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Abstract

The sensitivity of fast-ion diagnostics in magnetic confinement fusion can be
quantified in the form of weight functions. They can be used to relate the
fast-ion distribution function in phase space to a measurement in a diagnostic
measurement bin. Via tomographic inversion, weight functions can be used to
reconstruct the fast-ion distribution function from diagnostic measurements. Due
to the magnetic field, the fast ions must follow fixed trajectories known as orbits.
This work continues to build upon orbit weight functions, which can be utilized to
reconstruct the full gyro-averaged fast-ion distribution in tokamaks. Orbit weight
functions for neutron emission spectroscopy and gamma-ray spectroscopy for
one-step fusion reactions were developed and analyzed in this project. Gained
insights include: a high sensitivity to trapped orbits whose tips are inside the
line-of-sight of the diagnostic, and an increased understanding of the optimal
positioning and orientation of diagnostic sightlines. In addition, this project also
birthed new ways of using fast-ion orbits to analyze diagnostics. These include:
1) The decomposition of diagnostic signals, fast-ion distributions and weight
functions, in terms of their fast-ion orbit-type origin. 2) Interactive analysis of
which fast-ion orbit types pass through certain (R,z) points. 3) The mapping
of poloidal and toroidal transit times for all of orbit space, which could provide
further insight into the interaction between fast ions and e.g. Alfvén eigenmodes.
A code framework was created to enable future use of the new tools developed in
this work. This is envisioned to increase the vital understanding of the behaviour
of fast ions in tokamak fusion plasmas.
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Dansk Resume

Sensitiviteten af hurtig-ion diagnostik i fusionsplasma indeslutet af magnetfelter
kan kvantificeres i form af vægtfunktioner. De kan bruges til at relatere hurtig-
ion fordelingsfunktionen i fasrummet til en måling i et målingsinterval. Ved
hjælp af tomografisk inversion kan vægtfunktioner bruges til at rekonstruere
hurtig-ionfordelingsfunktionen fra målinger. Takket være magnetfeltet følger
hurtige ionere faste baner, som kaldes orbits. Dette projekt fortsætter arbejdet
med at udvikle orbit vægtfunktioner, der kan bruges til at rekonstruere den
fulde gyro-midlet hurtig-ionfordelingen i tokamaks. Orbit vægtfunktioner for
neutronudlednings- og gamma-strålingsspektroskopi for fusionsreaktioner med
kun ét trin er blevet udviklet og analyseret i dette projekt. Eksempler på
indsigter er: en høj sensitivitet for trapped orbits med deres ’banana tips’ indenfor
målingsdiagnostikkens line-of-sight, og en øget forståelse for den optimale
positionering og orientering af målingsdiagnostikkens lines-of-sight. Dette
projekt resulterede også i nye måder at bruge hurtig-ion orbits på for at analysere
målingsdiagnostik. Disse inkluderer: 1) Opsplitning af målingssignaler, hurtig-
ionfordelinger og vægtfunktioner, i deres hurtig-ion orbit-kilder. 2) Værktøj for
interaktiv analyse af hvilke hurtig-ion orbit-typer der rammer gennem hver (R,z)
punkt. 3) Kortlægningen af poloidale og toroidale transittider for hele orbit-
rummet, der kan resultere i yderligere indsigt i interaktionen mellem hurtige ioner
og f.eks. Alfvén eigenmodes. Et kodepakke er blevet skabt for at muliggøre nemt
brug af disse nye værktøjer. Dette vil øge den nødvændige fortståelse for, hvordan
hurtige ioner bevæger sig i tokamakfusionsplasmaer.
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man, alla morgondopp vid Scaniabadet, VR-spelbygge, hundpassning, brädspel
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grannen! Och tack till Jennifer, Merrit och alla på MBA för den grymma energin
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Tack också till Gunnar, August, Christopher, Lucas, Oskar, Pontus, Betti, Hassan,
John, Pablo, och Sebastian! Energin från alla våra möten och vår vänskap är det
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knappt att sätta ord på. Varmt tack för all uppmuntran och förståelse, både
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Preface
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realisation that Mother nature is bigger than all of us, and that her game is the only
game in town.

The universe is a chessboard. We are finally starting to understand what the
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better at that game all the time. Hopefully, my work on fast-ion orbits can serve
as a springboard for further research in the area. There is so much left to do, and
so much yet to discover. Let’s explore the universe together.

Henrik Järleblad, November 30th, 2022
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We do not have to worry about nothing
Because we have got the fire
And we are burning one hell of a something
They are going to see us from outer space

Light it up
Like we are the stars of the human race

When the light started out, they don’t know what they heard
Strike the match, play it loud, giving love to the world
We will be raising our hands, shining up to the sky
Because we have got the fire

Yes, we have got the fire
And we are going to let it burn

We start the fire, and we burn it up
It is over now, we have got the love
There is no sleeping now
We can light it up, so they can put it out

Light it up
Like we are the stars of the human race
Because we have got the fire

Yes, we have got the fire
And we are going to let it burn

”T.S. was able to build this in a cave! ...With a box of scraps!!”
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Chapter 1

Introduction

Energy is the fundamental currency of our universe. As the first law of
thermodynamics states, it cannot be destroyed, nor created, but simply converted
between different forms. Our ancestors might have started to realise this
fundamental principle, as they learned how to convert the chemical energy stored
in wood to thermal energy and light via the process known as fire. As living
beings, we humans have always been dependent on a regular input of energy to
stay alive, not only via the heating that fire provides but first and foremost via the
intake of food and the rays of our sun. It can be estimated that humans require
about 2.4 kWh per person per day to stay alive (see Appendix A and [3, 4]).
However, when fire was invented (or, maybe more accurately, discovered), human
society started its ever-increasing journey upwards to higher and higher levels of
energy dependence.

Today, the average person in Denmark demands roughly 30-40 times as much
energy per day (∼ 90 kWh per person per day [5]) and globally the average energy
demand is expected to increase even further in the future [6]. It is evident that to
meet the levels of energy consumption to come, human society needs to find new
solutions to the problem of satisfying its energy demand, if a decrease in the levels
of greenhouse gas emissions is also to be achieved [6].

One such solution is to replicate the process by which the stars of our universe
convert mass into energy, as described by Einstein’s famous equation E = mc2:
the process of nuclear fusion.

1.1 Fusion energy
Nuclear fusion is the process by which lighter atomic nuclei fuse into heavier
atomic nuclei. Together with a heavier atomic nucleus, there will often also be an
emitted particle (proton, neutron, gamma-ray etc). Nuclear fusion can be distilled

1



CHAPTER 1 1.1. Fusion energy

into the expression
a(b,c)d (1.1)

where ’a’ and ’b’ are the reacting nuclei (by convention, we will let ’b’ denote
the more energetic of the two reactants), ’c’ is the emitted particle and ’d’ is
the product nucleus. There are also more uncommon fusion reactions with three
product particles (’c’,’d1’ and ’d2’) and even three reacting particles (’a1,’a2’,’b’).
However, in practice all fusion reactions suitable for energy production are of
the form (1.1). Two especially important fusion reactions include D(D,n)3He
and D(T,n)4He, where ’D’ stands for the hydrogen isotope deuterium, ’n’ stands
for neutron, ’3He’ is helium-3, ’T’ is the hydrogen isotope tritium and ’4He’ is
helium-4 (also known as an alpha particle, α). The D(D,n)3He has been used
extensively in fusion research and the D(T,n)4He reaction is envisioned to be the
power-generating fusion reaction in the first generation of future fusion power
plants [7]. The D(T,n)4He reaction has been illustrated in Figure 1.1.

In every fusion reaction, a small amount of mass is converted into a large amount
of energy. For example, this can be illustrated for the D(T,n)4He reaction as [8]

D+T→4 He (3.5MeV)+n (14.1MeV). (1.2)

The sum of the masses of the fusion products is slightly smaller than the sum of
the masses of the fusion reactants. This small mass difference is converted into
a large amount of energy via E = mc2, and is distributed among the two fusion
products. 1 MeV = 106 eV is equivalent to 106×1.6×10−19 = 1.6×10−13 Joule.
That might not sound like much, but when scaled up to e.g. 60 kg of DT-fuel
(instead of just a single DT-reaction as in equation 1.2) one can start to appreciate
the enormous energy prospect of fusion energy. By noting that the total energy
release from a DT-reaction is 3.5+14.1 = 17.6 MeV, we can write

N×E f us =
60 kg

(mD +mT)
×17.6 MeV, (1.3)

where N is the number of fusion reactions each releasing E f us amount of energy.
Using the mass of a deuterium ion mD ≈ 3.34× 10−27 kg and a tritium ion
mT ≈ 5.01× 10−27 kg, we can get an estimation for the amount of energy
that can be released by fusing the atomic nuclei in a 50/50 mixture of 60 kg
deuterium/tritium:

60 kg
(3.34×10−27 +5.01×10−27) kg

×17.6 MeV≈ 2.0×1016 Joule. (1.4)

2



CHAPTER 1 1.1. Fusion energy

He-4 (3.52 MeV)

n (14.06 MeV)D

T

Figure 1.1: A graphical illustration of the D(T,n)4He fusion reaction. The
output energy E f us = 17.6 MeV is shared among the neutron n and the alpha
particle (He-4). E f us,n = 14.1 MeV = E f us× mHe-4

mHe-4+mm
and E f us,He-4 = 3.5 MeV

= E f us× mn
mHe-4+mm

. There is a small mass difference between the products and the
reactants. This is converted to energy via E = mc2, resulting in the output energy.
The energies can be obtained from solving the energy and momentum equations
together.

3



CHAPTER 1 1.2. Plasma confinement

This is equivalent to 5.6 TWh. How much coal would we need to burn to be able
to release the same amount of energy? The energy density of (burning) coal is
roughly 24 MJ/kg (or 6.7 kWh/kg) [9, 10]. Basic arithmetic thus yields

5.6TWh
6.7kWh/kg

=
5.6×109

6.7
kg≈ 8.0×108 kg. (1.5)

In short, without taking power plant efficiences into acount, the energy released
from burning 800 000 000 kg of coal is equivalent to the extractable fusion energy
in just 60 kg of a 50/50 mixture of deuterium-tritium fuel.

It may then come as no surprise that fusion energy is what powers the sun and
all the stars in our universe. What can we do to replicate this process here on
Earth? As in the core of the sun, we need to heat matter to extremely high
temperatures, namely millions of degrees Celcius. In fact, due to the impossible
task of replicating the immense scale of the sun, we need to utilize even higher
temperatures in the tens and hundreds of millions of degrees. In such conditions,
the electrons and atomic nuclei no longer constitute atoms, but rather float around
in a ’soup’ of mixed positive and negative charges. This so called fourth state of
matter is known as a plasma. How can we confine a plasma here on Earth and
utilize it for energy production? Since the particles have non-zero charge, we can
use magnetic fields to confine the plasma in a vacuum vessel, preventing direct
contact with material walls.

1.2 Plasma confinement
Since the middle of the 20th century, several magnetic confinement configurations
for fusion plasma have been explored. These include tokamaks [7], stellarators
[11], reversed field pinches [12] and many other configurations [13–15]. First and
foremost, it is important to mention that the confinement of a fusion plasma using
magnetic fields is but one of several potential ways to achieve future commerical
fusion energy production. Other potential ways include inertial confinement
fusion [16], magneto-inertial fusion [17] and, possibly even, sonofusion [18].
However, this work and the methods developed herein are relevant first and
foremost for tokamaks.

A tokamak is a magnetic confinement configuration for high-temperature plasmas
[7]. It was originally developed in Russia in the 1950s and is short for
òîðîèäàëüíàÿ êàìåðà ñ ìàãíèòíûìè êàòóøêàìè (English translation:
toroidal chamber with magnetic coils). As Figure 1.2 illustrates, the plasma
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confinement is a result of mainly two magnetic field components: the toroidal
magnetic field Bφ and the poloidal magnetic field Bθ . The ratio of the two is
usually Bφ/Bθ ≈ 10. The tokamak configuration ensures that the charged particles
follow the magnetic field lines, but that charged particle drifts are cancelled due
to the total magnetic field being helical. An example of a tokamak is the Joint
European Torus (JET) [19] in Culham, Oxfordshire, United Kingdom. This
project has been heavily focused on analysis of JET.

Before thermonuclear reactions can take place, the plasma needs to be heated to
many million degrees Celcius. One of the most common ways to achieve this is to
first drive a current through the plasma, which results in an increase in temperature
via ohmic heating [20]. However, this becomes ineffective as the temperature
increases [21] and heating schemes such as neutral beam injection (NBI) and ion-
cyclotron resonance heating (ICRH) often follows [7,22] to heat the plasma up to
the required temperatures. NBI constitutes neutral particles that are shot into the
plasma at high energies, thus transferring their energy to the plasma [23]. ICRH
uses antennas to propagate an electromagnetic wave into the plasma and achieve
heating via particle resonance [24].

Depending on the tokamak, these heating schemes result in highly energetic
particles with energies up into the MeV-range (∼ 10 billion degrees Celcius),
also known as fast ions [25]. The MeV-range is also the energy range in which
fusion products are usually born [8]. These fast ions can interact with the plasma
in various ways, resulting in the growth of instabilities and the loss of fast ions
from the plasma, possibly damaging vessel walls and components [26, 27]. It is
therefore vital to understand the behaviour of fast ions and their interaction with
the plasma. One way of achieving this is by examining the fast-ion distribution
function.

1.3 Fast-ion distribution function
The fast-ion (FI) distribution is essentially a function of three spatial coordinates
x, three velocity coordinates v and time t. This means that at every point in three-
dimensional space, we have a certain number of fast ions moving with a certain
velocity at a certain point in time. In a tokamak, we have toroidal symmetry which
means that we reduce the number of spatial coordinates from three to two. As we
shall see in chapter 2, we can also reduce the number of velocity coordinates down
to two if the relative variation of the magnetic field is small and slow enough. For
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Figure 1.2: A graphical illustration of a tokamak magnetic confinement device.
The toroidal and poloidal magnetic fields have been illustrated with a yellow
and red arrows, respectively. The components of the central solenoid have been
depicted in brown. The toroidal and vertical field coils are shown in blue and gray,
respectively. The fusion plasma can be seen in indigo.

any point in time t, we can then describe the full distribution of fast ions using
two spatial coordinates and two velocity coordinates. As for what coordinates to
use, there are several choices available [28–31].

One common choice is to use the energy E of the fast ion, the pitch p = v||/v
(where v|| is the speed parallel to the magnetic field and v =

√
v ·v), the major

radius position R and the vertical position z of the fast ion. An example of a FI
distribution in (E, p,R,z) coordinates has been visualized in Figure 1.3.

We can observe how the fast-ion distribution is well-peaked close to the center
of the plasma, commonly referred to as the magnetic axis. One can then imagine
that if we have a plasma diagnostic with a sightline that crosses the magnetic axis,
it will be in a good position to detect signals originating from fast ions, such as
neutrons or gamma-rays. But how can we quantify how good a diagnostic is at
measuring fast ions in general, and fast ions with specific E-, p-, R- and z-values
in particular? And, more importantly, how can we determine or estimate the fast-
ion distribution given a (possibly noisy) signal of diagnostic measurements? To
answer both questions, we introduce weight functions.
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Figure 1.3: An example of a FI distribution in (E, p,R,z) coordinates. In a), the FI
distribution has been integrated over all (R,z) points to illustrate its dependence
on (E, p). In b), the opposite has been performed. The separatrix (turquoise)
marks the boundary between closed and open magnetic field lines. The JET
wall is illustrated in gray. Fast-ion distribution data is obtained from the K71
TRANSP [32] run for JET shot No. 99965 (at 48.4 seconds), computed with the
NUBEAM [33] module.

1.4 Weight functions and fast-ion tomography
As stated in H. Järleblad et al, Nucl. Fusion, 2022 (Paper II), and developed
by M. Salewski [34–37], L. Stagner [38, 39], B. Heidbrink [40], B. Geiger [41],
B. Madsen [30], A. Jacobsen [42, 43], J. Eriksson [44], M. Nocente [45] and B.
Simmendefeldt [46], a diagnostic signal s can be related to the fast-ion distribution
f via the weight function w as

s(Ed,1,Ed,2) =
∫

w(Ed,1,Ed,2,x,v) f (x,v)dxdv, (1.6)

where Ed,1 and Ed,2 are the lower and upper boundaries of a diagnosic energy
bin and (x,v) are general position x and velocity v coordinates. Equation (1.6)
assumes a linear relationship between the signal s and the fast-ion distribution f .
Although non-linear effects are neglected, equation (1.6) is a valid approximation
in many situations, for example in so called beam-target situations where the
signal originates from highly energetic NBI-ions being shot into the bulk plasma.

From equation (1.6), we can see that if w = 0 for some (x,v) then no signal will
originate from (x,v) for that particular diagnostic energy bin (Ed,1,Ed,2). At the
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same time, if w� wref, where wref is some reference value, then the diagnostic
is relatively sensitive towards signal originating from that particular (x,v) phase-
space point (if we also have that f (x,v)� fref where fref is some reference value,
we can expect a lot of diagnostic signal to originate from (x,v)). In this way,
the sensitivity for all of phase-space can be mapped, forming a weight function
w(x,v) for a particular diagnostic energy bin (Ed,1,Ed,2).

From equation 1.6, we can see that, if we know s and w, the problem of computing
f constitutes an inverse problem. This type of problem is solved in many different
areas of science using tomographic inversion. It essentially involves discretizing
equation 1.6 into

s =
N

∑
i=1

M

∑
j=1

w(xi,v j) f (xi,v j)∆x∆v, (1.7)

where Ed,1,Ed,2 has been omitted for brevity and, without loss of generality, we
have assumed an equidistant phase-space grid. For fast ions, the full charged-
particle motion in magnetic confinement devices is described using three position
coordinates and three velocity coordinates (ignoring time). Does that mean that,
given a measurement signal s, we have to use tomography to reconstruct the fast-
ion distribution function f in six-dimensional phase space? No, fortunately there
are ways to reduce the dimensionality.

Velocity-space tomography [29, 34, 36, 47–52] uses two-dimensional weight
functions to reconstruct the fast-ion distribution in just energy E = mv2/2 and
pitch p = v||/v (where v|| is the ion speed parallel to the magnetic field B) or
equivalently in v|| and v⊥ (with v⊥ being the ion speed perpendicular to B). This
is possible by restricting the tomographic reconstruction to a single point x in
position space and assuming we can approximate the ion motion using only two
velocity coordinates (since the variation of B is usually negligible on the scale
of the gyro-motion, as we shall discuss in the next chapter). Velocity-space
weight functions have been developed to be able to reconstruct f (E, p) (equiv.
f (v||,v⊥)) using measurements from several fast-ion diagnostics, including fast-
ion D-α [35,53], collective Thomson scattering [36,47], gamma-ray spectroscopy
[36, 37], fast-ion loss detectors [54], neutral particle analyzers [55], neutron
emission spectroscopy [42,43] and 1D weight functions for ion cyclotron emission
diagnostics [46]. But what if we would like to use the very same measurements
to reconstruct the fast-distribution for all points x in position space? Apart from
needing more data to keep the number of unknowns and the number of equations
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roughly the same, we also need to relate the points in position space to each other.
In a tokamak, one way to do this is by using the physics embedded in the periodic
motion of the fast ions, known as orbits.

1.5 This work
In this PhD project, we have developed three-dimensional weight functions for
neutron emission spectroscopy (NES) and (one-step) gamma-ray spectroscopy
(GRS) using the fast-ion orbits as basis, which allows us to relate the points in
position space to each other. These so-called orbit weight functions have then
been used to reconstruct the fast-ion distribution from measurements in three-
dimensional orbit space. This 3D distribution can then be transformed into
(E, p,R,z) phase space, to investigate the fast-ion distribution in energy and pitch
for all major radius and vertical positions R and z, respectively. The method
of using the fast-ion orbits as a basis for weight functions and tomography was
initially developed by L. Stagner [38, 39, 56].

