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Abstract
In this thesis the magnetic excitations in six low dimensional quantum magnets are inves-

tigated using inelastic neutron scattering complemented with thermodynamic measure-

ments, such as magnetic susceptibility and specific heat.

• Cu(DCOO)2·4D2O (CFTD) is a two-dimensional S = 1/2 antiferromagnet on a

square lattice. It is well established that in the low-temperature limit CFTD exhibits

an anomaly in its spin excitation spectrum at short wavelengths on zone boundary.

In the vicinity of the (π, 0) the one-magnon excitation exhibits depression in energy,
is strongly damped and attenuated. In particular, the attenuated spectral weight is

transferred to an isotropic continuum of excitations extending to high energies. The

origin of the anomaly is still under debate, particularly in relation to the existence

of spinons in two dimensions. Here we present a study on the thermal evolution of

the (π, 0) anomaly up to finite temperatures T/J ∼ 2/3. Our data reveal that the

anomaly survives even in the absence of long-range, three-dimensional order and

that it is thus a feature closely related to the two-dimensional S = 1/2 antiferromag-
net on a square lattice. With further increase of temperature, the (π, 0) anomaly is
washed out as the zone-boundary excitations gradually softens and dampens. This

is confirmed by a comparison of our data with a finite temperature Quantum Monte

Carlo calculation where a good accord is found.

• It is well-established that, theoretically, magnons in a two-dimensional antiferromag-

net on a square lattice exhibit spontaneous decays at high fields due to the non-zero

interaction between the one-magnon branch and the two-magnon continuum. Such

a decay of magnons has already been observed in a classical spin system. But the

experimental evidence for magnon decays in a quantum case S = 1/2 is absent.
Here we present the results of inelastic neutron scattering experiments and higher-

order spin wave calculations on (5CAP)2CuCl4 (CAPCC), a quasi-two-dimensional

S = 1/2 antiferromagnet on a square lattice with finite interlayer coupling, designed
to study the field evolution of its spin excitations. Our data reveal that the one

magnon response at vicinities close to (π/2, π/2) dampens more heavily compared
to (π, 0) with an increasing field, in particular when the field approaches the satu-

ration field of the system. Such an observation agrees with theoretical predictions.

Compared to the higher-order spin wave results, the decays of one-magnon re-

sponse are more pronounced in the experimental data. Such a discrepancy might

due to the existence of other exchange interactions in the system. Nevertheless,

our results provide the first experimental evidence for magnon decays in the two-

dimensional S = 1/2 antiferromagnet on a square lattice.

• The quasi-two-dimensional honeycomb lattice antiferromagnet Na2Co2TeO6 is pro-

posed to be a possible platform for hosting Kitaev related physics. Here we present

the results of inelastic neutron powder scattering experiments, designed to study

the crystal field and spin excitations in Na2Co2TeO6. Our analysis on the crys-

tal field excitations reveals that the single-ion ground state for Co (II) is a spin-

orbit mixed Kramers doublet characterized by an effective spin angular momentum

Seff = 1/2. Given the CoO6 octahedra are arranged in an edge-sharing fashion, this

confirms the potential of Na2Co2TeO6 being a Kitaev material. The analysis of the

spin excitations reveals that the Hamiltonian of Na2Co2TeO6 deviates from a simple

Heisenberg model. In particular, strong anisotropies are required to qualitatively ex-

plain the observed spectra. We analyzed the possibility of the spectra resembling

a Heisenberg-Kitaev Hamiltonian. The result shows that the nearest neighbor in-

plane Heisenberg interaction is heavily suppressed and significantly smaller than a
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dominant ferromagnetic Kitaev interaction. This is in accord with theoretical predic-

tions. In contrast to other similar studies, we present a complete analysis on the

crystal field excitations.

• Themagnetic properties of threemetal-organic framework compounds, CrI2(pyrazine)2,

GaCl2(pyrazine)2 and CrCl2(pyrazine)2 (pyrazine: C4H4N2) are investigated. De-

spite the iso-structural relation, their electronic and magnetic properties vary sub-

stantially. CrI2(pyrazine)2 is a two-dimensional S = 2 antiferromagnet on a square
lattice. The results of an inelastic neutron powder scattering experiment reveal that a

gap∼ 0.1meV is present in the spin wave spectrum and the data are best described

by a J1−J2 Heisenberg Hamiltonian with an easy-axis single-ion anisotropy. Unlike
CrI2(pyrazine)2, magnetism in GaCl2(pyrazine)2 arises from the unpaired electrons

on pyrazines. For every formula unit of GaCl2(pyrazine)2, an electron is transferred

from Ga to one of the pyrazine ligands. Therefore GaCl2(pyrazine)2 manifests itself

as a S = 1/2 system, which is supported by it magnetic susceptibility. Specific heat
measurements reveal no formation of long-range order down to 2 K. The results of

a polarized neutron powder diffraction experiment reveal that the total spin angular

momentum S(S+1) is in good accord with the S = 1/2 one-electron scenario. More
rapid decay of the extracted magnetic form factor compared to 3d transition metals
indicates the electron is spatially delocalized. This is consistent with the having

electrons on pyrazine ligands picture. Both CrI2(pyrazine)2 and GaCl2(pyrazine)2
are well placed in an insulating limit. In contrast CrCl2(pyrazine)2 is electrically con-

ductive at room temperature. Similar to GaCl2(pyrazine)2, the two pyrazine ligands

in one formula unit of CrCl2(pyrazine)2 takes an electron away from the Cr ion. This

gives rise to antiferromagnetically coupled Cr (III) and pyrazine spins. Below 55

K. the uncompensated S = 1 degree of freedoms are ferromagnetically coupled

leading to a ferrimagnetic order. Results from inelastic neutron powder scattering

reveal the only magnetic excitations of the system are below 1 meV. Compared to

CrI2(pyrazine)2, the intensity of the excitations is significantly depressed. By track-

ing the Q-dependence of the excitation energy, a }ω ∝ Q2 relation is obtained. This

is consistent with the ferromagnetic coupled S = 1 picture.
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Resumé
I denne afhandling vil de magnetiske eksitationer i seks lavdimensionelle kvantemag-

neter blive undersøgt ved brug af inelastisk neutronspredning komplementeret af termo-

dynamiske målinger såsom magnetisk susceptiblitet og specifik varmekapacitet.

• Cu(DCOO)2·4D2O (CFTD) er en todimensionel S = 1/2 antiferromagnet pådet

kvadratiske gitter. I lavtemperatur-grænsen er det veletableret at CFTD har en

anomalitet i dets spin eksitationsspektrum ved korte bølgelængder påzone grænsen.

Enkelt-magnon eksitationen udviser i nærheden af (π, 0) en dæmpning i energi, og

er derudover stærkt dæmpet og attenueret. I særdeleshed er den attenuerede spek-

tralvægt overført til et isotropt kontinuum af eksitationer, der fortsætter op til høje en-

ergier. Oprindelsen af anomalien er stadig til debat, særligt i relation til eksistensen

af spinoner i to dimensioner. Her præsenterer vi et studie af den termiske udvikling

af (π, 0) anomalien op til endelige temperaturer, T/J ∼ 2/3. Vores data afslører,

at anomalien overlever selv ved manglen pålangtrækkende, tre-dimensionel orden,

og er derfor nært relateret til den to-dimensionelle S = 1/2 antiferromagnet pådet
kvadratiske gitter. Ved endnu højere temperaturer bliver (π, 0) anomalien udvas-

ket, da zonegrænseeksitationen langsomt bliver dæmpet. Dette er bekræftet ved

en sammenligning af vores data med en endelig-temperatur kvante Monte Carlo

udregning, der viser god overensstemmelse.

• Teoretisk set er det veletableret, at magnoner i en to-dimensionel antiferromgnet

pådet kvadratiske gitter spontant henfalder ved høje felter pågrund af den endelige

interaktion mellem enkelt-magnon eksitationen og to-magnon kontinuet. Et sådan

henfald af magnoner er allerede blevet observeret i et klassisk spin system, men det

eksperimentelle bevis for magnonhenfald i et kvantesystem med S = 1/2 mangler.
Her præsenterer vi resultaterne af inelastiske neutronspredningsforsøg og højere-

ordens spinbølgeudregninger på(5CAP)2CuCl4 (CAPCC), et kvasi-to-dimensionel

S = 1/2 antiferromagnet pådet kvadratiske gitter med endelig koblinger mellem la-

gene, for at undersøge feltudviklingen af dets spineksitationer. Vores data viser,

at enkelt-magnon responsen nær ved (π/2, π/2) dæmpes kraftigere sammenlignet

med (π, 0) ved højere felter, i særdeleshed når feltet nærmer sig systemets mæt-

ningsfelt. Disse observationer er i overensstemmelse med teoretiske forudsigelser.

Henfaldet af enkelt-magnon responsen er kraftigere i det eksperimentelle data sam-

menlignetmed resultaterne fra højere-ordens spinbølge udregninger. Denne afvigelse

kan stamme fra eksistensen af andre exchange interaktioner i systemet. Ikke desto

mindre giver vores resultater det første eksperimentelle bevis for magnonhenfald i

den to-dimensionelle S = 1/2 antiferromagnet pådet kvadratiske gitter.

• Den kvasi-to-dimensionelle antiferromagnet påhoneycomb-gitteret, Na2Co2TeO6,

er blevet foreslået som en mulig platform for Kitaev-relateret fysik. Her præsen-

terer vi resulaterne af inelastiske pulver neutronspredningseksperimenter, designet

til at studere krystalfelterne og spineksitationerne i Na2Co2TeO6. Vores analyse

af krystalfeltseksitationerne afslører at enkelt-ion-grundtilstanden for Co(II) er en

spin-orbit-blandet Kramers dublet, der er karakteriseret af et effektivt spin-angulært

moment Seff = 1/2. Det faktum, at CoO6 oktaederne er arrangeret i en hjørne-

delende facon understøtter Na2Co2TeO6’s potentiale som Kitaev materiale. Anal-

ysen af spineksitationerne afslører, at Hamiltonen for Na2Co2TeO6 afviger fra en

simpel Heisenberg model. Særligt er kraftige anisotropier påkrævet for kvalita-

tivt at forklare de observerede spektra. Vi analyserede muligheden for at spek-

trene lignede en Heisenberg-Kitaev Hamilton. Resultaterne viser, at interaktionen

mellem de nærmeste naboer i planet er kraftigt undertrykt og markant mindre end
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en dominerende ferromagnetisk Kitaev interaktion. Det stemmer overens med teo-

retiske forudsigelser. Vi præsenterer yderligere en komplet analyse af krystalfelt-

seksitationerne i modsætning til andre studier.

• Vi undersøger de magnetiske egenskaber af tre metal-organiske framework mate-

rialer, CrI2(pyrazin)2, GaCl2(pyrazin)2 og CrCl2(pyrazin)2 (pyrazin: C4H4N2). Deres

elektroniske og magnetiske egenskaber varierer påtrods af deres isostrukturalitet.

CrI2(pyrazin)2 er en to-dimensionel S = 2 antiferromagnet pådet kvadratiske gitter.
Resultaterne af et inelastisk pulver neutronspredningseksperiment afslører at et gab

∼ 0.1 meV er tilstede i spinbølgespektret, og at data bedst beskrives af en J1 − J2
Heisenberg Hamilton med en easy-axis enkelt-ionsanistropi. Modsat CrI2(pyrazin)2,

såopstår magnetismen i GaCl2(pyrazin)2 fra de uparrede elektroner i pyrazinerne.

For hver formelenhed af GaCl2(pyrazin)2, såoverføres der en Ga til en af pyrazin

liganderne. Derfor manifesterer GaCl2(pyrazin)2 sig som et S = 1/2 system, hvilket
er understøttet af dens magnetisk susceptibilitet. Specifik varmekapacitetsmålinger

afslører ingen langtrækkende orden ned til 2 K. Resultaterne af et polariseret in-

elastisk pulver neutronspredsningseksperiment afslører, at det totale spin-angulære

moment S(S + 1) er i god overensstemmelse med S = 1/2 enkelt-elektron sce-

nariet. Hurtigere henfald af den ekstraherede magnetisk formfaktor sammenlignet

med 3d overgangsmetallerne indikerer at elektronen er rumligt delokaliseret. Det er
konsistent med billedet af elektroner påpyrazin liganderne. Både CrI2(pyrazin)2 og

GaCl2(pyrazin)2 er placeret fint i den isolerende grænse. Modsat er CrCl2(pyrazin)2
elektrisk ledende ved studetemperatur. Ligesom i GaCl2(pyrazin)2, såtager de to

pyrazin-ligander i en formelenhed af CrCl2(pyrazin)2 en elektron væk fra Cr-ionen.

Det giver ophav til antiferromagnetisk koblet Cr(III) og pyrazin spins. De ukom-

penserede S = 1 frihedsgrader er ferromagnetisk koblet, hvilket leder til en ferri-

magnetisk orden under 55 K. Resultater fra inelastisk pulver neutronspredning viser,

at kun de magnetisk eksitationer i systemet er under 1 meV. Sammenlignet med

CrI2(pyrazin)2, såer intensiteten af eksitationerne undertrykt signifikant. Vi finder en

}ω ∝ Q2 relation ved at undersøge Q-afhængigheden af eksitationsenergien. Dette

er konsistent med det ferromagnetisk koblede S = 1 billede.
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1 Elements of Magnetism in Transition

Metal Elements

Themain theme of this thesis is the magnetism of solids containing 3d transition elements.
These materials show extremely diverse properties. Among them there are insulators,

metals and superconductors with the highest critical temperature known to date. Many

of these materials are magnetic but with surprisingly diverse behaviors, which provides a

fantastic playground for fundamental studies of magnetism and searches for new exotic

physics.

Part of the reason for the special behavior of these compounds is the strong Coulomb

interaction between electrons in their partially filled 3d-shells which tends to make them
localized in space. Beyond that, when embedding these elements into a lattice their elec-

tronic degrees of freedom will be strongly modified by the neighbouring ligands, causing

a change of the ground states compared to the free ion situations. In addition, the lattice

degree of freedom (geometrical aspects such as dimensionalities and lattice types) will

also affect how the neighbouring 3d transition metal ions interact with each other, hence
modifying the physical properties of the compounds. Thus in general the physics involved

behind the scene is quite complex as many degrees of freedom: spin, orbital and lattice,

are intertwined.

This chapter tries to provide a coherent introduction to all the essential fundamental as-

pects relating to work performed in this thesis. As we approach the problems from a

localized electron perspective, we will start by introducing the basic aspects of atomic

physics from which many notations are adopted throughout the thesis. The energy spec-

trum of a free 3d transition metal ion will also be introduced as it is important to identify

what is the relevant energy scale for the study at hand and the experimental techniques

being used. Afterwards the free elements will be put into a more realistic environment as

in solids where they are surrounded by ligands such as Oxygen and Sulphur. The static

electric field produced by the ligands is called the crystalline electric field or CEF and we

will show how it affects the energy spectrum in detail and what are the consequences.

With the help of the so-called Stevens operator formalism, the CEF-modified single-ion

magnetization and magnetic susceptibility can be calculated and compared with exper-

imental data. In solids the transition metal ions are not completely isolated hence they

may influence each other via exchange interactions. These are responsible for the de-

velopment of magnetic ordering upon cooling. Last but not least, thanks to the exchange

interactions, the spins on the transition metal elements can rotate collectively forming a so

called spin wave excitation provided the ground state is magnetically ordered. In some

cases [1] a single spin wave excitation can even fractionlize into two S = 1/2 objects,

forming a so-called spinon pair.

1.1 Isolated transition metal ions
The theories presented in Section 1.1 and 1.2.1 form the theoretical basis for twoMATLAB

packages the author made during this PhD. They are later used to perform the analysis

presented in Section 5.4.1.

In this section we will discuss the electronic states of a free transition metal ion. For detail

treatments, they can be found in Refs [2, 3, 4, 5].

Spectroscopy Study of Low-dimensional Quantum Magnets 1



The state of an electron in an atom is characterized by four quantum numbers:

• The principle quantum number n.

• The orbital angular momentum l: l ≤ n− 1.

• The z-component of the orbital angular momentum m: −l ≤ m ≤ l.

• The z-component of spin σ : σ = ±1
2 or ↑ and ↓.

The shells corresponding to different values of l are usually denoted as follow: s-shell
for l = 0, p-shell for l = 1 and d-shell for l = 2. For 3d-transition metal elements (n =
3), only the partially filled 3d-shell is of interest as the inner shells are situated deeply

below the Fermi level so that they are completely irrelevant or inert for the physics under

consideration.

We start by introducing the Fermionic creation (annihilation) operator c†n,l,m,σ (cn,l,m,σ)
which creates (annihilates) an electron with principle quantum number n, orbital angular
momentum l whose z-component is m, and z-component of spin σ. For brevity, we con-
tract (n, l,m, σ) to a single index v for 3d transition metals, so that c†v = c†n=3,l=2,m,σ. The

procedure adopted here is degenerate first order perturbation theory [4, 3]. The unper-

turbed Hamiltonian H0 is the energy of 3d-shell

H0 = ε3d
∑
v

c†vcv, (1.1)

whereas the Coulomb interaction between two electrons is considered as the perturbation

H1. In second quantization, it takes the form

H1 =
1

2

∑
vi,vj ,vk,vl

V (vi, vj , vk, vl)c
†
vic

†
vjcvkcvl

V (v1, v2, v3, v4) =

∫
dx

∫
dx′ψ∗

v1(x)ψ
∗
v2(x

′)Vc(x, x
′)ψv3(x

′)ψv4(x)

Vc(x, x
′) =

1

|r− r′|

(1.2)

Here x = (r, σ) is the combined spatial and spin coordinate with
∫
dx · · · =

∑
σ

∫
dr · · ·

and Vc is the Coulomb interaction between electrons.

For a 3d element with configuration dn, all the possible states are obtained by distributing
the n electrons over the 10 (2×5) spin-orbitals |v〉 = c†v1c

†
v2...c

†
vn |0〉. The number of such n-

electron states is nc =
10!

(10−n)!n! . If onlyH0 is present, these nc states are degenerate. The

Coulomb interaction H1 lifts this degeneracy and hence gives rise to a so-called multiplet

splitting. To see this, we need to set up the matrix hv1,v2 = 〈v1|H1 |v2〉 and diagonalize

it to obtain the first order energies and wave functions. Using the multipole expansion of

the Coulomb interaction, the Coulomb matrix element can be expressed as

V (v1, v2, v3, v4) =δσ1,σ4δσ2,σ3δm1+m2,m3+m4×
∞∑
k=0

ck(l1m1; l4m4)c
k(l3m3; l2m2)R

k(n1l1, n2l2, n3l3, n4l4)
(1.3)

where ck(l1m1; l4m4) and c
k(l3m3; l2m2) are theGaunt coefficients andR

k(n1l1, n2l2, n3l3, n4l4)
is an integral of the radical part of single electron wave functions, which has the dimension
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Energy [eV] S L Degeneracy Term

0.0000 3/2 3 28 4F
1.8000 3/2 1 12 4P
2.1540 1/2 4 18 2G
2.7540 1/2 5 22 2H
2.7540 1/2 1 8 2P
3.0545 1/2 2 10 2D
4.5540 1/2 3 14 2F
7.3255 1/2 2 10 2D

Table 1.1: Energies of the 3d7 multiplets calculated with R2 = 9.7860 eV ans R4 =
7.0308 eV [3]. The standard notation of atomic terms is (2S+1)LJ where 2S + 1 is the spin
multiplicity, L is the total orbital angular momentum and J is the total angular momentum

J = L+ S [7]. Conventionally L = 0 is denoted as S, L = 1 is P , L = 2 is D, etc.

For an ion with several electrons on the same atomic levels

First Hund’s rule
The electrons fill the levels so as to make the largest possible

total spin S.

Second Hund’s rule

Among the different possible configurations with the same max-

imal S, the configuration with the largest possible total orbital

angular momentum L is the ground state.

Third Hund’s rule

Due to spin-orbit coupling, the total orbital angular momentum L
will mix with the total spin angular momentum S and produce a

total angular momentum J = L+S characterized by the quantum
number J . For the levels are less than half-filled, J takes the

value J = |L− S| whereas J is the maximum J = |L+ S| when
the levels are more than half-filled.

Table 1.2: The three Hund’s rules

of energy (eV).

ck(lm; l′m′) = (−1)m
√

4π

2k + 1

∫ 2π

0
dφ

∫ 1

−1
d cos(θ)Yl,−m(θ, φ)Yk,m−m′(θ, φ)Yl′m′(θ, φ)

(1.4)

Within a d-shell, only R0, R2 and R4 [3] are relevant [4, 3] and the eigen-energy differ-

ences depend only on R2 and R4. The algorithm for calculating integral of three spherical

harmonics in Eq.(1.4) can be found in Ref [6].

As an example, here we calculated the resulting multiplet energies for Co2+ (3d7) with
R2 = 9.7860 eV and R4 = 7.0308 eV, see Table 1.1. The resulting ground state is 28 fold
degenerate and has maximal spin and maximal orbital angular momenta, which indeed

complies with the first two Hund’s rules, see Table 1.2. Notice that the energy difference

between the ground state and the first excited state is of the order ∼ 2 eV, much larger
than the energy scale [meV] encountered in a normal neutron scattering experiment (will

come back to this in the next chapter).

In addition to the Coulomb interaction between electrons in the 3d-shell, the orbital angular
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Energy [eV] S L J Degeneracy Term

0.0000 1.4990 3.0015 9/2 10 4F9/2

0.0769 1.4997 3.0004 7/2 8 4F7/2

0.1344 1.4996 2.9995 5/2 6 4F5/2

0.1742 1.4991 2.9990 3/2 4 4F3/2

Table 1.3: Splitting of the ground state 4F for 3d7 under spin-orbit coupling with λSO = 0.05
eV.

momentum can couple to the spin angular momentum via spin-orbit coupling

HSO =λSO

n∑
i=1

li · si = λSO

n∑
i=1

(
lzi s

z
i +

1

2

(
l+i s

−
i + l−i s

+
i

))

=λSO

l∑
m=−l

m

2

(
c†l,m,↑cl,m,↑ − c†l,m,↓cl,m,↓

)
+

λSO
2

l−1∑
m=−l

√
(l −m)(l −m+ 1)

(
c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓

)
(1.5)

where the summation is over all 3d electrons, li, si are the operators for orbital and spin
angular momenta of ith electron, λSO is an element dependent spin-orbit coupling con-

stant. For 3d-shell, the spin-orbit coupling constant λSO is rather small, of the order∼ 0.05
eV [8, 3]. Due to the coupling between l and s, the total spin (S =

∑n
i=1 si) and orbital

(L =
∑n

i=1 li) angular momenta are no longer good quantum numbers. Instead a new

conserved quantity, the total angular momentum is defined J = L + S. As an example,

we assume the spin-orbit coupling constant for Co2+ to be 0.05 eV and in Table 1.3 we

list the splittings of the ground state manifold 4F (the excited states are well above the

ground state and can be ignored). Evidently, both S and L are no longer conserved and

fluctuate around S = 3/2 and L = 3 respectively. The value of J decreases with the

increase of the state energy. For the new ground state J is fully maximized (J = L+ S),
which is in accord with Hund’s third rule, see Table 1.2.

1.2 Transition metal ions in crystals

In the last section we only discussed the electronic properties of isolated transition metal

ions. Now we turn to a more realistic scenario where the ions are embedded in solids.

Normally they are locked in different polyhedron cages, such as tetrahedra and octahedra,

of which the vertices are placed with ions (ligands) such as Oxygen or Sulfur. In principle

there are two effects need to be considered: the static electric field produced by ligands,

the so-called crystalline electric field or CEF, and the charge transfer between transition

metal ions and ligands due to the overlapping of their wavefunctions. For now we will

focus on the treatment of CEF, and will comment on the charge transfer process at the

end of Section 1.2.1.

The simplest approximation one can come up with is treating all the ligands as point

charges. Similar to the Coulomb interaction discussed previously, application of the mul-
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Figure 1.1: Splitting of the multiplets in 3d7 with R2 = 9.7860 eV and R4 = 7.0308 eV

under an ideal octahedral crystal field whose strength is characterized by 10Dq (in eV).

At 10Dq = 0 eV, from bottom to top (in energy), the illustrated seven energy levels corre-

spond to the eight eigenstates listed in Table 1.1, i.e. 4F →2 D. The two states 2H and
2P are degenerate as seen in Table 1.1, hence only seven energy levels are shown in the

figure. The inset [9] illustrates the splitting of the five degenerate d-orbitals into the lower
t2g manifold and the higher eg manifold in an ideal octahedral crystal field with energies

−4Dq and 6Dq respectively.
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tipole expansion yields the CEF Hamiltonian

HCEF =
∑
l1,l2

l1∑
m1=−l1

l2∑
m2=−l2

∞∑
k=0

m∑
−m

Ak,m 〈Yl1,m1(θ, φ)|
√

4π

2k + 1
Yk,m(θ, φ) |Yl2,m2(θ, φ)〉×

c†l1,m1,σ
cl2,m2,σ

(1.6)

where the coefficients Ak,m depend on the symmetry of the crystal. For a cubic symmetry

group (Oh) where an 3d-element sits in the center of an octahedral cage, the only non-

vanishing terms are [3]:

A4,0 =
21

10
× 10Dq

A4,4 = A4,−4 =
3

2

√
7

10
× 10Dq

(1.7)

and 10Dq is the energy splitting of the 3d-orbitals under an octahedral CEF, of which the
higher and lower energy ones are called eg (dx2−y2 , d3z2−r2) and t2g (dxy, dxz, dyz) [10]
respectively. In Fig.1.1, we show the splitting of multiplets for a d7 ion Co (II) for increasing
10Dq. Noticeably, even when 10Dq is as large as 2 eV, the newly formed ground state

still belongs to the previously identified ground state 4F obtained in the absence of CEF.

From the calculation, the degeneracy of the new ground state is found to be 12 and its spin

angular momentum is S = 3
2 . Moreover the orbital angular momentum of the new ground

state is calculated to be 3 fold degenerate. Thus we can assign an effective angular

momentum leff = 1 to the ground state. The two quantum numbers (S, leff) complies with
the found 12-fold degeneracy of the new ground state ((2leff + 1)(2S + 1) = 12).

As illustrated in Fig.1.1, when excluding the spin-orbit coupling λSO of 3d electrons, the
ground states of the transition metal ions in solids are one of the CEF-split states from the

ground state manifolds obtained in the isolated ion limit. With the further inclusion of the

spin-orbit coupling λSO, the CEF-present ground state manifolds of the transition metal

ions continue splitting. Due to the comparable strength of CEF and the spin-orbit coupling

λSO for 3d transition metals, the first few low lying states after the splitting still belong to

the ground state manifolds obtained in the isolated ion limit. For neutron scattering, it is

the transitions between these low lying states that are probed. Hence is there a way to

effectively describe that how the ground states obtained in the isolated ion limit split under

SOC and CEF when embedding 3d-elements in solids, without invoking the full-fledged

formalism as explained in Section 1.1 and 1.2 and in the meantime still give interpretable

results? The Stevens operators formalism is the answer.

1.2.1 Stevens operators and crystal field splitting
In this section, we will introduce the Stevens operator formalism [11, 12, 13] and present

general formulas for calculation crystal field parameters using a point charge model [11,

14].

When restricted to the ground state of a given 3d-element obtained in the isolated ion

limit, the orbital and spin angular momentum L, S are fixed. Here we work in the so-

called intermediate coupling scheme where |L,ml, S,ms〉 are chosen as the basis states.
Stevens showed [12] that in such a scenario the CEF Hamiltonian can be equivalently

written as a summation of the so-called Stevens operators Ômn [12, 11, 8], composed of

polynomial sums of {Lx, Ly, Lz, L} up to order n

HCEF =
∑
n

n∑
m=−n

Bm
n Ô

m
n (1.8)
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where n is the rank of the operator and the associated crystal field parametersBm
n are real

numbers. Hermiticity and time reversal invariance of the CEF Hamiltonian ensures that

only crystal field parameters of even rank are non-zero [13]. Hence for 3d-shell elements
n takes the values 0, 2, 4 and only the last two determine how large the energy splittings

are [11, 13]. The parameters Bm
n can usually be fitted to experimental data or calculated

from a point charge model as a starting point of the fit.

In a point chargemodel [11, 14], as the name suggests the surrounding ligands are treated

as static point charges and the crystal field parameters are (in units of meV)

Bm
n = − an0

4πε0
γnmNZFnm〈rn〉θn × 103 (1.9)

where ε0 is the vacuum permittivity (in units e2 ·GeV−1 ·fm−1), a0 is the Bohr radius andNZ

is the number of unpaired electrons on the central ion. 〈rn〉 is the expectation value of the
radial wavefunction (in units an0 and the values for all 3d transition elements are reported
in [8]). Fnm are numerical factors occurring in the tesseral harmonics Znm(x, y, z), e.g.

F20 = 1
4

√
5
π for Z20(x, y, z) = 1

4

√
5
π · 3z2−r2

r2
. γnm is a weighted summation of tesseral

harmonics over all ligands

γnm =

N∑
j=1

4π

2n+ 1
qj
Znm(xj , yj , zj)

Rn+1
j

(1.10)

where N is the number of ligands under consideration, qj is the charge (in units e) carried
by the ligand j and Rj (in units Å) is the distance between the central ion and the ligand
j. The last term θn in Eq.(1.9) is a multiplicative factor associated with the orbital angular
momentum of the central ion.

Apart from θn, all the other parameters in Eq.(1.9) can be easily obtained. In the following,
we present a general scheme to numerically evaluate the value of θn for different electron
configurations.

We again take the Co2+ ion as an example, which has seven electrons in its 3d-shell and
has a free ion ground state characterized by L = 3 and S = 3/2. Further assume that

the ion is in a maximally polarized state with Lz = L = 3 and Sz = S = 3/2. From the

operator equivalents [12, 15] it follows∑
i

Zn0(xi, yi, zi)

Fn0
· rni ≡ θn〈rn〉 〈L,L| Ô0

n |L,L〉

∑
i

Zn0(xi, yi, zi)

Fn0
· rni ≡ γ̃

∑
i

〈
l,mi

l

∣∣ Ô0
n

∣∣l,mi
l

〉 (1.11)

where γ̃ is a constant depending on an angular momentum l. The first equation is obtained
when the left-hand side is evaluated in a manifold with L = 3 and the second equation is
valid in a manifold with l = 2 (d electrons). The index i indicates the ith unpaired electron
and the corresponding orbital angular momentum is mi

l. For Co (II), m
i
l take values 2, 1

and 0 for electron i = 1, 2 and 3 respectively. To find γ̃, assume that an electron is in a
|l,ml = l〉 state. Again from the operator equivalents [12, 15] the following identity holds

Zn0(x, y, z)

Fn0
rn =

(−1)l
∫ 2π
0 dφ

∫ 1
−1 d cos(θ)Yl,−l(θ, φ)Yn,0(θ, φ)Yl,l(θ, φ)

F 0
n

〈r〉n

= γ̃ 〈l, l| Ô0
n |l, l〉

(1.12)

Spectroscopy Study of Low-dimensional Quantum Magnets 7



Bm
n Value [meV]

B0
4 -0.7165

B4
4 -3.5825

Table 1.4: The non-vanishing crystal field parameters Bm
n for a Co2+ ion in an ideal

octahedral crystal field composed of O2−..

from which the analytical expression for γ̃ can be derived

γ̃ =
(−1)l

∫ 2π
0 dφ

∫ 1
−1 d cos(θ)Yl,−l(θ, φ)Yn,0(θ, φ)Yl,l(θ, φ)

F 0
n 〈l, l| Ô0

n |l, l〉
〈r〉n (1.13)

and the evaluation of the integral in the nominator can be found in Ref [6]. Combining

Eq.(1.11) with Eq.(1.13), we arrive at the general formula for θn.

θn =

∑
i

〈
l,mi

l

∣∣ Ô0
n

∣∣l,mi
l

〉
〈L,L| Ô0

n |L,L〉
·
(−1)l

∫ 2π
0 dφ

∫ 1
−1 d cos(θ)Yl,−l(θ, φ)Yn,0(θ, φ)Yl,l(θ, φ)

F 0
n 〈l, l| Ô0

n |l, l〉
(1.14)

For Co2+, the only non-vanishing terms are θ2 and θ4 and their values are θ2 = −0.0190476
and θ4 = −0.00634921 respectively.

Having introduced the Stevens operator formalism and the calculation of the related crys-

tal field parameters Bm
n from a static point charge perspective, now we will show how to

use them in practice. As an example, we consider a Co2+ ion (3d7 with three unpaired

electrons) sitting in the center of an ideal octahedron surrounded by six O2−. The global Z
axis is chosen such that it aligns with a four-fold rotation axis of the octahedron. The Co2+

is at the origin. Hence the coordinates of the six oxygen ions are: (±a, 0, 0), (0,±a, 0) and
(0, 0,±a) and here we set a = 2 Å. Application of Eq.(1.9)-(1.14), the only non-vanishing
terms are B0

4 and B
4
4 . Their values are listed in Table 1.4. The ratio B

4
4/B

0
4 = 5 coincides

with the group theory result [16].

In Table 1.5, we list the splittings of the ground state 4F of Co2+ for the determined crystal

field parameters. The new ground state is 12-fold degenerate and from the calculation,

its orbital angular momentum can be written as L = −3
2 leff with leff = 1. When further

including the spin-orbit couplingHSO = λ̃SOL·S, the 12-fold degenerate ground state splits
into three states, see Table 1.6 and Fig.(1.2), characterized by an effective total angular

momentum jeff. This is because the ground state has an effective angular momentum

leff = 1 and a spin angular momentum S = 3/2. Owing to the minus sign in L = −3
2 leff,

even though the d-shell is more than half-filled, the total angular momentum for the lowest

energy state is jeff = |leff−S| = 1
2 and |leff+S| = 5

2 for the highest excited state. This is in

contrast to the third Hund’s rule. The two-fold jeff =
1
2 state is a Kramers doublet where

the two degenerate states are related by time reversal symmetry [8].

As a final remark, the crystal field parameters extracted from fitting to experimental data

contains the contributions from both the charge transfer process between transition metal

ions and ligands, and the static electric field generated by ligands. This is in contrast to

the crystal field parameters calculated from a point charge model, in which only the static

electric field effect is considered. Hence the Stevens operator formalism can be regarded

as an effective Hamiltonian for describing the single-ion properties of transition elements

in solids.
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Energy [meV] Degeneracy

0.0000 12

343.9258 12

773.8332 4

Table 1.5: Splitting of the ground state 4F for a Co2+ ion in an ideal octahedral crystal

field composed of O2−, which corresponds to the three splittings from the ground state
4F with increasing 10Dq in Fig.1.1. Notice as long as 10Dq is smaller than 0.75 meV as

illustrated in Fig.1.1, the three splittings are the three lowest eigenstates.

Energy [meV] Degeneracy jeff
0.0000 2 1/2

40.7129 4 3/2

110.6266 6 5/2

Table 1.6: Futher splitting of the 12-fold degenerate ground state manifold shown in Table

1.5 upon the spin-orbit coupling λ̃SO = −22 meV.

leff = 1

jeff = 5/2

jeff = 3/2

jeff = 1/2

Figure 1.2: Splitting of the leff = 1, S = 3/2 ground state due to spin-orbit coupling. The
resulting three states are characterized by jeff: 1/2, 3/2 and 5/2 as listed in Table 1.6.
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1.2.2 Magnetization and magnetic susceptibility
It can be useful to calculate the magnetization and magnetic susceptibility from a CEF

Hamiltonian, especially for fitting and comparison with experimental data. To achieve

this, first we need to define the total magnetization operator

M = ηL+ gS (1.15)

where g = 2.0 (ignoring the QED correction) and η is introduced to account for the hy-

bridization or charge transfer between a central ion and ligands. Normally η = 1 but for
most 3d-transition metals in solids, η is estimated around 0.8 [8].

In the presence of an external magnetic field B, the Hamiltonian reads

H = HCEF +HSO + µBB ·M (1.16)

where µB = 5.7883818012 × 10−2 meV·T−1 is the Bohr magneton. After projecting the

Hamiltonian onto the basis state manifold |L,mL, S,mS〉, it can be diagonalized and the
corresponding eigenstates |vi〉 and eigenenergies Ei can be easily obtained (i = 1 . . . N ,

N is the total number of states). Hence the total magnetization (in units µB per ion) can

be expressed as follow

〈M〉 = −
∑N

i=1 〈vi|M |vi〉exp (−Ei/kBT )∑N
i=1 exp (−Ei/kBT )

(1.17)

where the summation is over all the eigenstates and kB = 1
11.604505 meV· K−1 is the

Boltzmann constant. As for calculating a spherical average of magnetization (or the mag-

netization for a powder sample), the following formula is applied

〈M〉powder =
1

3

(
〈MBx〉+ 〈MBy〉+ 〈MBz〉

)
(1.18)

where MBi (i = x, y, z) represents the magnetization with the external magnetic field

applied along the corresponding i-direction.

The single-ion magnetic susceptibility χ(0) is calculated using a perturbative approach and

the final expression [17] (units in emu·mol−1·Oe−1) is

χ
(0)
αβ =

NAµ
2
Bµ0

4π × 1.60218× 10−28
×[

N∑
i=1

N∑
i′=1

IEi′ 6=Ei
·
〈vi|Mα |vi′〉 〈v′i|Mβ |vi〉

Ei′ − Ei

(
e−Ei/kBT − e−Ei′/kBT

)
+

N∑
i=1

〈vi|Mα |vi〉 〈vi|Mβ |vi〉
kBT

e−Ei/kBT − 1

kBT
〈Mα〉〈Mβ〉

] (1.19)

where α, β = x, y, z, NA is Avogadro’s constant, µ0 = 4π × 10−7 T·m·A−1 is vacuum

permeability, and IEi′ 6=Ei
is an indicator enforcing Ei′ 6= Ei for any two eigen-states |vi〉,

|vi′〉. The first term in Eq.(1.19) is the Van Vleck contribution, which becomes constant

at zero temperature. The second term, the so-called Curie contribution, diverges as 1
T in

the low-temperature limit [17].

