the solution of the Schrödinger equation, once a total Hamiltonian is defined.
For a system with electrons (e) and nuclei (N ) the most general is:

Ĥtot = T̂N + T̂e + V̂N�e + V̂N�N + V̂e�e (2.1)

Which is a sum of the electron and nuclei kinetic energies terms T and all
possible interaction terms between: electrons V̂e�e, nuclei V̂N�N and electron-
nuclei V̂N�e.

This general Hamiltonian can be expressed in terms of spatial coordinates for
electrons r and nuclei R:

Ĥtot = �X
i

}2r2
i

2me
�X

I

}2r2
I

2MI
�X
i;I

ZIe
2

jri �RI j+
X
I<J

ZIZJe
2

jRI �RJ j �
X
i<j

e2

jri � rj j (2.2)

And solving the many-body problem is equivalent to find the solution of the
time-independent Schrödinger equation:

Ĥtot(r;R)	(r;R) = E	(r;R) (2.3)

With 	(r;R) the wavefunction of both electrons and nuclei and E their com-
bined energy. This is an intractable problem even for simple molecules. The
main idea of the Born-Oppenheimer (BO) approximation [23] is to neglect the
TN (R) term for electrons and then factorize (2.1) in electronic and nuclear parts:

Ĥe(r;R) = Te(r) +VN�e(r;R) +Ve�e(r)

Ĥtot(r;R) = TN (R) +VN�N (R) + Ĥe(r;R)
(2.4)
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2.1 Born-Oppenheimer approximation

And solve the electronic problem:

Ĥe(r;R)	n(r;R) = En(R)	n(r;R)
��� (2.5)

Where the electronic Hamiltonian Ĥe(r;R) depends parametrically on the posi-
tions fRg of the nuclei. Then the equation (2.3) is approached with an ansatz
for the wavefunction that separates the dynamics of electrons and nuclei:

	(r;R) = �(R)	0(r;R) (2.6)

	0(r;R) is the ground state wavefunction of the electronic Hamiltonian, while
�(R) is the vibronic wavefunction for the nuclei. Then the problem is treated
variationally [24], leading to:

TN (R)�(R) + E0(R)�(R) + �(R)�(R) =W�(R) (2.7)

Where E0(R) is the lowest adiabatic energy surface and �(R) is the so called
non-adiabatic operator (NAO) [24]:

�(R) = � }2
2M

 Z
dr  �

0
@ 0
@R

!
@

@R
� }2
2M

 Z
dr  �

0
@2 0
@2R

!
(2.8)

The NAO is a gauge-dependent term, and in most applications, one can choose a
gauge with real wavefunctions and consequently, the first term is zero. Also, the
second term can be neglected because it is proportional to the ratio of electron
and nucleus masses and therefore, negligible. Hence, the problem for the nuclei
reduces to:

TN (R)�(R) + E0(R)�(R) =W�(R) (2.9)

Where the nuclei feel the potential obtained by parametrically solved for every
R the electronic problem and the equilibrium geometry is given by:

@E0

@R
= 0 (2.10)

A case where the BO approximation is failing is the Jahn-Teller (JT) e�ect, which
is an important e�ect especially for defects in solids [25, 26].

The Jahn-Teller e�ect [27] is a spontaneous distortion that lowers the symmetry
of the system. It is due to the presence of a degenerate electronic configuration
and the e�ect of the distortion is to remove this degeneracy. Mathematically, this
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2 The many-body problem

means that the ansatz (2.6) for the wavefunction should include contributions
from n di�erent degenerate energy minima:

	(r;R) =
nX
k

�k(R) k(r;R) (2.11)

With di�erent contributions due to the mixing of degenerate states with the
distortion. The new ansatz will lead to a Jahn-Teller Hamiltonian:

ĤJT = � }2
2M

@2

@2R
+

0
BB@
V11 � � � V1n
... . . . ...
Vn1 � � � Vnn

1
CCA (2.12)

where the mixing terms of the degenerate states with the distortion are:

Vmk =
Z
dr �

m(r;R) Ĥe(r;R) k(r;R) (2.13)

2.2 j Density functional theory

Once the many-body problem is decoupled, the electronic problem needs to be
solved. Density Functional Theory (DFT) has become the standard method to do
this. Within DFT, the main quantity needed is not anymore the wavefunction
but the electronic density defined for a system with N electrons as:

n(r) = N
Z
dr2:::drN 	�(r; r2; :::; rN )	(r; r2; :::; rN ) (2.14)

This change of perspective from the wavefunction to the density is advantageous
because the density n(r) depends only on one variable r and it is a real quantity
unlike the wavefunction, which is complex and depends on the coordinates of
all electrons. This is possible because the energy of the system can be written
as functional of the density. However, this is not a trivial aspect because the
energy is a functional of the wavefunction:

E[	] =
h	jĤj	i
h	j	i (2.15)

And the density is a functional of the wavefunction, as it is clear from (2.14).
However, writing the energy directly as a functional of the density is not trivial.
One of the main results of DFT is that this relation exists between the ground

6



2.2 Density functional theory

state density and the energy. This is possible because the functional relation
between the ground state wavefunction and the ground state density can be
inverted and then energy can be written directly as functional of the ground
state density:

E[	GS] = E[	GS[nGS] ] = E[nGS] (2.16)

This can be proved rigorously [28] by considering two di�erent mappings, study-
ing their uniqueness and hence their invertibility. The ground state wavefunction

fvextg f	GSg fnGSg

C

C91

D

D91

C : fvextg f	GSg

D : f	GSg fnGSg

Figure 2.1: The mappings among the external potential, the wavefunction and the
density are unique and therefore invertible.

for a particular physical system is uniquely determined by an external potential
vext. Consequently, there are two mappings to consider: one from the external
potential to the ground state wavefunction and the other one from the ground
state wavefunction to the ground state density (Fig. 2.1). These mappings can
be proven to be unique and therefore invertible. This makes writing the wave-
function as functional of the density and the energy as functional of the ground
state density possible.
As a result, the energy as a functional of the ground state density exists

and another important result is that the energy has a variational property with
respect to the ground state density of the system:

E[nGS] � E[n] (2.17)

7



2 The many-body problem

This allows the variational access of the theory, starting from a trial density and
then calculating the energy extremum.

The other important result of DFT is how the energy as functional of the
ground state density E[n] can be written explicitly. The di�erent contributions
to the energy functional are:

E[nGS] = T [nGS] + V e9e[nGS] +
Z
dr vext(r)nGS(r) (2.18)

With the kinetic energy term and the potential divided in the external and
electron-electron parts.

The idea is to introduce a fictitious non-interacting system, called the Kohn-
Sham system [29], which has the same ground state density as the interacting
system (Fig. 2.2). The density of the two systems are:

nI(r) = N
Z
dr2:::drN 	�(r; r2; :::; rN )	(r; r2; :::; rN )

nKSNI (r) =
occX
i

j'KSi (r) j2
(2.19)

And the functions f'KSi (r) g come from the self-consistent solution of the Kohm-
Sham equations:

"
� }2r2

2m
+ vKS(r)

#
'KSi (r) = "KSi 'KSi (r) (2.20)

Where vKS(r) is an e�ective potential for the fictitious system:

vKS(r) = vH(r) + vext(r) + vxc(r) (2.21)

And vH(r) is the functional derivative of the Hartree energy:

VH [n] =
e2

2

Z n(r)n(r0)

jr� r0j drdr
0 (2.22)

Similar functional derivatives hold for the external potential and also for the
vxc(r) that comes from the exchange-correlation functional Exc[n] which in-
corporates all the unknown quantities inside the energy functional of the real
system:

Exc[n] = T I[n] � TNI[n] � V H[n] + V el�el[n] (2.23)
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2.2 Density functional theory

And the energy functionals of the two systems are:

EI[n] = TNI[n] + V H[n] + V ext[n] + Exc[n]

ENI[n] = TNI[n] + V KS[n]
(2.24)

An approximation to Exc[n] makes it possible to solve the self-consistent Kohm-

Real Kohn-Sham

nI(r) n
KS

NI
(r)

Figure 2.2: The non-interacting Kohn-Sham system is constructed from the real
interacting system by ensuring that the electronic density is the same.

Sham equations and to describe the electronic properties of a system, always
having in mind to give the right interpretation to the eigenvalues and eigenvectors
of (2.20).

The basic approximation to the exchange and correlation functional is the local
density approximation (LDA), where the Exc[n] is split into two contributions.
The exchange part is given from the results of the homogeneous electron gas:

Ex[n] = �
Z 3

4

e2

�
(3�2n(r) )

4

3dr (2.25)

The correlation part is obtained from Quantum Monte Carlo calculations [30]. In
spite of the simple form of LDA, it gives good results also for systems di�erent
from the homogeneous electron gas. However, it poorly describes systems with
an inhomogeneous charge density. A way to improve this is with the generalized
gradient approximation (GGA), which adds a gradient dependence in the energy
functional. One of the most important functionals within the GGA is the PBE [31].
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2 The many-body problem

It is important to mention hybrid functionals, as it will be crucial their use
in the case of defects [32]. They are called hybrid because the PBE exchange is
mixed with the Hartree-Fock exchange. In the HSE [33, 34] functional the degree
of mixing between the two di�erent exchanges is determined by the � parameter.
This mixing is a�ecting the short-range (SR) behavior of the two terms, while the
long-range (LR) is taken from PBE. The range is defined with an error function,
with the parameter !:

EHSE
xc = �EHF;SR

x (!) + (1� �)EPBE;SR
x (!) + EPBE;LR

x (!) + EPBE
c (2.26)

Typical values for the fraction � is 0:25, while for the screening length ! is 0:11
in the unit of the Bohr radius.

One of the e�ects of the mixing parameter � for a semiconductor is to enlarge
the gap of the material. This can be understood roughly from the fact that
Hartree-Fock overestimates the band gap, while with PBE, it is underestimated.
Consequently, the gap increases as � is increasing.
All the DFT calculations performed in this thesis are done with electronic

structure code GPAW [35] with the PBE functional. The benchmark in section
(4.1) was done with the HSE functional.

2.3 j Projector augmented wave formalism

We have seen that DFT allows to systematically solved the electronic problem
once an exchange and correlation functional is chosen. Another important choice
to practically solve the electronic problem is how to represent the wavefunctions.

In GPAW, three basis sets are available: plane waves (PW), real space grid
and localized atomic orbitals (LCAO). Independently from the basis chosen, it is
challenging to capture the variation of the wavefunctions near the atoms. The
problem is that it requires a very large set of basis functions to expand the states
due to the large oscillations near the nuclei.

The approach of the projector augmented wave (PAW) [36] maps this problem
in finding a new set of wavefunctions ~ n. These pseudo-wavefunctions are
smooth near the nuclei, while they represent the true all-electron wavefunctions
 n in the bonding region. In the PAW method therefore, exists a transformation
of the type:

j ni = T̂ j ~ ni (2.27)

Which defines a new set of transformed Kohn-Sham equations:

T̂ yĤT̂ j ~ ni = "nT̂ j ~ ni (2.28)

10



2.3 Projector augmented wave formalism

^T

 n � ~ n

Li H

~ n  n

Figure 2.3: The di�erence from the pseudo (left) and all-electron (right) wavefuc-
ntion are only closer to the nuclei as it is clear from their di�erence
(below). The PAW transformation T̂ allow to obtain the true electron
wavefunction from the pseudo one, here for a wavefunction for the
HLi molecule.

Consequently, the true all-electron wavefunctions can be obtained from the
pseudo ones after solving the new transformed problem. The pseudo-wavefunctions
are the same as the real all-electron wavefunctions outside augmentation spheres
defined around each nucleus, the only di�erences are close to the nuclei (Fig.
2.3)1.
Together with the PAW method, the last approximation needed is the frozen

core approximation, where the core electrons are considered localized on the
atoms and thus Kohm-Sham problem is defined only for the valence electrons
of the system.

1The positive (negative) part of the wavefunctions are plotted in orange (blue). This convention
will be used for all isosurfaces in the thesis.

11



2 The many-body problem

2.4 j Harmonic approximation and phonons

The solution of the electronic problem gives access to the equilibrium geometry
of the system with (2.10). Perturbations from the equilibrium positions can be
investigated to study the vibrational properties of the material.

The starting point is the harmonic approximation, which is shortly introduced
here and naturally, leads to the concept of phonons. We will follow the derivation
and the notation of Ref [37].

Let us consider an infinite crystal made by repetitions of the unit cell with
lattice vectors ai over the three directions (Fig. 2.4). The position vector for a

x(l)

x(�)

atom �cell l

a1

a2

Figure 2.4: The position with respect to the origin of the reference cell l is given
by the vector x(l) and the position of the atom � in the cell is x(�)
or x(l�) with respect to the origin.

reference cell l relative to the origin is:

x(l) = l1a1 + l2a2 + l3a3 (2.29)

Where the li are integer numbers. For a crystal made consisting of Na atoms in
the unit cell, the position of the �-th atom in the l-th unit cell is:

x(l�) = x(l) + x(�) (2.30)

If u�(l�) is the cartesian component � of the displacement from the equilibrium
position x(0)(lk) .

u�(l�) = x�(l�) � x
(0)
� (l�) (2.31)
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2.4 Harmonic approximation and phonons

The potential energy � of the crystal can be expanded in terms of these dis-
placements around the equilibrium configuration and it reads:

� = �0 +
X
lk�

��(lk) u�(lk) +
1

2

X
lk�
l0k0�

��� (lk; l
0k0) u�(lk)u� (l

0k0) + � � � (2.32)

Keeping only terms up to second order in the quadratic term in the Taylor
expansion is the Harmonic approximation. Then, the coe�cients inside the
linear and quadratic terms are the derivatives of the potential evaluated at the
equilibrium geometry:

��(lk) =
@�

@u�(l�)

����
0

��� (lk; l
0k0) =

@�

@2u�(l�) @u� (l0�0)

����
0

(2.33)

Consequently, ��(lk) is zero at the equilibrium positions, while the coe�cients
��� (l; �; l; �0) are called the atomic force constants and satisfying the following
properties:

• ��� (l; �; l0; �0) = ���(l0; �0; l; �)

•
X
l0�0

��� (l; �; l
0; �0) = 0

• ��� (l; �; l0; �) = ��� (l� l0; �; 0; �) = ��� (0; �; l0 � l; �)

• ��� (L;K;L0;K 0) =
X
��

D��(R)D�� (R)��� (l; �; l
0; �0)

The first property comes from their definition as second-order derivatives, the
second from the invariance of the potential under translations, the third from
the fact ��� (l; �; l0; �) depends only from the di�erence l� l0. The last property
comes from the invariance of the potential under an operation R of the group of
symmetry of the crystal that sends the lattice site fl; �; l0; �0g to fL;K;L0;K 0g
and the matrix elements of the operation are D�� (R) .

Therefore within the Harmonic approximation, the Hamiltonian for the nuclei
can be written with the quadratic terms in (2.32) as a potential term and the
equation of motion for the displacement is:

Mk�u�(lk) = � @�

@u�(lk)
= � X

l0k0�0

��� (lk; l
0k0) u� (l

0k0) (2.34)
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2 The many-body problem

Introducing an ansatz for the displacement:

u�(l�) =
1p
M�

u�(�) e
�i!t+iq�x(l) (2.35)

The equation of motion can be rewritten as:

!2u�(�) =
X
�0�

D�� (��0jq) u� (�0) (2.36)

Where the D�� (��0jq) is the Dynamical matrix:

D�� (��0jq) = 1p
M�M�0

X
l0

��� (l; �; l
0; �0) e9iq�(x(l) 9x(l

0) ) (2.37)

Which is defined with respect to the reference cell l introduced previously. The
3Na eigenvectors of the Dynamical matrix e�(�jq�) satisfy the equation (2.36)
with the normal mode or phonon frequencies !2�(q) of the crystal:

!2�(q) e�(�jq�) =
X
�0�

D�� (��0jq) e� (�0jq�) (2.38)

And they satisfy the following normalization properties:

X
��

e��(�jq�) e�(�jq�0) = ���0

X
�

e��(�jq�) e� (�0jq�) = ������0

(2.39)

With DFT, there are two main approaches to calculate the phonon frequencies of
a material. The first is treating the displacement of atoms as a perturbation, with
Density Functional Perturbation Theory (DFPT) [38] and look at the variation of
the density to build the dynamical matrix. The second approach is the small
displacement method [39, 40], where a supercell of the original primitive cell is
constructed and the force constant matrix elements are obtained by displacing
the atoms in the supercell.

This is done using the fact that the derivative of the potential with respect to
the displacement of the atom � in cell l is equal to the force on that atom:

F�(l�) = � @�

@u�(l�)
(2.40)
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2.4 Harmonic approximation and phonons

Consequently, the force constant matrix elements can be obtained from the
derivative of the forces:

��� (lk; l
0k0) =

@�

@2u�(l�) @u� (l0�0)
= � @F�(l�)

@u� (l0�0)
(2.41)

And they are evaluated with a finite di�erence, displacing in the positive (+) and
negative (�) direction:

@F�(l�)

@u� (l0�0)
� F +

�(l�) 9 F
9
�(l�)

2�
(2.42)

Where � is the amount of the displacement.
Therefore the ��� (lk; l0k0) are obtained by displacing the atom �0 in the cell l0

in the direction � and calculating the force in the direction � on the atom � in
cell l.
Not all the atoms in the supercell need to be displaced since the force constant

matrix in (2.37) is needed only with respect to a reference cell, i.e. the original
primitive cell.

For all the phonon calculations in this thesis, the frozen phonon method is
used. It was implemented in the in Atomic Simulation Recipes (ASR) [41] in the
asr.phonopy recipe and using the code PHONOPY [42] to get the displacement
of the force constant matrix and to extract the phonon frequencies.
Finally, the interaction between electron and phonon is needed when nonra-

diative results will be considered in chapter 4. The calculation of the electron-
phonon matrix elements is available in GPAW [43], between electronic Bloch
states and over all phonon modes, with wavevector q in the whole phonon Bril-
louin zone. In this thesis, we need a simplified version which is described here,
where we introduce the formula for the matrix element following the approach
of [44].

The electron-phonon matrix element between the single-particle states  i and
 f , with Hamiltonian ĥ, and the mode described by the coordinate Q� is:

W �
if = h ij @ĥ

@Q�
j f i (2.43)

We can drop the phonon branch index � since in chapter 4 we will only need one
particular phonon mode. We now consider that the derivative with respect to Q
of the matrix element h ijĥj f i is zero, therefore evaluating all the derivatives
similarly to the derivation of the Hellman-Feynman theorem [24]:

h@ i
@Q

jĥj f i+ h ij @ĥ
@Q

j f i+ h ijĥj@ f
@Q

i = 0 (2.44)
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2 The many-body problem

They can be written as:

h ij @ĥ
@Q

j f i = �h ijĥj@ f
@Q

i � h@ i
@Q

jĥj f i

h ij @ĥ
@Q

j f i = �"i h ij@ f
@Q

i � "f h@ i
@Q

j f i
(2.45)

Using the same idea again, that derivative of h ij f i with respect to Q is zero:

h@ i
@Q

j f i = �h ij@ f
@Q

i (2.46)

Therefore the electron-phonon matrix element is:

Wif = ("f � "i) h ij@ f
@Q

i (2.47)

This is the formula that will be used in chapter 4.

2.5 j Defects with density functional theory

Defects with DFT can be modeled by creating a supercell of the material’s unit
cell and introducing the defect. The starting property to calculate is the for-
mation energy that gives the information on how energetically favorable the
formation of a given defect is. The formation energy is usually calculated with
the so-called Zhang-Northrup formula [45]:

Ef [Dq] = E[Dq]� E0[host]�
X
i

�ini + q("v + EF ) + �q (2.48)

The first two terms are the total energies of the supercell with the defect and the
pristine supercell of the same size. The third is the energy required to remove
(ni < 0) or add (ni > 0) n atoms of species i to form the defect, times its
chemical potential �i. Another contribution is the energy needed to form the
defect in a charge state q, which depends on the position of the Fermi level with
respect to the valence band maximum of the pristine material.

The last term �q is a charge correction needed to make the formation energy
independent from the supercell size due to the charge q.

In chapter 4, the correction scheme used will be the Freysoldt, Neugebauer
and Van de Walle [46], where there are two terms in the correction �q :

�q = �El + q�V (2.49)
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2.5 Defects with density functional theory

The first contribution, called the lattice term, removes the electrostatic inter-
action among the repeated images of the charged distribution density and the
interaction with itself, and it is written as:

El =
2�

"


X
~G 6=0

jn(~G)j2
G2

� 1

�"

Z 1

0
dgjn(g)j2 (2.50)

The second, called the alignment term, takes into account that the charge in-
troduced changes the electrostatic potential, and therefore there is a correction
needed in order to align the total energy of the system.

The idea behind the correction scheme is that the di�erence of the density
between the charged defect and the pristine material is localized around the
defect (Fig. 2.5). Then the contribution of this repeated localized distribution
of charge can be removed and make that formation energy independent of the
supercell size.

n(q)(r)� n(0)(r)

CN
q

q + 1

"
H

(q
+

1 2
)

�q+1

�(
q
;q

+
1
)

Rq

Rq+1

Figure 2.5: The density di�erence (left) between the charged defect and the pris-
tine material is localized on the defect, i.e. the CN defect in GaN in
the center of the supercell. With the SJ approach (right) the CTL can
be obtained by the energy of the HOMO level of the q+ 1

2 system and
the reorganization energy in the q + 1 state.

A standard approximation has become to approximate the density with some
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2 The many-body problem

model charge distribution nm(r) for which the lattice term has an analytical
expression. For example, for a Gaussian charge distribution density:

n(q)m (r) =
q

[
p
2��]3

e�r2=(2�2) (2.51)

Which integrates to q and it has a full-width at half maximum (FWHM) of
2�
p
2 ln 2. Then the lattice term becomes:

El =
2�

"


X
G 6=0

q2e�G2�2

G2
� q2

2
p
�"�

(2.52)

With these corrections, the formation energy is independent from the supercell
size as long as the density di�erence is localized around the defect and it can
be well described by a gaussian distribution.

For a given material, the formation energies of many defects give the idea of
which defects are more likely to be formed. This also depends on the experi-
mental conditions. They can be varied by changing the limit of the chemical
potential of the elements to form the defect (rich and poor conditions of the
elements).

While formation energies give an idea of how favorable is the formation of
defects, the quantity to get closer to the experiment is the charge transition level
(CTL). The CTL �(q; q0) gives the Fermi level position needed to change the charge
of a defect from a charge state q to q0, and it is directly related to their formation
energy:

�(q; q0) =
Ef [D

q;EF =0]� Ef [D
q0

;EF =0]

q0 � q
(2.53)

The FNV charge correction scheme is available in GPAW and it was used in
chapter 4.

Charge transition levels and formation energies are also calculated in Paper IV
for defects in 2D materials, but a di�erent approach was used. Indeed, the FNV
scheme should be modified in order to deal with defects in 2D [47] and getting
the convergence as a function of the supercell is more challenging. For this
reason, since in Paper IV the CTLs are obtained in a high-throughput manner
for thousands of defects, the Slater-Janak (SJ) approach was used, which does
not rely on total energy considerations and yields reasonable results [48]. The SJ
method is based on a basic result of DFT, the Janak’s theorem [49]:

@E

@ni
= "i(ni) (2.54)
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2.5 Defects with density functional theory

A relation between the derivative of the total energy with respect to the occupa-
tion number ni and the Kohn-Sham eigenvalue "i. It can be used to obtain total
energy di�erence between di�erent numbers of electrons and therefore between
di�erent charged states of the defect (Fig. 2.5).

For example, the charge transition level for a defect from the charge state q to
the q + 1 is given by:

�(q; q + 1) = "H(q +
1
2 ; Rq) + �q+1

��� (2.55)

Where the "H(q + 1
2 ; Rq) is the HOMO level of a system with a q + 1

2 charge at
the geometry Rq and �q+1 is the reorganization energy from the Rq geometry
with q + 1 charge.

The HOMO level of the q + 1
2 system still has some dependence on charge

when it is compared to the gap of the pristine material. To avoid this, both
HOMO level and the pristine band edges are referenced with respect to the
average electrostatic potential for an atom far away from the defect.
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3 Defects and symmetry

3 j Defects and symmetry

The presence of point defects in a material has the e�ect of lowering its crystal’s
space group. It is clear that defects break the translational invariance of the
lattice, but a further reduction of the symmetry may come from the change
of the positions of the atoms surrounding the defect. For this reason, it may
seem that characterizing the symmetry in the presence of defects is less crucial
compared to the pristine material. Despite this, symmetry still plays an essential
role for defects. This happens because defects in a semiconductor may lead to
the presence of electronic states with energy that lies in the forbidden gap of the
pristine material. The associated wavefunctions of these defect states are spatially
localized and a change of their occupation can lead to a significant modification
of the electronic density on the defect [50]. This has the e�ect, for example, of a
large ionic relaxation during an electronic excitation and thus an enhancement
of the electron-lattice interaction compared to the pristine material.

Therefore, it is crucial to characterize these states under symmetry operations
of the point group of the crystal, because changing the occupation of a single
state can change the symmetry of the entire material. The reason to do that is
twofold: first, the symmetry of the defect states is a fingerprint for a given defect;
secondly, all the properties and hence all the non-vanishing matrix elements can
be predicted only by symmetry consideration.

This chapter aims to describe the ideas and methods behind the symmetry
analysis developed for thousands of defect states in Paper IV and then present
some applications.

3.1 j Introduction to group theory

Here we will show some of the basics results of group theory [51] that are needed
to classify the symmetry of the Kohn-Sham states in the next section.

Characterizing a function under the symmetry operations of a group is equiv-
alent to decompose the function into di�erent components, where each compo-
nent transforms in a distinct way. We will clarify this aspect with a well-known
and simple example that will help introduce the relevant formalism.

It is an obvious result that starting from a function f(x), it is possible to
generate even f (+) (x) or odd f (9) (x) components of the function under reflection
along the y axis in the following way:

f (�) (x) = f(x)� f(�x) (3.1)
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3.1 Introduction to group theory

This is trivial, but this is nothing more than an application of a more general
method that comes from group theory. To show this, we consider that here in
this example, we have a point group with operations fRg that are the identity E
and the reflection along the y axis, namely � with the e�ect �f(x) = f(�x).
If we introduce some unknown quantities for the moment, for every operations

and for the even (+) and odd (�) components: �(�) (E) = 1 for the identity and
�(�) (�) = �1 for the reflection along the y axis, we can rewrite the even and
odd components of the functions as:

f (�) (x) =
h
�(�) (E) �E + �(�) (�) ��

i
f(x) =

X
R

�(�) (R) �Rf(x) (3.2)

Where we see that once the �(�) (R) are known, we have a systematic way of
generating even and odd components of the function. The equation above can
be seen as the action of a projector operator on the function:

f (�) (x) = P(�)f(x) =
X
R

�(�) (R) �Rf(x) (3.3)

This results can be generalized with group theory to any point group G, where
instead of even and odd components, the projector operator projects into the
so-called irreducible representations (irreps) [52] of the group, where every irrep
transforms in its distinct way, like the even and odd component in the previous
example. The numbers �(�) (R) , are called the characters of the group and they
are tabulated for every point group [53].

Therefore a projector operator that projects into the irrep � is:

P(�) =
X
R

�(�) (R)�R (3.4)

To complete the section, we also mention that the characters satisfy an orthog-
onality relation with the Little Orthogonality Theorem (LOT) [54]:

X
R

�(�) (R)��(�) (R) = ��� (3.5)

Furthermore, a generalization of the LOT exists in terms of the matrix elements
of the representation matrices D(�)

kl (R) of the irreps of the group with the Great
Orthogonality Theorem (GOT):

X
R

D
(�)
ij (R)�D

(�)
kl (R) =

NG
m�

����ik�jl (3.6)
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3 Defects and symmetry

Where NG is the number of the operations in the group and m� is the degener-
acy of the irrep �. The characters �(�) (R) introduced before are the trace of the
representation matrices:

�(�)(R) = Tr(D(�)(R)) =
X
i

D
(�)
ii (R) (3.7)

Finally, from the GOT a generalized projector operator can be also defined, that
projects from the component j of the basis of the irrep � to the component i
(also called the transfer operator [51]):

P
(�)
ij =

X
R

D
(�)
ij (R)�R (3.8)

For example, if we want to project inside the basis component i of the irrep �
we need:

P
(�)
ii =

X
R

D
(�)
ii (R)�R (3.9)

And if this is summed over all components of the basis:

X
i

P
(�)
ii =

X
R

X
i

D
(�)
ii (R)�R =

X
R

Tr(D(�)(R)) �R =
X
R

�(�) (R)�R (3.10)

We obtain again the (3.4) as expected [55]. These are the main results of group
theory used in the next sections.

3.2 j Irreducible representations for Kohn-Sham states

After recalling some of the fundamental results of group theory and introducing
the projector operator, we can now describe the method to find the irreps of the
Kohn-Sham states. This is obtained from the action of the projector operator
(3.4) on the Kohm-Sham wavefunction 	(r):

P(�)	(r) =
X
R

�(�) (R)�R	(r) (3.11)

When dealing with wavefunctions, it is convenient to work with the overlap �(R)

of the transformed wavefunction under symmetry operation R and itself:

�(R) =
Z
dr 	(r)�R	(r) (3.12)

22



3.2 Irreducible representations for Kohn-Sham states

And the relation (3.11) becomes an average c� of the projector operator with the
wavefunction:

c� = h	jP(�) j	i =X
R

�(�) (R)��(R) (3.13)

This can be seen as the fraction of the overlap that transforms like the irrep �.
These fractions coe�cients c� are obtained by first inverting the relation (3.13)
by multiplying by the character �(�) (R) and summing over �:

X
�

�(�) (R)�(R) =
X
�

X
R

�(�) (R)�(�) (R)��(R) (3.14)

Using the LOT (3.5) and renaming the dummy index we have that the overlap
�(R) is:

�(R) =
X
�
c� �

(�) (R) (3.15)

Where we see that in general the overlap �(R) can be expanded in terms of
the characters of the point group. Therefore for all the NG operations of the
group the overlap are calculated and a linear system of the form Ax = B can
be constructed:2

666664
�(R1)

�(R2)
...

�(RNG)

3
777775 =

2
666664
�(�) (R1) �(�) (R1) � � � �(!) (R1)
�(�) (R2) �(�) (R2) : : : �(!) (R2)

...
... . . . ...

�(�) (RNG ) �(�) (RNG ) : : : �(!) (RNG )

3
777775

2
666664
c�
c�
...
c!

3
777775 (3.16)

And solved to get the vector c made from the fraction coe�cients c�.
For example, for the first two wavefunctions of a molecule with C2 symmetry,

the linear system and the wavefunctions are shown in Fig. (3.1) where the
operations are just the identity E and the � rotation C2 around the main axis
(perpendicular to the figure).
In this simple example, the irreps can also be found just by looking at the
isosurfaces of the wavefunction (Fig. 3.1): 	1 is invariant under all operations
and therefore transforms like the total symmetric irrep A; 	2 gets a �1 under
the C2 rotation and consequently, transforms like the irrep B.
A Kohn-Sham state is an eigenvector of the Hamiltonian, hence a base for the

point group of the system. This means that if the state 	 transforms like the
component i of the irrep �, then the fraction coe�cients c� are a ��� . This
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�
�(E)
�(C2)

�
=

�
�A(E) �B(E)
�A(C2) �B(C2)

� �
cA
cB

�

�
�(E)
�(C2)

�
=

�
1 �1

1 �1

� �
cA
cB

�
	1 � A

	2 � B

Figure 3.1: The linear system (3.16) and the wavefunctions for a simple molecule
(trans-1,2-Dichloroethene), where the C2 rotation is a � rotation along
the axis perpendicular to the figure.

result can be easily proved because if the state transforms like the component i
of the irrep �, under a generic symmetry operation we have:

R	
(�)
i =

X
j

D
(�)
ji (R)	

(�)
j (3.17)

This reflects that the state 	(�)
i is mixed only within the components of the irrep

�. If now we act with the projector operator on this state:

P(�)	
(�)
i =

X
R

X
j

�(�) (R) �D(�)
ji (R)	

(�)
j (3.18)

And using the fact the character is the trace �(�) (R) =
P
kD

(�)
kk (R) of the repre-

sentation matrix, then:

P(�)	
(�)
i =

X
R

X
jk

D(�)
kk (R)

�D
(�)
ji (R)	

(�)
j = �ik�jk���

NG
m�

	
(�)
i (3.19)

Where we have used the GOT (3.6) to obtain deltas on the r.h.s. . Hence the
coe�cients c� for a Kohm-Sham state form a vector with all zeros and one in
the position of the irrep of the state. Deviations from one are mainly due to
small symmetry breaking due to the relaxation of the system. The above method
was already available in GPAW [56] for molecules and it was extended and then
applied for the symmetry analysis performed in Paper IV.
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3.2 Irreducible representations for Kohn-Sham states
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Figure 3.2: Defect states in MoS2 for the sulphur (yellow) vacancy VS (left) in-
dicated by the dashed circle and molybdenum (cyan) vacancy VMo

(right) in MoS2.

As a first application, we will apply this symmetry analysis to the vacancy
defects in monolayer MoS2. A Sulphur vacancy VS in MoS2 introduces three
defect states in the gap [57, 58]: one occupied close to the valence band and two
degenerate unoccupied states close to the conduction band. For the Molybdenum
vacancy VMo there are five defect states: two occupied degenerate states, two
unoccupied degenerate states and one unoccupied single degenerate state (Fig.
3.2). The point group of VS is C3v and the defect states are labeled accordingly to
the irreps of the group, while the point group of VMo is D3h. Qualitatively aspect
of the symmetry state can be also seen by looking directly at the wavefunctions.
From Fig. (3.3) it is clear how both the total symmetric states a1 and a01 of the
vacancies are invariant under all operations of the point groups. In contrast, for
the VS the degenerate e states are not, but they transform like in-plane vectors
x and y. For VMo the e0 states are invariant respect the in-plane reflection, while
the e00 gets a minus one.
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3 Defects and symmetry

Figure 3.3: Wavefunctions of the defect states for sulphur vacancy VS (upper
panel) and for molybdenum vacancy VMo (lower panel).