This work builds upon that approach. Furthermore, this work has also developed
novel methods of visualizing quantities in 3D orbit space, by identifying the
topological regions for different orbit types and superimposing their topological
boundaries onto 2D slices where the fast-ion energy has been held constant. In
addition, this work has also identified new areas of application for orbit weight
functions, such as the possibility of splitting a synthetic diagnostic signal into
its orbit-type constituents. Finally, an extensive code library for computing,
visualizing and working with orbit weight functions was developed. This toolkit
will fascilitate continued analysis of the fast-ion distribution in terms of orbits
and pave the way for an improved understanding of how fast ions interact with
tokamak fusion plasmas. This is thought to be vital for the success of next
generation fusion experiments such as ITER [57], as well as for future fusion
power plants.
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Chapter 2

Fast-ion orbits

This chapter will give an overview of the periodic large-scale motion of fast ions in
tokamaks, known as orbits. We will examine how the fundamental Lorentz force
gives rise to particle drifts as the ion moves around the tokamak and how this
six-dimensional motion can be reduced under relevant assumptions. We will then
discuss how this reduced motion can be categorized and how the categories give
rise to topological regions in our reduced coordinate-motion phase space, known
as orbit space. Some specific discussion about how orbits are computed in this
PhD project follows and then, finally, the chapter finishes with some discussion
on how to transform orbit-space quantities into energy and pitch for all major
radius and vertical positions.

2.1 Charged particle motion in tokamaks
The charged particle motion is always governed by the Lorentz force law.
Assuming non-relativistic speeds, we have that

F = q(E+v×B) (2.1)

where F is the force acting upon the particle, q is the particle charge, E is the
electric field, v is the particle velocity and B is the magnetic field. Without going
into detail as to why, the Lorentz force law results in particle motion where the
particle gyrates around the magnetic field lines as depicted in Figure 2.1.

In a tokamak, where we have magnetic field lines that twist around a torus, the
particle tries to follow the field lines while maintaining the gyro-motion around
them, as has been depicted in Figure 2.2a. Even though the full 3D trajectory
might look complicated, its projection onto a poloidal cross-section (i.e a ’slice’)
of the tokamak is much simpler, as Figure 2.2b shows. At low energies, the
particles will approximately keep to the contours of constant poloidal magnetic
flux, known as magnetic flux surfaces since they map out surfaces in the full 3D
space.
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Figure 2.1: An example of a charged particle (red) that gyrates around a magnetic
field line (purple) due to the equations of motion dictated by the Lorentz force,
eq. (2.1).

Figure 2.2: An example of a 3.5 MeV α-particle (He4) trajectory in a future
potential ITER [57] magnetic equilibrium. The full 3D trajectory a) is quite
complicated while the 2D projection b) of the same trajectory onto a poloidal
cross-section (’slice’) of the tokamak is much simpler. The magnetic flux surfaces
have been included in b) as dotted lines for reference, and the magnetic axis
(plasma center) as a purple cross.
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For high-energy particles, such as fast ions, the motion can start to deviate
substantially from the magnetic flux surfaces lines however. This deviation is
due to particle drift. In general, the particle drift can be computed as [58, 59]

vdrift =
1
q

F×B
B2 (2.2)

where vdrift is the particle drift velocity, F is a specific force (e.g. gravitational
force) and B = |B|. The specific force F can be whatever force is relevant for
the situation. In a tokamak, there are mainly two specific forces of interest: the
centrifugal force and the force on a charged particle in a B-field with a spatial
gradient. The two resulting particle drifts are

vR =
mv2
||

qB2
Rc×B

R2
c

(2.3)

and

v∇B =−1
2

mv2
⊥

qB
∇B×B

B2 (2.4)

where m is the particle mass, q is the charge, v|| is the particle speed parallel
to the magnetic field, Rc is the major radius vector to the particle position,
Rc = |Rc| and v⊥ is the particle speed perpendicular to the magnetic field. These
particle drifts will result in charged particle motion that causes the particles to
drift perpendicular to the magnetic field, as Figure 2.3a shows. Depending on
the particle energy, starting position (R,z) and pitch, the trajectories can differ
completely, as Figure 2.3b shows.

The trajectories can differ substantially because of (2.3) and (2.4). When the
energy, position and angle w.r.t. the magnetic field (pitch) changes, the resulting
drifts perpendicular to the magnetic field lines change as well. In turn, the drifts
add up and result in different particle trajectories.

How do we categorize all of these different trajectories? And how do we label
them? This can be accomplished in several different ways, via the utilization of
so-called orbit coordinates.

2.2 Orbit coordinates
The full motion of charged particles in a magnetic field can be described using a
six-dimensional phase-space with three position coordinates x and three velocity
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Figure 2.3: An illustration of 3.5 MeV α-particle trajectories deviating from
magnetic flux surfaces. In a), the starting position (R,z) and pitch differ slightly
from those in b). This results in a substantially different trajectory. The magnetic
flux surfaces are depicted as dotted lines for reference, and the magnetic axis
(plasma center) as a purple cross. JET shot No. 96100 at 13 s.
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coordinates v. As discussed in Paper I (H. Järleblad et al, Rev. Sci. Instrum.,
2021, [1]) and Paper II (H. Järleblad et al, Nucl. Fusion, 2022, [2]), if we
simply want to identify and label the motion, the description can be dimensionally
reduced under certain assumptions. If we assume one redundant spatial dimension
(such as in the toroidal symmetry of a tokamak), we can reduce the number of
spatial coordinates by one. If we assume the variation of the magnetic field to
be negligible on the scale of the gyro-motion of the ion (or electron) (so that the
perpendicular motion is approximately a circle), then we can reduce the number
of velocity coordinates by one. Finally, if we assume the ion motion to have
been unperturbed as the ion revisits the same (R,z) coordinate, we can further
reduce the number of spatial dimensions by one. Together, these assumptions
allow us to uniquely label all charged particle motion in a tokamak using just
three coordinates (one spatial, two velocity).

The two velocity and one spatial coordinates can be combined in many different
ways to form sets of coordinates suitable for various needs and problems. There
are thus several different triplets of coordinates to choose from. For example, the
most popular set of so-called orbit coordinates are the constants-of-motion (COM)

(E,µ,Pφ ;σ) (2.5)

where E is the energy, µ = mv2
⊥/2B is the magnetic moment and Pφ = qψ +

mv||RBφ/B is the toroidal canonical angular momentum with q being the particle
charge (Coloumb) and ψ being the magnetic flux function (meter2xTesla)(also,
note that v|| is signed v|| ∝ v ·B). σ is a binary coordinate to keep track of certain
orbits that unfortunately have the same (E,µ,Pφ ) triplet (this differentiation could
also be achieved via the usage of superficial negative energies for example). The
COM space is partially bounded (E > 0 keV, 0 < µ < E/B) and mixes position-
and velocity-space (Pφ ∝ v||R). However, it does have the advantage of being the
only ’true’ orbit space in the sense that E, µ and Pφ all correspond to a symmetry
of the system of equations used to compute charged particle motion (due to
a differentiable symmetry of the action, as can be understood from Noether’s
theorem [60]).

But what if we would like to work with a more clearly bounded set of coordinates,
that do not mix position and velocity-space? One intuitive set of coordinates we
could then choose to work with, would be the so-called orbit-space coordinates

15



CHAPTER 2 2.3. Orbit space

(E, pm,Rm) (2.6)

as promoted by Rome [61], Järleblad [1], Stagner [38] and others [62]. E is
again the energy of the fast-ion, and pm is the pitch (v||/v) at the maximum major
radius position Rm of the orbit. For a given fast-ion energy, pm is bounded by
[−1.0,1.0] and Rm is bounded by [RHFS,RLFS] where RHFS and RLFS are the major
radius position of the high-field and low-field side wall, respectively. However,
most populatable orbits with Rm < Raxis (where Raxis is the major radius position
of the magnetic axis) satisfy Rm ≈ Raxis. Therefore, in practice, [Raxis− δR,RLFS]

are used as the Rm boundaries for (E, pm,Rm) orbit space. δR = 1/5(Raxis−RHFS)

is usually enough to include all possible populatable orbits. Examples of every
possible orbit type in a regular tokamak magnetic equilibrium can be found in
Figure 2.4.

Together, the E, pm,Rm coordinates span a three-dimensional space, henceforth
referred to as orbit space, in which every point corresponds to an orbit of a specific
tokamak magnetic equilibrium.

2.3 Orbit space
As Figure 2.5 shows, we can identify topological regions in orbit space by
looking at slices of constant fast-ion energy. For a given slice, there are six
valid orbit regions: co-passing, trapped, counter-passing, stagnation, potato and
counter-stagnation. The valid orbits are orbits that can be populated, given the
magnetic equilibrium. Conversily, the invalid (E, pm,Rm) coordinates correspond
to unrealizable orbits. The lost regions correspond to orbits that intersect the
tokamak wall in some way. The six valid orbit types are distinguished as follows:

• Co-passing: A particle trajectory that encircles the magnetic axis and has
p = v‖/v > 0 for all points along the orbit.

• Counter-passing: A particle trajectory that encircles the magnetic axis and
has p < 0 for all points along the orbit.

• Trapped: A particle trajectory that does not encircle the magnetic axis and
changes sign of p along the orbit.

• Potato: A particle that encircles the magnetic axis and changes sign of p
along the orbit.

• Stagnation: A particle trajectory that does not encircle the magnetic axis
and has p = v‖/v > 0 for all points along the orbit.
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Figure 2.4: An example of all six valid fast-ion orbit types in a regular tokamak
magnetic equilibrium. All orbits correspond to 3.5 MeV α-particle trajectories,
but the initial pitch (v‖/v) and (R,z) starting position have been varied, which
results in different orbits. The magnetic flux surfaces are depicted as dotted lines
for reference, and the magnetic axis (plasma center) as a black cross. ITER [57]
planned magnetic test equilibrium with B0 = 5 T. Figure is original and not
reproduced from [1] and [2]; this type of figure has never been done for ITER
before, and colors are kept consistent solely for pedagogical purposes.
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• Counter-stagnation: A particle trajectory that does not encircle the
magnetic axis and has p = v‖/v < 0 for all points along the orbit.

In terms of lost orbits, there are usually two separate regions at low fast-ion
energies. Both are located at Rm values close to the LFS tokamak wall but one
is at pm values close to 1.0 and the other at pm values close to −1.0. The one
located at pm values close to 1.0 corresponds to ions not having enough energy
to drift past the divertor region or avoid hitting the HFS wall. This lost region
thus shrinks as we examine higher and higher fast-ion energies. The lost region
in the pm < 0.0 half-plane corresponds to counter-passing orbits that drift into
the divertor region or hit the LFS wall, due to having too much energy. This lost
region thus grows as we examine higher and higher fast-ion energies.

We can see in Figure 2.5a how we have almost exclusively co-passing, trapped and
counter-passing orbits at low energies. As we move to higher and higher energies
(Figure 2.5b and c), the stagnation, potato and counter-stagnation regions grow
to significant size. At the same time, the trapped, co-passing and counter-passing
regions shrink. Thus, at progressively higher energies an increasing fraction of the
populatable orbits will be stagnation, potato and counter-stagnation orbits. This is
relevant for fusion-born ions as well as ions accelerated to great energies via for
example ion-cyclotron resonance heating (ICRF).

2.4 Computing orbits in this work
To compute guiding-center orbits in this work, the equations discussed in [63]
are used. In short, they are derived as follows. Define the order parameter
ε ≡ ρ0/L0 � 1 where ρ0 is the typical gyroradius and L0 is the length scale of
background fields. The particle phase-space Lagrangian one-form can then be
written in terms of extended (position, momentum; time, energy) phase-space
coordinates z = (x,p; t,Wp) as

Γp =

[
1
ε

q
c

A(x, t1)+p
]
·dx−Wpdt−Hpdσ (2.7)

where subscript ’p’ denotes particle species and Hp = Hp−Wp is the extended
particle Hamiltonian, with Hp = γmc2+qΦ(x, t1) the Hamiltonian in regular phase
space. γ is the relativistic factor γ =

√
1+ |p/mc|2, m is the particle mass, c is the

speed of light, q is the particle charge, Φ(x, t1) is the electric potential, A(x, t1) is
the magnetic vector potential, t1 = εt and σ is an orbit parameter.
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Figure 2.5: An example of orbit-space topology, split into three slices of constant
fast-ion energy. The six regions corresponding to the different orbit types have
been given individual colors for easy identification. The example is computed for
α-particles in an ITER [57] planned magnetic test equilibrium with B0 = 5 T. The
major radius position of the ITER low-field side wall is depicted as a black line.
Figure is original and not reproduced from [1] and [2]; this type of figure has never
been done for ITER before, and colors are kept consistent solely for pedagogical
purposes.

19



CHAPTER 2 2.4. Computing orbits in this work

By performing a Lie transform of (2.7), we obtain the guiding-center Lagrangian
in extended guiding-center phase-space coordinates Z = (X, p||,µ,θ ; t,Wg) as

Γg =

[
1
ε

q
c

A(X, t1)+ p||B̂(X, t1)+O(ε)

]
·dX+ ε

mc
q

µdθ −Wgdt−Hpdσ (2.8)

where subscript ’g’ denotes guiding-center variables and p|| is the component of
the relativistic momentum parallel to B. B̂ = B/|B| with the magnetic field B,
O(ε) denotes terms of order ε , µ is the magnetic moment and dθ is the differential
of the gyro angle.

For a Lagrangian Lg which is related to Γg by Γg ≡Lgdσ , written in extended
guiding-center phase-space coordinates Zν , the Euler-Lagrange equations are

d
dσ

(
∂Lg

∂ Żν

)
− ∂Lg

∂Zν
= 0 (2.9)

where Żν = dZ/dσ . Leaving out details from [63], we can apply the Euler-
Lagrange equations (2.9) to the extended guiding-center phase-space coordinates
(X, p||,µ,θ ; t,Wg) to obtain the equations of motion for the system as

Ẋ =
p||
γm

B∗

B∗||
+ εE∗× cB̂

B∗||
(2.10)

ṗ|| = qE∗ · B
∗

B∗||
(2.11)

where the effective fields (E∗,B∗) are defined as

B∗ ≡ B+ ε
cp||
q

∇× B̂ (2.12)

and

E∗ ≡ E− ε

q

(
p||

∂ B̂
∂ t1

+mc2
∇γ

)
(2.13)

where
B∗|| = B∗ · B̂ (2.14)
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and ∇γ = (µ/γmc2)∇B. Note also that the derived equations of motion are
relativistic, which enables the methods developed in this PhD project to be used
for particles with velocities close to the speed of light without loss of fidelity,
e.g. for runaway electrons. Equations (2.10) and (2.11) are implemented in
the guiding-center codes developed by L. Stagner [56], which have been built
upon and utilized in this work. The codes are written in the scientific-computing
programming language of Julia [64], which allows ultra-fast integration times
of guiding-center orbits. For example, all types of guiding-center orbits in JET
can be integrated in ∼ 1 millisecond using Julia’s adaptive integration libraries.
Practically all computations in this project have been performed in the Julia
programming language.

2.5 Transforming to (E, p,R,z)
The (E, pm,Rm) orbit space is a compact three-dimensional space in which every
point corresponds to a valid guiding-center fast-ion orbit. The quantities in this
space, such as fast-ion distributions, can be transformed to four-dimensional
(E, p,R,z) so-called particle space. This allows an examination of the energy-
pitch dependence of the fast-ion distribution for every (R,z) point. However, to be
able to transform from orbit space to particle space, a Jacobian (the determinant of
a Jacobi matrix) is required to be able to relate the dEdpmdRm three-dimensional
volume elements to their dEdpdRdz four-dimensional counterparts. A guiding-
center orbit corresponds to a line in (E, p,R,z) space, and we need an additional
coordinate to identify where the particle is at a given point in time, since the
(E, pm,Rm) coordinate does not contain this information. In addition, since a
Jacobi matrix requires equal number of dimensions between spaces, for the sake
of transformation we introduce a redundant fractional orbit transit time coordinate
τm = t/τp where τm ∈ [0,1] and τp is the orbit poloidal transit time. The Jacobi
matrix we seek is therefore

Jt =




∂E
∂E

∂ p
∂E

∂R
∂E

∂ z
∂E

∂E
∂ pm

∂ p
∂ pm

∂R
∂ pm

∂ z
∂ pm

∂E
∂Rm

∂ p
∂Rm

∂R
∂Rm

∂ z
∂Rm

∂E
∂τp

∂ p
∂τp

∂R
∂τp

∂ z
∂τp




(2.15)

where the subscript t denotes that it is the Jacobi matrix for time t. Now,
let’s say we have discretized a fast-ion orbit into N points. Compute
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|detJ1|, |detJ2|, ..., |detJN |. We will thus get a vector of length N, relating
the volume of the orbit space voxel at (E, pm,Rm) to the volume of the particle
space hyper-voxels at (E, p1,R1,z1), (E, p2,R2,z2), ...,(E, pN ,RN ,zN). Suitable
choices of how to discretize orbit space and particle space must be made to ensure
a good transform. But how do we compute the Jacobi matrix Jt? As we shall see
in the following sections, this can be achieved by using dual numbers.

2.5.1 Dual numbers
Duals numbers (a+bε) are just like complex numbers (a+bi) but instead of the
imaginary part bi we have the the dual part bε . Like the imaginary number i has
the property i ∗ i = −1, the dual number ε has the property ε ∗ ε = 0. This has
several interesting results for functions. For example (proof can be derived using
Taylor expansion) the functional value of a dual number becomes

f (a+bε) = f (a)+b f ′(a)ε (2.16)

where f ′(a) is the derivative of the function f (x) at x = a. It is important to note
that f (x) can be any function, even a function that is a whole computer program.
By setting b = 1, one can obtain the derivative of a program at x = a automatically
by feeding the program the dual number

a+1ε (2.17)

and simply taking the dual part of the program output, since

f (a+1ε) = f (a)+ f ′(a)ε. (2.18)

This way of obtaining functional/program derivatives is called automatic
differentiation and is a whole field of computational techniques in itself. For the
interested reader, please see e.g. [65].

2.5.2 Computing J
Assume that we have computed our guiding-center orbit and resolved the
trajectory in four-dimensional (E, p,R,z)-space using N points. Our goal is to
acquire a vector of length N where each element is the determinant of the Jacobi
matrix (the Jacobian) from the (Ei, pi,Ri,zi) quadruplet at time ti to the (E, pm,Rm)

triplet of the orbit. i = 1,2, ...,N.
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To compute Jacobians and the gradients of multi-variate functions, one simply
uses vectors for the dual part instead of a scalar. The vectors should be thought of
as orthogonal ε components. By making the vectors orthogonal, and associating
one vector with a particular variable, one isolates the derivatives from that
particular variable. First, we write

xi =




Ei

pi

Ri

zi

dti




(2.19)

where dti is the incremental time between xi and xi+1. Let’s start by examining
how to compute the Jacobian for (E1, p1,R1,z1). That is, the first of our N orbit
points. As we shall see, we will need an initial starting vector x0, defined as

x0 =




E1

p1

R1

z1

10−30



=




E
pm

Rm

z1

10−30




(2.20)

where the reason for the 10−30 element will become clear in a moment. The
energy E is constant, so we can ignore the subscript i for E. The first point
i = 1 on the orbit is assumed to correspond to the (E, pm,Rm)-triplet with
added z-coordinate. Now, convert x0 to its dual counterpart x0,ε by adding dual
components as

x0,ε =




E + εE,0

pm + εpm,0

Rm + εRm,0

z1 + εz,0

10−30 + ετp,0




(2.21)

where εE,0, εpm,0, εRm,0, ετp,0 are
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


1.0
0.0
0.0
0.0


ε = εE,0




0.0
1.0
0.0
0.0


ε = εpm,0




0.0
0.0
1.0
0.0


ε = εRm,0




0.0
0.0
0.0
1.0


ε = ετp,0

(2.22)

and with εz,0 as




0.0
0.0
0.0
0.0


ε = εz,0. (2.23)

The subscripts ’0’ denote that it is a special case before the first of the N points.
The dual vector components of εz,0 are identically zero because z is not one of
the derivatives of interest for our Jacobian (2.15). Now, let f be the function that
takes one (E, p,R,z)-point along the orbit and computes the next one. That is,
f (xi) = xi+1. Analogous to [65], we can thus write

f (x0,ε) = f (x0)+
∂ f (x0)

∂E
εE,0 +

∂ f (x0)

∂ pm
εpm,0 +

∂ f (x0)

∂Rm
εRm,0 +

∂ f (x0)

∂τp
ετp,0

(2.24)

where we have omitted the εz,0 part because all of its components are identically
zero. The reason why we get derivatives taken with respect to E, pm and Rm is
because we have arranged so that the first orbit point i = 1 corresponds to the
quantities of interest, namely E1 = E, p1 = pm and R1 = Rm. We get a derivative
taken with respect to τp because we used the fourth orthogonal (non-zero) ε-vector
for the time step dt1.