In a realistic system, there are always interactions between neighbouring transition metal

ions, the so-called exchange interactions, which will be discussed in the next section. In

addition, the inner filled shells have a negative contribution to the susceptibility, yielding
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a diamagnetic term χdia. To take both of these contributions into account, at a mean field
(MF) level, the susceptibility can be written as [17]

χMF = χdia +
χ(0)

1 + 2J × χ(0)
(1.20)

where · · · indicates a matrix form and J represents the sum over all neighbouring ex-

change interactions. Similar to the total magnetization 〈M〉, a spherical average of sus-

ceptibility χMF is its trace

χMF
powder =

1

3
Tr
[
χMF

]
(1.21)

1.2.3 Exchange interactions
Asmentioned above, in a real material, there are always interactions between neighboring

transition metal ions. Here we will introduce two, the most common Heisenberg type, and

a more exotic one, the so-called Kitaev exchange interaction.

Heisenberg interaction
For simplicity, we only consider two electrons. Assume their total spin angular momenta

are S1 and S2 respectively. The Hamiltonian reads

HHeisenberg = JS1 · S2 (1.22)

which originates from (i) a direct Coulomb exchange [2, 18] between the two electrons

which results in a negative J and (ii) a kinetic exchange [18] process where the hopping

of the electrons to neighbouring sites is allowed. This gives rise to a positive J . The sign
of J determines the interaction type, for J < 0, it is ferromagnetic (FM) such that in the

ground state the spins form a triplet: |↑↑〉, |↓↓〉 and 1√
2
(|↑↓〉+ |↓↑〉). It is antiferromagnetic

(AFM) if J > 0. In this case the ground state is a singlet 1√
2
(|↑↓〉 − |↓↑〉).

The Heisenberg interaction is the most simple and common type of exchange interaction

encountered in nature. It will be predominantly considered throughout the thesis, together

with its anisotropic generalizations, such as a XXZ type with ∆ 6= 0.

HXXZ = JS1 · S2 +∆Sz1S
z
2 (1.23)

Kitaev interaction
In a seminal work [19], A. Kitaev proposed an exactly solvable spinmodel in two dimension

which is called now the Kitaev honeycombmodel. In short, Kiaev considered the following

situation: In a two-dimensional honeycomb lattice, there is a spin 1/2 degree of freedom

assigned to each lattice site. The interaction among them are restricted to a nearest

neighbour (NN). In addition, these interactions are bond-dependent, see Fig.1.3. The full

Hamiltonian reads

H =
∑
〈i,j〉

KxS
x
i S

x
j +KyS

y
i S

y
j +KzS

z
i S

z
j (1.24)

where the summation is over all the NNs and Kx, Ky, Kz are the so-called Kitaev ex-

change interactions.

Contrary to the Heisenberg type introduced in this section, it introduces a strong frustration

on the central spin: In a honeycomb lattice, there are three bonds {X, Y, Z} associated with

one lattice site, which are labeled by red, green and blue solid lines respectively in Fig.1.3.

Each bond carries an Ising-type interaction constraining the spins to align along the Ising
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KxS
xSx

KzS
zSz

KyS
ySy

?

Figure 1.3: Left panel: A honeycomb lattice as considered in the original Kitaev model

where each lattice point is assigned a spin 1/2 degree of freedom. Right panel: A

schematic drawing of the bond-dependent exchange interactions at each site. Each bond

is associated with an Ising-type interaction which introduces strong frustration on the cen-

tral spin.

easy axis, e.g. the interaction on the X bond is KxS
xSx, thus the spins are forced to be

parallel along the x-direction. As a result, the central spin cannot decide which direction

to point to because the Ising type interactions carried by the three bonds dictate it to align

itself to three orthogonal directions. One might naively speculate the ground state of the

Kitaev model is highly disordered and in fact Kitaev showed that the ground state is a

quantum spin liquid without any broken symmetries (can be either gapped or gapless

depending on the relative strengths of Kx, Ky and Kz [19]).

Due to the exotic bond-dependent interaction form of the Hamiltonian, it initially seems

impossible to realize such a model in real material. However in 2008, G. Jackli and G.

Khaliulin [20] first realized such a non-trivial model is indeed possible provided two es-

sential ingredients are present:

• The orbital and spin angular momenta of a transition metal ion is mixed, forming a

spin-orbit entangled ground state such that it is a Kramers doublet.

• The neighbouring transition metal ions must be connected via an edge sharing oc-

tahedral fashion where the metal-ligand-metal angle is 90◦ in an ideal case.

As an example, we consider Ir4+ (5d5) in a cubic crystal field following the original paper
[20] where the six corners of the octahedron are taken up by O2−. The crystal field splits
the d-orbitals into the doublet eg and the triplet t2g. The t2g levels can be effectively treated
as occupied by a hole, characterized by an effective orbital angular momentum leff = 1
and a spin angular momentum S = 1/2. Upon spin-orbital coupling, the t2g hole further
splits into jeff = 1/2 and jeff = 3/2 states, where jeff = 1/2 is the ground state (Kramers
doublet), see the left panel of Fig.(1.4). An edge sharing geometry of two octahedra is

sketched in the right panel of Fig.(1.4) where Ir4+ and O2− are represented by black and

red circles respectively. Of special interest, in such a geometry a destructive quantum

interference of the two Ir-O-Ir paths in the super-exchange process occurs [21], which

completely suppresses the conventional Heisenberg type exchange interaction. Instead

an Ising ferromagnetic exchange, −KJzeffJ
z
eff (K > 0), with easy axis perpendicular to

the Ir-O2-Ir plane (indicated by the blue plaquette in Fig.1.4) emerges. Hence the final
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↑↑
↑↑

↑

5d5

CEF

↑↓
↑↓

↑

t2g

eg

SOC

↑
jeff = 1/2

jeff = 3/2

Figure 1.4: Left panel: The splitting of 5d5 under CEF and SOC. The resulting ground state
is an effective jeff state occupied by a hole. ↑ and ↓ represent spin-up and spin-down states
of an electron, and ↑ represents a spin-up hole. Right panel: The edge sharing geometry
of two neighbouring octahedra, indicated by the two red dashed plaquette, when looking

from above. The black and red circles represent Ir4+ and O2− respectively (the two out-

of-plane O2− for each octahedron are ignored for clarity).

Hamiltonian in the local cubic coordinate system reads

H
(γ)
ij = −KS̃γi S̃

γ
j (1.25)

where γ = x, y, z for X, Y and Z bonds respectively, and S̃ is a pseudo-spin 1/2 operator

due to the Kramers doublet ground state.

1.3 Magnetic ordering
The exchange interactions introduced above can give different types of magnetic ordering.

Two most common types are:

• Ferromagnetic where all spins are parallel ↑↑↑ · · · ↑.

• Antiferromagnetic where the neighbouring spins are of opposite directions ↑↓↑ · · · ↓↑
(Néel state).

For probing magnetic ordering, several experimental techniques can be applied, of which

magnetic susceptibilityχ, specific heat and neutron diffraction are always the go-to choices.
Since magnetic ordering normally belongs to the family of second-order phase transition,

specific heat diverges at the ordering temperature [7]. This gives rise to the so-called

λ-anomaly. As pointed out by Fisher [22], the first-order derivative of χT is approximate

to magnetic specific heat Cm: Cm ≈ dχT
dT . Hence the signature of magnetic ordering is

also observable in magnetic susceptibility data. Neutron diffraction for probing magnetic

order will be discussed in the next chapter.

When temperature is far above the magnetic ordering temperature, the material under

study is in a fully paramagnetic state in which themagneticmoments are randomly aligned.

In this region, the magnetic susceptibility of the material can be described by the well-

known Curie-Weiss law, see Eq.(1.26).

χ(T ) =
C

T − TCW
(1.26)

C is a material specific Curie constant given by [7]

C =
µ0µ

2
B

3kB
g2S(S + 1) (1.27)

where g is the Landé g-factor, S is the spin angular momentum of the magnetic ion in

the material. TCW is the Curie-Weiss temperature which is associated with the sum of
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all exchange interactions inside the material. Assuming the exchange interactions are

Heisenberg like, TCW is given by the expression [7]

TCW = −S(S + 1)

3kB

∑
j

Jij (1.28)

where the summation goes over all neighbours with which a given spin interacts.

1.4 Magnetic excitations
In this section, we will introduce two types of excitations mostly encountered in real ma-

terials, namely spin waves and spinons. For detail treatments and discussions on these

two excitations, see Ref [23, 24].

1.4.1 Spin waves
Amagnetically ordered ground state breaks the spin-rotation symmetry, of which the most

important collective excitations are spin waves. The standard procedure for finding the

spin wave dispersions of any ordered ground states [24] starts with rotating the ordered

spins such that the moment directions are parallel to the Z axis in a global Cartesian co-

ordinate system. Then apply the Holstein-Primakoff expansion of the spin operators and

restrict the Hamiltonian up to a quadratic order form. The resulting quadratic Hamilto-

nian can be diagonalized by performing a Bogoliubov transformation and the obtained

eigenenvalues are the desired spin wave energies. Here we summarize the important

aspects of spin wave dispersions for ferromagnetic and antiferromagnetic ground states

respectively, assuming a Heisenberg type Hamiltonian:

• Ferromagnetic ground state: in the long wavelength limit, i.e. q → 0, the dispersion
is quadratic }ωq ∼ q2.

• Antiferromagnetic ground state: close to the zone center (for a square lattice it cor-

responds to q = (π, π) assuming the lattice constant is 1), the dispersion is linear in
q for small deviations δq: }ωEq ∼ δq.

The spin wave dispersions calculated in the thesis were carried out using a MATLAB

package SpinW [24] which is a numerical implementation of the linear spin wave theory

(LSWT) for a single Q ordered ground state.

1.4.2 Spinons
Spin waves represent a type of elementary excitations that changes the total spin angular

momenta of ground states by 1, i.e. ∆S = 1. In some special cases, such a S = 1
excitation is able to fractionize into two S = 1/2 objects, known as spinons.

To illustrate this idea, the nearest neighbor Heisenberg antiferromagnet S = 1/2 chain is
taken as an example. Owing to the ground state spin-spin correlation decays as a power

law [23],

〈0|Si · Sj |0〉 ∼
(−1)i−j log1/2 |i− j|

|i− j|2
(1.29)

if one were to take a snap shot of a local spin configuration of the spin chain, it would look

like a Néel state.

A ∆S = 1 excitation in such a Néel state corresponds to a local spin flip. By doing so,

two independent domain walls are created separating two possible stagger-order states

as shown in Fig.1.5. It is these domain walls are called spinons in such a 1D scenario

and each carries a S = 1/2 degree of freedom.
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Figure 1.5: A pair of spinon excitations in the nearest neighbor Heisenberg antiferromag-

netic S = 1/2 chain. (a)(b) Two opposite-stagger ordered states in 1D. (c) A spin flip

excitation occurs at the center of the chain. (d) Fractionalization of the single flipped spin

into two S = 1/2 domain walls which separate pattern I and pattern II ordering. The figure
is taken from [23].
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2 Elements of Neutron Scattering

The basic properties of neutron and how it interacts with matter are discussed in this

chapter. More detailed and rigorous theoretical treatments and derivations can be found

in [25, 26, 27, 28]. The related instrumental setups used in this thesis will be presented

in the next chapter.

2.1 Basic properties of the neutron
As the name suggests, neutron is a charge-neutral particle. Unlike another charge-less

particle, the photon, it has a finite mass, mn = 1.675 × 10−27 kg. Further it is a fermion

with spin S = 1/2, which allows it to interact with magnetic fields. Finally the lifetime of

a free neutron is close to 15 minutes, which is long enough for it to interact with matters

before decaying into an electron, a proton and an electron neutrino: n0 → e− + p+ + v̄e.
The basic properties of the neutron are summarized in Table 2.1.

There are two ways to produce neutrons in the field of neutron scattering: either via a

nuclear fission process or a spallation process. Nuclear fission takes place in a nuclear

reactor where a heavy and unstable nucleus, e.g. U235 is bombarded by slow neutrons.

The nucleus then splits into smaller parts and generates more neutrons. Whereas for

spallation, protons are accelerated to hit a heavy metal target, such as Hg orW. The target

nuclei are excited and expel neutrons and other particles. In both cases, the generated

neutrons are of high energies ([MeV]). Hence it is necessary to slow them down to the

desired energies ([meV]) for conducting scattering experiments via modulators [28].

2.2 Neutron-matter interaction
Neutron scattering has several advantages:

• A neutron can penetrate deeply into solids as there is no Coulomb interaction be-

tween the electrons in the solids and the neutron. Hence it is an excellent tool for

characterizing the bulk properties of materials.

• As a spin 1/2 particle, a neutron can interact with the magnetic fields created by the

orbital and spin angular momenta of the ions in solids. Consequently, neutrons can

be directly used to study magnetic properties of materials.

There are two types of interactions that we will encounter when neutrons pass through

materials. One is the interaction with the nuclei via strong forces and the other is the mag-

netic dipole interaction between the unpaired electrons and the neutrons. The strengths

of the two interactions are of a similar order of magnitude. This is an advantage for study-

ing magnetic scattering using neutrons as opposing to using X-rays, due to the magnetic

cross-section is very small in X-ray scattering [29].

Properties Value

Mass 1.675× 10−27 kg

Charge 0

Spin 1/2

Magnetic dipole moment 9.6623647× 10−27 J·T−1

Lifetime 881.5± 1.5 s

Table 2.1: Basic properties of neutrons.
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2.2.1 Strong force
The interaction between a nucleus and a neutron has a very short range, much smaller

than the wavelength of neutrons used for scattering experiments (for thermal neutron

scattering the wavelength lies in between 1.3 Å and 4.0 Å [28]). Moreover, the nuclear

scattering is isotropic and can therefore be characterized by a single parameter b, called
the scattering length. The Fermi pseudo-potential takes the form [25, 28]

VN (r) =
2π}2

mn
bδ(r− R) (2.1)

where R is the position of the nucleus and r is the position of the neutron. The scattering

length b not only depends on the isotope of the atom, but also is associated with the

relative orientations between the neutron spin and the nuclear spin I of the isotope. For

a natural nucleus interacting with an unpolarized neutron beam, the scattering length is

an average of all the natural isotope populations it has and all the spin directions of the

neutron. Thus the scattering length is normally denoted as b̄.

2.2.2 Magnetic dipole interaction
The magnetic interaction arises from the coupling between the neutron magnetic moment

and the magnetic fields created by unpaired electrons. Since electrons have both spin

and orbital angular momenta, the potential felt by the neutron at r due to N unpaired

electrons whose positions are Ri takes the form [30, 31]

VM (r) = −µn · H

H = HS + HL =
N∑
i=1

(
∇× µi × (r− Ri)

(r −Ri)
3 − 2µB

h̄

pi × (r− Ri)

(r −Ri)
3

)
(2.2)

where µn = γµNσ is the magnetic moment of neutron (γ = 1.76 × 1011 s−1 T−1 and µN
are the gyromagnetic ratio and nuclear Bohr magneton respectively) and µi = −2µBsi
is the magnetic moment of the ith electron. si is the spin angular momentum for the

ith electron and pi is its momentum. The two contributions HS and HL comes from the

dipolar interaction with the electron spins, and the electron orbital motions respectively.

2.3 Neutron scattering cross-sections
In neutron scattering, cross-section is a measure of the probability that neutrons are scat-

tered from a target. In practice the three most frequently quoted cross-sections are list as

follow [31]:

• Total cross-section σ:

σ =
total number of neutrons scattered in all direction per second

incident flux
(2.3)

It serves as the effective area of the target as viewed by the incident neutrons, which

is in units of [barn] (1 barn = 10−28 m2).

• Differential cross-section dσ
dΩ :

dσ

dΩ
=
total number of neutrons scattered in solid angle dΩ per second

incident flux · dΩ
(2.4)

The differential cross-section is from the view of a detector whose solid angle cov-

erage is dΩ. Note it has the unit of [barn·sr−1].
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• Double differential cross-section d2σ
dΩdE :

Suppose detectors can analyze the energy of the scattered neutrons. The double

differential cross-section is needed as it describes the differential cross-section of

neutrons in a final energy interval [Ef , Ef + dE],

d2σ

dΩdE
=

total number of neutrons scattered in solid angle dΩ per sec-

ond with final energies between Ef and Ef + dE

incident flux · dΩ · dE
(2.5)

which is in units of [barn·sr−1·meV−1].

The last two, the differential cross-section and the double differential cross-section, are

relevant for elastic and inelastic scattering, respectively.

2.3.1 Elastic scattering
The elastic scattering refers to a process where an incident beam of neutrons character-

ized by a wavevector ki and spin σi, impinges on a target and scatters into a final state
characterized by a wavevector kf and spin σf with ki = kf . In such a process, there is

no energy transfer. Define the scattering vector Q = ki − kf . The general expression for

the differential cross-section takes the form [30]

dσ

dΩ
(kfσf ,kiσi) =

( m

2π}2
)
〈kf |V (r) |ki〉 (2.6)

where V (r) is the potential felt by neutrons.

In turn the differential cross-section for the nuclear coherent scattering part from an un-

polarized neutron beam for a natural nucleus is [30]

dσNcoh

dΩ

∣∣∣∣
elastic

= |b̄|2 (2.7)

and in addition, the fluctuation of the scattering length due to its natural isotopes, denoted

as ∆b, gives rise to the nuclear incoherent scattering [30].

dσN inc

dΩ

∣∣∣∣
elastic

= |∆b|2 (2.8)

If the nucleus has unpaired electrons in its outer shells. Due to the finite spatial spread in

real space of the unpaired electrons, the magnetic scattering intensity in Q space decays

as the increase of Q. This effect can be summarized in a single term, the so-called mag-

netic form factor f(Q) [25]. Moreover, neutrons can only couple to the magnetic moment
perpendicular to the scattering vector Q [25, 30], denoted as µ⊥, hence the differential

scattering cross-section for the magnetic scattering of an unpolarized neutron beam from

a pure paramagnetic ion reads [25, 30]

dσM
dΩ

∣∣∣∣
elastic

= p2f(Q)2µ2⊥ (2.9)

where p = 0.2696× 10−14 m is a constant.

In the above discussion, we only considered the scattering from a single ion. Inside a

crystal, billions of ions align with each other and form a periodic structure. Such periodicity

gives rise to both constructive and destructive interference in the final scattering pattern.

The Bragg condition is satisfied in situations where constructive interference occurs. The
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derivation of the differential cross-sections for coherent nuclear scattering and magnetic

scattering for an unpolarized neutron beam scattered from a crystal can be found in Refs

[26, 27, 25]. In the following, we summarized the main results (for simplicity we ignore

the Debye-Waller factor [25] in the nuclear/magnetic structure factors).

The expression for the differential cross-section for coherent nuclear scattering reads [25,

30]

dσNcoh

dΩ

∣∣∣∣
elastic

=
(2π)3

V
N
∑
H

|FN (Q)|2δ(Q− H) (2.10)

whereH is a reciprocal lattice vector, V is the volume of one unit cell,N is the total number

of unit cells inside the crystal and FN (Q) is the unit cell nuclear structure factor defined

as [25, 30]

FN (Q) =
∑
v

bve
iQ·rv (2.11)

and the index v denotes the v-th atom inside the unit cell. In Eq.(2.10), the δ-function
encodes the Bragg condition: for a perfect crystal, constructive interference occurs if the

scattering vector Q coincides with a reciprocal lattice vector H. These special reciprocal

lattice vectors are called (nuclear) Bragg peaks.

The differential cross-section for magnetic scattering can be written in a similar fashion,

but with a few complications [30]:

dσM
dΩ

∣∣∣∣
elastic

=
(2π)3

V
N
∑
H

∑
k

|FM⊥(Q)|2δ(Q− H− k) (2.12)

Any ordered ground state can be expanded as a sum of Fourier series [30], see Eq.(2.13),

where µn,v is the magnetic moment associated with the site index (n, v) (n for unit cells, v
for atoms), and mv,k is the Fourier component associated with the propagation vector k.

Taken as an example, a 2D square lattice antiferromagnet has a propagation vector k =
(1/2, 1/2). Thus now we can define the magnetic structure factor FM (Q), see Eq.(2.14)
[30]. As before, the summation is carried out over all the atoms inside one nuclear unit

cell and fv(Q) are the associated magnetic form factors.

µn,v =
∑
k

mv,ke
−ik·Rn (2.13)

FM (Q = H+ k) = p
∑
v

fv(Q)mv,ke
iQ·rv (2.14)

With Eq.(2.13) and Eq.(2.14), we can finally interpret Eq.(2.12). The double summations

are carried out not only for the reciprocal lattice vectors H, but also for the propagation

vectors k (for complex structures there might be one than one k). With the δ-function
constraint, the (magnetic) Bragg peaks can only locate at H+ k; And because µn,v must
be real, k always shows up in pairs ±k and the magnetic Bragg peaks H ± k are a pair

of satellite peaks around the nuclear Bragg peak H. Moreover, as in the single ion case,

see Eq.(2.9), neutrons only couple to the magnetic moment perpendicular to Q (FM⊥).

2.3.2 Inelastic scattering
In inelastic scattering, the energy E and momentum Q transfers are defined as follow

E = Ei − Ef =
}k2i
2mn

−
}k2f
2mn

Q = ki − kf

(2.15)
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Figure 2.1: Inelastic neutron scattering spectrum for phonon excitations of a Aluminium

powder sample collected at 10 K on the MARI spectrometer at the ISIS Neutron and Muon

Source [32].

Ei andEf are the energies of the neutrons before and after being scattered from a sample,

and ki and kf are the associated wavevectors. Throughout the thesis’s work, only two

situations were encountered in which either theEi or theEf of an scattering event is fixed.
The kinematic constraint for each situation is illustrated as follow.

• Ei is fixed:
}Q2

2mn
= 2Ei − E + 2

√
Ei(Ei − E) cos 2θ (2.16)

• Ef is fixed:
}Q2

2mn
= 2Ef + E + 2

√
Ef (Ef + E) cos 2θ (2.17)

The double differential cross-section for inelastic scattering can be written as [31]

d2σ

dΩdEf
=
kf
ki
S(Q, E) (2.18)

where S(Q, E) is the response function carrying all the information on the physics of the
system [31]. For scattering from lattice vibrations or phonons, the response function

SN (Q, E) for one-phonon scattering for a Bravais lattice varies according to [28]

SN (Q, E) ∝
∑
H

(Q · eq)2

Eq
[(nq + 1)δ(E − Eq)δ(Q− H− q) + nqδ(E + Eq)δ(Q− H+ q)]

(2.19)

where q is a reciprocal lattice vector with respect to H, Eq is the phonon energy at q, eq
is the associated polarization vector, and nq is the phonon occupation number at tem-

perature T : nq = 1
eEq/kBT−1

. Notice that the response function has a prefactor (Q · eq)2.
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Figure 2.2: Inelastic neutron scattering spectrum measured on a α-RuCl3 powder sample
collected at 5 K on the SEQUOIA spectrometer at the Spallation Neutron Source [33].

Due to this term, phonons dominate highQ regions in spectra as their intensities increase

quadratically in Q. As illustrated in Fig.2.1 where the experimental inelastic neutron scat-
tering spectrum of phonon excitations in a polycrystalline Aluminium is shown [32], the

spectrum is dominated by the pronounced scattering features locating at large momen-

tum transfersQ ≥ 5 Å−1, in contrast to the weak scattering signals recorded at momentum

transfers Q ≤ 4 Å−1.

The response function for magnetic scattering SM (Q, E) for a Bravais lattice is proportional
to [28]

SM (Q, E) ∝ f(Q)2
∑
α,β

(
δαβ −

QαQβ
Q2

)∑
i,j

∫ +∞

−∞
e−iEt/}〈Sαi (0)S

β
j (t)〉e

−iQ·(Ri−Rj)dt

= f(Q)2
∑
α,β

(
δαβ −

QαQβ
Q2

)∫ +∞

−∞
e−iEt/}〈SαQ(0)S

β
−Q(t)〉dt

(2.20)

where α, β = x, y, z, f(Q) is the magnetic form factor and 〈Sαi (0)S
β
j (t)〉 is the thermal

average of the time-dependent spin operators, which essentially describes the probability

that, if the magnetic moment of the ith site has a specific vector Si at time zero, then

the magnetic moment at site j at time t takes another specific vector Sj [28]. The fac-

tor
(
δαβ −

QαQβ

Q2

)
highlights the fact that, neutrons only couple to the spin fluctuations

perpendicular to the scattering vector Q, e.g. if the magnetic fluctuation is along the x-

direction, then at Q = (1, 0, 0) neutrons are unable to couple to it whereas at Q = (0, 1, 0)
one can probe it directly. As an example, in Fig.2.2 we illustrate the measured magnetic

excitations in a polycrystalline α-RuCl3 collected in its magnetic ordered phase [33]. It is
evident that, in contrast to phonon scattering whose intensity is most prominent at large

momentum transfers as illustrated in Fig.2.1, magnetic excitations dominate small mo-

mentum transfer regions in an inelastic neutron scattering spectrum. This is due to the

magnetic form factor f(Q) has an exponential decay in momentum space.
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For scattering from polycrystallinematerial, the double differential cross-section is a spher-

ical average of
kf
ki
S(Q, E) over all possible momentum transfers Qk that share the same

length |Q| ((k = 1, 2, . . . , NQk
and NQk

is the number of momentum transfers that have

the length |Q|), which can be written as follow

d2σ

dΩdEf

∣∣∣∣
powder

=
1

NQk

×
kf
ki

∑
Qk∈|Q|

S(Qk, E). (2.21)

Due to the spherical average, majority of the information regarding the physics of the

system is lost. Whereas such an average is absent in the spectra taken on single crystals,

which offer a direct view of the response function S(Q, E) in full (Q, E) space. Thus it is
less straightforward to interpret powder spectra compared to the spectra measured on

single crystals.

In Chapter 1 we introduced the multiplet splitting of transition metal ions under CEF and

SOC when embedding into solids. With the application of the Stevens operator formalism

explained in Section 1.2.1, the energy levels Ei and the corresponding wavefunctions |vi〉
of the split states (i = 1, 2, . . . , N where N is the total number of the states) from the

ground state manifold obtained in the isolated ion limit for a transition metal ion can be

calculated. Due to the selection rule of neutron scattering, the only allowed transitions be-

tween these states are those whose total angular momentum changes∆J satisfy: ∆J = 1
and∆Jz = 0,±1 [28]. In Eq.(2.22), a general formula for computing the double differential
cross-section for such transitions is presented [28]

d2σ

dΩdEf
∝
kf
ki
f(Q)2

∑
i,j

e−Ei/kBT

Z
| 〈vi|M⊥ |vj〉 |2 · δ (E − (Ei − Ej)) (2.22)

where kB is the Boltzmann constant, T is temperature and Z is the partition function

Z =
∑

i e
−Ei/kBT . M⊥ represents the part of the total magnetization operator M (defined

in Section 1.2.2) that is perpendicular to the momentum transfer Q. For scattering from

polycrystalline material, the calculation of | 〈vi|M⊥ |vj〉 |2 can be simplified to [28]

| 〈vi|M⊥ |vj〉 |2 =
2

3

(
| 〈vi|Mx |vj〉 |2 + | 〈vi|My |vj〉 |2 + | 〈vi|Mz |vj〉 |2

)
. (2.23)

2.4 Polarized neutrons
A detailed treatment of neutron polarization analysis can be found in [27], [34] and [25].

Here we only summarize the main results regarding XYZ-polarization analysis, as it is of

the most relevance to the thesis’s work in Section 6.2.

During a scattering event, it is possible for a neutron to flip its spin state when scattered

from a sample. Due to its spin 1/2 nature, a neutron spin can either be in a ”up” state |+〉
or in a ”down” state |−〉. Thus four different spin-state transitions could happen during a
scattering event for an unpolarized neutron beam: |+〉 → |+〉, |+〉 → |−〉, |−〉 → |−〉 and
|+〉 → |+〉. Even though these are not particular useful for unpolarized neutron scattering
experiments, it turns out, by measuring these transition event separately, it is possible to

obtain the nuclear-coherent (it also contains the isotope incoherent cross-section, hence

denoted as nuc+ii), nuclear spin-incoherent (si) and magnetic (mag) cross-sections indi-

vidually. To determine the polarization of neutron beam during an experiment, a quantity

called flipping ratio, F = N+

N−
is introduced, where N+ and N− are the numbers of neu-

trons in the spin-up and spin-down states, respectively. Using the flipping ratio, the beam
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Figure 2.3: The geometry of an XYZ polarization analysis experiment. The incident neu-

tron polarization alternates in the X-, Y- and Z- directions. The Schärpf angle α is defined

as the angle between the X-axis and the scattering vector Q.

polarization P can be obtained:

P =
N+ −N−
N+ +N−

=
F − 1

F + 1
. (2.24)

A typical value for a polarized neutron expeiment is F = 20 − 30, correspondingly P =
90− 95 %.

The method we will be introducing is the so-called XYZ-polarization analysis. Here we

only considered the most simple situation in which the scattering is limited within the XY

plane only, as illustrated in Fig.2.3. For the treatment of an arbitrary scattering direction,

it can be found in Ref [35]. The geometry of the XYZ polarization analysis is illustrated in

Fig.2.3. The angle between the scattering vector Q and the X axis is called the Schärpf

angle, denoted as α. Thus the unit scattering vector is Q = (cosα, sinα, 0). We further

assume the polarization of the neutrons received by the planar detectors is fixed, e.g.

|+〉, and by varying the incident neutrons’ polarization states, either |+〉 or |−〉, this gives
rise to non spin-flip (NSF) |+〉 → |+〉 and spin-flip (SF) |−〉 → |+〉 events. Moreover,

by alternating the polarization of the incident neutrons along three directions (X, Y and

Z), we end up have six scattering cross-sections recorded by the detectors, and their
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compositions are listed as follow.(
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(2.25)

With some algebra manipulations, the magnetic differential cross-section can be calcu-

lated independently in two different ways, see Eq.(2.26), and in practice we are mostly

interested in the average of the two.(
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For the nuclear-coherent and nuclear spin-incoherent cross-sections, we have(
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(2.27)

where the upperscripts Tot NSF and Tot SF refer to the total NSF and total SF cross-

sections respectively.
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3 Experimental Techniques

Throughout the project, a number of experimental techniques were employed. These in-

clude not only thermodynamic material characterization methods, such as DC magnetic

susceptibility, magnetization and specific heat, but also involves various scattering tech-

niques for an in-depth understanding on a microscopic level regarding systems’ structures

and Hamiltonians. In this thesis’s work, neutron diffraction, inelastic and polarization neu-

tron scattering experiments were performed. All these techniques are described in this

chapter.

3.1 Thermodynamic material characterization methods
As mentioned in Section 1.3, characterizing materials’ properties such as their specific

heats or susceptibilities are effective ways to extract physical quantities such as magnetic

ordering temperatures, effective moments and Curie-Weiss temperatures. Moreover, by

varying external physical quantities in these measurements, such as magnetic field, tem-

perature or pressure, the measured results can be used to obtain the phase diagram of

a material with the external quantities as independent variables. Most of these kinds of

experiments can be done at university laboratories and are relatively easy to conduct. In

general, the measurements are also fast, producing a large amount of data in a short time

scale. However only macroscopic physical quantities are measurable in these type of ex-

periments. In order to interpret the results, an understanding on a microscopic level is

often of necessity. For this purpose, additional measurements such as neutron scattering

experiments and theoretical calculations are often needed.

Vibrating sample magnetometer. The vibrating sample magnetometer (VSM) for con-

ducting magnetization and DC magnetic susceptibility measurements in Chapter 5 and 6

is a Quantum Design Physical Properties Measurement System (PPMS) at DTU Chem-

istry.

The magnetometer consists of a cryostat able to cool down to 1.5 K and a DC magnetic

field up to 9 T along the vertical direction, together with a linear motor for vibrating the

sample under study and a pickup coilset for detection. The measurement is accomplished

by oscillating the sample around the pickup coil and synchronously measuring the voltage

induced [36]. The basic theory behind the scene for a VSM is Faraday’s law of induction:

a changing magnetic flux will induce a voltage in the pickup coil, which is given by the

following equation:

Vcoil =
dΦ

dt
=

(
dΦ

dz

)(
dz

dt

)
(3.1)

where Φ is the magnetic flux through the pickup coil and z is the vertical position of the

sample with respect to the coil, controlled by the linear motor. For a sinusoidally oscillating

sample position, the induced voltage takes the form [36]

Vcoil = 2πfCmA sin (2πft) (3.2)

where C is a coupling constant, A is the amplitude of oscillation and f is the associated

frequency. These are the known quantities for a given measurement. For acquiring the

DC magnetic moment m of the sample, the measuring of the coefficient 2πfCmA in the

sinusoidal voltage response from the pickup coil is thus required [36].
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Figure 3.1: Schematic of heat capacity experimental setup in the PPMS. Adapted from

Ref [37].

Figure 3.2: A GaCl2(pyrazine)2 powder pellet as mounted in the PPMS.

Heat capacity measurement. The heat capacity measurements presented in Chapter 6

were using a Quantum Design PPMS at EPFL Lausanne with applying external magnetic

field from 0 T to 14 T. As shown in Fig.3.1, a sample is mounted on a platform to which

the wires provide electric connection, and thin layer of grease is placed in between the

sample and the platform for ensuring thermal contact. In Fig.3.2, the sample under study

is a powder pellet of GaCl2(pyrazine)2 of the mass of 5.7 mg. Due to the air sensitive

nature of the material, the sample was covered with a thick layer of grease to protect it

from oxidisation.

Heat capacity measuring process is similar to the charging and discharging processes

of a capacitor. For conducting measurements on a material, during each measurement

cycle, a heating period followed by a cooling period is performed [37]. The obtained

temperature response of the platform from this entire heating-and-cooling process is fitted

to a model which takes into account both the thermal relaxation of the platform to the bath

temperature and the relaxation between the platform and the sample itself [37]. From the

fit, the correct heat capacity of the sample and the associated errorbar can be obtained.

3.2 Neutron scattering experiments

The neutrons generated from either a nuclear fission or a spallation process are too high

in energy (in the MeV range) to perform any scattering experiments. To slow the hot neu-

trons down, collisions with other atoms or substances is needed to shift the energy down

to the meV range required for scattering experiments in condensed matter research. This

can be accomplished by using moderators made of light substances such as liquid H2O or

methane [28], with which the neutrons become thermally equilibrial when the moderator

is kept at a constant temperature T . After the moderator the neutrons follow a Maxwellian
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Figure 3.3: The instrument layout of D1B at the Institut Laue-Langevin, France

distribution [28]

Dist(λ) ∝ 1

λ3
exp

(
− h

2kBTmnλ3

)
(3.3)

where λ is the wavelength of the neutrons.

Once the neutrons have been produced and moderated, it is necessary to transport them

to the required beamline positions. The neutron flux at an instrument at a distance r from
the source reduces dramatically according to the well-known law for isotropic radiation

[28]: flux ∝ r−2. To overcome this, neutrons are transported inside neutron guides,

which are made of so-called supermirrors consisting of a sequences of alternating layers

of high positive (e.g. Ni) and negative (e.g. Ti) scattering length materials [28]. When

neutrons impinge on the mirrors with an scattering angle below the critical angle γc, total
external reflection occurs and the flux at the instrument position is increased significantly

compared to a conventional beam tube.

3.2.1 Neutron diffraction
The diffraction experiments included in this thesis were nearly all performed on continuous

source based powder diffractometers. In Fig.3.3, we show a typical layout of such an

instrument taken from the powder diffractometer D1B at the Institut Laue-Langevin. Once

the neutrons have been transported to the instrument position, they first impinge on a

monochromator where only neutrons of the desired wavelength λ0 or the higher-orders

(λ0/2, λ0/3, . . . ) are reflected. To eliminate the high order reflections, a beam filter is

Spectroscopy Study of Low-dimensional Quantum Magnets 29



Figure 3.4: The instrument layout of IN5 at the Institut Laue-Langevin, France

placed in the beam, such as a Be filter. For a Be filter, neutrons with wavelengths below

the cutoff wavelength (4 Å) are completely scattered out of the beam, whereas the large-

wavelength neutrons pass the filter almost intact [28]. Afterwards, the neutron beam is

transported to the sample position through a evacuated flight tube with the beam size

controlled by adjustable slits. The scattered neutrons from the sample are collected by
3He detectors. The Radial Oscillating Collimator (ROC) eliminates the parasitic diffraction

from the sample environment.

The recorded scattering pattern from the detectors is a function of the scattering angle

2θ and is proportional to the differential scattering cross-section of the material. On top

of that, the scattering intensity is also modulated by a geometric factor relating to the

instrument itself, the so-called Lorentz factor [25].

Lorz(2θ) =
1

4 sin θ × 2π sin 2θ
(3.4)

As a final remark, the data obtained from a neutron powder diffractometer as illustrated

in Fig.3.3 contains contributions from both elastic and inelastic channels. However com-

pared to the elastic part, the inelastic signals are extremely weak and mostly contribute

to the background only. Therefore even though the detectors cannot distinguish the con-

tributions from the two channels, it is not a big concern in practice as the collected full

spectrum is dominated by the elastic contribution.

3.2.2 Neutron spectroscopy

The inelastic experiments included in the thesis were taken from pulse source based

inelastic scattering spectrometers, all of which are operated according to the so-called

time-of-flight (TOF) method [28]. In Fig.3.4, we show a representative layout of a TOF

inelastic neutron scattering spectrometer IN5 at the Institut Laue-Langevin.

Owing to the fact that, in scattering experiments neutrons normally have velocities of

the order of a few hundred to a few thousand m/s, their energies can be determined by

measuring the time taken to travel from one position to another given the known distance

between the two positions. To quantify the energy transfers during a scattering event,

either Ei or Ef needs to be known in advance. This distinguishes direct and indirect

geometry spectrometers.
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Figure 3.5: The instrument layout of D7 at the Institut Laue-Langevin, France

• Ei is fixed (direct geometry). In such a geometry, by measuring the time taken

by a scattered neutron to travel from the sample position to the detector bank, it is

possible to determine the final energy Ef of the neutron. The energy transfer E and

the amplitude of the final wavevector kf thus can be determined by E = Ei − Ef

and kf =
√

2mnEf

}2 . Given the position of each detector in a laboratory coordinate

system and the amplitude of the final wavevector kf , the final wavevetor kf can be

deduced, hence the scattering vector Q = ki − kf is found as well.