3.3 j Symmetry labels for multiplet states

The importance of performing the symmetry analysis of the defect states is not
only essential to predict which matrix elements are di�erent from zero. As
introduced at beginning, it is also meaningful to assign the irrep to the multiplet
wavefunction made from the occupied defect states.

Obtaining the symmetry properties of the multiplet state is similar to what
happens in atomic physics [59], when starting from an electronic configuration,
all the allowed di�erent atomic terms are obtained. In that case it is done by
summing the angular momenta and spins of the single electrons and finding the
possible terms that respect the Pauli exclusion principle, with obvious notation
2S+1L, with L the total angular momentum and S the total spin.

In the same way, the transformation properties of the multiplet wavefunction
can be obtained for defects by combining the irrep of the occupied defect states.
The notation is somewhat similar to the atomic case 2S+1��, where S is the total
spin of the defect and �� is the irrep of the orbital part of the multiplet.

A well known example is the NV center in diamond [60], with C3v symmetry
and a triplet ground state with 3A2 label and with the first triplet excited state
with 3E. For two-dimensional materials for example in monolayer BN there is
the VN-NB [61] with a C2v and a 2B2 ground state.
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3.3 Symmetry labels for multiplet states

Here we will show how to obtain these global labels for defects in MoS2 and
for simplicity, we will only consider defects with C3v symmetry. One is the VS

introduced before and the other it is the antisite MoS with a triplet ground state
with only two degenerate e orbital occupied (Fig. 3.4).

The case of the VS is trivial since only the single degenerate state is double
occupied and hence a spin singlet. The direct product of two a1 is:

a1 
 a1 = a1 (3.20)

Thus the global label is 1A1 singlet.
The case of the antisite MoS with only two degenerate states occupied is more

interesting. In this case, the direct product of the irreps of the occupied defect
states is:

e
 e = a1 � a2 � e (3.21)

And the direct product is not closed on a single irrep of the group. To find which
particular irrep corresponds the triplet’s orbital part, the projector technique
introduced in the first section is needed. This is done by building the product
of the occupied states and applying the projector operator. We will indicate the
first electron in the ex as x1 and the second in ey as y2. For example, a rotation
of �=3 has the e�ect:

C3x1 = �1

2
x1 +

p
3

2
y1 (3.22)

For the axes orientation in Fig. (3.4). We need to project this direct product in
the irreps of C3v . To do that, we need the projector operator:

P(�) =
X
R

�(�)(R)�R (3.23)

If now we project the product x1y2 over the single degenerate irreps A1 and A2

of C3v we have:

P(A1) x1y2 = 0

P(A2) x1y2 = 3x1y2 � 3x2y1
(3.24)

Where we see that the product x1y2 is only contained in the A2 irrep.
To project in the component of the degenerate irrep E, we need a more

general projector operator:

P
(�)
ii =

X
R

D
(�)
ii (R)�R (3.25)
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Figure 3.4: The defect states for the triplet ground state of MoS (left). The geom-
etry for defining the representation matrices for the antisite defect in
C3v symmetry.

That also projects inside the component of the irrep E, namely x or y in this
case. The representation matrices D(R) for the identity, rotations and reflections
in C3v , with the orientation of the axes in Fig. (3.4), are:

D(E) =

"
1 0

0 1

#
D(C3) =

"�1=2 �p3=2p
3=2 �1=2

#
D(C2

3) =

" �1=2 p
3=2

�p3=2 �1=2
#

D(�a) =

"�1 0

0 1

#
D(�b) =

"
1=2

p
3=2p

3=2 �1=2
#
D(�c) =

"
1=2 �p3=2

�p3=2 �1=2
# (3.26)

And projecting in the x and y component we get:

P
(E)
xx x1y2 = (3x1y2 + 3x2y1)=2

P
(E)
yy x1y2 = 0

(3.27)

Consequently as soon the total wavefunction should be anti-symmetric and the
spin part is a triplet and therefore symmetric, the only possible choice is the
projection in the irrep A2. Thus the ground state label for the triplet ground
state of MoS is 3A2.
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3.4 Spin-orbit and double groups

3.4 j Spin-orbit and double groups

As a final application of the symmetry analysis, we will discuss the e�ects of
spin-orbit coupling on the defect states of VS and then we will describe how to
characterize the symmetry of the new spin-orbital states.

Spin-orbit coupling is important for the ground-state properties because it
can remove the degeneracy of the defect states in the gap. However, it may also
a�ect the dynamics of the defect because it is one of the mechanisms that can
flip the spins. For example, spin-orbit coupling is responsible for the transition
between multiplet states with di�erent spin components. These transitions are
only possible with the interaction of phonons of the system and thus they
happen without the emission of light. This e�ect is called intersystem crossing,
and well-known examples are the nonradiative transitions between the triplet to
singlet of the NV center in diamond [62].

Consequently, spin-orbit is one of the e�ects to take into account if the defects
states would like to be used for applications like qubit [63, 64].

For example, for the transition metal dichalcogenides (TMDs) this is an even
more crucial property that could compromise their possible use as a color centers
due to the large spin-orbit coupling. Indeed the heavy transition metal can
induce splittings that are of the order of hundreds of meV on the defect states
[65].

Here we will consider the case of VS in MoS2 as an example to understand
how the spin-orbit coupling a�ects the defect states. The spin-orbit Hamiltonian
is [66]:

ĤSO =
X
k

1

2

1

c2m2
e
(rkV � pk) � sk (3.28)

In the point group C3v of the VS it can be written as [60]:

ĤSO =
X
k

�xy (l
x
ks
x
k + l

y
ks
y
k) + �z l

z
ks
z
k (3.29)

The ĤSO is evaluated in the Kohm-Sham basis and then diagonalized to extract
the new eigenvalues and the new spin-orbital states. The s�k are the spin compo-
nents of the electron k in the direction (�; �) which defines the polarization axis
of the spin. For a polarization along the z-direction, these matrices are just the
standard Pauli matrices. To write the ĤSO, the Kohm-Sham states are expanded
in the di�erent orbital angular momentum projections l = 0; 1; 2 and the l�k are
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3 Defects and symmetry

the orbital angular momentum matrices that act on every components of the
states. For example, for l = 1 the matrices are [66]:

l(1)x =

2
664
0 �i 0

i 0 0

0 0 0

3
775 l(1)y =

2
664
0 0 0

0 0 �i
0 i 0

3
775 l(1)z =

2
664
0 0 i

0 0 0

�i 0 0

3
775 (3.30)

From the form of the spin and angular momentum matrices, it is possible to
understand the e�ect of the di�erent spin-orbit components in the C3v symme-
try [60]:

• �z also called the Axial part of the spin–orbit interaction links states with
ms = 0 spin projections among states of the same electronic configuration.

• �xy called the Non-axial part links states with ms 6= 0 spin projections
among di�erent electronic configurations.

For simplicity in the following, we will consider only the Axial part and discuss
the splitting of the defect levels due to this perturbation.

When the spin-orbit Hamiltonian is evaluated only considering the �z part on
the defect state of VS, the ĤSO matrix is:

Ĥ(z)
SO =

2
6666666664

ja1i j�a1i jexi j�exi jeyi j�eyi
ha1j 0 0 0 0 0 0

h�a1j 0 0 0 0 0 0

hexj 0 0 0 0 i�z 0

h�exj 0 0 0 0 0 �i�z
heyj 0 0 �i�z 0 0 0

h�eyj 0 0 0 i�z 0 0

3
7777777775

(3.31)

Where the bar over the irrep label corresponds to an electron with spin-down
component.

We can explain the zeros in this matrix with the symmetry analysis performed
previously. Indeed it can be shown [54] that the orbital part of the Non-axial
component of ĤSO transforms like the E irrep, while the Axial part transforms
as A2 in the C3v symmetry.
With group theory the matrix element h (�) jO() j (�) i between two states that

transform as the irreps � and � with an operator the transforms as the irrep 
is zero if the irrep � is not contained in the direct product of the irreps �� 
� .
Alternatively, also if the total symmetric irrep A1 is not contained in the direct
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3.4 Spin-orbit and double groups

product of �� 
 �� 
 � , since the matrix element is a number and therefore
invariant under the operations of the group.

This consideration and after looking at the direct product table of C3v in the
appendix, we have that the following matrix elements are zero:

ha1jH (A2)
SO ja1i = ha1jH (A2)

SO jex=yi = 0 (3.32)

Because A1 is not contained in the direct products A1 
 A2 
 A1 = A2 and
A1 
 A2 
 E = E. Consequently the only non-vanishing matrix elements are
between the degenerate e states. When H (z)

SO is diagonalized there is no e�ect on
the a1 states, while the double degenerate e states are split by 2�z . For VS the
splitting obtained with GPAW is 50 meV in agreement with other results [65].

The eigenvectors are now spin-orbitals, but it is not possible to label them with
the normal irreps of the C3v . The spin part has an additional property, indeed
it gets a minus one for 2� rotation. Taking into account this extra symmetry
operation leads to the idea of double group [55,67,68], in the following indicated
with a bar over the point group, e.g. �C3v .
Here we will show how to deal with the double group for VS and then assign

the label of the new irreps to the spin-orbital states. This is important since the
as stated earlier for example for TMDs the splitting is so large that the excitation
directly happen over the new spin-orbitals states [65].

a1

exy

e1=2

e3=2

e1=2

+�z

��z

Figure 3.5: For the VS in MoS2, the a1 is not a�ected by the spin-orbit coupling,
while the double degenerate e states are splitted by 2�z = 50 meV.
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3 Defects and symmetry

The inclusion of the spin adds a new symmetry operation in the group a
2� rotation, indicated with �E, which changes the sing of a spin but leaves the
atomic crystal positions and the orbitals unchanged. If there are more symmetry
operations, there are more classes and hence more irreps in the group. One of
the new extra irreps is the spinorial one, usually called E1=2 that describes how
spin-1/2 transforms and it is present in every double group. The other irreps can
be found just imposing the characters’s orthogonality and they are tabulated in
the literature for every double group. (The table for �C3v is in the Appendix).
For the C3v case, there are three additional irreps: the spinorial one E1=2 and
the other two are E1

3=2 and E
2
3=2 that are degenerate when there is time-reversal

symmetry [69].
The label for the total symmetric state after the spin-orbit coupling can be

obtained by the direct product of the orbital a1 and the spin e1=2:

a1 
 e1=2 = e1=2 (3.33)

While for the degenerate e states reads:

e
 e1=2 = e1=2 � e13=2 � e23=2 (3.34)

To assign the irrep of the double group we need the projector operator technique
again. This time the projector operator is projecting into the irreps of the double
group and it requires the characters of C3v and the symmetry operations that
act on both the orbital and on the spin part:

P(�) =
X
R

�(�) (R) �Ru(R)
��� (3.35)

Where we have indicated with u(R) the operation of the point group in the spin
representation. The operation R is acting only on the orbital part while u(R) on
the spin part.

All the symmetry operations in the spin representation can be obtained
starting from the general rotation of an angle ! around the direction ~n =

(sin � cos�; sin � sin�; cos �)

u(C!) = cos(
!

2
)�i(~� �~n) sin(!

2
) =

"
cos(!2 )� inz sin(

!
2 ) �i(nx � iny) sin(

!
2 )

�i(nx + iny) sin(
!
2 ) cos(!2 ) + inz sin(

!
2 )

#

(3.36)
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3.4 Spin-orbit and double groups

The reflections can be obtained by taking into account that a reflection can be
seen as a rotation of � and then an inversion [55]. For example, if we want to
rotate by �=3 a spin-up electron in the ex orbital:

C3u(C3)

"
ex
0

#
=

"
(1�p

3i)=2(ex �
p
3ey)=2

0

#
(3.37)

Having all the symmetry operations, we can construct the projector operator and
applying it to the eigenvectors of:

Ĥ(z)
SO =

2
66664

jexi j�exi jeyi j�eyi
hexj 0 0 i�z 0

h�exj 0 0 0 �i�z
heyj �i�z 0 0 0

h�eyj 0 i�z 0 0

3
77775 (3.38)

The eigenvalues are ��z and the eigenvectors in spinorial form are:

� �z :  1 =

"
ey � iex

0

#
 2 =

"
0

ey + iex

#

+ �z :  3 =

"
ey + iex

0

#
 4 =

"
0

ey � iex

# (3.39)

If we act with (3.35) only on the  1 and  3 because the other states are degen-
erate and thus they belong to the same irrep, we have for the E1=2 irrep that:

P(E1=2) 1 = 0 P(E1=2) 3 =

"
ey + iex

0

#
(3.40)

Hence the  3 state with eigenvalue +�z transforms as the spinorial irrep E1=2.
While:

P(E
1

3=2) 1 =
1

2

"
ey � iex
ex � iey

#
P(E

1

3=2) 3 = 0

P(E
2

3=2) 1 =
1

2

"
ey � iex
iey � ex

#
P(E

2

3=2) 3 = 0

(3.41)

And obviously, the other state  1 belongs to the E1
1=2 and E2

1=2 that are degen-
erate. We can now label the new spin-orbital states with the irrep of the double
group (Fig. 3.5).
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4 j Defects and phonons

This chapter aims to discuss the combined e�ects of defects and phonons on the
optical properties of the material. As mentioned in the previous chapter, defects,
besides of changing the electronic properties of the material, also modify how
the electrons interact with the vibrations of the lattice. This has the e�ect that
the emission or absorption from the defect states, is not peaked on the energy
di�erence between the ground and the excited states, but it can be broadened
due to the interaction with vibrations of the system [50]. This is an undesirable
e�ect if defects would like to be used as single-photon emitters [70].

The chapter starts by describing from a basic point of view the impact of
defects on phonons and generally how the phonon frequencies of the pristine
material are perturbed by defects. It is a well-known fact that localized vibrations
around the defect can appear, but the situation for a real material is far more
complicated [71].

Then the first e�ect of defects on the optical properties of the material is
presented starting from section 4.2, where nonradiative recombinations of photo-
excited charge carriers to the defect states are studied. This has been the main
project of the PhD, with the intention of studying this mechanism for 2D mate-
rials, also in prospective with defects calculated in Paper IV. For this thesis, it is
only limited to an implementation in ASR and a benchmark with GPAW for the
recombination rate for a bulk defect.

Finally, also the radiative e�ects of the defects on the emission and absorption
properties are studied in section 4.5, and the methods were applied for the most
interesting defects in Paper IV.

4.1 j Localized and resonance modes

Here we introduce some general ideas behind the consequences of defects on
the phonon frequencies of the material. We will also present a model to treat
defects as a perturbation, which allows us to quantitatively define what it is a
localized mode and introduce the concept of a resonance mode. We will follow
the derivation and the notation in reference [37]. Finally, we will apply the
method to the antisite defects in MoS2 to obtain the perturbed phonon density
of states ��(!) from the pristine phonons calculated from first principles, like in
Ref [72] for graphene.
In general, defects have two main e�ects on the dynamics of the pristine

material. If we consider a monoatomic crystal with atoms with mass M and
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4.1 Localized and resonance modes

only nearest-neighbor interaction with a force constant C , the e�ects of defects
are: a mass change �M on the masses of the original chemical elements and
a change in the atomic force constant �C . A positive (negative) mass change
�M has the e�ect of increasing (decreasing) the phonon frequencies of the
material, while a change in force constant C has the opposite e�ect, increasing
(decreasing) of the frequencies for a negative (positive) change of C . These are
simple considerations, but this is a starting point to understand the impact of
defects on the dynamics of the system. A less trivial fact is that defects can leave
all the frequencies unchanged, or they can change them, but by no more than
the distance to the next unperturbed frequency. These considerations (Fig. 4.1)
and also other more advanced aspects are known as the Rayleigh theorems [37]
which can help to understand the physics of phonons with defects as we will
show for the case of MoS2.

0 0

lighter mass �M < 0

stronger force �C > 0

heavier mass �M > 0

weaker force �C < 0

!
(0)

1 !
(0)

2 !
(0)

3N

!
(d)
1 !

(d)
2 !

(d)
3N

!
(0)

1 !
(0)

2 !
(0)

3N

!
(d)
1 !

(d)
2 !

(d)
3N

Figure 4.1: A defect with a lighter mass �M < 0 or a stronger force constant
�C > 0 pushes to frequencies to higher energy. A defect with a
heavier mass �M > 0 or a weaker force constant �C < 0 pushes to
frequencies to lower energy.

Now we will derive the definitions of localized modes and introduce the idea
of a resonance modes. The starting point is the equation of motion (EOM) for
the displacements (2.34), which is similar to the pristine case, but now we need
to take into account the loss of translational symmetry due to defects. If we now
take a lattice with a defect, the force constants matrix �(lk; l0k0) changes with
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4 Defects and phonons

the e�ect that it does not depend anymore only on the di�erence l � l0 of the
cells. In addition, the masses Ml� also depend on the unit cell index l, because
there is a defect somewhere in the lattice. The EOM (2.34) now becomes:

Ml��u�(lk) = � X
l0k0�0

��� (lk; l
0k0) u� (l

0k0) (4.1)

The loss of spatial periodicity due to the defect changes the ansatz for the EOM
as:

u�(l�) = u�(l�) e
�i!t (4.2)

Because now there is only the periodicity over time. Substituting the ansatz in
the EOM, we have:X

l0k0�0

�
Ml�!

2�ll0�kk0��� � ��� (l�; l
0�0)

�
u� (l

0�0) = 0 (4.3)

If now we define a matrix L with matrix elements:

L��(l�; l
0�0;!2) =M�!

2�ll0�kk0��� � �(0)
�� (l�; l

0�0) (4.4)

And define the perturbation due to the defect as:

�L��(lk; l
0k0;!2) = �!2(Mlk�Mk) �ll0�kk0���+��� (lk; l

0k0) ��(0)
�� (lk; l

0k0) (4.5)

Or written in terms of the mass variation � = 1 �Ml�=M� and the variation of
the force constants ���� (lk; l0k0) as:

�L��(lk; l
0k0;!2) = !2Mk� �ll0�kk0��� +���� (lk; l

0k0) (4.6)

We can rewrite the EOM for the defect (4.3) in matrix form as:

(L� �L)u = 0 (4.7)

This can be solved if we introduce the inverse of the matrix L or usually called
the Green’s function G which can be shown to have the matrix elements [37]:

G�� (l; �; l
0; �0;!2) =

1

(M�M�0)
1

2

X
qj

e�(�jqj) e�� (�0jqj)
!2 � !j (q) 2

eiq�(x(l)�x(l0) ) (4.8)

Where the e�(�jqj) are the eigenvectors of the dynamical matrix. Multiplying
(4.7) from left by G and using the definition of the Green’s function G = L-1:

G(L� �L)u = u�G�Lu = 0 (4.9)
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We get:

u = G�Lu (4.10)

The matrix �L is a sparse matrix as it can be seen from its definition (4.6), it
has nonzero elements only for indices (l; �) close to the defect site. Therefore
we can partitionate the matrix as:

�L =

"
�l 0

0 0

#
(4.11)

The same holds for the Green’s function G and the displacement vector u:

G =

"
g G12

G21 G22

#
u =

"
u1
u2

#
(4.12)

Where the global index 1 refers to indices close to the defect and 2 the remaining
indices. Therefore (4.10) becomes:

u1 = g �l u1

u2 = G21 �l u1
(4.13)

The first is a closed equation for the displacements that are directly a�ected by
the presence of the defect, and the displacements of the remaining atoms are
obtained from the second equation.
Solving the first equation in the defect subspace is equivalent to set the following
determinant equals to zero:

�(!2) = j1� g�lj = 0 (4.14)

Usually, �(!2) is called the defect determinant [73], and its zeros give the fre-
quencies of the modes that are perturbed by the presence of the defect.

In an equivalent way, solving the equation for the displacement in the defect
subspace means finding the eigenvalues of the matrix �lg:

g�l  n = �n n (4.15)

And setting the eigenvalues �n = 1. The real and imaginary parts of the eigen-
values �n give the properties of the new modes introduced by defects:

• Localized mode: Re�n = 1 Im�n = 0
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4 Defects and phonons

• Resonance mode: Re�n = 1 Im�n 6= 0

This gives a precise definition of localized modes and they are characterized by
the fact the vibration amplitude is localized on the defect. Another fact is that
the Im�n = 0 only when the imaginary part of the Green’s function is zero
and therefore when the pristine phonon density of states is zero �0(!) = 0 [37].
Consequently, localized modes can appear only above the maximum frequency
or in the gap of the phonon spectrum of the pristine material. Resonance modes,
instead that have a finite imaginary part and they appear in the region of the
spectrum where the pristine density of states is di�erent from zero.

Now from the eigenvalues �n, we can obtain first the variation of the number
of modes between the defect and the pristine system, with the formula [74]:

�n(!) =
2!

3r�

X
n

tan�1
�Im�n(!2)
1� Re�n(!2)

(4.16)

Its derivative is the variation of the phonon density of states:

��(!) =
d�n(!)

d!
(4.17)

In the following we will apply the above formalism for antisite defects in MoS2,
namely MoS and SMo, without including the variation in the force constant matrix
���� (lk; l0k0) = 0. We will show the formulas for the MoS defect but for the
other antisite is the same, just inverting the mass of sulfur and molybdenum.
The perturbation matrix (4.6) is a diagonal 3x3 matrix:

�l(!2) =

2
664
!2MS� 0 0

0 !2MS� 0

0 0 !2MS�

3
775 (4.18)

Where � = 1 �MMo=MS . The Green’s function is also diagonal because we are
interested in the contribution within the same cell and due to the orthogonality
of the eigenvectors, the o�-diagonal terms are zero. Consequently, the product
of the perturbation matrix with the Green’s function is:

�l g(!2) =

2
664
!2MS�gxx(S;!

2) 0 0

0 !2MS�gyy(S;!
2) 0

0 0 !2MS�gzz(S;!
2)

3
775 (4.19)
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4.1 Localized and resonance modes

Where the g��(S;!2) refers to the Green’s function with both atom indices for
the sulfur atom. Therefore since the matrix is diagonal, the three eigenvalues for
the three cartesian components are:

�� = �MS!
2g��(S;!

2) (4.20)

In Fig. (4.2) we show the variations �n(!) obtained by the formula (4.16) and
variation of the phonon density of state ��(!) . We show also the pristine phonon
density of states �0 in gray. The total density of state is obtained by the sum [75]:

�(!) = �0(!) + cd��(!) (4.21)

Where cd is the concentration of defects taken as 0:1% for both defects which
a typical value for antisites [57]. All the densities of states are rescaled in order
to plot them together with �n(!) . The frequencies of the localized modes in
the phononic gap and above the maximum frequency are checked against the
frequencies obtained by a phonons pristine supercell calculation and replacing
the mass of an atom in the dynamical matrix.

When the heavier molybdenum atom is substituting sulfur, all the frequencies
are decreasing and therefore, �n(!) is always positive and three modes from the
bottom of the optical branch go in the phononic gap. From the relative height
of the variation of density, we can also predict the degeneracy of the modes.
The two double degenerate modes are the �x and �y , when �n(!) = 2 while the
single degenerate is �z .
For the other case of sulfur substituting molybdenum, all the frequencies are

pushed to higher energy and the mode variation �n(!) is always negative. Two
acoustic modes go in the gap and three modes go above the maximum frequency
of the unperturbed spectrum. Here it is possible to see also a small resonance
mode around 24 meV.

Of course, this is a very crude model, and a more realistic calculation should
include a variation of the force constants matrix by displacing only atoms around
the defect. In principle, this could save a lot of computational time compared
to a normal phonons calculation, like in the method of embedding the force
constants matrix [71] or machine learning based method [76].
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Figure 4.2: For the heavier MoS defect the frequencies are decreasing and three
localized mode go in the gap from the bottom of the optical branch
(upper panel). While for the lighter SMo defect the frequencies are
increasing and two modes go in the gap from the acoustic branch
and three mode go above the top of the optical branch (lower panel).
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4.2 Nonradiative recombination at defects states

4.2 j Nonradiative recombination at defects states

The presence of electronic states in the band gap due to defects can a�ect
the performance of a material [77]. In particular, for the transport properties,
charged photo-excited carriers can recombine at defect states via nonradiative
recombination, without emitting light but with the emission of phonons. This
is known as Shockley-Read-Hall recombination [78] and it is the most important
loss mechanism for application in opto-electronic devices.
Nonradiative recombination is a process where an electron (hole) in the con-

duction (valence) band recombines at defect state in the gap (Fig. 4.3).
Experimentally this phenomenon is well studied and the observable quantity

is the time it takes for the carrier to recombine on the midgap state. The time
is measured with the so-called capacitance spectroscopy technique [79], where
the material is excited by a pulse of light to create the charge carrier and the
capacitance of the material is measured over time. Taking into account the
carrier on the defect states are localized and they do not participate to the
conduction of the material, the time it takes for a carrier to recombine can be
measured [80].

The inverse of this recombination time is the nonradiative rate, which links
experiments with ab initio simulations. The rates for electrons Rn and for holes
Rp are:

Rn = Cn nND

Rp = Cp pNA
(4.22)

Where n (p) is density of electron (hole) in the conduction (valence) band, ND
(NA) is density of donor (acceptor) defects and Cn (Cp) is the electron (hole)
capture coe�cient. The capture coe�cient for a carrier C is a quantity that
links experiments with ab initio simulations. A standard approach to calculate
the capture coe�cient is Fermi’s golden rule:

C = V
2�

} g
X
m
wm

X
n
j�Helph

im;jnj2 �(Ein � Ejm) (4.23)

Where the perturbation that drives the transition is the electron-phonon interac-
tion. A certain number of phonons is emitted during the transition, giving the
process its name: multi phonon emission [81, 82].

In the Fermi’s golden rule: V is the volume of the supercell, wm is the thermal
occupation of the vibrational state m of the initial state, Eim and Ejm are the
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4 Defects and phonons

energies of the initial and the final states and g is the degeneracy factor of the
final state.

A first approximation is needed to go further, which is the static approxima-
tion [83], that makes it possible to decouple the electron and phonon part of the
perturbation, like in the Born-Oppenheimer approximation. Under this assump-
tion, the perturbation can be expanded around the configuration Q0 with only
keeping the linear term:

�Ĥ
el9ph
im;fn =

X
�

h	ij@Ĥ=@Q�j	f i| {z }
W �

ij

h�imjQ� �Q0;�j�fni (4.24)

Where 	i=f are the electronic wavefunctions of the initial and final state, and
�im=fn the ionic wavefunctions. The sum runs over all phonon modes Q� , and
Q0;� is the projection of the initial atomic configuration fQ0g along each of the
phonon coordinates. W �

ij is the electron-phonon coupling matrix element to the
phonon mode �.

This is already posing a challenge because defects are simulated in a super-
cell with N atoms, and the calculation of the electron-phonon matrix elements
requires 6N displacements (plus and minus for the three directions of the N
atoms). There are attempts in the literature [84–86] where all the matrix ele-
ments are obtained at PBE level and then (4.24) is evaluated with the methods
in Ref. [87]. Unfortunately, hybrid functionals are required in order to give a
reasonable description of defects. This makes it impossible to calculate all of the
matrix elements within this model.

A method that avoids the phonon calculation is the one-dimensional (1D)
approach [44, 88–90], where an e�ective 1D mode is built from the initial and
final geometries of the transition and then all the input parameters for the
formula of the capture coe�cient are converted in terms of the 1D mode. Here
we will benchmark the 1D approach for the CN defect in GaN. We will follow the
notation in [44].

The atomic (�) and cartesian (t) components of the one-dimensional mode
are:

Q�;t = m
1=2
� �R�;t = m

1=2
� (R

(f )
�;t �R(i)

�;t) (4.25)

where R(i)
�;t and R

(f )
�;t are the initial and final geometries of the transition. The

1D mode has magnitude:

�Q2 =
X
�;t

m��R
2
�;t (4.26)
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Figure 4.3: The nonradiative transition for a carrier (left): an electron (hole) jumps
from the conduction (valence) band to the midgap state. On the
right, the inputs for the capture coe�cient as a function of the one-
dimensional mode.

The �Q together with the reorganization energy �i=f for the initial or final
configurations:

�i=f =
1

2

2
i=f�Q

2 (4.27)

They define the Huang-Rhys (HR) factor [82]:

Si=f =
�i=f
}
i=f

=
1

2

i=f�Q

2 (4.28)

Given by the reorganization energy divided by the energy of the one-dimensional
mode. It can also be seen as the number of phonons emitted during the
relaxation from the initial to the final state and it quantifies the strength of
the electron-phonon interaction for a given defect [50].

The remaining quantities that need to be converted in the 1D approach are
the electron-phonon matrix elements. Now there is only one matrix element,
which is the interaction to the 1D mode and the wavefunctions of the initial and
final state:

Wif = h ij @ĥ
@Q

j f i (4.29)
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4 Defects and phonons

Where the  i=f are single-particle Kohm-Sham wavefunctions and ĥ their single-
particle Hamiltonian.

Finally the the capture coe�cient C in the 1D approach can be rewritten as:

C =
2�

} gV W
2
if

X
m
wm

X
n
jh�imjQ�Q0j�fnij2 �(�Eif �m}
i + n}
f ) (4.30)

To sum up, the quantities needed for the nonradiative capture coe�cient are:

• �Eif charge transition level of the transition

• 
i=f frequencies of 1D mode in the initial and final states

• Wif electron-phonon coupling to the 1D mode

The charge transition level can be obtained with the method of chapter 2. The
frequencies 
i=f can be obtained by displacing the structure in the initial/final
geometry along the one-dimensional mode and the frequencies are extracted
with a quadratic fit.

4.3 j Benchmarking nonradiative capture for CN in bulk GaN

In this section, we will benchmark the nonradiative recombination of the CN

defect in bulk GaN. This is a hole recombination and the nonradiative capture
coe�cient is available both experimentally and from ab initio calculations. This
was first published as results in [44] and presented as a tutorial in [91].

In this benchmark, we used GPAW with the HSE functional as in the references
and we tuned the mixing parameter to reproduce the experimental band gap of
GaN (3.5 eV [92]). We used � = 0.31 for the mixing as in the references, but we
note that using the same screening length ! = 0.2 Å, we did not get the same
gap of 3.5 eV. Consequently, we used the default HSE value of ! = 0.11 Å. The
di�erence is probably due to the di�erent generations of the PAW setup between
VASP and GPAW.

The nonradiative transition for the CN defect can be understood by calculating
the formation energy of the defect and see which charge transition level is inside
the gap. For the CN defect, it is already known that the "(0;�) is in the gap,
and a hole is captured from the valence band at defect state via a nonradiative
recombination. Therefore we need to relax only the neutral and the minus one
state.

44



4.3 Benchmarking nonradiative capture for CN in bulk GaN

0 1 2 3 4
Fermi level [eV]

−2

−1

0

1

Fo
rm

at
io

n
en

er
gy

[e
V

]

ε(0,-) = 1.02 eV

−1 0 1 2 3
Q [amu1/2Å]
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Figure 4.4: The formation energy for the CN defect in GaN as function of the
Fermi level energy (left). The configuration coordinate diagram for
the initial and final state.

Using the definition in chapter 2, the formation energy of the neutral defect
is:

Ef [C
0
N] = Etot[C

0
N]� Etot[GaN]� �N + �C (4.31)

And no charge correction is needed. While for the minus one state:

Ef [C
9
N] = Etot[C

9
N]� Etot[GaN]� �N + �C � (EF + "v) + �91 (4.32)

Since we are only interested in the CTL of the defect, in Fig. (4.4) we do not
include the e�ect of the chemical potential.

The �Eif for the transition, in this case, is exactly the CTL referenced to
valence band maximum:

�Eif = �(0; 91) = Ef [CN
0;EF =0]� Ef [CN

91;EF =0] (4.33)

The other input is the frequency of the initial state, where the defect is nega-
tively charged and the hole in the valence band and the final state, where the
defect is neutral because the hole has recombined from the valence band. The
configuration coordinate diagram of the initial and final state, separated by �Eif
is shown in Fig. (4.4), where the geometries were displaced along the 1D mode
and the frequencies 
i=f obtained with a quadratic fit.
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4 Defects and phonons

The last quantity is the electron-phonon matrix element between the initial
and final state with the 1D mode. This is evaluated with the formula introduced
in chapter 2:

Wif = ("f � "i) h ij@ f
@Q

i (4.34)

This is obtained like in Ref. [44], from the overlap integral S(Q) = h i(0) j f (Q) i
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Figure 4.5: The Kohm-Sham eigenvalues of the three valence bands states, the
defect state and the conduction band as function of the 1D mode
(left). The overlap function S(Q) as function of Q for the three states
(right) and isosurfaces for Q = 0.2 amu1/2 Å.

as function of Q and then making a linear fit to obtain the h ij@ f@Q i and then
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4.3 Benchmarking nonradiative capture for CN in bulk GaN

multiplying for the energy di�erence "f�"i. The integral for the overlap function
is evaluated with the all-electron wavefunctions. The matrix element can be
either calculated in the initial or in the final state, but for the charged initial
case, additional corrections are needed. Therefore here, it is calculated only in
the final neutral state. Three matrix elements are present since the top of the
valence band is degenerate three times.

Unlike in [44] where all three matrix elements are di�erent from zero, in our
case, only one is non-vanishing. In principle, this could be understood with
group theory by considering the transformation proprieties of the valence band
state and the defect state and then decomposing the 1D-mode in the di�erent
irreps. However, without going into this level of detail, it can be explained simply
from the overlap function S(Q) . We show this in Fig. (4.5), where the isosurface
for the overlap function is plotted for Q = 0.2 amu1/2 Å. As we can see, only for
the lowest band (VMB-2), the overlap function does not have alternating positive
(orange) and negative (blue) regions, which results in a non-zero integral. This
discrepancy can be due to a better conservation of the symmetry during the
relaxation, for our case.