For the sake of example, let’s examine how we acquire the derivatives in the last
column of the Jacobi matrix 2.15 for i = 1. Let [ f ]z denote the subprocess of
computing the next z-coordinate along our orbit, given one (E, p,R,z)-point. That
is, [ f (xi)]z = zi+1. We can then write

1Stricly speaking, we should write dτp instead of dt because it’s a small fraction of the poloidal
transit time.
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[ f (x0,ε)]z = [ f (x0)]z +

[
∂ f (x0)

∂E
εE,0

]

z
+

[
∂ f (x0)

∂ pm
εpm,0

]

z
+

[
∂ f (x0)

∂Rm
εRm,0

]

z
+

[
∂ f (x0)

∂τp
ετp,0

]

z
(2.25)

≈ z1 +
∂ z1

∂E
εE,0 +

∂ z1

∂ pm
εpm,0 +

∂ z1

∂Rm
εRm,0 +

∂ z1

∂τp
ετp,0. (2.26)

The subprocesses for E, p and R are analogous. Now, since x0 is a special case
and contains (E1, p1,R1,z1), equation 2.26 only works for x0 because dt = 10−30

(hence the ≈ symbol in the second row of (2.26)). Using the method in (2.26),
we can acquire the Jacobi matrix J1 for the first point (E, p1,R1,z1) of our orbit
by examining all the different subprocesses, extracting the dual parts and
putting together the elements in the correct structure. We write compactly

f (x0,ε)⇒J1⇒ |detJ1| (2.27)

There is yet one obstacle to overcome however. Or rather N− 1 obstacles. As
stated in the beginning of this section Our goal is to acquire a vector of length N
where each element is the determinant of the Jacobi matrix from the (Ei, pi,Ri,zi)

quadruplet at time ti to the (E, pm,Rm) triplet of the orbit. i = 1,2, ...,N. So far,
we have only acquired the very first element. How do we acquire the Jacobian for
the second point on our orbit? And the third? And so on.

To solve all the obstacles at the same time, we can use the multi-variate chain rule.
It states that

J f◦g(x) = J f (g(x))Jg(x). (2.28)

Namely, the Jacobi matrix for a composite multi-variable function is the product
of the Jacobi matrix of the outer function and the Jacobi matrix of the inner
function. We can utilise this in our quest for the orbit Jacobians. As an example,
for the second point on our orbit, we get

J2 = J ( f (x1))J1 (2.29)
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where J is the Jacobi matrix obtained by repeating the same process as we did
for our first orbit point, but using an actual time step instead of 10−30 for dt.
And J1 is the Jacobi matrix we have already computed. In terms of concretely
working with dual numbers, we achieve (2.29) by setting

∂ f (xi−1,ε)

∂Ei−1
ε = εE,i

∂ f (xi−1,ε)

∂ pm,i−1
ε = εpm,i

∂ f (xi−1,ε)

∂Rm,i−1
ε = εRm,i

∂ f (xi−1,ε)

∂τp,i−1
ε = ετp,i

(2.30)

and
∂ f (xi−1,ε)

∂ zi−1
ε = εz,i (2.31)

with the special case of εE,0,εpm,0,εRm,0,ετp,0 and εz,0 having been addressed
above. In short, we compute the Jacobians for all N orbit points as summarized
below.

f (xi−1,ε)⇒Jt ⇒ |detJt | (2.32)

with f being the process of taking one (E, p,R,z) point and computing the next
one along the orbit, given a time-step.

2.5.3 Transforming using orbit covariance
Using the determinants of the Jacobi matrices for our N orbit points from
section 2.5.2, we can now transform quantities such as fast-ion distributions
from (E, pm,Rm)-space to (E, p,R,z)-space. One way of achieving this, is
by first computing the covariance between fast-ion orbits of interest. As was
first formulated by L. Stagner [39], the orbit covariance K between an orbit
with coordinate oi = (Ei, pm,i,Rm,i) and another orbit with coordinate o j =

(E j, pm, j,Rm, j) can be written as

K(oi,o j) =
∫ 1

0

∫ 1

0
C(xi(oi,τi),x j(o j,τ j))J (oi,τi)J (o j,τ j)dτidτ j (2.33)

where τi,τ j ∈ [0,1) are the normalized poloidal transit times for the orbits, and
xi,x j are the (E, p,R,z)-coordinates of oi,o j at τi,τ j, respectively. C is the inner
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covariance function that reflects the smoothing effect of collisions and can be
expressed using the standard Gaussian process squared exponential covariance
function

C(xi,x j) = exp
(
−1

2
(xi−x j)

T
Σ
−1
σ (xi−x j)

)
(2.34)

where Σσ is a diagonal matrix containing correlation lengths for each dimension.
Now, let K denote the N ×M covariance matrix where every element Ki, j is a
case of 2.33, with i = 1, ...,N and j = 1, ...,M. Without loss of generality, let
our (E, pm,Rm)-space be spanned by a grid containing M number of valid orbits.
Then, for every (R,z)-point of interest, let our (E, p)-space be spanned by a
grid containing a total of N points. We can then write the transformation from
(E, pm,Rm) to (E, p,R,z) as

f (E, p) = (1/|detJ (oi,0)|)◦KΣ
−1
f f f (E, pm,Rm) for∀(R,z)of interest (2.35)

where J (oi,0) is a case of (2.15) at τp = 0 s, computed using (2.27). Σ f f

is a special case of K where N = M and the orbits are the valid orbits of our
(E, pm,Rm)-grid. f (E, pm,Rm) is a vector of length M in which every element
corresponds to the fast-ion distribution of a valid orbit. 1/|detJ (oi,0)| will be
of size N × 1 and KΣ

−1
f f f (E, pm,Rm) will also be of size N × 1. They are then

multiplied element-wise, hence the ’◦’ symbol in (2.35). f (E, p) will then be
a vector of size N × 1 that is reshaped to our (E, p)-grid. Naturally, if some
of the M orbits of the (E, p) gridpoints at (R,z) correspond to lost orbits, they
will need to be filtered out from the transformation, as well as orbits for which
|detJ (oi,0)| = 0. This can be achieved by setting f (E, p) = 0 for those (E, p)
gridpoints.

2.5.4 Transforming using grid-mapping
An arguably more straightforward approach to transform fast-ion distributions
from (E, pm,Rm)-space to (E, p,R,z)-space, and back, is the grid-mapping
transform developed by S. Benjamin [66]. It is based on the simple relations

f (E, p,R,z) = f (E, pm,Rm,τp)

∣∣∣∣
dEd pmdRmdτp

dEd pdRdz

∣∣∣∣ (2.36)
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and

f (E, pm,Rm,τp) = f (E, p,R,z)
∣∣∣∣

dEd pdRdz
dEd pmdRmdτp

∣∣∣∣ (2.37)

where the fast-ion distribution in orbit space has been extended with the
redundant poloidal transit time τp. The two Jacobians in (2.36) and (2.37) are
reciprocals of one another if the transform from (E, pm,Rm,τp) to (E, p,R,z) is
a diffeomorphism, i.e. a differentiable bijection, where the inverse transform
is also differentiable. This implies that the function that maps an (E, p,R,z)
coordinate to its (E, pm,Rm,τp) coordinate, and the inverse of the function, should
be well-behaved. Because our guiding-center equations of motion (section 2.4)
are well-behaved, we can conclude that it is indeed the case. The Jacobi matrix
determinants of the forwards and reverse transform are therefore reciprocals of
one another.

Using automatic differentiation built on the algebraic properties of dual numbers,
we can however easily compute the necessary Jacobians in (2.36) and (2.37). As
discussed in section 2.5.2, this is done by converting the inputs of

f (E, p,R,z)→ (E, pm,Rm) (2.38)

and

g(E, pm,Rm)→{E, p,R,z} (2.39)

where f is the computational process of determining the orbit coordinate
(E, pm,Rm) given the guiding-center coordinate (E, p,R,z), and g is the
computational process of determining the set of all guiding-center coordinates
{E, p,R,z} given the orbit coordinate (E, pm,Rm). The choice governing a
successful transform, is then the choice of temporal (τp) and grid-related
resolutions (in (E, pm,Rm) and (E, p,R,z)).
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Fast-ion Diagnostics

To be able to reconstruct the fast-ion distribution, experimental measurements
from so-called fast-ion diagnostics are needed. Even though the fast-ion
distribution cannot be measured directly, we can use measurements of e.g.
neutrons, gamma-rays, fast-ion D-alpha light, ion cyclotron emissions and fast-ion
losses to reconstruct the most-likely distribution given the often noisy data [67].

Fast-ion diagnostics can be divided into active and passive systems. Active
systems obtain information about the fast-ion distribution by perturbing the
plasma somehow. For example via injection of radiation or neutrals into the
plasma. This is the process of e.g. collective Thomson scattering (CTS, [68]) and
fast-ion D-alpha (FIDA, [69]) diagnostics. Passive systems acquire information
by simply measuring relevant quantities emitted from the fusion plasma during
plasma operation. Examples include neutron emission spectroscopy (NES, [70])
and gamma-ray spectroscopy (GRS, [71]).

In this project, the diagnostics of interest have been exclusively passive
diagnostics; more specifically NES and GRS. In this chapter, we will therefore
provide a short discussion on the specific fast-ion diagnostics that have been
investigated.

3.1 TOFOR
TOFOR is a time-of-flight (TOF) spectrometer optimized for high rates (TOFOR)
and measurements of 2.5 MeV neutron emission from fusion plasmas. [72] It was
built and tested at Uppsala University, and transported as well as put into use at
JET in 2008. TOFOR improved the count rate capability for NES diagnostics
of D plasmas by more than an order of magnitude. The method is based on the
measurements of neutrons in two detector parts, S1 and S2, as can be viewed in
Figure 3.1. S1 measures the ’start’ time for the neutron that enters TOFOR. S2
then measures the ’stop’ time. Since the distance between S1 and S2 (L = 1221
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Figure 3.1: The TOFOR diagnostic is a neutron time-of-flight diagnostic with a
detector installed approximately 19 meters above the (usual) magnetic axis of JET
discharges. The sightline is (almost) completely vertical. The neutrons are first
detected by the S1 plastic scintillator, marking the ’start time’ of the time-of-flight
measurement. They are then scattered onto a S2 plastic scintillator, marking the
’stop time’ of the time-of-flight measurement. A measure of the neutron energy
can then be computed from the time difference.
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mm) is known, the velocity, and thus energy, of the neutron can be deduced. 2.5
MeV (≈ 2×107 m/s) neutrons will have a TOF of tTOF≈ 65 ns, for example. Both
S1 and S2 are plastic scintillators and detect neutrons via proton recoil.

The line-of-sight (LOS) of TOFOR has been illustrated in Figure 3.1. As can
be observed, the LOS is in practice completely vertical, i.e. perpendicular with
respect to the magnetic field. For tomographic purposes, this means that the
data from TOFOR can be used to obtain well-resolved information about the
energy distribution of fast ions, but not as much information about the pitch
(v||/v) distribution. Since, for a completely perpendicular LOS a positive pitch is
indistinguishable from a negative pitch. This will be discussed further in Chapter
6.

3.2 NE213-scintillator
The NE213 diagnostic [73, 74] used in this work is a liquid scintillator NES
diagnostic consisting of an active cylindrical cell of about 1 cm3 connected to a
Photomultiplier Tube, which is covered with a thin layer of mu-metal for magnetic
shielding.

The LOS of the NE213-scintillator has been illustrated in Figure 3.2. As can be
observed, it has an oblique LOS w.r.t. the magnetic field. This is advantageous
for phase-space tomography, since positive pitches can be easily distinguished
from negative pitches. If a fast ion travels towards the detector and partakes in
a DD fusion reaction, it will produce a neutron with a slightly upshifted birth
energy, compared to the nominal case. Similarly, fast ions travelling away from
the detector will produce neutrons with a downshifted birth energy.

3.3 GRS diagnostics
The LOS of TOFOR, Figure 3.1, is shared with several GRS diagnostics. In H.
Järleblad et al, Nucl. Fusion, 2022 (Paper II), results relevant for a lanthanum
bromide (Brilliance) detector [76] sharing this LOS were presented. It uses a
LaBr3(Ce) crystal as scintillating material to detect γ-rays. It allows operation at
event rates of up to 2 MHz and it is insensitive to neutrons. The LaBr3(Ce) crystal
is coupled to a Photomultiplier Tube, which produces a signal that is fed into a
fast preamplifier with five times gain before being digitized.
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Figure 3.2: a) A poloidal and b) top-view of the NE213 [73, 74] and MPRu [75]
diagnostics at JET. The neutrons hit a thin foil (turquoise) and knock off protons
that travel in the magnetic field of the MPRu, and hit the detector (green). Some
neutrons will pass through the thin foil and instead reach the NE213 detector.
The NE213 and MPRu detectors observe JET plasma in the counter-clockwise
direction, viewed from above.
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Figure 3.3: The KN3 [77] neutron camera system is comprised of 9 vertical
and 10 horizontal LOS. They all face the plasma at an angle almost completely
perpendicular to the magnetic field. The magnetic axis of JET shot 96100 has
been superimposed for reference.
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3.4 KN3 Neutron Camera System
As Figure 3.3 shows, the KN3 neutron camera system is comprised of two
different sets of detectors implemented along 10 horizontal LOS and 9 vertical
LOS [77]. Depending on the neutron energy of interest, different diagnostics
are employed. For the measurement of 2.45 MeV DD neutrons, NE213 liquid
scintillators are used while for 14 MeV DT neutrons thin plastic scintillation
detectors are usually used. The KN3 has a digital acquisition system capable of
operating at 0.2×109 samples/s with a sample size of 14 bits. In addition, the KN3
system is sensitive to both neutron (n) and gamma (γ) radiation which produce
signals of different pulse shapes. The Short/Long gate method [78] combined
with tomographic methods are used to separate the two spectra.

3.5 MPRu
The upgraded magnetic proton recoil (MPRu) diagnostic at JET is a thin-foil
spectrometer with an oblique LOS [79]. The sightline is identical to that of the
NE213-scintillator discussed in section 3.2, but with a less collimated LOS, as
can be observed in Figure 3.2. In contrast to scintillators and time-of-flight (and
semiconductor) detectors, the MPRu measures the energy of incoming neutrons
via the recoil of protons scattered from a thin foil. A schematic overview of the
MPRu is shown in Figure 3.4.

Neutrons from the plasma pass through a neutron collimator, forming a neutron
beam into the detector. The neutron beam then intersects a thin polythene (CH2...)
foil target, where some neutrons scatter elastically on the protons of the foil. The
forward scattered protons are then selected and enter a magnetic system, where
they are spatially separated according to their momentum. The position of the
proton impact is then detected via an array of scintillators, and the original neutron
energy can then be deduced. For 14 MeV DT-born neutrons, the MPRu has a
signal count rate of 0.61 MHz with a signal-to-background noise (S/B) ratio of
2× 103. The S/B for 2.5 MeV DD-neutrons is 10−1, thus making the MPRu
suitable for detecting DT-born, but not DD-born, neutrons.
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Figure 3.4: A schematic drawing of the MPRu [75] diagnostic at JET. A neutron
enters a collimator and might elastically knock off a proton from the thin foil.
If it doesn’t, it continues to the NE213 [73, 74] diagnostic. The proton travels
through a collimator, and in a curved trajectory (pink) as a result of the internal
magnetic field of the MPRu. The measurement of the impact position of the proton
on a detector can then be used to determine the original energy of the incoming
neutron.
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Orbit sensitivity of fast-ion diagnostics

Fast-ion diagnostics possess a varying probability to detect measurements
depending on the fast-ion orbit origin of interest. This varying probability is
called the orbit sensitivity and it can be quantified and mapped using orbit weight
functions. As discussed in H. Järleblad et al., Nucl. Fusion, 2022 (Paper II, [2]),
the diagnostic signal s and the fast-ion distribution f can be related via a weight
function w as

s(E1,d,E2,d) =
∫

w(E1,d,E2,d,x,v) f (x,v)dxdv, (4.1)

where E1,d and E2,d denote the lower and upper boundaries of the diagnostic
measurement bin of interest, respectively. x and v denote the position and velocity
of the ion. The time dependence of the full six-dimensional fast-ion distribution
f (x,v) is outside the scope of this work. We can re-write (4.1) for our (E, pm,Rm)

orbit-space of interest as

s(E1,d,E2,d) =
∫

w(E1,d,E2,d,E, pm,Rm) f (E, pm,Rm)dEdpmdRm, (4.2)

where we have assumed toroidal symmetry, a guiding-centre picture and
unperturbed fast-ion orbits as discussed in section 2.2. We can observe in equation
4.2 how a linear relationship between s and f is assumed. This assumption is valid
as long as the signal contribution from fast ions (fi) reacting with the bulk plasma
is much greater than other contributions. That is

s f i,bulk� s f i, f i (4.3)

where sA,B is the signal from the reaction between A and B. By utilizing 4.2 for
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many different diagnostic energy bins (E1,d,E2,d) and discretizing our problem in
(E, pm,Rm) orbit-space, we can write the matrix equation

S =WF (4.4)

where S is a vector with length equal to the number of diagnostic measurement
bins of interest. W is the so-called weight matrix with number of rows equal to
the length of S and number of columns equal to the number of valid orbits for
our discretized (E, pm,Rm)-space of interest. F is the fast-ion distribution for our
(E, pm,Rm) orbit-space of interest but in vectorized format.

As discussed in H. Järleblad et al., Rev. Sci. Instrum., 2021 (Paper I) and H.
Järleblad et al., Nucl. Fusion, 2022 (Paper II), orbit weight functions can be
computed as follows:

1. Compute all (E, p,R,z) points for an orbit with a particular (E, pm,Rm)

coordinate, given a resolution in time or space.
2. Weight each (E, p,R,z) point by the fraction of the poloidal transit time τp

the ion spends between that point and the next.
3. Let all weighted (E, p,R,z) points constitute a fast-ion distribution f and

feed it into the code of your synthetic diagnostic of interest.
4. Let the 1D output signal of the forward model be a unique column in a

matrix.
5. Repeat 1-4 for all (E, pm,Rm) coordinates of interest.
6. The rows of your matrix now constitute orbit weight functions for that

specific diagnostic measurement bin.

Mathematically, this can be expressed by setting f (E, pm,Rm) = δ (E−Ei)δ (pm−
pm, j)δ (Rm−Rm,k) in equation 4.2 as

s(E1,d,E2,d) =
∫

w(E1,d,E2,d,E, pm,Rm)δ (E−Ei)δ (pm− pm, j)δ (Rm−Rm,k)dEdpmdRm

= w(E1,d,E2,d,Ei, pm, j,Rm,k), (4.5)

where δ is Dirac’s delta distribution and (Ei, pm, j,Rm,k) is the orbit-space
coordinate of interest. Equation 4.5 is then evaluated for all orbit-space
coordinates and diagnostic measurement bins of interest.
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For a given diagnostic measurement bin [Ed,1,Ed,2) and fast-ion energy E, the
value of the weight function at (pm,Rm) is determined by:

• The time fraction of the poloidal projection of the orbit trajectory in the
diagnostic sightline.

• The pitch (and by extension, the projection of the fast-ion velocity onto
the diagnostic line-of-sight) of the fast ion when it is inside the diagnostic
sightline.

• The temperature and density of the bulk plasma when the fast ion is inside
the diagnostic sightline.

• The cross-section of the fusion reaction.
• The solid angle and toroidal extension of the diagnostic sightline where the

fast-ion orbit trajectory crosses.

For more details, explanations and illustrations, please see H. Järleblad et al,
Comp. Phys. Comm., Submitted (Paper III).

Let us now take a look at some of examples of orbit weight functions for fast-
ion diagnostics. We will visualize them by ’slicing up’ orbit space by fast-ion
energy E, i.e. keeping E constant while varying pm and Rm. This allows us to
superimpose the topological boundaries between orbit types while examining the
orbit sensitivity. Since all orbit types are present for a given fast-ion energy E,
and not at a given pm or Rm, this way of examining orbit space in terms of ’slices’
of constant E can be argued to be the most informative way of viewing three-
dimensional orbit-space quantities.