• Ef is fixed (indirect geometry). For indirect geometry spectrometers it is the fi-

nal energy Ef that being fixed. By measuring the time taken by an incident neu-

tron to travel from the choppers to the sample position, the incident energy Ei and
wavevector ki can be determined. Given the prior knowledge of kf andEf , it is easy
to determine the energy transfer E = Ei −Ef and the scattering vector Q = ki − kf
respectively.

For shaping neutron pulse width and filter out the undesired wavelengths from incident

neutrons, several choppers are placed in front of the sample position to fulfill such pur-

pose. Moreover, modern time-of-flight inelastic scattering spectrometers use with the

so-called Repetition Rate Multiplication (RRM) technique[38] in which the choppers are

configured to allow the passage of several monochromatic beams onto the sample. This

scheme allows efficient use of the pulsed neutron source and permits the simultaneous

interrogation of the excitation spectrum over different momentum and energy transfer

ranges, Q and E .

3.2.3 XYZ-polarization analysis

In this thesis’work, there was a single diffraction experiment conducted on the spectrome-

ter D7 at the Institut Laue-Langevin with polarized neutrons and XYZ-polarization analysis.

D7 is a diffuse scattering spectrometer dedicated to study the often neglected portions of
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Supermirror polarizer [28]

The total reflection from a supermirror polarizer has con-

structive interference for one spin state of incident neu-

trons and destructive interference for the other.

Spin flipper [28]

A spin flipper is a set of coils inside which the magnetic

field is perpendicular to both the polarization and the flight

direction of the neutrons. With the application of the Lar-

mor procession, neutrons passing through the coil expe-

rience a sudden field change and perform a procession

with respect to the field direction. The resultant polariza-

tion direction depends on the incoming neutron velocity,

the thickness of the coil and the applied field strength.

Table 3.1: Concepts of supermirror polarizer and spin flipper.

neutron scattering patterns of crystalline materials: the regions between the nuclear and

magnetic Bragg peaks where the information on nuclear and magnetic structural disorder

that is usually hidden. To achieve this purpose, D7 fulfills a number of stringent criteria

[34]: (i) Relaxed the Q resolution in favour of high neutron flux; (ii) Relatively low instru-

mental background; (iii) Equipped with the ability to perform polarization analysis, so that

the nuclear coherent, nuclear spin incoherent and magnetic scattering contributions can

be separate unambiguously as explained in Section 2.4.

The instrument layout of D7 is shown in Fig.3.5. A double focusing graphite monochro-

mator, both vertically and horizontally, is applied for selecting neutrons of wavelength 3.1,

4.8 or 5.8 Å. The focused monochromatic beam is polarized using a supermirror polarizer,

see Table 3.1. To ensure the neutron polarization of the beam is transported through the

instrument, a magnetic guide field of around 10-20 G is applied. The neutron polarization

is manipulated via a spin flipper, see Table 3.1, followed by a set of orthogonal Helmholtz

xyz field coils placed around the sample position, which alternate the neutron polariza-

tion in x, y and z directions adiabatically. The detector bank is equipped with supermirror
analysers (polarizers), allowing to perform XYZ-polarization analysis.

3.2.4 Expeiments conducted throughout this thesis’s work
In Table 3.2, we list the materials presented in this thesis and the corresponding instru-

ments conducting the investigations.
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Material Instrument

Cu(DCOO)2·4D2O
A direct geometry spectrometer MAPS at the ISIS Neu-

tron and Muon Source.

(5CAP)2CuCl4
An indirect geometry back-scattering spectrometer

OSIRIS at the ISIS Neutron and Muon Source.

Na2Co2TeO6
A direct geometry spectrometer MARI at the ISIS Neutron

and Muon Source.

CrI2(pyrazine-D4)2
A direct geometry spectrometer MARI at the ISIS Neutron

and Muon Source.

GaCl2(pyrazine-D4)2
A direct geometry diffuse scattering spectrometer D7 at

the Institut Laue-Langevin.

CrCl2(pyrazine-D4)2
A direct geometry spectrometer LET at the ISIS Neutron

and Muon Source.

CrCl2(pyrazine-D4)2
A direct geometry spectrometer MAPS at the ISIS Neu-

tron and Muon Source.

CrI2(pyrazine)2
A powder diffractometer SPODI at the Heinz Maier-

Leibnitz Zentrum.

Table 3.2: List of materials presented in this thesis and the corresponding instruments

for conducting the experiments.
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4 Quantum Square Lattice

Antiferromagnet

The problem in which we are interested in this chapter is Heisenberg model on a square

lattice

H = J
∑
〈i,j〉

Si · Sj (4.1)

where the summation is over all nearest neighbour sites and J represents an isotropic

Heisenberg exchange interaction. In particular, we focus on the scenario where J is

antiferromagnetic (J > 0). In the classical limit, where spins S are treated as ordinary

vectors, the neighbouring spins on the square lattice tend to be antiparallel to each other,

in favor of minimizing the total energy of the system. Hence the ground state is an Néel

state characterized by the propagation vector (π, π). The spin wave dispersion for the

system along the high-symmetry directions in the Brillouin zone of a 2D square lattice is

shown in Fig.4.1b. Due to the spontaneously antiferromagnetic ordering in the ground

state, the SO(3) rotation symmetry imposed by the Hamiltonian is broken, which gives

rise to the so-called Goldstone gapless energy modes at the zone center (π, π) and the
equivalent positions. Moreover, along the zone-boundary direction, i.e. from (π, 0) to
(π/2, π/2), the excitation is dispersion-less, which is a consequence of the fact that at

these momenta the low-order spin wave Hamiltonian vanishes [39]. This also means

due to the absence of the Bogoliubov rotation, the Bosons at the two sublattices of the

square lattice are not mixed [39]. Hence within linear spin wave theory the spin waves

are localized on a single sublattice [39].

When spins reclaim the quantum nature back, i.e. the commutation relations between its

Cartesian components are preserved, and here we only consider the most quantum case

with S = 1/2. Whereas no formal proof exists, numerical evidence unanimously indicates

that the 2D quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) orders

only at T = 0 [40]. Similar to the classical case, the ordering wavevector is (π, π) but
the sublattice magnetization is reduced to 60% of its classical expectation value, µ ≈
0.6µB. Moreover, the spin wave spectrum of a square lattice antiferromagnet undergoes

a renormlization, (i) In the long wavelength limit, i.e. q → (π, π), the spin wave velocity

or the stiffness ∂ωq/∂q is modified by multiplying a constant Zc = 1.18; (ii) In the short

wavelength limit or along the zone boundary direction, the excitation is no longer flat. It has

been demonstrated both experimentally and numerically [41, 42, 43, 39, 44] that there is

a 6% - 7% depression of the spin wave energy and 50% loss of spectral weight of the spin

wave peak at (π, 0). In addition, the lost spectral weight is transferred to the continuum

above the spin wave peak and it occurs in both transverse (1, 3, 5, ... odd number of

magnon excitations) and longitudinal (2, 4, 6, ... even number of magnon excitations)

fluctuation channels such that the continuum appears spin-isotropic at (π, 0) even in the
symmetry-broken antiferromagnetically ordered state. No consensus has been reached

so far regarding why such dramatic changes occur. The essence of the debate lies in

whether spinons or multi-magnons interact with the low lying (in energy) single magnon

branch along the zone boundary direction. We will come back to this in section 4.1.2.

It is interesting to further investigate how the spin excitation spectrum of the 2DQHAFSL

responds to any external influences. In this chapter, we touch upon the following two
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(a) High symmetry directions in the reciprocal

space of a 2D square lattice.

(b) Spin wave spectrum of the 2D classical Heisenberg antiferromagnetic square lattice along the

high symmetry directions illustrated in Fig.4.1a.

Figure 4.1: (a) High symmetry directions in the reciprocal space of a 2D square lattice

and (b) the spin wave dispersion along these directions calculated from linear spin wave

theory.
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Figure 4.2: Crystal and magnetic structures of CFTD [42]. a, Three dimensional crystal

structure of CFTD with Cu, O, C and D in blue, red, brown and grey spheres respectively.

J ′ indicates the interlayer exchange interaction. b, Top view of CFTD. J is the dominant

nearest neighbour exchange interaction. c, A sketch of the three dimensional magnetic

structure with the spin directions slightly tilted away from a axis towards c axis.

J [meV] J ′ DM

6.19(2) 10−5J 0.05J

Table 4.1: The exchange interactions in CFTD determined by various experimental meth-

ods as explained in the text. J stands for the nearest neighbour superexchange interaction
which is also the dominant one in the material; J ′ is the interlayer coupling between the
neighbouring copper-formate planes and DM represents the norm of the DM vector which

is close to the c axis.

aspects, thermal fluctuations (section 4.1) and application of magnetic fields (section 4.2).

We will present detailed studies of their direct impacts on the spectrum.

4.1 Temperature dependence of the excitation spectrum in a

quantum square lattice antiferromagnet CFTD
To date, the best physical realization of the 2DQHAFSL is a metallo-organic compound

Cu(DCOO)2·4D2O (CFTD). At room temperature, CFTD ismonoclinic (space group P21/a),

but under cooling undergoes an antiferroelectric transition at 246 K, which involves a dou-
bling of the unit cell along the crystallographic c axis. At 100 K the space group is P21/n

(non-standard setting of space group 14) with lattice constants a = 8.113 Å, b = 8.119 Å,
c = 12.45 Å, and β = 100◦. Within the a− b plane, the Cu2+ ions are coordinated by four

oxygens from the formate molecules and form an almost ideal square lattice arrangement

with nearest neighbor lattice constant 5.739 Å. The octahedral coordination is completed
by oxygens from the crystal bound water molecules between the planes, see Fig.4.2a and

Fig.4.2b.

Upon cooling, CFTD undergoes an antiferromagnetic transition at TN = 16.5 K with a

staggered magnetic moment of size 0.48(2) µB determined by Burger et al [45], who also

found that the spins are rotated 8◦ away from the a axis towards the c axis. The magnetic

structure is shown in Fig.4.2c. The Curie-Weiss temperature of CFTD is TCW = −175
K [46], and inelastic neutron scattering experiments have determined the antiferromag-

netic exchange interaction J = 6.19(2) meV [41] and no significant long range interac-
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tions were found within the copper-formate plane. Magnetization data [47, 48] revealed

that the interlayer interaction J ′ is only of the order 10−5 of J and the symmetry allowed

Dzyaloshinskii-Moriya (DM) interaction is around 5% of J with the DM vector close to the

c axis. In Table 4.1, we summarize all the exchange interactions in CFTD.

The reciprocal space of CFTD is spanned by a∗, b∗ and c∗. For an arbitrary reciprocal

lattice vector Q, it can be written as Q = ha∗ + kb∗ + lc∗ with h, k and l in reciprocal

lattice units (r.l.u). Owing to the extremely weak interlayer interaction J ′, we only need to
focus on the 2D plane in reciprocal space with l = 0. To be consistent with the theoretical
notations, we re-define the reciprocal lattice vectors as x∗ := (a∗ + b∗) /2π and y∗ :=
(a∗ − b∗) /2π. Any vectors on the 2D plane can be expressed as q = qxx

∗ + qyy
∗ with

qx = π(h+ k) and qx = π(h− k).

4.1.1 The (π, 0) anomaly in the excitation spectrum

The (π, 0) anomaly refers to the aforementioned 6% − 7% softening in energy of the

single magnon pole at (π, 0) compared to (π/2, π/2). Piazza and Mourigal et al [42]

performed a detailed study of the magnetic fluctuations at both (π, 0) and (π/2, π/2) in
CFTD utilizing the power of polarized neutrons. What they found is rather striking, see

Fig.4.3. At (π/2, π/2), the total dynamical structure is dominated by a resolution-limited

single magnon peak (centered at ω = 2.38(2)J) in the transverse channel, in accord

with the conventional spin wave picture. The fluctuation in the longitudinal channel rep-

resents a weak continuum extending from ω/J ≈ 2.3 to 3.4 and only carries a small

fraction of the total spectral weight compared to the sharp one-magnon peak in the trans-

verse channel. In contrast, at (π, 0) not only is the single magnon peak softened to

ω = 2.19(2)J , but there also exists a pronounced tail in the transverse channel start-

ing right above the magnon peak maximum, and extending to ω/J ≈ 3.8. This tail to-

gether with the broad continuum in the longitudinal channel contributes 40(12)% of the

total spectral weight at (π, 0) and the single magnon intensity is significantly reduced com-
pared to (π/2, π/2). To further compare the continua in both transverse and longitudinal
channels at (π, 0), the resolution limited magnon peak is subtracted from the transverse

channel and the resultant is plotted on top of the scaled interpolated longitudinal fluctu-

ation spectrum, see Fig.4.3d. Surprisingly, the two coincide with each other within error

bars. The continuum at (π, 0) therefore arises from isotropic correlations in spin space

with S⊥(q, ω) = Sxx(q, ω) + Syy(q, ω) = 2Szz(q, ω), in sharp contrast to the continuum at

(π/2, π/2) which is essentially fully contained in the longitudinal channel.

4.1.2 Spinons or magnons?

Unlike La2CuO4 [49], the cause of the non-flat single magnon dispersion along the zone

boundary direction in CFTD cannot attribute to long range interactions. As seen from

Table 4.1, the second nearest neighbor interaction J ′ is five orders of magnitude smaller
than J . Its effect on the dispersion is therefore negligible. The DM interaction on the

nearest neighbor bonds, whose value is listed in Table 4.1, can only affect the spin ex-

citations in the long wavelength limit and the short wavelength dynamics along the zone

boundary direction stays intact, i.e. dispersionless. As the result, the observed (π, 0)
anomaly is a pure quantum mechanical effect directly associated with the quantumness

in the 2DQHAFSL. To explain such a quantum effect, two possible pictures from drasti-

cally different views, i.e. spinons and magnons, are proposed as we shall discuss below.

A variational Monte Carlo [42] study based on the Gutzwiller-projected variational wave-

functions method indicated the isotropic continuum excitation at (π, 0) arises from a de-

confined pair of spinons. Whereas at (π/2, π/2), the spinon pairs are confined spatially to
form a single magnon [42]. Hence the physical pictures at (π, 0) and (π/2, π/2) were sug-
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Figure 4.3: Polarized neutron scattering data at (π, 0) and (π/2, π/2) in CFTD [42]. a-c,

Energy dependence of the total, transverse and longitudinal dynamical structure factors

at (π, 0) respectively. e-g, Energy dependence of the total, transverse and longitudinal

dynamical structure factors at (π/2, π/2) respectively. d,h, The resolution-limited one-

magnon peak subtracted transverse dynamical structure factors at (π, 0) and (π/2, π/2)
respectively, together with the scaled longitudinal dynamical structure factors.

Spectroscopy Study of Low-dimensional Quantum Magnets 39



gested to be drastically different. In recent years, due to the rapid development of both

theoretical and numerical tools, more rigorous theoretical studies of this long-standing

puzzle emerged. Although no consensus has been reached to date regarding the nature

of the continuum excitation, it is worth noting that both magnon and spinon pictures can

give a self-consistent description of the observed anomaly at (π, 0).

Shao et al applied quantum momnte carlo (QMC) with the newly developed stochastic

analytical continuation method to obtain the dynamical structure factor of the 2DQHAFSL

[44]. Their results agree well with the extracted single-magnon dispersion from INS stud-

ies on CFTD [42], see Fig.4.4a, and the measured total dynamical structure factors at (π,
0) and (π/2, π/2), see Fig.4.4b. To elucidate the physical mechanism behind the anomaly,

they added a four-spin interaction term Q in the Hamiltonian and observed a rapid reduc-

tion of the magnon weight at (π, 0) upon its increasing, before the system undergoes a

phase transition to a nonmagnetic spontaneously dimerized state [44]. Hence in their

study, the anomaly at (π, 0) is interpreted as a precursor to deconfined quantum criticality

where one magnon fractionalizes into two nearly-deconfined spinon pairs. Motivated by

the numerical results, they constructed an effective model where the spinons lie above

the onemagnon branch. The energy difference between the one-magnon and one-spinon

branches reaches a minimum at (π, 0) and a maximum at (π/2, π/2). Hence upon includ-
ing the interaction between the magnons and spinons, at (π, 0), a single magnon splits

into two inseparable spinons that fluctuate in and out of the magnon space [44]. Such an

effective model not only reproduces the softening of one-magnon energy at (π, 0), but also
the spectral weight transfer from the magnon peak at (π, 0) to the high energy continuum
excitations as observed in the polarized neutron experiment [42], see Fig.4.3.

Powalski et al [43] approached the (π, 0) anomaly from a pure magnon perspective with-

out resorting to spinons. They adopted the so-called continuous similarity transformation

(CST) which is performed in a non-perturbative fashion and applied it to the 2DQHAFSL.

In their calculation, both the dispersion anomaly and the broad high energy continuum

arise from strong magnon-magnon interactions in the system, see Fig.4.5. The attrac-

tive interaction between magnons is attributed to the two-magnon Higgs resonance (the

excitations associated with the amplitude fluctuation of the order parameter) in the longi-

tudinal channel. The broad spectral profile implies the Higgs resonance only lives for a

short time as its energy lies within the two-magnon continuum into which it decays. The

one-magnon softening and the high energy tail in the transverse channel at (π, 0) is due
to the attraction between the one magnon state and the three magnon continuum. The

strong hybridization between them forbids the full decay of the magnon [50]. Instead it re-

pels the one magnon state out of the three magnon continuum, giving rise to the observed

anomaly [39, 50].

Although the two approaches from seemingly different perspectives both offer satisfactory

descriptions of the experimental data, they could actually have a same origin, as pointed

out in Ref [44]. The strong attraction between magnons in the 2DQHAFSL might be

mediated by spinon pairs. In this case it is possible to give a accurate description of

the spin excitation without invoking spinons.

4.1.3 Temperature evolution of the excitation spectrum

In this context, it is interesting to investigate how the thermal fluctuation influences the spin

excitation in CFTD as the long range antiferromagnetic order is destroyed, leading to a

paramagnetic state with only short range correlations [51]. For such purpose, an inelastic

neutron scattering experiment was performed to offer the insight into the thermal evolu-

tion of the spin excitation spectrum. The sample used in the inelastic neutron scattering
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(a)

(b)

Figure 4.4: Prediction from spinon picture: the comparison between the experimental

data on CFTD and numerical results obtained from QMC+SAC, taken from Ref [44]. a,

The one-magnon dispersion calculated from SAC and the extracted experimental disper-

sion. b, The total dynamical structure factors obtained from SAC and the experimentally

determined counterparts at (π, 0) and (π/2, π/2) respectively [44].

Spectroscopy Study of Low-dimensional Quantum Magnets 41



(a)

(b)

Figure 4.5: Prediction from magnon picture: comparison between the experimental data

on CFTD [42] and theoretical results obtained from CST, taken from Ref [43]. a, The ex-

tracted one-magnon dispersion [42] from INS measurement together with the theoretical

dispersion. b, Comparison between the measured dynamical structure factors and the

theoretical lineshapes obtained from CST at both (π, 0) and (π/2, π/2) respectively.
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experiment consisted of three co-aligned high-quality solution grown single crystals. The

total weight of the crystals was approximately 12 grams. The experiment was conducted

on a direct geometry TOF spectrometer MAPS at the ISIS Facility, Rutherford Apple-

ton Laboratory (UK) by Mourigal, Christensen et al before the start of this PhD project.

For exploring the two-dimensional nature of the spin correlation in CFTD, the reciprocal

directions a∗ and b∗ were kept perpendicular to the neutron beam direction. The inci-

dent neutron energy was set to 36.25 meV during the experiment with the Fermi chopper

spinning at 200 Hz. The energy resolution at the energy of the zone boundary magnon,
ω = 2ZcJ = 14.5meV, was 1.3 meV (FWHM). This configuration allowed a detailed study

of the full dynamics of the spin correlation function S(Q, ω), where Q is the projection of

the three dimensional scattering vector on the a∗−b∗ plane. Six sets data were collected
at 6 K, 20 K, 35 K, 40 K, 50 K and 80 K, corresponding to T/J =0.08, 0.28, 0.49, 0.56
and 1.11 respectively.

The thermal evolution below and above the Néel temperature TN = 16.5 K of the spin and

lattice excitations along the high-symmetry directions in the Brillouin zone is illustrated

in Fig.4.6. To produce these plots, the raw data were symmetrized over four equivalent

quadrants in the Brillouin zone covered by the central detector bank on MAPS. To further

increase the statistical quality of the data, two highly similar data sets taken at 35 K and

40 K, see Fig.4.7a and b, were combined (averaged with respect to the total flux) and

labelled as the 38 K data. In Fig.4.7c, we also illustrated the spectrum collected at 80

K. Below 4 meV, there is a broad diffuse scattering in the spectrum which might have a

magnetic origin. Apart from that, the 80 K spectrum is dominated by scattering from lattice

vibrations. This justifies the suitability of treating 80 K spectrum as an effective phonon

background for subtraction purpose as we shall see later. The most prominent feature in

the data obtained at 6 K (Fig.4.6a) is the dispersive spin excitation emanating from the

zone center (π, π) and reaching the maximum energy 14.5 meV at (π/2, π/2). The spin
excitations along the zone boundary direction, from (π/2, π/2) to (π, 0), are immediately
evident to be dispersive and softened in energy at (π, 0), as reported in previous studies
on the spin exitations in the ordered phase of CFTD [41, 42]. The depression in intensity

of the magnon peak at (π, 0) compared to the peak at (π/2, π/2) is also identifiable, illus-
trated by the clear difference in the 2D colormap. Besides the spin excitations, Fig.4.6

also illustrates the contributions from phonons. Notably two nearly flat bands of phonon

scattering with weakly momentum dependence, are observed at 7.5 meV and 20 meV

respectively.

Comparing Fig.4.6a and Fig.4.6b, it is evident the dispersion of the spin excitations at 6

K, below TN = 16.5 K, is similar to the dispersion at 20 K, above TN . A slight broad-

ening of the excitations is discernible at low energy transfers, whereas the excitations

along the zone boundary direction experience an overall intensity decrease. At higher

temperatures, 38 K (Fig.4.6c) and 50 K (Fig.4.6d), the high energy excitations start losing

definition, as they gradually become indistinguishable from the phonon scattering signals,

which dominate the spectra at high temperatures. In the long wavelength limit, the spin

excitations are further broadened and become diffuse at 50 K.

The evolution of the spin excitations above 20 K becomes clearer after subtraction of the

80 K spectrum (with its Bose occupation factor being corrected) from the low temperature

spectra. The result is shown in Fig.4.8. Although the subtraction appears to be not perfect,

as evident from the residual phonon scattering at 7.5 meV and 20 meV which cannot

be eliminated completely, the remnant contribution is easily identifiable and its weak Q-

dependent dispersion and intensity do not impair the credibility of the analysis presented

below.
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Figure 4.6: Overview of the magnetic and lattice excitation spectra of CFTD at (a) 6 K,

(b) 20 K, (c) 38 K and (d) 50 K (The 38 K data set in panel (c) is the average of raw data

obtained at 35 K and 40 K as explained in the text) measured by time-of-flight inelastic

neutron scattering. The momentum axis follows the standard path around the Brillouin

zone of a 2D square lattice as shown in Fig.4.1a. Intensities are shown in arbitrary units.
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Figure 4.7: Color spectra of the magnetic and lattice excitation spectra of CFTD at (a)

35 K, (b) 40 K and (c) 80 K measured by time-of-flight inelastic neutron scattering. The

momentum axis follows the standard path around the Brillouin zone of a 2D square lattice

as shown in Fig.4.1a. Intensities are shown in arbitrary units.
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Figure 4.8: Magnetic excitation spectra, S(Q,ω), of CFTD for temperatures (a), 6 K. (b),

20 K, (c), 38 K and (d), 50 K after subtracting the 80 K spectrum corrected for the Bose

occupation factor.
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Figure 4.9: The extracted dispersion of the magnetic excitations along the high-symmetry

directions in the Brillouin zone at 6 K (filled squares) and 20 K (open triangles), respec-

tively. The inset shows the detailed dispersion along the zone boundary. The solid line

represents linear spin wave theory with J = 6.19 meV.

Fig.4.8a and Fig. 4.8b confirm the conclusion drawn from Fig.4.6a and Fig.4.6b, i.e. nei-

ther the existence of (π, 0) anomaly, nor the decrease of single-magnon intensity at (π, 0)
compared to (π/2, π/2) are dependent on whether the sample is in a magnetically or-

dered state or at a temperature just above TN . As the temperature keeps increasing, the
previous difficult-to-identify high energy excitations now becomes visible, manifesting as

broad and diffuse intensity bands. This can be seen from Fig.4.8c and Fig.4.8d.

To further quantify the evolution of spin excitation dispersion through the antiferromagnetic

to paramagnetic phase transition, the spectra in Fig.4.6a and Fig.4.6b were separated into

low and high energy regions. Gaussian lineshapes and linear backgrounds were fitted to

constant energy cuts for the low energy part, and constant momentum cuts for the high

energy regions. Fig.4.9 shows the results of the fitting. Here the plotted dispersion is

normalized by the exchange energy J = 6.19 meV. Evidently, the magnon dispersion is
essentially indistinguishable at 6 K and 20 K, implying the anomaly at (π, 0) and the zone
boundary dispersion manifest themselves as intrinsic properties of the 2DQHAFSL and

are not dependent on the existence of 3D long range order.

4.1.4 Results and analysis

Thermal evolution of the zone boundary spectra
In order to investigate the thermal evolution of the spectrum at (π, 0) relative to (π/2, π/2),
a different phonon-subtractionmethod beyond a simple scaled subtraction of the high tem-

perature data (here we used 80 K) was developed. The reason behind it is due to the rapid

diminishing of the magnetic excitation intensities at the zone boundary as the material is

heated, see Fig.4.8. The relatively weak spin excitation signals require extra care to avoid

being over-subtracted. Several alternative methods were attempted, all of which yielded

a qualitatively similar result. The method we presented below is believed to be the most

accurate, judged by the residue intensities of phonon peaks after the subtraction.
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Figure 4.10: Pure spin excitations at (π/2, π/2) and (π, 0) obtained from an polarized

neutron experiment at IN20 [42]. Solid lines are the fitted lineshapes with the application

of Eq.(4.2).

Figure 4.11: Constant momentum cuts at (π/2, π/2) (upper panel) and (π, 0) (lower panel)
obtained from theMAPS 80 K subtracted 6 K spectrum. The intense peak at 20meV in the

(π/2, π/2) spectrum is a residual phonon peak resulting from the direct 80 K subtraction

procedure. The two cuts are integrated over a circular momentum range centered at

(π/2, π/2) and (π, 0), respectively, with a radius r = 0.1175 r.l.u. Left panel: the solid lines
represent fitted results using Eq.(4.2) with only η1 and η2 fixed to the values obtained from
the fitting to the IN20 data shown in Fig.4.10. Right panel: apart from η1 and η2, ωQ is

also fixed when fitting to the constant momentum cuts from the MAPS 80 K subtracted

spectrum at 6 K. The results are illustrated as solid lines.
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Figure 4.12: Subtraction of the extrapolated polarized neutron data from the MAPS 6 K

data. Panels (a) and (c) show raw data at (π, 0) and (π/2, π/2), respectively, along with
the corresponding magnetic scattering lineshapes (solid lines) extracted from fitting to the

80 K data subtracted 6 K spectra obtained from MAPS as explained in the text. Panels (b)

and (d) show the non-magnetic background spectra at the same wavevectors, obtained

by subtraction of these lineshape fsrom the data in (a) and (c). After rescaling by the

appropriate Bose occupation factors, the spectra in (b) and (d) were subtracted from the

raw zone boundary spectra at 20, 38, 50 and 80 K to yield the results in Fig.4.13

Spectroscopy Study of Low-dimensional Quantum Magnets 49



The methodology we adopted is as follow: with the prior knowledge of the pure magnetic

spectra at both wavevectors (π, 0) and (π/2, π/2) obtained from previous polarized neu-

tron scattering (IN20) [42], a phenomenological description of the complete lineshapes of

the spin excitations at both wavevectors can be established by fitting the excitation spec-

tra to convolutions of power-law decay functions [52] with a Gaussian instrumental energy

resolution function, see Eq.(4.2).

S(Q, ω) = Amp×

(
Θ(ω − ωQ)(

ωη1 − ωη1
Q

)1−η2 ~Gauss (ω, ωQ, σinstrument)

)
(4.2)

Here Θ(ω − ωQ) is a Heaviside function, Gauss (ω, ωQ, σinstrument) represents a normal-

ized Gaussian resolution function centered at ωQ with a FWHM ∼ 2.355σinstrument, and
Amp is the amplitude of the scattering intensity. In Fig.4.10 we illustrate the experimental

polarized neutron data and the corresponding fitted lineshapes at (π/2, π/2) and (π, 0),
respectively.

After obtaining the best description to the polarized neutron data with the application of

Eq.(4.2), the next step is to adjust the obtained model lineshapes to adapt to the constant

momentum cuts from the MAPS 80 K subtracted spectrum at 6 K at (π/2, π/2) and (π, 0).
Due to IN20 and MAPS have different energy resolutions (IN20: ∆ω = 1.47(5) meV =
0.24(1)J , MAPS: ∆ω = 1.3 meV at the energy of the zone boundary magnons), σinstrument
is allowed to be varied in the adaption. The two constant momentum cuts from the MAPS

data are integrated over a circular momentum range with a radius r = 0.1175 r.l.u (in

the current notation, (0, 0) → (π, π) corresponds to 1 r.l.u) centered at (π/2, π/2) and
(π, 0), respectively. While the data obtained from IN20 are directly measured at (π/2, π/2)
and (π, 0). As the result, the peak positions of the linshapes from MAPS have slight

shifts compared to the peak positions obtained from IN20. Along the zone boundary

direction, i.e. (π/2, π/2) → (π, 0), the one magnon excitation energy reaches a maximum
at (π/2, π/2) and a minimum at (π, 0). Therefore the large momentum integration range

of MAPS causes the peak position at (π.2, π/2) to shift downwards and the peak position
to move upwards at (π, 0). This means ωQ in Eq.(4.2) is allowed to vary as well in the

adaption. The rest parameters η1 and η2 in Eq.(4.2) are fixed in the adaption as the power-
law decay is instrument independent. For the adaption to the constant momentum cuts

from the MAPS 80 K subtracted spectum at 6 K at (π, 0) and (π/2, π/2), the lineshapes
obtained from the fitting to the IN20 data are fitted again to the constant momentum cuts

at (π/2, π/2) and (π, 0) from MAPS. As explained before, during the fitting only Amp,

σinstrument and ωQ are allowed to vary and the results are shown in Fig.4.11. As seen from

the right panel of Fig.4.11, if the peak positions are fixed in the fitting as well, the resultant

fitted lineshapes have a slight higher peak position at (π/2, π/2) and a lower peak position
at (π, 0) just as previously explained. Having identified the effective lineshapes describing
the spin excitations at (π/2, π/2) and (π, 0), illustrated as the solid lines in Fig.4.12a and
Fig.4.12b. They are subtracted from the raw MAPS 6 K data to produce the effective non-

magnetic background spectra shown in Fig.4.12c and Fig.4.12d. Notice that besides the

intense phonon contributions near 7.5 meV and 20 meV, the nonmagnetic background

at (π/2, π/2) contains a weaker lattice excitation near 15 meV. This is consistent with

observations from the previous polarized neutron study [42], hence further validating the

accuracy of the new subtraction procedure. Finally, after re-scaling of the Bose occupation

factors, the nonmagnetic background spectra were subtracted from the raw 20 K, 38 K

and 50 K data, respectively.

The spectra at wavevectors (π, 0) and (π/2, π/2) resulting from the above subtraction pro-

cedure are shown in Fig.4.13. An inspection of the subtracted 80 K linesshapes reveals
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Figure 4.13: Energy dependence of the measured total magnetic dynamical structure

factors at Q = (π, 0) and Q = (π/2, π/2) for different temperatures (a)-(b), 20 K, (c)-(d),

38 K, (e)-(f), 50 K, and (g)-(h), 80 K. The solid lines represent the best fitted lineshapes of

the 80 K data subtracted 6 K spectra obtained from MAPS as explained in the text. The

red arrows indicate positions of an over-subtracted phonon mode.
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both the strength and weakness of the subtraction procedure. At such high temperature

(∼ 5TN ), the excitation spectra at both (π, 0) and (π/2, π/2) are expected to be extremely
weak, which indeed agrees with essentially flat lineshapes over the energies of interest

produced by the subtraction method. However, it is clear at (π/2, π/2) the phonon contri-
butions were overestimated for energies below 9 meV as well as around 20 meV, leading

to negative intensities after the subtraction. Nevertheless, we believe the subtraction

method is robust enough to allow us to make reliable inference on the thermal evolution

of the magnetic spectra at wavevectors (π, 0) and (π/2, π/2) for temperatures below 80 K.

As shown in Fig.4.13, the analysis establish that the zone-boundary magnetic excitation

persists up to 50 K∼ 3TN but vanishes at 80 K∼ 5TN . We notice that the linshapes of the

zone boundary magnetic excitations at 6 K (the solid lines in Fig.4.13) and 20 K are rather

similar apart from the slightly broadened peak widths at 20 K. Such close resemblance

of the two temperatures could already be inferred from the color plots in Fig.4.8. As the

temperature increases, the zone boundary magnetic excitations are further weakened.

Moreover at (π/2, π/2), there is a softening of the excitation energies and a substantial

broadening towards low energy transfers.

To compare with theory, finite temperature QMC calculations were conducted by A. Sand-

vik. The numerical results for S(Q, ω) were obtained by stochastic analytic continuation
[53, 54, 44] of imaginary-time correlation functions G(Q, τ) computed with the stochastic
series expansion QMC method, implemented according to Ref. [55]. The lattices sizes

ranged from 32×32 for T/J = 2/3 to 128×128 for T/J = 1/4, and tests for other sizes in-
dicate that no significant finite-size effects are left for the Q points considered here. Tests

with synthetic data with the same noise level as in the QMC data indicate that broad-

ening and other spectral distortions should be rather mild in the results presented here.

We have not carried out any further Gaussian convolution to account for the instrumental

resolution.

The results of the QMC calculations of S(Q, ω) at (π/2, π/2) and (π, 0) are summarized

in Fig.4.14a, where T/J was set to 1/4, 1/2, 2/3 for the QMC calculations which corre-

spond to 18 K, 36 K and 48 K respectively. The values are very close to the experimental

temperatures 20 K, 38 K and 50 K. With increasing temperature, S(Q, ω) obtained from
QMC is rapidly weakened in intensity, softened in energy and broadened in lineshape to

become more symmetric with an increase of the intensity of the tail towards lower ener-

gies. It is noticeable thermal fluctuations tend to make the spectral lineshapes at the two

wavevectors more similar, hence removing the zone boundary anomaly. In Fig.4.14b to

Fig.4.14g, we compare the experimental data to the QMC lineshapes. It is evident there

is in general a good agreement, even though the QMC predicts relatively broader line-

shapes compared to the experimental observations, especially at higher temperatures.

Further theoretical work and a high resolution INS study will be necessary to understand

such discrepancy.

Temperature dependence of the zone-centre dispersion

Apart from the short-wavelength zone boundary spin excitations, we also investigate the

temperature dependence of the long-wavelength zone center spin excitations emanating

from (π, π) along the (1, 0) and (1, 0) directions. Fig.4.15 compares representative con-

stant energy cuts of the 80 K subtracted spectra at 6 K and 38 K (Fig.4.8a and Fig.4.8c

respectively). Panels (a) and (b) display cuts along the (1, 0) direction averaged over the
energy range [5.5, 6.5] meV and [9.0,10.0] meV, respectively. In panels (c) and (d) the

constant energy cuts are along the (1, 1) direction averaged over the same energy range.
In both cases, the counter-propagating magnetic excitation modes were fitted to Voigt

lineshapes, see the black solid lines in Fig.4.15. As expected, the thermal fluctuation
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Figure 4.14: (a) Quantum Monte Carlo calculations of the excitation spectra at (π/2, π/2)
(blue lines) and (π, 0) (red lines) at T/J = 1/4, 1/2 and 2/3, respectively. With the ex-

change constant J = 6.19 meV, relevant for CFTD, this corresponds to temperatures 18,
36 and 48 K. (b)-(g), Comparison of the QMC dynamical structure factors with the exper-

imental data at (b)-(c) 20 K, (d)-(e) 38 K and (f)-(g) 50 K for both (π, 0) and (π/2, π/2).
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Figure 4.15: Constant energy cuts through the 80 K background subtracted data at 6 K

(squares) and 38 K (circles) seen in Figs.4.8(a) and (c). The cuts in panels (a) and (c)

correspond to the energy range 5.5 to 6.5 meV, while those in (b) and (d) correspond to

the range 9 to 10 meV. In the left hand and right hand panels, the cuts through (π, π) run
along the (1, 0) and (1, 1) directions, respectively. In all panels the solid lines represent

fits to a lineshape consisting of two Voigt functions and the green dashed lines indicate

the fitted peak positions at 6 K and 38 K.
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Figure 4.16: Dispersion of the low energy spin excitations at 6 K (black triangles), 20 K

(open squares), and 38 K (red cicles), respectively, obtained from fits to cuts such as

those in Fig. 4.15

induced excitation broadening is evident when comparing the 6 K and 38 K representa-

tive cuts, whereas there is a small shift in wavevectors with respect to the temperature

change along both (1, 0) and (1, 1) directions. The green dashed lines in Fig.4.15 indicate
the fitted peak positions.

Fig.4.16 summarizes the dispersion of the magnetic excitations between 4 meV and 11.5

meV at 6 K, 20 K, 38 K and 50 K. As there is a broad diffuse scattering below 4 meV in the

spectrum at 80 K, see Fig.4.7c, the dispersion of the lowest energy excitations (< 4meV)
could not be extracted reliably. Overall, the results show dispersion is relatively robust

against thermal fluctuations up to T/J ∼ 2/3, except for the weak indications of hardening
(softening) at low (high) energies for magnetic excitations along the (1, 1) direction.