To sum up, we show a comparison of the values obtained with GPAW and two
references in Table (4.1).

Table 4.1: Input parameters for the nonradiative capture coe�cient for CN and
defect ZnGa-VN in GaN.

�Eif jQi �Qf j }
i Si }
f Sf Wif

[eV] [amu1/2 Å] [meV] [meV] [eV/amu1/2 Å]

CN

GPAW(PBE) 0.53 0.89 36.0 3.4 41.5 3.9 0.108
GPAW(HSE) 1.02 1.42 44.2 10.7 38.9 9.4 0.091
Ref. [44] 1.02 1.61 42 - 36 10 0.064
Ref. [91] 1.06 1.69 37.5 - 33.6 10 0.050

ZnGa-VN

GPAW(HSE) 0.85 3.33 25 33 22 30 1.1x10 -2

Ref. [44] 0.88 3.33 - - 22 30 1.0x10 -2

Ref. [85] 0.91 3.13 - - 23 27 1.0x10 -2

We also calculated the input parameters for another defect, a ZnGa-VN in GaN
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4 Defects and phonons

[44, 85], which also exhibits the same hole recombination.
We see a good agreement between our benchmark and the references. How-

ever, it is also essential to mention the importance of using hybrid functionals.
Indeed PBE is failing to reproduce the �Q and the CTL. On the other hand,
the electron-phonon matrix element is somehow similar due to a cancellation of
errors: the overlap is larger, but the di�erence in energy is smaller. Unlike the
configuration coordinate diagram, the electron-phonon matrix element should
be evaluated only for small displacement, where a linear behavior is expected.
Small deviations from linear regime are clear in Fig. (4.5) for Q = �0.2 amu1/2 Å
as in Ref. [44].
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Figure 4.6: The capture coe�cient Cp as function of the temperature for the CN

defect, for the Ref. [91] (green) and this benchmark (red).

The capture coe�cient Cp in (4.30) has been implemented in ASR in the
asr.nonradiative recipe following the method in Ref. [91]. The delta functions
in (4.30) are approximated with Gaussians with smearing, while the overlap with
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the 1D mode is calculated numerically using the ionic wavefunction:

�in(Q) =
1p
2nn!

 
m
i
�}

!1=4
e�

m
iQ
2

2} Hn

 s
m
i
} Q

!
(4.35)

Where Hn(Q) is nth-order Hermite polynomial.
The capture coe�cient Cp for the CN defect is shown in Fig. (4.6). There is

one order of magnitude of di�erence between the reference and this benchmark
due to the discrepancy in the input parameters. The parameter that has the
dominant e�ect is the �E, because the capture coe�cient is thermally activated.
When the temperature is increasing, more vibrational excited states of the initial
configuration are populated, and the nonradiative transition is more likely to
happen.
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4 Defects and phonons

4.4 j Radiative transitions between defect states

Here we will discuss the e�ect of the defect on the radiative properties of the
material. The ideas behind the methods are presented and we show one result
for each defect. The methods have also been applied to the most promising
defects in Paper IV.

In the first method, the 1D approach introduced before will be used to obtain
the emission lineshape for a transition between two ground and excited states of
the defect (Fig. 4.7). The 1D lineshape reproduces well the experimental lineshape
in the case of large electron-phonon interaction, or with the terminology of the
previous section, in the case of large HR factor ( S > 10) [93].
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Figure 4.7: The emission and absorption processes from the ground and excited
state of the defect.

The radiative transition di�ers from the non-radiative case, in that, the tran-
sition takes place between the ground and the excited state of the defect, with
the emission of light. For the nonradiative case, the transition was from a band
to the defect state, with the emission of phonons. If the separation in energy
between the ground and excited state is EZPL, i.e. the zero-phonon line [82], the
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luminescence for the emission process within the 1D approach is given by [50]:

Lem(!) =
X
n

e�SgSng
n!

�(! � n
g +
e � EZPL) (4.36)

Where Sg is the HR factor of the ground state, obtained from the displace-
ment �Q and the reorganization energy in the ground state �g . Within the 1D
approach, it is straightforward to calculate the absorption spectra with the HR
factor of the excited state Se:

Labs(!) =
X
n

e�SeSne
n!

�(! � n
e +
g � EZPL) (4.37)

The 1D method fails to describe defects with a small HR factor and these systems
are the most interesting ones for single-photon applications [64].

The other method developed for paper IV is the generating function approach,
introduced in [94]. In this case, the contribution of all phonon modes of the
system is included and therefore there is not a single HR factor, but there are
the partial HR factors:

S� =
!�q

2
�

2
(4.38)

Where q� is the projection of the 1D mode over the phonon mode �:

q� =
X
�t

m
1=2
� (R(e)

�t �R
(g)
�t ) � e��t (4.39)

Then the electron-phonon function is defined as:

S(!) =
X
�

S��(! � !�) (4.40)

That gives an idea of which phonon mode contributes the most for the transition
from the excited to the ground state of the defect. In this approach, the lineshape
is proportional to the spectral function:

A(EZPL � !) =
1

2�

Z +1

�1
dtG(t)ei!t�jtj (4.41)

That can be obtained by the generating function G(t), which is the Fourier
transform of the electron-phonon function S(!):

G(t) = eS(t)�S(0) (4.42)
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Where S(0) is:

S(0) =
X
�

S� (4.43)

The smearing parameter  is needed to converge the integral and it has the
e�ect of giving the width of the zero-phonon line peak. A standard approach
has become to tune this parameter to match the experimental lineshape [94].
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Figure 4.8: The emission lineshape for the transition in the spin-up channel
(upper) and in the spin-down channel (lower) for the SGe-VS in Ge2S2.

We have applied the two methods for some defects in Paper IV and they are
available in ASR in the asr.luminescence recipe. Here we show as an example,
a defect that is not included in Paper IV. This is the SGe-VS defect, where both
excitations in the two spin-channels are performed and the generating function
approach is applied for the emission lineshape (Fig. 4.8).
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In this chapter, we will briefly present the idea of a high-throughput approach
for material discovery and we will show examples of this procedure applied to
2D materials.
High-throughput in materials design refers to the systematic calculation of

material properties to find a set of ideal candidates for the experimental re-
alization [95, 96]. Online material databases can help perform such studies,
where materials can also be screened for specific target properties. Examples
of databases with materials with any dimensionality are: AFLOW [97], ICSD [98],
Materials Project [99], OQDM [100] and NOMAD [101]. Databases that are only
oriented to 2D materials and with advanced methodology are the Computational
2D Materials Database (C2DB) [102] and the database from Mounet et. al. [103].

SC SC SC SC

E(Q)

1T

1T0

Figure 5.1: The Janus monolayer (MoSSe) can change the band alignment in a
semiconductor-semiconductor interface (left). Displacing along the
distortion (Q) of the 1T-MoS2 is possible to get the 1T’-MoS2 (right).

The first example of this high-throughput procedure was the calculations per-
formed on the Janus monolayers in Paper I and II. This class of 2D material
posses a finite dipole along the out-of-plane direction due to the di�erence in
electronegativity of the chemical elements on the two sides of the layer. In Paper
I, it was proved that this finite dipole could be used in heterostructures to control
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the band alignment in semiconductor/semiconductor interface or to control the
Schottky barrier height in semiconductor/metal interface. Consequently, a high-
throughput study was conducted in Paper I. We found a set of 47 new stable
Janus monolayers and included it in the updated version of C2DB (Paper II).

In paper III, another high-throughput screening study was performed where
we investigated structural instabilities of 2D materials. Usually, the stability of
a calculated material is inferred by the energy above the convex hull �Hhull

[102]. Another criterion is the stability against structural distortions, which are
manifested by the presence of imaginary phonon modes. A prototypical example
is the T-phase of MoS2 (Fig. 5.1), which has an in-plane instability. Within
C2DB, the dynamical stability is tested by evaluating the sti�ness tensor and the
Hessian matrix of a 2x2 supercell of the primitive cell. In paper III, it was checked
that this test for dynamical stability is reliable against a complete full phonon
calculation in a larger supercell. In addition, we took a set of dynamically
unstable materials in C2DB and we displaced them along the unstable mode.
This procedure has the e�ect of finding a new more stable material, like in the
case of the 1T’-phase of MoS2, which is obtained by pushing the atoms along the
distortion of 1T-phase. The workflow of Paper II was then applied for the new
stable materials.

Finally, a high-throughput approach was applied for defects in Paper IV, where
we selected the most stable non-magnetic monolayers in C2DB, with a band gap
larger than 1 eV, for a total of 82 materials. Then we created vacancies and
antisites, for a total of 500 defects and every defect was relaxed in di�erent
charged states.

All the point groups found in Paper IV are shown in Fig. (5.2), where they are
ordered by decreasing symmetry. An example of a defect for every point group
is also shown.

Starting from the most symmetric defects, we recovered the well-known V-1
B in

hexagonal boron nitride. This is a well-established defect in BN and one of the
first observed color centers in 2D materials [104].

With C3v symmetry, SiCH2 is particularly interesting due to its structural
similarity to bulk SiC. However, monolayer SiC is not thermodynamically stable
(�Hhull = 0.5 eV/atom), whereas SiCH2 is stable (�Hhull 0.06 eV/atom). There-
fore, SiCH2 can be considered the stable analogue of bulk SiC, with a large
bandgap of 3.78 eV at PBE level.

Another important defect is the antisite SW in WS2. This defect is particularly
interesting because if the relaxation is carried out without breaking the symmetry
of the supercell, it leads to a local minimum in the structure. Whereas, if the
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Figure 5.2: The point groups for the defects in paper IV. The arrows represent
the subgroup hierarchy among all point groups.

symmetry is broken before the relaxation, it leads to a more stable structure.
This consolidates the approach in Paper IV of breaking the symmetry of the
supercell to find stable defect structures.

Our symmetry-based defect classification approach is further validated by the
right classification V-1

S in MoS2, which reduces the symmetry from neutral (C3v) to
the -1 charged (Cs) [58] due to the Jahn-Teller distortion in the double degenerate
defect states.
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6 Conclusion and Outlook

6 j Conclusion and Outlook

As explained in the thesis, we have developed ab initio approaches to describe
defects in two 2D materials, and ways of engineering defects to optimize the
materials’ properties.

We stress the importance of the localized defect states inside the gap for
the excited state property. Then we explain how to systematically perform the
symmetry analysis for such states and characterizing them according to the irreps
of the point groups. This approach is applied for thousand of defect states in 2D
materials.

Then we presented two applications of the symmetry analysis: to study the
symmetry of the multiplet state made from the occupied defect states, and to
predict the e�ect of spin-orbit coupling on the defect states.

We also explore the role that phonons play in the emission and absorption
processes from the defect states. We first make some general considerations on
the e�ect of defects on the phonon frequencies of the pristine material. We show
how defects can produce localized modes and resonance modes, using antisite
defects in monolayer MoS2.
Regarding the optical properties, we implement a method to quantify the

nonradiative recombination of carriers at defect states and benchmark using the
CN defect in bulk GaN. We also implement the state-of-the-art methods to study
the emission lineshape for transitions between defect states.

Finally, we explore the structural instabilities in the materials in C2DB in a
high-throughput approach study.

As concluded above, the approaches developed and implemented in this thesis
are fairly general. Therefore, one can potentially apply these to explore the
di�erent properties of numerous materials for various applications.
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A j Appendix

A.1 j Characters and direct product tables for �C3v

�C3v E �E
C3 C2

3 �v �v �EC2
3
�E C3 �E

A1 1 1 1 1 1 1

A2 1 1 1 1 �1 �1
E 2 2 �1 �1 0 0

E1=2 2 �2 1 �1 0 0

E1
3=2 1 �1 �1 1 i �i

E2
3=2 1 �1 �1 1 �i i

Table A.1: Characters tables for the �C3v double group.

�C3v A1 A2 E E1=2 E1
3=2 E2

3=2

A1 A1 A2 E E1=2 E1
1=2 E2

1=2

A2 A2 A1 E E1=2 E2
1=2 E1

1=2

E E E A1 � A2 � E E1=2 � E1
1=2 � E2

1=2 E1=2 E1=2

E1=2 E1=2 E1=2 E1=2 � E1
1=2 � E2

1=2 A1 � A2 � E E E

E1
3=2 E1

3=2 E2
3=2 E1=2 E A2 A1

E2
3=2 E2

3=2 E1
3=2 E1=2 E A1 A2

Table A.2: Direct product of the irreps for the �C3v double group.
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ABSTRACT: The possibility of stacking two-dimensional (2D) materials into van der
Waals (vdW) heterostructures has recently created new opportunities for band structure
engineering at the atomic level. However, despite the weak vdW interaction, controlling
the electrostatic potential governing the band lineup at the 2D interfaces is still posing a
significant challenge. Here, we demonstrate that 2D Janus monolayers, possessing an
intrinsic out-of-plane dipole moment, can be used to control the band alignment at
semiconductor−semiconductor and metal−semiconductor interfaces in a highly
predictive manner. Using density functional theory (DFT), we calculate the band
structure of a wide range of different vdW interfaces. We find that upon insertion of a
Janus structure the band line-ups and Schottky barriers can be controlled to high accuracy. The main result of this work is that the
out-of-plane dipole moment of the Janus structure changes little upon insertion in the interface. As a consequence, the effect on the
electrostatic potential at the interface can be predicted from the properties of the freestanding Janus structure. In addition to this, we
predict 47 stable Janus monolayers, covering a wide range of dipole moments and band edge positions and thus providing a
comprehensive library of 2D building blocks for manipulating the band alignment at interfaces.

■ INTRODUCTION
More than a decade after the discovery of graphene,1 the class
of atomically thin two-dimensional (2D) crystals remains one
of the hottest topics in physics. An important reason is that
such materials open new possibilities for studying and
manipulating electronic quantum states directly at the atomic
length scale. By stacking different 2D layers into van der
Waals (vdW) heterostructures, it is, at least in principle,
possible to design the energy landscape of the electrons, i.e.,
the band structure, with a precision far beyond what is
possible with conventional epitaxial growth.2 In this paper, we
introduce the idea of using 2D Janus monolayers to control
the electrostatic potential and band line up at vdW interfaces.
Many solid-state devices, including semiconductor (SC)

lasers,3−5 solar cells,6,7 and transistors,8 rely on heterostructure
materials with electronic energy levels carefully aligned across
their interfaces. This makes the interfacial band lineup
problem one of the most critical challenges for the
semiconductor industry. Quite generally, the band alignment
at SC heterojunctions can be categorized into three types
according to the relative position of valence and conduction
bands on the two sides of the interface. In Figure 1, we show
examples of type-I and type-II band alignments. It is
exceedingly difficult if not impossible by means of conven-
tional techniques employed in the semiconductor industry
(doping, strain, alloying) to change the band alignment at an
interface without changing the composition or structure of the
material(s) in the vicinity of the interface. This clearly implies
a risk of degrading other of the material properties, e.g., the
carrier mobility, carrier lifetime, etc. A key result of this paper

Received: February 21, 2020
Revised: April 3, 2020
Published: April 3, 2020

Figure 1. Left: sketch of a type-I band alignment between two
different semiconductors. Right: sketch of the achieved type-II band
alignment between the two semiconductors by sandwiching a Janus
monolayer between them, which shifts the electrostatic potential on
either side of the Janus monolayer. In a type III band alignment, the
valence band maximum (VBM) of one of the structures is located
above the conduction band minimum (CBM) of the other structure.
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is that the band alignment can be controlled elegantly and
with high precision in vdW heterojunctions without affecting
the material structure or composition.
For metal/SC interfaces, the single most critical parameter

used to characterize the band alignment is the height of the
Schottky barrier (SB), i.e., the distance between the metal
Fermi level and the nearest band edge of the SC (valence
band or conduction band). Apart from the position of the
bands in the intrinsic materials, i.e., the work function of the
metal and the electron affinity and ionization potential of the
SC, a number of effects influence the SB including Pauli
repulsion and metal-induced gap states (MIGSs).9−13 Such
effects lead to Fermi-level pinning (FLP)10,14−16,18−22 and
deviations from the Anderson rule,23 which makes it difficult
to control (in practice minimize) the SB. This is further
complicated by the unpredictable effect of the chemical
interactions at the interface.17 One specific and important
motivation for developing means to control the SB at metal−
2D semiconductor interfaces comes from the huge interest in
atomically thin field-effect transistors, e.g., based on transition-
metal dichalcogenides (TMDs). For such devices, the SB at
the source/drain contacts remains a performance-limiting
factor that must be improved for them to become
competitive.24−33

Due to the presence of MIGS, it has been proven ineffective
to dope SC/metals structures to lower the SB. This has
previously been explained by the fact that while originating on
the metal the states are still localized deeply into the SC,34

effectively neutralizing the effect of doping. Approaches to
overcome this includes inserting a layer of boron nitride
between the metal and the SC22,35 or different oxide
layers;36−39 however, the exact effect of all of the above-
mentioned mechanisms is extremely difficult to predict.
In this work, we propose an alternative method to control

and adjust the band lineup at solid interfaces in a highly
predictable manner. By sandwiching a 2D material with a
finite out-of-plane dipole moment, i.e., a Janus monolayer,
between two materials, it is possible to introduce an
atomically sharp potential step across the interface. For SC/
SC interfaces, this opens the possibility of controlling the
band lineup and even changing the type of band alignment,
while for metal/SC interfaces, the SB can essentially be made
to vanish. Importantly, we find that the dipole moment of the
Janus layer does not change significantly upon insertion in the
heterostructure, meaning that the resulting shift in the band
offset can be predicted to high accuracy from the properties of
the isolated Janus monolayer, at least for systems with small
interlayer charge transfer. Beyond pure vdW-bonded struc-
tures, we find that the intrinsic dipole moment is unaltered,
even when placed on conventional bulk metal surfaces. Using
high-throughput density functional theory (DFT) computa-
tions, we further predict 47 new Janus monolayers that we
find to be stable, have a finite band gap, and a finite out-of-
plane dipole moment. The induced shift in electrostatic
potential achievable by these novel 2D Janus monolayers
range from close to zero to about 2 eV, showing the high
degree of band offset tunability offered by the proposed
concept.

■ COMPUTATIONAL DETAILS
All calculations were performed with the GPAW code.40

Monolayer structures were relaxed using the Perdew−Burke−
Ernzerhof (PBE) functional41 on a Monkhorst−Pack k-point

grid42 with a k-point density of 6.0 and a planewave cutoff of
800 eV. The unit cells had 15 Å of vacuum in the
perpendicular direction, and a Fermi smearing of 0.05 eV
was used. The band structure and the size of the dipole
moment were calculated using a k-point density of 12.0.
Spin−orbit coupling was not included. For the multilayer
structures, the interlayer binding distances were determined
using the BEEF-vdW functional.43 All structures were relaxed
until the maximum force on any atom was below 0.01 eV/Å
and the maximum stress on the unit cell was 0.002 eV/Å3.
Since the layers in the heterostructures, in general, will have
incommensurable lattices, it is necessary to use larger
supercells and strain one or both materials slightly. Table 1

presents a summary of the supercell size and strain applied to
each layer in each heterostructure. For H-phase/H-phase
interfaces, AB stacking was used, while for H-phase/T-phase
interfaces, AA stacking was used, i.e., the metal atoms were
stacked on top of each other. These stacking configurations
were found to be energetically most stable. To judge the
stability (dynamic and thermodynamic) of the new Janus
monolayers resulting from the high-throughput study, we
followed the criteria of the Computational 2D Materials
Database.44

■ RESULTS
Recently, both MoSSe45,46 and BiTeI47 have been realized in
the monolayer form experimentally. These structures possess

Table 1. Computational Details about the Supercells Used
for the Heterostructure Calculations Including the Cell
Size, Strain, and Smallest Interlayer Distance d

structure cell size
strain
(%) d (Å)

graphene/H-MoSSe/hBN graphene: 4 × 4 1.62 3.82/3.69
H-MoSSe: 3 × 3 −0.46
hBN: 4 × 4 3.31

T-MoS2/H-MoSSe/H-MoS2 T-MoS2: 1 × 1 0 3.51/3.67
H-MoSSe: 1 × 1 −2.06
H-MoS2: 1 × 1 0

H-MoS2/H-MoSSe/H-MoS2 H-MoS2: 1 × 1 0 3.54/3.63
H-MoSSe: 1 × 1 −2.06

H-WS2/H-MoSSe/H-WS2 H-WS2: 1 × 1 0 3.52/3.66
H-MoSSe: 1 × 1 −2.06

H-MoS2/H-CrSSe/H-MoS2 H-MoS2: 1 × 1 0 3.61/3.75
H-CrSSe: 1 × 1 1.76

H-MoSe2/H-MoSTe/H-
MoSe2

H-MoSe2: 1 × 1 0 3.61/3.74
H-MoSTe: 1 × 1 <0.01

H-MoSe2/H-TaSSe/H-MoSe2 H-MoSe2: 1 × 1 0 3.58/3.81
H-TaSSe: 1 × 1 −2.59

H-MoSe2/H-TiSSe/H-MoSe2 H-MoSe2: 1 × 1 0 3.63/3.86
H-TiSSe: 1 × 1 −2.93

H-MoSe2/H-WSeTe/H-
MoSe2

H-MoSe2: 1 × 1 0 3.66/3.58
H-WSeTe: 1 × 1 −3.29

H-MoS2/H-WSSe/H-MoS2 H-MoS2: 1 × 1 0 3.54/3.65
H-WSSe: 1 × 1 −2.10

H-MoSe2/H-WSTe/H-MoSe2 H-MoSe2: 1 × 1 0 3.64/3.68
H-WSTe: 1 × 1 −1.25

H-MoSe2/H-ZrBrCl/H-
MoSe2

H-MoSe2: 1 × 1 0 3.69/3.57
H-ZrBrCl: 1 × 1 −4.82

H-MoSe2/H-TiBrCl/H-
MoSe2

H-MoSe2: 1 × 1 0 3.78/3.64
H-TiBrCl: 1 × 1 −1.75
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an out-of-plane dipole moment created by the difference in
electronegativity of the S and Se (I and Te) atoms,48 which
are located on different sides of the central metal layer, see
Figure 2. Such structures with broken mirror symmetry and a
finite out-of-plane dipole moment are known as Janus
monolayers.
In Figure 1, we illustrate the concept of band lineup control

at vdW heterojunction interfaces. On the left is shown an
example of a bilayer consisting of two (possibly) different

semiconducting 2D monolayers having a type-I band align-
ment. On the right is shown the same two monolayers, with a
Janus monolayer sandwiched in-between. By choosing a Janus
monolayer with an appropriate size of the out-of-plane dipole
moment, it is possible to shift, for instance, a type-I band
alignment into a type-II band alignment as shown. Another
obvious application is to use Janus monolayers to lower the
SB at metal/SC interfaces. For a general metal/SC interface,
where the Fermi level of the metal is located between the
valence band maximum (VBM) and conduction band
minimum (CBM) of the SC, the bands originating from the

Figure 2. Top and side views of the atomic structures of the MoSSe prototype (left) and the BiTeI prototype (right).

Figure 3. Left: band structure of a bilayer consisting of MoS2 in the
H- and T-phases, respectively. Right: band structure of the same
structure with the Janus monolayer MoSSe sandwiched in between
the two layers. For both plots, red/blue is the projection of the bands
onto the T- and H-phase of MoS2, respectively, while black is the
projection onto MoSSe. Notice how the insertion of MoSSe shifts
the band edges of H-MoS2 with respect to the Fermi level of the
structure, effectively lowering the SB.

Figure 4. Electrostatic potential, with respect to the vacuum energy, for the bilayer and trilayer structures from Figure 3 in the direction
perpendicular to the layers. The right column is a close-up of the top of the figures in the left column, showing the vacuum-level shift ΔU on
either side of the heterostructures. In orange is shown the VBM, CBM, and EF.

Figure 5. Left: band structure of H-MoS2 at the bulk Au metal
surface. Right: band structure of the same structure with the Janus
monolayer MoSSe sandwiched in between. For both plots, red/blue
is the projection of the bands onto the Au and H-MoS2, respectively,
while black is the projection onto MoSSe.
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SC will bend at the interface, creating a Schottky barrier.
Below we show that by inserting a Janus monolayer between
the metal and the SC, one can control the SB.

Schottky Barriers at Metal/SC Interfaces. To illustrate
the concept in practice, we have calculated the band structure
of both SC/SC and metal/SC vdW heterostructures with and
without a Janus monolayer sandwiched in-between. First,
consider the two band structures shown in Figure 3. On the
left is shown the band structure of bilayer T-MoS2/H-MoS2.
We note that MoS2 is well known to be metallic in the T-
phase and semiconducting in the H-phase. We note that the
T-phase is in fact dynamically unstable and undergoes a
transition to the T′-phase; however, this is unimportant for
the present discussion. On the right is shown the band
structure of the same structure with H-MoSSe sandwiched in-
between. For the two cases, we consider an AB and ABA
stacking, respectively. The red color represents the bands
projected onto the T-MoS2 layer, blue is projected onto the
H-MoS2 layer, and black is projected onto the Janus H-MoSSe
layer. For the bilayer, we see that the bands from T-MoS2 are
crossing the Fermi level, which overall renders the bilayer
metallic, while the H-MoS2 more or less preserves the size of
its direct band gap at the K-point. The distance from the
CBM of H-MoS2 to the Fermi level is approximately 0.6 eV,

Figure 6. Same as Figure 5 with a Pd(111) surface instead of a
Au(111) surface.

Figure 7. Left: band structure of a bilayer H-MoS2. Right: band
structure of the same structure with the Janus monolayer MoSSe
sandwiched in between the two layers. For both plots, red/blue is the
projection of the bands onto the two MoS2 layers, while black is the
projection onto MoSSe. Notice how the insertion of MoSSe splits
the bands of the two MoS2 layers at the K-point.

Figure 8. Splitting of the conduction bands Δϵ for a SC bilayer,
upon insertion of a Janus monolayer, as a function of the shift in
potential across the freestanding Janus monolayer ΔEvac. Each data
point represents a different Janus monolayer sandwiched between
two identical SCs. From left to right, the Janus monolayers are TiSSe,
ZrBrCl, TiBrCl, WSeTe, WSSe, MoSSe, MoSSe, CrSSe, WSte, and
MoSTe. The exact trilayer composition can then be deducted from
Table 1. We stress that there is little-to-no difference between
trilayers H-MoS2/H-MoSSe/H-MoS2 and H-WS2/H-MoSSe/H-WS2.
The fact that the shift in band energies is very close to the shift of the
freestanding Janus monolayer shows the highly predictive nature of
the proposed strategy for band alignment engineering.

Figure 9. Energy above the convex hull for all Janus monolayers
calculated in this study colored according to their phase. Structures
with an energy above the convex hull lower than 0.1 eV/atom are
considered thermodynamically stable. Dynamical stability is shown
by a black circle.
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which equals the SB of the interface. On the right, after
insertion of the MoSSe layer, we see how the SB has
essentially vanished. Now, the CBM of the H-MoS2 layer just
touches the Fermi level, thus reducing the SB to almost zero.
We note that the SB of T-MoS2/H-MoS2 has previously been
studied, where it was shown that the SB can be shifted by 0.3
eV by varying the stacking pattern.49 While this is an
interesting result, the method proposed in our study gives the
possibility to vary the SB, in a highly controlled manner,
anywhere between the electronic band gap and essentially 0
eV, by varying the Janus monolayer material, which will be
demonstrated later.
A more detailed picture of the electrostatic discontinuity

induced by the Janus monolayer is shown in Figure 4. The top
panel shows the electrostatic potential perpendicular to the T-
MoS2/H-MoS2 bilayer (averaged over the in-plane directions).
The lower panel shows the same for the trilayer structure
including H-MoSSe. Here, the right-hand side plot is a close-
up of the upper part of the left plot. For the bilayer, we see a
minor change in the electrostatic potential across the bilayer
of 0.03 eV. Since both T-MoS2 and H-MoS2 have a zero
dipole moment in the out-of-plane direction in their
freestanding monolayer form, this shift originates from a
small interfacial dipole created at the interface. This
phenomenon is well known for metal−SC interfaces and has
also been seen at graphene/SC interfaces.50 After insertion of
H-MoSSe, we now find a shift of 0.63 eV. This large shift
arises because of the internal dipole in the H-MoSSe layer and
gives the shift in the band structure we observed in Figure 3.
We here stress that we in this study consider the manipulation
of SB defined by the SC band edges relative to the Fermi level
and do not consider the tunneling barrier evident from Figure
4, which for some systems can impose an additional barrier.
Modeling of such additional tunneling barriers are system-
specific and will be the scope of future studies.
It can be interesting to study how the intrinsic dipole

moment of the Janus monolayers are affected by strain effects.
To do this, we calculate the vacuum-level shift and band gap
of strained monolayer H-MoSSe. The applied strain ranges
from -3% to +3% (see Figure S1 in the Supporting
Information), which we believe are experimentally realizable
values. We find that the vacuum-level shift across monolayer
MoSSe can be varied between 0.74 and 0.77 eV. While this
gives rise to only little variation in the intrinsic dipole moment
of the Janus monolayers, it shows that the proposed setup is
very robust to strain effects. On the other hand, the band gap

changes over a range from 1.1 to 1.6 eV, showing a great
possible tunability of the electronic properties of Janus
monolayers.
To further illustrate the concept, we consider the band

structure of a bulk metal/SC interface and calculate the band
structure of H-MoS2 at the bulk Au(111) surface and at the
bulk Pd(111) surface. The bulk metal surface is modeled by a
slab of four atomic layers. The calculation has been performed
in a 1 × 1 cell, with H-MoS2 unstrained and Au and Pd
strained significantly to match the lattice constant of H-MoS2.
Despite the very large strain, we find that the typical
characteristics of both the Au and Pd band structures can
be recognized, i.e., the wide 6sp bands crossing the Fermi
surface and the flat 5d bands at around −1.5 eV for Au and
the 5d bands crossing the Fermi level for Pd. This can be seen
in Figures 5 and 6. Notice that the same color coding has
been used as that for the previous band structure plot.
Comparing the SB with and without H-MoSSe, we find a
reduction of the SB of about 0.6 eV for the Au surface, which
is close to the reduction found for T-MoS2/H-MoS2. For the
Pd surface, the reduction is closer to 0.5 eV, showing a larger
cancellation of the internal dipole of MoSSe in this case. We
note here that no chemical interactions are taking place at the
MoS2/Au interface, while a considerable chemical bond
strength is present at the MoS2/Pd interface.51 Thus, this
stronger interaction explains the larger cancellation of the
internal dipole. This is further stressed by the interlayer
distance between H-MoS2 and Au/Pd. For H-MoS2/Au, the
smallest out-of-plane interlayer distance is 3.4 Å, while it is
only 2.0 Å for H-MoS2/Pd. This shows that the reduction of
the out-of-plane dipole moment is rather modest, even at
metal surfaces that couple strongly to the Janus monolayer.