4.1 TOFOR
In the previous section, a brief description of how to compute orbit weight
functions was given. However, in practice a lot of additional quantities and
parameters need to be specified. For example, the so-called ’forward model’
can be any numerical framework that computes synthetic signals for fast-ion
diagnostics.

In the case of TOFOR, a JET time-of-flight NES diagnostic discussed in section
3.1, the DRESS code [80] has been used as the forward model to compute orbit
weight functions. TOFOR is optimized for detecting neutrons with an energy
roughly equal to that of the DD-fusion reaction nominal neutron birth energy, i.e.
2.45 MeV. Therefore, the D(D,n)3He fusion reaction was used to compute orbit
weight functions, maping the corresponding TOFOR orbit-space sensitivity.
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For NES diagnostics and the D(D,n)3He reaction, the orbit-space sensitivity will
vary depending on the neutron energy measurement bin (E1,d,E2,d) of interest.
The relation between the motional state of the reactants and the neutron birth
energy En can be described as [81]

En =
1
2

mnV 2
COM +

mpr

mn +mpr
(Q+K)+(VCOM cosθ)

(
2mnmpr

mn +mpr
(Q+K)

)1/2

,

(4.6)
which is a slight correction of the expression used in equation (4) in H. Järleblad
et al, Rev. Sci. Instrum, 2021 (Paper I). Here mn is the neutron mass and
VCOM = |VCOM| where VCOM = (m1v1 +m2v2)/(m1 +m2) is the center-of-mass
(COM) velocity of the two reactant ions, described by their masses m1 and m2 and
velocities v1 and v2. mpr is the mass of the second product of the fusion reaction,
Q is the nuclear energy release of the reaction, K = m1m2v2

rel/(2(m1+m2)) is the
relative kinetic energy of the reactants where vrel = |v2− v1| and θ indicates the
angle between VCOM and the neutron velocity vector in the COM frame. Notice
how the first two terms in equation 4.6 are positive definite.

In the limiting case of one reactant being stationary, the following equation for En

can be used (lab frame) [67]

En =
mpr

mpr +mn
Q+

mpr−m1

mpr +mn
E1 +

m1mn

mpr +mn
uvn (4.7)

where m1 and E1 are the mass and kinetic energy of the non-stationary (fast)
particle, respectively. u is the velocity component of the fast ion along the line-of-
sight towards the diagnostic detector and vn is the speed of the neutron.

To showcase how the orbit sensitivity varies around the nominal neutron birth
energy, it is illuminating to divide the investigation into three categories. Let
Ed denote the center of a diagnostic energy bin and En,nominal the value of En

when VCOM = K = 0. For the D(D,n)3He reaction Q = 3.27 MeV [8] so we
get that En,nominal = 2.45 MeV as stated above. Then, the three categories
are Ed < En,nominal , Ed ≈ En,nominal and Ed > En,nominal corresponding to down-
shifted, nominal and up-shifted neutron energies, respectively.

4.1.1 Ed < En,nominal
At heavily down-shifted neutron energies, the orbit-space sensitivity is relatively
high for potato orbits and counter-stagnation orbits, as can be observed in Figure
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Figure 4.1: Three orbit weight functions for TOFOR. The D(D,n)3He has been
studied. One orbit weight functions is for a measurement bin corresponding to a
down-shifted neutron energy (a), one at the nominal D(D,n)3He neutron energy
(b) and one at an up-shifted neutron energy (c). The fast-ion energy refers to
one of the fusing deuterium ions. JET shot No. 94701 at 10.8 s. The figure
examines different neutron energies than H. Järleblad et al, Nucl. Fusion, 2022
(Paper II, [2]) and is thus original.
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4.1a. For the chosen neutron energy of 1.7 MeV (and magnetic equilibrium as
well as fast-ion and thermal distributions) the weights are all zero for fast ions
with an energy below ≈ 500 keV. This is because fast ions with such a low
energy are not able to produce neutrons with enough down-shift of En,nominal for
the 1.7 MeV diagnostic energy bin. At fast-ion energies above ≈ 500 keV but
still below the MeV range (Figure 4.1aa), the non-zero weights are concentrated
around the potato region and towards the tip of the counter-stagnation region. The
concentration around the potato region is due to two factors. First, when an ion is
moving around on a potato orbit, it is moving away (negative z direction) from the
TOFOR detector when passing through the TOFOR viewing cone (Figure 3.1).
This will give rise to neutrons that are down-shifted in energy when detected
by TOFOR, because of conservation of momentum (and energy). Second, the
poloidal projection of a potato orbit has a relatively large fraction of its (R,z)
trajectory within the TOFOR viewing cone. This results in a relatively high
sensitivity. As we move away from the potato region (in the pm > 0 region),
these two factors decrease and thus the sensitivity decreases.

Furthermore, the concentration towards the tip of the counter-stagnation region
can also be attributed to two factors. First, an ion on a counter-stagnation orbit
does not change its pitch much as it moves around the orbit. Thus, the pm

coordinate is representative for the pitch of the ion at all points along the counter-
stagnation orbit. As we approach the tip of the counter-stagnation region, the
perpendicular velocity component of the ion increases for all points along the
orbit overall (because pm gets closer to 0.0, and thus p = v||/v gets closer to 0.0
and v⊥/v gets closer to 1.0 for all (E, p,R,Z) points in general). Since the TOFOR
sightline is almost completely in the perpendicular direction, a deuterium ion
with a large perpendicular velocity component taking part in a D(D,n)3He fusion
reaction will be able to give rise to a neutron with a large down-shifted nominal
energy. Hence, at down-shifted neutron energies and low fast-ion energies,
the orbit sensitivity increases towards the tip of the counter-stagnation region.
Second, an ion on a counter-stagnation orbit has its poloidal projection almost
completely within the TOFOR sightline, which naturally results in a relatively
high sensitivity.

At fast-ion energies in the low MeV range (Figure 4.1ab), the sensitivity
concentration diffuses outwards from the potato region and the tip of the counter-
stagnation region, as more coordinates gain non-zero weight values. This is
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because, at these higher fast-ion energies, even orbits that do have pm- and p-
values relatively close to 0.0 are able to produce neutrons with heavily down-
shifted nominal energies. We can also notice how a narrow region of high
sensitivity appears in the upper part of the trapped region. This phenomena was
discussed in [1](Paper I) and corresponds to trapped orbits whose ’banana’ tips
lie within the TOFOR sightline where an ion spends a relatively large fraction of
its poloidal transit time.

Lastly, at fast-ion energies in the several MeVs range (Figure 4.1ac and ad), the
sensitivity of potato-like orbits increases relative to counter-stagnation orbits. This
is likely due to the fact that, at such high fast-ion energies, simply having the
poloidal projection of the orbit completely within the TOFOR sightline is not
sufficient for high orbit sensitivity. As can be observed in equation 4.6, the down-
shift of the neutron energy is proportional to the cosine of the angle between
the COM velocity vector of the reactants and the neutron velocity vector in the
COM frame (cosθ = VCOM · vn/VCOMvn). We can approximate VCOM to be
the fast-ion velocity vector and cosθ = −1 to be when the fast-ion and neutron
velocity vectors point in the negative and positive z-direction, respectively. In
that case, it can be understood that unless v⊥/v→ 1 as the fast ion travels within
the TOFOR sightline, not enough down-shift of the neutron nominal energy will
be possible. In the several MeVs range, this only happens for potato-like orbits
(counter-stagnation orbits never reach v⊥/v→ 1).

4.1.2 Ed ≈ En,nominal
At neutron energies close to the nominal energy, the weights are non-zero all the
way down to thermal ion energies of a few keVs, as can be observed in Figure
4.1 b). This is because we do not need to produce any down- or up-shift at those
neutron energies, and thus it is possible even for thermal ions to contribute to
a measurement signal (Figure 4.1 ba). However, the contribution is marginal as
can be seen by observing the absolute value of the largest weight (3.884 · 10−15)
and comparing it with the absolute value of the largest weights at the fast-ion
energies of 69.9 keV (6.982 · 10−13, Figure 4.1 bb), 715.5 keV (3.86 · 10−12,
Figure 4.1 bc) ) and 2653.0 keV (4.345 · 10−12, Figure 4.1 bd). As we examine
those increasingly high fast-ion energies, the orbit sensitivity gets more and more
concentrated towards pm =±1.0 (Figure 4.1 bb). As we approach pm =±1.0 the
average pitch (p) of all points along an orbit approaches ±1.0 and the deviation
of p from pm tends to zero. We thus get that v||/v → 1.0 and v⊥/v → 0.0.
Since the TOFOR sightline is almost completely in the vertical (perpendicular)
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direction and we do not want any down- or up-shift of the neutron energy for
Ed ≈ En,nominal , at higher fast-ion energies the orbit sensitivity will tend towards
orbits that are able to produce the least amount of down- or up-shift of the neutron
energy in the TOFOR sightline. Those orbits can be found at pm →±1.0. The
orbit sensitivity is highest in the counter-stagnation region since those orbits have
their poloidal projection almost completely within the TOFOR sightline (Figure
4.1 bc).

As we increase the fast-ion energy even higher into the several MeVs (Figure 4.1
bd), the areas of highest orbit sensitivity move slightly away from the pm± 1.0
boundaries. As we examine higher and higher fast-ion energies, the areas of
highest sensitivity will move further and further away from pm±1.0. This is likely
due to the interplay between the terms in equation 4.6, where we can observe that
as we go to higher and higher fast-ion energies, the first and second term will
contribute more and more to the neutron energy En. To ensure that the resulting
neutron ends up in the same diagnostic energy bin (Ed = 2.45 MeV), the third
term needs to counteract the increase of the first two terms. This counteraction
would be maximized if cosθ →−1.0, which occurs for TOFOR approximately
when p→ 0.0. That is, for orbits away from the pm± 1.0 boundaries that are
potato-like (in the positive pm half plane) and orbits close to the tip of the counter-
stagnation region (in the negative pm half plane).

4.1.3 Ed > En,nominal
At heavily up-shifted neutron energies, as shown in Figure 4.1 c), we can see
sensitivity features similar to those found at both Ed < En,nominal and Ed ≈
En,nominal . At low fast-ion energies (Figure 4.1 ca), the sensitivity is concentrated
around the potato region and towards the tip of the counter-stagnation region.
This is because, similar to the Ed < En,nominal case, fast ions on those orbits spend
a relatively large fraction of their poloidal transit times within the viewing cone of
TOFOR, and have pitch values that go to zero as they cross the TOFOR sightline.
The former results in a high sensitivity in general while the latter is necessary
to be able to produce enough up-shift of the nominal neutron energy. We can
also observe the characteristic narrow region of relatively high sensitivity that
runs through the trapped topological region. This narrow region corresponds to
trapped orbits with their tips inside the diagnostic sightline, where the fast ions
spend a relatively large fraction of their poloidal transit times. This results in a
relatively high sensitivity.
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As we look at higher and higher fast-ion energies (Figure 4.1 cb, cc and cd), the
area of highest sensitivity moves outwards towards the pm±1.0 boundaries. This
is because the higher the total fast-ion energy the less fraction of perpendicular
energy we need to produce the required up-shift of the nominal neutron energy.
As we know from the previous section, pm→±1.0 implies p→±1.0 in general.
However, not shown in Figure 4.1 c), it can be assumed that at fast-ion energies of
many MeVs (> 5.0 MeV), the area of highest sensitivity would start to wander
inwards back towards the potato region and the pm = 0.0 region. This is to
maximize the counteraction of the increase of the first two terms in equation 4.6,
so that cosθ →−1.0, as discussed towards the end of section 4.1.2. However, at
fast-ion energies of the several MeVs, the usage of guiding-centre picture starts to
become increasingly dubious, since the variaton of the magnetic equilibrium on
the scale of the Larmor radius becomes too great, bringing it outside the scope of
this analysis.

4.2 NE213-scintillator
In contrast to TOFOR, the sightline of the NE213-scintillator (Figure 3.2) is at an
oblique angle to the magnetic field, which results in a different orbit sensitivity.

4.2.1 Ed < En,nominal
At heavily down-shifted neutron energies, the orbit sensitivity is relatively high
for counter-passing, counter-stagnation and stagnation orbits, as can be observed
in Figure 4.2a. At low fast-ion energies (Figure 4.2aa), the weights are non-zero
almost exclusively for counter-passing and counter-stagnation orbits. Three peaks
of high sensitivity can be observed in the counter-passing region at Rm ≈ 3.05
m, Rm ≈ 3.30 m and Rm ≈ 3.70 m. These peaks correspond to counter-passing
orbits that satisfy two criteria. First, the fraction of the poloidal projection of their
orbit trajectory within the viewing cone of NE213 is maximized, resulting in a
relatively high sensitivity. Second, when crossing the viewing cone of NE213,
the pitch (p) of those counter-passing orbits is optimal for giving just the right
amount of down-shift of the neutron nominal birth energy for the diagnostic
energy bin of interest (Ed = 2.1 MeV). The viewing cone of NE213 points in
the counter-passing direction and thus, to be able to produce sufficient down-
shifted neutron energies at low fast-ion energies, the ion has to travel in the same
direction (counter-passing). Hence, almost all weights in the co-passing direction
(pm > 0.0) are zero.
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Figure 4.2: Three orbit weight functions for NE213. The D(D,n)3He has been
studied. One orbit weight functions is for a measurement bin corresponding to a
down-shifted neutron energy (a), one at the D(D,n)3He neutron nominal energy
(b) and one at an up-shifted neutron energy (c). The fast-ion energy refers to one
of the fusing deuterium ions. The two colored dots in ac) mark the coordinates of
the trapped orbits in Figure 4.3. The figure examines different neutron energies
than H. Järleblad et al, Nucl. Fusion, 2022 (Paper II, [2]) and is thus original.
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At fast-ion energies close to, but still below, 1.0 MeV (Figure 4.2ab) the area
of highest sensitivity has moved downwards towards the pm = −1.0 boundary.
Since we are now looking at higher fast-ion energies, we are going to need a
larger fraction of the ion motion to be in the counter-passing direction to be able
to produce just the right amount of down-shift of the neutron nominal birth energy
for the diagnostic energy bin of interest. Hence, the area of highest sensitivity is
closer to the pm = −1.0 boundary but at roughly the same Rm coordinates. The
area of highest sensitivity that was previously at Rm = 3.70 m and pm = −1.0
has moved away from the pm = −1.0 boundary however. This is due to another
phenomenon, where the farther we go from the pm = −1.0 boundary the more
energy is in the perpendicular direction in general and the more the ions deviate
from the flux surfaces as they go around their counter-passing orbits. As the ions
deviate from the flux surfaces their pitch changes. For the peak at approximately
Rm = 3.70 and pm = −0.8, just enough energy is in the perpendicular direction
when the ion crosses the viewing cone of NE213 so as to produce just the right
amount of down-shift of the neutron nominal birth energy for the diagnostic
energy bin of interest. Hence, the sensitivity peaks at this counter-passing orbit.

At fast-ion energies in the MeV range (Figure 4.2 ac), we start to get an area
of significant sensitivity in the stagnation region (this was also present at fast-
ion energies close to, but still below, 1.0 MeV). These stagnation orbits have the
poloidal projection of their trajectories almost completely within the viewing cone
of NE213, giving them the prerequisites for a relatively high sensitivity to begin
with. In addition, the fraction of their energy in the perpendicular direction is
likely just right for the cosθ -term in equation 4.6 to produce the correct amount
of down-shift of the neutron nominal birth energy for the diagnostic energy bin of
interest. This corresponds to u being just right in equation 4.7.Finally, as we could
also observe in Figure 4.2ab, there is a narrow region of relatively high sensitivity
in the trapped region. This corresponds to trapped orbits whose upper ’banana’
tip exactly coincides with the upper leg of the NE213 sightline. This has been
illustrated in Figure 4.3

At fast-ion energies in the many MeV range (Figure 4.2 ad), the non-zero
sensitivity is once again almost completely concentrated to the pm < 0.0 region
of orbit space. This is because at such high fast-ion energies, there is simply
no way to produce sufficient down-shift of the neutron nominal birth energy
without having the ion move away from the NE213 viewing cone (counter-passing
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Figure 4.3: Two examples of trapped orbits whose upper ’banana’ tip coincides
with the upper leg of the NE213 sightline. The dark and light blue orbits
have orbit-space coordinates (E [keV], pm [-],Rm [m]) = (2041.6,0.23,3.77) and
(E [keV], pm [-],Rm [m]) = (2041.6,0.3,3.55), respectively. They have been
marked in Figure 4.2ac. Orbits computed for deuterium fast ions in JET shot
94701 at 10.8 seconds.
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direction). Hence, the orbit sensitivity is non-zero almost exclusively for counter-
passing and counter-stagnation orbits. The counter-stagnation orbit with the very
highest sensitivity has been marked with a red arrow.

4.2.2 Ed ≈ En,nominal
At neutron energies close to the nominal energy, the weights are non-zero all
the way down to thermal energies of a few keVs, as can be observed in Figure
4.2 b). This is the same as for TOFOR. The sensitivity is highest for orbits
whose trajectory has a poloidal projection that lies completely within the NE213
sightline; that is, orbits with an Rm coordinate close to the magnetic axis at
Rm = 3.0 m.

However, as soon as we increase the fast-ion energy into the tens of keVs (Figure
4.2 bb) distinct sensitivity patterns start to emerge. In the pm > 0.0 half-plane,
we can once again observe the narrow region of relatively high sensitivity in the
trapped region. We can also observe an area of relatively high sensitivity in the co-
passing region at around Rm = 3.30 m and pm = 0.6. These are orbits that fulfill
the two criteria of having a relatively high fraction of their poloidal projection
within the viewing cone of NE213, as well as having a pitch value just right to
produce as little down- and up-shift of the neutron nominal energy as possible
when crossing the viewing cone. Furthermore, similar to TOFOR, the region of
highest sensitivity in the pm > 0.0 half-plane can be found for orbits with an Rm

coordinate close to the magnetic axis at Rm = 3.0 m. There we have stagnation and
co-passing orbits heavily localized around the magnetic axis, almost completely
within the NE213 sightline, resulting in a relatively high sensitivity. However, the
region of high sensitivity does not extend all the way up to the pm = 1.0 boundary
(as it did for thermal ion energies). Orbits with a pm coordinate close to 1.0
have pitch p values close to 1.0 for all points along the orbit in general. Since
the neutron energy diagnostic bin of interest is close to the nominal neutron birth
energy and the NE213 sightline is an oblique viewing cone with respect to the
magnetic field, such orbits would produce too much up-shift. Thus, the sensitivity
goes to zero for orbits with pm coordinates close to 1.0. In the pm < 0.0 half-
plane, we see a similar sensitivity pattern to the one in Figure 4.2aa. However, it
is tilted upwards through the counter-passing region instead of downwards. This
is likely because at neutron energies close to the neutron nominal birth energy, we
would like as little down-shift as possible. Since the NE213 sightline is pointing
in the counter-passing direction, in the pm < 0.0 half-plane we would expect to
find regions of relatively high sensitivity where the fraction of poloidal projection
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of orbit trajectory in the NE213 viewing cone is maximized and the pitch values
while crossing the sightline are minized. This corresponds exactly to the peaks of
relatively high sensitivity that we observe in Figure 4.2bb.