4.1.5 Conclusions
Our analysis of the thermal evolution of the spin excitations in CFTD, which is known to

be an excellent representative of the 2DQHAFSL, has revealed several novel results:

• The 6 K and 20 K magnetic excitation spectra are remarkably similar. In particular

the (π, 0) anomaly survives through the phase transition from the ordered Néel state

to the paramagnetic state.

• Thermally induced excitation broadening is observed along the zone boundary di-

rection (π, 0) → (π/2, π/2). In addition, the spectral weights of the spin excitations
at both (π/2, π/2) and (π, 0) gradually diminish due to heating but remain visible up
to temperatures T/J ≈ 2/3.

• As the zone boundary excitations broaden with temperature increase, the lineshape

at (π, 0) becomes more symmetric. Only until T/J ≈ 1, the lineshapes at (π, 0)
and (π/2, π/2) are essentially indistinguishable, which is consistent with the QMC

calculations.

• The dispersion of the spin excitations in the longwavelength limit shows little changes

up to T/J ≈ 1/2, which is remarkably robust against thermal fluctuations.
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Figure 4.17: The measured spin-spin correlation length ξ in CFTD compared to the pre-

diction by CHN (solid) [56] and QMC (dahsed) [57] results. The figure is taken from Ref

[58].

These results highlight the interplay between quantum and thermal effects. Naively, the

persistence of the well-defined zone boundary excitations at ω ≈ 2J up to T/J ≈ 2/3,
a temperature at which the spin-spin correlation length is short-ranged, as pointed out

in Ref [58], see Fig.4.17, suggests a simple interpretation in real space. In a localized

picture, due to a given spin is surrounded by four neighbouring antiparallel spins, the spin

flip excitation costs an energy 2J . In other words, the zone boundary excitations reflect
the energy of a localized spin flip, regardless of which sublattice the flipped spin resides

on. The similarity of the lineshapes between (π, 0) and (π/2, π/2) above T/J ≈ 2/3
further supports this naive picture, which closely resembles the linear spin wave theory

scenario where spin waves are localized on a single sublattice [50]. However, beyond

this simple picture, the broadened zone boundary magnetic excitations are centered at

an energy higher than 2J even at T/J = 2/3. Remembering in the zero temperature

limit, the bandwidth of the spin wave excitations (2JZc) is enhanced by a renormalization
factor Zc = 1.18 directly stemming from quantum corrections to the excitation energies.

Therefore, our results implies even at finite temperatures, quantum renormalization effect

might still remain active.

4.2 Field induced magnon decay on a quantum square lattice

antiferromagnet CAPCC
In this section, we study the spin dynamics of the 2DQHAFSL under magnetic field. When

applying a magnetic field perpendicular to the 2D plane of a Néel ordered square lattice,

see Fig.4.18. The energy per spin to the lowest order reads [59],

H0(θ) = 4JS2 sin2 θ − gµBHS sin θ − 2JS2. (4.3)

Here J is the nearest neighbor exchange constant, H is the applied magnetic field, S is

the spin angular momentum per site and θ denotes the angle between spin directions and
the x̂0 axis as illustrated in Fig.4.18.
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Figure 4.18: Schematic of applying magnetic field perpendicular to the 2D plane of a

Néel ordered square lattice. Si and Si+1 are the spin angular momenta at site i and i+1,
respectively. {x̂0, ŷ0, ẑ0} represents a laboratory reference of frame. {x̂i, ŷi, ẑi} represents
a local rotating frame at site i. The figure is taken from [59].

The minimum of Eq.(4.3) occurs at sin θ0 = gµBH
8JS . This implies that spins smoothly cant

towards the field direction and are ferromagnetically aligned when the field is above 8JS.
Therefore, 8JS here is denoted as the saturation field of the system.

The evolution of the spin excitation spectrum in the 2DQHAFSL under magnetic field has

long been an active research field within theoretical community [51, 60, 61, 62, 63, 64].

Essentially what has been discovered in the past decade is, when the applied field is

above a threshold field H∗, the single magnon branch will decay into the two magnon

continuum. This so-called magnon instability has been observed in the classical S = 5/2
square lattice system Ba2MnGe2O7 at high magnetic fields, highlighted by the unam-

biguous broadening of the one magnon excitation spectrum for some momenta [65],

see Fig.4.19. However, to date direct experimental evidence of magnon decay in the

2DQHAFSL is absent. This is due to the stringent requirements imposed by the practical

difficulties on both material and experimental sides:

• The material under study must be a good realization of the 2DQHAFSL, as any

additional exchange interactions will impair the decay tendency [63].

• The saturation field Hsat of the material has to be accessible by the current super-

conducting magnets at neutron facilities.

• A high resolution spectrometer is required as probing lineshape broadening is the

primary focus.

• We need a large crystal and/or a high flux spectrometer due to the small spin angular

momentum size (S = 1/2) of the 2DQHAFSL.

Although CFTD is so far the best realization of the 2DQHAFSL, its saturation field ( 4J
gµB

∼
214 T) is far beyond the current superconducting magnet’s capability. To this end, another
square lattice compound (5CAP)2CuCl4 (CAPCC) became our primary candidate, due to

its relatively low saturation field Hsat = 3.62 T.

CAPCC crystallizes in the monoclinic space group C2/c. Structural analysis shows that,
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Figure 4.19: Constant q scan at 8 T from q = (1.1, 0, 0) to q = (2.0, 0, 0). The shaded

areas indicate energy resolution. As q approaches (1.5, 0, 0), the widths of the spin exci-
tations increase significantly. The figure is taken from Ref [65].
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(a) (b)

Figure 4.20: Crystal andmagnetic structures of CAPCC [67]. a. Three dimensional crystal

structure of CAPCCwith Cu, Cl, C, N and H in cyan, orange, grey, blue and white spheres.

b. A proposed magnetic structure of CAPCC. The red spheres represent Cu (II) ions

and J , J ′ indicate the nearest neighbor in-plane and out-of-plane exchange interactions,
respectively.

at 143 K, the lattice constants are a = 12.850(2) Å, b = 8.375(1) Å, c = 15.711(2) Å,
and β = 94.37(3)◦ [66]. For a single layer, the Cu2+ ions are surrounded by four Cl− to

complete the tetrahedral coordination, and these CuCl2−4 anions form an effective square

planar lattice within the a− b plane. The magnetic exchange paths within the layers are

mediated by the overlap of chlorides between the neighboring tetrahedra. The exchange

coupling strength J depends upon the distance between the chlorides and the dihedral an-
gle Cu(1)-Cl(1)· · ·Cu(2)-Cl(2) where 1 and 2 represent the adjacent tetrahedra within the
same layer [66]. Along the crystallographic c direction, organic cations 5CAP (5CAP=5-

chloro-2-aminopyridinium) set in between the close-by CuCl2−4 tetrahedra and separate

the adjacent layers. Due to the large spatial separation between the layers, the interlayer

exchange coupling J ′ is expected to be much weaker than the intralayer one J . The

crystal structure of CAPCC is shown in Fig.4.20.

Upon cooling, CAPCC undergoes an antiferromagnetic phase transition at TN = 0.754
K with an ordering vector (π, π, π). Although the number of observed reflections in the

neutron diffraction experiment were insufficient for a refinement of the magnetic structure

and its spin orientation angle, Coomer et al [67] determined the saturation fieldHsat at the

base temperature 30 mK to be Hsat = 3.62(3) T, by tracking the dependence of intensity
of the (1, 1, 0) Bragg peak on magnetic field applied perpendicular to the a∗−b∗ plane, see
Fig.4.21. Detailed heat capacity and magnetic susceptibility measurements indicated [66,

67], that unlike CFTD, the interlayer exchange coupling in CAPCC is non-negligible. The

estimated exchange couplings are summarized in Tab.(4.2), where J and J ′ represent
the nearest-neighbor in-plane and out-of-plane exchange couplings respectively.

4.2.1 Magnon decay on a quantum square lattice antiferromagnet in high

fields
The 2DQHAFSL has a Néel order at zero field, as discussed in the CFTD section, the spin

excitation spectrum is well described by the LSWT with a renormalization factor Zc = 1.18
apart from the anomaly at (π, 0), which highlights the quantum dynamics of spins in the

short wavelength limit. However, An external field perpendicular to the 2D plane induces
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Figure 4.21: Field dependence of the intensity of the (1, 1, 0) Bragg peak at 30 mK, 267
mK, 455 mK and 670 mK. The figure is taken from [67].

Compound J [meV] J ′/J

(5CAP)2CuCl4 0.11 0.25

Table 4.2: The estimated exchange interactions in CAPCC from specific heat and mag-

netic susceptibility measurements [66, 67]. J and J ′ are the nearest neighbor in-plane

and out-of-plane exchange couplings respectively.
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Figure 4.22: Noncollinear magnetic structure of the 2DQHAFSL in a magnetic field. The

canting angle θ is controlled by the external magnetic field H. The figure is taken from

Ref [60]

a noncollinear spin configuration, see Fig.4.22, resulting in non-zero three-magnon inter-

actions in the Hamiltonian [51, 60, 64, 59], as we shall discuss below. Simply by tuning

the external field strength, these three-magnon interaction strengths varies. Such interac-

tions open a channel for magnons to couple to the two-magnon continuum, inducing the

so-called magnon decay for the one-magnon branch where substantial damping in the

spectrum occurs. This has been verified by the QMC [61] and the exact diagonalization

[62]. In addition, the QMC study pointed out a non-trivial distribution of the spectral weight

which gives rise to non-Lorentzian ”double-peak” features in the dynamical structure fac-

tor, which were also observed in the previous analytical studies [51, 60].

The theoretical work [51, 60, 64] only deals with magnon decays in a pure antiferromag-

netic Heisenberg square lattice model without interlayer coupling. In practice, the inter-

layer exchange J ′ is finite otherwise no long-range ordering would occur at finite tem-

peratures. To address the magnon decay dynamics in the three dimensional coupling

scenario, Fuhrman et al. [63] carried out a detailed calculation regarding the dynamical

structure factors with the standard 1/S expansion technique. Compared to the pure 2D

case, a non-zero 3D interlayer coupling largely mitigates the singularities of high field

corrections without invoking any self-consistency approaches. In the following, we will

review Fuhrman’s formalism and introduce the main contributions that renormalizing the

excitation spectrum.

We start with the Heisenberg Hamiltonian of nearest neighbor interacting spins in the

presence of external magnetic field H along the Z axis in the laboratory reference frame

(Fig.4.18),

H =
∑
〈i,j〉

JijSi · Sj − gµBH
∑
i

Szi , (4.4)

where the in-plane exchange coupling is Jij = J and the interplane exchange interaction

is Jij = J ′. The coupling ratio is denoted by α := J ′/J and assumed to be between 0 and

1. In the local rotating frame, we apply the standard Holstein-Primakoff transformation to

spin operators and rewrite the Hamiltonian in terms of the newly introduced boson oper-

ators. Afterwards, we apply the Fourier transform to the Hamiltonian and subsequently
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Figure 4.23: The lowest order of self-energy from the decay vertex.
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Figure 4.24: The lowest order of self-energy from the source vertex.

diagonalize it via the Bogoliubov transformation. The yielded Hamiltonian reads

H =
∑
k

ε̃kb
†
k
bk +

1

2!

∑
k,q

Φ1(k,q)
(
b†
k−q+Qb

†
qbk + H.c

)
︸ ︷︷ ︸

Decay

+

1

3!

∑
k,q

Φ2(k,q)
(
b†
Q−k−qb

†
qbk + H.c

)
︸ ︷︷ ︸

Source

+ · · · ,
(4.5)

where the ordering vector Q = (π, π, π) enters the momentum conservation condition

because of the staggered canting of the spins. The quadratic energy term, ε̃k = εk +

δε
(1)
k

+ δε
(2)
k
, contains the bare magnon dispersion given by LSWT and corrections δε

(1)
k

and δε
(2)
k
. δε

(1)
k

is due to Hartree-Fock decoupling of the cubic and quartic perturbations,

and δε
(2)
k

arises from the 1/S correction to the canting angle. The three boson terms are

decay and source vertices that govern the anomalous dynamics in the high-field regime.

The dynamical features of the system are obtained from the interacting magnon Green’s

function

G(k, ω) =
1

ω − ε̃k − Σ1(k, ω)− Σ2(k, ω)
, (4.6)

where Σ1(k, ω) and Σ2(k, ω) are the decay and source self-energies presented in Fig.4.23
and Fig.4.24, respectively. Their explicit expressions up to a second order are

Σ1(k, ω) =
1

2

∑
q

|Φ1(k,q)|2

ω − εq − εk−q+Q + i0

Σ2(k, ω) = −1

2

∑
q

|Φ2(k,q)|2

ω + εq + εk+q−Q − i0
.

(4.7)

In contrast to H = 0 scenario where the energy dependent magnon interactions beyond
Hartree-Fock only show up in the 1/S2 order, they already occurred in the 1/S corrections

for H 6= 0 due to couplings between longitudinal and transverse spin excitations that

renders three-magnon vertices non-zero [51, 60, 63, 64]. Above the threshold field H∗ ≈
0.76Hsat for magnon instability [51], the self-energy Σ1(k, ω) acquires a finite imaginary

component, allowing the occurrence of spontaneous magnon decays.
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4.2.2 Dynamical structure factor calculation from 1/S SWT

Dynamical structure factor Sαβ is defined as

Sαβ(k, ω) =

∫ ∞

−∞

dt

2π
〈Sαk (t)S

β
−k〉e

iωt, (4.8)

where α, β = x, y, z generally refer to the local rotating frame (xyz) in the spin-wave cal-
culation [51, 60, 63, 59]. Converting to the laboratory reference frame (XY Z), to a lowest
order, the new dynamical structure factors can be expressed as a linear combination of

the structure factors in the rotating frame [63, 60],

SXX(k, ω) = sin2 θSxx(k, ω) + cos2 θSzz(k−Q, ω)

SZZ(k, ω) = cos2 θSxx(k−Q, ω) + sin2 θSzz(k, ω)

SY Y (k, ω) = Syy(k, ω)

(4.9)

where θ is the spin canting angle induced by external magnetic field. Here we omitted

the cross terms (Sαβ(k, ω) with α 6= β), as they only contribute to the order 1/S2 or higher

[59].

Due to the fluctuation-dissipation theorem [68] at zero temperature, the dynamical struc-

ture factor and the interacting magnon Green’s function, Eq.(4.6), is linked via [63, 60]

Sxx(k, ω) = − 1

2S
Λ+(uk + vk)

2ImG(k, ω)

Syy(k, ω) = − 1

2S
Λ−(uk − vk)

2ImG(k, ω)

Szz(k, ω) =
1

2

∑
q

(
uqvk−q + vquk−q

)2 × δ(ω − εq − εk−q)

(4.10)

where S = 1/2 is the spin value, uk and vk are parameters of the Bogoliubov transforma-
tion, and Λ± = [1− (2n± δ)/2S] [63].

In Fig.4.25, we show the intensity plots of transverse, S⊥(k, ω) = Sxx(k, ω) + Syy(k, ω),
and longitudinal, Szz(k, ω), dynamical structure factors at zero field and H = 0.9Hsat, for

several representative paths in the Brillouin zone with kz = 0. The model parameters

chosen here are J = 0.1 meV, α = 0.2 and g = 2.0, respectively. The longitudinal chan-
nel Szz(k, ω) contains only two-magnon continuum excitations, see the lower pannels of

Fig.4.25a and Fig.4.25b. It is evident that, at both zero field and H = 0.9Hsat, the intensi-

ties of the two-magnon continuum are much smaller than the single-magnon excitations

in the transverse channel S⊥(k, ω). The complex lineshapes in the transverse channel

S⊥(k, ω) at H = 0.9Hsat (the upper panel of Fig.4.25b) are very much distinct from the

well-defined single-magnon lineshapes at zero field (the upper panel of Fig.4.25a). Com-

pared to the transverse fluctuation at zero field, there is clear evidence of spectral weight

broadening and redistribution occurring in the H = 0.9Hsat transverse spectrum due to

the magnon decays. Such a decay trend is most obvious at (π/2, π/2, 0) (see the middle
point of (π, π, 0) and (0, 0, 0) in the upper panel of Fig.4.25b), where a single-magnon ex-
citation is substantially broadened giving rise to a long tail extending from ∼ 0.2 meV to

∼ 0.4meV. This signifies the crucial role of spontaneous magnon decays in terms of sub-
stantially reshaping the excitation spectrum and such effects should readily be observed

in experiment. At (π, 0, 0), the magnon decay is less pronounced. This is readily seen

from the intense well-defined one magnon excitation at ∼ 0.2 meV in the upper panel of

Fig.4.25b. The intensity of the high energy excitations extending from 0.2 meV to 0.4 meV

at (π, 0, 0) in the transverse channel (the upper panel of Fig.4.25b) is significantly weaker

Spectroscopy Study of Low-dimensional Quantum Magnets 63



0.0

0.2

0.4

0.6

0.8

1.0

En
er
gy

 [m
eV

]

Sxx+Syy

(π, π, 0) (0, 0, 0)
0.0

0.2

0.4

0.6

0.8

1.0

En
er
gy

 [m
eV

]

Szz

(π, 0, 0) (π, π, 0)

Int [Arb.u]0.0

0.2

0.4

0.6

0.8

1.0

Int [Arb.u]0

2

4

6

8

10

(a) Intensity color plots of upper panel the transverse dynamical structure factor, and lower panel

the longitudinal dynamical structure factor at zero field. The intense feature extending from zero

energy to 1 meV at (0, 0, 0) in the transverse channel is non-physical, which arises from the nu-

merical divergence in the calculation.
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(b) Intensity color plots of upper panel the transverse dynamical structure factor, and lower panel

the longitudinal dynamical structure factor at H = 0.9Hsat.

Figure 4.25: Illustration of the transverse, S⊥(k, ω), and longitudinal, S
zz(k, ω), dynamical

structure factors at (a) zero field and (b) H = 0.9Hsat. The calculations were performed

for the parameters: J = 0.1 meV, α = 0.2 and g = 2.0. The spectra are broadened by a
lorentzian resolution function with Γ = 0.0220 meV.
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than the single-magnon response. This is very distinct from what happens at (π/2, π/2, 0)
as explained above.

Recall that the double differential cross-section dσ
dΩdE (k, ω) for unpolarized neutron scat-

tering experiment is a linear combination of dynamical structure factors, weighted by

the square of a material dependent magnetic form factor f(k) and a polarization factor(
δαβ −

kαkβ
k2

)
, signifying that only the fluctuations perpendicular to the momentum trans-

fer k can be probed by neutrons. In the laboratory reference frame, the expression is

d2σ

dΩdE
(k, ω) ∝

kf
ki

× f2(k)×
∑

α,β=X,Y,Z

(
δαβ −

kαkβ
k2

)
Sαβ(k, ω), (4.11)

where kf and ki are the norm of the final and the initial wavevectors of the neutron, re-

spectively, kα(β) is the corresponding component of the scattering vector k and k is its

norm.

4.2.3 Evidence for field induced magnon decay

Having reviewed theoretically how spontaneous magnon decays could be induced by

varying external magnetic field in the quasi-2DQHAFSL with non-zero interlayer coupling,

the next phase is to observe the decay signature experimentally in a suitable quantum

antiferromagnet to elucidate the accuracy of the theoretical prediction. Owing to its easily

accessible saturation fieldHsat = 3.62 T, CAPCC is a suitable candidate for this study. As

illustrated in the upper panel of Fig.4.25b, the magnon decay process occurs at several

momenta in the Brillouin zone, inelastic neutron scattering is the ideal tool for this purpose.

The spin wave dispersion at zero field for the quasi-2DQHAFSL with finite interlayer cou-

pling reads [63]

}ωk = J(2 + α)
√

(1 + γk)(1− cos 2θγk). (4.12)

where γk =
cos(kx)+cos(ky)+α cos(kz)

α+2 . In Table 4.2, we list the estimated J and α based on

thermodynamic measurements [66, 67]. Substitute them (J = 0.1 meV and α = 0.25)
into Eq.(4.12), we find the bandwidth of the spin wave excitations at zero field is around

0.23 meV. Such a low energy scale imposes stringent requirements on the spectrome-

ters: it has to be able to resolve excitaitons below 1 meV, and its energy resolution has

to be sharp enough to identify any magnon decay signatures. The ultimate choice of

spectrometer was a back-scattering TOF spectrometer OSIRIS [69, 70] at the ISIS facil-

ity, Rutherford Appleton Laboratory (UK). Due to the incoming white neutron beam,it also

has a high flux.

Experimental details
The sample for the inelastic neutron scattering experiment was a single high-quality crys-

tal, and the experiment was conducted by Christensen and Nilsen et al before the start

of this PhD project with the final analyzer energy 1.8463 meV for a PG002 analyzer and

the chopper spinning at 50 Hz. The obtained energy resolution at zero energy transfer is

around 22 µeV. The total mass of the crystal was 2 grams and it was aligned such that

the incident neutron wavevector ki was parallel to the reciprocal lattice plane a
∗ − b∗. To

fully explore the excitation spectrum in reciprocal space, the crystal was further rotated

within the a∗ − b∗ plane with Ψ = −71.0◦,−66.2◦,−52.2◦,−64.7◦,−74.8◦ and −78.6◦. In
Fig.4.26, we illustrate the reciprocal space coverage for CAPCC at eachΨ. The measure-
ments were conducted at 50 mK with magnetic field applied perpendicular to the a∗ − b∗

plane. Spectra at six different fields 0.0 T, 2.0 T, 2.7 T, 3.2 T, 3.5 T and 7.0 T were

collected. The details are summarized in Tab.(4.3).
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Figure 4.26: Reciprocal space coverage of OSIRIS at different sample rotation anglesΨ =
−71.0◦, −66.2◦, −52.2◦, −64.7◦, −74.8◦ and −64.7◦, respectively, with the final analyzer

energy Ef = 1.8463 meV. The red solid lines represent the momenta accessed by the

neutrons with energy transfers below 1 meV, while the red dashed lines are the regions

in reciprocal space seen by neutrons with energy transfers above 1 meV. The blue filled

squares and white circles represent the momenta (π, 0, 0) and (π/2, π/2, 0), respectively.

No. Temperature [mK] Field [T] Ψ

1 50 0.0 −64.7◦

2 50 0.0 −74.8◦

3 50 0.0 −78.6◦

4 50 2.0 −71.0◦

5 50 2.7 −71.0◦

6 50 3.2 −71.0◦

7 50 3.5 −71.0◦

8 50 7.0 −71.0◦

9 50 3.2 −66.2◦

10 50 3.5 −66.2◦

11 50 7.0 −66.2◦

12 50 3.2 −52.2◦

13 50 3.5 −52.2◦

14 50 7.0 −52.2◦

Table 4.3: The complete list of measured spectra at different fields and rotation angles

Ψ.
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Figure 4.27: Field evolution of the spin excitation in CAPCC where the spectra are pro-

jected onto the [0,K, 0] axis. (a)-(c) Spectra collected at H = 0.0 T at Ψ = −78.6◦,−74.8◦

and −64.7◦, respectively. (d) The spectrum when the field was ramped up to 2.0 T. (e)-(p)

A complete view of the spectral evolution from 2.7 T to 7.0 T. (e)(h)(k)(n) Ψ = −71.0◦,
(f)(i)(l)(o) Ψ = −66.2◦ and (g)(j)(m)(p) Ψ = −52.2◦.
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Figure 4.28: Zero field spin wave dispersions along several representative paths in the

Brillouin zone with kz = 0 for α = 0 and α = 0.25, respectively. Both of the dispersions

are calculated with J = 0.1 meV and θ = 0 using Eq.(4.12).

Results and analysis

The field evolution of spin excitation spectrum below and above the saturation field H∗ ≈
0.76Hsat ≈ 2.75 T is presented in Fig.4.27. To produce these color plots, the spectra

were projected onto the [0,K, 0] axis and visualized in the MATLAB package Mslice. As

the magnet significantly restricted the accessible range of neutron scattering angles, the

scattering from the sample was invisible to several detectors. Even though the resultant

visible K range also depends on the rotation angle Ψ, as illustrated in Fig.4.27, overall the
spin excitations are absent at K below ∼ 0.7 r.l.u in all collected spectra. Below K ∼ 0.7
r.l.u, only background scattering was collected.

The most prominent feature in the zero field data is that, a well-defined spin wave disper-

sion is clearly visible in the spectra. At Ψ = −78.6◦ (Fig.4.27(a)) and −74.8◦ (Fig.4.27(b)),
the spin wave dispersion has a minimum in energy (∼ 0.13 meV) at around K ' 2 r.l.u.
As illustrated in Fig.4.26, at Ψ = −78.6◦ and −74.8◦, the trajectories of the detector cov-
erage are close to (π, π, 0) at this K position. In Fig.4.28, we show the zero field spin

wave dispersions calculated with α = 0 and 0.25 using Eq.(4.13) given J = 0.1 meV. It
is evident that, due to the presence of α, a spin wave gap is open at (π, π, 0). Therefore,
the observed spin wave minimum at K ' 2 r.l.u is a reflection of the spin wave gap at

(π, π, 0) and directly indicates α is finite for CAPCC. As K decreases, following the tra-

jectories shown in Fig.4.26 for Ψ = −78.6◦, the spin wave dispersion reaches (π, 0, 0) at
K = 1.5 r.l.u. Since (π, 0, 0) is at the Brillouin zone boundary, the energy transfer value at
this position directly reflects the bandwidth of the spin excitation spectrum of CAPCC at

zero field. With a rough estimate, the energy transfer at K = 1.5 r.l.u in the Ψ = −74.8◦

spectrum (Fig.4.27(b)) is around 0.25 meV. Compared to the spin wave dispersion shown

in Fig.4.28, the nearest neighbor exchange constant J should be around 0.1 meV. For

the spectrum collected at Ψ = −64.7◦ (Fig.4.27(c)), the two maxima of the spin wave

dispersion, i.e. one is at K ' 1.5 r.l.u and the other is around 2.1 r.l.u, both reflect the

spin excitation energy at another zone boundary point (π/2, π/2, 0) according to the tra-
jectories shown in Fig.4.26. The excitation energies of the two maxima are comparable

with the previously identified maximum energy 0.25 meV in the Ψ = −74.8◦ spectrum
(Fig.4.27(b)).
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When the field becomes finite, there are two spin wave branches existing in the collected

spectra, see Fig.4.27(d). We label the lower branch (has a minimum at K = 2 r.l.u) as nor-
mal mode and the upper branch as ghost mode. The labelling of normal and ghost modes

is the same for Ψ = −66.2◦ but reversed for Ψ = −52.2◦. As illustrated in Fig.4.27(g), the
branch has a maximum at K ' 2 r.l.u is the normal mode and the ghost mode is the lower
branch. The existence of two modes can be explained by Eq.(4.9). The ghost mode can

be obtained from the normal mode directly by giving momenta a π shift (Q → Q+(π, π, π)).
At 2 T (Fig.4.27(d)), both normal and ghost modes are well-defined. This is consistent

with our expectation that, below the threshold field H∗ ≈ 2.75 T, magnon decay is not al-
lowed. As the field keeps increasing, the spin excitations at three orientationsΨ = −71.0◦,
−66.2◦ and −52.2◦ (Fig.4.27(c)-(m)) follow a general trend: the minimum (maximum) of

the normal mode decreases (increases) with increasing field at Ψ = −71.0◦ and −66.2◦

(Ψ = −52.2◦) , while the maximum (minimum) of the ghost mode increases (decreases)

as the field strength grows. Intensity-wise, the ghost mode gradually diminishes in in-

tensity with increasing field. At the field close to the saturation value Hsat = 3.62 T, the
ghost mode is barely discernible in the spectra. This is most evident in the 3.5 T spectrum

collected at Ψ = −71.0◦ (Fig.4.27(k)).

At 2.7 T (Fig.4.27(e)-(g)), both normal and ghost modes are still well-defined even though

the applied field 2.7 T is only slightly below the threshold fieldH∗ ≈ 2.75 T. As soon as the
field value is above H∗, see the spectra collected at 3.2 T (Fig.4.27(h)-(j)), the previous

well-defined spin wave excitations now become diffuse. It is evident that, compared to

the 2.7 T data, the widths of both normal and ghost modes are broadened significantly. In

the data shown in Fig.4.27(i), at K ' 1.5 r.l.u where the two modes cross, the spin excita-
tion is very broad and diffuse without showing any sharp features. According to Fig.4.26,

K = 1.5 r.l.u at Ψ = −66.2◦ corresponds to the momentum (π/2, π/2, 0). As illustrated
in Fig.4.25b, theoretically the magnon at (π/2, π/2, 0) should have a substantial decay

when field is above H∗. This is consistent with our experimental observations. On the

contrary, in the data shown in Fig.4.27(j), the spin excitation at K ' 1.5 r.l.u is less broad-
ened compared to the K ' 1.5 spin excitation in the Ψ = −66.2◦ spectrum (Fig.4.27(i)).

According to Fig.4.26, K = 1.5 r.l.u at Ψ = −52.2◦ corresponds to the momentum (π, 0, 0).
In theory [51, 60, 63], the magnon decay at (π, 0, 0) is less pronounced compared to that
at (π/2, π/2, 0) as demonstrated in Fig.4.25b. Our experimental observation seems to

support the theoretical prediction. At 3.5 T, see Fig.4.27(k)-(m), both normal and ghost

modes get more diffuse compared to 3.2 T. Apart from that, the general spectral features

of the 3.5 T spectra are very similar to what we’ve found at 3.2 T.

When the field is eventually above the saturation field Hsat = 3.62 T, the system is in a

quantum paramagnetic state in which magnon decay is not allowed. This is supported

by the collected spectra at 7 K (Fig.4.27(n)-(p)), where the spin wave excitations at three

different orientations are well-defined. It is evident that No diffuse features nor broadening

of the excitations are visible in the collected 7 T spectra.

Fitting to the 7 T data The magnon dispersion in a fully polarized quantum square

lattice antiferromgnet reads [71]

}ωQ = gµBH + 2J(γQ − 1) + J ′(γ′Q − 1), (4.13)

where γQ = cosπHcosπK and γ′Q = cosπL. As illustrated in Fig.4.26, the collected spin
excitation spectra are centered at L = 0 and restricted in the a∗ − b∗ plane. Hence the

only extractable parameters from the 7.0 T spectra are J and g. In the following, we list
the relevant procedures for conducting the fitting to the 7 T data.
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Figure 4.29: The magnon dispersion extracted from the experimental H = 7.0 T data.

The black open circles are the peak positions extracted from the Gaussian fits. The red

solid lines represent the fitted dispersion calculated from Eq.(4.13).

Value

J 0.102(2) meV

g 2.025(1)

Table 4.4: Values of J and g determined from the least χ2 fitting to the extracted disper-

sion collected at H = 7.0 T.

• The data was projected onto the [H, 0, 0], [0,K, 0] and energy transfer axes in MSlice
respectively to extract the corresponding values of H, K and }ωQ.

• Followed a detector by detector inspection principle, at each detector, the collected

spectrum was fitted to a Gaussian lineshape with a linear background model, from

which the momentrum transfer Q = (H,K, 0) and the energy transfer }ωQ were

obtained.

• The extracted dispersion (H,K, }ωQ) was fitted to Eq.(4.13). Here we adopted the
least-square fitting routine to deduce the parameters J and g. The fitted result is

presented in Fig.4.29, see the solid red lines. The fitted J and g are summarized

in Tab.(4.4), and are consistent with the values estimated from susceptibility and

specific heat measurements [66, 67], see Tab.(4.2). The best-fitted value of J =
0.102 meV is also consistence with the observed excitation bandwidth (Fig.4.27(a)

and (b)) as explained in the last section.

Width analysis Magnon decay manifest itself through broadening of excitation line-

shapes, see Fig.4.25a and Fig.4.25b. Spectroscopy wise for CAPCC, tracking the field

evolution of lineshape widths is a feasible way to capture the signature of decays. Owing

to the asymmetric spectral linshapes induced by the mixing of the single-magnon branch

with the two magnon continuum, to correctly account for such a decay process and extract

the corresponding one magnon linewidths, the normal mode for each detector was fitted

to the phenomenological lineshape [71]

y(ω) = 2G(ω;ω0, σ)

(
1 + erf

(
α
ω − ω0√

2σ

))
, (4.14)

where G(ω;ω0, σ) is a Gaussian lineshape centered at ω0 with width σ, erf(. . . ) is an error
function and α adjusts the degree of asymmetry of the lineshape.
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As explained in the last section, the magnon decay at (π/2, π/2, 0) seems stronger than
that at (π, 0, 0) at elevated fields. To get a more clear view on this, in this section, we

extract the excitation linewidths of the normal mode for detectors close to these two Q po-

sitions. However there are two main issues associated with this which are not avoidable:

• Ideally we only want to extract the widths of the normal mode. However both normal

and ghost modes exist in the collected spectra at fields belowHsat. To makematters

worse, the two modes overlap at K close to 1.5 r.l.u in the spectra measured at

Ψ = −66.2◦ and −52.2◦ (for Ψ = −66.2◦: Fig.4.27(f), (i) and (l), for Ψ = −52.2◦:
Fig.4.27(g), (j) and (m)), and K = 1.5 r.l.u is exactly the position where (π/2, π/2, 0)
and (π, 0, 0) sit (Fig.4.26). Such an overlap makes the extraction of the excitation

widths of the normal mode at (π/2, π/2, 0) and (π, 0, 0) difficult.

• The spectrum for each detector is a constant 2θ (scattering angle) cut, This is in

contrast to the commonly adopted strategy of using constant Q cuts as illustrated in

Fig.4.19. Under such a condition, the extracted excitation linewidths depend on the

slope of the spin wave dispersion and also the slope of the detector coverage. As

the result, it is not possible to obtain the true linewidths of the spin excitations in the

current dataset.

In Fig.4.30a (detector 22) and Fig.4.31a (detector 21), we show the representative fit-

ted results for Ψ = −66.2◦ and −52.2◦, respectively. The trajectory of detector 22 at

Ψ = −66.2◦ lies close to (π/2, π/2, 0) as illustrated in Fig.4.30b(b). Clearly, as the field

increases, the spin excitation at ' 0.2 meV at 2.7 T gets broadened significantly. When

the field is above Hsat, i.e. H = 7 T, the energy of the spin excitation increases to ' 0.55
meV and the lineshape becomes well-defined again. In Fig.4.30b(a), we summarize the

variation of the FWHM of the normal mode from detector 12 to 23 at different fields. The

trajectory of each detector is shown in Fig.4.30b(b) with a pink solid line. The widths of

the normal mode at 2.7 T and 7 T vary only slightly at different detectors and their values

all lie below 0.1 meV. When moving away from detector 12, the width increases substan-

tially at 3.2 T and 3.5 T. This signifies that as Q getting closer to (π/2, π/2, 0), the magnon
decay becomes more pronounced. At detector 21, 22 and 23, the widths at 3.2 T and 3.5

are almost identity. With a rough estimate, the mean value is found to be ∼ 0.25 meV.
Compared to the widths at 2.7 T at detector 21 and 22 whose mean value is around 0.05

meV, the spin excitation width at (π/2, π/2, 0) increases 4 times larger.

In Fig.4.31a we show the fitted results for detector 21 at Ψ = −52.2◦. As seen from the

plots, the 0.2 meV spin excitation at 2.7 T is very sharp. As the field grows, the excitation

starts damping at 3.2 T and 3.5 T. At 7 T, the energy of the excitation moves up to 0.7

meV and the lineshape is more well-defined compared to 3.2 T and 3.5 T. In Fig.4.31b(a),

we summarize the widths of the normal mode from detector 17 to 22 at different fields. As

illustrated in Fig.4.31b(b), these detectors lie close to (π, 0, 0) where less magnon decay
is expected compared to (π/2, π/2, 0). As seen in Fig.4.31b(a), the extracted widths show
very little variations at different detectors for all fields. Moreover the width of the normal

mode does not increases significantly when changing the field from 2.7 T to 7 T, in contrast

to the results shown in Fig.4.30b. We estimate the mean widths at 2.7 T and 3.5 T are

' 0.05 meV and ' 0.14 meV, respectively. This corresponds to 1.8 times increase in

width at (π, 0, 0), which is much smaller than the previously found 4 times increase at

(π/2, π/2, 0). The slightly larger widths for detectors 21 and 22 at 7 T compared to at 2.7

T, is due to the larger slop of the spin wave dispersion in between K = 1.4 r.l.u and 2 r.l.u
at 7 T compared to at 2.7 T.

In the above analysis, we quantitatively described the magnon decays at (π/2, π/2, 0) and
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(a) The fitted lineshapes and the experimental spectra for detector 22 at four different fields: (a),

7.0 T, (b), 3.5 T, (c), 3.2 T and (d), 2.7 T. Here the rotation angle Ψ is −66.2◦.
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(b) (a), The extracted FWHMs of the lineshapes from detector 12 to detector 23 taken at Ψ =
−66.2◦ at different fields: 7.0 T, 3.5 T, 3.2 T and 2.7 T. (b), The pink solid lines represent the

detector trajectories from which the FWHMs are extracted. Here the rotation angle Ψ is −66.2◦.

Figure 4.30: Ψ = −66.2◦: (a) Fitted results for detector 22. (b) The extracted FWHMs

from detector 12 to 23.
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(a) The fitted lineshapes and the experimental spectra for detector 21 at four different fields: (a),

7.0 T, (b), 3.5 T, (c), 3.2 T and (d), 2.7 T. Here the rotation angle Ψ is −52.2◦.
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(b) (a), The extracted FWHMs of the lineshapes from detector 17 to detector 22 taken at Ψ =
−52.2◦ at different fields: 7.0 T, 3.5 T, 3.2 T and 2.7 T. (b), The pink solid lines represent the

detector trajectories from which the FWHMs are extracted. Here the rotation angle Ψ is −52.2◦.

Figure 4.31: Ψ = −52.2◦: (a) Fitted results for detector 21. (b) The extracted FWHMs

from detector 17 to 22.
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Figure 4.32: Resolution of OSIRIS as a function of energy transfers. The black unfilled

circles represent the simulated resolution function obtained from McStas [73] and the red

solid line is the interpolated result.