Band Alignment at SC/SC Interfaces. Next, we consider
how the band alignment can be tuned for SC/SC interfaces.
Specifically, we consider bilayer H-MoS2 with and without a
H-MoSSe layer sandwiched in between. The band structure of
both cases is depicted in Figure 7 using the same coloring as
in Figure 3. We first notice the direct to indirect band gap
transition in going from the monolayer to bilayer H-MoS2,
where the VBM is located at the K-point for monolayer H-
MoS2 and at the Γ-point for bilayer H-MoS2. The two layers
hybridize strongly around the Γ point, leading to significant
band splitting. In contrast, the interlayer hybridization is
negligible around the K-point and the two bands are
essentially degenerate. Therefore, the relative band positions
at the K-point can be used to deduce the effect of electrostatic

Figure 10. Overview of all stable Janus monolayers in the MoSSe (H-phase) and BiTeI (T-phase) prototypes, sorted according to the vacuum-
level shift (red). The band gap is shown in green on an absolute scale relative to vacuum, such that the valence band maximum and conduction
band minimum can be found from the white/green boundaries. All energies refer to PBE calculations.
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shift induced by the Janus monolayer. After insertion of the
H-MoSSe layer, we see the splitting of both the conduction
and valence bands at the K-point, effectively turning the
perfect band alignment into a type-II band alignment. For the
H-MoS2/H-MoSSe/H-MoS2 heterostructure, we find a
splitting of 0.72 eV, which equals that of the T-MoS2/H-
MoSSe/H-MoS2 heterostructure to within about 0.1 eV.
Upon further stacking of Janus monolayers in a multilayer
structure, recent studies48,52 have shown that the effect is to

close the band gap, effectively creating a naturally doped p−n
junction. This also shows that more than one Janus monolayer
can be inserted if a larger shift in the potential is desired.
It is also interesting to see how the interface can be

controlled for a SC at a graphene monolayer because of the
semimetallic nature of graphene, and we therefore now
consider the two graphene/hBN and graphene/H-MoSSe/
hBN systems, where hBN is hexagonal boron nitride. In the
same manner as for T-MoS2/H-MoSSe/H-MoS2, we find for

Table 2. Material Properties of All Semiconducting Stable Material Candidatesa

material phase a (Å) Egap
(PBE) Egap

(HSE) ΔEvac Ecenter
(PBE) ΔHf ΔHfull

HfSSe T 3.71 0.68 1.51 0.01 5.32 −1.47 −0.01
BiSBr T 4.11 0.93 1.60 0.03 6.13 −0.56 −0.00
SbSel T 4.17 1.02 1.53 0.03 5.12 −0.31 −0.00
AsSel T 3.93 1.15 1.68 0.04 5.01 −0.16 −0.00
ZrSSe T 3.74 0.61 1.51 0.05 5.44 −1.48 −0.01
BiSel T 4.27 0.65 1.22 0.08 5.68 −0.44 −0.01
SbSBr T 3.99 1.22 1.84 0.11 5.55 −0.42 0.01
AsSBr T 3.72 1.39 2.04 0.14 5.44 −0.26 0.03
VBrCl T 3.75 1.29 3.77 0.21 3.98 −1.01 0.00
BiSCl T 4.07 1.04 1.74 0.30 6.35 −0.66 −0.03
HfBrI H 3.64 0.71 1.16 0.36 2.90 −0.89 −0.00
BiSeBr T 4.19 0.77 1.36 0.36 5.96 −0.58 −0.02
HfBrCl H 3.43 0.82 1.36 0.36 3.11 −1.34 −0.08
BiTel T 4.42 0.45 0.93 0.37 5.43 −0.37 −0.02
VBrI T 3.99 1.19 3.49 0.37 3.96 −0.66 0.01
ZrBrCl H 3.49 0.91 1.40 0.38 3.37 −1.51 −0.02
SbSI T 4.08 1.22 1.78 0.40 5.20 −0.28 0.04
BiSI T 4.19 0.82 1.47 0.41 5.80 −0.41 0.01
ZrBrI H 3.70 0.77 1.17 0.42 3.15 −1.09 0.02
SbTeI T 4.32 0.84 1.32 0.45 4.93 −0.25 −0.02
SbSCl T 3.94 1.32 1.99 0.46 5.82 −0.51 0.04
VSeTe H 3.47 0.12 0.75 0.48 5.05 −0.50 0.00
TiBrCl H 3.38 0.83 1.30 0.48 3.65 −1.33 −0.05
SbSeBr T 4.08 1.07 1.65 0.48 5.44 −0.44 −0.02
AsSI T 3.84 1.34 1.95 0.53 5.11 −0.11 0.06
TiBrI H 3.63 0.68 1.04 0.53 3.43 −0.88 0.04
AsTeI T 4.09 0.98 1.50 0.55 4.84 −0.12 −0.02
BiSeCl T 4.15 0.88 1.51 0.61 6.12 −0.68 −0.05
AsSeBr T 3.82 1.23 1.84 0.63 5.34 −0.29 −0.02
AsSCl T 3.65 1.54 2.26 0.66 5.71 −0.35 0.05
WSeTe H 3.43 1.04 1.49 0.68 4.17 −0.32 0.04
MoSeTe H 3.43 1.14 1.59 0.72 4.47 −0.48 0.02
WSSe H 3.25 1.40 1.91 0.73 4.50 −0.72 0.00
MoSSe H 3.25 1.45 1.95 0.75 4.85 −0.81 0.00
ZrClI H 3.64 0.88 1.32 0.77 3.27 −1.23 0.07
BiTeBr T 4.34 0.63 1.16 0.78 5.64 −0.50 −0.03
SbSeCl T 4.03 1.17 1.80 0.81 5.66 −0.54 0.00
CrSSe H 3.13 0.78 1.24 0.83 5.16 −0.57 −0.00
SbTeBr T 4.24 1.06 1.62 0.93 5.23 −0.38 −0.03
TiClI H 3.55 0.75 1.19 0.98 3.58 −1.01 0.07
BiTeCl T 4.30 0.64 1.20 0.99 5.69 −0.60 −0.05
AsSeCl T 3.76 1.37 2.06 1.13 5.58 −0.38 0.00
AsTeBr T 3.98 1.24 1.84 1.18 5.16 −0.24 −0.03
SbTeCl T 4.19 1.26 1.87 1.20 5.40 −0.47 −0.00
WSTe H 3.36 1.14 1.68 1.40 4.39 −0.42 0.08
MoSTe H 3.36 0.99 1.59 1.46 4.64 −0.55 0.06
AsTeCl T 3.93 1.48 2.15 1.62 5.39 −0.32 0.01

aThe table contains information about elements, structural phase, in-plane lattice constant [Å], PBE and HSE electronic band gaps [eV], shift in
the electrostatic potential across the Janus monolayer [eV], the PBE band gap center relative to vacuum [eV], the heat of formation [eV/atom],
and the energy above the convex hull [eV].
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graphene/H-MoSSe/hBN that the bands of hBN shift down
by 0.69 relative to the Fermi level after the inclusion of H-
MoSSe. This is larger than the shift observed for T-MoS2/H-
MoSSe/H-MoS2; however, the comparison to this system is
not completely justified because in the latter case the
conduction band gets pinned at the Fermi level. It is more
interesting to observe that the shift is slightly smaller than that
for H-MoS2/H-MoSSe/H-MoS2. This observation can be
explained by the larger cancellation of the internal dipole of
H-MoSSe by graphene as compared to that of H-MoS2. The
larger cancellation of the internal dipole in H-MoSSe on
graphene compared to that in H-MoS2 can be understood
from the simple point that the S and Se atoms in H-MoSSe
are spatially longer separated from the valence states of H-
MoS2 (located on the Mo atoms) compared to the states in
graphene.
To investigate whether the induced band offset for a SC/

Janus/SC vdWH can be predicted from the dipole moment of
the freestanding Janus monolayer, we have calculated the band
structure for ten different SC/Janus/SC vdWHs. For a given
trilayer, the same SC is used on both sides (in analogy to the
H-MoS2/H-MoSSe/H-MoS2 structure studied above). For the
SC, we use either H-MoS2 or H-MoSe2 (depending on what
fits the lattice constant of the Janus monolayer better) and
then investigate the effect of changing the Janus monolayer.
The Janus monolayers have been chosen such that they span a
wide range of dipole moments and their lattice constants are
close to those of MoS2 or MoSe2 to minimize the applied
strain (see the next section for a discussion on the other Janus
monolayers). We also include the structure H-WS2/H-
MoSSe/H-WS2 to study the effect of having the same Janus
monolayer sandwiched between two different pairs of SCs. We
use an in-plane 1 × 1 unit cell for the calculations, and only
apply strains to the Janus monolayer to keep the band
structure of the SC unchanged. We calculate the shift of the
electrostatic potential on either side of the freestanding
strained Janus monolayer and the induced band shift of the
SC in the SC/Janus/SC configuration. These values are
plotted against each other in Figure 8. It is evident that the
induced band shift of the bands between the two SCs in the
SC/J/SC trilayer can be predicted from the out-of-plane
dipole moment of the freestanding Janus monolayer. We note
in passing that there is a linear relationship between the shift
in electrostatic potential and the internal out-of-plane dipole
moment of the Janus monolayer. One more point is worth
noticing from Figure 8. First, we see to within 0.01 eV the
same band shift for the H-MoS2/MoSSe/H-MoS2 and H-
WS2/H-MoSSe/H-WS2, showing that the band shift induced
by a Janus monolayer is only little affected by the choice of
SC. This effect can be ascribed to the fact that the bands get
pinned at the Fermi level, limiting the possible band shift (as
seen above for T-MoS2/H-MoSSe/H-MoS2), and second, for
metallic heterostructures, the free carriers can more effectively
screen the internal dipole of the Janus monolayer. This is also
the reason why the shift in potential is smaller in the SC/
Janus/SC system compared to the potential shift for the
freestanding Janus monolayer for all systems since there will
always be a small finite cancellation of the internal dipole
moment. If the concentration of S and Se atoms on either side
is altered, this will affect the intrinsic out-of-plane dipole
moment. To achieve the interface manipulations discussed in
this chapter experimentally, we stress that the proposed

method is highly dependent on the quality of the transfer of
the Janus monolayer into (or onto) the desired structures.

Janus Monolayer Library. To further expand the
prospects of the ideas put forward in this study, we consider
the set of Janus monolayers from our previous study by Riis-
Jensen et al.53 In this study, an initial set of 216 Janus
monolayers with the chemical formula MXY in the H- and T-
phases commonly known from the transition-metal dichalco-
genides (TMDs) were investigated.
In the following, we adopt the notation used in the

Computational 2D Materials Database (C2DB)54 and in Riis-
Jensen et al. and refer to the H and T crystal structures as the
MoSSe and BiTeI prototypes. All structures and properties
shown in this work are available in the C2DB. The 216
candidate materials were constructed by combinatorial lattice
decoration of the MoSSe and BiTeI prototype structures using
elements with similar chemical properties. Specifically, for
both MoSSe and BiTeI prototypes, all possible combinations
using one of the transition metals from groups V, VI, and VII
(for the central metal atom in the prototypes) in combination
with two elements from either the pnictogens (As, Sb, Bi), or
chalcogens (S, Se, Te), or halogens (Cl, Br, I) were
considered. In addition, the study considered all combinations
using one of the pnictogens as the metal atom, one element
from the chalcogens, and one element from the halogens. This
makes a total of 108 candidate structures for each prototype.
To assess the thermodynamic stability, we calculate the heat
of formation and the energy above the convex hull, with the
latter defined as the most stable elementaries and binaries, see
C2DB44 for more details. For the dynamic stability, we
calculate the Γ-point phonons of the 2 × 2 cell as well as the
elastic tensor. An imaginary phonon frequency or negative
elastic constant implies a dynamically unstable material. In
Figure 9, we show the calculated energy above the convex hull
for all 216 structures. The MoSSe prototype is shown in blue,
and the BiTeI prototype is shown in orange. Taking
uncertainties in the calculated heat of formation into account,
we consider a material to be thermodynamically stable if its
energy above the convex hull is less than 0.1 eV/atom, as
marked by the gray area. Points that have a black circle
indicate materials that are dynamically stable and have a finite
band gap.
We predict 47 materials that are both semiconducting,

thermodynamically stable, and dynamically stable. Out of
these, 27 are in the BiTeI phase with a pnictogen atom as the
central metal atom, and among these is the experimentally
realized BiTeI. For the 47 materials that we find to be
semiconducting and predicted to be stable, we plot the shift in
the electrostatic potential across the material (red), together
with the band edges (white/green boundaries) in Figure 10.
All stable semiconducting materials, their in-plane lattice
constant, electronic band gap, band gap center, the shift in the
potential, heat of formation, and the energy above the convex
hull are summarized in Table 2. The large variation in the
band edge position and dipole strength underlines the
flexibility of the proposed concept.

■ CONCLUSIONS
We have proposed, and critically assessed, a new method for
tuning the band lineup at solid-state interfaces by the insertion
of a Janus monolayer in the interface. Due to its out-of-plane
dipole moment, the Janus monolayer creates a step in the
electrostatic potential, which gives rise to a relative shift of the
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band energies on the two sides of the interface. Our DFT
calculations show that the dipole of the Janus monolayer is
almost unperturbed by the interface. Consequently, the shift
in band alignment is determined by the intrinsic dipole of the
Janus monolayer and therefore can be predicted to high
accuracy. This important finding is a result of the inertness of
the Janus monolayer and stands in contrast to existing
methods that involve the formation of chemical bonds and
complex charge transfer processes whose effects on the band
energies are difficult to predict. Finally, we conducted a
computational screening for new Janus monolayers and
identified 47 (meta)stable candidates with a large range of
out-of-plane dipole moments, providing great flexibility for
tuning of band alignment.
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Abstract
The Computational 2D Materials Database (C2DB) is a highly curated open database organising a
wealth of computed properties for more than 4000 atomically thin two-dimensional (2D)
materials. Here we report on new materials and properties that were added to the database since its
first release in 2018. The set of new materials comprise several hundred monolayers exfoliated from
experimentally known layered bulk materials, (homo)bilayers in various stacking configurations,
native point defects in semiconducting monolayers, and chalcogen/halogen Janus monolayers. The
new properties include exfoliation energies, Bader charges, spontaneous polarisations, Born
charges, infrared polarisabilities, piezoelectric tensors, band topology invariants, exchange
couplings, Raman spectra and second harmonic generation spectra. We also describe refinements
of the employed material classification schemes, upgrades of the computational methodologies
used for property evaluations, as well as significant enhancements of the data documentation and
provenance. Finally, we explore the performance of Gaussian process-based regression for efficient
prediction of mechanical and electronic materials properties. The combination of open access,
detailed documentation, and extremely rich materials property data sets make the C2DB a unique
resource that will advance the science of atomically thin materials.

1. Introduction

The discovery of new materials, or new properties
of known materials, to meet a specific industrial
or scientific requirement, is an exciting intellectual
challenge of the utmost importance for our envir-
onment and economy. For example, the successful
transition to a society based on sustainable energy
sources and the realisation of quantum technologies
(e.g. quantum computers and quantum communic-
ation) depend critically on new materials with novel
functionalities. First-principles quantum mechanical
calculations, e.g. based on density functional the-
ory (DFT) [1], can predict the properties of mater-
ials with high accuracy even before they are made

in the lab. They provide insight into mechanisms
at the most fundamental (atomic and electronic)
level and can pinpoint and calculate key properties
that determine the performance of the material at
the macroscopic level. Powered by high-performance
computers, atomistic quantum calculations in com-
bination with data science approaches, have the
potential to revolutionise the way we discover and
develop new materials.

Atomically thin, two-dimensional (2D) crystals
represent a fascinating class of materials with excit-
ing perspectives for both fundamental science and
technology [2–5]. The family of 2D materials has
been growing steadily over the past decade and counts
about a hundred materials that have been realised
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in single-layer or few-layer form [6–10]. While some
of these materials, including graphene, hexagonal
boron nitride (hBN), and transition metal dichal-
cogenides (TMDCs), have been extensively studied,
the majority have only been scarcely characterised
and remain poorly understood. Computational stud-
ies indicate that around 1000 already known layered
crystals have sufficiently weak interlayer (IL) bond-
ing to allow the individual layers to be mechanic-
ally exfoliated [11, 12]. Supposedly, even more 2D
materials could be realised beyond this set of already
known crystals. Adding to this the possibility of stack-
ing individual 2D layers (of the same or different
kinds) into ultrathin van der Waals (vdW) crystals
[13], and tuning the properties of such structures
by varying the relative twist angle between adjacent
layers [14, 15] or intercalating atoms into the vdW
gap [16, 17], it is clear that the prospects of tailor
made 2D materials are simply immense. To support
experimental efforts and navigate the vast 2D mater-
ials space, first-principles calculations play a pivotal
role. In particular, FAIR5 [18] databases populated by
high-throughput calculations can provide a conveni-
ent overview of known materials and point to new
promising materials with desired (predicted) proper-
ties. Such databases are also a fundamental require-
ment for the successful introduction and deployment
of artificial intelligence in materials science.

Many of the unique properties exhibited by 2D
materials have their origin in quantum confinement
and reduced dielectric screening. These effects tend
to enhance many-body interactions and lead to pro-
foundly new phenomena such as strongly bound
excitons [19–21] with nonhydrogenic Rydberg series
[22–24], phonons and plasmons with anomalous dis-
persion relations [25, 26], large dielectric band struc-
ture renormalisations [27, 28], unconventional Mott
insulating and superconducting phases [14, 15], and
high-temperature exciton condensates [29]. Recently,
it has become clear that long range magnetic order
can persist [30, 31] and (in-plane) ferroelectricity
even be enhanced [32], in the single layer limit.
In addition, first-principles studies of 2D crystals
have revealed rich and abundant topological phases
[33, 34]. The peculiar physics ruling the world of 2D
materials entails that many of the conventional the-
ories and concepts developed for bulk crystals break
down or require special treatments when applied to
2D materials [26, 35, 36]. This means that com-
putational studies must be performed with extra
care, which in turn calls for well-organised and well-
documented 2D property data sets that can form
the basis for the development, benchmarking, and
consolidation of physical theories and numerical
implementations.

5 FAIR data are data which meet principles of findability, accessib-
ility, interoperability, and reusability.

The Computational 2D Materials Database
(C2DB) [6, 37] is a highly curated and fully open
database containing elementary physical properties
of around 4000 2D monolayer crystals. The data
has been generated by automatic high-throughput
calculations at the level of DFT and many-body
perturbation theory as implemented in the GPAW
[38, 39] electronic structure code. The computa-
tional workflow is constructed using the atomic sim-
ulation recipes (ASR) [40]—a recently developed
Python framework for high-throughput materials
modelling building on the atomic simulation envir-
onment (ASE) [41]—and managed/executed using
the MyQueue task scheduler [42].

The C2DB differentiates itself from existing
computational databases of bulk [43–45] and low-
dimensional [11, 12, 46–50] materials, by the large
number of physical properties available, see table 1.
The use of beyond-DFT theories for excited state
properties (GW band structures and Bethe–Salpeter
equation (BSE) absorption for selectedmaterials) and
Berry-phase techniques for band topology and polar-
isation quantities (spontaneous polarisation, Born
charges, piezoelectric tensors), are other unique fea-
tures of the database.

The C2DB can be downloaded in its entirety or
browsed and searched online. As a new feature, all
data entries presented on the website are accom-
panied by a clickable help icon that presents a sci-
entific documentation (‘what does this piece of data
describe?’) and technical documentation (‘how was
this piece of data computed?’). This development
enhances the usability of the database and improves
the reproducibility and provenance of the data con-
tained in C2DB. As another novelty it is possible to
download all property data pertaining to a specific
material or a specific type of property, e.g. the band
gap, for allmaterials thus significantly improving data
accessibility.

In this paper, we report on the significant C2DB
developments that have taken place during the
past two years. These developments can be roughly
divided into four categories: (1) General updates
of the workflow used to select, classify, and stabil-
ity assess the materials. (2) Computational improve-
ments for properties already described in the 2018
paper. (3) New properties. (4) New materials. The
developments, described in four separate sections,
cover both original work and review of previously
published work. In addition, we have included some
outlook discussions of ongoing work. In the last
section we illustrate an application of statistical learn-
ing to predict properties directly from the atomic
structure.

2. Selection, classification, and stability

Figure 1 illustrates the workflow behind the C2DB. In
this section we describe the first part of the workflow

2
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Table 1. Properties calculated by the C2DB monolayer workflow. The computational method and the criteria used to decide whether the
property should be evaluation for a given material is also shown. A ‘∗’ indicates that spin–orbit coupling (SOC) is included. All
calculations are performed with the GPAW code using a plane wave basis except for the Raman calculations, which employ a double-zeta
polarised basis of numerical atomic orbitals [51].

Property Method Criteria Count

Bader charges PBE None 3809
Energy above convex hull PBE None 4044
Heat of formation PBE None 4044
Orbital projected band structure PBE None 2487
Out-of-plane dipole PBE None 4044
Phonons (Γ and BZ corners) PBE None 3865
Projected density of states PBE None 3332
Stiffness tensor PBE None 3968
Exchange couplings PBE Magnetic 538
Infrared polarisability PBE EPBEgap > 0 784
Second harmonic generation PBE EPBEgap > 0, non-magnetic,

non-centrosymmetric
375

Electronic band structure PBE PBE∗ None 3496
Magnetic anisotropies PBE∗ Magnetic 823
Deformation potentials PBE∗ EPBEgap > 0 830
Effective masses PBE∗ EPBEgap > 0 1272
Fermi surface PBE∗ EPBEgap = 0 2505
Plasma frequency PBE∗ EPBEgap = 0 3144
Work function PBE∗ EPBEgap = 0 4044
Optical polarisability RPA@PBE None 3127
Electronic band structure HSE06@PBE∗ None 3155
Electronic band structure G0W0@PBE

∗ EPBEgap > 0, Natoms < 5 357
Born charges PBE, Berry phase EPBEgap > 0 639
Raman spectrum PBE, LCAO basis set Non-magnetic, dyn. stable 708
Piezoelectric tensor PBE, Berry phase EPBEgap , non-centrosym. 353
Optical absorbance BSE@G0W0

∗ EPBEgap > 0, Natoms < 5 378
Spontaneous polarisation PBE, Berry phase EPBEgap > 0, nearly centrosym.

polar space group
151

Topological invariants PBE∗, Berry phase 0< EPBEgap < 0.3 eV 242

Figure 1. The workflow behind the C2DB. After the structural relaxation, the dimensionality of the material is checked and it is
verified that the material is not already present in the database. Next, the material is classified according to its chemical
composition, crystal structure, and magnetic state. Finally, the thermodynamic and dynamic stabilities are assessed from the
energy above the convex hull and the sign of the minimum eigenvalues of the dynamical matrix and stiffness tensor. Unstable
materials are stored in the database; stable materials are subject to the property workflow. The C2DB monolayer database is
interlinked with databases containing structures and properties of multilayer stacks and point defects in monolayers from the
C2DB.
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until the property calculations (red box), focusing
on aspects related to selection criteria, classification,
and stability assessment, that have been changed or
updated since the 2018 paper.

2.1. Structure relaxation
Given a prospective 2D material, the first step is to
carry out a structure optimisation. This calculation is
performed with spin polarisation and with the sym-
metries of the original structure enforced. The latter is
done to keep the highest level of control over the res-
ulting structure by avoiding ‘uncontrolled’ symmetry
breaking distortions. The prize to pay is a higher risk
of generating dynamically unstable structures.

2.2. Selection: dimensionality analysis
A dimensionality analysis [52] is performed to
identify and filter out materials that have disin-
tegrated into non-2D structures during relaxation.
Covalently bonded clusters are identified through an
analysis of the connectivity of the structures where
two atoms are considered to belong to the same
cluster if their distance is less than some scaling of
the sum of their covalent radii, i.e. d< k(r covi + r covj ),
where i and j are atomic indices. A scaling factor
of k= 1.35 was determined empirically. Only struc-
tures that consist of a single 2D cluster after relaxation
are further processed. Figure 2 shows three examples
(graphene, Ge2Se2, and Pb2O6) of structures and
their cluster dimensionalities before and after relax-
ation. All structures initially consist of a single 2D
cluster, but upon relaxation Ge2Se2 and Pb2O6 disin-
tegrate into two 2D clusters as well as one 2D and two
0D clusters, respectively. On the other hand, the relax-
ation of graphene decreases the in-plane lattice con-
stant but does not affect the dimensionality. Accord-
ing to the criterion defined above only graphene will
enter the database.

2.3. Selection: ranking similar structures
Maintaining a high-throughput database inevitably
requires a strategy for comparing similar structures
and ranking themaccording to their relevance. In par-
ticular, this is necessary in order to identify differ-
ent representatives of the same material e.g. result-
ing from independent relaxations, and thereby avoid
duplicate entries and redundant computations. The
C2DB strategy to this end involves a combination of
structure clustering and Pareto analysis.

First, a single-linkage clustering algorithm is used
to group materials with identical reduced chem-
ical formula and ‘similar’ atomic configurations. To
quantify configuration similarity a slightly modi-
fied version of PyMatGen’s [53] distance metric is
employed where the cell volume normalisation is
removed to make it applicable to 2D materials sur-
rounded by vacuum. Roughly speaking, the metric
measures the maximum distance an atom must be
moved (in units of Å) in order to match the two

Figure 2. Three example structures from C2DB (top:
graphene, middle: Ge2Se2, bottom: Pb2O6) with their
respective cluster dimensionalities cluster before (left) and
after (right) relaxation. The number NxD denotes the
number of clusters of dimensionality x. Note that the
number of atoms of the structures depicted in the left and
right columns can differ because the relaxation can change
the lattice constants.

atomic configurations. Two atomic configurations
belong to the same cluster if their distance is below
an empirically determined threshold of 0.3 Å.

At this point, the simplest strategy would be to
remove all but the most stable compound within a
cluster. However, this procedure would remove many
high symmetry crystals for which a more stable dis-
torted version exists. For example, the well known
T-phase of MoS2 would be removed in favour of
the more stable T ′-phase. This is undesired as high-
symmetry structures, even if dynamically unstable at
T= 0, may provide useful information and might in
fact become stabilised at higher temperatures [54].
Therefore, the general strategy adopted for the C2DB,
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Figure 3. Illustration of the Pareto analysis used to filter out duplicates or irrelevant structures from the C2DB. All points
represent materials with the same reduced chemical formula (in this case ReS2) that belong to the same cluster defined by the
structure metric. Only structures lying on the (N,∆H)-Pareto front are retained (black circles) while other materials are excluded
(red circles). The philosophy behind the algorithm is to keep less stable materials if they contain fewer atoms per unit cell than
more stable materials and thus represent structures of higher symmetry.

is to keep a material that is less stable than another
material of the same cluster if it has fewer atoms in
its primitive unit cell (and thus typically higher sym-
metry). Precisely, materials within a given cluster are
kept only if they represent a defining point of the (N,
∆H)-Pareto front, where N is the number of atoms
in the unit cell and ∆H is the heat of formation. A
graphical illustration of the Pareto analysis is shown
in figure 3 for the case of ReS2.

2.4. Classification: crystal structure
The original C2DB employed a crystal prototype clas-
sification scheme where specific materials were pro-
moted to prototypes and used to label groups of
materials with the same or very similar crystal struc-
ture. This approach was found to be difficult to
maintain (as well as being non-transparent). Instead,
materials are now classified according to their crys-
tal type defined by the reduced stoichiometry, space
group number, and the alphabetically sorted labels of
the occupiedWyckoff positions. As an example,MoS2
in the H-phase has the crystal type: AB2-187-bi.

2.5. Classification: magnetic state
In the new version of the C2DB, materials are classi-
fied according to their magnetic state as either non-
magnetic or magnetic. A material is considered mag-
netic if any atomhas a localmagneticmoment greater
than 0.1 µB.

In the original C2DB, the magnetic category was
further subdivided into ferromagnetic (FM) and anti-
ferromagnetic (AFM). But since the simplest anti-
ferromagnetically ordered state typically does not
represent the true ground state, all material entries
with an AFM state have been removed from the
C2DB and replaced by the material in its FM state.
Although the latter is less stable, it represents a

more well defined state of the material. Crucially, the
nearest neighbour exchange couplings for all mag-
netic materials have been included in the C2DB (see
section 5.8). This enables amore detailed and realistic
description of the magnetic order via the Heisenberg
model. In particular, the FM state of a material is not
expected to represent the true magnetic ground if the
exchange coupling J< 0.

2.6. Stability: thermodynamic
The heat of formation,∆H, of a compound is defined
as its energy per atom relative to its constituent ele-
ments in their standard states [55]. The thermody-
namic stability of a compound is evaluated in terms of
its energy above the convex hull, ∆Hhull, which gives
the energy of the material relative to other compet-
ing phases of the same chemical composition, includ-
ing mixed phases [6], see figure 4 for an example.
Clearly, ∆Hhull depends on the pool of reference
phases, which in turn defines the convex hull. The
original C2DB employed a pool of reference phases
comprised by 2807 elemental and binary bulk crys-
tals from the convex hull of the Open Quantum
Materials Database (OQMD) [55]. In the new ver-
sion, this set has been extended by approximately
6783 ternary bulk compounds from the convex hull of
OQMD, making a total of 9590 stable bulk reference
compounds.

As a simple indicator for the thermodynamic
stability of a material, the C2DB employs three
labels (low, medium, high) as defined in table 2.
These indicators are unchanged from the original
version of the C2DB. In particular, the criterion
∆Hhull < 0.2 eV atom−1, defining the most stable
category, was established based on an extensive
analysis of 55 experimentally realised monolayer
crystals [6].

5
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Figure 4. Convex hull diagram for (Bi,I,Te)-compounds.
Green (red) colouring indicate materials that have a convex
hull energy of less than (greater than) 5 meV. The
monolayers BiI3, Bi2Te3 and BiITe lie on the convex hull.
The monolayers are degenerate with their layered bulk
parent because the vdW interactions are not captured by
the PBE xc-functional.

Table 2. Thermodynamic stability indicator assigned to all
materials in the C2DB.∆H and∆Hhull denote the heat of
formation and energy above the convex hull, respectively.

Thermodynamic stability
indicator Criterion (eV atom−1)

Low ∆H> 0.2
Medium ∆H< 0.2 and∆Hhull > 0.2
High ∆H< 0.2 and∆Hhull < 0.2

It should be emphasised that the energies of
both monolayers and bulk reference crystals are
calculated with the Perdew-Burke-Ernzerhof (PBE)
xc-functional [56]. This implies that some inac-
curacies must be expected, in particular for mater-
ials with strongly localised d-electrons, e.g. certain
transition metal oxides, and materials for which
dispersive interactions are important, e.g. layered
van der Waals crystals. The latter implies that the
energy of a monolayer and its layered bulk parent (if
such exists in the pool of references) will have the
same energy. For further details and discussions see
reference [6].

2.7. Stability: dynamical
Dynamically stable materials are situated at a local
minimumof the potential energy surface and are thus
stable to small structural perturbations. Structures
resulting from DFT relaxations can end up in saddle
point configurations because of imposed symmetry
constraints or an insufficient number of atoms in the
unit cell.

In C2DB, the dynamical stability is assessed from
the signs of the minimum eigenvalues of (1) the
stiffness tensor (see section 3.1) and (2) the Γ-point

Hessian matrix for a supercell containing 2× 2 repe-
titions of the unit cell (the structure is not relaxed in
the 2× 2 supercell). If one of these minimal eigen-
values is negative the material is classified as dynam-
ically unstable. This indicates that the energy can be
reduced by displacing an atom and/or deforming the
unit cell, respectively. The use of two categories for
dynamical stability, i.e. stable/unstable, differs from
the original version of the C2DB where an interme-
diate category was used for materials with negative
but numerically small minimal eigenvalue of either
the Hessian or stiffness tensors.

3. Improved property methodology

The new version of the C2DB has been generated
using a significantly extended and improved work-
flow for property evaluations. This section focuses on
improvements relating to properties that were already
present in the original version of the C2DB while new
properties are discussed in the next section.

3.1. Stiffness tensor
The stiffness tensor, C, is a rank-4 tensor that relates
the stress of amaterial to the applied strain. InMandel
notation (a variant of Voigt notation) C is expressed
as anN ×N matrix relating theN independent com-
ponents of the stress and strain tensors. For a 2D
material N = 3 and the tensor takes the form:

C=




Cxxxx Cxxyy

√
2Cxxxy

Cxxyy Cyyyy

√
2Cyyxy√

2Cxxxy

√
2Cyyxy 2Cxyxy


 , (1)

where the indices on the matrix elements refer to the
rank-4 tensor. The factors multiplying the tensor ele-
ments account for their multiplicities in the full rank-
4 tensor. In the C2DB workflow, C is calculated as a
finite difference of the stress under an applied strain
with full relaxation of atomic coordinates. A negat-
ive eigenvalue of C signals a dynamical instability, see
section 2.7.

In the first version of the C2DB only the diagonal
elements of the stiffness tensor were calculated. The
new version also determines the shear components
such that the full 3× 3 stiffness tensor is now avail-
able. This improvement also leads to a more accurate
assessment of dynamical stability [57].

3.2. Effective masses with parabolicity estimates
For all materials with a finite band gap the effective
masses of electrons and holes are calculated for bands
within 100 meV of the conduction band minimum
and valence band maximum, respectively. The Hes-
sian matrices at the band extrema (BE) are determ-
ined by fitting a second order polynomium to the
PBE band structure including SOC, and the effective
masses are obtained by subsequent diagonalisation of
the Hessian. The main fitting-procedure is unaltered
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Figure 5. Left: The PBE band structures of Rh2Br6 and MoS2 (coloured dots) in regions around the conduction band minimum.
The dashed red line shows the fit made to estimate the effective masses of the lowest conduction band. The shaded grey region
highlights the error between the fit and the true band structure. The mean absolute relative error (MARE) discussed in the main
text is calculated for energies within 25 meV of the band minimum. For MoS2 the fit is essentially on top of the band energies.
Right: The distribution of the MARE of all effective mass fits in the C2DB. The inset shows the full distribution on a log scale. As
mentioned in the main text, very large MAREs indicate that the band minimum/maximum was incorrectly identified by the
algorithm and/or that the band is very flat. Only three materials have MAREs> 1000% but these each have several bands for
which the fit fails.

from the first version of C2DB, but two important
improvements have been made.

The first improvement consists in an additional k-
mesh refinement step for better localisation of the BE
in the Brillouin zone. After the location of the BE has
been estimated based on a uniformly sampled band
structure with k-point density of 12 Å, another one-
shot calculation is performed with a denser k-mesh
around the estimated BE positions. This ensures a
more accurate and robust determination of the loc-
ation of the BE, which can be important in cases
with a small but still significant spin–orbit splitting or
when the band is very flat or non-quadratic around
the BE. The second refinement step is the same as
in the first version of C2DB, i.e. the band energies
are calculated on a highly dense k-mesh in a small
disc around the BE, and the Hessian is obtained by
fitting the band energies in the range up to 1 meV
from the BE.

The second improvement is the calculation of the
mean absolute relative error (MARE) of the polyno-
mial fit in a 25 meV range from the BE. The value of
25 meV corresponds to the thermal energy at room
temperature and is thus the relevant energy scale for
many applications. To make the MARE independent
of the absolute position of the band we calculate the
average energy of the band over the 25meV and com-
pare the deviation of the fit to this energy scale. The
MARE provides a useful measure of the parabolicity

of the energy bands and thus the validity of the effect-
ive mass approximation over this energy scale.

Figure 5 shows two examples of band struc-
tures with the effective mass fits and corresponding
fit errors indicated. Additionally, the distribution of
MARE for all the effective mass fits in the C2DB
are presented. Most materials have an insignificant
MARE, but a few materials have very large errors.
Materials with a MARE above a few hundreds of per-
centages fall into two classes. For some materials the
algorithm does not correctly find the position of the
BE. An example is Ti2S2 in the space group C2/m. For
others, the fit and BE location are both correct, but
the band flattens away from the BE which leads to a
large MARE as is the case for Rh2Br6 shown in the
figure or Cl2Tl2 in the space group P-1. In general a
small MARE indicates a parabolic band while materi-
als with large MARE should be handled on a case-by-
case basis.

3.3. Orbital projected band structure
To facilitate a state-specific analysis of the PBE Kohn–
Sham wave functions, an orbital projected band
structure (PBS) is provided to complement the pro-
jected density of states (PDOS). In the PAW meth-
odology, the all-electron wave functions are projec-
ted onto atomic orbitals inside the augmentation
spheres centred at the position of each atom. The
PBS resolves these atomic orbital contributions to the

7
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Figure 6. Orbital projected band structure and orbital projected density of states of MoS2 in the H-phase. The pie chart symbols
indicate the fractional atomic orbital character of the Kohn–Sham wave functions.

wave functions as a function of band and k-point
whereas the PDOS resolves the atomic orbital char-
acter of the total density of states as a function of
energy. The SOC is not included in the PBS or PDOS,
as its effect is separately visualised by the spin-PBS
also available in the C2DB.