4.2.3 Ed > En,nominal
At heavily up-shifted neutron energies, the non-zero weights are mostly
concentrated to the pm > 0.0 half-plane, as can be observed in Figure 4.2c. The
orbits in the pm < 0.0 half-plane will result in ion motion moving exclusively
away from the NE213 sightline. Ions on these orbits are therefore mostly unable
to produce the up-shift required for the neutron energy of interest. For low fast-
ion energies (Figure 4.2ca), there are three areas of relatively high sensitivity. The
area of the highest sensitivity can be found heavily localized at approximately
(Rm, pm) = (3.85m,1.0) (marked with a red arrow). Orbits close to this coordinate
will have the possibility to have almost all of their energy concentrated in the
direction of the NE213 sightline while crossing. They will thus be able to produce
the largest amount of up-shift of the neutron nominal birth energy. Similarly, we
have an area of relatively high sensitivity at (Rm, pm)= (3.35m,0.75). Here, albeit
a significant fraction, not as much of the fast-ion energy will be concentrated
parallel to the NE213 line-of-sight (LOS). Hence, the sensitivity will not be as
high. Finally, at around (Rm, pm) = (3.07m,0.7) we find the third and largest
area of relatively high sensitivity for the fast-ion energy of interest. This area
corresponds to orbits with trajectories whose poloidal projections are heavily
localized and with a majority inside the viewing cone of the NE213-scintillator. A
majority of the poloidal projection of the orbit trajectory within the viewing cone
results in a higher sensitivity compared to the area of relatively high sensitivity at
(Rm, pm) = (3.35m,0.75). The size (number of valid orbits for a given orbit-space
grid) of the areas of relatively high sensitivity increases as Rm→ 3.0 m (magnetic
axis) because of the following reasons:

1. The poloidal projections of the orbit trajectories become increasingly
localized around/near the magnetic axis

2. The NE213 sightline runs almost right through the magnetic axis
3. Varying pm in the pm > 0.0 half-plane for Rm values smaller than the trapped

orbit with the smallest Rm value does not change the localization of the
poloidal projection of the orbit trajectory as much as varying Rm

Hence, for the NE213-scintillator the areas of relatively high sensitivity tend to
grow in size as Rm→ 3.0 m (magnetic axis) as can be seen in general in Figure
4.2.
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Continuing, as we increase the fast-ion energy by approximately 100 keV (Figure
4.2cb), several areas of relatively high sensitivity can be observed. It can be seen
how the three regions of relatively high sensitivity from Figure 4.2ca now seem to
have split into two branches (one upper and one lower with a common area of high
sensitivity at approximately (Rm, pm) = (3.85m,0.95)). One possible explanation
for this is that at 511.5 keV, there might be more ways of achieving the required
up-shift for the neutron energy of interest. Thus a split into several areas of high
sensitivity might be the result, which is what we are seeing in Figure 4.2cb.

As we increase the fast-ion energy by approximately 100 keV again (Figure 4.2
cc) we can observe how the areas of highest sensitivity separate further and drift
towards pm = 1.0 as well as the part of the stagnation region closest to pm = 0.0.
We can also observe how a thin region of relatively high sensitivity appears in
the trapped region and seems to continue upwards through the co-passing region.
This thin region corresponds to trapped orbits whose ’banana’ tips coincide with
the upper leg of the NE213 sightline. And the continuation upwards into the co-
passing region corresponds to co-passing orbits with a trajectory whose poloidal
projection has an upper part that coincides with the upper leg of the NE213
sightline. Furthermore, at this higher fast-ion energy (E = 613.5 keV) the areas
of highest sensitivity will correspond to orbits that result in just the right amount
of up-shift of the neutron nominal birth energy when the ion crosses the NE213
sightline.

At very high fast-ion energies in the MeV range (Figure 4.2 cd), the weights close
to pm = 1.0 start to become zero and weights in the pm < 0.0 half-plane start to
become non-zero. The weights close to pm = 1.0 start to become zero because
the ions on those orbits have too much energy in the oblique direction and will
result in too much up-shift of the neutron nominal birth energy for the neutron
bin (Ed = 3.4 MeV) of interest (becuase the sightline of the NE213-sightline is
mostly an oblique view). On the contrary, the weights in the pm < 0.0 half-plane
start to become non-zero because of the first and second term in equation 4.6
being positive definite. Even though ions on those counter-passing and counter-
stagnation orbits are moving mostly away from the NE213 detector, they are so
energetic that they can still cause V 2

COM and K (equation 4.6) to be large enough
to produce neutrons with high enough energy for the diagnostic energy bin of
interest.
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4.3 GRS
In the previous sections of this chapter, we have examined orbit weight functions
for the D(D,n)3He reaction where the neutron is the emitted, and detected, particle.
As was done in H. Järleblad et al, Nucl. Fusion, 2022 (Paper II), it can be helpful
to investigate cases where the measurement is made using detected photons
instead (to be precise, photons are both particles and waves, but that is besides
the point here), which are massless. For this goal, we will be using the T(p,γ)4He
reaction, which is a one-step fusion reaction with an emitted gamma photon.

The intended GRS diagnostic examined here has the same sightline as TOFOR.
Therefore, the weight functions will have similar orbit sensitivity due to
geometrical reasons, but differences due to the masslessness of the T(p,γ)4He
gamma photon.

4.3.1 Ed < Eg,nominal
As can be seen in Figure 4.4a, the orbit sensitivity for gamma energies lower
than the gamma nominal birth energy is relatively low. The sensitivity is mostly
concentrated around the tip of the counter-stagnation region in the pm < 0.0 half-
plane and the potato region in the pm > 0.0 half-plane. These regions correspond
to orbits that have ions with pitch p values closest to zero when crossing the high-
purity germanium diagnostic sightline and thus are able to produce the maximum
possible amount of red-shift of the gamma nominal birth energy. However,
because the gamma photon is massless, it does not take part in the conservation
of momentum equation (at non-relativistic speeds), only the conservation of
energy. Therefore, as we look at higher fast-ion energies (Figure 4.4ac and ad)
the sensitivity tends towards zero because the high fast-ion energy will result in
too high a gamma energy relative to the red-shift it produces.

4.3.2 Ed ≈ Eg,nominal
At gamma energies close to the gamma nominal birth energy, the orbit sensitivity
is non-zero down to thermal ion energies and up to the several hundreds of keVs,
as can be observed in Figure 4.4b. At thermal ion energies of a few keVs (Figure
4.4 ba), the sensitivity is similar to the sensitivity for TOFOR for fast-ion energies
at neutron energies close to the neutron nominal birth energy. The sensitivity
is relatively homogeneous for orbits with Rm < 3.25 m and starts to decrease
sharply as we look at larger Rm values (with the exception of trapped orbits whose
’banana’ tips are within the viewing cone of the GRS diagnostic sightline). This
is simply because orbits with Rm < 3.25 m have a relatively large fraction of the
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Figure 4.4: Three orbit weight functions for a GRS diagnostic sharing the TOFOR
sightline. The T(p,γ)4He reaction has been studied. One orbit weight functions is
for a measurement bin corresponding to (a) a red-shifted gamma energy, (b) one at
the T(p,γ)4He gamma nominal energy and (c) one at blue-shifted gamma energies.
The fast-ion energy refers to the proton energy. The figure examines different
gamma energies than H. Järleblad et al, Nucl. Fusion, 2022 (Paper II, [2]) and is
thus original.
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poloidal projection of their trajectories within the viewing cone of the diagnostic.
As we look at larger Rm values, the poloidal projection of the orbit trajectories
becomes less and less localized poloidally. As the ion crosses the viewing cone of
the diagnostic it will do so during an increasingly smaller fraction of the poloidal
transit time, resulting in lower sensitivity.

At FI energies between 100.0−200.0 keV (Figure 4.4bb), the areas of relatively
high sensitivity start to move outwards towards the pm± 1.0 boundaries. This
once again corresponds to orbits whose energy is almost completely concentrated
parallel to the magnetic field, producing the least amount of red-/blue-shift w.r.t.
the viewing cone of the diagnostic. Since we are looking at gamma energies
close to the gamma nominal birth energy, these orbits will have a relatively
high sensitivity. In terms of Rm, the sensitivity is concentrated at Rm < 3.25 m
corresponding to orbits that follow magnetic flux surfaces whose high-field side
(HFS) part is almost completely within the viewing cone of the diagnostic.

As we increase the gamma energy (Figure 4.4bc), the area of highest sensitivity
starts to wander inwards towards the potato region (pm > 0.0 half-plane) and the
tip of the counter-stagnation region (pm < 0.0 half-plane). This is because, at
higher fast-ion energies we need to produce a certain amount of red-shift for the
energy of the gamma photon to match the diagnostic energy bin of 19.85 MeV.
The birth energy of the product gamma photon will increase as the energy of the
reactant fast ion increases, and thus a certain amount of red-shift will be required
for the gamma photon to be detected in the 19.85 MeV diagnostic energy bin.

Finally, at fast-ion energies of around half an MeV and above (Figure 4.4bd),
the sensitivity starts to get heavily concentrated around the potato region and tip
of the counter-stagnation region. At such high fast-ion energies, the additional
energy added to the gamma birth energy must be counteracted by heavy red-
shift, if the gamma photon is to be detected in the 19.85 MeV diagnostic energy
bin. This is only possible for fast ions travelling away from the viewing cone
of the diagnostic at high speeds when crossing the sightline. This happens for
potato orbits and counter-stagnation orbits with a pitch p value as close to zero as
possible (resulting in almost all of the fast ion energy being concentrated in the
perpendicular direction) when the ion crosses the viewing cone of the diagnostic
(which points in the negative z-direction almost completely perpendicular to the
magnetic field). This consequently results in a relatively high sensitivity.
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4.3.3 Ed > Eg,nominal
At gamma energies above the gamma nominal birth energy, the orbit sensitivity
follows a predictable pattern as we scan the fast-ion energies. At relatively low
fast-ion energies (Figure 4.4ca), the sensitivity is concentrated around the potato
region and tip of the counter-stagnation region. This is because these orbit types
have pitch p values that tends relatively close to zero when crossing the viewing
cone of the diagnostic, and are able to produce sufficient blue-shift for the gamma
photon to be detected in the 20.55 MeV diagnostic energy bin.

As we increase the fast-ion energy (Figure 4.4cb and cc), the sensitivity gets
more and more concentrated towards the pm± 1.0 boundaries. At these fast-ion
energies, the energy of the reactants is enough to result in a gamma energy with
sufficient energy to be detected in the diagnostic energy bin of interest. Therefore,
the sensitivity is relatively high for orbits with a large fraction of their energy
concentrated in the direction parallel to the magnetic field.

At fast-ion energies above 1.0 MeV (Figure 4.4cd), the area of highest sensitivity
wanders once again inwards towards the potato region and the tip of the counter-
stagnation region. The fast-ion energy will result in a gamma energy too high
for the diagnostic energy bin of interest. This can be counteracted via red-shift,
which is only possible for potato-like orbits and counter-stagnation orbits with a
pm value close to 0.0. Hence, the sensitivity is relatively high for those orbit types.

4.4 KN3 orbit weight functions
Using the KN3 neutron camera system at JET, we are going to illustrate how
the orbit sensitivity varies depending on the LOS. As has been illustrated in
Figure 4.5, the orbits with non-zero weights will vary depending on the poloidal
projection of the LOS. The same goes for the areas of highest sensitivity. As the
figure explains, as we look at diagnostics with horizontal sightlines closer to the
magnetic axis, the orbit sensitivity will move ’inwards’ i.e. Rm → Raxis where
Raxis = 3.0 m is the major radius position of the magnetic axis at JET for the
considered magnetic equilibrium.

As has been illustrated in Figure 4.6, this pattern is also valid for vertical
sightlines. As the LOS crosses the plasma closer to the magnetic axis, the non-
zero weight and the area of highest sensitivity tend towards Rm values close to
Raxis.
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Figure 4.5: Example of an orbit weight function (OW) for one of the KN3 neutron
cameras at JET, discharge No 94701. The D(D,n)3He reaction has been studied.
The OW for the KN3-2 neutron camera is used as example. The red dots mark the
vertical coordinate of the magnetic axis.

Figure 4.6: Example of an orbit weight function (OW) for one of the KN3 neutron
cameras at JET, discharge No 94701. The D(D,n)3He reaction has been studied.
The OW for the KN3-18 neutron camera is used as example. The red dots mark
the major radius coordinate of the magnetic axis.
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It should be noted that all of the KN3 neutron cameras are diagnostics with
sightlines perpendicular to the toroidal direction. Since the magnetic field in JET
discharges is approximately toroidal, this means that even though the KN3 neutron
camera system might be useful for differentiating between signals originating
from various orbits in the poloidal plane, the KN3 system will in general be unable
to differentiate between signals originating from co- and counter-passing orbits.
This is because most of the up- or down-shift of a nominal signal is achieved
via the gyro-motion as the ion crosses a sightline perpendicular to the magnetic
field. This gyro-motion is identical for co- and counter-passing ions with the
same energy. In contrast, the up- or down-shift of a nominal signal detected
using a diagnostic with an oblique sightline w.r.t. magnetic field can also be
due to the co- and/or counter-passing toroidal motion of the ion. In the orbit
weight functions for perpendicular sightlines in general, and the KN3 sightlines
in particular, this manifests via a similar magnitude of the orbit sensitivity in both
the co- and counter-passing regions, as can be observed in Figure 4.5.

4.5 MPRu
The MPRu diagnostic shares the sightline of the NE213-scintillator. However, it
is less collimated due to its placement in front of the NE213. As we can observe
from Figure 3.2, the projection of the MPRu sightline covers a significant fraction
of the poloidal plane. Compared to the NE213-scintillator, this will result in the
non-zero weights covering a larger fraction of all the valid orbits for each fast-ion
energy orbit-space slice. This can be observed in Figure 4.7. In both a) and b),
the sensitivity pattern is very similar to the NE213-pattern obtained for the same
JET shot, timepoint, neutron energy and fast-ion energy (Figure 4.2ca and aa,
respectively). The separate regions of relatively high sensitivity observed for the
NE213 scintillator have merged. This is because of the MPRu having one large
connected poloidal projection of its LOS, as opposed to the NE213-scintillator
which LOS has one upper and lower ’leg’. The regions of non-zero weights
are also larger for the MPRu, reflecting its larger LOS compared to the NE213-
scintillator. Finally, the values of the non-zero weights are larger in general for
the MPRu, reflecting the fact that a larger fraction of the poloidal projection of the
fast-ion orbit trajectories will be inside the MPRu LOS, compared to the NE213
LOS.
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Figure 4.7: Two MPRu orbit weight function slices of constant fast-ion energy.
The D(D,n)3He reaction has been studied. In a), Ed = 3.4 MeV and E = 409.5
keV, which is the same values as in Figure 4.2ca. In b), Ed = 2.1 MeV and
E = 103.4 keV, which is the same values as in Figure 4.2aa. Deuterium. JET
discharge 94701 at 10.8 seconds. TRANSP ID 94701V01.



Chapter 5

Orbit-space origin of diagnostic signals

Using orbit weight functions, the origin of diagnostic signals can be examined in
detail in terms of fast-ion orbits. Given a measurement and a fast-ion distribution
function, we can split up the measurement into its orbit-type constituents and
provide information on what fractions of orbit types amount to the total signal.
The fast-ion distribution can also be pointwise multiplied with the orbit weight
functions in orbit space. This will result in a detailed map of where in orbit
space the signal is most likely to originate from. Lastly, we can split the fast-
ion distribution itself into its orbit-type constituents. This is useful for various
purposes, such as verifying certain heating schemes (e.g. the three-ion heating
scheme which contains a large population of high-energy co-passing orbits despite
the use of ICRF heating) and understanding how the orbit types make up the fast-
ion distribution. For example, this can be understood both in terms of relative
population as well as via the dependence on the three orbit coordinates E, pm and
Rm.

5.1 Weight function signals split into orbit types
As was described in H. Järleblad et al, Nucl. Fusion, 2022 (Paper II, [2]), if
we have confirmed that S = WF (where S is the diagnostic signal, W our orbit
weight matrix and F our fast-ion orbit-space distribution) we can use the weight
functions to derive the origin of a (synthetic) diagnostic measurement in terms of
orbit types. This can be written as

WF = ∑
h

WhFh (5.1)

where h refers to the different orbit types (co-passing, trapped, etc). Wh and Fh

are the weight matrix and fast-ion orbit-space distribution decomposed according
to orbit type, respectively. In Figure 5.1a, we can observe a diagnostic signal
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(green WF points) and its likely orbit-type constituents below. In general, most of
the signal can be expected to originate from co-passing orbits (green) and about a
quarter can be expected to originate from trapped orbits. We can see how the orbit-
type contributions are almost completely symmetrical with respect to the nominal
DT-neutron energy of Ed,n ≈ 14 MeV. This is a result of the KM14 sightline being
almost completely vertical, as we will discuss further in later sections and chapter
6.

To enable analysis of the orbit-type constituents at the extrema of the signal
spectrum (≈ 13 and ≈ 15 MeV), we can normalize the sum of the orbit-type
constituents to 1.0 for each diagnostic measurement bin Ed,n. This has been
done in Figure 5.1b. We can see how, at the extrema, the contributions from
potato and trapped orbits increase (relative to all other orbit types). We can also
observe how the decomposition into orbit types is not completely symmetrical
w.r.t. the nominal DT-neutron energy of Ed,n≈ 14 MeV. This is because the KM14
sightline is not completely vertical and because a symmetrical up- and down-shift
in velocity (vd,n±∆v) does not result in a perfectly symmetrical up- and down-
shift in energy (∼ Ed,n±m(vd,n±∆v)2). As discussed in earlier chapters and in H.
Järleblad et al., Nucl. Fusion, 2022 (Paper II, [2]), in real experimental data, the
low-energy part of the neutron spectrum is generally plagued by down-scattered
neutrons not directly originating from fusion reactions. This makes that part of
the spectrum unsuitable for fast-ion analysis.

We can make barplots for the diagnostic sensitivity (weight matrix) split into orbit
types, Wh, and the fast-ion distribution, Fh, on their own. In Figure 5.2a, we
can observe how the most populous orbit type is the trapped orbit. One might
therefore expect the majority of the diagnostic signal to originate from trapped
orbits. However, as we saw in Figure 5.1, the majority of the signal is likely to
originate from co-passing orbits. This is because the diagnostic’s orbit sensitivity
for co-passing orbits is much greater, as we can observe in Figure 5.2b, where
the so-called orbit weight average w̄ has been plotted for each orbit type. How
to compute the orbit weight average will be discussed further in chapter 6.3. The
weights of the orbit weight functions determine where in orbit space, and thus to
which orbit types, the diagnostic is most sensitive. But can we perform a more
detailed analysis?

Yes, we can perform a so-called split of the split. That is, we can examine where
the orbit-type constituents of the diagnostic signal originate from as functions of
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Figure 5.1: An example of a synthetic diagnostic signal WF split into its orbit-
type constitutents. In a), the absolute values of the signal and orbit contributions
have been used, and in b) the sum of all orbit contributions have been normalized
to 1.0 for all diagnostic measurement bins Ed . Also in b), the normalized synthetic
diagnostic signal has been superimposed for clarity. Signal computed for the
LOS of the KM14 [82] neutron scintillator at JET [19] with an almost completely
vertical sightline. JET shot No 99500 at 7.4 s, TRANSP ID V05.

Figure 5.2: An example of a) a fast-ion distribution and b) an orbit weight
function matrix, split into their orbit-type constituents. The orbit sensitivity is
computed for the LOS of the KM14 [82] neutron scintillator at JET [19] with
an almost completely vertical sightline. The diagnostic measurement bin range
is Ed = [12.5,16.5) MeV and the fast-ion energy range is E = [0.5,172] keV. To
compute a bar in b), the corresponding orbit-type elements are identified in the
weight matrix, and then averaged over. JET shot No 99500 at 7.4 s, TRANSP ID
V05.
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E, pm and Rm, respectively. Mathematically, this can be expressed as examining
the hidden coordinate integrands of equation 5.1

∑
h

WhFh = ∑
h

∫

h
w(E, pm,Rm) f (E, pm,Rm)dEd pmdRm (5.2)

and integrating out two out of the three orbit coordinates at a time. We will thus
acquire the diagnostic signal density w(E) f (E), w(pm) f (pm) and w(Rm) f (Rm)

for each orbit type (for the given distribution function). Figure 5.3 shows an
example of an orbit-split of the diagnostic signal density for the Ed = 14.75 MeV
measurement bin of the KM14 [82] neutron scintillator diagnostic at JET. We
can observe how most of the measured neutrons for this measurement bin can be
expected to have originated from co-passing orbits with a fast-ion energy E = 100
keV. There is also a significant contribution from trapped orbits, peaked slightly
below the co-passing peak in terms of fast-ion energy. Not much contribution to
the 14.75 MeV neutrons can expected to have originated from below E ≈ 60 keV.

We can also perform an analogous analysis for pm by integrating out E and Rm

instead. This has been done in Figure 5.4. For the given fast-ion distribution, we
can observe how most of the measured 14.75 MeV neutrons can be expected to
have originated from co-passing and trapped orbits with a pitch maximum value
equal to pm ≈ 0.5. The trapped peak is located slightly below the co-passing peak
in pm, partly because the (barycentric) center of the trapped topological region is
located slightly below the center of the co-passing region, for the fast-ion energies
of interest.