(π, 0, 0) in terms of the linewidth of the normal mode, and found the linewidth increase

at (π/2, π/2, 0) is more pronounced than at (π, 0, 0) when the field is above H∗. Such

a result agrees with the theoretical prediction made in Refs [51, 60, 63], which is also

illustrated in Fig.4.25b as previously explained. Even though the two issues mentioned

at the beginning of this section would impair the accuracy of this analysis, our results still

provide an evidence for magnon decays in CAPCC.

Comparison with the theory
The width analysis presented in the last section provides an evidence for magnon decays

in CAPCC. In this section, we ask our self a question: how well can the theory (Section

4.2.1 and 4.2.2) describe the data collected at different fields? To see this, first, we need

to address several technicalities as shall be discussed in the following.

The energy resolution of OSIRIS Since OSIRIS is an indirect geometry TOF spec-

trometer, its instrumental resolution is hard to calculate analytically. Here we used the

numerical result from Ref [72], in which the resolution was simulated in McStas [73] up

to an energy transfer of 20 meV for a PG002 analyzer, see the black unfilled circles in

Fig.4.32. We spline interpolated the simulated resolution (see the red solid line in Fig.4.32)

and the result will be reserved for later use when comparing the 1/S spin wave spectra

to the experimental data.

Account for the integration along the azimuthal direction Fig.4.26 illustrates the re-

ciprocal space probed by OSIRIS as limited to the a∗ − b∗ plane only. This is due to a

horizontal scattering configuration of OSIRIS in which the out-of-plane azimuthal scatter-

ing angle ψ is assumed to be zero. However, due to the finite height of the analyzer, such

an assumption is only valid on a statistical average. In practice, the detector bank collects

neutrons reflected from the whole analyzer bank, resulting in the final spectrum being in-

tegrated over a certain range along the azimuthal direction (the y direction in Fig.4.33).

The effect of such an integration is normally negligible as the azimuthal range is small and

centered around ψ = 0◦. However as both magnon decay and the azimuthal integration
manifest themselves through broadening of the spectral lineshapes, it is crucial to take

the integration effect into account when conducting a quantitative comparison.
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Figure 4.33: The schematic of the secondary spectrometer in OSIRIS, taken from

Ref.[72]. Here the horizontal scattering plan is the x − z plane. Incident neutrons are

along the x direction.

Figure 4.34: Laboratory reference frame for OSIRIS used in Section ”Account for the

integration along the azimuthal direction”. Incident neutrons are along the x direction and

the horizontal scattering plane is the x− y plane.
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To determine how the integration along the azimuthal direction affects H, K and L com-

pared to when scattering is limited to the horizontal plane only, a general formalism is

developed as we shall introduce in the following.

We first define a global coordinate system as illustrated in Fig.4.34, where the incident

neutron wavevector ki is along the x direction. The neutron final wavevector is denoted

as kf . As we shall see soon, the main goal of this section is to express kf in terms of

(2θ̃, φ).

Given that the analyzer bank sits on a segment of a circle and the sample is at the center,

thus each row of the analyzer bank shares the same azimuthal angle ψ (in the current

situation, each analyzer position corresponds to an unique kf ). ψ is defined as the an-

gle between kf and its projected vector onto the horizontal x − y plane, as illustrated in

Fig.4.34). But the horizontal scattering angle 2θ along the row varies and it is defined as

the angle between the x axis and the projection of kf onto the x − y plane, as shown in

Fig.4.34.

We start with defining the unit vector u of kf at (2θ, ψ):

ux = cosψ cos 2θ,

uy = cosψ sin 2θ,

uz = sinψ,

(4.15)

from which the total scattering angle 2θ̃, as illustrated in Fig.4.34, can be obtained

2θ̃ = −arccos
(
[1, 0, 0]× [ux, uy, uz]

T
)
. (4.16)

Now the new azimuthal angle φ (see Fig.4.34), defined as the angle between and the y

axis and the projection of kf onto the y− z plane, can be calculated as follow

φ = π − sgn (ψ)× arccos

 [1, 0]× [uy, uz]
T√

u2y + u2z

 , (4.17)

where sgn(ψ) is 1 for ψ > 0 and -1 for ψ < 0, respectively. When ψ = 0, φ is assigned to
be 0 as well.

Now we managed the most crucial step: to represent kf in terms of a new set of variables

(2θ̃, φ). It is in this step that the azimuthal degree of freedom is taken into account.

The next step is to express the momentum transfer Q = ki − kf in terms of (2θ̃, φ). This
can be achieved via

Qx = ki − cos 2θ̃ × kf ,

Qy = − sin 2θ̃ cosφ× kf ,

Qz = − sin 2θ̃ sinφ× kf .

(4.18)

If the sample is further rotated anti-clockwise by an angle Ψ in the horizontal x− y plane

(the a∗ − b∗ plane for CAPCC), follow a simple coordinate transformation, the final mo-

mentum transfer transfer ~Q reads
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Figure 4.35: The accessible (H,K,L) (black solid lines) in reciprocal space for CAPCC for

a particular scattering angle, 2θ, and a particular energy transfer, }ω = 0.5 meV, given
Ef = 1.8463 meV and the azimuthal angle range is from −9◦ to 9◦.

Q̃x = Qx cosΨ+Qy sinΨ,

Q̃y = −Qx sinΨ+Qy cosΨ,

Q̃z = Qz,

(4.19)

As the last step, in order to transform the momentum transfer ~Q from the laboratory frame

to the reciprocal lattice basis of the sample, the following transformation is applied

[H,K,L]T = inv (U)×
[
Q̃x, Q̃y, Q̃z

]T
, (4.20)

where U is the lattice basis matrix of the sample in the laboratory frame and inv(U) rep-
resents the inverse of U.

It can be calculated from Fig.4.33 that azimuthal angles for the upper and lower edges

of analyzer in OSIRIS are around ψupper = 13.00◦ and ψlower = −12.54◦, respectively.
However due to the installment of magnet at the sample position, the true accessible

azimuthal range was limited to [−9◦,+9◦] during the experiment [74]. In Fig.4.35, we

illustrate the calculated accessible (H,K,L) in reciprocal space for CAPCC given the final

analyzer energy Ef = 1.8463 meV, the horizontal scattering angle 2θ = −80◦ and the

energy transfer }ω = 0.5 meV. In this particular situation, the curved trajectories span the
ranges (units in rlu) H : [−1.201,−1.149], K : [1.541, 1.543] and L : [−0.372, 0.372]. Hence
the finite height of analyzer contributes mostly to the integration along the L direction.

The asymmetric ranges in H and K are a result of (i) the monoclinic crystal structure

(β = 94.37◦) and (ii) the difference in lattice constants, a = 12.85 Å and b = 8.37 Å.

Comparison between the theory and the experiment Having determined the energy

resolution of OSIRIS, and established the formalism to account for the integration along

azimuthal direction due to the finite height of analyzer bank. Combining them with the

previously explained 1/S spin wave theory for calculating the double differential cross-

section d2σ
dΩdE at different fields, see Eq.(4.11), now it’s time to compare the theoretical

result with the experimental data to elucidate its accuracy.

As the first step, we need to set up a work flow to efficiently simulate the neutron scatter-

ing patterns collected by OSIRIS at different magnetic fields. Even though the essential

formulas for achieving it have already been explained in the previous sections, there are

still some technical difficulties that need to be addressed:
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• When evaluating the self-energy Σ1(k, ω) or Σ2(k, ω) (Eq.(4.7)), a summation over
momenta in the Brillouin zone needs to be carried out. To calculate it accurately

with low variance, the Quasi-Monte Carlo integration method [75] was applied, in

which 10,000 three dimensional Sobol sequences [75] (qx, qy, qz) were generated

to fill the cubic region [0, 2π]× [0, 2π]× [0, 2π] with low discrepancy. This allows us

to fast calculate the double differential cross-section d2σ
dΩdE . Here we denote the cal-

culated cross-section as Spec (k(ψ), ω, ψ) (k is momentum transfer and ω is energy

transfer). ψ represents the angle in the azimuthal direction, see Fig.4.34.The ψ de-

pendence of k comes from that, when taking the azimuthal direction into account,

k becomes a function of ψ. This can be seen from the ”Account for the integration

along the azimuthal direction” Section.

• For the integration along the azimuthal direction, the integration is represented as

Specfinal(k, ω) =
1

ψmax − ψmin

∫ ψmax

ψmin

Spec (k(ψ), ω, ψ) dψ (4.21)

where ψmin and ψmax are −9◦ and +9◦, respectively. Applying the trapezoidal rule,
Eq.(4.21) can be approximated by

Specfinal(k, ω) ≈
1

ψmax − ψmin

N−1∑
i=0

Spec (k(ψmin + iδψ), ω, ψmin + iδψ) δψ, (4.22)

where N ∈ Z is the grid size in ψ and the step size δψ is defined as δψ := ψmax−ψmin
N .

In our calculation, N is set to 100, thus δψ = 0.18◦.

• Even though we have now taken into account the integration along the azimuthal

direction, the simulated ”bare” spectra still cannot compare with the experimental

data directly, as the energy resolution effect plays another crucial role and hasn’t

been considered yet. The energy resolution function of OSIRIS is assumed to be

represented by a Gaussian G (ω;ω0,FWHM(ω0))

G (ω;ω0,FWHM(ω0)) =
2.355√

2πFWHM(ω0)
e
− 2.3552

2
× (ω−ω0)

2

FWHM2(ω0) , (4.23)

whereω is the energy transfer, ω0 is the center of theGaussian profile, and FWHM(ω0)
is the previously interpolated energy dependent FWHM at ω0 (Fig.4.32). The convo-

lution of the simulated spectrum Specfinal(k, ω), Eq.(4.22), with the resolution func-
tion can be approximated by

Specconv(k, ω) =

∫ ∞

−∞
Specfinal(k, ω − ω0)G (ω;ω0,FWHM(ω0)) dω0

≈
M−1∑
i=0

Specfinal(k, ωi)G (ω;ωi,FWHM(ωi))

(4.24)

where M = 210 is the number of energy bins recorded by the detector bank of

OSIRIS.

For the next step, we need to determine which set of parameters (J, α, g) provides the
best description to the collected spectra. As explained before, the gap observed in the

zero field data (Fig.4.27(a) and (b)) can be used to determine the size of α, and the

bandwidth of the spin excitations can determine J . Thus we need to include at least

one zero field spectrum in the fitting process. To estimate g, several spectra at different
fields are included. Hence the following fitting routine was conducted for the parameter

estimation:
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Label J [meV] α J

1 0.1003 0.2761 2.0271

2 0.102(2) 2.025(1)

3 0.11 0.25

Table 4.5: Values of J , α and g obtained from 1 minimizing the cost function Eq.(4.26),

2 fitting to the 7 T data, and 3 thermodynamic measurement [66, 67].

• The following spectra were chosen for the fitting process: (H = 0.0 T, Ψ = −74.8◦),
(H = 2.0 T, Ψ = −71.0◦), (H = 2.7 T, Ψ = −71.0◦) and (H = 7.0 T, Ψ = −71.0◦).

• Set the saturation field for later simulations to the theoretical value: Hsat =
4J+2Jα
gµB

.

• Set up the simulation workflow as introduced above to calculate the magnetic scat-

tering contribution ymag(J, α, g) ≡ Specconv(k, ω) for a given parameter set (J, α, g),
where the resolution effect and the integration along the azimuthal direction were

both taken into account. In addition, for numerically implementing Green’s function

(Eq.(4.7)), the imaginary part i0 in the denominator was replaced by a finite value

iΓ with Γ = 0.01 × 2J(α + 2), which is much smaller than the energy resolution of
OSIRIS.

• To properly account for the non-magnetic scattering ynon-mag in the experimental

spectra, for each detector, we introduced a Voigt lineshape Voigt
(
ω;amp, ω0

Voigt, σ, γ
)

to model the incoherent elastic scattering centered at ω = 0 and a linear function

Aω+B to account for the background intensity at non-zero energy transfers. The six

unknown parameters
(
amp, ω0

Voigt, σ, γ, A,B
)
were determined via the Levenberg -

Marquardt method [76] where the cost function for each detector is defined as

χ2
2θ(J, α, g) =

∑
i

(
yexpi − ymagi (J, α, g)− ynon-magi

eexpi

)2

, (4.25)

in which 2θ is the horizontal scattering angle for labelling different detectors, yexp

and eexp are the experimental scattering intensities and error bars respectively, and
the summation is over all the collected data points.

• The total cost function Cost(J, α, g) is defined as the mean of χ2
2θ(J, α, g) over all

feasible detectors

Cost(J, α, g) =
1

N2θ

∑
{2θ}

χ2
2θ(J, α, g), (4.26)

where N2θ is the total number of detectors included in the fitting process for each

spectrum. Constrained by the limited horizontal opening angle of magnet, only 27

out of all 42 detectors in OSIRIS were useful, of which the indices are from 12 to 38.

The minimization of Cost(J, α, g) was solved by the Nelder-Mead method [76] after
∼ 50 iterations.

Results The parameters (J, α, g) obtained from the optimization process are summa-

rized in the first row of Table 4.5. Due to the inclusion of the zero field data, the value of

α can be estimated reliably. According to the optimization, with α = 0.2761, the simulated
spectra provide the best description of the experimental data. The estimation of the as-

sociated errors for J , α and g has not been performed. This will be left for future study.
Compared to the results extracted from fitting to the 7.0 T magnon dispersion (shown in
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Figure 4.36: Comparison between the fitted theoretical results and the experimental data.

The left most column illustrates the experimental spectra, the middle column is the fitted

theoretical results and the right most column is the absolute difference between the two.

From top to bottom, the spectra are collected/simulated at (Ψ = −74.8◦,H = 0.0 T),
(Ψ = −71.0◦,H = 2.0 T), (Ψ = −71.0◦,H = 2.7 T), (Ψ = −71.0◦,H = 3.2 T), (Ψ =
−71.0◦,H = 3.5 T) and (Ψ = −71.0◦,H = 7.0 T), respectively.
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the second row of Table 4.5), J and g are nearly the same. Clearly, as shown in the third
row of Table 4.5, the values obtained from magnetic susceptibility and magnetization [66,

67] underestimate J and overestimate g. Such a discrepancy is also readily seen when
comparing the theoretical saturation field strength (calculated with the parameters listed

in the first row of Table 4.5), H theory
sat = 3.89 T, with the experimental value, Hexp

sat = 3.61
T. The difference between them might due to the existence of other interactions in the

system, which shall be discussed in Conclusion.

The fitted results are illustrated in Fig.4.36, where the third column presents the absolute

difference between the theory and the experiment, Difference := |SpecExp − SpecTheory|.
To provide a more clear view, we show the fitted spectrum for each detector as shown in

Fig.4.37 (Ψ = −74.8◦, H = 0.0 T), Fig.4.38 (Ψ = −71.0◦, H = 2.0 T), Fig.4.39 (Ψ = −71.0◦,
H = 2.7 T), Fig.4.40 (Ψ = −71.0◦, H = 3.2 T), Fig.4.41 (Ψ = −71.0◦, H = 3.5 T), and

Fig.4.42 (Ψ = −71.0◦, H = 7.0 T).

As illustrated in Fig.4.36, when the field is much lower than the threshold field H∗ ≈ 2.75
T where no magnon decays occur, i.e. H = 0 T (Fig.4.36(a)-(b)) and 2T (Fig.4.36(d)-

(e)), the 1/S spin wave theory provides an overall good description of the experimental

data. Even though the difference spectra illustrated in Fig.4.36(c) and (f) show some

evident residual intensities especially at 0 T (Fig.4.36(c)), they are much smaller than the

intensities of the experimental data (Fig.4.36(a) and (d)). To find out where the differences

come from, we turn to the detector cuts shown in Fig.4.37 and Fig.4.38. At 0 T, the peak

positions at different detectors are captured quite well by the 1/S spin wave theory and

the main difference arises when comparing the width. The excitation lineshapes in the

experimental data are slightly broader than the theoretical calculations, giving rise to the

evident residual features observed in the difference spectrum (Fig.4.36(c)). At 2 T, the

positions and widths of the normal mode (the lower branch which has a minimum close to

detector 28) are captured quite well by the 1/S spin wave theory. Whereas for the ghost

mode (the upper branch which is relatively flat), the theory predicts slightly higher energies

compared to the experimental data, as illustrated in the detector cuts at 2θ = −108◦,
−111.4◦ and −114.7◦ in Fig.4.38. Overall the differences between the 1/S spin wave

theory and the experiment data are not significant, justifying the claim that the theory and

the experiment are in good accord.

As the field approaches the threshold field, i.e. H = 2.7 T, 1/S spin wave theory again

captures the peak positions of the excitations relatively well. This can be directly seen

from the difference spectrum Fig.4.36(i), in which no evident residual features for the

normal mode are observed (the lower branch which has a minimum close to detector

30). However, there are some residual intensities for the ghost mode (the upper branch

which has a maximum close to detector 30) in the difference spectrum (Fig.4.36(i)). Such

differences are readily seen in the detector cuts illustrated in Fig.4.39. Similar to what we

found at 2 T, the theory predicted energies for the ghost mode are slightly higher than

the observations. This is readily seen from, such as, the detector cuts at 2θ = −91.4◦,
−94.73◦ and −98.06◦. In addition, the widths for both normal and ghost modes are slightly
underestimated by the 1/S spin wave theory. This can be seen from some of the detector

cuts, such as 2θ = −91.4◦ and −108◦. In general, the differences between the theory and
the experiment are not severe and the two are still in good accord.

When the field is finally above the threshold field, i.e. H = 3.2 T and 3.5 T, we enter the

regime where magnon decays are expected to occur. Compared the theoretical spectra

to the experimental data at 3.2 T (Theory: Fig.4.36(j), Exp: Fig.4.36(k)) and 3.5 T (Theory:

Fig.4.36(m), Exp: Fig.4.36(n)), it is immediately clear that the excitations in the theoretical
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spectra aremuch sharper than the experimental data. This can seenmore clearly from the

detector cuts (3.2 T: Fig.4.40 and 3.5 T: 4.41). For instance, the experimental 2θ = −91.4◦

detector cut at 3.5 T shows no sharp features in its lineshape besides a broad continuum

of excitations. Whereas the 1/S spin wave theory predicts two clear sharp peaks in the

spectrum. Similar situations are encountered in the detector cuts at 3.5 T. For example,

2θ = −118◦, the intense sharp peak below 0.2meV predicted by the theory is replaced by a

much weaker and broader feature in the experimental data. Besides the width differences,

peak position-wise, the 1/S spin wave theory captures relatively well where the excitations
should locate as seen from different detector cuts shown in Fig.4.40 and Fig.4.41. Even

though there are small discrepancies, such as the 2θ = −101.40◦ at 3.2 T cut where the

theory predicts slightly higher energy of the excitation, and the 2θ = −121.40◦ at 3.5 T in

which the theory underestimates the excitation energy. In general the differences in peak

positions between the theory and the experiment are acceptable.

At 7 T, the system is in a fully polarized phase where no magnon decays are allowed

and the excitations’ linewidths are expected to be resolution limited. Even though, as

illustrated in Fig.4.36(p) the excitations in the experimental data are well defined, they

appear to broader than the calculated results from the 1/S spin wave theory shown in

Fig.4.36(q). This is also evident from the detector cuts illustrated in 4.42. Even though

the peak positions of the excitations are captured relatively well by the theory, the theory

largely underestimates the size of the excitation linewidths. Because when performing

calculations in a fully polarized phase, the widths of the excitaions are solely determined

by the energy resolution of OSIRIS (Fig.4.32). The observed width discrepancy could

indicate that we might underestimate the energy resolution of OSIRIS.

4.2.4 Conclusions

Our width analysis presented in Section 4.2.3 shows that, compared to the widths ob-

tained at 2.7 T where no magnon decays are expected, the excitation linewidths increase

∼ 4 times at (π/2, π/2) and only∼ 1.8 times at (π, 0, 0) for both 3.2 T and 3,5 T. This signi-
fies that, the one magnon response at vicinities close to (π/2, π/2) dampens more heavily
compared to (π, 0) with field increasing, in particular when the field approaches the sat-
uration field of CAPCC, Hsat = 3.62 T. This is in good accord with theoretical predictions
[51, 60, 61, 62, 63].

We also carried out 1/S spin wave calculations and compared the results with the exper-

imental data. This gives us an estimation of the exchange constants and the g-factor of
the Hamiltonian, which are found to be J = 0.1003 meV, J ′/J = 0.2761 and g = 2.0271.
These are in good accord with the estimated values from the thermodynamic measure-

ment [66, 67] and the fitting to the spin wave disperisions at 7 T (Section 4.2.3). With

the obtained parameters, the peak positions of the excitations in the experimental data

can be relatively well reproduced by the 1/S spin wave theory. Whereas for the excita-

tion linewidths, the theory tends to underestimate their sizes. Such an underestimation

is most significant at 3.2 T and 3.5 T, where the observed excitations heavily dampen

and broaden, in contrast to having relative sharp features predicted by the 1/S spin wave

theory.

Such a deviation between the theory and the experiment may arise from:

• There is an underestimation of the energy resolution of OSIRIS. This can be seen

from the comparison between the experimental data and the 1/S spin wave theory

results at 7 T (Fig.4.36(p) and (q)), where the experimental spectra are broader than

the simulations.
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• In the 1/S spin wave theory, the renormalized single magnon branch escapes from

the two magnon continuum as the one-loop approximation takes into account the

correction of the real part of the energy as well [63]. As the result, the magnon decay

is likely underestimated in theory.

• There is a large difference between the experimental saturation field strength,Hexp
sat =

3.62 T, and the theoretical value calculated from the best fitted J , α and g, H theory
sat =

3.89 T. As the result, decays are less pronounced in the theoretical calculation as the
ratio between the external field and the saturation field becomes smaller compared

to that in reality, e.g H/H theory
sat < H/Hexp

sat . The overestimation of the saturation

field might relate to the J − J ′ Heisenberg Hamiltonian is not the full story. Other

exchange interactions may also be present in the Hamiltonian. Thus the saturation

field will be modified and potentially can give rise to larger decays.

• In an external magnetic field, besides the Zeeman couplingHZeeman = gµBH·
∑

i Si,

an additional spin chirality term Hchiral = Jχ
∑

∆ Si · (Sj × Sk) is also present where
the summation is over all elementary triangular plaquettes, denoted by ∆ and its

strength Jχ is proportional to the magnetic flux penetrating through the triangular

plaquette [77]. Usually such a chiral term is extremely small [78] and ignored more

of the time. But it can drive the antiferromagnetic order close to a critical point (but

still in the antiferromagnetic order), hence one can imagine themagnons would have

a larger decay [79].

Nevertheless, here we provide the first experimental evidence for magnon decays in the

two-dimensional S = 1/2 antiferromagnet on a square lattice. Despite there are some

discrepancies between the 1/S spin wave theory and the experimental data, the theory still
provides an overall relatively well description of the experimental data. This is summarized

in Fig.4.43 where we illustrate both the experimental and theoretical spectra at 3.5 T. The

difference between them is less than 10% of the raw data. Finally a full understanding of

the discrepancies will be left for future study.
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Figure 4.43: The simulated and the experimental spectra for three orientations Ψ =
−71.0◦, −66.2◦ and −52.2◦. All data were collected at 3.5 T. The first three columns are
the pure theoretical results, the theoretical spectra together with the background contribu-

tions and the experimental spectra, respectively. The right most column is the absolute

difference between the experimental spectra and the theoretical spectra with the back-

ground contributions. The intense blob feature below 0.2 meV located between detector

25 and 30 in the Ψ = −52.2◦ spectra is a spurion which cannot be captured by either the
theoretical model or the background model. As the result, an intense feature shows up at

the same region in the difference spectrum.
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5 Possible Kitaev Physics in a d7

Compound Na2Co2TeO6

The honeycomb lattice antiferromagnet Na2Co2TeO6 has been proposed as a possible

realization of the Heisenberg-Kitaev model [80, 81] given the high-spin d7 configuration of
Co (II). In this chapter, we present an inelastic neutron scattering study on its crystal field

and spin wave excitations. The sections are organized as follow. We start by reviewing

the theoretical work on d7 compounds being possible Kitaev candidates. Next, we discuss
the crystal structure and bulk magnetic properties of Na2Co2TeO6. We then present the

inelastic neutron scattering spectra and discuss their implications for the ground state

properties of Na2Co2TeO6. Finally, we discuss which spin Hamiltonians can host the

observed spin excitations.

5.1 Realization of the Kitaev model in d7 cobalt compounds

The realization of the Kitaev model in d7 cobalt compounds was first proposed in Refs [80,
81]. In the following we will closely follow Liu and Khaliullin’s arguments and summarise

their key findings.

Assume that Co (II) (3d7) ions situate in ideal octahedra surrounded by six O2−. To form a

honeycomb lattice plane of Co (II), the CoO6 octahedra are arranged in an edge-sharing

fashion. Due to the cubic symmetry of the CoO6 octahedron, the energy difference be-

tween the split t2g and eg levels is smaller than the Coulomb interaction strength. The

resultant Co (II) is in a high-spin state, i.e. t52ge
2
g, characterized by an effective orbital

angular momentum leff = 1 and a spin angular momentum S = 3/2. The sizable spin-

orbit coupling of 3d electrons in Co (II) further splits the high-spin ground state into three
manifolds, characterized by effective total angular momenta Jeff = 1/2, 3/2, and 5/2, re-
spectively, as explained in Chapter 1. The resultant lowest energy levels (Jeff = 1/2) are
two-fold degenerate and comprise a Kramers doublet.

Unlike d5 Kitaev materials [33, 82] where the eg manifold is completely empty, such as

α-RuCl3 and Na2IrO3, for the high-spin state of d
7 it is partially filled with electrons. When

evaluating the exchange interaction between neighboring Co (II) ions in the honeycomb

lattice plane, apart from the commonly considered exchange between t2g manifolds on
neighboring ions, two additional exchange paths must be taken into account as well: the

Figure 5.1: Three different categories of exchange processes A, B and C, derived from

the interaction between (a) t2g and t2g, (b) t2g and eg and (c) eg and eg manifolds. The
figure is taken from Ref [80]

.
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Figure 5.2: Total values of Heisenberg (J) and Kitaev (−K) interactions calculated in

units of t2/U as a function of U/∆ for (a) D/U = 0.2 and (b) 0.15, where t is the oxygen-
mediated hopping amplitude between two adjacent Co (II) ions, U is the Coulomb inter-

action of Co (II),D is the crystal field splitting between t2g and eg and∆ is the p−d charge
transfer gap between Co and O. SL is the abbreviation for spin liquid state. The figure is

taken from [80]

.

exchange between t2g and eg manifolds and the exchange within eg manifolds only, see
Fig.5.1. Together with the edge-sharing geometry of the neighboring CoO6 octahedra, the

t2g − eg exchange process dominate over the others. As the result, the nearest neighbor
Kitaev interaction K is always ferromagnetic and off-diagonal exchange interactions [83]

are negligible. The nearest neighbor Heisenberg interaction J is sensitive to the system

being in the Mott or a charge-transfer insulator limit, whose strength might be strongly sup-

pressed, see Fig.5.2. In such a situation, the ratio K/J may become significant enough

to stabilize the system in the desired Kitaev quantum spin liquid (SL) phase [19].

5.2 Crystal and magnetic structures of Na2Co2TeO6

Na2Co2TeO6 crystallizes in hexagonal symmetry with space group P6322 (No. 182) [84].

At room temperature the lattice constants are a = 5.2770(2) Å and c = 11.2231(1) Å [85].

The crystal structure of Na2Co2TeO6 is shown in Fig.5.3(b) which displays a two-layer

hexagonal crystal structure. The layers consist of edge-sharing CoO6 octahedra forming

a honeycomb lattice of Co (II) ions, with TeO6 octahedron sitting at the center of each

honeycomb unit. There are two inequivalent Co (II) sites in one unit cell. For both of
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Figure 5.3: (a) Honeycomb layer with the nearest, next-nearest and third-nearest neigh-

bor interactions J1, J2, and J3 indicated. Also shown are the bond-dependent Kitaev

interactions Kx, Ky and Kz. (b) Crystal structure of Na2Co2TeO6 with sodium ions omit-

ted for clarity. The Co (II) ions (purple sphere) reside inside edgesharing CoO6 octahedra

forming a nearly perfect honeycomb arrangement perpendicular to the crystallographic

c-axis. At the center of a honeycomb planquette situated an TeO6 octahedron where Te

ion is represented by an yellow sphere.

them, the CoO6 octahedra are found to be flattened along the crystallographic c axis. This

indicates the presence of a trigonal distorted crystal field at the Co (II) sites [85]. Possible

exchange paths for the Heisenberg interactions beyond the nearest neighbor type J1,
i.e. the second nearest neighbor J2 and the third nearest neighbor J3 are depicted in

Fig.5.3(b) as well. Along the c axis, the adjacent honeycomb lattice layers are separated

by an intermediate layer of Na ions, whose distribution is highly disordered over three

triangular prismatic sites connecting the honeycomb layers [85].

Upon cooling, Na2Co2TeO6 undergoes an antiferromagnetic phase transition at TN ∼ 24.8
K, below which a zigzag ordering, characterized by a propagation vector k = (1/2, 0, 0)
[85], is developed within the 2D honeycomb lattice plane. Here we stress that, due to a

highly disordered distribution of Na, this might cause the variation of interlayer exchange

couplings. As the result, the ordering temperature of Na2Co2TeO6 could be sample de-

pendent. The Curie-Weiss temperature of Na2Co2TeO6 is TCW ∼ 20.9 K and the effective

moment is µeff = 5.55 µB/Co (II) [85, 86], which is larger than the spin-only value (3.87

µB) for S = 3/2 and more close to the expected moment with full orbital contribution (6.63
µB) [87]. The magnetic structure is illustrated in Fig.5.3(a) where the full and empty filled
circles represent magnetic moments align along the crystallographic b axis [85], respec-

tively. A neutron diffraction study [85, 86] revealed the magnetic moments on Co (II) ions

in two sublattices are MCo1 = 2.77(3) µB/Co (II) and MCo2 = 2.45(2) µB/Co (II), respec-
tively. The significant reduction of the moments from the classical expectation value 3

µB/Co (II) implies strong quantum fluctuation persists in the system despite of the occur-

rence of spontaneous symmetry breaking. Even above the Néel temperature, short range

magnetic correlation within the honeycomb lattice plane persists and the correlation length

is estimated to be 12 Å at 25 K [85].
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5.3 Experimental details
The synthesis of polycrystalline Na2Co2TeO6 was carried out by M. Retuerto from Instituto

de Catálisis y Petroquímica. For the preparation, Na2CO3, Co(NO3)2·6H2O and TeO2

were used as starting materials (all from Alfa Aesar). The compounds were ground in

stoichiometric ratio of the cations, but with a 20 % excess of Na2CO3 to compensate the

partial volatilization of sodium. A first heat treatment in air was performed at 780 ◦C for

12 hours. This was followed by an intermediate grinding phase before a second heat

treatment in air at 800 ◦C for 20 hours.

A laboratory powder X-ray diffractometer was used to confirm the structure and inves-

tigate the purity of the final product. The oxide obtained was pure but exhibited prefer-

ential orientation along the (001) direction, as expected from the symmetry of hexagonal

honeycomb-based crystal structure. The refinement of the crystal structure yielded cell

parameters a = 5.278(6) Å and c = 11.252(16) Å in good agreement with literature values

[88, 86, 85]. The temperature and field-dependence of the magnetization for tempera-

tures lower than 400 K and fields lower than 9 T were measured on a Physical Property

Measurement System from Quantum Design, from which the Néel temperature of our

sample was determined to be TN ∼ 27 K.

To study the magnetic excitations in Na2Co2TeO6 below and above the Néel temperature

TN , a neutron scattering experiment was carried out using the direct geometry time-of-

flight chopper spectrometer MARI at the ISIS Neutron and Muon Source. The spectrom-

eter was operated using the repetition rate multiplication (RRM) technique [38] in which

the choppers are configured to allow the passage of several monochromatic beams onto

the sample. This allows simultaneous collection of spectra with different momentum and

energy transfer ranges, Q and }ω. For the experiment, a polycrystalline sample of to-

tal mass 2.45 g was mounted in an annular geometry inside an Aluminium can, which

was connected to the cold-finger of a continuous cycle refrigerator capable of cooling the

sample to T = 5 K. For background subtraction purposes, the scattering from an empty

can was recorded at 60 K. This turned out to be particularly important for distinguishing

crystal field levels from phonon contributions in the full excitation spectrum. The MAN-

TID software package was used to process the raw neutron data [89, 90] which were

subsequently analyzed using the MATLAB package MSlice and SpinW [24].

5.4 Results and analysis
We start by giving an overview of the excitation spectrum of Na2Co2TeO6. The data

shown in Fig.5.4(a) were collected at T = 5 K using neutrons with Ei = 70 meV. Given
the detector coverage of the MARI spectrometer, such a configuration allows access to

momentum transfers Q ≤ 11 Å−1.

For energy transfers lower than 40 meV, the high Q part of the spectrum is dominated

by scattering from lattice vibrations. This is readily seen from the scattering feature that

grows in intensity with increasing Q, consistent with the expectation of scattering from

phonons [25]. The phonon scattering contains contributions from both acoustic and optical

modes. At momentum transfers close to 7 Å−1, 9 Å−1, and 10 Å−1, the acoustic modes

disperse linearly away from nuclear reciprocal lattice vectors. The optical branches are

most prominent at energy transfers between 10 meV and 30 meV. Compared with the

neutron scattering spectrum from a polycrystalline Al (Fig.2.1), the striking similarities

between the two spectra suggest that the phonon excitations shown in Fig.5.4(a) might

come from the Aluminium can.

The dominant feature in the raw data obtained with Ei = 70 meV neutrons (Fig.5.4(a))

94 Spectroscopy Study of Low-dimensional Quantum Magnets



Figure 5.4: Overview of the excitation spectrum of a Na2Co2TeO6 powder sample. The

incident energies,Ei, in panels (a)-(d) are 70, 19, 12 and 6meV, respectively, and the cor-
responding energy resolutions (FWHM) at the elastic line are 4.66±1.84, 0.77(1), 0.31(2)
and 0.30(5) meV. All data were obtained at T = 5 K. The white lines represent gaps

between the detectors of the MARI spectrometer.
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is the phonon scattering at high Q. Close to 20 meV energy transfer, the optical modes

are very intense, which could potentially obscure magnetic excitations at the same en-

ergy range, but mostly intense at low Q. As mentioned earlier, the phonon scattering

might come from the Aluminium can. Therefore, to separate the magnetic and optical

phonon excitations, the collected empty Aluminium can data was subtracted from the raw

Ei = 70 meV spectrum (Fig.2.1). It is important that before the subtraction, the tempera-

ture dependent Bose occupation factor of the empty can data must be corrected. Such a

subtraction procedure helps us to easily identify the magnetic excitations. At base temper-

ature, a 23 meV peak is clearly visible in the spectrum shown in Fig.5.6(i). The spectrum

is a constant momentum cut with ∆Q = [1, 3] Å−1. Apart from that, a shoulder at 28 meV

is also present in the spectrum. The positions of these two peaks are indicated by open

and full triangles.

To study the Q dependence of the intensity of the identified magnetic excitations cen-

tered at 23 meV and 28 meV, two constant energy cuts with ∆E = [21, 25] meV and

∆E = [28, 32] meV, respectively are shown in Figs.5.6(o) and (p). Compared with the Q
dependent squared magnetic form factor for a free Co (II) ion, the agreement is excellent

and strongly suggests these two excitations are of magnetic origin. Their temperature

dependence is shown in Figs.5.6(i) - (n). By tracking the thermal evolution of their peak

positions (23 meV: open triangle and 28 meV: full triangle), it is possible to discern that the

magnetic excitation at 23 (28) meV slightly increases (decreases) in energy with increas-

ing temperature. Besides that, thermal broadening of the magnetic excitations becomes

more obvious at higher temperatures, especially at 60 K. In contrast to the low energy

magnetic excitations (one locates at 3 meV and the other is around 7 meV) illustrated in

Figs.5.6(i)-(n), whose intensities gradually diminish as the temperature approaches TN
and essentially become indistinguishable from the background at above TN , the thermal
robustness and the almost dispersionless of the magnetic excitations at 23 and 28 meV

suggest they are crystal field excitations. The widths of these two modes are somewhat

broader than the energy resolution of the MARI spectrometer [FWHM(23 meV) = 3.03

meV and FWHM(28 meV) = 2.77 meV]. This can be ascribed to the weakly coupling

between the neighboring Co (II) ions and possibly the exchange-induced mixing of the

ground state and the excited states [91, 87].

In Figs.5.4(b)-(d), with improved energy resolutions, low energy scattering below 10 meV

is clearly visible at low Q. This is due to scattering from magnons. Fig.5.4(b) shows the

data obtained using neutrons with Ei = 19 meV and illustrates that the magnon exci-

tations in Na2Co2TeO6 consist of two parts: a dispersionless band close to 7 meV and

a dispersive feature below 3 meV. The Q dependence of the intensities of both parts is

shown in Fig.5.6(o) and (p), respectively. The observed gradual decrease in intensity with

increasing Q is consistent with the expectation for magnetic scattering, which reflects the

squared magnetic form factor in the double differential cross-section of neutron scattering

(Section 2.3.2). From Fig.5.4(b) and (c), it is possible to discern that the dispersive ex-

citation feature gradually approaches the momenta, where magnetic Bragg peaks occur

in neutron powder diffraction experiments [85, 86], as energy transfer approaches zero.

Such minimum is most prominent atQ ' 0.7 Å−1, from which we can infer that low energy

dispersive magnetic excitations are close to the magnetic Bragg peaksQ = (1/2, 0, 0) and
Q = (1/2, 0, 1). A less obvious minimum is observed at Q just below 2 Å−1. This corre-

sponds to magnons close to Q = (1/2, 0, 3), Q = (3/2,−1, 0), and Q = (1/2, 1, 1).