As an example, figure 6 shows the PBS (left) and
PDOS (right) of monolayer MoS2 calculated with
PBE. The relative orbital contribution to a givenBloch
state is indicated by a pie chart symbol. In the present
example, one can deduce from the PBS that even
though Mo-p orbitals and S-p orbitals contribute
roughly equally to the DOS in the valence band, the
Mo-p orbital contributions are localised to a region in
the BZ around theM-point, whereas the S-p orbitals
contribute throughout the entire BZ.

3.4. Corrected G0W0 band structures
The C2DB contains G0W0 quasiparticle (QP) band
structures of 370 monolayers covering 14 different
crystal structures and 52 chemical elements. The
details of these calculations can be found in the ori-
ginal C2DB paper [6]. A recent in-depth analysis of
the 61.716 G0W0 data points making up the QP band
structures led to several important conclusions relev-
ant for high-throughput G0W0 calculations. In par-
ticular, it identified the linear QP approximation as
a significant error source in standard G0W0 calcu-
lations and proposed an extremely simple correc-
tion scheme (the empirical Z (empZ) scheme), that
reduces this error by a factor of two on average.

The empZ scheme divides the electronic states
into two classes according to the size of the QP
weight, Z. States with Z ∈ [0.5, 1.0] are classified as
QP consistent (QP-c) while states with Z ̸∈ [0.5,1.0]
are classified as QP inconsistent (QP-ic). With this
definition, QP-c states will have at least half of their
spectral weight in the QP peak. The distribution of

the 60.000+ Z-values is shown in figure 7. It turns
out that the linear approximation to the self-energy,
which is the gist of the QP approximation, introduces
significantly larger errors for QP-ic states than for
QP-c states. Consequently, the empZmethod replaces
the calculated Z of QP-ic states with the mean of the
Z-distribution, Z0 ≈ 0.75. This simple replacement
reduces the average error of the linear approximation
from 0.11 to 0.06 eV.

An illustration of the method applied to MoS2 is
shown in figure 7. The original uncorrected G0W0

band structure is shown in blue while the empZ cor-
rected band structure is shown in orange. MoS2 has
only one QP-ic state in the third conduction band at
the K-point. Due to a break-down of the QP approx-
imation for this state, the G0W0 correction is greatly
overestimated leading to a local discontinuity in the
band structure. The replacement of Z by Z0 for this
particular state resolves the problem. All G0W0 band
structures in the C2DB are now empZ corrected.

3.5. Optical absorbance
In the first version of the C2DB, the optical absorb-
ance was obtained from the simple expression [6]

A(ω) ≈ ωImα2D(ω)

ϵ0c
, (2)

whereα2D is the long wavelength limit of the in-plane
sheet polarisability density (note that the equation
is written here in SI units). The sheet polarisabil-
ity is related to the sheet conductivity via σ2D(ω) =
−iωα2D(ω). The expression (2) assumes that the elec-
tric field inside the layer equals the incoming field (i.e.
reflection is ignored), and hence, it may overestimate
the absorbance.

In the new version, the absorbance is evaluated
from A= 1−R−T, where R and T are the reflected
and transmitted powers of a plane wave at normal
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Figure 7. Top: Distribution of the 61 716 QP weights (Z)
contained in the C2DB. The blue part of the distribution
shows QP-consistent (QP-c) Z-values while the orange part
shows QP-inconsistent (QP-ic) Z values. In general, the
linear expansion of the self-energy performed when solving
the QP equation works better for Z closer to 1. About 0.3%
of the Z-values lie outside the interval from 0 to 1 and are
not included in the distribution. Bottom: G0W0 band
structure before (blue) and after (orange) applying the
empZ correction, which replaces Z by the mean of the
distribution for QP-ic states. In the case of MoS2 only one
state at K is QP-ic.

incidence, respectively. These can be obtained from
the conventional transfer matrix method applied to
a monolayer suspended in vacuum. The 2D mater-
ial is here modelled as an infinitely thin layer with a
sheet conductivity. Alternatively, it can be modelled
as quasi-2D material of thickness d with a ‘bulk’ con-
ductivity of σ = σ2D/d [58], but the two approaches
yield very similar results, since the optical thickness
of a 2D material is much smaller than the optical
wavelength. Within this model, the expression for the
absorbance of a suspended monolayer with the sheet
conductivity σ2D reads:

A(ω) = Re
{
σ2D(ω)η0

}∣∣∣∣
2

2+σ2D(ω)η0

∣∣∣∣
2

, (3)

where η0 = 1/(ϵ0c) ≈ 377 Ω is the vacuum imped-
ance.

If the light–matter interaction is weak, i.e.
|σ2Dη0| ≪ 1, equation (3) reduces to equation (2).

Nonetheless, due the strong light–matter interaction
in some 2D materials, this approximation is not reli-
able in general. In fact, it can be shown that the max-
imum possible absorption from equation (3) is 50%,
which is known as the upper limit of light absorp-
tion in thin films [59]. This limit is not guaranteed
by equation (2), which can even yield an absorbance
above 100%.

As an example, figure 8 shows the absorption
spectrum of monolayer MoS2 for in- and out-of-
plane polarised light as calculated with the exact
equation (3) and the approximate equation (2),
respectively. In all cases the sheet polarisability is
obtained from the BSE to account for excitonic effects
[6]. For weak light–matter interactions, e.g. for the z-
polarised light, the two approaches agree quite well,
but noticeable differences are observed in regions
with stronger light–matter interaction.

4. Newmaterials in the C2DB

In this section we discuss the most significant exten-
sions of the C2DB in terms of new materials. The
set of materials presented here is not complete, but
represents the most important and/or well defined
classes. The materials discussed in sections 4.1 and
4.2 (MXY Janus monolayers and monolayers extrac-
ted from experimental crystal structure databases)
are already included in the C2DB. The materials
described in sections 4.3 and 4.4 (homo-bilayers and
monolayer point defect systems) will soon become
available as separate C2DB-interlinked databases.

4.1. MXY Janus monolayers
The class of TMDC monolayers of the type MX2
(where M is the transition metal and X is a chalco-
gen) exhibits a large variety of interesting and unique
properties and has been widely discussed in the liter-
ature [60]. Recent experiments have shown that it is
not only possible to synthesise different materials by
changing the metal M or the chalcogen X, but also by
exchanging the X on one side of the layer by another
chalcogen (or halogen) [61–63]. This results in a class
of 2D materials known as MXY Janus monolayers
with brokenmirror symmetry and finite out-of-plane
dipolemoments. The prototypicalMXY crystal struc-
tures are shown in figure 9 for the case of MoSSe
and BiTeI, which have both been experimentally real-
ised [61–63]. Adopting the nomenclature from the
TMDCs, the crystal structures are denoted as H- or
T-phase, depending on whether X and Y atoms are
vertically aligned or displaced, respectively.

In a recent work [64], the C2DB workflow was
employed to scrutinise and classify the basic elec-
tronic and optical properties of 224 different MXY
Janus monolayers. All data from the study is avail-
able in the C2DB. Here we provide a brief discussion
of the Rashba physics in these materials and refer the
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Figure 8. Optical absorption of standalone monolayer MoS2 for x/y-polarisation (left) and z-polarisation (right) at normal
incident in the BSE framework, obtained using equation (2) (blue) or equation (3) (orange). The crystal structure cross-sectional
views are shown in the inset with the definition of directions.

Figure 9. Atomic structure of the MXY Janus monolayers in
the H-phase (left) and T-phase (right). The two prototype
materials MoSSe and BiTeI are examples of experimentally
realised monolayers adopting these crystal structures (not
to scale).

interested reader to [64] for more details and analysis
of other properties.

A key issue when considering hypothetical mater-
ials, i.e. materials not previously synthesised, is their
stability. The experimentally synthesised MoSSe and
BiTeI are both found to be dynamically stable and
lie within 10 meV of the convex hull confirming
their thermodynamic stability. Out of the 224 ini-
tial monolayers 93 are classified as stable according to
the C2DB criteria (dynamically stable and ∆Hhull <
0.2 eV atom−1). Out of the 93 stable materials, 70
exhibit a finite band gap when computed with the
PBE xc-functional.

The Rashba effect is a momentum dependent
splitting of the band energies of a 2D semiconductor
in the vicinity of a band extremum arising due to
the combined effect of spin–orbit interactions and
a broken crystal symmetry in the direction perpen-
dicular to the 2D plane. The simplest model used to
describe the Rashba effect is a 2D electron gas in a per-
pendicular electric field (along the z-axis). Close to

the band extremum, the energy of the two spin bands
is described by the Rashba Hamiltonian [65, 66]:

H= αR(σ× k) · êz, (4)

whereσ is the vector of Pauli matrices, k= p/ℏ is the
wave number, and the Rashba parameter is propor-
tional to the electric field strength, αR ∝ E0.

Although the Rashba Hamiltonian is only meant
as a qualitative model, it is of interest to test its valid-
ity on the Janus monolayers. The electric field of
the Rashba model is approximately given by E0 =
∆Vvac/d, where∆Vvac is the shift in vacuumpotential
on the two sides of the layer (see left inset of figure 10)
and d is the layer thickness. Assuming a similar thick-
ness for all monolayers, the electric field is propor-
tional to the potential shift. Not unexpected, the lat-
ter is found to correlate strongly with the difference in
electronegativity of the X and Y atoms, see left panel
of figure 10.

The Rashba energy, ER, can be found by fitting
E(k) = ℏ2k2/2m∗ ±αRk to the band structure (see
right inset of figure 10) and should scale with the elec-
tric field strength. However, as seen from the right
panel of figure 10, there is no correlation between the
two quantities. Hence we conclude that the simple
Rashba model is completely inadequate and that the
strength of the perpendicular electric field cannot be
used to quantify the effect of spin–orbit interactions
on band energies.

4.2. Monolayers from known layered bulk crystals
The C2DB has been extended with a number of
monolayers that are likely exfoliable from experi-
mentally known layered bulk compounds. Specific-
ally, the Inorganic Crystal Structure Database (ICSD)
[67] and CrystallographyOpenDatabase (COD) [68]
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Figure 10. Left: Correlation between the electronegativity difference of X and Y in MXY Janus monolayers and the vacuum level
shift across the layer. Right: Correlation between the Rashba energy and the vacuum level shift. Structures in the H-phase (e.g.
MoSSe) are shown in black while structures in the T-phase (e.g. BiTeI) are shown in orange. The linear fit has the slope
1.35 eV/∆χ (Pauling scale). The insets show the definition of the vacuum level shift and the Rashba energy, respectively.
Modified from [64].

have first been filtered for corrupted, duplicate and
theoretical compounds, which reduce the initial set
of 585.485 database entries to 167.767 unique mater-
ials. All of these have subsequently been assigned a
‘dimensionality score’ based on a purely geometrical
descriptor. If the 2D score is larger than the sum of
0D, 1D and 3D scores we regard the material as being
exfoliable and we extract the individual 2D compon-
ents that comprise the material (see also section 2.2).
We refer to the original work on the method for
details [52] and note that similar approaches were
applied in [11, 12] to identify potentially exfoliable
monolayers from the ICSD and COD.

The search has been limited to bulk compounds
containing less than six different elements and no
rare earth elements. This reduces the set of relevant
bulk materials to 2991. For all of these we extracted
the 2D components containing less than 21 atoms
in the unit cell, which were then relaxed and sorted
for duplicates following the general C2DB workflow
steps described in sections 2.1–2.3. At this point 781
materials remain. This set includes most known 2D
materials and 207 of the 781 were already present
in the C2DB prior to this addition. All the materi-
als (including those that were already in C2DB) have
been assigned an ICSD/COD identifier that refers to
the parent bulk compound fromwhich the 2Dmater-
ial was computationally exfoliated.We emphasise that
we have not considered exfoliation energies in the
analysis and a subset of these materials may thus be
rather strongly bound and challenging to exfoliate
even if the geometries indicate van der Waals bonded
structures of the parent bulk compounds.

Figure 11 shows the distribution of energies
above the convex hull for materials derived from

parent structures in ICSD or COD as well as for the
entire C2DB, which includes materials obtained from
combinatorial lattice decoration as well. As expected,
the materials derived from experimental bulk materi-
als are situated rather close to the convex hull whereas
those obtained from lattice decoration extend to ener-
gies far above the convex hull. It is also observed that
a larger fraction of the experimentally derived mater-
ials are dynamically stable. There are, however, well
known examples of van der Waals bonded structures
where the monolayer undergoes a significant lattice
distortion, which will manifest itself as a dynamical
instability in the present context. For example, bulk
MoS2 exists in van derWaals bonded structures com-
posed of either 2 H-MoS2 or 1 T-MoS2 layers, but a
monolayer of the 1 T phase undergoes a structural
deformation involving a doubling of the unit cell [69]
and is thus categorised as dynamically unstable by
the C2DBworkflow. The dynamically stablematerials
derived from parent bulk structures in the ICSD and
COD may serve as a useful subset of the C2DB that
are likely to be exfoliable from known compounds
and thus facilitate experimental verification. As a first
application the subset has been used to search for
magnetic 2Dmaterials, which resulted in a total of 85
ferromagnets and 61 anti-ferromagnets [70].

4.3. Outlook: multilayers
The C2DB is concerned with the properties of cova-
lently bonded monolayers (see discussion of dimen-
sionality filtering in section 2.2). However, multilayer
structures composed of two or more identical mono-
layers are equally interesting and often have prop-
erties that deviate from those of the monolayer. In
fact, the synthesis of layered vdW structures with a
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Figure 11. Distribution of energies above the convex hull
for the 2D materials extracted from bulk compounds in
ICSD and COD (top) and for the entire C2DB including
those constructed from combinatorial lattice decoration
(bottom). Dynamically stable materials are indicated in
blue.

controllable number of layers represents an interest-
ing avenue for atomic-scale materials design. Several
examples of novel phenomena emerging in layered
vdW structures have been demonstrated including
direct-indirect band gap transitions inMoS2 [71, 72],
layer-parity selective Berry curvatures in few-layer
WTe2 [73], thickness-dependent magnetic order in
CrI3 [74, 75], and emergent ferroelectricity in bilayer
hBN [76].

As a first step towards a systematic exploration of
multilayer 2D structures, the C2DB has been used as
basis for generating homobilayers in various stack-
ing configurations and subsequently computing their
properties following a modified version of the C2DB
monolayer workflow. Specifically, the most stable
monolayers (around 1000) are combined into bilay-
ers by applying all possible transformations (unit
cell preserving point group operations and transla-
tions) of one layer while keeping the other fixed. The
candidate bilayers generated in this way are subject
to a stability analysis, which evaluates the binding
energy and optimal IL distance based on PBE-D3 [77]
total energy calculations keeping the atoms of the
monolayers fixed in their PBE relaxed geometry, see
figures 12 and table 3.

Figure 12. An illustration of the optimisation of the
interlayer (IL) distance for MoS2 in the AA stacking. The
black crosses are the points sampled by the optimisation
algorithm while the blue curve is a spline interpolation of
the black crosses. The inset shows the MoS2 AA stacking
and the definition of the IL distance is indicated with a
black double-sided arrow.

Table 3. Exfoliation energies for selected materials calculated with
the PBE+D3 xc-functional as described in section 4.3 and
compared with the DF2 and rVV10 results from [11]. The
spacegroups are indicated in the column ‘SG’. All numbers are in
units of meV Å−2.

Material SG PBE+D3 DF2 rVV10

MoS2 P-6m2 28.9 21.6 28.8
MoTe2 P-6m2 30.3 25.2 30.4
ZrNBr Pmmn 18.5 10.5 18.5
C P6/mmm 18.9 20.3 25.5
P Pmna 21.9 38.4 30.7
BN P-6m2 18.9 19.4 24.4
WTe2 P-6m2 32.0 24.7 30.0
PbTe P3m1 23.2 27.5 33.0

The calculated IL binding energies are generally in
the range from a few to a hundred meV Å−2 and IL
distances range from1.5 to 3.8 Å. A scatter plot of pre-
liminary binding energies and IL distances is shown
in figure 13. The analysis of homobilayers provides an
estimate of the energy required to peel a monolayer
off a bulk structure. In particular, the binding energy
for the most stable bilayer configuration provides a
measure of the exfoliation energy of the monolayer.
This key quantity is now available for all monolayers
in the C2DB, see section 5.1.

4.4. Outlook: point defects
The C2DB is concerned with the properties of 2D
materials in their pristine crystalline form. How-
ever, as is well known the perfect crystal is an ideal-
ised model of real materials, which always contain
defects in smaller or larger amounts depending on
the intrinsic materials properties and growth condi-
tions. Crystal defects often have a negative impact on
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Figure 13. Scatter plot of the calculated interlayer distance
and binding energies of (homo)bilayers of selected
materials from C2DB. A few well known materials are
highlighted: MoS2, graphene (C2), and hexagonal boron
nitride (hBN). The bilayer binding energies provide an
estimate of the monolayer exfoliation energies, see
section 5.1.

physical properties, e.g. they lead to scattering and life
time-reduction of charge carriers in semiconductors.
However, there are also important situations where
defects play a positive enabling role, e.g. in doping of
semiconductors, as colour centres for photon emis-
sion [78, 79] or as active sites in catalysis.

To reduce the gap between the pristine model
material and real experimentally accessible samples,
a systematic evaluation of the basic properties of the
simplest native point defects in a selected subset of
monolayers from the C2DB has been initiated. The
monolayers are selected based on the stability of the
pristine crystal. Moreover, only non-magnetic semi-
conductors with a PBE band gap satisfying Egap >
1 eV are currently considered as such materials are
candidates for quantum technology applications like
single-photon sources and spin qubits. Following
these selection criteria around 300 monolayers are
identified and their vacancies and intrinsic substitu-
tional defects are considered, yielding a total of about
1500 defect systems.

Each defect system is subject to the same work-
flow, which is briefly outlined below. To enable point
defects to relax into their lowest energy configuration,
the symmetry of the pristine host crystal is intention-
ally broken by the chosen supercell, see figure 14 (a).
In order tominimise defect–defect interaction, super-
cells are furthermore chosen such that the minimum
distance between periodic images of defects is larger
than 15 Å. Unique point defects are created based on
the analysis of equivalent Wyckoff positions for the
host material. To illustrate some of the properties that
will feature in the upcoming point defect database, we
consider the specific example of monolayer CH2Si.

First, the formation energy [80, 81] of a given
defect is calculated from PBE total energies. Next,

Slater–Janak transition state theory is used to obtain
the charge transition levels [82, 83]. By combining
these results, one obtains the formation energy of
the defect in all possible charge states as a function
of the Fermi level. An example of such a diagram is
shown in figure 14 (b) for the case of the VC and CSi
defects in monolayer CH2Si. For each defect and each
charge state, the PBE single-particle energy level dia-
gram is calculated to provide a qualitative overview of
the electronic structure. A symmetry analysis [84] is
performed for the defect structure and the individual
defect states lying inside the band gap. The energy
level diagram of the neutral VSi defect in CH2Si is
shown in figure 14 (c), where the defect states are
labelled according to the irreducible representations
of the Cs point group.

In general, excited electronic states can be mod-
elled by solving the Kohn–Sham equations with non-
Aufbau occupations. The excited-state solutions are
saddle points of the Kohn–Sham energy functional,
but common self-consistent field (SCF) approaches
often struggle to find such solutions, especially when
nearly degenerate states are involved. The calcula-
tion of excited states corresponding to transitions
between localised states inside the band gap is there-
fore performed using an alternative method based
on the direct optimisation (DO) of orbital rotations
in combination with the maximum overlap method
(MOM) [85]. This method ensures fast and robust
convergence of the excited states, as compared to SCF.
In figure 14 (d), the reorganisation energies for the
ground and excited state, as well as the zero-phonon
line (ZPL) energy are sketched. For the specific case of
the Si vacancy inCH2Si, theDO-MOMmethod yields
EZPL = 3.84 eV, λ

reorg
gs = 0.11 eV and λreorgexc = 0.16 eV.

For systems with large electron-phonon coupling (i.e.
Huang–Rhys factor > 1) a one-dimensional approx-
imation for displacements along the main phonon
mode is used to produce the configuration coordin-
ate diagram (see figure 14 (d)). In addition to the ZPL
energies and reorganisation energies, the Huang–
Rhys factors, photoluminescence spectrum from the
1D phonon model, hyperfine coupling and zero field
splitting are calculated.

5. New properties in the C2DB

This section reports on new properties that have
become available in the C2DB since the first release.
The employed computational methodology is
described in some detail and results are compared
to the literature where relevant. In addition, some
interesting property correlations are considered along
with general discussions of the general significance
and potential application of the available data.

5.1. Exfoliation energy
The exfoliation energy of a monolayer is estimated as
the binding energy of its bilayer in the most stable
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Figure 14. Overview of some of the properties included in the 2D defect database project for the example host material CH2Si.
(a) The supercell used to represent the defects (here a Si vacancy). The supercell is deliberately chosen to break the symmetry of
the host crystal lattice. (b) Formation energies of a C vacancy (green) and C–Si substitutional defect (purple). (c) Energy and
orbital symmetry of the localised single-particle states of the VSi defect for both spin channels (left and right). The Fermi level is
shown by the dotted line. (d) Schematic excited state configuration energy diagram. The transitions corresponding to the vertical
absorption and the zero-phonon emission are indicated.

stacking configuration (see also section 4.3). The
binding energy is calculated using the PBE+D3 xc-
functional [86] with the atoms of both monolayers
fixed in the PBE relaxed geometry. Table 3 compares
exfoliation energies obtained in this way to values
from Mounet et al [11] for a representative set of
monolayers.

5.2. Bader charges
For all monolayers we calculate the net charge on the
individual atoms using the Bader partitioning scheme
[87]. The analysis is based purely on the electron
density, which we calculate from the PAW pseudo
density plus compensation charges using the PBE xc-
functional. Details of the method and its implement-
ation can be found in Tang et al [88]. In section 5.4
we compare and discuss the relation between Bader
charges and Born charges.

5.3. Spontaneous polarisation
The spontaneous polarisation (Ps) of a bulk mater-
ial is defined as the charge displacement with respect
to that of a reference centrosymmetric structure
[89, 90]. Ferroelectric materials exhibit a finite value

of Ps that may be switched by an applied external field
and have attracted a large interest for a wide range of
applications [91–93].

The spontaneous polarisation in bulk materials
can be regarded as electric dipole moment per unit
volume, but in contrast to the case of finite systems
this quantity is ill-defined for periodic crystals [89].
Nevertheless, one can define the formal polarisation
density:

P=
1

2π

e

V

∑

l

ϕlal, (5)

where al (with l ∈ {1,2,3 }) are the lattice vectors
spanning the unit cell,V is the cell volume and e is the
elementary charge. ϕl is the polarisation phase along
the lattice vector defined by:

ϕl =
∑

i

Zibl ·ui −ϕelecl , (6)

where bl is the reciprocal lattice vector satisfying bl ·
Rl = 2π and ui is the position of nucleus iwith charge
eZi. The electronic contribution to the polarisation
phase is defined as:
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Figure 15. Depicted in the blue plot is the formal
polarisation calculated along the adiabatic path for GeSe,
using the methods described in the main text. The orange
plot shows the energy potential along the path as well as
outside. Figure inset: The structure of GeSe in the two
non-centrosymmetric configurations corresponding to
−Ps and Ps and the centrosymmetric configuration.

ϕelecl =
1

Nk⊥bl
Im

∑

k∈BZ⊥bl

× ln
Nk∥bl−1∏

j=0

det
occ

[
⟨unk+jδk⟩

∣∣umk+( j+1)δk

]
,

(7)

where BZ⊥bl = {k|k · bl = 0} is a plane of k-points
orthogonal to bl, δk is the distance between neigh-
bouring k-points in the bl direction andNk∥bl (Nk⊥bl)
is the number of k-points along (perpendicular to)
the bl direction. These expression generalise straight-
forwardly to 2D.

The formal polarisation is onlywell-definedmod-
ulo eRn/V where Rn is any lattice vector. However,
changes in polarisation are well defined and the spon-
taneous polarisation may thus be obtained by:

Ps =

ˆ 1

0

dP(λ)

dλ
dλ, (8)

where λ is a dimensionless parameter that defines an
adiabatic structural path connecting the polar phase
(λ= 1) with a non-polar phase (λ= 0).

The methodology has been implemented in
GPAW and used to calculate the spontaneous polar-
isation of all stable materials in the C2DB with a PBE
band gap above 0.01 eV and a polar space group
symmetry. For each material, the centrosymmetric
phase with smallest atomic displacement from the
polar phase is constructed and relaxed under the con-
straint of inversion symmetry. The adiabatic path
connecting the two phases is then used to calculate the
spontaneous polarisation using equations (5)–(8). An
example of a calculation forGeSe is shown in figure 15
where the polarisation along the path connecting
two equivalent polar phases via the centrosymmet-
ric phase is shown together with the total energy. The

spontaneous polarisation obtained from the path is
39.8 nCm−1 in good agreement with previous calcu-
lations [94].

5.4. Born charges
The Born charge of an atom a at position ua in a solid
is defined as:

Za
ij =

V

e

∂Pi
∂uaj

∣∣∣∣∣
E=0

. (9)

It can be understood as an effective charge assigned to
the atom to match the change in polarisation in dir-
ection i when its position is perturbed in direction j.
Since the polarisation density and the atomic position
are both vectors, the Born charge of an atom is a rank-
2 tensor. The Born charge is calculated as a finite dif-
ference and relies on the Modern theory of polarisa-
tion [95] for the calculation of polarisation densities,
see reference [96] for more details. The Born charge
has been calculated for all stable materials in C2DB
with a finite PBE band gap.

It is of interest to examine the relation between the
Born charge and the Bader charge (see section 5.2). In
materials with strong ionic bonds one would expect
the charges to follow the atoms. On the other hand,
in covalently bonded materials the hybridisation pat-
tern and thus the charge distribution, depends on the
atom positions in a complex way, and the idea of
charges following the atom is expected to break down.
In agreement with this idea, the (in-plane) Born
charges in the strongly ionic hexagonal hBN (± 2.71e
for B and N, respectively) are in good agreement
with the calculated Bader charges (± 3.0e). In con-
trast, (the in-plane) Born charges in MoS2 (−1.08e
and 0.54e for Mo and S, respectively) deviate signi-
ficantly from the Bader charges (1.22e and−0.61e for
Mo and S, respectively). In fact, the values disagree
even on the sign of the charges underlining the non-
intuitive nature of the Born charges in covalently bon-
ded materials.

Note that the out-of-plane Born charges never
match the Bader charges, even for strongly ionic insu-
lators, and are consistently smaller in value than the
in-plane components. The smaller out-of-plane val-
ues are consistent with the generally smaller out-of-
plane polarisability of 2D materials (for both elec-
tronic and phonon contributions) and agrees with the
intuitive expectation that it is more difficult to polar-
ise a 2Dmaterial in the out-of-plane direction as com-
pared to the in-plane direction.

Figure 16 shows the average of the diagonal of
the Born charge tensor, Tr(Za)/3, plotted against the
Bader charges for all 585 materials in the C2DB for
which the Born charges have been computed. The
data points have been coloured according to the ion-
icity of the atom a defined as I(a) = |χa −⟨χ⟩|, where
χa and ⟨χ⟩ are the Pauling electronegativity of atom
a and the average electronegativity of all atoms in the
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Figure 16. Born charges, Tr(Z)/3, vs. Bader charges for
3025 atoms in the 585 materials for which the Born charges
are calculated. The colors indicate the ionicity of the atoms
(see main text).

Figure 17. Bader and in-plane Born charges vs. band gap.

unit cell, respectively. The ionicity is thus a measure
of the tendency of an atom to donate/accept charge
relative to the average tendency of atoms in themater-
ial. It is clear from figure 16 that there is a larger
propensity for the Born and Bader charges to match
in materials with higher ionicity.

Figure 17 plots the average (in-plane) Born charge
and the Bader charge versus the band gap. It is clear
that large band gap materials typically exhibit integer
Bader charges, whereas there is no clear correlation
between the Born charge and the band gap.

5.5. Infrared polarisability
The original C2DB provided the frequency depend-
ent polarisability computed in the random phase
approximation (RPA) with inclusion of electronic
interband and intraband (for metals) transitions [6].
However, phonons carrying a dipole moment (so-
called IR active phonons) also contribute to the polar-
isability at frequencies comparable to the frequency of
optical phonons. This response is described by the IR
polarisability:

Figure 18. Total polarisability, including both electrons and
phonons, of monolayer hBN in the infrared (IR) frequency
regime. The resonance at around 180 meV is due to the
Γ-point longitudinal optical phonon. At energies above all
phonon frequencies (but below the band gap) the
polarisability is approximately constant and equal to the
static limit of the electronic polarisability, α∞.

αIR(ω) =
e2

A
ZTM−1/2

(∑

i

did
T
i

ω2i −ω2− iγω

)
M−1/2Z,

(10)

whereZ andM arematrix representations of the Born
charges and atomicmasses,ω2i and di are eigenvectors
and eigenvalues of the dynamical matrix, A is the in-
plane cell area and γ is a broadening parameter rep-
resenting the phonon lifetime and is set to 10 meV.
The total polarisability is then the sum of the elec-
tronic polarisability and the IR polarisability.

The new C2DB includes the IR polarisability of
all monolayers for which the Born charges have been
calculated (stable materials with a finite band gap),
see section (5.4). As an example, figure 18 shows the
total polarisability of monolayer hexagonal hBN. For
details on the calculation of the IR polarisability see
reference [96].

5.6. Piezoelectric tensor
The piezoelectric effect is the accumulation of
charges, or equivalently the formation of an electric
polarisation, in a material in response to an applied
mechanical stress or strain. It is an importantmaterial
characteristic with numerous scientific and techno-
logical applications in sonar, microphones, acceler-
ometers, ultrasonic transducers, energy conversion,
etc [97, 98]. The change in polarisation originates
from the movement of positive and negative charge
centres as the material is deformed.

Piezoelectricity can be described by the (proper)
piezoelectric tensor cijk with i, j,k ∈ {x,y,z}, given by
[99]:

cijk =
e

2πV

∑

l

∂ϕl
∂ϵjk

ali, (11)

which differs from equation (5) only by a derivative of
the polarisation phasewith respect to the strain tensor
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Table 4. Comparison of computed piezoelectric tensor versus
experimental values and previous calculations for hexagonal BN
and a selected set of TMDCs (space group 187). All numbers are
in units of nC/m. Experimental data for MoS2 is obtained from
[102].

Material Exp. Theory [101] C2DB

BN — 0.14 0.13
MoS2 0.3 0.36 0.35
MoSe2 — 0.39 0.38
MoTe2 — 0.54 0.48
WS2 — 0.25 0.24
WSe2 — 0.27 0.26
WTe2 — 0.34 0.34

ϵjk. Note that cijk does not depend on the chosen
branch cut.

The piezoelectric tensor is a symmetric
tensor with at most 18 independent components.
Furthermore, the point group symmetry restricts the
number of independent tensor elements and their
relationships due to the well-knownNeumann’s prin-
ciple [100]. For example, monolayerMoS2 with point
group D3h, has only one non-vanishing independ-
ent element of cijk. Note that cijk vanishes identic-
ally for centrosymmetric materials. Using a finite-
difference technique with a finite but small strain
(1% in our case), equation (11) has been used to
compute the proper piezoelectric tensor for all non-
centrosymmetric materials in the C2DB with a finite
band gap. Table 4 shows a comparison of the piezo-
electric tensors in the C2DB with literature for a
selected set of monolayer materials. Good agreement
is obtained for all these materials.

5.7. Topological invariants
For all materials in the C2DB exhibiting a direct band
gap below 1 eV, the k-space Berry phase spectrum
of the occupied bands has been calculated from the
PBE wave functions. Specifically, a particular k-point
is written as k1b1+ k2b2 and the Berry phases γn(k2)
of the occupied states on the path k1 = 0→ k1 = 1 is
calculated for each value of k2. The connectivity of
the Berry phase spectrum determines the topological
properties of the 2D Bloch Hamiltonian [103, 104].

The calculated Berry phase spectra of the relev-
ant materials are available for visual inspection on the
C2DB webpage. Three different topological invari-
ants have been extracted from these spectra and are
reported in the C2DB: (1) The Chern number, C,
takes an integer value and is well defined for any
gapped 2D material. It determines the number of
chiral edge states on any edge of the material. For any
non-magnetic material the Chern number vanishes
due to time-reversal symmetry. It is determined from
the Berry phase spectrum as the number of crossings
at any horizontal line in the spectrum. (2) The mir-
ror Chern number, CM , defined for gapped mater-
ials with a mirror plane in the atomic layer [105].
For such materials, all states may be chosen as mirror

eigenstates with eigenvalues ±i and the Chern num-
bers C± can be defined for each mirror sector separ-
ately. For a material with vanishing Chern number,
the mirror Chern number is defined as CM = (C+ −
C−)/2 and takes an integer value corresponding to
the number of edge states on any mirror symmetry
preserving edge. It is obtained from the Berry phase
spectrum as the number of chiral crossings in each
of the mirror sectors. (3) The Z2 invariant, ν, which
can take the values 0 and 1, is defined for materi-
als with time-reversal symmetry. Materials with ν= 1
are referred to as quantum spin Hall insulators and
exhibit helical edge states at any time-reversal con-
serving edge. It is determined from the Berry phase
spectrum as the number of crossing points modulus
2 at any horizontal line in the interval k2 ∈ [0, 1/2].

Figure 19 shows four representative Berry phase
spectra corresponding to the three cases of non-
vanishing C, CM and ν as well as a trivial insulator.
The four materials are: OsCl3 (space group 147)—
a Chern insulator with C= 1, OsTe2 (space group
14)—a mirror crystalline insulator with CM = 2, SbI
(spacegroup 1)—a quantum spin Hall insulator with
ν= 1 and BiITe (spacegroup 156)—a trivial insulator.
Note that a gap in the Berry phase spectrum always
implies a trivial insulator.