Finally, we can integrate out E and pm to obtain the signal density as a function of
maximum major radius Rm. This has been plotted in Figure 5.5. We can observe
how most of the measured 14.75 MeV neutrons can be expected to have originated
from co-passing orbits with a maximum major radius position of Rm ≈ 3.25 m.
Outside of Rm ≈ 3.3 m however, most of the 14.75 MeV neutrons can be expected
to have originated from trapped orbits.

5.2 Orbit sensitivity split into orbit types
We can perform the same analysis as for the signal density w f , but for the
orbit weight functions instead, i.e. w(E), w(pm) and w(Rm). This is useful for
determining e.g. for which fast-ion energies a certain diagnostic is most sensitive
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Figure 5.3: An example of the diagnostic signal density w f as a function of fast-
ion energy E, split into its orbit-type constituents. Diagnostic measurement bin
Ed = 14.75 MeV. LOS corresponds to KM14 [82] neutron scintillator, JET shot
No 99500 at 7.4 s, TRANSP ID V05.

Figure 5.4: An example of the diagnostic signal density w f as a function of
pitch pm at the maximum major radius position of the fast-ion orbit, split into
its orbit-type constituents. Diagnostic measurement bin Ed = 14.75 MeV. LOS
corresponds to KM14 [82] neutron scintillator, JET shot No 99500 at 7.4 s,
TRANSP ID V05.
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Figure 5.5: An example of the diagnostic signal density w f as a function of
maximum major radius position Rm of the fast-ion orbit, split into its orbit-type
constituents. Diagnostic measurement bin Ed = 14.75 MeV. LOS corresponds to
KM14 [82] neutron scintillator, JET shot No 99500 at 7.4 s, TRANSP ID V05.

to in terms of orbit types (and in general). However, when computing e.g. w(E)
for trapped orbits, we have to normalize by the number of orbit-space points
corresponding to trapped orbits for each fast-ion energy E, when integrating over
pm and Rm (effectively computing averages). This is to be able to take the metric
of our orbit-space into account (i.e. for a finite grid resolution, the fraction of
points ending up in the trapped region in the (E, pm,Rm) space will be different
compared to e.g. the (E,µ,Pφ ;σ) space). Analogous averages are performed for
the other dimensions (pm,Rm) and orbit types (co-passing, counter-passing, etc).

In Figure 5.6, we can observe an example plot of an orbit weight function where
the pm and Rm dependence has been integrated out. We can thus examine w(E)
while also splitting it into the different orbit types. It can be observed how, for
the Ed = 14.75 MeV diagnostic measurement bin of interest, the orbit sensitivity
tends to zero below approximately E = 60 keV, regardless of orbit type. This is
because orbits with E . 60 keV are unable to produce sufficient up-shift of the
neutron nominal birth energy Ed,n = 14.06 MeV to be detected in the Ed = 14.75
MeV diagnostic measurement bin. Above approximately E = 60 keV, the orbit
sensitivity rises sharply for potato and counter-stagnation orbits. This reflects the
fact that those two orbit types will spend a relatively large fraction of their poloidal
transit time inside the KM14 (same as TOFOR) LOS. We can also observe the
interesting fact that the sensitivity is higher towards counter-stagnation orbits
compared to stagnation orbits in general. This is because the LOS is almost
completely vertical and passes through the plasma just on the HFS of the magnetic
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Figure 5.6: An example of an orbit weight function as a function of fast-ion
energy, split into its orbit-type constituents. The dependence on pm and Rm

has been integrated out. The lines correspond to averages, for each fast-ion
energy. The potato line is noisy because of limited orbit-space grid resolution.
Diagnostic measurement bin Ed = 14.75 MeV. LOS corresponds to KM14 [82]
neutron scintillator, JET shot No 99500 at 7.4 s, TRANSP ID V05.

axis, but not as much on the LFS of the magnetic axis. The area just on the HFS
of the magnetic axis is where the counter-stagnation orbits ’live’ and the area just
on the LFS of the magnetic axis is where the stagnation orbits live. Thus, for this
particular LOS, the sensitivity will be relatively high for counter-stagnation orbits,
compared to stagnation orbits.

Next, the same process can be repeated for pm. Co-going orbits (co-passing,
trapped (both co- and counter-precessing), stagnation and potato) will be found
for pm > 0 and counter-going orbits (counter-passing and counter-stagnation) will
be found for pm < 0. We can thus examine for which orbit ’kingdom’ (pm > 0
and pm < 0) the diagnostic is most sensitive to. For example, in Figure 5.7, we
can observe how the diagnostic is most sensitive to counter-stagnation and potato
orbits, which is similar to that in Figure 5.6. We can also observe how, even though
we are only examining the orbit sensitivity of the diagnostic for fast-ion energies
below E ≈ 175 keV, the sensitivity for counter-stagnation orbits is relatively high.
This suggest that the diagnostic LOS is localized just on the HFS of the magnetic
axis, which supports the conclusion regarding the LOS geometry already drawn
from Figure 5.6.

Finally, we can examine w(Rm) by integrating over the other two orbit coordinates.
Since orbits with Rm → Raxis, where Raxis is the major radius position of the
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Figure 5.7: An example of an orbit weight function as a function of pitch
maximum, split into its orbit-type constituents. The dependence on E (from 1 keV
to ∼ 175 keV) and Rm has been integrated out. The lines correspond to averages,
for each pitch maximum value. Diagnostic measurement bin Ed = 14.75 MeV.
LOS corresponds to KM14 [82] neutron scintillator, JET shot No 99500 at 7.4 s,
TRANSP ID V05.

magnetic axis, correspond to orbits heavily localized around the magnetic axis,
we can examine how sensitive a diagnostic is to orbits near the plasma center
versus orbits that might transport fast ions far away from the magnetic axis ( e.g.
out to the plasma separatrix). In Figure 5.8 we can observe how, as we examine
Rm values close to Raxis≈ 3.0 m, the sensitivity for counter-going (counter-passing
and counter-stagnation) orbits is relatively high, while the sensitivity for the co-
going orbits is relatively low. As with Figure 5.6 and 5.7, this supports the
conclusion that the diagnostic LOS is localized just on the HFS of the magnetic
axis, since this is where the counter-going orbits ’live’.

In short, without actually knowing what the diagnostic LOS looks like, we can
combine our knowledge of fast-ion topology in tokamaks with the integrated
orbit weight functions w(E), w(pm) and w(Rm), split into orbit types, to ’reverse-
engineer’ our way towards what the diagnostic LOS must look like, given the
orbit-split profiles. In the process this also results in new insight, such as how the
diagnostic LOS might be changed to increase its sensitivity to certain orbit types.

5.3 Fast-ion distribution split into orbit types
To examine the FI distribution in terms of orbit types, we simply transform the FI
distribution into orbit space and use a topological map to keep track of where each
orbit type region is. Thereafter, we can identify how much of the FI distribution is
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Figure 5.8: An example of an orbit weight function as a function of major radius
maximum, split into its orbit-type constituents. The dependence on E (from 1
keV to ∼ 175 keV) and pm has been integrated out. The lines correspond to
averages, for each radius maximum value. The potato line is fluctuating because
of limited orbit-space grid resolution. Diagnostic measurement bin Ed = 14.75
MeV. LOS corresponds to KM14 [82] neutron scintillator, JET shot No 99500 at
7.4 s, TRANSP ID V05.

comprised of every orbit type. This can then be visualized in various ways. One
of the most intuitive ways is simply to view the dependence on E, pm and Rm one
by one, having integrated the other two.

In Figure 5.9, we can observe how the pm and Rm coordinates of the orbit-type
constituents of the fast-ion distribution have been integrated out. We can thus
examine the energy dependence of the fast-ion distribution f (E) for the different
orbit types. We can observe how the fast-ion distribution is comprised of mostly
trapped orbits below E ≈ 60 keV, and mostly co-passing orbits above. It can also
be noted how, at the highest neutral beam injection (NBI) energy of E ≈ 125
keV, the populated orbits are exclusively co-going. As we examine lower and
lower fast-ion energies, the counter-passing population grows relative to the co-
going population. Thus, by examining Figure 5.9, we might suspect that the NBI
beam was injected in the co-going direction and, as the fast ions slowed down, the
scattering produced counter-going orbits.

Similarly, we can integrate out the E and Rm coordinates to obtain the pm

dependence f (pm) of the orbit-type constituents of the fast-ion distribution. This
enables detailed examination of the ratio between the populated co- and counter-
going orbits of the fast-ion distribution. In Figure 5.10, we can observe how the
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Figure 5.9: An example of a fast-ion distribution as a function of energy, split into
its orbit-type constituents. The dependence on pm and Rm has been integrated out.
JET shot No 99500 at 7.4 s, TRANSP ID V05.

most populated orbit type is the trapped orbit, and how the trapped distribution is
peaked at pm ≈ 0.5. The second most populated orbit type is the co-passing orbit.
However, the co-passing distribution peaks at pm ≈ 0.6. This is partly due to the
fact that the co-passing topological region is, in general, located at larger values
of pm than the co-passing region. In contrast to Figure 5.9, we can also observe
how we have a small population of potato orbits located at pm ≈ 0.3.

Lastly, we can integrate over the E and pm coordinates to obtain the Rm

dependence f (Rm) of the orbit-type constituents of the fast-ion distribution. In
general, the larger the Rm value, the more an orbit is likely to be localized to
the outer magnetic flux surfaces, and vice versa. We can therefore use f (Rm)

to investigate roughly for which magnetic flux surfaces we might expect the
orbit types to be populated. We can observe in Figure 5.11 how the co-passing
population peaks at Rm ≈ 3.25 m while the trapped population peaks at Rm ≈ 3.7
m. We can also observe how we have a small population of stagnation and counter-
stagnation orbits close to the maximum major radius position corresponding to
the magnetic axis Rm,axis ≈ 3.0 m. This is to be expected since this is where the
stagnation-type orbits ’live’.

5.4 Orbit weight function signal density detailed anal-
ysis

In section 5.1, we saw how we could ’split the split’ of the diagnostic signal, and
examine the origin of measurements in terms of orbit types and as a function of
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Figure 5.10: An example of a fast-ion distribution as a function of pitch maximum,
split into its orbit-type constituents. The dependence on E (from 1 keV to ∼ 175
keV) and Rm has been integrated out. JET shot No 99500 at 7.4 s, TRANSP ID
V05.

Figure 5.11: An example of a fast-ion distribution as a function of maximum
major radius, split into its orbit-type constituents. The dependence on E (from 1
keV to ∼ 175 keV) and pm has been integrated out. JET shot No 99500 at 7.4 s,
TRANSP ID V05.
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the orbit coordinates E, pm and Rm one by one. But why stop there? Instead
of integrating out one or more of the coordinates, we can also keep the three-
dimensional signal density w(E, pm,Rm) f (E, pm,Rm) as is, and examine the origin
of measurements in detail. This can be achieved by slicing up the orbit space into
slices of constant fast-ion energy, as was done for the orbit weight functions in
chapter 4, and superimposing the topological boundaries between different orbit
types. Figure 5.12c shows an example of a slice of WF signal density as a result
of point-wise multiplication between an orbit weight function slice (Figure 5.12a)
and a fast-ion distribution slice (Figure 5.12b). We can notice how, even though
a large fraction of the co-passing and trapped regions are populated with fast
ions, only a smaller fraction will actually contribute to the 14.75 MeV neutron
measured by the KM14 [82] scintillator. This smaller fraction of orbits correspond
to orbits whose poloidal trajectory projections lie to a large extent within the LOS
of the KM14 scintillator. As they cross the LOS, these orbits also have a pitch
value that favors the birth of a neutron with the correct amount of up-shift to end
up in the 14.75 MeV measurement bin.

70



CHAPTER 5 5.4. Orbit weight function signal density detailed analysis

Figure 5.12: An example of a point-wise multiplication between an orbit weight
function and a fast-ion distribution, without summing up all the contributions. W,
F and WF have dimensions signal per ion, ion per orbit-space volume and signal
per orbit-space volume, respectively. Ed = 14750 keV and E = 80 keV, LOS
corresponding to KM14 [82] scintillator. JET shot No 99500 at 7.4 s, TRANSP
ID V05.
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Chapter 6

Discussion on orbit tomography

This chapter will provide a short discussion on the experience gained from
the attempts to reconstruct the orbit-space fast-ion distribution during this PhD
project. Although a successful reconstruction was not achieved, useful insight
was obtained that is deemed to be of future use. Since all attempts at a successful
reconstruction during this project were performed using synthetic measurements,
caution is adviced when reconstructing the fast-ion distribution from experimental
measurements. The recommendations provided in this chapter might need to
be altered or improved upon to fascilitate a successful reconstruction when
attempting to use experimental data.

6.1 Attempts at reconstructing from synthetic measure-
ments

There were several attempts at reconstructing the fast-ion distribution in JET.
The most notable example was an attempt to reconstruct the high-energy tail
of a deuterium fast-ion distribution in a DD plasma. The fast-ion distribution
was a result of heating by deuterium neutral beam injection (NBI) and ion-
cyclotron resonance heating (ICRH). The discussion will therefore focus on this
specific example, and illuminate the conclusions with its help. Other attempts
at reconstructing the fast-ion distribution naturally also contributed to the gained
insights. However, we will use this specific example to illustrate our points.

The energy dependence of the fast-ion distribution with the high-energy tail that
was to be reconstructed is shown in Figure 6.1. Please note that the whole 3D
orbit-space fast-ion distribution above E ≈ 150 keV was to be reconstructed.
This was to be accomplished using synthetic measurements from TOFOR [72],
an NE213 neutron scintillator [73, 74] and the KN3 neutron camera system [77],
whose combined lines-of-sight (LOS) have been plotted in Figure 6.2. At first
sight, it might look like there should be enough diagnostic sightlines to be able
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to reconstruct the full fast-ion distribution in three-dimensional (E, pm,Rm) orbit
space (which we could later transform into an (E, p) distribution for every poloidal
cross-sectional (R,z) point). However, as we shall see, that is not necessarily so.

Using the TRANSP [32] NUBEAM [33]-computed fast-ion deuterium distribu-
tion f (E, pm,Rm) (with f (E) in Figure 6.1) with TRANSP ID 94701V01 at 10.8
seconds, and the pertaining thermal plasma profiles, together with the sightlines
in Figure 6.2, we can compute the expected synthetic diagnostic signals. This was
done using the Orbit Weight Computational Framework (OWCF) [83] with the
DRESS code [80]. The resulting synthetic signals have been visualized in Figure
6.3.

Using the synthetic diagnostic signals in 6.3 and their corresponding orbit weight
functions, we can attempt to reconstruct the fast-ion distribution in (E, pm,Rm)

orbit space. This has been illustrated in Figure 6.4. As we can observe,
the reconstruction is not successful apart from certain features. It successfully
identifies a fast-ion distribution consisting of more co-passing than counter-
passing orbits, but it heavily overestimates the number of counter-passing orbits
(Figure 6.4b). We will further discuss why this is the case in section 6.3. The
reconstruction also successfully identifies the peak of the fast-ion distribution in
Rm (Figure 6.4c), but it overestimates the population of fast-ion orbits that are
localized at the outer magnetic flux surfaces (Rm & 3.3 m). In section 6.4, we will
discuss how this could be improved upon.

Finally, we can observe how the reconstruction completely fails to recreate the
energy dependence of the fast-ion distribution (Figure 6.4a). This is likely due
to several factors. First, there is simply too few measurements (2038) to be
able to reconstruct the number of unknowns (3210). For future tomographic
reconstruction of the fast-ion distribution in orbit space to be successful, given
limited prior information, it can be argued that the number of measurements needs
to at least match, and preferably exceed, the number of unknowns. It is important
to understand that it is not enough to simply match the number of unknowns with
the same number of measurements to obtain a good tomographic reconstruction.
The provided measurements also need to contain all the information needed to
reconstruct all parts of the fast-ion distribution (this is discussed further in section
6.3).

Second, the 0th order Tikhonov tomographic algorithm that is used to reconstruct
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Figure 6.1: The energy dependence of the JET deuterium fast-ion distribution
obtained from the TRANSP [32] NUBEAM [33]-simulation with ID 94701V01.
The lower bound (E ≈ 150 keV) of the high-energy tail to be reconstructed has
been marked with a vertical red line.

Figure 6.2: The LOS of all the (synthetic) diagnostics used to attempt the
reconstruction of the 3D orbit-space fast-ion distribution above E ≈ 150 keV with
TRANSP ID 94701V01. The black arrows point in the direction of the respective
detectors.
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Figure 6.3: The synthetic diagnostic signals for TOFOR [72], an NE213-
scintillator [73, 74] and the KN3 [77] neutron camera system, given the fast-
ion distribution of TRANSP [32] run 94701V01 at 10.8 seconds and the
corresponding thermal plasma profiles. Since the fusion reaction of interest
for the JET discharge is the D(D,n)3He reaction with a neutron nominal birth
energy of 2.45 MeV, the diagnostic measurement range was set to Ed,min = 1
MeV and Ed,max = 5 MeV. This was done to ensure capture of all the possible
up- or downshift of the neutron nominal birth energy. The TOFOR and the
NE213-scintillator diagnostic signals were comprised of 1000 measurements,
respectively. Each of the 19 cameras of the KN3 neutron camera system was
assumed to be able to resolve the [1,5] MeV neutron energy range into only two
measurement bins. The total number of synthetic measurements was thus 2038.
A background noise level of 5 % and signal noise level of 7 % were added to the
signals, to emulate real experimental data.

76



CHAPTER 6 6.2. Null measurements (null orbits)

the fast-ion distribution in (E, pm,Rm) orbit space penalizes large values relative
to small values. The energy dependence of fast-ion distributions such as that of
Figure 6.1 thus becomes difficult to reconstruct. More flat profiles for the fast-ion
distribution are more likely according to the algorithm, when little measurement
data is provided. It is envisioned that the concept of so-called null orbits could
help overcome this issue. This is discussed further in section 6.2.

Third, the energy range of the high-energy tail (of the fast-ion distribution to
be reconstructed) spans more than 2 MeV (150 < E < 2400 keV). This is a
large energy range. It can be understood how 10 energy grid points (Figure
6.4) are likely not enough to accurately resolve the necessary phase-space details
required for a good reconstruction. However, more phase-space points means
more unknowns to reconstruct. The number of measurements then has to increase
to preserve an accurate reconstruction. Hence, a conflict between phase-space
resolution and number of measurements naturally arises. At a certain point, an
increase in the number of phase-space grid points and measurements will also
result in a problem of, potentially, inadequate computational resources (such as
RAM memory and processing power).

6.2 Null measurements (null orbits)
When future reconstructions of the orbit-space fast-ion distribution from exper-
imental measurements are to be performed, the available data is likely going to
be scarce. A way of reducing the number of unknowns via reasonable assump-
tions would therefore be advantageous, as already discussed above and in [49,84].
One way of doing so is by looking at the diagnostic signal and identifying mea-
surement bins where the signal is zero (s = 0). Orbit-space points with non-zero
weights (w > 0) are then deduced to be zero in terms of fast-ion distribution (s = 0
and w > 0⇒ f = 0) and can be removed from the equation. This is because, if
there were fast ions populating those orbit-space points, since s = w f and w > 0,
we could not have that s = 0 [27, 30, 49]. Note that, for the argument to hold,
we assume that f ≥ 0 and w ≥ 0, since f < 0 and w < 0 is unphysical. Thus,
we can define null orbits as valid orbits (i.e possible orbits, given the magnetic
equilibrium) that are not populated by a large enough number of fast ions to be
detected.

In practice, instead of zero, we have to use s < εS and w > εW where εS,εW are
small values. This has been illustrated in Figure 6.5. In the example, every row
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Figure 6.4: The reconstruction of the fast-ion distribution Frec, using the
synthetic diagnostic measurements in Figure 6.3 and orbit weight functions for
the diagnostic measurement bins of interest. The orbit weight functions (and,
by extension, Frec) were computed on an orbit-space grid with size 10x27x25
(ExpmxRm). The ranges in E, pm and Rm are shown in a), b) and c). The number
of valid orbits for the orbit-space grid was 3210 (the number of unknowns to
tomographically reconstruct). In a), b) and c), the E-, pm- and Rm-dependence
of the reconstructed and true fast-ion distributions are shown in black and blue,
respectively. The two other coordinates have been integrated out in each of the
plots. In d), the normalized S and WFrec signals are shown in colors and black,
respectively. For the KN3 neutron camera signals, the WFrec signals are plotted
as x-crosses.
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Figure 6.5: The measurements with an amplitude smaller than εS (red circles) are
identified as null measurements. The corresponding orbit weight function is then
scanned for weights larger than εW (blue circles). The corresponding elements
of the vectorized fast-ion distribution are then identified as null orbits (orange
circles).

of the weight matrix W corresponds to a 3D orbit weight function that has been
reshaped into a 1D array.