As illustrated in Figs.5.4(b)-(d), the dispersive low energy magnetic excitations disperse

away from the Q positions close to magnetic Bragg peaks and terminate at 3 meV energy

transfer, at which a flat band is formed. The intensity of the 3 meV flat band decreases
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Figure 5.5: Temperature dependence of the spin wave excitation spectrum in

Na2Co2TeO6 collected at Ei = 19 meV for temperatures (a) 5 K, (b) 12 K, (c) 20 K,

(d) 25 K, (e) 35 K and (e) 60 K.

gradually withQ increasing. This is illustrated in Fig.5.6(g), in which a constant energy cut

with ∆E = [2.5, 3.2] meV is shown. At Q = 4 Å−1, the intensity of the 3 meV flat band is

so weak that it is essentially indistinguishable from the background. For the data shown

in Fig.5.4(b), the energy resolution of the MARI spectrometer at 3 meV was 0.69 meV

and was 0.57 meV at 7 meV energy transfer. It is immediately clear that the flat band at

7 meV is significantly broader than the energy resolution, implying that it contains more

than one branch of the spin wave spectrum. In fact, the instrumental energy resolution

at 7 meV for the data shown in Fig.5.4(c) was 0.22 meV. This further supports that, what

appears to be a single flat band in Fig.5.4(b) has an internal structure and may contain

contributions from two magnon branches. We shall return to this in the low energy spin

wave part (Section 5.4.2).

Finally, the data shown in Fig.5.4(d) was collected using neutrons with Ei = 6 meV,

which permits a closer look at the low energy dispersive spin wave excitations. Although

the intense elastic scattering centered at }ω = 0 meV partially obscures the data, it is still

feasible to infer that a spin wave gap exists atQ ' 0.7 Å−1, which is close to the magnetic

Bragg peak Q = (1/2, 0, 0), and is of an order 1 meV. Notice that a spurion is present in
the spectrum, locating at Q ' 0.5 Å−1 and }ω ' 1.5 meV [92]. Even though it directly

lies on top of the dispersive low energy excitations at Q ∼ 0.7 Å−1, the overall spectrum

quality is not severely affected due to the relatively small size of the spurion. Given the

flux characteristics of the MARI spectrometer, it was not feasible to obtain data at an even

higher resolution.

Having described the salient features of the excitation spectrum at 5 K, now we turn to

the thermal evolution of the low energy magnetic excitations. Fig.5.5 and the right-hand

panel ((a)-(f)) of Fig.5.6 illustrates how both the dispersive low energy mode and the flat
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Co1 Co2 Coavg
B0

2 [meV] 3.27 4.03 3.65

B0
4 [meV] 0.35 0.31 0.33

B3
4 [meV] 11.03 10.18 10.61

Table 5.1: The first two columns: results of point-charge calculations of Stevens param-

eters for Co1 and Co2. The last column summarizes the mean values of the Stevens

parameters over Co1 and Co2.

band at 7 meV gradually lose definition as the temperature increases. As the temperature

approaches the Néel temperature TN , the 7 meV flat band is no longer discernible and

the dispersive low energy mode gradually evolves into a broad intense diffuse scattering

with a maximum at lowQ, which extends from zero energy transfer to 6 meV. The spectra

obtained at 35 and 60 K (Figs. 5.5(d)-(f)) are visually indistinguishable from each other,

indicating the essential role of magnetic ordering in determining the magnetic dynamics

in Na2Co2TeO6.

5.4.1 Effective spin-1/2 ground state

In this section, we solve for the single-ion levels of Co (II) within an intermediate coupling

scheme, as explained in Chapter 1, in a trigonally distorted octahedral crystal field. As the

result, the INS spectrum, magnetization, and dc susceptibility can be computed as well.

The results were fitted to the experimental data to determine the single-ion ground state

of Co (II), which is found to be a Kramers doublet with in-plane anisotropy characterized

by an anisotropic g tensor.

Noticed that there are two inequivalent Co (II) sites in the unit cell of Na2Co2TeO6. Their

single-ion levels are uniquely determined by the corresponding local coordination geom-

etry. Such inequivalence implies any measured physical quantities contain contributions

from both sites and thus it is important to have a qualitatively understanding of how these

contributions differ from each other before diving into the experimental data fitting and

analysis. For this purpose, we carried out the point-charge calculations as explained in

Section 1.2.1 for both Co (II) sites. The Stevens parameters obtained are summarized in

Table 5.1 where only the significant terms are listed.

Since the octahedra surrounding both Co ions are locally trigonally distorted, only B0
2 , B

0
4

and B3
4 are non-vanishing from a group theory perspective. With further inclusion of the

spin-orbit coupling for the two Coi (II) sites (i = 1, 2), the final single-ion Hamiltonian takes
the form

Ĥ
(i)
ion

= B
0(i)
2 Ô0

2 +B
0(i)
4 Ô0

4 +B
3(i)
4 Ô3

4 + λ(i)~L · ~S (5.1)

where B
0(i)
2 , B

0(i)
4 and B

3(i)
4 are the calculated values for the given site i listed in Table

5.1, together with the Stevens operators Ô0
2, Ô

0
4 and Ô

3
4. The last term in the summation

describes the spin-orbit coupling of 3d electrons in Co(II) with strength λ(i) at the site i.

According to Hunds’ rules, the ground state (4F see Chapter 1) of a free Co (II) ion (3d7)
is characterized by two quantum numbers: (L = 3, S = 3/2), and the degeneracy is

(2L+ 1)(2S + 1) = 28. Projecting the Hamiltonian Eq.(5.1) onto the 28-fold ground state
manifold 4F and carrying out exact diagonalization for both sites, assuming that the spin-

orbit coupling strength takes the free ion value λ(1) = λ(2) = −22 meV [8], the 28-fold

ground state splits into 14 doublets. These are illustrated in Fig. 5.7(d) up to an energy

transfer 120meV for both Co (II) sites. The energy requires to transit from the ground state

to the first excited state for both Co (II) sites are ∆E1 = 33.75 meV and ∆E2 = 31.40 meV,
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Figure 5.6: Temperature evolution of the magnetic excitations in Na2Co2TeO6. (a)-(f)

Constant momentum cuts focusing on the spin wave excitations. The data are taken at

Ei = 19 meV and averaged over ∆Q = [0.5, 0.8] Å−1 (red squares) and [2, 2.5] Å−1 (blue

circles) at T = 5 , 12, 20, 25, 35 and 60 K respectively. (i)-(n) Constant momentum

cuts taken at Ei = 70 meV focusing on the crystal field excitations with ∆Q = [1, 3] Å−1

at T = 5, 12, 20, 25, 35 and 60 K respectively. The solid lines are guides to the eye

and the triangles indicate the fitted peak positions as described in the text. (g) and (h)

Constant energy cuts averaged over the energy transfer ranges [2.5, 3.2] meV and [6, 7.2]
meV corresponding to the dispersive and dispersionless excitations in Fig. 5.4(b). (o) and

(p) Constant energy cuts averaged over the energy ranges [21, 25] meV and [28, 32] meV
where crystal field excitations are visible in Fig. 5.4(a). The red solid lines represent the

squared magnetic form factor of Co (II) ion.
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respectively. Both of the two transitions are higher in energy than the observed disper-

sionless excitations at 23meV and 28meV (Fig.5.6(i)), and the energy difference between

them is ∆E = ∆E1 − ∆E2 = 2.35 meV, which is slightly smaller than the MARI’s energy
resolution at 30 meV (FWHM∼2.96 meV). We also tried to decrease λ while keeping the
Stevens parameters fixed for both Co (II) sites to move the two transitions close to the

observed experimental values. The obtained energy difference between them diminishes

with decreasing λ. Considering the energy resolution function of the MARI spectrometer
increases with decreasing energy transfer, the contributions from the individual Co (II)

sites therefore might be indistinguishable in the current dataset. As mentioned earlier,

the two transitions obtained from the point-charge Stevens parameters are higher in en-

ergy than the energy levels observed in the INS spectra. This implies both the Stevens

parameters and the spin-orbit coupling strength might have to be reduced to match the

experimental data. Nevertheless, the results deduced from the point-charge calculation

serve as a good starting point for the fitting of the experimental data, as we shall discuss

next.

As mentioned above, it is not possible to distinguish the crystal field contributions from

the two Co (II) sites separately in our experimental spectra and essentially what we mea-

sured were the spectra averaged over the two sites. Moreover, as there are only two

peaks observed in the INS spectra, fitting them to a four-parameter (B0
2 , B

0
4 , B

3
4 and λ)

Hamiltonian is impractical. The fitted values would be strongly influenced by the given

initial values, so it is impossible to obtain a unique definite solution. To overcome such a

technical difficulty, we used the point-charge model prediction as a starting point by first

finding the averaged Stevens parameters of the two sites: 〈B0
2〉 = 3.65 meV, 〈B0

4〉 = 0.33
meV and 〈B3

4〉 = 10.61 meV. Then we fixed their relative ratios and further introduced a
global scaling factor p. The averaged single-ion Hamiltonian now reads,

〈Ĥion〉 = p× (3.65〈Ô0
2〉+ 0.33〈Ô0

4〉+ 10.61〈Ô3
4〉) + λ~L · ~S (5.2)

The number of required fitted values is reduced from 4 to 2 with only p and λ left.

To account for the covalency effect between Co (II) and the neighbouring O, an angular

momentum reduction factor κ is introduced which modifies the total magnetization from

M = L+ 2S to M = κL+ 2S. Normally for Co (II), κ is around 0.8 [8].

For the fitting, we adopted the standard least χ2 fitting routine. The fitted experimental

data not only include the constant Q cut between 1 Å−1 and 3 Å−1 (Fig.5.6(i)) from the

INS spectrum collected at Ei = 70 meV and 5 K, but also contain the dc susceptibility

(from 200 K to 400 K) and the magnetization data in the paramagnetic state (measured

at 57 K). The calculations of these quantities have already been explained in Chapter 1.

The background model for the INS spectrum is a second order polynomial. To remind

the reader, the magnetic susceptibility is calculated within a mean-field approximation

(Section 1.2.2)

χMF = χ0 +
χion

1 + λWχion
. (5.3)

Here, χ0 is a diamagentic susceptibility and λ is the Weiss molecular field constant [93]. A

positive λW indicates antiferromagnetic interactions. The fitted results are shown in Fig.

5.7 and Table 5.2.

As expected, both the Stevens parameters and the spin-orbit coupling strength have to be

reduced (the Stevens parameters: ∼ 50% and the spin-orbit coupling: ∼ 10%) in order to

provide a satisfactory description of the experimental data. The calculation shows the 28-

fold ground state (4F ) splits into 14 doublets and the ground state is a Kramers doublet.
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Fitted value

B0
2 [meV] 1.72± 0.034

B0
4 [meV] 0.16± 0.0031

B3
4 [meV] 4.99± 0.10

λ [meV] -18.45± 0.35

κ 0.78± 0.0022

χ0 [emu·Oe−1·mol−1] −0.0011± 5.32× 10−8

λW 4.23± 2.99× 10−4

Table 5.2: Best fitted results of the Stevens parameters, the spin orbit coupling λ, the
reduction factor κ for orbital angular momentum, the diamagnetic contribution χ0 and the

Weiss molecular field constant λW .

The doublet ground state can be described by an effective anisotropic magnetic moment

with strength given by the g tensor. Assume the doublet ground state contains the states
|v1〉 and |v2〉. The components of the g tensor can be obtained by projecting the total

magnetization operator M onto the subspace spanned by the two ground state vectors

|v1〉 and |v2〉 [8],

gxy = −2 〈v1|Mx |v2〉
gz = 2 〈v2|Mz |v2〉

(5.4)

where xy and z represent components parallel and perpendicular to the a − b plane,

respectively. For Na2Co2TeO6 we found gxy = 5.03 and gz = 3.33 indicating a strong

in-plane anisotropy, which is in good accord with recent single crystal studies [94, 95].

5.4.2 Low energy spin wave excitations
In this section, we will discuss the the spin wave spectrum in Na2Co2TeO6 in relation to

three different Hamiltonians: a J1-J2-J3 Heisenberg model, a generalized XXZ model and
a Heisenberg-Kitaev Hamiltonian. For a quantitative comparison, we took advantage of

having repetition rate multiplication for offering views at different Ei’s and extracted six

different cuts from the experimental data:

• Two constant energy cuts with∆E = [1.0, 1.4]meV and [1.7, 2.0]meV, respectively,
from the spectrum collected at Ei = 6 meV and T = 5 K (Fig.5.4(d)). They are

included to select the right model(s) hosting a similar dispersive low energymagnetic

excitations.

• A constant momentum cut with ∆Q = [0.7, 0.8] Å−1 from the spectrum collected at

Ei = 6 meV and T = 5 K (Fig.5.4(d)). This is selected due to the ∼ 1 meV spin

wave gap.

• Two constant momentum cuts with ∆Q = [1.0, 1.5] Å−1 and [2.0, 2.5] Å−1, respec-

tively, from the spectrum collected at Ei = 12 meV and T = 5 K (Fig.5.4(c)). They

are selected because of the 7 meV flat band and the 3 meV dispersionless excita-

tion.

• A constant momentum cut with ∆Q = [0.5, 0.8] Å−1 from the spectrum collected at

Ei = 19 meV and T = 5 K (Fig.5.4(b)). This is selected because of the low Q (< 1
Å−1) intense broad scattering feature at 7 meV.

To further separate the spin wave contribution and the background scattering (including

the elastic line at }ω = 0 meV), we carried out a background estimation for the extracted
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Figure 5.7: Fitted results obtained from the averaged single-ion Hamiltonian Eq.5.2. (a)

A constant momentum cut with ∆Q = [1, 3] Å−1 taken from the spectrum measured at

5 K, Ei = 70 meV. (b) Inverse dc susceptibility (0.1 T) of Na2Co2TeO6, 1/χ, collected
between 200 K to 400 K. (c) Magnetization of Na2Co2TeO6 measured at T = 57 K. (d)
Energy levels obtained from the point-charge calculations on the two Co (II) sublattices

and the best-fitted parameters in Table 5.2. The red solid lines represent the fitted results

obtained from the model and parameters described in section 5.4.1
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Figure 5.8: Fitted results obtained from the Heisenberg, generalized XXZ, and

Heisenberg-Kitaev models. (a)-(f) Constant energy cuts averaged over [1.7, 2]meV (pan-

els (a)-(c)), and [1, 1.4] meV (panels (d)-(f)), which are obtained from the Ei = 6 meV

spectrum (Fig.5.4(d)). (g)-(r) Constant momentum cuts averaged over [0.7, 0.8] Å−1 (pan-

els (g)-(i)) from the Ei = 6 meV spectrum (Fig.5.4(d)), [1, 1.5] Å−1 (panels (j)-(l)) from the

Ei = 12 meV spectrum (Fig.5.4(c)), [2.0, 2.5] Å−1 (panels (m)-(o)) from the Ei = 12 meV
spectrum (Fig.5.4(c)), and 0.5 to 0.8 Å−1 (panels (p)-(r)) from the Ei = 19 meV spec-

trum (Fig.5.4(b)). The solid lines represent resolution convoluted fits obtained from the

Heisenberg (red), the generalized XXZ (blue) and the Heisenberg-Kitaev (black) models,

as explained in the text. All the data are obtained at T = 5 K.

Spectroscopy Study of Low-dimensional Quantum Magnets 103



Figure 5.9: Color plots of INS spectra illustrating the agreement between the experimental

data (panels (a), (e) and (i) forEi = 6, 12 and 19meV data, all obtained at T = 5 K) and the
calculations with the best fitted parameters obtained from the Heisenberg (panels (b), (f)

and (j)), the generalized XXZ (panels (c), (g) and (k)) and the Heisenberg-Kitaev (panels

(d), (h) and (l)) models, as discussed in the text.

cuts and subsequently subtracted the estimated background lineshapes from the corre-

sponding cuts. The result is six background-free spectra, ready for the next fitting process.

For the fitting, the simulated spectra from SpinW [24] were convoluted with the energy res-

olution of the MARI spectrometer. To obtain the parameters giving the best description of

the spectra, we introduced a cost function J({p}) ({p} representing the fitting parameters)

J({p}) =
∑
i

(
yi − yconvi (xi; {p})

ei

)2

(5.5)

where {xi}, {yi} are data points in the six background-free spectra and {ei} represent the
corresponding error bars. {yconvi } are the convoluted theoretical spectra and the summa-
tion is over all the data points in the six background-free spectra. For minimizing J({p}),
the particle-swarm optimization [76] was applied. The fitted results for three different mod-

els are shown in Fig.5.8. The best fitted parameters for the Heisenberg, the generalized

XXZ and the Heisenberg-Kitaev models are listed in Table 5.3, 5.4, and 5.5, respectively.

Fig.5.9 illustrates the spectra calculated with the best fitted parameters in Table 5.3, 5.4,

and 5.5. The meaning of these obtained parameters will be explained in the following

sections. Fig.5.10 illustrates the spin wave dispersions along high symmetry directions in

the reciprocal space of a 2D honeycomb lattice for the Heisenberg, generalized XXZ, and

Heisenberg-Kitaev models.

As a final remark, it is computationally expensive to calculate a powder spectrum. It is

thus not feasible to include as many spectra as one wants in the fitting. The calculation

of the powder spectra presented in this work was running on a cluster. For each (}ω,Q)
point, a Monte Carlo sampling was applied with 20000 random points. Fitting to onemodel

normally takes a couple of days to finish.
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(b)

(c)

Γ' (-1 0)

X (-1/2 1)

Γ (0 0)

Y (1/2 0)

(a)

Figure 5.10: Simulated spin wave dispersion relations along high symmetry directions

in the reciprocal space of a 2D honeycomb lattice for (a) the Heisenberg model, (b) the

generalized XXZ model, and (c) the Heisenberg-Kitaev model as explained in Section

5.4.2. The parameters used for the calculations are listed in Table 5.3, 5.4 and 5.5.
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Best fitted Standard deviation

J1 [meV] −1.95 0.0106

J2 [meV] 0.799 0.021

J3 [meV] 1.68 0.0204

D [meV] 0.0483 0.00135

Table 5.3: Parameters of the Heisenberg model used to describe the Na2Co2TeO6 spin-

wave spectrum.

Best fitted Standard deviation

J1 [meV] −3.74 0.0120

J2 [meV] −0.183 0.00228

J3 [meV] 1.38 0.00740

D [meV] 0.0393 7.73× 10−4

∆1 [meV] 0.0156 2.98× 10−4

∆2 [meV] 0.0435 0.0193

∆3 [meV] 0.578 0.00553

Table 5.4: Parameters of the generalized XXZ model used to describe the Na2Co2TeO6

spin-wave spectrum.

Best fitted Standard deviation

J1 [meV] −0.0596 0.0376

J2 [meV] 0.164 0.0528

J3 [meV] 1.72 0.0388

K [meV] −4.40 0.125

D [meV] -0.149 0.0262

Table 5.5: Parameters of the Heisenberg-Kitaev model used to describe the Na2Co2TeO6

spin-wave spectrum.
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Heisenberg Hamiltonian
For the Heisenberg model on honeycomb lattice to host a zigzag ordered ground state,

the only possible scenario is when the Hamiltonian includes exchange interactions up to

the third nearest neighbour [96], see Eq.(5.6).

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj + J3
∑

〈〈〈i,j〉〉〉

Si · Sj (5.6)

where 〈i, j〉, 〈〈i, j〉〉 and 〈〈〈i, j〉〉〉 represent the nearest neighbour, the second nearest

neighbour and the third nearest neighbour illustrated in Fig.5.3, respectively, and J1, J2
and J3 are the corresponding exchange coupling constants.

As stated by the Mermin-Wagner theorem, no long-range ordering occurs at finite tem-

perature for a two-dimensional system with continuous symmetries. Even if Eq.(5.6) is

a sufficient description of the Hamiltonian of Na2Co2TeO6, to explain the observed non-

zero Néel temperature TN ∼ 27 K, the interlayer exchange coupling must also be included
in the Hamiltonian to extend the couplings to three-dimension. However due to the dis-

ordered distribution of Na ions in between layers [85], the interlayer exchange coupling

strength Jinter is expected to be relatively small compared to the intralayer couplings. As
the result, deducing the exact strength of the interlayer coupling from our measured INS

powder spectra is impossible. This is because the existence of small interplane couplings

would mostly be reflected from the magnetic excitations close to zero energy transfers.

As the MARI spectrometer does not equip with a super high resolution in energy transfer,

it is not feasible to extract the interlayer couplings in Na2Co2TeO6 reliably based on the

current datasets. For this reason, in the following discussion, the interlayer coupling is

neglected and we only focus on the spin wave dynamics originating from the intralayer

couplings within the 2D honeycomb lattice plane. In addition, to account for the observed

gap (∼ 0.1 meV) in the low energy spin wave spectrum, a phenomenological easy-axis

single-ion (D > 0) anisotropy is added to the Hamiltonian, see Eq.(5.7), which forces

spins to align along the crystallographic b axis as observed experimentally. In the dy-

namical structure factor calculation in SpinW [24], the previously obtained anisotropic g
tensor from section 5.4.1 was also included.

HSingle-ion =
∑
i

[
Sxi Syi Szi

]  −D
√
3D 0√

3D −3D 0
0 0 0

SxiSyi
Szi

 (5.7)

The best-fitted results of the six background-free spectra are illustrated in the left column

of Fig.5.8. The simplest Heisenberg J1−J2−J3−Dmodel offers a satisfactory description

of the dispersive low energy magnetic excitations below 3 meV which is evident from the

fitted Ei = 6 meV spectra (Fig.5.8(a) and (d)). The extra intensity at Q ' 0.5 Å−1 in the

data shown in Fig.5.8(b) is due to the spurion in the Ei = 6 meV spectrum (Fig.5.4(d)) as

explained in Section 5.4. The high energy 7 meV flat band as shown in Fig.5.4(b) features

a broader bandwidth compared to the 3 meV mode. The scattering intensity of the 7

meV flat band is most intense at the lowest Q (Fig.5.4(b)). As Q increases, it gradually

diminishes in intensity and becomes indiscernible at Q ' 5 Å−1. It is this 7 meV flat band

that the pure Heisenberg model fails to reproduce, especially at low Q. The lineshapes of
the high energy spin wave excitations obtained from the linear spin wave theory are much

narrower than the experimental spectra and possess a single sharp peak feature at around

7 meV as opposed to the observed broad excitation feature. This is illustrated in the fitted

constant energy cuts atEi = 12meV (Fig.5.8(g) and (j)). Themost significant discrepancy
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between the theory and the experimental data is illustrated in the fitted constant energy

cut at Ei = 19 meV (Fig.5.8), where the intense high energy excitation feature between 6

meV and 8 meV is completely absent in the theoretical calculation.

In Fig.5.9(b), (f) and (j) we show the simulated INS spectra for Ei = 6 meV, 12 meV, and
19 meV, which are calculated with the best fitted exchange parameters of the Heisenberg

model (Table 5.3). Compared with the experimental spectra shown in the first column of

Fig.5.9 (Fig.5.9(a), (e) and (i)), same as what we concluded from the fitting to the constant

momentum and energy cuts at Ei = 6 meV, the dispersive low energy spin wave excita-

tions below 3 meV can be well described by the J1− J2− J3−D Heisenberg model. The

differences between the theoretical and the experimental spectra become more obvious

with increasing energy transfer. In the former at Ei = 9 meV and 19 meV (Fig.5.9(f) and

(j)), the 3 meV and 7 meV flat bands are connected via an acoustic spin wave branch

which disperses away from Q ' 0.7 Å−1 and 2 Å−1, and has a finite scattering intensity

in the region (3 meV to 7 meV) between the two modes. At Q ' 1.2 Å−1 and }ω ' 7
meV, the acoustic spin wave has a relatively intense curved scattering feature. This indi-

cates that the acoustic spin wave terminates at the maximal excitation energy 7 meV, as

illustrated in Fig.5.10(a). However such an acoustic spin wave branch is not observable

in the experimental spectra. Moreover the theoretical 7 meV flat band has a much nar-

rower width compared to the experimental observation. Most importantly, the theoretical

spin wave excitations terminate at Q ' 1.5 Å−1. This is in sharp contrast to the observed

intense scattering feature at 7 meV even at the lowest possible momentum transfer, see

Fig.5.9(i).

In Ref [97], M. Songvilay et al. reached a similar conclusion when trying to fit the experi-

mental INS spectra of Na2Co2TeO6 to a XXZ Heisenberg model, see Eq.(5.8).

H =

3∑
n=1

Jn
∑
i,j

(
Sxi S

x
j + Szi S

z
j +∆Szi S

z
j

)
(5.8)

Here i and j run over the first, second and third nearest neighbor spin pairs, as illustrated
in Fig.5.3(a). ∆ takes a value between 0 (XY anisotropy) and 1 (Heisenberg). They

found such a model fails to capture the observed 7 meV flat band as well with their best

fitted exchange parameters: J1 = −2.1 meV, J2/J1 = −0.21, J3/J1 = 1 and ∆ = 0.95.
Notice that their values are comparable with our estimation from the Heisenberg model:

J1 = −1.95 meV, J2/J1 = −0.41, J3/J1 = 0.86 and ∆ = 1.

Generalized XXZ Hamiltonian

Even though the J1−J2−J3−D Heisenberg model provides a satisfactory description of

the spin wave excitations below 3 meV, the substantial mismatch between the theory and

the experimental data at 7 meV forbids the Heisenberg model to be the rightful candidate

for representing the Hamiltonian of Na2Co2TeO6. M. Songvilay et al. [97] also showed

that even by adding an uniform XY anisotropy∆ in the Hamiltonian, see Eq.5.8, the model

still fails to reproduce the experimental data. In this section, we consider a generalized

XXZ model in which the XY anisotropies ∆ of different neighbor spin pairs are allowed to
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vary. The generalized XXZ Hamiltonian reads

H =J1
∑
〈i,j〉

(Sxi S
x
j + Syi S

y
j +∆1S

z
i S

z
j ) + J2

∑
〈〈i,j〉〉

(Sxi S
x
j + Syi S

y
j +∆2S

z
i S

z
j )

+ J3
∑

〈〈〈i,j〉〉〉

(Sxi S
x
j + Syi S

y
j +∆3S

z
i S

z
j )

+
∑
i

[
Sxi Syi Szi

]  −D
√
3D 0√

3D −3D 0
0 0 0

SxiSyi
Szi


(5.9)

where ∆1, ∆2 and ∆3 are fractions between 0 and 1 representing an in-plane anisotropy.

Similar to the Heisenberg model, the nearest neighbor, the second nearest neighbor and

the third nearest neighbor exchange constants are J1, J2 and J3, respectively. The last
term in the summation is an easy-axis single-ion anisotropy, which aligns the spins along

the crystallographic b axis and thus opens a gap in the low energy spin wave spectrum.

In the dynamical structure factor calculation in SpinW [24], the anisotropic g tensor was
included as well. The fitted results of the six-background free spectra are shown in the

middle column of Fig.5.8.

Comparing the fitted lineshapes to the constant energy andmomentum cuts atEi = 6meV
(Fig.5.8(b), (e) and (h)), similar to what was observed for the J1−J2−J3−D Heisenberg

model, the fitting quality provided by the generalized XXZ model is decent as well for the

spin wave excitations below 3 meV. The most salient difference between the two models

arises from the high energy spin wave excitations at 7 meV. For the generalized XXZ

model, the bandwidth of the 7 meV flat band is much larger than that of the Heisenberg

model. This is consistent with the experimental spectra shown in Fig.5.8(k) and (n).

Compared to the Heisenberg model, the generalized XXZ model appears to be a more

promising candidate for describing the spin wave excitations in Na2Co2TeO6. However,

discrepancies between the theoretical spectra and the experimental data are still quite

obvious. For the constant momentum cut shown in Fig.5.8(k), the calculated intensity

for the spin wave excitations between 6 meV and 8 meV is more pronounced than the

experimental observation. Moreover, a clear two-peak feature stands out in the theoretical

spectrum whereas such a feature is less pronounced in the experimental data. For the

constant momentum cut at Ei = 19meV (Fig.5.8(q)), the generalized XXZ model predicts

the intensity of the spin wave excitations between 6 meV and 8 meV gradually diminishes

with increasing energy. As the result, the spectral lineshape within this energy range is

strongly asymmetrical according to the model. This is in contrast to the experimental data

where the observed lineshape between 6 meV and 8 meV is more symmetric.

In Fig.5.9(c), (g) and (k), we illustrate the simulated INS spectra calculated with the best

fitted parameters listed in Table 5.4. As seen from Fig.5.9(c), the spin wave excitations

below 3 meV can be well modeled by the generalized XXZ model judged by the overall

spectral lineshape. For the high energy spin wave excitations at 7 meV, what appears to

be a flat band at 7 meV as shown in Fig.5.4(b) and (c) actually contains contributions from

two spin wave branches. This is more clearly illustrated in the spin wave dispersion of

the generalized XXZ model (Fig.5.10(b)). Both of them disperse away from Q = (0, 0) (Γ)
but along different directions, From Γ to X (Q = (−0.5, 1)), one of the branch terminates
at around 7.2 meV. From Γ to Γ′ (Q = (−1, 0)), the other extends to around 6 meV. The
notations used here are in the reciprocal space of a 2D honeycomb lattice. For the gener-

alized XXZ model, the 7 meV flat band is most intense in the region [1, 2] Å−1, especially

for the upper spin wave branch. This is likely a feature inherited from the Heisenberg
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model, in which an intense feature appears at a similar position. At low Q, as seen from
Fig.5.9(g) and (k), the generalized XXZ model predicts the two previously identified spin

wave branches merge at Q ' 0.8 Å−1 and }ω ' 6 meV. This is the consequence of two
non-degenerate high energy spin wave modes become degenerate at Q = (−1/2, 0) (the
middle point of Γ and Γ′), as shown in Fig.5.10(b). Such a merging of two spin waves

manifests itself as the observed asymmetric lineshape between 6 meV and 8 meV in the

theoretical spectrum shown in Fig.5.8(q). Nevertheless, compared with the Heisenberg

model, the generalized XXZ model offers a better description of the experimental spec-

tra. It captures nearly all the essential features apart from the intense 7 meV magnetic

excitation at the lowest Q.

As a final remark, the idea behind the introduction of the generalized XXZ model is to

have a better description of the experimental data. So we will not try to reconcile the best

fitted parameters of the Heisenberg model and the generalized XXZ model. In fact, the

best fitted values of∆1, ∆2, and∆3 (see Table 5.4) indicate significant anisotropies need

to be introduced to the system Hamiltonian to give a relatively satisfactory description of

the experimental data.

Heisenberg-Kitaev Hamiltonian
At last, we will examine the possibility of the spin wave dynamics in Na2Co2TeO6 is re-

sembled by the Heisenberg-Kitaev Hamiltonian. Due to the previous success with the

J1−J2−J3 type Heisenberg model and its generalized XXZ extension on the low energy

spin wave excitations in Na2Co2TeO6, the Heisenberg-Kitaev model we will consider here

include exchange couplings up to third nearest neighbors as well, see Eq.(5.10).

H =
∑
〈i,j〉,γ

(J1Si · Sj +KSγi S
γ
j ) + J2

∑
〈〈i,j〉〉

Si · Sj + J3
∑

〈〈〈i,j〉〉〉

Si · Sj (5.10)

Here J1, J2 and J3 are the exchange coupling constants of the nearest neighbor, the sec-
ond nearest neighbor, and the third nearest neighbor, respectively, as shown in Fig.5.3(a).

K denotes the Kitaev interaction and γ represents three different bond directions, see

Fig.5.3(a) where the red, green, and blues lines indicate the X, the Y, and the Z bonds,

respectively. Notice that such a Hamiltonian is defined within the local cubic coordinate

system of an octahedron. This is different from the Heisenberg model and the general-

ized XXZ model which are defined within a global reference frame. To open a gap in this

model, a phenomenological single-ion anisotropy Hsingle-ion along the cubic Z axis, see

Eq.(5.11), is further included in the Hamiltonian. Here D < 0.

Hsingle-ion = D
∑
i

Szi
2 (5.11)

The best fitted parameters of the Heisenberg-Kitaev model are listed in Table 5.5. To

reproduce most of the features in the experimental spectra, we find that J1 has to be

close to zero and a ferromagneticK should be the dominant one among all the exchange

interactions. The ratio of the best fitted K and J1 is extremely large, i.e. K/J1 ∼ 100,
such that, if ignoring J2 and J3, theoretically the system should be in a Kitaev quantum

spin liquid state at base temperature [98]. However, experimentally the zigzag order [85]

sets in at TN ∼ 27 K. Based on our best fitted parameters (Table 5.5), we suspect that the
zigzag ordered ground state is stabilized due to the sizable long range exchange couplings

J2 and J3. Our findings support the theoretical prediction made by Liu and Khaliulin [80].
They found that for a d7 Kitaev material, due to the additional electron hopping processes
originating from the eg manifold, the Kitaev interaction K is always ferromagnetic and the

nearest neighbor coupling J1 might be significantly suppressed.
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The six background-free fitted results are illustrated in the right column of Fig.5.8. The

overall fitting quality of the Heisenberg-Kitaev model is comparable with the generalized

XXZ model. The spin wave excitations below 3 meV are captured relatively well by the

Heisenberg-Kitaev Hamiltonian (Fig.5.8(c) and (f)) regarding the peak positions and the

overall spectral lineshapes. In 5.8 (l) and (o), we notice the intensity of the 3 meV flat band

is significantly suppressed in the Heisenberg-Kitaev model compared to the experimental

data. Such a mismatch is due to a spectral weight redistribution. The intensity of the 3

meV flat band partially redistributes over the energies between 4 meV and 6 meV. This

is readily seen from the slightly higher intensities of the theoretical lineshapes between 4

meV and 6 meV when compared to the experimental spectra in the same range. For the

spin wave excitations at 7 meV, even though the intensities obtained from the Heisenberg-

Kitaev model are comparable with the experimental data, the theoretical lineshapes are

slightly narrower than the collected spectra, as illustrated in Fig.5.8(l), (o), and (r). This is

most obvious for the constant momentum cut at Ei = 19 meV (5.8(r)). In Fig.5.9(d), (h)

and (l), we illustrate the simulated INS spectra calculated with the best fitted parameters

in Table 5.5. Consistent with what we observed in Fig.5.8, the intensity of the 3 meV flat

band is less pronounced compared to the experimental data. Even though, the overall

lineshapes are well captured by the model. The flat band at 7 meV in the Heisenberg-

Kitaev model is slightly narrower than the data. From Fig.5.10(c), it is possible to infer that

the 7meV flat band consists of two contributions: one is from the highest spin wave branch

locating at∼ 7.2meV and the other is the nearly dispersionless spin wave branch at∼ 6.4
meV from Γ′ → Γ. In between the 3 meV and 7 meV excitations, the Heisenberg-Kitaev

model predicts a higher spectral weight compared to the Heisenberg and generalized XXZ

models.

Apart from our work, several other groups [97, 99, 100] have tried to study the INS

spectrum of Na2Co2TeO6 in relation to the generalized Heisenberg-Kitaev model, see

Eq.(5.12).

H =
∑

〈i,j〉r=1,2,3,4

JrSi · Sj +
∑

〈i,j〉1∈{α,β,γ}

KSγi S
γ
j+

Γ
(
Sαi S

β
j + Sβi S

α
j

)
+ Γ′

(
Sαi S

γ
j + Sγi S

α
j + Sβi S

γ
j + Sγi S

β
j

) (5.12)

As before J1, J2 and J3 are the nearest, the second nearest, and the third nearest neighbor
exchange constants, respectively. J4 is an interlayer coupling,K is the Kitaev interaction,

and Γ, Γ′ are the two components of an nearest neighbour off-diagonal exchange inter-
action,

In Table 5.6 we summarize the best fitted parameters from Refs [97, 99, 100]. In our

analysis, we didn’t include the off-diagonal exchange interaction but our best fitted spectra

still provide an overall good description of the experimental data. As pointed out by M.

songvilay et al. [97], the off-diagonal term Γ is mainly responsible for opening a gap in the

spin wave spectrum and has little effect on the spin wave dispersion. Our results tend to

agree with their conclusion.

5.5 Discussion and Conclusions
Our results on the magnetic excitations in Na2Co2TeO6 provides several key insights to

the ground state properties of the system:

• The analysis on the crystal field excitations has established that the ground state

of the Co (II) ion is a Kramers doublet with a strong in-plane anisotropy gxy/gz ∼
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1.51. Compared with a recent ESR study from which the ratio is found to be ∼ 1.80
(gab = 4.13 and gc = 2.3) [101], the two results are at least comparable with each

other. The difference between them might relate to the over-simplified treatment of

the single-ion physics of Co (II) in Na2Co2TeO6 (Section 5.4.1). Nevertheless, with

the spin-orbit mixed Kramers doublet ground state and the edge-sharing geometry

of neighboring CoO6 octahedra, Na2Co2TeO6 fulfills the essential requirements for

hosting Kitaev physics.

• Twomainmagnetic excitation features are identified in the INS spectra for Na2Co2TeO6.

One is the dispersive low energy magnetic excitations below 3 meV and the other is

the 7 meV flat band. As temperature increases, both features vanish above the Néel

temperature TN ∼ 27 K, verifying their magnetic origins. To model these excitations,
three Hamiltonians are examined: the pure Heisenberg model, the generalized XXZ

model, and the Heisenberg-Kitaev model. The Heisenberg model fails to reproduce

several features in the experimental spectra, especially the low Q part of the 7 meV

flat band. On the contrary, the generalized XXZ model and the Heisenberg-Kitaev

model can capture the essential features, i.e. the dispersive low energy excitations

below 3 meV and the flat band at 7 meV, of the measured spectra at nearly all Q.
Even though at low Q, the intense feature of the 7 meV flat band cannot be well re-

produced by both models, they provide an overall much better description of the ex-

perimental spectra compared to the Heisenberg model. For the Heisenberg-Kitaev

model, our best fitted results indicate the Kitaev interaction K is ferromagentic and

dominate over the nearest neighbor interaction J1 by a factor of ∼ 100. These find-
ings support the theoretical prediction made in Ref [80]. At last we suspect that the

observed zigzag ordered ground state is due to the existence of sizeable long range

interactions J2 and J3.