In [106] the C2DB was screened for materi-
als with non-trivial topology. At that point it was
found that the database contained 7 Chern insulat-
ors, 21 mirror crystalline topological insulators and
48 quantum spin Hall insulators. However, that does
not completely exhaust the the topological proper-
ties of materials in the C2DB. In particular, there
may be materials that can be topologically classified
based on crystalline symmetries other than themirror
plane of the layer. In addition, second order topolo-
gical effectsmay be present in certainmaterials, which
imply that flakes will exhibit topologically protected
corner states. Again, the Berry phase spectra may be
used to unravel the second order topology by means
of nested Wilson loops [107].

5.8. Exchange coupling constants
The general C2DB workflow described in
sections 2.1–2.3 will identify the FM ground state
of a material and apply it as starting point for sub-
sequent property calculations, whenever it is more
stable than the spin-paired ground state. In reality,
however, the FM state is not guaranteed to comprise
the magnetic ground state. In fact, AFM states often
have lower energy than the FM one, but in general
it is non-trivial to obtain the true magnetic ground
state. We have chosen to focus on the FM state due
to its simplicity and because its atomic structure and
stability are often very similar to those of other mag-
netic states. Whether or not the FM state is the true
magnetic ground state is indicated by the nearest
neighbour exchange coupling constant as described
below.
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Figure 19. Berry phase spectra of the Chern insulator OsCl3 (top left), the crystalline topological insulator OsTe2 (top right), the
quantum spin Hall insulator SbI (lower left) and the trivial insulator BiITe (lower right).

When investigating magnetic materials the ther-
modynamical properties (for example the critical
temperatures for ordering) are of crucial interest. In
two dimensions the Mermin–Wagner theorem [108]
comprises an extreme example of the importance of
thermal effects since it implies that magnetic order
is only possible at T= 0 unless the spin-rotational
symmetry is explicitly broken. The thermodynamic
properties cannot be accessed directly by DFT. Con-
sequently, magnetic models that capture the crucial
features of magnetic interactions must be employed.
For insulators, the Heisenberg model has proven
highly successful in describing magnetic properties
of solids in 3D as well as 2D [109]. It represents the
magnetic degrees of freedom as a lattice of localised
spins that interact through a set of exchange coup-
ling constants. If the model is restricted to include
only nearest neighbour exchange and assume mag-
netic isotropy in the plane, it reads:

H= − J

2

∑

⟨ij⟩
Si · Sj −

λ

2

∑

⟨ij⟩
SziS

z
j −A

∑

i

(
Szi
)2
, (12)

where J is the nearest neighbour exchange constant,
λ is the nearest neighbour anisotropic exchange con-
stant andAmeasures the strength of single-ion aniso-
tropy. We also neglect off-diagonal exchange coup-
ling constants that give rise to terms proportional to
Sxi S

y
j , S

y
i S

z
j and SziS

x
j . The out-of-plane direction has

been chosen as z and ⟨ij⟩ implies that for each site i
we sum over all nearest neighbour sites j. The para-
meters J, λ and A may be obtained from an energy
mapping analysis involving four DFT calculations
with different spin configurations [70, 110, 111]. The
thermodynamic properties of the resulting ‘first prin-
ciples Heisenberg model’ may subsequently be ana-
lysedwith classicalMonte Carlo simulations or renor-
malised spin wave theory [36, 112].

The C2DB provides the values of J, λ, and A as
well as the number of nearest neighbours Nnn and
the maximum eigenvalue of Sz (S), which is obtained
from the total magnetic moment per atom in the
FM ground state (rounded to nearest half-integer for
metals). These key parameters facilitate easy post-
processing analysis of thermal effects on themagnetic
structure. In [113] such an analysis was applied to
estimate the critical temperature of all FM materials
in the C2DB based on a model expression for TC and
the parameters from equation (12).

For metals, the Heisenberg parameters available
in C2DB should be used with care because the Heis-
enberg model is not expected to provide an accur-
ate description of magnetic interactions in this case.
Nevertheless, even for metals the sign and magnitude
of the parameters provide an important qualitative
measure of the magnetic interactions that may be
used to screen and select materials for more detailed
investigations of magnetic properties.
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A negative value of J implies the existence of an
AFM state with lower energy than the FM state used
in C2DB. This parameter is thus crucial to consider
when judging the stability and relevance of a mater-
ial classified as magnetic in C2DB (see section 2.5).
Figure 20 shows the distribution of exchange coupling
constants (weighted by S2) of the magnetic materials
in the C2DB. The distribution is slightly skewed to the
positive side indicating that FM order is more com-
mon than AFM order.

The origin ofmagnetic anisotropymay stem from
either single-ion anisotropy or anisotropic exchange
and it is in general difficult a priori to determ-
ine, which mechanism is most important. There
is, however, a tendency in the literature to neglect
anisotropic exchange terms in a Heisenberg model
description of magnetism and focus solely on the
single-ion anisotropy. In figure 20 we show a scat-
ter plot of the anisotropy parameters A and λ for the
FM materials (J> 0). The spread of the parameters
indicate that the magnetic anisotropy is in general
equally likely to originate from both mechanisms
and neglecting anisotropic exchange is not advis-
able. For ferromagnets, the model (equation (12))
only exhibits magnetic order at finite temperatures if
A(2S− 1)+λNnn > 0 [113]. Neglecting anisotropic
exchange thus excludes materials with A< 0 that sat-
isfiesA(2S− 1)+λNnn > 0. This is in fact the case for
11 FM insulators and 31 FM metals in the C2DB.

5.9. Raman spectrum
Raman spectroscopy is an important technique used
to probe the vibrational modes of a solid (or
molecule) by means of inelastic scattering of light
[114]. In fact, Raman spectroscopy is the domin-
ant method for characterising 2D materials and can
yield detailed information about chemical composi-
tion, crystal structure and layer thickness. There exist
several different types of Raman spectroscopies that
differ mainly by the number of photons and phon-
ons involved in the scattering process [114]. The first-
order Raman process, in which only a single phonon
is involved, is the dominant scattering process in
samples with low defect concentrations.

In a recent work, the first-order Raman spec-
tra of 733 monolayer materials from the C2DB were
calculated, and used as the basis for an automatic
procedure for identifying a 2D material entirely from
its experimental Raman spectrum [115]. The Raman
spectrum is calculated using third-order perturba-
tion theory to obtain the rate of scattering processes
involving creation/annihilation of one phonon and
two photons, see reference [115] for details. The
light field is written as F(t) = Finuin exp(−iωint)+
Foutuout exp(−iωoutt)+c.c. where Fin/out and ωin/out
denote the amplitudes and frequencies of the
input/output electromagnetic fields, respectively. In
addition, uin/out =

∑
i u

i
in/outei are the correspond-

ing polarisation vectors, where ei denotes the unit

Figure 20. Top: Distribution of exchange coupling
constants in C2DB. Bottom: Single-ion anisotropy A vs
anisotropic exchange λ for ferromagnetic materials with
S > 1/2. The shaded area indicates the part of parameter
space where the model (equation (12)) does not yield an
ordered state at finite temperatures.

vector along the i-direction with i ∈ {x,y,z}. Using
this light field, the final expression for the Stokes
Raman intensity involving scattering events by only
one phonon reads [115]:

I(ω) = I0
∑

ν

nν + 1

ων

∣∣∣∣
∑

ij

uiinR
ν
iju

j
out

∣∣∣∣
2

δ(ω−ων).

(13)

Here, I0 is an unimportant constant (since Raman
spectra are always reported normalised), and nν
is obtained from the Bose–Einstein distribution,
i.e. nν ≡ (exp[ℏων/kBT]− 1)−1 at temperature T
for a Raman mode with energy ℏων . Note that
only phonons at the Brillouin zone center (with
zero momentum) contribute to the one-phonon
Raman processes due tomomentum conservation. In
equation (13), Rν

ij is the Raman tensor for phonon
mode ν, which involves electron–phonon and dipole
matrix elements as well as the electronic trans-
ition energies and the incident excitation frequency.
Equation (13) has been used to compute the Raman
spectra of the 733 most stable, non-magnetic mono-
layers in C2DB for a range of excitation frequen-
cies and polarisation configurations. Note that the
Raman shift ℏω is typically expressed in cm−1 with
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Figure 21. Comparison of the calculated and experimental (extracted from [62]) Raman spectrum of MoS2 (left) and MoSSe
(right). The excitation wavelength is 532 nm, and both the polarisation of both the incoming and outgoing photons are along the
y-direction. The Raman peaks are labelled according to the irreducible representations of the corresponding vibrational modes.
Adapted from [115].

1 meV equivalent to 8.0655 cm−1. In addition, for
generating the Raman spectra, we have used a Gaus-
sian [G(ω) = (σ

√
2π)−1 exp(−ω2/2σ2)] with a vari-

ance σ= 3 cm−1 to replace the Dirac delta function,
which accounts for the inhomogeneous broadening
of phonon modes.

As an example, figure 21 shows the calcu-
lated Raman spectrum of monolayer MoS2 and the
Janus monolayer MoSSe (see section 4.1). Experi-
mental Raman spectra extracted from reference [62]
are shown for comparison. For both materials,
good agreement between theory and experiment is
observed for the peak positions and relative amp-
litudes of the main peaks. The small deviations can
presumably be attributed to substrate interactions
and defects in the experimental samples as well as
the neglect of excitonic effects in the calculations.
The qualitative differences between the Raman spec-
tra can be explained by the different point groups
of the materials (C3v and D3h, respectively), see ref-
erence [115]. In particular, the lower symmetry of
MoSSe results in a lower degeneracy of its vibrational
modes leading tomore peaks in the Raman spectrum.

Very recently, the Raman spectra computed
from third order perturbation theory as described
above, were supplemented by spectra obtained from
the more conventional Kramers–Heisenberg–Dirac
(KHD) approach. Within the KHD method, the
Raman tensor is obtained as the derivative of the static
electric polarisability (or equivalently, the susceptib-
ility) along the vibrational normal modes [116, 117]:

Rν
ij =

∑

αl

∂χ
(1)
ij

∂rαl

vναl√
Mα

. (14)

Here, χ(1)
ij is the (first-order) susceptibility tensor, rα

and Mα are the position and atomic mass of atom

α, respectively, and vναl is the eigenmode of phonon
ν. The two approaches, i.e. the KHD and third-order
perturbation approach, can be shown to be equi-
valent [114], at least when local field effects can be
ignored as is typically the case for 2D materials [35].
We have also confirmed this equivalence from our
calculations. Furthermore, the computational cost of
both methods is also similar [115]. However, the
KHD approach typically converge faster with respect
to both the number of bands and k-grid compared
to the third-order perturbation method. This stems
from the general fact that higher-order perturba-
tion calculations converge slower with respect to k-
grid and they require additional summations over a
complete basis set (virtual states) and hence a lar-
ger number of bands [118]. Currently, Raman spec-
tra from both approaches can be found at the C2DB
website.

5.10. Second harmonics generation
Nonlinear optical (NLO) phenomena such as har-
monic generation, Kerr, and Pockels effects are
of great technological importance for lasers, fre-
quency converters, modulators, etc. In addition,
NLO spectroscopy has been extensively employed
to obtain insight into materials properties [119]
that are not accessible by e.g. linear optical spec-
troscopy. Among numerous nonlinear processes,
second-harmonic generation (SHG) has been widely
used for generating new frequencies in lasers as well
as identifying crystal orientations and symmetries.

Recently, the SHG spectrum was calculated for
375 non-magnetic, non-centrosymmetric semicon-
ducting monolayers of the C2DB, and multiple 2D
materials with giant optical nonlinearities were iden-
tified [120]. In the SHGprocess, two incident photons
at frequency ω generate an emitted photon at fre-
quency of 2ω. Assume that a mono-harmonic electric
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Figure 22. (Left panel) SHG spectra of monolayer Ge2Se2, where only non-vanishing independent tensor elements are shown.
The vertical dashed lines mark ℏω= Eg /2 and ℏω= Eg , respectively. The crystal structure of Ge2Se2 structure is shown in the
inset. (Right panel) The rotational anisotropy of the static (ω= 0) SHG signal for parallel (blue) and perpendicular (red)
polarisation configurations with θ defined with respect to the crystal x-axis.

field writtenF(t) =
∑

iFieie−iωt+c.c. is incident on
the material, where ei denotes the unit vector along
direction i∈ {x, y, z}. The electric field induces a SHG
polarisation density P(2), which can be obtained from

the quadratic susceptibility tensor χ(2)
ijk ,

P(2)i (t) = ϵ0
∑

jk

χ
(2)
ijk (ω,ω)FiFje

−2iωt + c.c., (15)

where ε0 denotes the vacuum permittivity. χ(2)
ijk is a

symmetric (due to intrinsic permutation symmetry

i.e. χ(2)
ijk = χ

(2)
ijk ) rank-3 tensor with at most 18 inde-

pendent elements. Furthermore, similar to the piezo-
electric tensor, the point group symmetry reduces the
number of independent tensor elements.

In the C2DB, the quadratic susceptibility is calcu-
lated using density matrices and perturbation theory
[118, 121] with the involved transition dipole mat-
rix elements and band energies obtained from DFT.
The use of DFT single-particle orbitals implies that
excitonic effects are not accounted for. The number
of empty bands included in the sum over bands was
set to three times the number of occupied bands.
The width of the Fermi–Dirac occupation factor was
set to kBT= 50 meV, and a line-shape broadening
of η= 50 meV was used in all spectra. Furthermore,
time-reversal symmetry was imposed in order to
reduce the k-integrals to half the BZ. For various 2D
crystal classes, it was verified by explicit calculation
that the quadratic tensor elements fulfil the expec-
ted symmetries, e.g. that they all vanish identically for
centrosymmetric crystals.

As an example, the calculated SHG spectra for
monolayer Ge2Se2 is shown in figure 22 (left panel).

Monolayer Ge2Se2 has five independent tensor ele-

ments, χ(2)
xxx, χ

(2)
xyy , χ

(2)
xzz , χ

(2)
yyx = χ

(2)
yxy , and χ

(2)
zzx =

χ
(2)
zxz , since it is a group-IV dichalcogenide with an
orthorhombic crystal structure (space group 31 and
point group C2v). Note that, similar to the linear
susceptibility, the bulk quadratic susceptibility (with
SI units of mV−1) is ill-defined for 2D materi-
als (since the volume is ambiguous) [120]. Instead,
the unambiguous sheet quadratic susceptibility (with
SI units of m2 V−1) is evaluated. In addition to
the frequency-dependent SHG spectrum, the angu-
lar dependence of the static (ω= 0) SHG intens-
ity at normal incidence for parallel and perpendic-
ular polarisations (relative to the incident electric
field) is calculated, see figure 22 (right panel). Such
angular resolved SHG spectroscopy has been widely
used for determining the crystal orientation of 2D
materials. The calculated SHG spectra for all non-
vanishing inequivalent polarisation configurations
and their angular dependence, are available in the
C2DB.

Since C2DB has already gathered various mater-
ial properties of numerous 2D materials, it provides
a unique opportunity to investigate interrelations
between different material properties. For example,
the strong dependence of the quadratic optical
response on the electronic band gap was demon-
strated on basis of the C2DB data [120]. As another
example of a useful correlation, the static quadratic
susceptibility is plotted versus the static linear sus-
ceptibility for 67 TMDCs (with formula MX2, space
group 187) in figure 23. Note that for materials with
several independent tensor elements, only the largest
is shown. There is a very clear correlation between
the two quantities. This is not unexpected as both

21

90



2D Mater. 8 (2021) 044002 M N Gjerding et al

Figure 23. Scatter plot (double log scale) of the static sheet

quadratic susceptibility |χ(2)
ijk | versus the static sheet linear

susceptibility |χ(1)
ij | for 67 TMDCs (with chemical formula

MX2 and space group 187). A few well known materials are
highlighted.

the linear and quadratic optical responses are func-
tions of the transition dipole moments and transition
energies. More interestingly, the strength of the quad-
ratic response seems to a very good approximation to
be given by a universal constant times the linear sus-
ceptibility to the power of three (ignoring polarisation
indices), i.e.

χ(2)(0,0) ≈ Aχ(1)(0)3, (16)

where A is only weakly material dependent. Note that
this scaling law is also known in classical optics as
semi-empirical Miller’s rule for non-resonant quad-
ratic responses [122], which states that the second
order electric susceptibility is proportional to the
product of the first-order susceptibilities at the three
frequencies involved.

6. Machine learning properties

In recent years, material scientists have shown great
interest in exploiting the use of machine learning
(ML) techniques for predicting materials properties
and guiding the search for new materials. ML is the
scientific study of algorithms and statistical models
that computer systems can use to perform a specific
task without using explicit instructions but instead
relying on patterns and inference. Within the domain
of materials science, one of the most frequent prob-
lems is the mapping from atomic configuration to
material property, which can be used e.g. to screen
large material spaces in search of optimal candidates
for specific applications [123, 124].

In the ML literature, the mathematical represent-
ation of the input observations is often referred to as
a fingerprint. Any fingerprint must satisfy a number
of general requirements [125]. In particular, a finger-
print must be:

(a) Complete: The fingerprint should incorporate all
the relevant input for the underlying problem,
i.e. materials with different properties should
have different fingerprints.

(b) Compact: The fingerprint should contain no or
a minimal number of features redundant to the
underlying problem. This includes being invari-
ant to rotations, translations and other trans-
formations that leave the properties of the system
invariant.

(c) Descriptive: Materials with similar target values
should have similar fingerprints.

(d) Simple: The fingerprint should be efficient to
evaluate. In the present context, this means that
calculating the fingerprint should be signific-
antly faster than calculating the target property.

Several types of atomic-level materials finger-
prints have been proposed in the literature, includ-
ing general purpose fingerprints based on atom-
istic properties [126, 127] possibly encoding inform-
ation about the atomic structure, i.e. atomic pos-
itions [125, 128, 129], and specialised fingerprints
tailored for specific applications (materials/proper-
ties) [130, 131].

The aim of this section is to demonstrate how
the C2DB may be utilised for ML-based prediction
of general materials properties. Moreover, the study
serves to illustrate the important role of the finger-
print for such problems. The 2Dmaterials are repres-
ented using three different fingerprints: two popular
structural fingerprints and a more advanced finger-
print that encodes information about the electronic
structure via the PDOS. The target properties include
the HSE06 band gap, the PBE heat of formation
(∆H), the exciton binding energy (EB) obtained from
the many-body BSE, the in-plane static polarisability
calculated in the RPA averaged over the x and y polar-
isation directions (⟨αi⟩), and the in-plane Voigt mod-
ulus (⟨Cii⟩) defined as 14 (C11+C22+ 2C12), whereCij

is a component of the elastic stiffness tensor in Man-
del notation.

To introduce the data, figure 24 shows pair-plots
of the dual-property relations of these properties. The
plots in the diagonal show the single-property histo-
grams, whereas the off-diagonals show dual-property
scatter plots below the diagonal and histograms above
the diagonal. Clearly, there are only weak correla-
tions between most of the properties, with the largest
degree of correlation observed between the HSE06
gap and exciton binding energy. The lack of strong
correlations motivates the use of ML for predicting
the properties.

The prediction models are build using the Ewald
sum matrix and many-body tensor representation
(MBTR) as structural fingerprints. The Ewald finger-
print is a version of the simple Coulomb matrix fin-
gerprint [128] modified to periodic systems [125].
The MBTR encodes first, second and third order

22

91



2D Mater. 8 (2021) 044002 M N Gjerding et al

Figure 24. Pair-plot of selected properties from C2DB. The diagonal contains the single property histograms. Below the diagonal
are two-property scatter plots showing the correlation between properties and above the diagonal are two-property histograms.
properties include the HSE06 band gap, the PBE heat of formation (∆H), the exciton binding energy (EB) calculated from the
BSE, the in-plane static polarisability calculated in the RPA and averaged over the x and y polarisation directions (⟨αi⟩), and the
in-plane Voigt modulus (⟨Cii⟩) defined as 14 (C11+C22+ 2C12), where Cij is a component of the elastic stiffness tensor.

terms like atomic numbers, distances and angles
between atoms in the system [129]. As an alternative
to the structural fingerprints, a representation based
on the PBE PDOS is also tested. This fingerprint6

encodes the coupling between the PDOS at different
atomic orbitals in both energy and real space. It is
defined as:

ρνν ′(E,R) =
∑

a∈cell

∑

a ′

ρaν(E)ρa ′ν ′(E)G

× (R− |Ra −Ra ′ |) , (17)

where G is a Gaussian smearing function, a denotes
the atoms, ν denotes atomic orbitals, and the PDOS
is given by:

ρaν(E) =
∑

n

|⟨ψn|aν⟩|2G(E− ϵn) , (18)

6 Details will be published elsewhere.

where n runs over all eigenstates of the system. Since
this fingerprint requires a DFT-PBE calculation to
be performed, additional features derivable from the
DFT calculation can be added to the fingerprint. In
this study, the PDOS fingerprint is amended by the
PBE band gap. The latter can in principle be extrac-
ted from the PDOS, but its explicit inclusion has been
found to improve the performance of the model.

A Gaussian process regression using a simple
Gaussian kernel with a noise component is used as
learning algorithm. The models are trained using 5-
fold cross validation on a training set consisting of
80% of the materials with the remaining 20% held
aside as test data. Prior to training the model, the
input space is reduced to 50 features using principal
component analysis (PCA). This step is necessary to
reduce the huge number of features in the MBTR
fingerprint to a manageable size. Although this is
not required for the Ewald and PDOS fingerprints,
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Figure 25. Prediction scores (MAE normalised to standard deviation of property values) for the test sets of selected properties
using a Gaussian process regression.

Figure 26.ML predicted HSE06 gap values vs. true values for Ewald, MBTR and PDOS fingerprints with MAE’s for train and test
set included. The PDOS is found to perform significantly better for the prediction of HSE06 gap.

we perform the same feature reduction in all cases.
The optimal number of features depends on the
choice of fingerprint, target property and learning
algorithm, but for consistency 50 PCA components
are used for all fingerprints and properties in this
study.

Figure 25 shows the prediction scores obtained
for the five properties using the three different fin-
gerprints. The employed prediction score is the mean
absolute error of the test set normalised by the
standard deviation of the property values (stand-
ard deviations are annotated in the diagonal plots
in figure 24). In general, the PDOS fingerprint out-
performs the structural fingerprints. The difference
between prediction scores is smallest for the static
polarisability ⟨αi⟩ and largest for the HSE06 gap. It
should be stressed that although the evaluation of
the PBE-PDOS fingerprint is significantly more time
consuming than the evaluation of the structural fin-
gerprints, it is still much faster than the evaluation of
all the target properties. Moreover, structural finger-
prints require the atomic structure, which in turns

requires a DFT structure optimisation (unless the
structure is available by other means).

The HSE06 band gap shows the largest sensitiv-
ity to the employed fingerprint. To elaborate on the
HSE06 results, figure 26 shows the band gap predicted
using each of the three different fingerprints plotted
against the true band gap. The mean absolute errors
on the test set is 0.95 and 0.74 eV for Ewald and
MBTR fingerprints, respectively, while the PDOS sig-
nificantly outperforms the other fingerprints with a
test MAE of only 0.21 eV. This improvement in pre-
diction accuracy is partly due to the presence of the
PBE gap in the PDOS fingerprint. However, our ana-
lysis shows that the pure PDOS fingerprint without
the PBE gap still outperforms the structural finger-
prints. Using only the PBE gap as feature results in a
test MAE of 0.28 eV.

The current results show that the precision ofML-
based predictions are highly dependent on the type
of target property and the chosen material repres-
entation. For some properties, the mapping between
atomic structure and property is easier to learn while
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others might require more/deeper information, e.g.
in terms of electronic structure fingerprints. Our res-
ults clearly demonstrate the potential of encoding
electronic structure information into thematerial fin-
gerprint, and we anticipate more work on this relev-
ant and exciting topic in the future.

7. Summary and outlook

We have documented a number of extensions and
improvements of the C2DBmade in the period 2018–
2020. The new developments include: (1) A refined
and more stringent workflow for filtering prospect-
ive 2D materials and classifying them according to
their crystal structure, magnetic state and stability.
(2) Improvements of the methodology used to com-
pute certain challenging properties such as the full
stiffness tensor, effective masses, G0W0 band struc-
tures, and optical absorption spectra. (3) Newmater-
ials including 216 MXY Janus monolayers and 574
monolayers exfoliated from experimentally known
bulk crystals. In addition, ongoing efforts to system-
atically obtain and characterise bilayers in all possible
stacking configurations as well as point defects in the
semiconducting monolayers, have been described.
(4) New properties including exfoliation energies,
spontaneous polarisations, Bader charges, piezoelec-
tric tensors, IR polarisabilities, topological invariants,
magnetic exchange couplings, Raman spectra, and
SHG spectra. It should be stressed that the C2DB will
continue to grow as new structures and properties are
being added, and thus the present paper should not be
seen as a final report on the C2DB but rather a snap-
shot of its current state.

In addition to the above mentioned improve-
ments relating to data quantity and quality, the C2DB
has been endowed with a comprehensive document-
ation layer. In particular, all data presented on the
C2DB website are now accompanied by an inform-
ation field that explains the meaning and representa-
tion (if applicable) of the data and details how it was
calculated thus making the data easier to understand,
reproduce, and deploy.

The C2DB has been produced using the ASR
in combination with the GPAW electronic structure
code and theMyQueue task and workflow scheduling
system. The ASR is a newly developed Python-based
framework designed for high-throughput materi-
als computations. The highly flexible and modular
nature of the ASR and its strong coupling to the well
established community-driven ASE project, makes
it a versatile framework for both high- and low-
throughput materials simulation projects. The ASR
and the C2DB-ASR workflow are distributed as open
source code. A detailed documentation of the ASR
will be published elsewhere.

While the C2DB itself is solely concerned with
the properties of perfect monolayer crystals, ongo-
ing efforts focus on the systematic characterisation

of homo-bilayer structures as well as point defects in
monolayers. The data resulting from these and other
similar projects will be published as separate, inde-
pendent databases, but will be directly interlinked
with the C2DB making it possible to switch between
them in a completely seamless fashion. These devel-
opments will significantly broaden the scope and
usability of the C2DB+ (+ stands for associated data-
bases) that will help theoreticians and experimental-
ists to navigate one of the most vibrant and rapidly
expanding research fields at the crossroads of con-
densed matter physics, photonics, nanotechnology,
and chemistry.
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Abstract. The dynamical stability of a crystal structure at zero temperature is
usually established by asserting that all phonon frequencies are real throughout
the Brillouin zone (BZ). Here we present empirical evidence that it is often
sufficient to check the phonon frequencies at the center and boundary of the
BZ. For reasonably simple crystals, this is a much more manageable test that
is amenable to high-throughput implementation. Using two-dimensional (2D)
crystals as a test ground, we find that the simple test correctly predicts the
dynamical stability of 2D materials with above 90% success rate. For 137
dynamically unstable 2D materials, we displace the atoms along an unstable
mode, relax the structure, and repeat the test for dynamical stability. This
procedure yields a dynamically stable crystal in 47% or 13% of the cases,
depending on whether the Hessian is isotropic or not. The properties of the
distorted, dynamically stable materials are unraveled using the workflow behind
the Computational 2D Materials Database (C2DB), and it is found that they
can differ significantly from those of the original high-symmetry crystals, e.g.
band gaps are opened by 0.3 eV on average. All the crystal structures and their
calculated properties are available in the C2DB.
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1. Introduction

Computational materials discovery aims at identifying
novel types of materials for specific applications often
employing first principles methods such as density
functional theory (DFT) [1]. The potential of a
given material for the targeted application is usually
evaluated based on elementary properties calculated
for the perfect crystal, e.g. the electronic band gap,
the optical absorption spectrum, or the magnetic order.
Such properties can be highly sensitive to even small
distortions of the lattice or the atomic positions, if they
reduce the symmetry of the crystal, and it is therefore
important to develop efficient methods for identifying
and accounting for such distortions.

Lattice distortions can be classified according to
their periodicity relative to the primitive cell of the
crystal. Local instabilities conserve the periodicity of
the crystal, i.e. they do not enlarge the number of
atoms in the primitive cell. Other distortions, known
as charge density wave (CDW) [2], can extend over
many repetitions of the primitive cell, i.e. they lead to
an enlargement of the period of the crystal. A general
microscopic description of the CDW is still missing
due to the many possible driving mechanisms behind
the CDW state, e.g. electron-phonon interaction [3],
doping [4], or phonon-phonon interactions [5]. As a
testimony to the complexity of the problem, different
models and concepts are used to describe the CDW
phase depending on the dimensionality of the material
[6, 7, 8, 9].

The last few years have witnessed an increased
interest in CDW states of two-dimensional (2D)
materials. For example, CDW physics is believed to
govern the transition from the trigonal prismatic T-
phase to the lower symmetry T’-phase in monolayer
MoS2 [10] as well as the plethora of temperature
dependent phases in monolayers of NbSe2 [11, 12],
TaS2 [13, 14], TaSe2 [15, 16], and TiSe2 [17, 18]. In
addition, a number of recent studies have investigated
the possibility to control CDW phase transitions.
For instance, the T-phase of monolayer MoS2 can
be stabilized by argon bombardment [19], exposure
to electron beams [10], or Li-ion intercalation [20].
Similar results have been reported for MoTe2 [21].

Regardless of the fundamental microscopic origin
of lattice distortions it remains of great practical
importance to devise efficient schemes that makes it
possible to verify whether or not a given structure is
dynamically stable, i.e. whether it represents a local
minimum of the potential energy surface. Structures
that are not dynamically stable are frequently
generated in computational studies, e.g. when a
structure is relaxed under symmetry constraints or
the chosen unit cell is too small. Tests for dynamical
stability are rarely performed in large-scale discovery

studies, because there is no established way of doing it
apart from calculating the phonon band structure[22],
which is a time-consuming task. At the same time,
the importance of incorporating such tests is in fact
unclear; that is, it is not known how much symmetry-
breaking distortions generally influence the properties
of a material close to the convex hull.

A straightforward strategy to generate potentially
stable structures from dynamically unstable ones, is
to displace the atoms along an unstable phonon mode
using a supercell that can accommodate the distortion.
This approach has previously been adopted to explore
structural distortions in bulk perovskites [23, 24] and
one-dimensional organometallic chains [25]. However,
systematic studies of structural instabilities in 2D
materials, have so far been lacking.

In this work, we perform a systematic study
of structural distortions in thermodynamically stable
two-dimensional (2D) materials from the Computa-
tional 2D Materials Database (C2DB) [26, 27]. We
focus on small-period distortions that can be accom-
modated in a 2 × 2 supercell, and refer to the test for
the occurrence of such distortions as the Center and
Boundary Phonon (CBP) protocol. The motivation
behind the present work is threefold: (i) To assess the
reliability of the CBP protocol for 2D materials. (ii)
To elucidate the effect of symmetry-breaking distor-
tions on the basic electronic properties. (iii) To obtain
the dynamically stable phases of a set of dynamically
unstable 2D materials that were originally generated
by combinatorial lattice decoration, and make them
available to the community via the C2DB.

The paper is structured as follows. In Section
2 we describe the CBP protocol. In Section 3
we first benchmark the CBP protocol against full
phonon band structure calculations and evaluate its
statistical success rate. For 137 dynamically unstable
2D materials, we further analyse how the small-period
distortions that stabilise the materials influence their
electronic properties. Section 4 concludes the paper.

2. Methodology

In this Section we briefly discuss the CBP protocol
for testing the dynamical stability of a crystal and
for generating distorted and potentially stable crystal
structures. We also describe the methodology and
computational details of the phonon calculations.

2.1. The CBP protocol: Stability test

Given a material that has been relaxed in some unit
cell (from hereon referred to as the primitive unit cell),
the CBP protocol proceeds by evaluating the stiffness
tensor of the material and the Hessian matrix of a
supercell obtained by repeating the primitive cell 2×2
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Figure 1. Phonon band structure for monolayer MoS2 in the H-phase (left), NbSSe (middle), and MoS2 in the T-phase (right).
Note that imaginary phonon frequencies are represented by negative values. The CBP protocol (orange dots) is sufficient to conclude
that a material is dynamically stable (unstable) in the situations depicted in the left (right) panels. In contrast, when the relevant
distortion requires a supercell larger than a 2 × 2, and the phonon frequencies are real at the center and boundary of the BZ, the
CBP protocol will result in a false positive result.

times. In the current work, the stiffness tensor is
calculated as a finite difference of the stress under an
applied strain, while the Hessian matrix is calculated
as a finite difference of the forces on all the atoms of
the 2× 2 supercell under displacement of the atoms in
one primitive unit cell (this is equivalent to calculating
the phonons at the center and specific high symmetry
points at boundary of the BZ of the primitive cell, see
Fig. (3). Next, the stiffness tensor and the Hessian
matrix are diagonalised, and the eigenvalues are used
to infer a structural stability. A negative eigenvalue of
the stiffness tensor indicates an instability of the lattice
(the shape of the unit cell) while a negative eigenvalue
of the 2×2 Hessian signals an instability of the atomic
structure. The obvious question here, is whether it
suffices to consider the Hessian of the 2 × 2 supercell,
or equivalently consider the phonons at the BZ center
and boundaries.