For a diagnostic measurement bin where s < εS, the orbit weight function can
be reshaped back into its 3D-array format and the orbit-space coordinates of the
null orbits can be examined for e.g. slices of constant fast-ion energy. This has
been done in Figure 6.6. We can observe how the (pm,Rm) coordinates with
too large orbit weights are identified as ’null-orbit coordinates’, that are likely
to correspond to unpopulated orbits in terms of fast-ion distribution. Via this
visual method, an overview of where the null orbits are located in orbit-space
can be gained. The null measurements (s < εS) are often found at the extrema
of a spectrum, with the nominal diagnostic measurement value (roughly) in the
middle. This is because the fast-ion distribution is often monotonically decreasing
in energy, which results in most of the signal ending up at, and close to, the
nominal diagnostic measurement value. The presence of null orbits thus often
grows as we look at increasingly high fast-ion energies. This is because large
energies are required to be able to produce an up-/down-shift of the nominal
diangostic measurement value to the extrema of the spectrum.

The method of including null orbits as prior information to the tomographic
reconstruction of orbit-space fast-ion distributions was attempted during this
project. However, the right thresholds were not accurately found, resulting in
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Figure 6.6: The orbit weight function for a signal measurement (gray dot) below
a certain threshold (εS) can be examined slice-by-slice in terms of fast-ion energy.
The (pm,Rm) coordinates of weights above another threshold (εW ) are identified
as null-orbit coordinates (crosses).
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either too few or too many orbit-space coordinates being labelled as null-orbit
coordinates. This could naturally be improved upon, but there was simply not
enough time during the project to do so.

Given the prospect of null orbits, is there something else we could do to
fascilitate the successful reconstruction of the orbit-space fast-ion distribution
from diagnostic measurements? In short: yes, there is. However, we must first
examine the measurements themselves. An important question would be: ’Does
increasing the ratio of the number of measurements to the number of unknowns
result in a better tomographic reconstruction?’ As we shall discuss in the next
section, the answer might not necessarily be ’yes’.

6.3 Importance of varying sightlines
At first sight, the problem of where the sightline of a fast-ion diagnostic should run
through the plasma might seem trivial. As long as the poloidal projection of the
sightline runs through the plasma center, a good detection of signals originating
from the fast-ion distribution would seem to be ensured (see for example Figure
1.3). However, as was discussed in [85](H. Järleblad et al, Nucl. Fusion, to be
submitted, Paper IV), that does not have to be the case. As can be seen in Figure
6.7, some valid orbits are localized away from the magnetic axis. If a diagnostic
sightline such as that of TOFOR (e.g. Figure 6.2) is used to obtain e.g. neutron
measurements, it will completely miss neutrons originating from fast-ion orbits
such as those in Figure 6.7. However, as can be seen in Figure 1.3, the fast-ion
distribution is often heavily peaked at the magnetic axis. Orbits such as those
in Figure 6.7 are therefore relatively unpopulated. In addition, the temperature
and density profiles of the thermal plasma are often approximately monotonically
decreasing outwards from the magnetic axis. Given the above, most (but not
all) of the diagnostic signals involving the fast-ion distribution can be expected
to originate from the orbits localized around the magnetic axis. However, the
inversion algorithms that are utilized to reconstruct the fast-ion distribution from
diagnostic measurements have no information about this fact. This might result in
inaccurate tomographic reconstructions.

If we wanted to ensure that our diagnostic LOS is able to observe all of the
fast-ion distribution, we could simply orient a sightline that poloidally crosses
through the equatorial midplane of the fusion plasma, as has been illustrated
in Figure 6.8. This would ensure that, at least parts of, all fast-ion orbits are
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Figure 6.7: Four examples of valid fast-ion orbits that are localized away from the
magnetic axis. The energy was arbitrarily set to E = 250 keV for all of them. The
(pm [−],Rm [m]) coordinates are (0.25,3.6) and (0.18,3.73) for trapped orbits 1
and 2, and (0.07,3.43) and (0.05,3.8) for stagnation orbits 1 and 2, respectively.
JET equilibrium 96100 at 13 seconds. The magnetic flux surfaces are depicted as
gray dots.
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observed by the diagnostic, since all (standard) fast-ion orbits cross the equatorial
midplane at some point. Would an LOS like the one in Figure 6.8 be able
to (theoretically) ensure a sufficient set of measurements for reconstructing the
full fast-ion distribution in (E, pm,Rm) orbit space? Unfortunately, that is not
necessarily so.

For the next discussion, we have to introduce the so-called orbit weight average
w(Ed,1,Ed,2). The orbit weight average can be computed as follows:

1. Compute the orbit weight function w(Ed,1,Ed,2,E, pm,Rm).
2. Average over all orbit-space grid points:

w̄(Ed,1,Ed,2) = (
∫

dEdpmdRm)
−1 ∫ w(Ed,1,Ed,2,E, pm,Rm)dEdpmdRm

The orbit weight average can be viewed as the synthetic diagnostic signal, given
only the orbit-space variation of the orbit weight function. In addition, we can
examine the orbit weight average for each orbit type as

w̄h(Ed,1,Ed,2) =



∫

h

dEdpmdRm



−1 ∫

h

w(Ed,1,Ed,2,E, pm,Rm)dEdpmdRm

(6.1)

where h =co-passing, trapped, etc and the integral
∫
h

is taken over topological

region for orbit type h. By comparing w̄h(Ed,1,Ed,2) for the different orbit
types, we can examine how relatively sensitive a measurement in (Ed,1,Ed,2)

is to the different orbit types, on average. This has been done for a set
of diagnostic measurement bins ([E1,d,E2,d),[E2,d,E3,d),...,[En−1,d,En,d)) for a
vertical and oblique line-of-sight in Figure 6.9a and 6.9b, respectively.

As we can observe in Figure 6.9, the set of orbit weight averages is almost
symmetric with respect to the nominal measurement bin Enominal = 14.1 MeV
for the vertical line-of-sight, and asymmetric for the oblique line-of-sight. This
means that, for the vertical line-of-sight, a measurement at Enominal + ∆Ed will
contain the same information about the ratio between populated co- and counter-
going orbits as a measurement at Enominal − ∆Ed (where ∆Ed is an arbitrary
number)(approximately). For the oblique line-of-sight, as can be seen in Figure
6.9b, this is not the case. Measurements on one side of Enominal will contain
more information about co-going fast ions and measurements on the other side
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Figure 6.8: An illustration of a) the top view and b) the poloidal projection of an
imaginary fast-ion diagnostic with a perpendicular line-of-sight at JET. The flux
surfaces of the magnetic equilibrium of JET shot 96100 at 13 seconds have been
included in b) as gray dots for reference.

Figure 6.9: The orbit weight averages for each orbit type for a) a vertical and
b) an oblique LOS, corresponding to the sightlines for the KM14 [82] diagnostic
(a neutron diamond matrix for DT-neutrons with approximately the same vertical
LOS as TOFOR) and the MPRu [75] diagnostic, respectively. The plots are not
cumulative; the areas should be compared, not the y-axis values. JET shot 99500
at 7.44 seconds. TRANSP ID 99500V05.
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of Enominal will contain more information about counter-going fast ions. However,
as discussed in previous chapters, for neutron fast-ion diagnostics in practice, the
signal in measurement bins with Ed < Enominal will be dominated by contributions
originating from neutrons with down-scattered energies. Therefore, measurement
bins with Ed < Enominal are generally unusable for the reconstruction of the fast-ion
distribution from neutron measurements.

Given the discussion above, it is possible to envision a set-up of diagnostic
sightlines that, when combined, would likely have the potential to provide
(neutron) measurements with enough information to reconstruct the full fast-
ion distribution function. Such a set-up has been illustrated in Figure 6.10.
With an assumed counter-clockwise co-going direction (viewed from above), the
measurement bins with Ed > Enominal of diagnostic 1 (orange-colored LOS) will
be more sensitive to co-going fast ions. For diagnostic 2 (blue-colored LOS),
the corresponding measurement bins (Ed > Enominal) will be more sensitive to
counter-going fast ions. The conclusions for diagnostics 1 and 2 would naturally
be the same for a clockwise co-going direction (viewed from above), but with
flipped information content. Also, the JET tokamak was used as example, but the
conclusions would hold for tokamaks in general.

Together, the Ed > Enominal measurement bins of diagnostic 1 and 2 should contain
the necessary information for reconstructing both the co- and counter-going orbits
of the fast-ion distribution. Diagnostic 3 (green) is included to provide a vertical
sightline for reference; the LOS is placed so as to view both the HFS and LFS of
the magnetic axis.

Let’s imagine that we have an optimal set-up of diagnostic sightlines, but that
we still do not have enough measurements to be able to reconstruct the full
fast-ion distribution. Is there anything that we could do to include additional
physics as prior information, which could improve the reconstruction? There are
options [27, 86], and in section 6.4 we will explore yet another possible source of
prior information envisioned as a result of this work.

6.4 Magnetic flux surfaces in (E, pm,Rm) coordinates
In tokamaks, the fast-ion distribution can be expected to be approximately
constant along the magnetic flux surfaces, compared to the perpendicular
direction. Is there a way to use this fact as prior information in a reconstruction of
the fast-ion orbit-space distribution function? The short answer is: possibly. If one
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Figure 6.10: An illustration of a hypothetical set of fast-ion diagnostic sightlines,
a) viewed from above and b) projected onto the poloidal plane. The poloidal
projections of diagnostic 1 and 2 would look similar; this has been illustrated
with a striped orange-blue color in b). The detectors of diagnostic 1 and 2 are
envisioned to be placed on the LFS. The magnetic flux surfaces of JET shot 96100
at 13 seconds have been included for reference, depicted as gray dots.
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could find a way to define magnetic flux surfaces in e.g. (E, pm,Rm) orbit space, a
suitable regularizer could be created for the (E, pm,Rm) coordinates corresponding
to the same magnetic flux surfaces. In this work, one way of mapping magnetic
flux surfaces from (R,z) to (E, pm,Rm) coordinates was developed. This method
is discussed below.

Magnetic flux surfaces in tokamaks can be described via a set of (R,z) points.
Thus, in 4D (E, p,R,z) guiding-centre phase space, the magnetic flux surfaces can
be thought of as hyper-tubes that would look the same no matter which 3D cube
of constant energy you look at. Such a 3D cube with a 3D cut of a flux-surface
hyper-tube has been illustrated in Figure 6.11. In terms of fast-ion orbits, one
could interpret a magnetic flux surface as a collection of orbits that all intersect this
hyper-tube at some point along their trajectories. Therefore, to map a magnetic
flux surface from (R,z) to (E, pm,Rm), one could take all the (R,z) points along a
flux surface, compute the resulting orbits for all possible pitch and energy values,
and identify their respective (E, pm,Rm) coordinates.

This has been done in Figure 6.12. We can observe in Figure 6.12b, c and d how
the width of the Rm-range of orbits that intersect the ρpol = 0.5 (∼ Rm = 7.4
m) magnetic flux surface increases with fast-ion energy. This is because the
deviation from magnetic flux surfaces increases as the fast-ion energy increases,
thus resulting in a broader Rm-range of fast-ion orbits that intersect the ρpol = 0.5
flux surface.

In future tomographic reconstructions of the fast-ion orbit-space distribution from
diagnostic measurements, it is envisioned that many magnetic flux surfaces be
mapped to (E, pm,Rm) coordinates. These magnetic flux surfaces in orbit space
can then serve as the basis for a suitable regularization scheme, that incorporates
the fact that the fast-ion distribution can be expected to be approximately constant
along magnetic flux surfaces. More precisely, the gradients along flux surfaces
are likely much smaller than across flux surfaces.
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Figure 6.11: An example of how to interpret magnetic flux surfaces in (E, p,R,z)
phase space. For a 3D cube of constant energy E, the magnetic flux surface (red)
takes the shape of a tube running from pitch −1 to +1. The tokamak first wall
has been included in black for reference. ITER 80 MW heating test magnetic
equilibrium with B0 = 5 T, magnetic flux surface at ρpol = 0.5.
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Figure 6.12: An illustration of a magnetic flux surface with ρpol = 0.5 in a) (R,z)
coordinates that has been mapped to (E, pm,Rm) coordinates. The magnetic flux
surface was discretized into∼ 700 (R,z) coordinates and, for every fast-ion energy
level, the (−1,1) pitch range was discretized into 101 points. In b), c) and d),
(Rm, pm) coordinates with higher values (closer to 1.0 on the color bar) correspond
to orbits on which the fast ion intersects the ρpol = 0.5 flux surface more often as
it goes around the orbit. The opposite is true for (Rm, pm) coordinates with lower
values (closer to 0.0 on the color bar). Orbits computed for α-particles in ITER
test equilibrium with 80 MW heating and B0 = 5 T.
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Chapter 7

The Orbit Weight Computational Frame-

work (OWCF)

This chapter will briefly discuss the computational framework that was developed
during this project; it is known as the orbit weight computational framework
(OWCF). A detailed discussion can be found in H. Järleblad et al (Comp. Phys.
Comm., Submitted, 2022), which has been included as appendix Paper III to this
dissertation. This chapter will therefore focus on the background of the OWCF
and some of the parts that did not make the Comp. Phys. Comm. manuscript, as
well as future work for the OWCF. The interested reader is kindly referred to the
Comp. Phys. Comm. manuscript in the appendix for a technical and scientific
discussion.

7.1 Background
During the beginning of this project, it was realized that many similar
computations would need to be performed. The methods for computing orbit
weight functions for neutron and gamma-ray emission spectroscopy were being
developed, and a trial-and-error approach was adopted to make progress. Via
this process, many minor ’bugs’ and errors were being corrected as soon as
they were identified. Naturally, such a repetitive process is made efficient via
standardization. Templates for testing different scenarios were developed, as well
as templates for submitting batch jobs to a computational cluster. Already at this
early stage, a framework-like structure started to take shape. However, it was yet
too early to stand on its own as a code framwork.

Shortly after, it was realized that an intuition for the topology of (E, pm,Rm) orbit
space needed to be developed. This was because e.g. the sensitivity patterns of
the orbit weight functions needed to be understood. An often efficient way to
build intuition is via interaction and real-time feedback. Therefore, interactive
applications were developed in which the user could change the (E, pm,Rm)
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coordinate and the corresponding guiding-center orbits would be computed and
visualized in real time. It was also during this stage that specific color-coding
for the different orbit types were developed, as well as ways of identifying the
boundaries between topological regions. These were quickly incorporated into
the applications.

Before long, a structure of standardized scripts and interactive applications had
started to take shape. While the work of this project was almost completely
focused on developing orbit weight functions for NES and one-step GRS, a small
amount of time was allocated to solidify this structure into a framework. At
the time, there was no way to know if the work put into this code framework
would be worthwhile. This concern was (rightfully) expressed by the supervisors.
Nevertheless, the work continued solely on the initiative, and overtime work, of
the PhD student.

In the final year of the project, it became clear that a positive result regarding the
reconstruction of the JET fast-ion distribution using synthetic measurements was
not possible to obtain within the timeframe of the project. The likely reasons for
this was discussed in Chapter 6. To add further value to the project, it was then
decided that the OWCF code framework be further developed and that a pertaining
publication be submitted to the journal of Computer Physics Communications. By
this point, this was a straightforward task. The structure and scope of the OWCF
had already been subsequently refined and broadened, making it suitable to be
published as a standalone code framework.

7.2 Compatibility with computational clusters
The OWCF is usable on supercomputers, also known as computational clusters.
As of version 1.0 of the OWCF (the version submitted to Comp. Phys.
Comm.), the framework template files are written to be used on SLURM [87, 88]
computational clusters. This is because the OWCF was developed and tested on a
SLURM computational cluster. In the future, in later versions of the framework,
it will be straightforward to add template files that would make the OWCF usable
on other types of computational clusters (e.g. PBS [89]).

To use the OWCF on a SLURM cluster, the user can utilize a Shell [90, 91] (.sh)
template submit file. The SLURM cluster manager will then execute the OWCF
start file via the .sh submit file, as has been depicted in Figure 7.1.
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No

Yes

Executing
on a

cluster? 
Main script

Submit file (.sh)

Start file (.jl)

Figure 7.1: A graphical illustration of how the OWCF scripts are run on
computational clusters, compared to on local machines. On computational
clusters, the submit file (.sh) communicates with the workload manager, and then
executes the OWCF start file (.jl) from within.

7.3 Orbit web app
The orbit web app is an interactive plotting tool that allows the user to visualize
individual guiding-center orbits in detail. As Figure 7.2 shows, the user can
change the (E, pm,Rm) coordinate by modifying the ’E’, ’pm’ and ’Rm’ input
slots. The app will then respond by computing and displaying the corresponding
guiding-center orbit in real-time. The ’i’ slider can then be used to change what
fraction of the guiding-center orbit trajectory is being plotted. This can be useful
to e.g. examine the pitch value at a specific point along the orbit trajectory. It can
also be used by students, to develop an intuition for what the motion of fast ions
in tokamaks looks like for different orbit coordinates. An animation of the motion
of the fast ion as it travels around the orbit trajectory is displayed in the bottom
right-hand plot.

7.4 Constants-of-motion web app
Even though the OWCF mainly uses the (E, pm,Rm) coordinates for computation
and analysis of guiding-center orbits, the user also has the option to examine
certain results in the (E,µ,Pφ ;σ) constants-of-motion coordinates. One tool
that provides this utility is the so-called comWebApp.jl web application. A
screenshot of the comWebApp can be observed in Figure 7.3. With this web
application, the user can visualize fast-ion orbits in a fully customizable Solov’ev
magnetic equilibrium. The following parameters can be interactively changed:
the inverse aspect ratio, the plasma elongation, the triangularity, the minor radius,
the (vacuum) magnetic field on axis, the fast-ion energy E, the magnetic moment
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Figure 7.2: A screenshot of the orbitWebApp.jl web application, included with the
OWCF (as of version 1.0). The magnetic equilibrium is an ITER test equilibrum
with 80 MW of heating.
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µ and the toroidal canonical angular momentum Pφ . When these parameters are
changed, the app will respond by computing a new Solov’ev equilibrium and fast-
ion orbit in real-time, and plot them. If there are two fast-ion orbits corresponding
to the same (E,µ,Pφ ) triplet, the app will plot both of them. The comWebApp
can be used both as a quick investigative research tool, or as a pedagogical tool
for teaching.

7.5 Future work
In future versions of the OWCF, some updates are already planned. These include:

• To optimize the performance of all scripts and apps of the OWCF. As of
version 1.0 of the OWCF, there are several scripts and apps that were written
to ensure functionality, but not optimal performance. These include some
of the OWCF web applications, that have a long loading time. To ensure
that the OWCF stays relevant in the future, performance upgrades should
be conducted.

• To enable the user to compute orbit weight functions using TRANSP [32]
output data without a NUBEAM [33] output file. As of version 1.0 of
the OWCF, the user has to input both a TRANSP (.cdf) shot file and a
NUBEAM fast-ion output file for the OWCF algorithm to know which
timepoint to extract data from. In a future version of the OWCF, the user
should be able to specify a timepoint without the need for a NUBEAM
output file.

• To include a script that automatically transforms magnetic flux surfaces
from (R,z) coordinates into (E, pm,Rm) orbit space. Additionally, the
distrWebApp.jl should be upgraded to allow for parallel viewing of many
3D orbit-space quantities, e.g. many transformed magnetic flux surfaces.
This could enable an increased understanding of magnetic flux surfaces in
orbit space.

• To upgrade the ps2WF.jl script to be able to compute analytical high-
resolution WF signals. As of version 1.0 of the OWCF, the ps2WF.jl script
can not compute WF signals using analytical orbit weight functions, i.e. that
have been computed from projected velocities. This could be implemented
in future versions, to enable comparison of high-resolution WF signals from
numerical and analytical orbit weight functions.

• To improve the barycentric interpolation algorithm used to convert a
TRANSP fast-ion distribution, defined on a spiral grid in (R,z), to a regular
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Figure 7.3: A screenshot of the comWebApp.jl web application. The user can
interactively modify the parameters for the Solov’ev magnetic equilibrium, as well
as the constants-of-motion. The app will then respond by plotting countours of the
corresponding Solov’ev equilibrium, and the fast-ion guiding-center orbit(s).
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grid in (E, p,R,z). This would result in smoother fast-ion distributions,
enabling more exact analysis.