In our analysis, we replace the off-diagonal interaction in the generalized Heisenberg-

Kitaev model with the easy-axis single-ion anisotropy. By doing so, we can introduce a

gap in the spin wave spectrum phenomenologically. Our results suggest the off-diagonal

terms might not be the crucial exchange interaction in determining the magnetic excitation

spectrum of Na2Co2TeO6. This seems to be a general trend for the models (Model 1,

2, and 4 in Tabel 5.6) having ferromagnetic Kitaev interactions, among which the off-

diagonal interaction is never the dominant one and is only a fraction of the Kitaev term.

In contrast, for the models (Model 3 and 5) with antiferromagnetic Kitaev interactions, the

off-diagonal interaction is sizeable and comparable with the Kitaev strength. This is an

interesting observation but for now, we do not understand how the Kitaev interaction and

the off-diagonal term correlate with each other in relation to the spin wave spectrum of

Na2Co2TeO6.

For all the models (Model 1, 2, 4, and 6) with ferromagnetic Kitaev interactions, see Table

5.6, J1 is close to zero while J3 is always sizable and antiferromagnetic. Given Model 2
and 3 do not include J2 at all and the relative small strengths of J2 for those who included,
this suggests J2 might not a crucial parameter as well in determining the magnetic exci-
tation spectrum of Na2Co2TeO6. Summarizing, the minimal Hamiltonian for Na2Co2TeO6

with a ferromagnetic Kitaev interaction could be a K − Γ − J1 − J3 type. Here Γ is for

opening a gap in the spectrum and K, J1, and J3 are for controlling the overall spectral
lineshapes.

It should be noted that a triple-k (k1 = (1/2, 0, 0), k2 = (0, 1/2, 0) and k3 = (1/2,−1/2, 0))
magnetic structure model was recently suggested by Chen et. al [102]. In such an ar-

rangement, the magnetic moment will form a vortex pattern in the honeycomb lattice plane
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with only 3/4 of Co (II) ions carrying ordered moments. Previous neutron powder diffrac-

tion experiments [85, 86] cannot distinguish between a multi-k structure and a multi-k do-

main contribution. Hence a future single crystal neutron diffraction study would be helpful

in distinguishing the two scenarios.

As a conclusion, our results together with the existing studies [97, 99, 100] indicate that

Na2Co2TeO6 can host Kitaev related physics. This also demonstrates that a high spin

Co (II) based materials might become a new platform for studying Kitaev physics in the

future. Therefore, a further single crystal study is of necessity to elucidate the accuracy

of different models and to fully reveal the potential Kitaev nature of Na2Co2TeO6.
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Model label Material
K

[meV]

Γ
[meV]

Γ′

[meV]

J1
[meV]

J2
[meV]

J3
[meV]

J4
[meV]

D
[meV]

Reference

1 Powder -9 1.8 0.3 -0.1 0.3 0.9 0 0 [97]

2 Powder -7.4 -0.1 0.05 -0.1 0 1.4 0 0 [99]

3 Powder 3.5 -3 2 -1.2 0 1.6 0 0 [99]

4 Powder -7 0.02 -0.23 -0.2 0.05 1.2 -0.15 0 [100]

5 Powder 2.7 -2.9 1.6 -3.2 0.1 1.2 -0.4 0 [100]

6 Powder -4.4 0 0 -0.06 0.16 1.72 0 -0.149 This work

Table 5.6: Parameters of the generalized Heisenberg-Kitaev model used in this and the previous studies to describe the

Na2Co2TeO6 spin-wave spectrum.
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6 Tailoring Magnetism by Metal-organic

Framework Engineering

In this chapter, we investigate the magnetic properties of three metal-organic framework

compounds CrI2(pyz)2, GaCl2(pyz)2, and CrCl2(pyz)2 (pyz stands for pyrazine C4N2H4).

Even though the crystal structures of these three compounds are rather similar, their

electronic and magnetic properties vary substantially.

The electronic state of Cr in CrI2(pyz)2 is Cr (II). Whereas for CrCl2(pyz)2, simply by

replacing Cl with I, the electronic state of Cr is altered to Cr (III). Such a drastic vari-

ation of the electronic state of Cr from CrI2(pyz)2 to CrCl2(pyz)2 is readily observed in

their Cr K-edge XAS spectra [103], as shown in Fig.6.1. The K-edge XAS spectrum of

CrI2(pyz)2 is similar to the K-edge spectrum obtained from a model compound Cr(III)Br,

and for CrCl2(pyz)2 its K-edge XAS spectrum resembles the K-edge lineshape of an-

other model compound Cr(II)I. Normally ligand like Cl or I take one electron away from a

central metal ion and form a chemically more stable Cl−1 or I−1 with a completely filled

p shell. Therefore it is easy to infer that, the two pyz ligands in CrI2(pyz)2 carry zero net
charges while there is one electron residing on the two pyz rings in CrCl2(pyz)2. In such

a scenario, we refer the accumulation of zero net charges on the pyz rings in CrI2(pyz)2
as ligand innocence. On the contrary, ligand non-innocence is present in CrCl2(pyz)2
due to the residing of electrons on the pyz ligands. GaCl2(pyz)2 is similar to CrCl2(pyz)2.

The pyz ligands are non-innocent due to that an electron from Ga is shared by two pyz

rings in one formula unit. As the result, Ga is in a chemically inert state Ga (III) (3d10).

Among the three CrI2(pyz)2 is a quasi-two-dimensional Néel ordered antiferromagnet

while GaCl2(pyz)2 is magnetically disordered down to 2 K. Both of them are well placed

in an insulating limit showing no evidence of being conductors. Whereas for CrCl2(pyz)2,

it is electrically conductive at room temperature and belongs to conducting coordination

solids [104, 105, 106]. Moreover, CrCl2(pyz)2 is a ferrimagnet in which the spins on the

Cr sites are antiparallel to the radical spins on the pyz ligands [104]. Such a dramatic

variation in magnetic properties among CrI2(pyz)2, GaCl2(pyz)2, and CrCl2(pyz)2 signi-

fies the great potential of tailoring magnetism by metal-organic framework engineering.

6.1 A ligand innocent quasi-2D antiferromagnet square

lattice CrI2(pyz)2
CrI2(pyz)2 crystallizes in the tetragonal I4/mmm space group (No. 139) and at room

temperature its lattice constants are a = b = 7.0896(3) Å, c = 12.5761(9) Å [103].

The crystal structure of CrI2(pyz)2 is illustrated in Fig.6.2(a) which displays a two-layer

square lattice crystal structure. The layers consist of corner-sharing CrI2(pyz)4 octahe-

dra, see Fig.6.2(b), forming a 2D square lattice plane of Cr (II) ions (3d4: S = 2). For
the octahedra, the pyz ligands are bridging between two adjacent Cr (II) ions and are
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Figure 6.1: Cr K-edge XAS spectra for CrCl2(pyz)2 (green), CrBr2(pyz)2 (red), CrI2(pyz)2
(blue), Cr(III)Br (dark grey), and Cr(II)I (light grey). The last two curves are reference

spectra. The figure is taken from Ref [103].

disordered over two positions, see Fig.6.2(b), while the I−1 ligands are non-bridging and

extend towards the center of Cr plaquettes in the adjacent layers. From Fig.6.2(b), it is

evident the octahedron is significantly elongated along the Cr-I direction. Such a struc-

tural distortion is due to the Jahn-Teller effect associated with a high-spin d4 electronic
configuration in an octahedral crystal field [10].

Upon cooling, CrI2(pyz)2 undergoes a magnetic phase transition at ∼ 26 K highlighted

by the so-called λ-anomaly in the specific heat data (taken by L. Voigt [103]), see

Fig.6.3 [103]. Combined with magnetic susceptibility measurements, its ground state

is believed to be antiferromagnetically ordered below TN ∼ 26 K characterized by a

negative Curie-Weiss temperature TCW = −39.4 ± 4.4 K and an effective moment

µeff = 4.48 ± 0.03 µB [108], which lies in between the spin-only values for Cr (II), 4.90

µB, and Cr (II), 3.87 µB [109].

The magnetic structure of CrI2(pyz)2 is revealed by a neutron powder diffraction study

on SPODI [107]. The diffraction patterns are illustrated in Fig.6.2(c). As there are no

structural phase transitions occur in CrI2(pyz)2 upon cooling, from a direct comparison

between the 4 K and 60 K data, we can conclude that the weak peaks below 1 Å−1

and at around 1.5 Å−1 are of magnetic origin. The peaks can be index as (1/2, 1/2, 0)
and (3/2, 1/2, 1), respectively, which confirms the antiferromagnetic nature of CrI2(pyz)2.
The refinement of the magnetic structure for CrI2(pyz)2 was performed by M. Kubus and

the resultant magnetic structure is shown in Fig.6.2(d). The magnetic moments of Cr (II)

align along the crystallographic c-axis but are anti-parallel with any in-plane adjacent Cr

(II) sites. Thus the resultant structure is an ideal Néel state within the 2D square lattice
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(a) (b)

(c)

(d)

Figure 6.2: (a) Crystal structure of CrI2(pyz)2. The blue and purple spheres represent Cr

and I ions respectively. The brown ”cage” represent the disordered state of a pyrazine

molecule which is a superposition of two possible orientations of the molecular ring.

The figure is taken from Ref [103]. (b) A CrI2(pyz)4 octahedron with a significant elon-

gation along the Cr-I direction. Notice the two possible orientations of pyrazines. The

bond lengths are in Å. The figure is taken from Ref [103]. (c) Neutron powder diffraction

patterns of CrI2(pyz)2 collected at 4 K and 60 K on SPODI [107] using λ = 2.536 Å neu-

trons. The red (60 K) and blue (4 K) curves are displaced for a better comparison. (d)

Refined magnetic structure of CrI2(pyz)2. The spins of the in-plane Cr (II) sites form a

Néel state and are aligned along the crystallographic c-axis. Also shown are the nearest

neighbour, the second nearest neighbour and the inter layer exchange interactions J1,
J2 and Jinter.
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plane. As a final remark, even though the ordered moment for Cr (II) is close to 4

µB, there is a substantial difference in intensity between the structural and magnetic

diffraction patterns illustrated in Fig.6.2(c). This might relate to the highly symmetric

nuclear structure and the significant amount of atoms in the unit cell of CrI2(pyz)2. As the

result, the phase factors in the nuclear structure factor of CrI2(pyz)2 add up coherently

and this leads to a significant increase of the allowed nuclear peaks’ intensities. Thus

the final nuclear scattering signals are way more pronounced than the scattering signals

from the magnetic structure.

6.1.1 Experimental details

The synthesis of polycrystalline CrI2(pyz-D4)2 (pyz-D4: C4D4N2) was carried out by L.

Voigt fromDTU chemistry. To check the sample quality, she also performed a powder X-

ray diffraction on the synthesizedmaterial. The collected spectrum is in good agreement

with the simulated X-ray diffraction pattern. This confirms a high degree of purity and

crystallinity of the sample.

To study the spin excitations in CrI2(pyz-D4)2 below and above the Néel temperature

TN = 26 K, a neutron scattering experiment was carried out using the direct geometry
time-of-flight chopper spectrometer MARI at the ISIS Neutron and Muon Source. The

spectrometer was operated using the repetition rate multiplication technique [38] with

the incident neutron energy Ei set to 19 meV and the chopper spinning at 200 Hz. This

allows simultaneous collection spectra with different energy and momentum transfers

at Ei = 9meV, 19meV, and 70 meV, respectively. For the experiment, a polycrystalline
sample of total mass 3.025 g was mounted in an annular geometry inside an Aluminium

can, which is connected to the cold-finger of a continuous circle refrigerator capable

of cooling the sample to T = 6 K. Six sets of data were collected at 6 K, 15 K, 30

K, 60 K, and 100 K, respectively. It turned out the 100 K data are particularly useful

for background subtraction purposes, allowing us to distinguish spin excitations from

phonon contributions in the full excitation spectra. The MANTID software package was

used to process the raw neutron data [89, 90] which were subsequently analyzed using

the MATLAB programs MSlice and SpinW [24].

6.1.2 Results and analysis

We start by giving an overview of the excitation spectrum of CrI2(pyz-D4)2. The data

shown in Fig.6.4(c) are obtained with neutrons of incident energy Ei = 70 meV col-

lected at T = 6 K which is far below TN ∼ 26 K. Given the detector coverage of the

MARI spectrometer, this configuration allows to probe momentum transfers up to 11

Å−1. It is evident from Fig.6.4(c) there are no obvious scattering features in the region

between 5 meV and 10 meV energy transfers at Q ≤ 3 Å−1, while above that the spec-

trum is dominated by features that grow in intensity as momentum transferQ increases.

Such behavior is consistent with the expectation of scattering from lattice vibrations or

phononic excitations [25]. Thus the spin excitations in CrI2(pyz-D4)2 must reside below

5 meV and are hidden by the elastic line in the Ei = 70 meV spectrum, hindering the

observability.
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Figure 6.3: Specific heat of CrI2(pyz)2 measured from 2 K to 100 K. The λ-anomaly at
around 26 K indicates the onset of an antiferromagnetic ordering upon cooling. The

data is from Ref [103].

The Ei = 19 meV spectrum is illustrated in Fig.6.4(b), similar to what was observed

in the Ei = 70 meV data, the spectrum is dominated by phonon scattering at energy

transfers above 8 meV. Below that the most prominent feature is the intense scattering

feature at energy transfers }ω ≈ 4 meV. The intense feature can be divided into two

parts, of which the intensities follow different trends. Above Q ∼ 3 Å−1, the feature

gradually becomes more pronounced in intensity as Q increases, which can be again

attributed to the scattering from phonons in CrI2(pyz-D4)2. Below ∼ 3 Å−1, the feature

acquires more intensity as Q decreases and is most prominent at low Q, contrary to the
characteristic feature of phonon scattering [25]. Such an observation is in good accord

with features of scattering from spin excitations whose intensity falls off as Q increases.

This is due to the intensity modulation from the squared magnetic form factors of the

magnetic ions inside the material under study [25].

In Fig.6.4(a), we present a closer look at the spin excitations in CrI2(pyz-D4)2 in the

Ei = 9 meV spectrum with a much better resolution at low Q. It is clear that the spin

excitations extend from ∼ 1meV to ∼ 4.5meV and the most salient feature is the nearly

flat mode at ∼ 4.5 meV, which gradually becomes weaker as Q increases and blends

into the background at Q ∼ 3.5 Å−1. It is possible to discern that the dispersive spin

excitations below the flat mode stem from the positions where magnetic Bragg peaks

occur in the neutron powder diffraction experiment. The most prominent such minimum

occurs around Q ∼ 0.5 Å−1, which corresponds to Q = (1/2, 1/2, 0). This reflects the
antiferromagnetic nature of the spin wave excitations. It is evident in the spectrum there

is a ∼ 1meV gap between zero energy transfer and the minimum of the spin excitations

at the magnetic Bragg peak Q = (1/2, 1/2, 0). This indicates no gapless Goldstone

magnons exist in CrI2(pyz-D4)2 and the spin Hamiltonian of CrI2(pyz-D4)2 cannot pos-

sess continuous three dimensional rotational symmetry. Notice that there are two stripy
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Figure 6.4: Overview of the excitation spectrum of a CrI2(pyz-D4)2 powder sample. The

incident energies Ei in panels (a)-(c) are 9, 19 and 70 meV, respectively, and the corre-
sponding energy resolutions (FWHM) at the elastic line are around 0.28, 0.79 and 4.17

meV. All data were obtained at T = 6 K. The white lines represent gaps between the

detectors of the MARI spectrometer.

features in the spectrum locating at around 1.5 meV and 2.5 meV, respectively. These

are spurions of the MARI spectrometer parasitizing scattering spectra but with relatively

discernible shape features. From a private communication with the MARI beamline sci-

entist Duc Le, the plausible spurion scenario is that the sample or Aluminum can Bragg

peaks scatter neutrons up. The scattered neutrons hit something then scatter elastically

incoherently back down and are detected at a later time than expected. Therefore they

appear to be scattered inelastically from the sample. However, the reasoning behind

the temperature dependent behavior of these spurions is still unclear.

The thermal evolution of the spin and lattice excitations in CrI2(pyz-D4)2 below and

above the Néel temperature TN ∼ 26 K is illustrated in Fig.6.5 in which only the spectra

collected at Ei = 9 meV and 19 meV are included. As temperature increases, the ex-

citations from lattice vibrations grow stronger in intensity and eventually dominate the

whole spectra, especially at temperatures above TN . This is clearly observable from

the spectra collected at Ei = 19 meV, see Fig.6.5(f)-(j). The spin excitations below 4

meV persist up to 60 K, and at 60 K or above (> 2TN ) they are no longer discernible

at look (see Fig.6.5(a)-(e))). The prominent 4.5 meV flat mode at 6 K gradually loses

definition and completely disappears at 30 K, just above TN , so does the 1 meV energy

gap. From 30 K and above, the gapless spin excitations are softened as the increase

in temperature and start merging with the elastic line at 100 K.

Due to the substantial contributions from lattice vibrations in the 100 K spectrum, the

thermal evolution of the spin excitations in CrI2(pyz-D4)2 becomes clearer after subtract-

ing it (with the Bose factor corrected) from the rest of the spectra. The result is illustrated

in Fig.6.6. The phonon scattering cannot be completely eliminated from the spectra (the

residual intensity is still seen at energy transfers below 4meV and above 8meV atQ ≥ 4
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Figure 6.5: Temperature dependence of the spin excitation spectra and the lattice vi-

bration excitation spectra in CrI2(pyz-D4)2 collected at Ei = 9 meV ((a) - (e)) and 19

meV ((f) - (j)), for temperatures (a)(f) 6 K, (b)(g) 15 K, (c)(h) 30 K, (d)(i)60 K and (e)(j)

100 K. The Néel temperature of CrI2(pyz-D4)2 is around 26 K.
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Figure 6.6: Spin wave spectra of CrI2(pyz-D4)2 for Ei = 9 meV ((a) - (d)) and 19 meV

((e)-(h)), for temperatures (a)(e) 6 K, (b)(f) 15 K, (c)(hg 30 K and (d)(h) 60 K after sub-

tracting the 100 K data corrected for the Bose occupation factor.
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Figure 6.7: Comparison between the J1 − J2 −D Heisenberg model (green lines) and

the experimental data (purple open circles) through (a) a constant energy cut between

3.5 meV and 4.5 meV, (b) a constant momentum cut between 0.5 Å−1 and 0.75 Å−1, (c)

a constant momentum cut between 0.75 Å−1 and 1.0 Å−1 and (d) a constant momentum

cut between 1.1 Å−1 and 1.3 Å−1.

Å−1 in the Ei = 19 meV spectra, as seen from Fig.6.6(e)-(h)). However, this is not a big

concern as after subtraction, the spin excitations dominate the spectra whose intensity

is much more pronounced than the residue phonons. Thus it is relatively easy to distin-

guish the spin excitations from the residual phonon modes. Consistent with what was

observed before, the spin excitations in CrI2(pyz-D4)2 are robust against thermal fluctu-

ations and indeed survive above TN . Even though the prominent 4.5 meV flat mode and

the 1 meV excitation gap gradually diminish when approaching TN and are completely

vanished in the paramagnetic phase, there still exists a broad diffuse scattering extend-

ing from zero energy transfer to 4 meV, see Fig.6.6(c) and (g). The diffuse scattering

directly emerges from the positions where magnetic Bragg peaks situate, among which

the most prominent one is at Q = (1/2, 1/2, 0). This implies the spin-spin correlation

length in the 2D square lattice plane is still finite just above TN . At 60 K, the diffuse

scattering from the spin excitations is considerably weakened, see Fig.6.6(d) and (h).

This indicates that the correlation length between spins in CrI2(pyz-D4)2 is significantly

reduced.

Having described the salient features of the spin excitations of CrI2(pyz-D4)2, the next

step is to determine the spin Hamiltonian. As previously explained, the Hamiltonian
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Figure 6.8: (a)(c) Powder INS spectra of CrI2(pyz-D4)2 collected at T = 6 K using Ei =
9 meV and 19 meV. (b)(d) Calculated powder INS cross-section for the J1 − J2 − D
Heisenberg model with the optimized parameters listed in Table 6.1 for Ei = 9meV and

19 meV.
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possesses no continuous three dimensional rotational symmetry. Given that the ordered

moments are along the crystallographic c-axis, a J1 − J2 − D Heisenberg model is

adopted for describing the spin excitation spectrum in CrI2(pyz-D4)2, see Eq.(6.1).

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj +
∑
i

D (Szi )
2 (6.1)

Here the first two summations are over the nearest neighbors and the second nearest

neighbors of spins in the 2D square lattice plane, and the corresponding exchange con-

stants are J1 and J2, respectively. In Fig.6.2(d), they are represented by the red and

blue solid lines. The last term in the summation is a single-ion anisotropy with D < 0,
which dictates spins to align parallel to the z-axis in the laboratory frame or the crys-

tallographic c-axis of CrI2(pyz-D4)2. Here we ignore the interlayer exchange couplings

between the adjacent Cr (II) square lattice planes as the strengths are expected to be

significantly lower than the intralayer couplings due to the large separation between the

layers and the absence of direct bond connections between the adjacent layers.

Calculations of the spin wave dispersion and the powder INS cross-section for the given

Hamiltonian Eq.(6.1) are conducted by linear spin wave theory using SpinW [24]. The

resultant spectrum is fitted to the Ei = 9 meV, T = 6 K spectrum shown in Fig.6.6(a).

For the fitting, four different cuts from the experimental spectrum are selected, (i) a con-

stant energy cut with ∆E = [3.5, 4.5] meV and (ii) three constant momentum cuts with

∆Q = [0.5, 0.75] Å−1, [0.75, 1.0] Å−1 and [1.1, 1.3] Å−1, respectively. The first energy cut

is used to constrain the Q-dependent intensity variation of the J1 − J2 −D Heisenberg

model. The constant momentum cut with ∆Q = [0.5, 0.75] is used to determine the size
of the spin wave gap or to constrain the value of D. The last two constant momen-

tum cuts are included to constrain the value of J1 and the relative ratio between J1 and
J2. The simulated spectrum obtained from SpinW is convoluted with the energy resolu-

tion function of MARI spectrometer and the final spectrum is used in the fitting process.

Minimization of the χ2 cost function of the fitting is achieved by the particle swarm op-

timization [76] and the optimized parameters (J1, J2, D) are summarized in Table 6.1.

A direct comparison between the experimental data and the best fitted results is shown

in Fig.6.7. It is evident that the model captures the main features of the spin excita-

tions in terms of peak positions and spectral lineshapes. Because of the easy-axis

single-ion anisotropy D in the spin Hamiltonian, the observed ∼ 1 meV gap is faithfully

reproduced. This is evident from the constant momentum cut with ∆Q = [0.5, 0.75] Å−1

shown in Fig.6.7(b). In Fig.6.8, we present the calculated powder INS spectra based

on the J1 − J2 − D Heisenberg model with the optimized parameters for Ei = 9 meV
and 19 meV, respectively. Again, the model spectra well reproduce the observed spin

excitations and the ∼ 1 meV excitation gap.

In Fig.6.9, we show the spin wave dispersion calculated from the J1 − J2 −D Heisen-

berg model along the high symmetry directions in the reciprocal space of a 2D square

lattice, as illustrated in Fig.4.1a, using the best fitted parameters in Table 6.1. From

the calculation we obtain the size of the spin wave gap at (π, π), which is 1.37 meV.
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Fitted value

J1 [meV] 0.447± 0.0045

J2 [meV] −0.0429± 0.0022

D [meV] −0.0634± 0.0047

Table 6.1: Parameters of the J1 − J2 − D Heisenberg model used to describe the

CrI2(pyz-D4)2 spin wave spectrum.

Along the zone boundary direction, i.e. (π/0) → (π/2, π/2), unlike the 2DQHAFSL case
(see Fig.4.1b), linear spin wave theory predicts the dispersion is no longer flat. The spin

wave energy at (π, 0) is slightly higher than that at (π/2, π/2) (∆}ω = 0.34 meV). Such
a difference is due to the existence of finite J2.

As a final remark, we tried to extend the Hamiltonian with the inclusion of the interlayer

coupling Jinter, indicated by the grey lines in Fig.6.2(d), and hoped to find its value based
on the 6 K dataset. However the best optimized Jinter is two orders magnitude smaller
than J1 and there is no significant improvement of the fitting quality, which justifies the
previous neglection of interlayer couplings. Apart from that, we also examined whether

a minimal J1 −D Heisenberg model is enough to faithfully reproduce the experimental

spectra. However, the optimized χ2 = 10.3 is around two times larger than the best-fitted
χ2 = 4.9 from the J1 − J2 −D Heisenberg model. This directly supports the necessity

of including J2 in the spin Hamiltonian.

Our results indicate CrI2(pyz-D4)2 is close to a realization of the 2D S = 2 Heisenberg
antiferromagnet on a square lattice (J2/J1 ≈ −0.1) with easy-axis anisotropy as the

interlayer couplings are negligible. Due to the ferromagnetic J2, no frustration is present
in the system and the Néel order is further stabilized. Ignoring the easy-axis anisotropy

D, the Curie-Weiss temperature calculated from the fitted parameters in Table 6.1 is

TCW = S(S+1)
3kB

(4J1 + 4J2) = −37.6 K, which agrees well with the measured value -39.4

K. For a high spin d4 state (t32ge
1
g) the angular orbital moment is quenched [10]. Thus

similar to CrI3, the observed single-ion anisotropy in CrI2(pyz-D4)2 may arise from the

large spin-orbit coupling strength in I [110] which dictates the preferred spin orientations

of Cr (II) ions.

6.2 Ligand non-innocence in GaCl2(pyz)2
GaCl2(pyz)2 crystallizes in the orthorhombic space group Immm (No. 71). Similar to

CrI2(pyz)2, GaCl2(pyz)4 octahedra coordinate in a corner-sharing fashion with the pyz

ligands bridging two adjacent Ga ions [103]. As the result, Ga ions form a nearly ideal

2D square lattice plane with lattice constants a = 6.8809 Å and b = 7.0730 Å [103]. The

square lattice planes are stacked along the crystallographic c-axis with lattice constant

c = 10.7563 Å, such that the Cl ligands extend towards the center of Ga plaquettes

in the adjacent layers. In Fig.6.10, we illustrate the crystal structure of GaCl2(pyz)2.

Unlike CrI2(pyz)2, for every formula unit of GaCl2(pyz)2 an electron is transferred from

Ga (II) to one of the pyz rings, yielding a chemically inert ion Ga (III) (3d10). Moreover, as
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Figure 6.9: Spin wave dispersion of CrI2(pyz-D4)2 along high symmetry directions in

the reciprocal space of a 2D square lattice calculated from the best fitted parameters

listed in Table 6.1. The high symmetry directions in the reciprocal space are illustrated

in Fig.4.1a.

visible in Fig.6.10(b) a width reduction of the pyz ligands occurs in the crystallographic a

direction, along which the pyz ligands are in closer contact with Ga (III) ions than along

the crystallographic b direction. This can be inferred from the bond lengths analysis:

in the a direction Ga-N distance is 2.027(4) Å, C-C distance is 1.366(5) Å and in the b

direction Ga-N distance is 2.138(4) Å, C-C distance is 1.39(1) Å [103].

6.2.1 Magnetic susceptibility and specific heat

GaCl2(pyz)2 exhibits a strong ESR signal which yields a g-factor of 2.0048, close to the
value of a free electron (ge = 2.002319) [103]. This supports the physical picture of hav-
ing an electron situated on the pyz ligand in a unit formula of GaCl2(pyz)2. In contrast,

the g-factor of a Ga (II) ion is expected to lie close to or below 2 as previously reported

[112]. A magnetic susceptibility measurement on GaCl2(pyz)2 is illustrated in Fig.6.11

(conducted by L. Voigt [103]), in which the temperature range extends from 1.5 K to 300

K. A simple Curie-Weiss fit (from 100 K to 280 K, see Fig.6.11(a)) to the data yields a

negative Curie-Weiss temperature TCW = −8.60 K, indicating the dominant interaction
present in the system is antiferromagnetic type, and a Curie constant C = 0.3559 cm3

K mol−1 which is close to the value for a S = 1/2, g = 2 system (C = 0.3751 cm3 K

mol−1). Recalling the pyz ligands in the crystallographic a direction are considerably re-

duced and are in more close contact with the Ga (III) ions, the transferred electrons may

be mainly localized on the pyz rings along the a direction. This would cause stronger

exchange interactions along the a axis compared to the exchange strengths in the crys-

tallographic b direction. As the result, this would imply a system consisting of S = 1/2
antiferromagnetic chains along the a axis which are weakly coupled along the b axis.
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C

Figure 6.10: (a) Crystal structure of GaCl2(pyz)2 at 120 K. Ga: dark blue, Cr: dark green,

Cl: light green, N: blue and H is emitted for clarity. (b) A GaCl2(pyz)4 octahedron with

bond lengths in Å. The two possible orientations of pyrazines are illustrated as well.

(a) and (b) are taken from Ref [103]. (c) Experimental (taken by H. Chen from DTU

Chemistry) and simulated X-ray powder diffraction pattern (calculated from Vesta [111])

for GaCl2(pyz)2 calculated from the crystal structure presented in Ref [103]. An overall

good agreement in terms of the peak positions is reached between the two spectra. A

clear difference arises at Q = 1.5 Å−1 in which a two-peak feature is present in the

experimental spectrum but not in the simulated pattern.
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Figure 6.11: (a) Measured magnetic susceptibility of GaCl2(pyz)2 and the Curie-Weiss

fit. (b) Below 60 K, the magnetic susceptibility of GaCl2(pyz)2 can be well described by

a weakly coupled S = 1/2 antiferromagnetic chain, see Section 2.1 for more details.

Fitted value

J [meV] 1.06± 0.0029

λ [meV] 0.22± 0.0048

χ0 [cm
3 mol−1] −3.20× 10−4 ± 9.09× 10−6

Cimpurity [cm
3 K mol−1] 0.0027± 6.54× 10−5

Table 6.2: Parameters of the susceptibility model, see Eq.(6.2), used to describe the

measured susceptibility below 60 K for GaCl2(pyz)2.

To model the susceptibility of such a system, Eq.(6.2) is adopted.

χ(T ) = χ0 +
Cimpurity

T
+Nµ2Bg

2 χ1D(T )

1 + 4λχ1D(T )
(6.2)

Here χ0 is a constant to account for a temperature independent para- or dia- magnetic

contribution. The second term in the summation is the response of paramagnetic im-

purities to magnetic field and the last term is a mean-field result of the susceptibility for

a weakly coupled antiferromagnetic S = 1/2 chain system whose interchain couplings

are absorbed in 4λ (λ represents the sum of all the exchange couplings for a single

site at one side of a chain) in the denominator [113]. χ1D(T ) is the susceptibility of

an antiferromagnetic Heisenberg S = 1/2 chain calculated from the Bethe ansatz with

an intrachain coupling J (Eq.(50) in Ref [114] which is valid for the temperature range

0.01J ≤ T ≤ 5J). N is the Avogadro constant, µB is the Bohr magneton and g = 2.0048
is the g-factor of GaCl2(pyz)2. Eq.(6.2) is fitted to the susceptibility curve of GaCl2(pyz)2
(from 1.79 K to 60 K) and the fitted result is shown in Fig.6.10(b). In Table 6.2 we sum-

marize the best fitted parameters of Eq.(6.2). Notice that the fitted λ takes a positive

value, indicating the chains are antiferromagnetically coupled [87].

Even though antiferromagnetic interactions are evident from the magnetic susceptibility

data, it is not sufficient to investigate whether long range ordering occurs in GaCl2(pyz)2.
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Figure 6.12: (a)(c) Specific heat for Sample 1 and Sample 2 from 2 K to 200 K. (b)(d)

ZnCl2(pyz)2 subtracted specific heat for both Sample 1 and Sample 2. Also shown is

the theoretical specific heat obtained from the Bethe ansatz for a Heisenberg S = 1/2
chain with an intrachain coupling J = 1.06 meV and without interchain coupling (red

solid lines).

To this end, we conducted a specific heat measurement on GaCl2(pyz)2 searching for

any signatures of phase transitions at low temperatures. During the experiment, two

powder pellets of GaCl2(pyz)2 weighted 5.7 mg and 5.0 mg were measured, labeled as

Sample 1 and Sample 2 respectively. In addition, an iso-structural non-magnetic com-

pound ZnCl2(pyz)2 was measured as well for phonon subtraction purposes. Datasets

at five different field values, 0 T, 2 T, 6 T, 10 T, and 14 T, were collected for Sample 2.

In Fig.6.12, we illustrate the zero field specific heat results for Sample 1 and Sample

2, see Fig.6.12(a) and (c). Due to the air sensitive nature of GaCl2(pyz)2, the samples

were immersed in an excessive amount of grease during the experiment for protection

purposes (ZnCl2(pyz)2 was also immersed in grease). The measured specific heats in

such a situation contain contributions from the samples, the grease, and the platform

for placing the samples (see Fig.3.1). The side effect of this is obvious: the measured

specific heat contains contributions from the grease and the platform, which in total are

significantly larger than the contribution from the sample itself. This is readily observed

in the data. As the heating up of the sample, the measured values increase significantly

(compared to the specific heat of CrI2(pyz)2 shown in Fig.6.3, GaCl2(pyz)2 takes value

close to 400 J · K−1 ·mol−1 at 100 K while CrI2(pyz)2 is only around 100 J · K−1 ·mol−1

at the same temperature). No clear λ-anomaly features are observed in the accessible
temperature range from 2 K to 200 K, implying that no phase transitions occur upon

cooling and that GaCl2(pyz)2 is magnetically disordered even at 2 K. In Fig.6.12(b) and
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Figure 6.13: (a) Specific heat of Sample 2 at 5 different fields 0 T, 2 T, 6 T, 10 T and 14

T. (b) ZnCl2(pyz)2 subtracted specific heat at the five different fields for Sample 2.

(d) we illustrate the specific heat for Sample 1 and Sample 2, respectively, after subtract-

ing the specific heat of ZnCl2(pyz)2. In principle, such a subtraction procedure should

remove most of the phonon contributions from the GaCl2(pyz)2 specific data due to the

isostructural relation betweenGaCl2(pyz)2 and ZnCl2(pyz)2 and the contribution from the

platform. However, as evident in both Fig.6.12(b) and (d), the simple removal method

fails above 40 K where an over-subtraction occurs resulting in negative specific heat.

Under such a circumstance how can we even be sure the residual positive part of the

subtracted data is the true magnetic contribution?

Luckily a clear distinction between magnetic and phonon contributions is that they have

different responses to magnetic field. For phonons, as long as couplings between mag-

netic degree of freedom and lattice vibrations are negligible, their contribution to specific

heat should be magnetic field independent. By contrast, the magnetic contribution is dy-

namic and changes with different field strengths. For the contribution from the platform,

we expect it to be field independent. In Fig.6.13(a) and (b), we illustrate the field evo-

lution of the specific heat for Sample 2 with and without the ZnCl2(pyz)2 subtraction.

As seen from the raw data in Fig.6.13(a), the pure magnetic contribution is hidden be-

hind the large specific heat of grease and the platform, making it impossible to identify

any field dependent changes in the data. After subtracting the ZnCl2(pyz)2 data, see

Fig.6.13(b), it is obvious the most dramatic changes occur at temperatures below 10 K

where the maximum of the specific heat at zero field gradually decreases and eventually

vanishes around 10 T. Above 10 T, the specific heat at around 5 K decreases rapidly. In

contrast, the specific data lying in between 15 K and 35 K show only slight variations as

the increase of the field. Especially above 25 K, the specific data collected at five differ-

ent fields are almost field independent. This implies the ZnCl2(pyz)2 subtracted data in

Fig.6.12(b) and (d) are likely under-subtracted and dominated by the remnant phonon,

grease, or platform contribution in the region between 15 K and 35 K. Otherwise given
their relatively large values, the field evolution of the specific heat should have a much

more pronounced variation in the temperature range from 15 K to 35 K.
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Figure 6.14: Specific heat of Sample 2 at four different fields, 2 T, 6 T, 10 T and 14 T,

after subtracting the effective background contribution as described in the text. The red

solid line represents the specific heat calculated from the Bethe ansatz for a Heisenberg

S = 1/2 chain model with an intrachain coupling J = 1.06meV. The interchain coupling
for the spin chains is absent.

Having established the ZnCl2(pyz)2 subtraction method does not work as expected and

given the prior that the magnetic susceptibility of GaCl2(pyz)2 can be well reproduced by

a S = 1/2 antiferromagnetic Heisenberg chain model with weak interchain couplings, a
natural question is whether the spin chain model describes the collected specific data

as well? In Fig.6.12(b) and (d), we plot the theoretical specific heat calculated from the

Bethe ansatz (Eq.(54) in Ref [114] valid for the temperature range 0.01J ≤ T ≤ 5J)
for a S = 1/2 Heisenberg chain with J = 1.06 meV without interchain coupling. As

seen in Fig.6.12(b) and (c), it is clear the theoretical lines match relatively well with the

subtracted data below 8 K irrespective of which sample is under investigation. Whereas

above 10 K, the theoretical values are considerably lower than the subtracted data,

consistent with our expectation that there is an under subtraction in the plotted data

between 15 K and 35 K as previously explained.

If we assume the Heisenberg S = 1/2 antiferromagnetic chain model offers a satis-

factory description of the zero field specific heat, it can be used to construct an effec-

tive specific heat background containing contributions from phonons in GaCl2(pyz)2, the

grease of Sample 2 and the platform. Such an effective background can be obtained by

subtracting the calculated theoretical specific heat (the red solid line in Fig.6.12(d)) from

the raw experimental data for Sample 2. Having identified the non-magnetic specific

background, the obtained background curve is further subtracted from the raw specific

heat data collected at different fields. The resultant data (interpreted to be purely mag-
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Figure 6.15: Nuclear coherent scattering spectra ((a)-(c)), spin incoherent scattering

spectra ((d)-(f)) and magnetic scattering spectra ((g)-(i)) of GaCl2(pyz-D4)2 obtained

from the D7 experiment. The measurement was conducted at three different tempera-

tures, (a)(d)(g) 1.5 K, (b)(e)(h) 60 K and (e)(f)(j) 120 K.

netic) are illustrated in Fig.6.14. At all fields, the magnetic specific heat approaches

zero at around 50 K and its intensity gradually decreases as the field increases. At zero

field, the maximum of the specific heat is close to 3 J·K−1·mol−1 whereas at 14 T it is

only around 2.1 J·K−1·mol−1, displaying a ∼ 30% reduction in intensity. Moreover, the

position of the maximum specific heat seems to shift towards a lower temperature as

the field increases. This has been observed before in a field dependent study of the

specific heat of Cu(C4H4N2)(NO3)2 [115], which manifests itself to be a perfect realiza-

tion of the S = 1/2 antiferromagnetic Heisenberg chain. Although this effect is minor

for GaCl2(pyz)2, it is still worth pointing out that such a trend exists in the data which

requires a more detailed specific heat study in the future.