All phonon calculations were performed using
the asr.phonopy recipe of the Atomic Simulation
Recipes (ASR) [28], which makes use of the Atomic
Simulation Environment (ASE)[29] and PHONOPY
[30]. The DFT calculations were performed with
the GPAW[31] code and the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [32]. The BZ
was sampled on a uniform k-point mesh of density of
6.0 Å2 and the plane wave cutoff was set to 800 eV. To
evaluate the Hessian matrix, the small displacement
method was used with a displacement size of 0.01
Å and forces were converged up to 10-4 eV/Å. To
benchmark the CBP protocol, we compare to full
phonon band structures. In these calculations, the size
of the supercell is chosen such that the Hessian matrix
includes interactions between pairs of atoms within a
radius of at least 12 Å. (This implies that the supercell

must contain a sphere of radius 12 Å).
We can distinguish three possible outcomes when

comparing the CBP protocol against full phonon
calculations (see Figure (1) ), namely a true positive
result, a true negative result, and a false positive result.
We note that the case of a false negative is not possible,
because a material that is unstable in a 2× 2 cell is de
facto unstable. The false positive case occurs when a
material is stable in a 2 × 2 supercell, but unstable if
allowed to distort in a larger cell. Our results show
that such large-period distortions that do not show as
distortions in a 2×2 cell, are relatively rare (see Section
3.1).

2.2. The CBP protocol: Structure generation

Here we outline a simple procedure to generate
distorted and potentially stable structures from an
initial dynamically unstable structure. The basic idea
is to displace the atoms along an unstable phonon mode
followed by a relaxation. In practice, the unstable
mode is obtained as the eigen function corresponding
to a negative eigenvalue of the Hessian matrix of the
2× 2 supercell. The procedure is illustrated in Figure
(2) for the well known T-T’ phase transition of MoS2

[10]. The left panel shows the atomic structure and
phonon band structure of monolayer MoS2 in the T-
phase. Both the primitive unit cell (black) and the 2×2
supercell (orange) are indicated. The CBP method
identifies an unstable mode at the BZ boundary (M
point). After displacing the atoms along the unstable
mode, a distorted structure is obtained, which after
relaxation leads to the dynamically stable T’-phase of
MoS2 shown in the right panel.

In this work, we have applied the method system-
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Figure 2. The CBP protocol captures the instability of the T-phase (left) of MoS2. Both the primitive unit cell (black) and the
2 × 2 supercell (orange) are shown. Displacing the atoms along the unstable TA mode at the M-point (q = ( 1

2
, 0)), which can be

accommodated in the 2× 1 supercell, and subsequently relaxing the structure results in the dynamically stable T’-phase (right).

atically to 137 dynamically unstable 2D materials. The
137 monolayers were selected from the C2DB according
to the following two criteria: First, to ensure that all
materials are chemically ”reasonable”, only materials
with a low formation energy were selected. Specifi-
cally, we require that ∆Hhull < 0.2 eV/atom, where
∆Hhull is the energy above the convex hull defined by
the most stable (possibly mixed) bulk phases of the rel-
evant composition[33, 27]. Secondly, we consider only
materials with exactly one unstable mode, i.e. one
negative eigenvalue of the Hessian matrix at a given
q-point.

The 137 dynamically unstable materials were
displaced along the only unstable mode. The
size of the displacement was chosen such that the
maximum atomic displacement was exactly 0.1 Å.
This displacement size was chosen based on the MoS2

example discussed above, where it results in a minimal
number of subsequent relaxation steps. A smaller
value does not guarantee that the system leaves the
saddle point, while a larger value creates a too large
distortion resulting in additional relaxation steps.
During relaxation the unit cell was allowed to change
with no symmetry constraints and the relaxation was

stopped when the forces on all atoms were below 0.01
eV / Å.

3. Results

3.1. Assessment of the CBP protocol

To test the validity the CBP protocol, we have
performed full phonon calculations for a set of 20
monolayers predicted as dynamically stable by the
CBP protocol. The 20 materials were obtained from
the C2DB and cover 7 different crystal structures.
Out of the 20 materials 10 are metals and 10 are
insulators/semiconductors. The calculated phonon
band structures are reported in the supplementary
material. For all materials, the phonon frequencies
obtained with the CBP protocol equal the frequencies
of the full phonon band structure at the q-points q ∈
{(0, 0), ( 1

2 , 0), (0, 12 ), ( 1
2 ,

1
2 )}. This is expected as the

phonons at these q-points can be accommodated by
the 2× 2 supercell.

Within the set of 20 materials, we find three
False-positive cases, namely CoTe2, NbSSe, and TaTe2.
This small percentage in our representative samples
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Figure 3. The 137 dynamically unstable 2D materials studied in this work can be divided into two groups depending on whether
the negative eigenvalues of the Hessian matrix at q = {( 1

2
, 0), (0, 1

2
), ( 1

2
, 1
2

)} are equal (left panel) or different (right panel). For the

first group of materials, displacing the atoms along the mode at q = ( 1
2
, 0) and relaxing in a 2 × 1 supercell, yields a dynamically

stable structure in 91/43 cases. For the second group, displacing the atoms along q = ( 1
2
, 1
2

) and relaxing in a 2× 2 supercell, yields
a dynamically stable structure in 6/46 cases.

is in agreement with previous studies [22]. In that
case out of 250 monolayers, there are 14 False-positive
cases and half of them are well known materials in
the H or T phase with metals like Co, Nb and Ta.
In general, these materials exhibit unstable modes
(imaginary frequencies or equivalently negative force
constant eigenvalues) in the interior of the BZ (NbSSe
and TaTe2) or at the K-point (CoTe2), while all
phonon frequencies at the q-points covered by the CBP
protocol, are real.

We note that the small imaginary frequencies in
the out of plane modes around the Γ-point seen in some
of the phonon band structures are not distortions, but
are rather due to the interpolation of the dynamical
matrix. In particularly, these artifacts occur because
of the broken crystal point-group symmetry in the
force constant matrix and they will vanish if a larger
supercell is used or the rotational sum rule is imposed
[34].

3.2. Stable distorted monolayers

The 137 dynamically unstable materials, which were
selected from the C2DB according to the criteria
described in Section 2.2, can be divided into two groups
depending on whether the eigenvalues of the Hessian
at the wave vectors qx = ( 1

2 , 0), qy = (0, 12 ) and qxy =
( 1
2 ,

1
2 ), are equal or not. Equality of the eigenvalues

implies an isotropic Hessian. For such materials, we
generate distorted structures by displacing the atoms
along the unstable mode at qx = ( 1

2 , 0), followed by
relaxation in a 2 × 1 supercell. In the case of an
anisotropic Hessian, the atoms were displaced along
qxy = ( 1

2 ,
1
2 ) and relaxed in a 2× 2 supercell.

After atomic displacement and subsequent relax-
ation, the CBP protocol was applied again to test for
dynamical stability of the distorted structures. His-
tograms of the minimum eigenvalue of the Hessian ma-
trix are shown in Figure (3) with the materials before
and after atomic displacement shown in the upper and
lower panels, respectively. Negative eigenvalues, corre-
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Material Space group - Wyckoff ∆Hhull [eV/atom] min(ω̃2) [eV/Å2] εPBE
gap [eV]

before after before after before after before after

AgBr2 187-bi 1-a 0.05 0.00 -1.01 0.00 0.00 0.00
AgCl2 164-bd 1-a 0.05 0.00 -2.60 0.06 0.00 0.00
AsClTe 156-ac 1-a 0.19 0.02 -0.51 0.25 1.29 1.48
CdBr 2-i 1-a 0.18 0.07 -1.00 0.03 0.00 1.28
CdCl 156-ab 1-a 0.17 0.04 -0.74 0.17 0.00 1.67
CoSe 164-bd 2-i 0.05 0.03 -4.82 0.09 0.00 0.00
CrBrCl 156-abc 1-a 0.11 0.06 -0.98 0.15 0.00 0.64
CrBr2 164-bd 1-a 0.10 0.06 -0.59 0.07 0.00 0.49
CrCl2 164-bd 1-a 0.11 0.05 -1.87 0.15 0.00 0.76
CrSSe 156-abc 1-a 0.15 0.09 -9.75 0.71 0.00 0.00
CrS2 156-abc 2-i 0.18 0.05 -15.62 0.74 0.00 0.00
CrSe2 156-abc 2-i 0.14 0.05 -12.17 0.77 0.00 0.00
CrTe2 156-abc 2-i 0.02 0.01 -1.71 0.08 0.00 0.00
CrPS3 3-1-a 1-a 0.09 0.03 -3.13 0.00 0.00 0.34
FePSe3 3-1-a 1-a 0.13 0.12 -0.42 0.04 0.13 0.13
FeSe2 187-bi 1-a 0.15 0.00 -2.04 0.00 0.00 0.00
HfBrCl 156-abc 1-a 0.14 0.03 -9.61 0.40 0.00 0.82
HfBrI 156-abc 1-a 0.22 0.05 -10.41 0.39 0.00 0.73
HfBr2 164-bd 2-i 0.14 0.04 -10.21 0.41 0.00 0.8
HfCl2 164-bd 2-i 0.14 0.04 -8.51 0.38 0.00 0.85
HgSe 156-ab 1-a 0.11 0.04 -0.83 0.04 0.08 0.37
HgTe 156-ab 1-a 0.11 0.04 -0.61 0.04 0.08 0.37
InTe 156-ab 1-a 0.18 0.10 -0.41 0.23 0.00 0.00
InBrSe 59-ab 2-i 0.03 0.02 -0.50 0.04 1.23 1.23
InSe 187-hi 6-ab 0.00 0.00 -0.28 0.01 1.39 1.39
MoSeTe 156-abc 1-a 0.20 0.08 -10.67 0.69 0.00 0.00
MoTe2 164-bd 2-i 0.17 0.01 -13.23 0.67 0.00 0.00
NbS2 187-bi 6-ab 0.00 0.00 -1.08 0.06 0.00 0.00
NbTe2 187-bi 1-a 0.00 0.00 -0.37 0.51 0.00 0.00
PdI2 164-bd 1-a 0.17 0.03 -0.56 0.12 0.00 0.59
RhI2 164-bd 1-a 0.17 0.17 -0.64 0.04 0.00 0.00
RhO2 164-bd 2-i 0.16 0.15 -2.19 0.65 0.00 0.00
RhTe2 164-bd 1-a 0.11 0.07 -1.67 0.36 0.00 0.13
ScI3 162-dk 1-a 0.00 0.00 -0.25 0.02 1.85 1.85
TiBrCl 156-abc 1-a 0.05 0.00 -9.15 0.52 0.00 0.29
TiBr2 164-bd 1-a 0.06 0.04 -0.54 0.30 0.00 0.12
TiCl2 164-bd 2-i 0.11 0.00 -9.99 0.53 0.00 0.32
TiO2 164-bd 6-ab 0.14 0.12 -1.96 0.47 2.70 2.85
TiS2 187-bi 4-a 0.14 0.14 -0.49 0.00 0.73 0.79
TiPSe3 1-a 4-a 0.16 0.00 -1.24 0.00 0.00 0.00
VTe2 164-bd 6-ab 0.02 0.00 -1.05 0.38 0.00 0.00
ZrBrCl 156-abc 1-a 0.12 0.02 -8.05 0.40 0.00 0.59
ZrBrI 156-abc 1-a 0.15 0.02 -8.89 0.38 0.00 0.48
ZrBr2 164-bd 2-i 0.11 0.00 -8.65 0.47 0.00 0.59
ZrClI 156-abc 1-a 0.19 0.07 -8.69 0.26 0.00 0.48
ZrCl2 164-bd 1-a 0.11 0.03 -7.13 0.46 0.00 0.60
ZrI2 164-bd 2-i 0.14 0.00 -8.59 0.48 0.00 0.43
ZrS2 187-bi 2-i 0.19 0.18 -0.80 0.15 0.96 1.13

Table 1. Some of the calculated properties of the subset of the 137 materials that became dynamically stable after displacing the
atoms along an unstable phonon mode. The properties are shown before and after the distortion, i.e. for the original dynamically
unstable structures and the final dynamically stable structures, respectively.

sponding to unstable materials, are shown in red while
positive eigenvalues are shown in green. Out of the
137 unstable materials, 49 become dynamically stable
(according to the CBP protocol). By far the highest
success rate for generating stable crystals was found
for the isotropic materials (left panel), where 43 out of
91 materials became stable while only 6 out of the 43
anisotropic materials became stable.

A wide range of elementary properties of the 49
distorted, dynamically stable materials were computed

using the C2DB workflow (see Table (1) in [27] for a
complete list of the properties). The atomic structures
together with the calculated properties are available
in the C2DB. Table (1) provides an overview of
the symmetries, minimal Hessian eigenvalues, total
energies, and electronic band gap of the 49 materials
before and after the distortion.

Apart from the reduction in symmetry, the
distortion also lowers the total energy of the materials.
An important descriptor for the thermodynamic
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Figure 4. The energy above the convex hull for the 49
monolayers before and after distortion. Materials with a

∆H
(after)
hull close to zero are expected to be thermodynamically

stable. The range up to 0.05 eV/atom above the convex
hull has been indicated by a shaded blue region to visualise
the importance of structural distortions for assessing the
thermodynamic stability.

stability of a material is the energy above the convex
hull, ∆Hhull. Figure (4) shows a plot of ∆Hhull before
and after the distortion of the 49 materials. The
reduction in energy upon distortion ranges from 0 to
0.2 eV/atom. In fact, several of the materials come
very close to the convex hull and some even fall onto the
hull, indicating their global thermodynamic stability
(at T = 0 K) with respect to the reference bulk phases.
We note that all DFT energies, including the reference
bulk phases, were calculated using the PBE xc-
functional, which does not account for van der Waals
interactions. Accounting for the vdW interactions will
downshift the energies of layered bulk phases and thus
increase ∆Hhull for the monolayers slightly. This effect
will, however, not influence the relative stability of the
pristine and distorted monolayers, which is the main
focus of the current work.

Another characteristic trend observed is the
opening/increase of the electronic band gap. The
increase of the single-particle band gap is expected to
be related to the total energy gained by making the
distortion. Figure (5) shows the relation between the
two quantities. Simplified models, for low dimensional
systems and weak electron-phonon coupling, predict
a proportionality between these two quantities [35].
From our results it is clear that there is no universal
relationship between the change in band gap and total
energy. In particular, several of the metals show large
gain in total energy while the gap remains zero.

It is interesting that within a threshold of 0.1 eV
21 of the distorted and dynamically stable materials
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Figure 5. The average energy gain for the new stable materials
is -0.067 eV / atom and the average gap opening is 0.29 eV.

exhibit direct band gaps. Atomically thin direct band
gap semiconductors are highly relevant as building
blocks for opto-electronic or photonic devices, but
only a hand full of such materials are known to date
e.g. monolayers of transition metal dichalcogenides
[36, 37] and black phosphorous [38]. As an example
of a monolayer material that drastically changes from
a metal to a direct band gap semiconductor upon
distortion, we show the band structure of CdBr in
Figure (6). The initial unstable metallic phase of the
material becomes a dynamically stable upon distortion
and opens a direct band gap of 1.28 eV at the C point.

4. Conclusions

In conclusion, we have performed a systematic study
of structural instabilities in 2D materials. We have
validated a simple protocol (here referred to as the
CBP protocol) for identifying dynamical instabilities
based on the frequency of phonons at the center and
boundary of the BZ. The CBP protocol correctly
classifies 2D materials as dynamically stable/unstable
in 236 out of 250 cases[22] and is ideally suited for high-
throughput studies where calculation of the full phonon
band structure is not feasible. For 137 dynamically
unstable monolayers with low formation energies from
the C2DB database, we displaced the atoms along
an unstable phonon mode and relaxed the structure
in a 2 × 1 or 2 × 2 supercell. This resulted in 49
distorted, dynamically stable monolayers. The success
rate of obtaining a dynamically stable structure from
this protocol was found to be significantly higher
for systems with only one (inequivalent) unstable
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Figure 6. Extreme case of gap opening for the new stable material (CdBr) where the difference in the gap between the initial
unstable metallic phase and the final structure is 1.28 eV.

phonon mode as compared to cases with several
inequivalent modes where different displacements can
lead to different, dynamically unstable structures.
The 49 stable structures were fully characterised
by an extensive computational property workflow
and the results were made available via the C2DB
database. The properties of the distorted structures
can deviate significantly from the original high
symmetry structures, and we found only a weak,
qualitative relation between the gain in total energy
and band gap opening upon distortion.

The current work has disclosed the zero temper-
ature structure of 49 different 2D materials and ex-
amined the validity of the CBP protocol that should
be useful for high-throughput assessment of dynami-
cal stability. The work could form a useful starting
point for future studies on structural instabilities in
2D materials focusing e.g. on the underlying driving
mechanism or the effect of finite temperatures.
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Abstract. Atomically thin two-dimensional (2D) materials are ideal hosts of
quantum defects as they offer easier creation, manipulation, and read-out of defect
states compared to bulk systems. Here we introduce the Quantum Point Defect
(QPOD) database of 1500 intrinsic point defects (vacancies and antisites) in 70
2D insulators. The Atomic Simulation Recipes (ASR) workflow framework was
used to perform density functional theory (DFT) calculations of defect formation
energies, charge transition levels, Fermi level positions, equilibrium defect and
carrier concentrations, transition dipole moments, hyperfine coupling, and zero-
field splitting. Excited state calculations of photo luminescence spectra were
performed for selected high-spin defects. In this paper we describe the calculations
and workflow behind the database, present an overview of its content, and discuss
some general trends and correlations in the data. We analyse the degree of
defect tolerance of the host materials and identify promising defects for quantum
technology applications. The database is freely available and can be browsed via
a web-app interlinked with the Computational 2D Materials Database (C2DB).

Keywords: point defects, 2D materials, high-throughput
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1. Introduction

Point defects are ubiquitous entities affecting the
properties of any crystalline material. Under
equilibrium conditions their concentration is given
by the Boltzmann distribution, but strong deviations
can occur in synthesised samples due to non-
equilibrium growth conditions and significant energy
barriers involved in the formation, transformation,
or annihilation of defects. In many applications of
semiconductor materials, in particular those relying
on efficient carrier transport, the presence of defects
has a detrimental impact on performance[1]. However,
point defects in crystals can also be useful and form
the basis for novel applications e.g. in spintronics
[2], quantum computing[3], or quantum photonics[4,
5, 4, 5, 6, 7]. For such applications, defects may be
introduced in a controlled manner e.g. by electron/ion
beam irradiation, implantation, plasma treatment or
high-temperature annealing in the presence of different
gasses.

Over the past decade, atomically thin two-
dimensional (2D) crystals have emerged as a promising
class of materials with many attractive features
including unique, easily tunable, and often superior
physical properties.[8] This holds in particular for
their defect-based properties and related applications.
Compared to point defects buried deep inside a
bulk structure, defects in 2D materials are inherently
surface-near making them easier to create, manipulate,
and characterise[9]. Recently, single photon emission
(SPE) has been observed from point defects in 2D
materials such as hexagonal boron-nitride (hBN)[10,
11, 12], MoS2[13], and WSe2[14, 15], and in a few cases
optically detected magnetic resonance (ODMR) has
been demonstrated[16, 17]. In the realm of catalysis,
defects can act as active sites on otherwise chemically
inert 2D materials [18, 19].

First-principles calculations based on density
functional theory (DFT) can provide detailed insight
into the physics and chemistry of point defects
and how they influence materials properties at
the atomic and electronic scales.[20, 21, 22, 23]
In particular, such calculations have become an
indispensable tool for interpreting experiments on
defects, e.g. (magneto)optical experiments, which in
themselves only provide indirect information about
the microscopic nature of the involved defect(s).[24,
12] In combination with recently developed tools

for high-throughput workflow management[25, 26,
27, 28], first-principles calculations have potential to
play a more proactive role in the search for new
defect systems with promising properties. Here, a
major challenge is the notorious complexity of defect
calculations (even when performed in low-throughput
mode) that involves large supercells, local magnetic
moments, electrostatic corrections, etc. Performing
such calculations for general defects in general host
materials, requires a carefully designed workflow with
optimised computational settings and a substantial
amount of benchmarking.

In this work, we present a systematic study of 500
intrinsic point defects (vacancies and antisite defects)
of 82 insulating 2D host materials. The host mate-
rials were selected from the Computational 2D Ma-
terials Database (C2DB)[29, 30] after applying a se-
ries of filtering criteria. Our computational workflow
incorporates the calculation and analysis of thermo-
dynamic properties such as defect formation energies,
charge transition levels, equilibrium carrier concentra-
tions and Fermi level position, as well as symmetry
analysis of the defect atomic structures and wave func-
tions, magnetic properties such as hyperfine coupling
parameters and zero-field splittings, and optical transi-
tion dipoles. Defects with a high-spin ground state are
particularly interesting for magneto-optical and quan-
tum information technology applications. For such
defects the excited state properties, including verti-
cal excitation energies, reorganisation energy, radiative
lifetime, and photoluminescence (PL) lineshapes, were
also calculated.

The computational defect workflow was con-
structed with the Atomic Simulation Recipes (ASR)[27]
and executed using the MyQueue [28] task scheduler
frontend. The ASR provides a simple and modular
framework for developing Python workflow scripts, and
its automatic caching system keeps track of job status
and logs data provenance. Our ASR defect workflow
adds to other ongoing efforts to automate the computa-
tional characterisation of point defects.[31, 32, 33, 34]
However, to the best of our knowledge, the present
work represents the first actual high-throughput study
of point defects. All of the generated data is collected
in the Quantum Point Defect (QPOD) database and
will be publicly available and accessible via a brows-
able web-service. The QPOD webpages are interlinked
with the C2DB providing a seamless interface between
the properties of the pristine host materials and their
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intrinsic point defects.
The theoretical framework is based entirely

on DFT with the Perdew Burke Ernzerhof (PBE)
functional[35]. Charge transition levels are ob-
tained using Slater-Janak transition state theory[36]
while excited states are calculated by DO-MOM
method[37]. We note that PBE suffers from delocali-
sation errors[38], which may introduce quantitative in-
accuracies in the description of some localised defect
states. While range-separated hybrid functionals rep-
resent the state-of-the art methodology for point de-
fect calculations, such a description is currently too de-
manding for large-scale studies like the current. More-
over, thermodynamic properties of defects are gener-
ally well described by PBE[39].

In Section 2 we describe the theory and
methodology employed at the various computational
steps of the workflow. Section 3 gives a general
overview of the workflow, introduces the set of
host materials and the considered point defects, and
outlines the structure and content of the QPOD
database web-interface. In Section 4 we present our
main results. These include statistical overviews of
host crystal and defect system properties (formation
trends, symmetries, etc.), an analysis of the effect of
structural relaxations on defect formation energies and
charge transition levels, an evaluation of the intrinsic
(equilibrium) doping level in 59 host materials and
identification a small subset of the host materials that
are particularly defect tolerant. We also identify a
few defect systems with promising properties for spin
qubit applications or magneto-optical sensing. Section
5 summarises the work and looks ahead.

2. Theory and Methodology

2.1. Density functional theory calculations

All the DFT calculations (spin-polarized) are per-
formed by the GPAW electronic structure code [40]
using plane wave basis set with 800 eV plane wave
cut off, k-point density of 6 Å−1 (12 Å−1) for struc-
tural relaxations (for ground state calculations) and
the PBE xc-functional [35]. The supercell is kept fixed
and atoms are fully relaxed until forces are below 0.01
eV/Å. We apply a Fermi smearing of 0.02 eV (0.2 eV
for relaxations) for all systems and increase that pa-
rameter slightly (0.05, 0.08 or 0.1) for systems whose
ground state proves difficult to converge. We use the
Pulay mixing scheme [41] where total density and mag-
netisation densities are treated separately. The excited
states are calculated using the same computational pa-
rameters as the ground state, and using the DO-MOM
method[37], where the maximum step length, ρmax ,
for the quasi-newton search direction is chosen to be
0.20. The parameters for the Slater-Janak calculations

Figure 1. Creation of defect supercells at the example of
MoS2. Top view of a primitive unit cell of MoS2 (red, dashed),
an example of a conventional 4×4×1 supercell (orange, dashed),
as well as our different approach of a symmetry broken supercell
(blue, solid).

are the same as for the ground state calculations.

2.2. Symmetry-broken supercell

A supercell in 2D can be created using linear
combinations of the primitive unit cell vectors (a1, a2).
The corresponding supercell lattice vectors (b1, b2)
are written as:

b1 = n1a1 + n2a2, (1)

b2 = m1a1 +m2a2, (2)

where n1, n2, m1, m2 are integers larger or equal to
zero.

In this study, we apply an algorithm that finds
the most suitable parameters n1, n2, m1, m2: (i) set
n2 = 0 and evaluate all possible linear combinations of
n1, m1, m2, (ii) discard combinations where m1 = 0
and n1 = m2, (iii) only keep cells where the minimum
distance between mirrored defects is larger than 15 Å,
(iv) keep supercells consisting of the minimum number
of atoms, (v) choose the most isotropic supercell. We
note that step (ii) is conducted in order to break the
symmetry of the initial Bravais lattice, and steps and
(iv) minimizes computational cost for a viable high-
throughput execution.

Defects are introduced by analysing Wyckoff
positions of the atoms within the primitive structure.
For each non-equivalent position in the structure a
vacancy defect and substitutional defects are created
(the latter by replacing a specific atom with another
atom of a different species intrinsic to the host
material). For the example of MoS2 the procedure
yields the following point defects: sulfur vacancy
VS, molybdenum vacancy VMo, as well as two
substitutional defects MoS and SMo where Mo replaces
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the S atom and vice versa. Each defect supercell
created by this approach undergoes the workflow which
is presented in chapter 3.

2.3. Defect formation energy

The formation energy of a defect X in charge state q
is defined by[42, 43]:

Ef [Xq] = Etot [Xq]− Etot [bulk]−
∑

i

niµi + qEF (3)

where µi is the chemical potential of the atom species
i and ni is the number of such atoms that have been
added (ni > 0) or removed (ni < 0) in order to
create the defect. Here, in light of the high-throughput
approach used, we choose the standard states of the
respective elemental phases of i calculated with GPAW
[40] to obtain the values for µi. We note, that
µi does not have to be a fixed value but can also
be represented by a range of chemical potentials in
order to specify i-rich and i-poor conditions as it is
well documented in existing literature [44]. For finite
charge states, the defect formation energy becomes a
function of the Fermi energy, EF, which represents the
chemical potential of electrons. In equilibrium, the
concentration of a specific defect type is determined
by its formation energy, which in turn depends on
EF. Imposing global charge neutrality leads to a self-
consistency problem for EF, which we discuss in Sec.
2.5.

In general, the lower the formation energy of a
particular defect, the higher the probability for it to
be present in the material. In equilibrium, the defect
concentration is given by the Boltzmann distribution,

Ceq[Xq] = NXgXqexp
î
−Ef [Xq] /(kBT )

ó
, (4)

where NX and gXq specifies the site and defect state
degeneracy, respectively, kB is Boltzmann’s constant
and T is the temperature.

As an example, Fig. 2 shows the formation energy
(blue solid lines) of a sulfur vacancy VS in MoS2 as a
function of the Fermi level position. It follows that this
particular defect is most stable in its neutral charge
state (q = 0) for low to mid gap Fermi level positions.
The transition from q = 0 to q′ = −1 occurs for
EF around 1.2 eV (blue dotted line). The formation
energy of the neutral VS and its CTLs reported in
Ref. [45] (orange lines) are in good agreement with
our values. The differences are below 0.2 eV and can
be ascribed to the difference in the employed supercells
(symmetric vs. symmetry-broken) and xc-functionals
(PBE-D vs. PBE). In this work, the CTLs are obtained
using the Slater-Janak transition state theory (see next
section) while Ref. [45] used total energy differences
with electrostatic corrections.
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Figure 2. Formation energy of VS in MoS2 referenced
to the standard states as a function of Fermi energy.
Calculated formation energy (blue, solid) as a function of the
Fermi energy plotted together with the CTL (blue, dotted).
The orange solid line (orange dotted lines) highlight the PBE-D
calculated neutral formation energy (CTL of (0/-1) and (0/1))
of VS in MoS2 taken from Komsa et al. [45].

2.4. Slater-Janak transition state theory

The prediction of charge transition levels (CTLs)
requires the total energy of the defect in different
charge state. In the standard approach, the extra
electrons/holes are included in the self-consistent DFT
calculation and a background charge distribution is
added to make the supercell overall charge neutral. In
a post process step, the spurious interactions between
periodically repeated images is removed from the total
energy using an electrostatic correction scheme that
involves a Gaussian approximation to the localised
charge distribution and a model for the dielectric
function of the material[20]. While this approach
is fairly straightforward and unambiguous for bulk
materials, it becomes significantly more challenging
for 2D materials due to the spatial confinement and
non-local nature of the dielectric function and the
dependence on detailed shape of the neutralising
background charge[46, 47, 48, 49].

To avoid the difficulties associated with electro-
static corrections, we rely on the Slater-Janak (SJ)
theorem[36], which relates the Kohn-Sham eigenvalue
εi to the derivative of the total energy with respect to
the orbital occupation number ni,

∂E

∂ni
= εi(ni). (5)

The theorem can be used to express the difference in
ground state energy between to charge states as an
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(
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).

integral over the eigenvalue as its occupation number
is changed from 0 to 1. This approached, termed
SJ transition state theory, has been used successfully
used to evaluate core-level shifts in random alloys[50],
and CTLs of impurities in GaN[51], native defects in
LiNbO3[52], and and chalcogen vacancies in monolayer
TMDs [53]. Assuming a linear dependence of εi on ni
(which holds exactly for the true Kohn-Sham system),
the transition energy between two localised states of
charge q and q′ = q ± 1 can be written

ε
(
q/q′

)
=





εH
Ä
q + 1

2 ;Rq
ä
− λq′ , q′ = q + 1

εH
Ä
q − 1

2 ;Rq
ä

+ λq′ , q′ = q − 1

(6)

Here εH represents highest eigenvalue with non-zero
occupation, i.e. the half occupied state, and Rq
refers to the configuration of charge state q. The
reorganisation energy is obtained as a total energy
difference between equal charge states

λq′ = Etot

(
q′;Rq′

)
− Etot

(
q′;Rq

)
. (7)

Note that the reorganisation energy is always negative.
The relevant quantities are illustrated graphically in
Figure 3.

It has been shown for defects in bulk materials
that the CTLs obtained from SJ theory are in good
agreement with results obtained from total energy
differences[50, 52]. For 2D materials, a major
advantage of the SJ method is that it circumvents the
issues related to the electrostatic correction, because it

completely avoids the comparison of energies between
supercells with different number of electrons. The
Kohn-Sham eigenvalues of a neutral or (partially)
charged defect supercell are referenced relative to the
electrostatic potential averaged over the PAW sphere of
an atom located as far as possible away from the defect
site (typically around 7 Ådepending on the exact size
of the supercell). By performing the potential average
over an equivalent atom of the pristine 2D layer, we
can reference the Kohn-Sham eigenvalue of the defect
supercell to the VBM of the pristine material. As
an alternative to averaging the potential around an
atom, the asymptotic vacuum potential can be used as
reference. We have checked that the two procedures
yield identical results (usually within 0.1 eV), but
prefer the atom-averaging scheme as it can be applied
to bulk materials as well.

2.5. Equilibrium defect concentrations

According to Eqs. (3) and (4), the formation energy
of charged defects, and therefore their equilibrium
concentration, is a function of the Fermi level.
The Fermi level position of the system in thermal
equilibrium is then determined self-consistently from
a requirement of charge neutrality[54]
∑

X

∑

q

qC[Xq] = n0 − p0 (8)

where the sum is over structural defects X in charge
states q, and n0 and p0 are the electron and hole carrier
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Figure 4. Intrinsic dopability of defect systems. Formation energies with respect to the standard states as a function of
energy for three mock-sytems with three defect types present, respectively. Left: n-type dopable regime (EF close to CBM) with
dominating donor defect. Middle: p-type dopable regime (EF close to VBM) with dominating acceptor defect. Right: intrinsic
material (neither p- nor n-dopable due to the presence of competing acceptor and donor defects.)

concentrations, respectively. The latter are given by

n0 =

∫ ∞

Egap

dEf(E)ρ(E), (9)

p0 =

∫ 0

−∞
dE[1− f(E)]ρ(E), (10)

where ρ(E) is the local density of states, f(E) =
1/ exp

[
(E − EF )/kBT

]
is the Fermi-Dirac distribu-

tion, and the energy scale is referenced to the valence
band maximum.

Under the assumption that all the relevant defects,
i.e. the intrinsic defects with the lowest formation
energies, are accounted for, Eq. (8) will determine
the Fermi level position of the material in thermal
equilibrium. The equilibrium Fermi level position
determines whether a material is intrinsically p-doped,
n-doped, or intrinsic. The three different cases are
illustrated schematically in Fig. 4. For the n-type
case (left panel), the most stable defect is D1 in charge
state +1. Thus, charge carriers are transferred from
the defect into the conduction band resulting in a
Fermi level just below the CBM. Similarly, for the p-
type case (middle panel) the defect D1 in charge state
−1 is the most stable. Consequently, charge carriers
are promoted from the valence band into the defect
resulting in EF close to the VBM. In the right panel,
donor and acceptor states are competing, which results
in an effective cancelling of the p- and n-type behavior,
pinning the Fermi level in the middle of the band gap.
In Section 4.3 we analyse the intrinsic carrier types and
concentrations of 59 host materials.

2.6. Symmetry analysis

All states with an energy in the band gap are classified
according to the symmetry group of the defect
using a generalization of the methodology previously
implemented in GPAW for molecules [55]. In a first
step, the point group, G, of the defect is determined.
To determine G we first reintroduce the relaxed defect
into a supercell that preserves the symmetry of the
host material; precisely, a supercell with basis vectors
defined by setting n1 = m2 = n and n2 = m1 = 0
in Eqs. (1,2). We then use spglib[56] to obtain G as
the point group of the new supercell. We stress that
the high-symmetry supercell is only used to determine
G while all actual calculations are performed for the
low-symmetry supercell as described in Sec. 2.6.

The defect states in the band gap are labeled
according to the irreducible representations (irrep) of
G. To obtain the irrep of a given eigenstate, ψn(r), we
form the matrix elements

Γ(R) = Γnn(R) =

∫
dr ψn(r)∗Rψn(r), (11)

where R is any symmetry transformation of G. It
follows from the orthogonality theorem[57] that the
vector Γ(R) can be expanded in the character vectors,
χ(α)(R),

Γ(R) =
∑

α

cα χ
(α)(R) (12)

where the quantity cα represents the fraction of ψn
that transforms according to the irrep α. For any well
localised defect state, all the cα will be zero except one,
which is the irrep of the state. In general, less localised
states will not transform according to an irrep of G.
That is because the wave functions are calculated in the
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symmetry-broken supercell, see Sec. 2.2, and therefore
will have a lower symmetry than the defect. To exclude
such low-symmetry tails on the wave functions, the
integral in Eq. (11) is truncated beyond a cut-off radius
measured from the center of symmetry of the defect.

As an example, Figure 5 shows the coefficients
cα for the in-gap states of the (neutral) sulfur
vacancy in MoS2. This is a well studied prototypical
defect with C3v symmetry. The absence of the
chalcogen atom introduces three defect states in the
gap: a totally symmetric a1 state close to the VBM
and two doubly degenerate mid-gap states (ex, ey).
The symmetry coefficients cα correctly captures the
expected symmetry of the states[45], at least for
small cut-off radii. The effect of employing a
symmetry-broken supercell can be seen on the totally
symmetric state a1, which starts to be mixed with the
antisymmetric a2 irrep as a function of the radius, while
there is no effect on the degenerate ex state. Therefore
a radius of 2 Å is used in the database to catch the
expected local symmetry of the defect.

2.7. Transition dipole moment

The transition dipole moment is calculated between all
single particle Kohn-Sham states inside the band gap,

µnm = 〈ψn| r̂ |ψm〉 =
i~
m

〈ψn| p̂ |ψm〉
εn − εm

, (13)

where r̂ is the dipole operator, p̂ is the momentum
operator, and m is the electron mass. The transition
dipole moment yields information on the possible
polarization directions and oscillator strength of a
given transition. In this work, the transition dipoles
between localised defect states are calculated in real
space, i.e. using the first expression in Eq. (13), after
translating the defect to the center of the supercell.

2.8. Radiative recombination rate and life time

Radiative recombination refers to the spontaneous
decay of an electron from an initial high energy state
to a state of lower energy upon emitting a photon. The
rate of a spin-preserving radiative transition between
an initial state ψm and a final state ψn is given by [58]

Γrad
nm = 1/τrad =

E3
ZPLµ

2
nm

3πε0c3~4
(14)

here ε0 is the vacuum permitivity, EZPL is the zero
phonon line (ZPL) energy of the transition (see Sec.
2.11), and µnm is the transition dipole moment
defined in Eq. (13). The ZPL energy includes
the reorganisation energy due to structural differences
between the initial and final states, which can be on the
order of 1 eV. Consequently, an accurate estimate of
the radiative lifetime requires a geometry optimisation
in the excited state. Since this step is not part of our

general workflow, but is only performed for selected
defects, radiative lifetimes are currently only available
for a few transitions.

2.9. Hyperfine coupling

Hyperfine (HF) coupling refers to the interaction
between the magnetic dipole associated with a nuclear
spin, ÎN , and the magnetic dipole of the electron-spin
distribution, Ŝ. For a fixed atomic nuclei, N , the
interaction is written

HHF =
∑

i,j

ŜiA
N
ij Î

N
j (15)

where the hyperfine tensor AN is given by

ANij =
2α2geme

3mp

∫
δT (r)ρs(r)dr

+
α2geme

4πmp

∫
3rirj − δijr2

r5
ρs(r)dr,

(16)

The first time represents the isotropic part also
called Fermi-contact term and results due to non-
vanishing spin density ρs(r) of electron at the centre
of the nucleous. Where δT (r) is a smeared out δ
function, α is fine structure constant, me and mp are
electronic and nuclear masses respectively and ge is
the gyromagnetic ratio for electrons. The second terms
represents the aniotropic part of the hyperfine coupling
tensor and results due to dipole-dipole interaction
between nuclear and electronic magnetic moments.
The isotropic component or Fermi-contact term a =
Tr(Ai,j)/3 is is sensitive only to the density of
s electrons at the nucleus. The anisotropic term
Ai,j − a is sensitive to the l = 2 component of the
density near the nucleus which is determined by the
p contribution of the wave function in the absence
of any d orbitals. Therefore the hyperfine parameter
provides direct insight into the electron distribution
or wave function near the corresponding nucleus,
and thus its hybridization. A direct comparison of
calculated HF coupling constants with parameters
of Electron paramagnetic resonance spectroscopy can
help to identify the nature of defect centre[59].

In the present work one Ai,J tensor per atom
is calculated. We then perform diagonalization and
calculate the principle values of the HF coupling
constants and report them in the database only for
the atoms showing significant HF interaction. Figure
6 shows the iso-surface of spin density on the atoms
surrounding a typical defect site.

2.10. Zero field splitting

Zero field splitting (ZFS) refers to the splitting of
magnetic sub levels of a triplet defect state due to the
magnetic dipole-dipole interaction of unpaired electron
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Figure 5. Orbital symmetry labels for different cutoff radii. All defect states with an energy inside the band gap of the
host material are classified according to the irreps of the point group of the defect. The cα coefficient is a measure of the degree to
which a defect state transforms according to irrep α. Performing the symmetry analysis within a radius of a few Å of the center of
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B defect in hexagonal boron
nitride.

spins that takes place even in the absence of an external
magnetic field. A triplet (s = 1) defect state can be
described by the spin Hamiltonian of the following form

HZFS =
∑

ij

SiDijSj (17)

where S is the total spin and D is the ZFS tensor. This
equation can also be written in the following form

HZFS = DXXS
2
x +DY Y S

2
y +DZZS

2
z

= D(S2
z − S(S + 1)/3) + E(S2

x − S2
y)

(18)

where, D = 3/2Dzz and E = (DXX − DY Y )/2
are called the axial and rhombic ZFS parameters,
respectively. For high-spin defects i.e. triplets, D
describes the splitting between the ms = 1 and ms = 0
magnetic sub-levels, while E describes the splitting of
ms = 1 sub-levels. D is generally zero for a spherically
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Figure 7. Possible occupancies resulting in different spin
configurations of the defect systems for the excited state
calculations. The states involved in the excitation are encircled
red.

symmetric wave function because there is no direction
in which electrons of a triplet can move to minimize the
repulsive dipole-dipole interaction. However, for a non-
spherical distribution of molecular orbitals, D will be
non-zero, due to lifting of the degeneracy of magnetic
sub-levels ms = 1 and ms = 0. A positive value of
D would symbolize an oblate spin-distribution, while a
negative value would mean a prolate spin-distribution.
The value of E will be zero for axially symmetric wave
functions.

2.11. Excited states

In Kohn-Sham density functional theory (DFT),
excited electronic states can be found by solving the
Kohn-Sham equations for orbitals with non-Aufbau
occupations.

The excited-state solutions are saddle points of
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the Kohn-Sham energy functional and common self-
consistent field (SCF) approaches often struggle to
find such solutions, especially when nearly degenerate
states are involved. SCF approaches fail specially for
cases involving charge transfer or Rhydberg states.
This is due to a significant re-arrangement of closely
spaced orbitals upon excitation. Therefore, in the
present work we will use an alternative to SCF method
i.e. a method based on the direct optimization (DO) of
orbital rotations, representing the electronic degrees of
freedom, by means of efficient quasi-Newton methods
for saddle points in combination with the maximum
overlap method (MOM)[37]. Convergence on nth
order saddle point is guided by an appropriate pre-
conditioner based on an approximation to the Hessian,
where the number of negative eigenvalues is consistent
with the target nth-order saddle point. This method
ensures the fast and robust convergence of the excited
states, as compared to SCF [37]. DO-MOM method
have been previously used for the calculation of excited
state spectrum of molecules [37], however, it has never
been applied to defect states. So, one novelty of the
present work is to apply this method for the first
time to defect states in semiconductors. We have first
performed a broad benchmarking of the previously
well known defect systems and established that this
method generate accurate results. In the present work
we study only one adiabatic excitation in each spin
channel for defect systems for which the PBE kohn-
sham gap between HOMO and LUMO is at least 0.5
eV. Possible spin configurations for different defect
systems are skecthed in 7. For the doublet and triplet
spin configurations, both ground and excited states can
be expressed as single Slater-determinents. However,
for the singlet spin configuration, the ground state
is a closed shell singlet, while the excited state, as
a result of single excitation in either spin channel,
would result in open shell singlet state, which cannot
be expressed as single Slater- determinent. This open
shell singlet state is a mixed singlet-triplet state and
can be expressed as sum of two Slater-determinents i.e.

Est =
1

2
(Es + Et)⇒ Es = 2Est − Et (19)

Where Est is the DFT energy calculated by setting the
occupancy for open-shell singlet state, while Es and Et
are the energies of the corresponding singlet and triplet
states.

The line shape of the emission from the electronic
excited state to the vibrationally excited electronic
ground state can be computed with DFT using
generating function approach[60]. First the mass
weighted difference between atomic co-ordinates of the
ground and excited states is computed as follows

∆Q =

 ∑
α

mα∆R2
α (20)
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Figure 8. Schematic CC diagram of a ground state
to excited state transition. Absorption and emission to
and from the excited state (blue, orange) as well as their
respective reorganization energies λe,g as a function of energy
and configuration coordinate Q. The zero phonon line transition
(ZPL) is visualized in green.

where sum runs over all the atoms in the supercell.
The partial Huang-Rhys factors are then computed by

Sk =
1

2~
ωkQ

2
k (21)

where Qk is the projection of the lattice
displacement on the normal co-ordinates of the ground
state described by phonon mode k. Then electron-
phonon spectral function, which depends on the
coupling between lattice displacement and vibrational
degrees of freedom is then given by summation over all
the modes k

S(ω) =
∑

k

Skδ(ω − ωk) (22)

The integral over the electron-phonon spectral function
gives the (total) HR factor of the transition. The above
electron-phonon spectral function fed into a generating
function [60] generates the PL line shape.

3. QPOD workflow and database

3.1. The QPOD workflow

The backbone of the QPOD database is represented
by a high-throughput framework based on the Atomic
Simulation Recipes (ASR) [27] in connection with
the MyQueue [28] task and workflow scheduling
system. Numerous recipes, designed particularly
for the evaluation of defect properties, have been
implemented in ASR and have been combined in a
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Figure 9. The workflow behind the defect database. First, starting from C2DB suitable host materials are identified. With
the ASR recipe for defect generation the defect supercells are set up and enter the ground state workflow for neutral systems.
Afterwards, depending on the nature of the defect states inside the gap, charged calculations are conducted within the charged
ground state workflow. If all charged calculations for a specific system are done (|q| > 3), the excited state workflow is executed,
before physical meaningful results are collected using the data extraction workflow and thereafter saved in the defect database. The
database is equipped with all necessary metadata, and together with various visualization scripts the browseable web application is
created.
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central MyQueue workflow to generate all data for the
QPOD database.

The underlying workflow is sketched in Fig. 9,
and will be described briefly in the following. As
a preliminary step the C2DB [29, 30] is screened to
obtain the set of host materials. Only non-magnetic,
thermodynamically and dynamically stable materials
with a PBE band gap of EPBE

gap > 1 eV are selected as
host materials. These criteria result in 281 materials of
which we select 82 from a criterion of Ne× Vsupercell <
0.9 Å3 combined with a few handpicked experimentally
known and relevant 2D materials (MoS2, hBN, WS2,
MoSe2). It is important to mention, that some host
materials exist in different phases (same chemical
formula and stoichiometry, but different symmetry),
e.g. 2H-MoS2 and 1T-MoS2. In these cases we only
keep the most stable one, i.e. 2H-MoS2 for the previous
example.

For each host material, all inequivalent vacancies
and antisite defects are created in a supercell as
described in Section 2.2. Each defect enters the ground
state workflow, which includes relaxation of the neutral
defect structure, calculation of a well-converged ground
state density, identification and extraction of defect
states within the pristine band gap, and SJ calculations
with half-integer charges q. If there are no states
within the gap, the defect system directly undergoes
the data extraction workflow and is stored in the
QPOD database.

For systems with in-gap states above (below)
EF, an electron is added (removed) and the charged
structures are relaxed, their ground state calculated
and the states within the band gap are examined again
up to a maximum charge of +3/−3. Once all charge
states have been relaxed and their ground state density
has been evaluated, the data extraction workflow is
executed. Here, general defect information (defect
name, defect charge, nearest defect-defect distance,
etc.), charge transition levels and formation energies,
the equilibrium self-consistent Fermi level, equilibrium
defect concentration, symmetries of the defect states
within the gap, hyperfine coupling, zero field splitting,
transition dipole moments, etc. are calculated and the
results are stored in the database. The data is publicly
available and easy to browse in a web-application as
will be described in chapter 3.3.

We note, that selected systems have been subject
to excited state calculations in order to obtain ZPL
energies, PL spectra, HR factors, etc. enabling the
identification of promising defect candidates for optical
applications as is discussed in chapter 4.7.

3.2. The QPOD database

The QPOD database uses the ASE DB format [61]
which currently has five backends: JSON, SQLite3,

PostgreSQL, MySQL, MariaDB. An ASE DB enables
simple querying of the data via the in-built ase db

command line tool, a Python interface, or a webapp
(see chapter 3.3). With those different possibilities to
access and interact with the data, we aim to give users
a large flexibility based on their respective technical
background and preferences.

Each row of QPOD is uniquely defined by defect
name, host name, and it’s respective charge state.
Furthermore, the fully relaxed structure as well as
all of the data associated with the respective defect
is attached in the form of key-value pairs or JSON-
formatted raw data.

3.3. The QPOD webapp

A defining feature of the QPOD database is its easy
accessibility through a web application (webapp). For
each row of the database, one can browse a collection of
web-panels designed to highlight the various computed
properties of the specific defect. Specific elements
of the web-panels feature clickable ”?” icons with
explanatory descriptions of the content to improve the
accessibility of the data.

Directing between different entries of the database
is either possible by using hyperlinks between related
entries, or using the overview page of the database,
where the user can search for materials, and order them
based on different criteria. Furthermore, we ensure the
direct connection to C2DB with hyperlinks between
a defect material and its respective host material
counterpart in C2DB in case users want to find more
information about the defect-free systems.

3.4. Overview of host materials

In total, 82 host crystals have been selected to be the
basis of our systematic study of intrinsic point defects.
The set of host materials span across a large range of
symmetries, stoichiometries, and band gaps (see Fig.
10). Among those, 9 have already been experimentally
realized: As2, BN, Bi2I6, C2H2, MoS2, MoSe2, Pd2Se4,
WS2, ZrS2. We include both small band gap materials
(e.g. Ni2Se4, ZrS2) and wide band gap materials such
as BN, BaCl2 and MgCl2 making our set of starting
host crystals particularly heterogeneous.

4. Results

In this section we first present some general illustra-
tions and analyses of the data in QPOD. We then
leverage the data to address three specific scientific
problems, namely the identification of: (i) Defect tol-
erant semiconductors with low concentrations of mid-
gap states. (ii) Intrinsically p-type or n-type semicon-
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Figure 10. Overview of host crystals. Energy above convex
hull in eV/atom Ehull (purple bars, left) and PBE-calculated
band gap EPBE

gap (yellow bars, right) of the 83 host crystals of
QPOD. Monolayers which have been realized experimentally are
highlighted in green.

ductors. (iii) Optically accessible high-spin defects for
quantum technological applications.

4.1. Relaxation of defect structures

A major part of the computational efforts to create the
QPOD went to the relaxation of the defect structures in
a symmetry broken supercell. As discussed in Section
2.2 the strategy to actively break the symmetry of the
host crystal by the choice of supercell was adopted
to enable defects to relax into their lowest energy
configuration.

Figure 11 shows the gain in total energy due
to the relaxation for the over 1800 vacancy and
antisite defects (different charge states included). Not
unexpectedly, the relaxation has the largest influence
on antisite defects while vacancy structures in general
show very weak reorganization relative to the pristine
structure as can be seen in the left panel of Fig. 11.
The relaxations for charged defects have always been
started from the neutral equilibrium configuration of
the respective defect. As a result, the reorganization
energies for charged defects is significantly lower (see
right panel of Fig. 11).

4.2. Charge transition levels

In Section 2.4 we described how we obtain the CTLs
by combining Slater-Janak transition state theory on
a static lattice with geometry relaxations in the final
state. For ”negative” transitions, e.g. (0/-1), the effect
of the relaxation is to lower the energy cost of adding
the electron, i.e. the reorganisation energy lowers
the CTL. In contrast, the lattice relaxations should
produce an upward shift for ”positive” transitions, e.g.
(0/+1), because in this case the CTL denotes the
negative of the energy cost of removing the electron.

Figure 12 shows the 0/+1 and 0/-1 CTLs for a
small subset of defects. Since the energies are plotted
relative to the vacuum level, the CTLs correspond to
the (negative) ionisation potential (-IP) and electron
affinity (EA), respectively. Results are shown both
with and without the inclusion of relaxation effects.
As expected, the relaxation always lowers the EA
and the IP (the 0/+1 CTL is always raised). The
reorganisation energies can vary from essentially zero
to more than 2 eV, and are absolutely crucial for
a correct prediction of CTLs and (charged) defect
formation energies.

We notice that the CTLs always fall inside the
band gap of the pristine host (marked by the grey
bars) or very close to the band edges. This is clearly
expected on physical grounds, as even for a defective
system the CTLs cannot exceed the band edges (there
are always electrons/holes available at the VBM/CBM
sufficiently far away from the point defect). However,
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Figure 11. Relaxation effects for the formation of charged and neutral defects. Left: histogram of the reorganization
energy from the initial defect substitution to the neutral equilibrium configuration. Low values on the x-axis correspond to small
reorganization of defect structures upon addition of a defect to the pristine host crystal. Right: histogram of the reorganization
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Figure 12. Relaxation effects for ionisation potentials and electron affinities. Energies of -IP (red symbols) and EA
(blue symbols) with and without relaxation effects included (boxes and crosses, respectively). The energies are all referenced to the
vacuum level of the pristine crystal and grey bars represent the valence/conduction band of the individual host crystals.

for small supercells such behavior is not guaranteed
as the band gap of the defective crystal could deviate
from that of the pristine host material. Thus the fact
that the CTLs rarely appear outside the band gap is
an indication that the employed supercells are large
enough to represent an isolated defect.

When the Fermi level is moved from the VBM to
the CBM one expects to fill available defects states
with electrons in a stepwise manner, i.e. such that
CTL(q) < CTL(q − 1). In particular, we expect
−IP < EA. Interestingly, for a few systems, e.g.
VF in ZF2, the ordering of IP and EA is inverted.

The physical interpretation of such an ordering is that
the neutral charge state becomes thermodynamically
unstable with respect to positive and negative charge
states [20]. This results in a direct transition from
positive to negative charge state in the formation
energy diagram.

4.3. Intrinsic carrier concentrations

For many of the potential applications of 2D
semiconductors, e.g. transistors[62], light emitting
devices[63], or photo detectors[64], the question of
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dopability of the semiconductor material is crucial.
Modulation of the charge carrier concentration is a
highly effective means of controlling the electrical and
optical properties of a semiconductor. This holds
in particular for 2D semiconductors whose carrier
concentrations can be modulated in a variety of ways
including electrostatic or ionic gating[65, 66], ion
intercalation[67], or surface functionalisation[68]. In
general, these methods are only effective if the material
is not too heavily doped by its ubiquitous native
defects, which may pin the Fermi level close to one
of the band edges. For applications relying on high
carrier conduction rather than carrier control, a high
intrinsic carrier concentration may be advantageous -
at least if the native defects do not degrade the carrier
mobility too much, see Sec. 4.6.

Figure 13 shows the calculated position of the
equilibrium Fermi level (at room temperature) for
all the 2D materials considered as defect hosts in
this work. It should be noted that the Fermi level
position depends on the number of different defect
types included in the analysis. Consequently, the
results are sensitive to the existence of other types
of intrinsic defects with formation energies lower than
or comparable to the vacancy and antisite defects
considered here. Fermi level regions close to the VBM
or CBM (indicated by red/blue colors) correspond to
p−type and n−type behavior, respectively, while Fermi
levels in the central region of the band gap correspond
to intrinsic behavior.

Clearly, most of the materials present in the
QPOD database show either intrinsic or n-type
behavior. An example of a well known material with
intrinsic behavior is MoS2, where native defects pin the
Fermi level deep within the band gap resulting in very
low electron and hole carrier concentrations in good
agreement with previous observations[69, 70, 71, 45].
As an example of a natural n-type semiconductor we
highlight the Janus monolayer AsClSe, which presents
an impressive electron carrier concentration of 9.5 ×
1011 cm−2 at 300 K, making it an interesting candidate
for a high-conductivity 2D material. For the majority
of the materials, the equilibrium carrier concentrations
are in fact relatively low implying a high degree
of dopability. We note that none of the materials
exhibit intrinsic p-type behavior. This observation
indicates that the challenge of finding naturally p-
doped semiconductors/insulators, which is well known
for bulk materials[72, 73, 74, 75], carries over to the
class of 2D materials.

4.4. Defect formation energies: Trends and
correlations

The formation energy is the most basic property of
a point defect. Figure 14 the distribution of the
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Figure 13. Self-consistent Fermi-level position for host
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Figure 14. Distribution of defect formation energies
in the neutral charge state. Top: histogram of neutral
formation energies Ef wrt. standard states for vacancy and
substitutional defects. The vertical lines represent the mean
value. Bottom: heat of formation ∆Hhost of the pristine
monolayer as a function of the neutral formation energies with
the pristine PBE-calculated band gap as a color code.

calculated formation energies of neutral defects for
both vacancy (blue) and antisite (orange) defects.
For the chemical potential appearing in Eq. (3) we
used the standard state of each element. There is
essentially no difference between the two distributions,
and both means (vertical lines) are very close to 4 eV.
Roughly half (44 %) of the neutral point defects have
a formation energy below 3 eV and 28 % are below 2
eV. This implies that many of the defects would form
readily during growth and underlines the importance of
including intrinsic defects in the characterization of 2D
materials. As a reference, the NV center in diamond
shows formation energies on the order of 5 eV to 6
eV[76] (HSE value).

The lower panel of Figure 14 shows the defect
formation energy relative to the heat of formation of
the pristine host material, ∆Hhost. There is a clear
correlation between the two quantities, which may not
come as a surprise since the ∆Hhost measures the
gain in energy upon forming the material from atoms
in the standard states. More stable materials, i.e.
materials with more negative heat of formation, are
thus less prone to defect formation than less stable
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Figure 15. Distribution of point groups for relaxed
defects. Point groups are ordered from the lowest symmetry
group (i.e. C1) to the highest occurring symmetry group (D3d).

materials. It is also interesting to note the correlation
with the band gap of the host material, indicated by
the color of the symbols. A large band gap is seen
to correlate with a large (negative) ∆Hhost and large
defect formation energies, and vice versa a small band
gap is indicative of a smaller (negative) ∆Hhost and low
defect formation energies. These trends are somewhat
problematic as low band gap materials with long
carrier lifetimes, and thus low defect concentrations,
are required for many applications in (opto)electronics,
while large band gap host materials with high density
of (specific types of) defects are required for many color
center-based quantum technology applications.

4.5. Point defect symmetries

Another basic property of a point defects is its local
symmetry, which determines the possible degeneracies
of its in-gap electronic states and defines the selection
rules for optical transitions between them. Figure 15
shows the distribution of point groups (in Schönflies
notation) for all the investigated neutral defect
systems. A large fraction of the defects break all
the symmetries of the host crystal (34 % in C1)
or leave the system with only a mirror symmetry
(20 % in Cs). A non-negligible number (31 %)
of defects can be characterized by 2, 3, or 4-fold
rotation axis with vertical mirror planes (C2v, C3v

and C4v). Naturally, C3v defects (20 % overall) often
stem from hexagonal host structures, some examples
being VS and WS in WS2, VSe in SnSe, and CaBr

in CaBr2. Such defects share the symmetry group of
the well known NV center in diamond[77] and might
be particularly interesting candidates for quantum
technology applications. Relatively few defect systems
(3 %) incorporate perpendicular rotation axes, e.g. the
D3 symmetry of ISb in I6Sb2.

Adding or removing charge to a particular defect
system can influence the structural symmetry as it was
previously observed for the negatively charged sulfur
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vacancy in MoS2[78]. We find that 10 % of the defects
in QPOD undergo a change in point group when adding
(removing) an electron to (from) the neutral structure
and relaxing it in its respective charge state.

4.6. Defect tolerant materials

Although defects can have useful functions and
applications, they are often unwanted as they
tend to deteriorate the ideal properties of the
perfect crystal. Consequently, finding defect tolerant
semiconductors[53, 79], i.e. semiconductors whose
electronic and optical properties are only little
influenced by the presence of their native defects, is
of great interest.

When discussing defect tolerance of semiconduc-
tors one should distinguish between two different situa-
tions: (i) For transport applications where the system
is close to equilibrium, defects act as scattering cen-
tres limiting the carrier mobility. In this case, charged
defects represent the main problem due to their long
range Coulomb potential, which leads to large scat-
tering cross sections. (ii) For opto-electronic appli-
cations where relying on photo-excited electron-hole
pairs, deep defect levels in the band gap represent the
main issue as they facilitate carrier capture and pro-
mote non-radiative recombination. In the following we
examine our set of host materials with respect to type
(ii) defect tolerance.

Figure 16 shows the positions of charge transition
levels of vacancy (blue) and antisite (orange) defects
as a function of the Fermi level normalized to a
host material’s band gap. The neutral formation
energy of the defects is shown in the middle panel,
where we have also marked regions of shallow defect
states that lie within 10% of the band edges (black
dashed lines). A host material is said to be type
(ii) defect tolerant if all of its intrinsic defects are
shallow or all its deep defects have high formation
energy. A number of defect tolerant host materials are
revealed by this analysis, including the ionic halides
K2Cl2, Rb2I2, and Rb2Cl2. With formation energies
lying about 150 meV/atom above those of their cubic
bulk structures, these materials may be challenging to
realise in atomically thin form. Nevertheless, their
defect tolerant nature fits well with the picture of
deep defect states having larger tendency to form
in covalently bonded insulators with bonding/anti-
bonding band gap types compared to ionic insulators
with charge-transfer type band gaps[53].

The data in Figure 16 suggests that vacancy
and antisite defects have different tendencies to form
shallow and deep defect states, respectively: While 55
% of the vacancy defects form shallow defect states,
this only happens for 30 % of the antisites. The trend
can be seen in the top and bottom histograms of Fig.
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Figure 16. Defect tolerances for vacancy and
substitutional defects. Position of defect charge transition
levels as a function of Fermi energy (normalized with respect to
the band gap) for antisite defects (orange squares) and vacancies
(blue dots). Top (bottom): histogram of the occurance of a
CTL for vacancies (antisites) within a certain energy range. If
a defect’s CTL lies above 0.9/below 0.1 (dashed black vertical
lines in the middle plot) it corresponds to a CTL not having a
detrimental effect on the host’s properties. Materials with these
CTL are considered defect-tolerant wrt. optical properties. The
grey areas on the left and right hand side represent the valence
band and conduction band, respectively.

16 where the vacancy distribution (top) shows fewer
CTL around the center of the band gap compared
to the antisite distribution (bottom). Based on this
we conclude that vacancy defects are, on average, less
detrimental to the optical properties of semiconductors
than antisite defects.
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4.7. Potential Defects for Quantum Technological
Applications

The defect systems with high spin ground state
are widely sought after, as such systems can be
spin initialized, manipulated and can be read out.
Such systems can be exploited in Optically detected
Magnetic Resonance spectroscopy to act as qubits,
nano-scale sensors, brain magnetometers and other
quantum technological applications etc. An overview
of the distribution of total magnetic moments for all
the defect systems in show in Fig 17. In the present
work, we have found a total of 80 high spin-systems,
which are then screened for a (PBE) KS gap in the
range 0.5-1.5 eV for the excited state calculations,
with the motivation of finding system exhibiting sharp
radiative transitions in the visible range of energies.
In this section we present a few high spin systems
i.e. with triplet ground state and exhibit sharp
photo-luminescence i.e. small Huang-Rhys factors.
Our results, not only can motivate the experimental
research community to investigate these host systems
for such defects, but can also help to identify these
defects, by a comparision with experimental photo-
luminescence spectra[80]. We present the calculated
PL lineshape using generating function approach Pb−Cl,
C−H and Si−H defect systems. The upper and bottom
panels in the figure 18 show the calculated lineshape
for HOMO to LUMO transition in the majority spin
channel for Pb−Cl and C−H defects, respectively. The
Huang-Rhys factor for these transition is extremely
small. Infact the radiative transitions with such small
systems have seldom been reported previously [6].The
2nd panel shows the PL spectra for HOMO to LUMO
tranistion in the minority spin channel for Si−H defect
in SiCH2 host material, while the third panel shows
the PL spectra for the HOMO to LUMO transition
within the singlet manifold of the same defect. The
symmetry of this defect i.e. C3v and KS level structure
is somewhat similar to N−V 1 centre in diamond. The
fact that the calculated huang-Rhys factor is also close
to the one reported for N−V 1 centre in diamond [60],
makes this defect system very interesting, as it could
act as a 2D counter part of N−V 1 in diamond for
quantum technological applications.

5. Summary and Outlook

In summary, more than 1500 intrinsic point defects
hosted by 82 different 2D semiconductors and
insulators have been relaxed and characterised by
means of DFT calculations. The 1500+ point defects
comprise about 500 structurally distinct vacancy and
antisite defects in different charge states. The
thousands of DFT calculations were orchestrated by
a computational workflow build using the Atomic

T
ri
pl
et
s

Figure 17. An overview of distribution of total magnetic
moments for all defect systems. The bin corresponding
to systems with triplet ground state are highlighted between
two red lines, The inset shows the distribution of Kohn-Sham
HOMO-LUMO gap, on the energy scale, for the triplets. The
shaded area in the inset represents the energy range from where
systems are picked for excited state calculations.

Simulation Recipes (ASR)[27] and executed with the
MyQueue[28] task scheduler.

The ASR defect workflow includes the calculation
of formation energies, charge transition levels, equi-
librium defect and carrier concentrations, point group
symmetry labels of in-gap states, transition dipole mo-
ments, hyperfine coupling, and zero field splittings. All
DFT calculations were performed using the semilocal
PBE xc-functional. While the PBE should yield accu-
rate structural and thermodynamic properties, its ten-
dency to underestimate band gaps can result in high-
energy defect levels being missed, if they lie above the
PBE band gap. We emphasise, however, that charge
transition levels appearing within the PBE band gap
should be well described by our PBE-based Slater-
Janak transition state approach.

The analysis of defect formation energies showed
that many of the investigated defects are likely
to be present in the host material in appreciable
concentrations thus confirming their relevance and
importance for the general properties of the host
materials. Based on the thermodynamic and electronic
characterisation of all the intrinsic defects, we
identified a number of defect tolerant ionic insulators
among the host materials. While these specific
materials may be challenging to synthesise due to
competing bulk phases, the results can be used to guide
future searches for defect tolerant semiconductors for
high-performance opto-electronic 2D devices. Among
the 82 host materials, we found several semiconductors
with high intrinsic electron carrier concentrations, e.g.
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Figure 18. PL lineshapes for a few selected systems
using generating function approach. A few selected systems
with small Huang-Rhys factors are shown. The top panel show
the PL line shape for HOMO to LUMO transition in the majority
spin channel for Pb−

Cl defect. The middle two panels shows the
PL spectra for HOMO to LUMO transition in the minority spin
channel (2nd panel) and HOMO to LUMO transition within
the singlet manifold (3rd panel) for Si−H defect in SiCH2 host
material. The bottom panel shows the calculated spectra for
C−

H defect in SiCH2 for HOMO to LUMO transition in the
majority spin channel. The calculated radiative life times of
these transitions (top to bottom) are 4.6× 10−4 ns, 4.9× 10−2

ns, 2.9× 10−4 ns and 9.0× 10−4 ns, repectively.

MgS2H2 and the Janus materials AgClS and AgClSe,
whereas no the intrinsic p-type materials were found.

Out of the > 1500 defects, only around 100
adopt a high-spin (S > 1/2) ground state. This
indicates that the simple defect types considered in
this work are not likely to yield useful spin defects
for quantum technology applications. On the other
hand, a number of non-magnetic (singlet) defects
showed low Huang-Rhys factors and correspondingly
narrow photoluminescence (PL) spectra making them
relevant as single-photon emitters. In this work, the
excited state properties were calculated and analyzed
manually. Incorporating this part into the automated
workflow will be an important future extension of
the current methodology that is critical to enable a
systematic and rational design of defects with ideal
excited state properties including transition energies,
excited state lifetimes/dynamics, and emission line
shapes.

The web-based presentation of the QPOD
database and its seamless integration with the Com-
putational 2D Materials Database (C2DB) makes a
unique platform for exploring the physics of point de-
fects in 2D materials, which should be useful both as a
convenient lookup table and as a benchmark reference
for computational studies. Moreover, the possibility
to download the entire database makes it applicable
for machine learning purposes, which has a large yet
untapped potential for establishing structure-property
relationships for point defects.

Looking ahead, there are many possible extensions
and improvements of the current work. First of all,
it would be interesting to move beyond the PBE
to more advanced xc-functionals, such as screened
hybrids. This would not only enhance the data
quality/accuracy but also provide the basis for a
systematic and statistically significant assessment of
the performance of the PBE for defect calculations.
It would also be relevant to expand the set of host
materials beyond the 82 materials considered here.
The C2DB currently contains about 500 monolayers
exfoliated from experimentally known layered van der
Waals crystals and a similar number of predicted highly
stable monolayers providing ample opportunities for
selecting ideal 2D host crystals. As mentioned, the
simple defects considered in this work turned out
to be mostly non-magnetic. Thus for applications
relying on spinful defect centers, e.g. magnetic field
sensors or qubits, it seems important to incorporate
more complex defects such as divacancies and vacancy-
substitutional defect pairs.
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