6.2.2 Polarized neutron powder diffraction on GaCl2(pyz-D4)2
Having studied the specific heat and magnetic susceptibility of GaCl2(pyz)2 and found

no evidence for long range ordering down to 2 K, the next step is to investigate the

magnetic correlation in GaCl2(pyz)2. For such a purpose, a polarized neutron powder

diffraction was conducted. A deuterated polycrystalline sample of GaCl2(pyz)2 was pre-

pared by H. Chen from DTU Chemistry and the total sample weight is 7.738 g. The

experiment was performed on a diffuse scattering spectrometer D7 [116] at the Insti-

tut Laue-Langevin using λ = 4.8707 Å. The polycrystalline sample was sealed in an
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Figure 6.16: Magnetic scattering spectra collected at (a) 1.5 K (red) and 60 K (light blue),

(b) 1.5 K (red) and 120 K (light blue).

Figure 6.17: The nuclear coherent scattering spectrum of GaCl2(pyz-D4)2 collected at

1.5 K is fitted with the nuclear structure of GaCl2(pyz)2 solved from a X-ray powder

diffraction. The black solid line represent the calculated neutron diffraction pattern us-

ing the X-ray refined crystal structure of GaCl2(pyz)2 and the green lines indicate the

positions of the allowed Bragg reflections.

annular geometry inside an Aluminium can, which is placed inside a Helium-4 cryostat

capable of cooling the sample down to 1.5 K. For the experiment, the XYZ polarization

analysis was conducted to separate nuclear coherent, spin incoherent, and magnetic

contributions to the total differential cross-section. Three sets of data were collected at

1.5 K, 60 K, and 120 K, respectively.

The thermal evolution of the nuclear coherent, spin incoherent, and magnetic scattering

spectra of GaCl2(pyz-D4)2 is illustrated in Fig.6.15. As seen from Fig.6.15(a)-(c), the

absence of new nuclear Bragg peaks developing in the nuclear coherent channel upon

heating indicates that no structural phase transition occurs in GaCl2(pyz-D4)2 between

1.5 K and 120 K, consistent with the specific heat study in which no obvious λ-anomalies
were observed below 200 K. In the spin incoherent channel, see Fig.6.15(d)-(f), a sud-

den decrease of the intensity at momentum transfers Q ∼ 1.2 Å−1 and ∼ 1.75 Å−1 is

evident at all measured temperatures. Comparing the sudden intensity dropQ positions
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in Fig.6.15(d)-(f) to the locations of the strong nuclear Bragg peaks in Fig.6.15(a)-(c), it

is clear these features in the spin incoherent channel are artifacts due to the subtraction

procedure of the XYZ polarization analysis, in which an over-subtraction occurs at the

Q positions where strong nuclear Bragg peaks are present, see Section 2.4. Apart from

the sudden intensity decrease at the strong nuclear Bragg positions, the spin incoherent

scattering signals, in general, show very little Q variation. At 1.5 K, the spin incoherent

spectrum is almost a constant at ∼ 7.05 Barns sr−1 p.f.u. (p.f.u.: per formula unit) be-

low Q ∼ 1.5 Å−1. Above 1.5 Å−1 there is a slight decrease in intensity in the collected

1.5 K spectrum. Upon heating, the spin incoherent scattering intensity starts at ∼ 7.05
Barns sr−1 p.f.u. at the lowest Q as well, but at high Q the intensity has a more rapid

decay especially at 120 K where the falling trend is visible. The almost Q-independent
behavior of the spin incoherent spectrum at base temperature is consistent with the ex-

pectation that theoretically its intensity should be a constant [34]. The rapid falling trend

at high Q can be attributed to the Debye-Waller factor due to the unsettled motions of

atoms inside a crystal, which takes an exponential decay form in the neutron scattering

cross-section. Since this decay trend is more prominent at high temperatures [25], it

could explain the rapid falloff at high temperatures. In Fig.6.15(g)-(i), we illustrate the

magnetic scattering spectra collected at three different temperatures 1.5 K, 60 K, and

120 K. The data presented here are the final averaged results of the magnetic scattering

spectra from both spin-flip and non spin-flip channels. It is immediately clear that the

magnetic scattering is weak in GaCl2(pyz-D4)2. For all three temperatures, the magnetic

scattering signal is close to zero even at low Q. The maximum intensity is around 0.2

Barns sr−1 p.f.u. at Q ∼ 0.25 Å−1 in both 60 K and 120 K spectra. Sudden increases

and decreases in intensity occur at Q ∼ 1.2 Å−1 and ∼ 1.75 Å−1 in all spectra. These

changes happen at the same Q positions where the subtraction artifacts from the XYZ

polarization analysis are present. Thus we do not consider that these features corre-

spond to any sharp features in the magnetic scattering spectrum of GaCl2(pyz-D4)2. A

systematic negative intensity in the magnetic spectra above 2.2 Å−1 is present across

all three temperatures. This is likely due to a failure of the subtraction method of the XYZ

polarization analysis. As such a negative intensity only happens at high Q, it does not
impair the analysis of magnetic scattering which is most relevant at low Q [25]. From

the data presented in Fig.6.15(g)-(i), even though the scattering intensity in magnetic

channel is non-zero at 1.5 K, which indicates the existence of finite spin-spin correlation

in GaCl2(pyz-D4)2, it is not feasible to observe any fine structure in the 1.5 K magnetic

scattering spectrum besides an overall intensity decay trend. In Fig.6.16(a) and (b), we

present a detailed view of the magnetic scattering spectrum at 1.5 K and compare it to

the magnetic scattering at 60 K and 120 K, respectively. At low Q, i.e. Q < 0.8 Å−1,

the scattering intensity at 1.5 K is only slightly lower than the intensities at 60 K and 120

K. No significant temperature dependent intensity variation of the magnetic scattering

is observed as the temperature increases. The difference between either 1.5 K and 60

K, or 1.5 K and 120 K is within the intensity error bars. It is evident that the magnetic

scattering spectra at three different temperatures display a similar trend at high Q. At
above 1 Å−1, the magnetic scattering intensities approach zero in a nearly identical way

Spectroscopy Study of Low-dimensional Quantum Magnets 135



0 0.5 1 1.5 2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 6.18: Fitted magnetic scattering spectra using Eq.(6.5) for (a) 60 K and (b) 120

K.

for all three temperatures. Given at temperatures above 50 K the magnetic suscepti-

bility of GaCl2(pyz)2 closely follows the Curie-Weiss law, see Fig.6.11, it is reasonable

that the observed decay of the magnetic scattering at 60 K and 120 K closely resembles

the magnetic scattering from a paramagnetic ion whose intensity is proportional to the

magnetic form factor square of the ion [25]. For GaCl2(pyz-D4)2, the ”paramagnetic ion”

is a pyz ring with an additional electron.

As the first step of the data analysis, we fitted the nuclear coherent diffraction pattern

at 1.5 K using FullProf [117] using the nuclear crystal structure solved by a powder X-

ray diffraction for GaCl2(pyz)2. The result is presented in Fig.6.17. It is immediately

evident that the prominent Bragg peaks at 2θ ∼ 75◦ (1.57 Å−1), ∼ 90◦ (1.82 Å−1) and

∼ 122◦ (2.26 Å−1) can not be assigned to any allowed nuclear Bragg peaks in GaCl2(pyz-

D4)2, indicated by the green lines in Fig.6.17. This is quite surprising as no such pro-

nounced extra structural Bragg peaks were observed in the X-ray diffraction pattern, see

Fig.6.10(c). In the spectrum, there exist two small structural peaks at around Q ∼ 1.5
Å−1 which are also forbidden by the Immm space ground (compared with the theoreti-

cal X-ray diffraction pattern shown below, calculated from Vesta [111]). Their positions

coincide with the extra pronounced peak (at 1.5 Å−1) observed in the nuclear coherent

channel but in contrast, the intensities are orders of magnitude smaller compared to the

structural Bragg peaks of GaCl2(pyz-D4)2 in the X-ray scattering pattern and are almost

negligible. We do not yet understand the origin of these extra nuclear Bragg peaks and

this will require further investigations in the future. The refined amplitude Amp from Full-

Prof is 0.24 [per formula unit] which is close to the theoretical value 0.2538 [per formula

unit] calculated from Eq.(6.3) [118].

Amp =
45λ3

2π2NspinsV
(6.3)

where λ is the neutron wavelength at D7, V is the volume of the unit cell of GaCl2(pyz-

D4)2, Nspins is the number of spins in a unit cell and for GaCl2(pyz-D4)2 it is 2 as there
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Figure 6.19: Squared effective magnetic form factors of a pyz ring with an extra electron

extracted from 60 K (light blue), 120 K (blue). For comparison, we also show the squared

magnetic form factor of Cu (II) (black), Cr (II) (blue), and Cr (III) (red) ions.

are two unit formulas per one unit cell. The proximity of the refined and the theoretical

amplitude values indicates that, even if previously described extra nuclear peaks came

from impurities, the sample quality of GaCl2(pyz-D4)2 was not severely affected.

As previously discussed, the starting value of the spin incoherent scattering in Fig.6.15(d)-

(f) is around 7 Barns sr−1 p.f.u., for all three temperatures. However the expected spin

incoherent scattering value for GaCl2(pyz-D4)2 is 2.3211 Barns sr−1 p.f.u., which can

be obtained via Eq.(6.4) [25, 28].

dσSI
dΩ

=
nGab

2
Inc(Ga) + nClb

2
Inc(Cl) + nCb

2
Inc(C) + nDb

2
Inc(D) + nNb

2
Inc(N)

nGa + nCl + nC + nD + nN
(6.4)

where nX (X: Ga, Cl, C, N D) is the number of atom X in a unit formula and bInc(X) is the
corresponding bound incoherent scattering length for X. It is not clear yet where such a

significant difference may come from. Together with the observation that extra structural

Bragg peaks are much more pronounced in the neutron diffraction spectra compared to

the X-ray diffraction spectrum, see Fig.6.15(a)-(c) and Fig.6.10(c), this indicates there

may exist excess H in the sample, which are nearly invisible to X-ray but not to neutron

and substantially increase the spin incoherent scattering intensity. However, it is still not

clear what kind of structures these excessive H are formed that give rise to the prominent

additional Bragg peaks observed in the nuclear coherent scattering channel.

As previously explained, the decaying trend in the magnetic scattering spectra collected

at 60 K and 120 K is related to the squared magnetic form factor of the pyz ring with

one extra electron. To model such the data, a single exponential decay function, as

illustrated in Eq.(6.5), is fitted to the magnetic scattering data collected at 60 K and 120
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S(S + 1)

60 K 0.7709± 0.099

120 K 0.6791± 0.097

Table 6.3: Obtained total spin moment from Eq.(6.7) for 60 K and 120 K.

K. The fitted results are summarized in Fig.6.18.

dσM
dΩ

=
(
Ae−aQ

2
)2

(6.5)

In theory, the differential scattering cross-section of neutrons scattered from non-interacting

paramagnetic ions in a polycrystalline form can be written as [25, 28]

dσM
dΩ

=
2

3
p2g2f2(Q)S(S + 1) = 0.0485× g2f2(Q)S(S + 1) (6.6)

where p = 0.2696 × 10−12 cm, g is the g-factor, f(Q) is the magnetic form factor of the

ion in question and S is the spin value of the ion. Combining Eq.(6.6) with Eq.(6.5), at

Q = 0, the following equality holds

A2 = 0.0485× g2S(S + 1) ⇒ S(S + 1) =
A2

0.0485× g2
. (6.7)

Hence from Eq.(6.7), we can directly deduce the total spin angular momentum S(S +
1) per unit formula for GaCl2(pyz-D4)2 given the g-factor of GaCl2(pyz)2 is 2.0048. In
Table 6.3, we listed the extracted values of S(S + 1) from Eq.(6.7) for 60 K and 120

K, respectively. As seen in the table, the values obtained agree well with a S = 1/2
situation in which S(S + 1) = 0.75. From the fits to Eq.(6.5), we can obtain the squared

effective magnetic form factor of a pyz ring with an additional electron. The results are

shown in Fig.6.19 for both 60 K and 120 K. In addition, we further illustrate in Fig.6.19

the squared magnetic form factors of a common S = 1/2 ion Cu (II), a S = 2 ion Cr

(II) and a S = 3/2 ion Cr (III) [119]. It is obvious that, compared to Cu (II), Cr (II), and
Cr (III), the squared magnetic form factor of the pyz ring with an extra electron decays

much faster. At Q = 2 Å−1, there is an only around 30%-45% reduction in intensity for

Cu (II), Cr (II) and Cr (III) whereas for the pyz ring the intensity has essentially vanished.

Such a rapid reduction in intensity for the pyz ring is consistent with the fact that a single

electron is more delocalized in a pyz ring compared to residing in 3d-orbitals.

As a final remark, it would be interesting to test whether the Heisenberg S = 1/2 antifer-
romagnetic chain model with an intrachain coupling strength J = 1.06 meV is sufficient

to describe the magnetic scattering spectrum presented in Fig.6.15(g). This will be left

for future study.

6.3 Ligand non-innocent ferrimagnet CrCl2(pyz)2
The crystal structure of CrCl2(pyz)2 is similar to GaCl2(pyz)2. As shown in Fig.6.20,

CrCl2(pyz)2 crystallises in a layered structure in the orthorhombic Immm space group
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Figure 6.20: Crystal structure of CrCl2(pyz)2. (a) Fragment of the layered structure

perpendicular to the crystallographic c axis. (b) View of the staggered stacking of the

layers along to the crystallographic c axis. (c) A CrCl2(pyz)4 octahedon showing the

two possible orientations of the pyz rings. Cr dark green, Cl light green, Cl blue, N dark

grey. H is emitted for clarity. The figures are taken from Ref [104].

Figure 6.21: (a) Temperature dependence of the χT product for CrCl2(pyz)2. Inset: A

selection of χ(T )measurements at different magnetic fields. (b) Field dependence of the
magnetization for CrCl2(pyz)2 at various temperatures. Inset: Temperature dependence

of the remnant magnetization for CrCl2(pyz)2. The solid line is a simulation result. For

details see Ref [104]. The figures are taken from Ref [104].

Spectroscopy Study of Low-dimensional Quantum Magnets 139



Figure 6.22: Temperature dependence of the two-contact conductivity of CrCl2(pyz)2.

The solid line is the best fit to the 2D Mott law, for details see in Ref [104]. Inset: Fermi

edge region of the UV photoelectron spectrum of CrCl2(pyz)2 (purple) and the metallic

reference Mo (grey). The figure is taken from Ref [104].
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(No. 71) with lattice constants a = 6.90351(4) Å, b = 6.97713(4) Å and c = 10.82548(6)
Å [104]. Within each layer, Cr ions sit in an octahedral environment in which the pyz

ligands are disordered among two possible positions imposed by the symmetry of Immm

space group, see Fig.6.20. A previous X-ray absorption spectroscopy (XAS) study [104]

(Fig.6.1) found the oxidation state of Cr in CrCl2(pyz)2 is +3 instead of +2 as one might

expect from the chemical formula. This indicates the non-innocent role of the pyz ligands

who ”kidnap” one electron from the eg manifold of Cr (II) ion per formula unit. The

electron is transferred to one of the unoccupied orbitals of the two pyz rings or even

both of them during the synthesis.

The striking feature of this material is that CrCl2(pyz)2 not only exhibits long range mag-

netic ordering but also is electrically conductive at room temperature. Previousmagnetic

susceptibility measurements [104] suggest that, upon cooling long range magnetic or-

dering takes place at 55 K based on a sudden increase of the measured susceptibility,

see Fig.6.21 [104]. However, the high temperature region of the susceptibility is poorly

described by the Curie-Weiss law. Even when extending the measured temperature to

400 K, a clear linear behavior of χ−1 vs T is still absent [104, 108]. A hysteretic be-

havior is observed in the field dependence of the magnetization of CrCl2(pyz)2 and the

remnant magnetization persists until 55 K [104], supporting the assignment of a mag-

netic ordering transition at 55 K. The saturation magnetization of CrCl2(pyz)2 at 7 T and

1.85 K amounts to 1.8 µB [104], which is significantly lower than the expected value ∼ 3
µB for a Cr (III) ion, but is close to the value ∼ 2 µB expected for antiferromagnetically

coupled Cr (III) - pyz spins. The above results unambiguously indicate CrCl2(pyz)2 is a

ferrimagnet below 55 K where in the 2D square lattice plane the spins on the Cr (III) ions

are antiferromagnetically coupled to the spins on the pyz ligands and such a coupling is

strong enough to affect the high temperature behavior of susceptibility. The temperature

dependence of the electrical conductivity σ of CrCl2(pyz)2 [104] is illustrated in Fig.6.22.
The room-temperature conductivity of CrCl2(pyz)2 is σRT = 32 mS cm−1, which places

CrCl2(pyz)2 among one of the conducting coordination solids reported so far [105, 106].

It is not clear yet whether CrCl2(pyz)2 is semiconducting, metallic, or even half-metallic

(predicted by DFT calculations, see Ref [120, 121]).

6.3.1 Experimental details

To study the thermal evolution of the spin excitations in CrCl2(pyz)2 below and above the

transition temperature 55 K, an inelastic neutron scattering experiment was performed

on a time-of-flight spectrometer LET at the ISIS Neutron and Muon Source. A polycrys-

talline deuterated sample of CrCl2(pyz)2 was prepared by L. Voigt from DTU chemistry.

The total sample weight was around 3 grams. The LET spectrometer was operated

using the repetition rate multiplication technique [38] with the incident neutron energy

set to 2 meV and the choppers spinning at 240 Hz. This allows simultaneous collection

spectra with different momentum and energy transfers at Ei = 3.6 meV, 6.4 meV and

17.4 meV. The sample was mounted in an annular geometry inside a Aluminium can

and connected to the cold finger of a continuous cycle refrigerator capable of cooling

the sample down to 2 K. Data at five different temperatures were collected, i.e. 2 K,
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Figure 6.23: Spin and lattice vibration excitations in CrCl2(pyz-D4)2 collected at 2 K

using Ei: (a) 3.6 meV, (b) 6.4 meV and (c) 17.4 meV.

15 K, 30 K, 45 K, and 60 K, for investigating the temperature dependence of the spin

excitations in CrCl2(pyz-D4)2. For investigation of the high energy spin excitations in

CrCl2(pyz-D4)2, we performed an inelastic neutron scattering on a time-of-flight spec-

trometer MAPS at the ISIS Neutron and Muon Source. The neutron incident energy was

set to 400 meV and 800 meV with the choppers spinning at 600 Hz. The same sample

used for the LET experiment was again sealed in an Aluminium can and mounted in an

annular geometry. Only two temperatures were measured during the experiment, one

is 3.5 K and the other is 300 K. The MANTID software package was used to process

the raw neutron data [89, 90] which were subsequently analyzed using the MATLAB

programs MSlice.

6.3.2 Results and analysis

The spectra collected at 2 K using three different Ei’s: 3.6 meV, 6.4 meV and 17.4 meV
are summarized in Fig.6.23(a)-(c). It is immediately evident that there is an intense

scattering feature located at high Q in the Ei = 17.4 meV spectrum extending from 3

meV to 12 meV. Noticing that its intensity increases significantly as Q becomes larger,

we can attribute such an intense scattering feature to the lattice vibrations in CrCl2(pyz-

D4)2. Apart from the high Q phonon scattering, a nearly vertical (in the low Ei data we
see it curving) scattering feature close to Q = 1 Å−1 extends from 0.25 meV to around 6

meV is observed in all three spectra. This feature is likely associated with the scattering

from acoustic phonon branches in CrCl2(pyz)2.

Recalling that magnetic scattering is most prominent in the lowQ part of a spectrum [25,

28], this is where we expect to see spin excitations in a ferrimagnet. However in our col-

lected data at differentEi’s, the lowQ region of the spectra is relatively clean showing no

traces of any pronounced magnetic scattering signals (compared to the spin excitation

spectrum of CrI2(pyz-D4)2, see Fig.6.4). Upon a further inspection, a weak scattering

feature is spotted in the Ei = 3.6 meV spectrum at momentum transfers below Q = 0.5
Å−1 and energy transfers below E = 1meV. This weak scattering signal originates from
the position close to Q = 0 Å−1 and E = 0 meV and its excitation energy increases
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Figure 6.24: Lattice excitations in CrCl2(pyz-D4)2 collected at (a) 4 K, (b) 60 K, (c) 3.5 K,

and (d) 300 K. Spectra shown in (a) and (b) are from the MERLIN spectrometer using

neutrons with Ei = 78meV. (c) and (d) are from the MAPS spectrometer using neutrons

with Ei = 400 meV.
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Figure 6.25: Lattice excitations in CrCl2(pyz-D4)2 collected at 3.5 K on MAPS using

Ei = 800 meV.

Figure 6.26: Thermal evolution of the spin and lattice vibration excitations in CrCl2(pyz-

D4)2 collected at (a) 2 K, (b) 15 K, (c) 30 K, (d) 45 K and (e) 60 K using Ei = 3.6 meV.
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monotonically as the momentum transfer moves away from Q = 0 Å−1. Intensity-wise,

the weak scattering feature decreases monotonically with increasing momentum trans-

fer. At around Q ∼ 0.5 Å−1 and E ∼ 1 meV, it is no longer discernible and completely
vanished from the Ei = 3.6 meV spectrum. The observed intensity decrease with Q is

consistent with the behavior expected from the squared magnetic form factor variation

of the magnetic cross-section [25, 28]. Summarizing, the only spin excitations observed

in the spectra at Ei = 3.6 meV, 6.4 meV and 17.4 meV are the weak scattering feature

below E ∼ 1 meV and Q ∼ 0.5 Å−1.

In Fig.6.24 and Fig.6.25, we illustrate the spectra collected with higherEi’s onMAPS and
MERLIN. The MERLIN experiment was performed by the MERLIN beamline scientist H.

Walker before the start of this Ph.D. project. Spectra at two temperatures, 6 K and 60 K,

were collected and the neutron incident energy was set to 78 meV. The sample used for

the MERLIN experiment is the same sample for the later LET and MAPS experiments.

It is evident that the scattering from the lattice vibrations in CrCl2(pyz-D4)2 dominates

the MERLIN spectra, as seen in Fig.6.24(a) and (b). These phonon excitations are

most prominent at the high Q part of the spectra and their intensities increase with the

increase of temperature from 6 K to 60 K. The nearly equal-distant flat modes from 40

meV to 60 meV observed in Fig.6.24(a) and (b) belong to the optical phonon branches

of CrCl2(pyz-D4)2 and may closely resemble the quantum harmonic oscillator scenario

explained in Ref [122]. In their study, the equal-distant modes observed in UN are

attributed to the vibrations of a N ion which situates inside an octahedral U cage. It is

not clear yet where the equal-distant optical phonon modes come from in CrCl2(pyz-

D4)2. One possible explanation is that these are the vibrations of the Cr ion inside a

Cr(pyz-D4)4Cl2 octahedron due to the rigidity of rather large molecular pyz rings. At

the low Q part of the MERLIN spectra, the only visible excitations are those acoustic

phonon branches locating at around 1 Å−1, 1.7 Å−1 and 3 Å−1, and the optical phonon

modes extending from 10 meV to around 30 meV. Apart from that, no spin excitations

are observed up to 65 meV in CrCl2(pyz-D4)2.

In Ref [104], K. Pedersen et al performed a DFT calculation to determine the antiferro-

magnetic exchange coupling strength J between Cr and pyz. They found the coupling

strength is extremely large and estimated around J ∼ 505 meV [104]. If there exists a

strong coupling between Cr and pyz in CrCl2(pyz-D4)2, the spin excitations associated

with such a coupling in principle should be observable in the MAPS data due to the

large incident neutron energies (400 meV and 800 meV) applied during the experiment.

However, as shown in Fig.6.24(c) and (d), again scattering from the lattice vibrations of

CrCl2(pyz-D4)2 dominate the spectra. This is readily seen from the enhanced intensity

of these scattering features as the temperature increases from 3.5 K to 300 K. The flat

mode at around 300 meV likely belongs to one of the vibrational modes of pyz ring.

Apart from that, there is no clear evidence of the existence of spin excitations in the

spectra. In Fig.6.25, we show the spectrum collected at 3.5 K using Ei = 800 meV on

MAPS. Similar to the Ei = 400 meV data, the spectrum is dominated by phonon scat-

terings. At lowQ where we expect to see any spin excitations if they exist, the spectrum
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Figure 6.27: Fitted constant energy cuts taken from the Ei = 3.6 meV spectra collected

at (a) 2 K, (b) 15 K and (c) 30 K for energy transfers below 0.6 meV using Eq.(6.8). The

triangular markers indicate the fitted peak positions.

is fairly clean. The stripy feature at around 400 meV likely resembles some vibrational

modes of pyz ring. It is thus impossible to spot any spin excitations in the Ei = 800
meV spectrum. Summarizing, the spin excitations of CrCl2(pyz-D4)2 are absent in the

MAPS data up to 720 meV. One possible explanation for such an absence is that the

squared magnetic form factor of pyz vanishes at Q = 2 Å−1, see Fig.6.19. Even though

the squared magnetic form factor of Cr (III) is still finite at Q = 5 Å−1 (∼ 85% intensity

reduction compared to Q = 0 Å−1), the intensity of the spin excitations associated with

the antiferromagnetically coupled Cr (III) and pyz spins is significantly suppressed to

approach zero at Q > 2 Å−1 due to the pyz. As the result, this leads to the vanish of

spin excitations in the MAPS spectra.

In Fig.6.26, we illustrate the thermal evolution of the previously identified weak spin ex-

citations below and above the ordering temperature 55 K. It is obvious from Fig.6.26(b)

and (c), that upon heating, the spin excitations in CrCl2(pyz-D4)2 gain intensity and be-

come more pronounced in the collected spectra at 15 K and 30 K compared to 2 K. This

is a manifestation of the Bose factor in the neutron magnetic scattering cross-section

[25, 28] whose value is enhanced as the temperature increases. Because the spin ex-

citations lie below 1 meV such an enhancement becomes easily visible at 15 K and 30

K, when the generalized susceptibility is not significantly altered compared to 2 K. As

the temperature approaches the transition temperature 55 K, the damping of the spin

excitations is more severe and their width in Q increases substantially. Together with
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the noticeable softening of the excitation energy with increasing temperature, the spin

excitations eventually disappear when crossing the ordering temperature 55 K. At 60

K, no more spin excitations are discernible at low Q, and the spectrum is left with a

quasi-elastic scattering signal only, which is centered at zero energy transfer.

To extract the peak positions in Q of the spin excitations at different temperatures, line-

shapes described by Eq.(6.8) were fitted to constant energy cuts taken below the energy

transfer E = 0.6 meV.

y(Q) =
Amp

πγ

γ2

(Q−Q0)2 + γ2
+AQ+BQ2 (6.8)

where the first term in the summation is a Lorentzian lineshape characterized by the

amplitude Amp, the center of the peak Q0 and the half width half maximum (HWHM)

γ. The term AQ + BQ2 is an effective background model with two free parameters A
and B. As the spin excitations are strongly damped and broadened at 45 K, we only

extracted the thermal evolution of the peak positions of the spin excitations up to 30 K.

The fitted spectra are presented in Fig.6.27 for the constant energy cuts taken at T = 2
K, 15 K and 30 K, respectively.

In Fig.6.28 and Fig.6.29, we present the E-dependent fitted peak positions and peak

widths in Q of the spin excitations at 2 K, 15 K, and 30 K, labeled by the blue circles,

yellow squares, and red triangles, respectively. Compared to the color plots in Fig.6.26,

it is more evident that a softening of the spin excitations occurs as the temperature

increases. At 30 K, there is a significant reduction in the excitation energy especially at

Q = 2.5 Å−1, at which the spin excitation energy shifts from ∼ 0.6 meV at 2 K to ∼ 0.5
meV at 30 K. This amounts to ∼ 17 % reduction in energy. As seen in Fig.6.29, there

is no significant difference in width between the spin excitation at 2 K and 15 K. In fact,

their widths are comparable to each other. This indicates the damping is not severe as

the temperature increases from 2 K to 15 K. Whereas at 30 K, there is a substantial

increase of the width of the spin excitation, especially at Q > 0.2 Å−1. This agrees with

the color plot shown in Fig.6.26.

To further quantify the dispersion relations of the spin excitations at different tempera-

tures, the following equation is fitted to the extracted peak positions

E = αQβ (6.9)

where E is the energy of the spin excitations, Q is the extracted momentum transfers,

and α, β are for parameterization of the dispersion. The fitted results are shown in

Fig.6.28 and the best fitted parameters are listed in Table 6.4. Both α and β decrease

monotonically as the temperature increases. This is consistent with the temperature-

softening behavior of the spin excitations in CrCl2(pyz-D4)2. In addition, the best fitted

β = 1.92 ± 0.071 at 2 K is close to a ferromagnetic scenario in which the dispersion

at small Q limit scales as E ∼ Q2 [23]. Together with the temperature dependence

of the spin excitations, the E ∼ Q2 behavior and the saturation moment 1.8 µB at 7 T
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α β

2 K 9.26± 1.03 1.92± 0.071

15 K 4.79± 0.37 1.50± 0.048

30 K 3.48± 0.17 1.39± 0.032

Table 6.4: Best fitted parameters α and β in Eq.(6.9) at 2 K, 15 K and 30 K.
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Figure 6.28: Extracted peak positions of the spin excitation using Eq.(6.8) at three tem-

peratures: 2 K (blue), 15 K (yellow) and 30 K (red). Also shown are the best fitted results

using Eq.(6.9), see the blue (2 K), yellow (15 K) and red (30 K) solid lines.

(see Fig.6.21) unambiguously support CrCl2(pyz)2 is a ferrimagnet below 55 K whose

uncompensated S = 1 degree of freedoms at the Cr (III) sites are ferromagnetically

coupled, giving rise to a ferromagnetic type spin wave dispersion at low Q region. For a

ferromagnet in an ideal square lattice, the theoretical value for α is JSa20 where J is the

nearest neighbor exchange interaction, S is the spin value associate with each lattice

site and a0 is the lattice constant of the square lattice [23]. For CrCl2(pyz)2, the square
lattice slightly deviates from the ideal case whose two lattice constants a = 6.90351
Å and b = 6.97713 Å are not equivalent. To estimate J , we take the averaged lattice

constant of a and b for a0. Given S = 1, the estimated J is −0.19 ± 0.021 meV, which
is significantly lower than the 55 K ordering temperature (|4JS| ∼ 5.97 K). Clearly, the
nearest neighbor ferromagnetic coupling J alone cannot support the observed 55 K

ordering temperature. The mechanism behind the ferrimagnetic ordering phenomenon

is not fully understood yet which requires future investigations.

As a final remark, in Fig.6.29 we illustrate the constant energy cuts at 2 K and 60 K

from the Ei = 3.6 meV spectra with ∆E = [−0.2, 0.2] meV. Such cuts resemble the

elastic scattering patterns of CrCl2(pyz-D4)2 below and above the ordering temperature

55 K. It is immediately evident that no obvious differences are discernible between the
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Figure 6.29: Extracted peak FWHMs of the spin excitation using Eq.(6.8) at three tem-

peratures: 2 K (blue), 15 K (yellow) and 30 K (red).

2 K spectrum and 60 K spectrum. Thus the peaks presented in Fig.6.29 belong to the

nuclear Bragg peaks of CrCl2(pyz-D4)2. Similar to GaCl2(pyz-D4)2, the two peaks at

Q ∼ 1.57 Å−1 and 1.83 Å−1 are not allowed by the Immm space group and the origin of

these peaks remain a mystery which requires further investigations in the future as well.

6.4 Conclusions
In this chapter, we studied the magnetic properties of three isostructural metal-organic

framework compounds: CrI2(pyz)2, GaCl2(pyz)2, and CrCl2(pyz)2. Despite sharing a

similar crystal structure, their magnetic properties vary substantially.

CrI2(pyz)2 is a quasi two dimensional S = 2 antiferromagnet on a square lattice with

a Néel temperature of TN ∼ 26 K. Inelastic neutron scattering study shows that the

dominant interaction in the system is an in-plane nearest neighbor exchange coupling

J1 = 0.447(4) meV and the exchange interaction J2 associated with in-plane second

nearest neighbor Cr (II) ions is only ∼ 10% of J1. A spin wave gap ∼ 1meV is observed

in the inelastic neutron spectrum using Ei = 9 meV (Fig.6.4(a)). This can be explained

by including an easy-axis anisotropy D (along the crystallographic c direction) in the

spin Hamiltonian with D = −0.063(4) meV. The obtained exchange coupling constants
J1 and J2 are in good accord with the measured Curie-Weiss temperature of CrI2(pyz)2.

It is, therefore, safe to conclude that CrI2(pyz)2 is a conventional antiferromagnet on a

square lattice.

Magnetism in GaCl2(pyz)2 originates from its non-innocent pyz ligands. For every for-

mula unit of GaCl2(pyz)2, an electron is transferred from Ga to one of the pyz ligands,

and it is the transferred electron which localize on a pyz ring that determines the mag-

netic property of GaCl2(pyz)2. Magnetic susceptibility measurement indicates the mag-
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Figure 6.30: Constant energy cuts taken from the Ei = 3.6 meV spectra collected at 2

K and 60 K with ∆E = [−0.2, 0.2] meV.

netism in GaCl2(pyz)2 closely resembles a S = 1/2 scenario, which supports the pic-

ture of having a localized electron on a pyz ring per formula unit. Specific heat study

shows no long range ordering occurs in GaCl2(pyz)2 down to 2 K. To study the spin-spin

correlation in GaCl2(pyz)2, a polarized neutron powder diffraction was performed, from

which the magnetic contribution to the total cross-section can be obtained (Section 2.4

in Chapter 2). The measured magnetic cross-sections of GaCl2(pyz)2 at 1.5 K, 60 K,

and 120 K are very small (but still finite) and nearly indistinguishable (Fig.6.16). The

three spectra all show a characteristic feature that the scattering intensity decays with

increasing Q. At Q > 1 Å−1, it is essentially zero. The scattering spectra at 60 K and

120 K are expected to follow the cross-section of a paramagnetic ion, from which the

total spin angular momentum S(S+1) per formula unit for GaCl2(pyz)2 can be extracted.
The values (Table 6.3) we found agree well with the S = 1/2 situation. In addition, the
squared magnetic form factor per formula unit for GaCl2(pyz)2 can also be extracted,

see Fig.6.19. Compared to the squared magnetic form factors of 3d transition metal

ions, such as Cu (II), Cr (II), and Cr (III), it decays more rapidly and becomes essentially

zero at Q > 2 Å−1. Such a rapid and fast decay is consistent with the picture that an

electron residing on a pyz ring. In such a scenario, the wavefuntion of the electron is

more delocalized compared to the more localized 3d orbitals.

We analyzed the magnetic susceptibility and specific heat of GaCl2(pyz)2 with a strongly

theory-oriented approach. The results indicate GaCl2(pyz)2 might be decomposed into

weakly coupled S = 1/2 antiferromagnetic Heisenberg chains. The field dependence of
the specific heat shown in Fig.6.14 shares some similarities with a previous study on the

S = 1/2 antiferromagnetic Heisenberg chain [115]. Even though it is far from conclusive

that GaCl2(pyz)2 resembles the S = 1/2 antiferromagnetic Heisenberg chain scenario,
it might be worthy to pursue this direction in the future. A more detailed specific heat
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study is necessary, especially to carefully separate apart magnetic and non-magnetic

contributions. It might also be interesting to study the spin excitations in GaCl2(pyz)2
even for a polycrystalline sample. If GaCl2(pyz)2 indeed were a quasi-1D system, the

method presented in Ref [123] could be applied and the resultant spectrum would show

signatures of spinons [124].

Both CrI2(pyz)2 andGaCl2(pyz)2 are well placed in an insulating limit. In contrast CrCl2(pyz)2
is electrically conductive at room temperature. Similar to GaCl2(pyz)2, the ligands in

CrCl2(pyz)2 are non-innocent as well. The two pyz in one formula unit take one electron

away from the Cr ion. Such an electron transfer surprisingly leads to antiferromagnet-

ically coupled Cr (III) (S = 3/2) and pyz (S = 1/2) spins, such that below ∼ 55 K the

system is ferrimagnetically ordered [104] with an ordered moment 1.8 µB. Inelastic neu-
tron scattering shows that the only observed spin excitation locates below 1 meV and its

intensity is fairly weak (Fig.6.26), in sharp contrast to CrI2(pyz)2. At low Q, i.e. Q < 0.3
Å−1, the energy of the spin excitation increases quadratically inQ at 1.5 K. This signifies

the uncompensated S = 1 degree of freedom (3/2 − 1/2 = 1) at Cr (III) sites are fer-

romagnetically coupled, which consistent with the ferrimagnetic picture. However, the

estimated exchange constant J = −0.19 meV is much smaller than the ordering tem-

perature 55 K. Such a discrepancy we do not understand at the current stage. Several

DFT calculations [120, 121] have pointed out CrCl2(pyz)2 is likely to be half-metallic. The

orbitals from pyz form spin-polarized conduction bands at the Fermi level and it is the

electrons from these conduction bands that induce the observed ferrimagnetism. Since

the conduction electrons are itinerant and the spins on Cr (III) are localized, it might

be meaningful to examine in such a scenario whether Kondo related physics could ex-

ist [125] (more precisely, the situation here is more close to an underscreened Kondo

lattice model [126]). This will be left for future study.
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