• To improve the mapping of e.g. orbit weight functions from (E, pm,Rm)

to (E,µ,Pφ ;σ). As of version 1.0 of the OWCF, points on the very edge
of the orbit-space regions of valid orbits might not be mapped sufficiently
exact. The error goes to zero as the grid resolution increases. However,
the problem could be avoided all together by including a nearest neighbour
extrapolation scheme for points just outside the orbit-space regions of valid
orbits.

• To include the option for the user to provide an instrumental response
function matrix as input to e.g. calcOrbWeights.jl. The OWCF could then
compute orbit weight functions, run them through the instrumental response
function matrix and then save the resulting weight functions in an additional
output file.

To some degree, all of the future work listed above could have been performed
during this project, but there was simply not enough time to do so. In addition,
there is also future work of larger size, that could be performed to extend and
upgrade the OWCF. This includes:

• To design and write new IO pipelines and scripts, to be able to connect
additional synthetic diagnostics codes with the OWCF, e.g. FIDASIM
[92, 93]. As stated in the Comp. Phys. Comm. manuscript in the appendix,
version 1.0 of the OWCF is ready to send orbit data to additional synthetic
diagnostics codes. However, to correctly prepare input and process output
from additional synthetic diagnostics codes, new scripts within the OWCF
are naturally going to have to be designed and written.

• To enable the input of diagnostic sightlines in more file formats than only
the LINE21 [94] output files, when using the OWCF together with the
DRESS [80] code. This would increase the flexibility of the OWCF in
general, and the computation of NES and GRS quantities in particular. To
achieve this, a future OWCF script named e.g. createSightline.jl can be
imagined, that outputs a .jld2 (or .h5/.hdf5) file readable by the OWCF-
DRESS interface. Via the inputs to createSightline.jl, the user could fully
customize the geometry of a synthetic diagnostic sightline. It can also be
imagined that such input could be provided via a file, e.g. a MATLAB-data
file (.mat).

• To enable the computation of NES and GRS spectra from two-step fusion
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reactions. This would include reactions such as the 9Be(α ,n)12C reaction,
which happens in two steps. This future work is already planned and will
likely be performed in the near future. The options likely include to upgrade
the DRESS code or to connect the OWCF with the GENESIS [71,95] code.
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Conclusion and outlook

Prior to this work, the methods for reconstructing the fast-ion distribution from
diagnostic measurements in terms of fast-ion orbits had just been developed for
fast-ion D-alpha spectroscopy and neutral particle analyzers. This was done using
orbit weight functions. The immediate goal of this project was to develop orbit
weight functions for neutron emission and gamma-ray spectroscopy diagnostics.
This was completed and results were published in both the journal of Review
of Scientific Instruments (H. Järleblad et al, 2021, Paper I) and a special issue
of Nuclear Fusion (H. Järleblad et al, 2022, Paper II). However, for gamma-ray
spectroscopy, the more complicated two-step reactions were deferred to future
work.

A code framework for computing orbit weight functions was built as a foundation
to fascilitate such future advancement. The so-called Orbit Weight Computational
Framework (OWCF) provides a starting point for the computation of orbit weight
functions. The trajectories of guiding-center orbits are weighted, effectively
functioning as a fast-ion distribution function, and can be sent to synthetic
diagnostics codes via customized I/O pipelines. Furthermore, the OWCF also
functions as a hub for easy and accessible analysis. This is enabled via e.g. user-
friendly and customizable template scripts, as well as interactive web applications
that re-compute and re-plot figures in real-time.

The development of such analysis tools would not have been possible had it
not been for the work done by L. Stagner [38, 39, 56], which served as the
starting point for this project. However, albeit foundational, the work of L.
Stagner was expanded upon in various ways. For example, prior to this project,
fast-ion orbits completely confined to the high-field side area of the magnetic
axis had not been considered relevant for (E, pm,Rm) orbit-space analysis, i.e.
fast-ion orbits with Rm < Raxis (where Raxis is the major radius position of the
magnetic axis). This project identified such orbits as counter-stagnation orbits

99



CHAPTER 8

and showed that their topological region grows with increasing fast-ion energy. If
a diagnostic sightline views the co-going direction, and measurement bins for
heavily up-shifted nominal birth energies are examined, the contribution from
counter-stagnation orbits could be significant. In future fusion plasmas with a
significant fusion-born fast-ion population, because the total birth distribution of
fusion products is approximately isotropic, the counter-stagnation orbits might
constitute a considerable fraction of the fast-ion distribution.

This project continued to break new ground by introducing the concept of
decomposing a diagnostic signal according to the contribution from the different
fast-ion orbit types. This orbit-splitting of a diagnostic signal can be used to e.g.
confirm heating schemes such as the three-ion heating scheme, where a relatively
large population of high-energy co-passing orbits are created. It can also be used
to provide an easy overview of which orbit types a diagnostic is able to observe,
thus providing insight into the design of future fast-ion diagnostics.

Furthermore, the concept of mapping the poloidal and toroidal transit times for
all fast-ion orbits was developed, thanks to an idea by M. Salewski. These maps
can then be visualized interactively via a simple slice-by-slice approach in terms
of constant fast-ion energy. As is decribed in the OWCF manuscript (H. Järleblad
et al, Submitted to Comp. Phys. Comm., Paper III), this can also be performed
in (E, p,R,z) phase space. The tools can be used to e.g. interactively investigate
which orbit types pass through a certain (R,z) point of a tokamak cross section,
as well as their respective poloidal and toroidal times.

Using the OWCF tools developed during this project, an analysis of JET DT
discharge 99965 was performed. As ICRH was switched off, a decrease in
the (synthetic) signals of the KM14 diamond matrix and MPRu proton recoil
diagnostics was observed. The diagnostic signals and the decrease were found
to likely originate mostly from co-passing orbits. Even though the fast-ion
distribution consisted mostly of trapped orbits, the orbit sensitivities of the
diagnostics lifted the co-passing signal contribution up above the trapped signal
contribution. The analysis is being prepared in a manuscript (H. Järleblad et al,
Paper IV) to be submitted to the journal Nuclear Fusion.

Finally, there is plenty of future work that can be imagined following this PhD
project. Some has already been mentioned in this chapter, and further future work
includes the following. First, orbit weight functions for two-step fusion reactions
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can be developed, such as the 9Be(α ,n)12C∗ → 9Be(α ,n γ)12C reaction. This is
imagined to be of great importance for reconstructing the α-particle distribution in
e.g. JET and future ITER DT-plasmas. The process for computing such two-step
orbit weight functions could be implemented in e.g. the OWCF. Continuing, there
are several ways in which the OWCF can be further developed; including more
optimized performance, I/O pipelines for more synthetic diagnostics codes and
the usage of diagnostic sightlines described by other file formats than the LINE21
file format. Regarding the orbit weight functions, future work also includes new
attempts at reconstructing the fast-ion orbit-space distribution in JET. With the
new insights and methods discussed in Chapter 6, it is imagined that a successful
reconstruction should be possible, given the right conditions and approach.

This PhD project has paved the way for future research in the area. The gained
insights will help improve the understanding of the behaviour of fast ions in
tokamak fusion plasmas. The orbit weight functions for neutron emission and
gamma-ray spectroscopy diagnostics will help illuminate the relation between
fast-ion orbits and diagnostic measurements. The OWCF will provide tools that
enable more efficient, effective and pedagogical analysis of fast-ion orbits. This
will help prepare the current and next generation of plasma physicists for the
coming era of burning fusion plasmas. An era of fusion power plants and virtually
limitless sustainable energy.
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Appendices

Daily Human Energy Need
The arguably simplest possible method of estimating the daily energy need for a human,
is to use Fourier’s law to estimate the power, and subsequently the energy, needed to
maintain a body temperature of 37 degrees Celcius:

∂q
∂ t

=−k
dT
dx

(8.1)

where ∂q/∂ t is the heat flux in Jm−2s−1, k is the thermal conductivity in Wm−1K−1 and
dT/dx is the temperature gradient in Km−1. We can approximate the thermal conductivity
of a human with the thermal conductivity of water, k = 0.591 W/mK 1, dT/dx≈ ∆T/∆x,
∆T = (37+273.15)− (20+273.15) = 17 K and ∆x = 0.1 m. We then get

∂q
∂ t
≈ 100 Jm−2s−1. (8.2)

We can then multiply with the total area A of the human body to estimate the power
(Js−1=W) needed to maintain a temperature difference of 17 degrees Celcius between the
human body and the outside. We get

P = A
∂q
∂ t
≈ 1.0×100 = 100 W (8.3)

where we have approximated the area of the human body as A≈ 1 m2. If we then multiply
with 24 hours, we can finally estimate the daily human energy need to be

E = P× t = 100W×24h = 2.4 kWh. (8.4)

1https://whatsinsight.org/thermal-conductivity-of-water/
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ABSTRACT
Fast ions in fusion plasmas often leave characteristic signatures in the plasma neutron emission. Measurements of this emission are subject
to the phase-space sensitivity of the diagnostic, which can be mapped using weight functions. In this paper, we present orbit weight functions
for the TOFOR and NE213 neutron diagnostics at the Joint European Torus, mapping their phase-space sensitivity in 3D orbit space. Both
diagnostics are highly sensitive to fast ions that spend a relatively large fraction of their orbit transit times inside the viewing cone of the
diagnostic. For most neutron energies, TOFOR is found to be relatively sensitive to potato orbits and heavily localized counter-passing orbits,
as well as trapped orbits whose “banana tips” are inside the viewing cone of TOFOR. For the NE213-scintillator, the sensitivity is found to be
relatively high for stagnation orbits.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040696

I. INTRODUCTION
The age of burning plasmas is quickly approaching. With the

ITER tokamak1,2 and smaller projects such as SPARC,3 burning
plasmas will pose novel challenges in regard to dominant alpha
particle heating. Fast alpha particles are created in fusion reac-
tions between fast deuterium (D) and tritium (T) ions, which will
be further explored in the upcoming DT campaign at Joint Euro-
pean Torus (JET).4 The behavior of these fast ions may lead to
undesired losses in energy and fast-ion density5 of varying sever-
ity, such as via the development of energetic particle modes,6 via
the interaction with Alfvén eigenmodes,7–9 and via the interac-
tion with sawteeth instabilities.10–13 Understanding the behavior and
physics of these fast ions is therefore considered paramount.14–16
Prior to the development of the tools of velocity-space tomogra-
phy,9,17–23 an assessment of how the fast ions are distributed in veloc-
ity space was only possible by simulations of the fast-ion distribution

function and finding the simulation matching the experimental data
the best.23,24 With velocity-space tomography, a reconstruction of
the fast-ion distribution from measurements became possible via
weight functions.14 A weight function w is the phase-space sensitiv-
ity of a diagnostic. When its product with the fast-ion distribution
f is integrated over phase space (x, v), the diagnostic signal s is
obtained. This can be expressed as

s(E1,d,E2,d) =∬ w(E1,d,E2,d, x, v) f (x, v)dxdv, (1)

where E1,d,E2,d are used to indicate the boundaries of an energy
bin in which particles or photons are detected by the diagnos-
tic. From here on, the dependence on E1,d,E2,d will be omitted
for brevity. For a single diagnostic energy bin, the weight func-
tions used in velocity-space tomography are two-dimensional, with
energy (E) and pitch (p) dependence. Utilizing velocity-space weight
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functions with tomography, it is possible to infer the fast-ion dis-
tribution in a small measurement volume around a single cross-
sectional point (R,Z). Velocity-space weight functions have been
developed for various fast-ion diagnostics, including fast-ion D-α
spectroscopy (FIDA),25,26 collective Thomson scattering,5,28 gamma-
ray spectroscopy,28,29 fast-ion loss detectors,30 neutral particle ana-
lyzers,27 neutron emission spectroscopy (NES),31,32 and 1D weight
functions for ion cyclotron emission diagnostics.33 However, with
velocity-space tomography, the full 3D fast-ion distribution of all
ions in the tokamak eludes reconstruction. Orbit weight functions
solve this problem by using the physical correlation of the points
along fast-ion orbits. This enables an inference of the complete fast-
ion distribution (assuming toroidal symmetry, guiding-center pic-
ture and neglecting collisions) in three-dimensional orbit space.34
The distribution in orbit space can then be transformed into the
corresponding distribution in (E, p,R,Z). Processes for calculating
orbit weight functions have been developed for neutron scintillators,
NPA, and FIDA.35 This paper concerns the development of orbit
weight functions for NES diagnostics. At the JET tokamak, neutron
spectroscopy is well-established,36 velocity-space weight functions
have already been developed,31,32 and it is used as a main diagnos-
tic for fast-ion studies.36,37 The development of NES orbit weight
functions will enable more detailed studies of fast ions in burning
plasmas at JET in the upcoming DT campaign.

This paper is organized as follows: In Sec. II, the choice of orbit
coordinates is motivated, the coordinates are explained, and orbit
space is described. In Sec. III, an overview of how to calculate orbit
weights is presented and described in more detail for the TOFOR38

and a NE213-scintillator39 at JET. In Sec. IV, orbit weight functions
for NES at JET are presented and visualized. Thereafter, a conclusion
and outlook follow in Sec. V.

II. ORBIT SPACE (E,pm ,Rm )
There are several possible choices when it comes to labeling

orbits in a tokamak plasma.40,41,42 The labeling can be done via a cho-
sen set of coordinates. The usual constants of motion coordinates
(E, μ, pϕ) = (energy, magnetic moment, toroidal canonical angu-
lar momentum) do not uniquely identify orbits.41 Therefore, to be
able to work with a purely 3D phase space, we have chosen to work
with the so-called orbit-space coordinates (E, pm,Rm).35 Here, E is
the kinetic energy of the fast ion, and pm is the pitch (ion velocity
parallel to the magnetic field divided by total ion velocity magni-
tude) at the maximum major radius position Rm of (the guiding-
center of) the orbit. Given a tokamak equilibrium and geometry, an
(E, pm,Rm) triplet uniquely labels any orbit (Zm is implicitly fixed).
Some example orbits are shown in Fig. 1, illustrating the concept of
an (E, pm,Rm) triplet. All orbits and relevant orbit-space quantities
in this paper are calculated for a deuterium ion.

In orbit space, there are specific topological regions corre-
sponding to the different types of orbits. In contrast to particle
space (E, p,R,Z), the gradient of the fast-ion distribution is usually
not continuous across topological boundaries in orbit space. This
is because continuity implies correlation, and it is not always the
case that topological regions that are close together in orbit space
are correlated. When crossing the boundary between two topolog-
ical regions, the orbit trajectory can change dramatically. It is even
possible that areas that are far apart in orbit space are more closely

FIG. 1. Example orbits with (E[keV], pm[−],Rm[m])-coordinates
(80, 0.15, 3.14) (stagnation), (80, 0.29, 3.21) (potato), (80, 0.47, 3.46)
(trapped), (80, 0.88, 3.57) (co-passing), and (80,−0.88, 3.67) (counter-passing)
for JET shot No. 96100 at 13.0012 s. The colored lines correspond to the
trajectories of the fast-ion guiding-center. The dotted lines correspond to the
magnetic flux surfaces. The colored points mark the Rm-coordinates of the orbits.
Note how the Z-coordinates of the Rm-points are slightly increasing with Rm, as a
result of the specific magnetic equilibrium.

correlated than areas that are near to each other.43 From Fig. 2, we
can observe how a large portion of orbit space (gray region) corre-
sponds to invalid and lost orbits. Lost orbits are orbits that intersect
the tokamak wall or the divertor. Invalid orbits are orbits that are
impossible to realize, given the magnetic equilibrium. The size of
this gray region can vary between tokamaks, time-stamps, etc. How-
ever, as previously investigated43 for the DIII-D tokamak, it seems to

FIG. 2. Orbit-space topology for JET shot No. 96100 at 13.0012 s with energy
E = 22.0 keV held constant. The black line marks the low-field side JET wall.
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consistently extend over a large portion of orbit space. Slices through
orbit space at other energies are qualitatively similar.

III. CALCULATING ORBIT WEIGHTS
To calculate a weight, one calculates the signal produced by

an ion at a specific action coordinate J, averaged over the angle
coordinates Θ. It can be stated generally as43

w(J) = (Π
i

1
τi
)∫

τ1

0
⋅ ⋅ ⋅∫

τi

0
S(J,Θ)dΘ, (2)

where w is the weight, τi is the final value before the corresponding
angle coordinate repeats, and S is the (synthetic) diagnostic signal.
For our orbit space of interest, J = (E, pm,Rm) and Θ = (t, γ,ϕ0),
where t is the time, γ is the gyro-angle, and ϕ0 is the initial toroidal
angle. Equation (2) can thus be written specifically as

w =
1

4π2τp∫
2π

0
∫

2π

0
∫

τp

0
S(E, pm,Rm, t, γ,ϕ0)dtdγdϕ0, (3)

where w = w(E, pm,Rm) is the orbit weight for a single (E, pm,Rm)

coordinate. The orbit weights are the signal per fast ion on that
orbit. In practice, the orbit weight functions are then calculated by
discretizing (3), calculating synthetic signals via a forward model
for distributions consisting of just one non-zero orbit-space voxel
(a representation of a delta function), averaging over (t, γ,ϕ0), and
structuring the signals into a matrix W. Calculating W can be
written as the following step-by-step process:

1. Let f = n f δ(E − Ei)δ(pm − pm,j)δ(Rm − Rm,k), where f is the
test fast-ion distribution and n f is a test fast-ion density

2. Transform f into the format needed by the forward model as
input

3. Use the forward model to calculate the signal S for that delta
function

4. Average over (t, γ,ϕ0)

5. Repeat for all (Ei, pm,j,Rm,k) points of interest.

In the case of NES, we are interested in how different orbits pro-
duce different neutron spectra or, equivalently, how sensitive a mea-
surement at a specific neutron energy is to different areas of orbit
space. We have focused on the TOFOR38 diagnostic and the NE213-
scintillator39 diagnostic, both installed at JET. TOFOR is installed
so as to view a collimated neutron flux coming up vertically from
the plasma. As can be seen in Fig. 3, TOFOR and NE213 are able to
observe neutrons originating from fusion reactions along the part of
the orbit that lies in the viewing cone of the diagnostic. Depending
on the orbit, the fast ion will spend a varying amount of time inside
the viewing cone. For both diagnostics (or any diagnostic), this will
result in different parts of orbit space acquiring different weights.
The neutron energy En can be related to the knownmotional state of
the reactants via the following equation:37,44

En =
1
2
mnV2

cm +
mn

mn +m f
(Q + K)

+ (Vcm cos θ)(
2mnm f

mn +m f
(Q + K))

1/2
. (4)

Here, mn is the neutron mass, and Vcm = ∣Vcm∣ where Vcm
= (m1v1 +m2v2)/(m1 +m2) is the center-of-mass velocity of the
two reactant ions, described by their masses m1 and m2 and veloc-
ities v1 and v2. m f is the mass of the second product of the
fusion reaction, Q is the nuclear energy release of the reaction,
K = m1m2v

2
rel/(2(m1 +m2)) is the relative kinetic energy of the

reactants, where vrel = ∣v2 − v1∣ and θ indicates the angle between
Vcm and the neutron velocity vector in the center-of-mass frame. In

FIG. 3. Viewing cones of the TOFOR and NE213 diagnostics are shown by green and red areas, respectively. Depicted as examples in (a) and (b), both diagnostics observe
part of the fast-ion guiding-center trajectories for the trapped orbits with shown (E[keV], pm[−],Rm[m]) coordinates. The equilibrium is the same as in Fig. 1. The ion
temperature and density profiles are shown in (b) as an inset.
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practice, the process of calculating an NES orbit weight (for a given
plasma equilibrium and a given bulk ion temperature profile and
density profile) is as follows. An orbit is calculated for an (E, pm,Rm)

triplet. Toroidal symmetry is assumed, which means that the orbit
is characterized by its projection onto the (R,Z) plane and by the
energy and pitch values at each (R,Z) point. Hence, this is effec-
tively an (E, p,R,Z) distribution representing the orbit. For a given
instrument (TOFOR or NE213), the expected diagnostic signal from
this distribution can then be calculated withMonte Carlomethods.45
We normalize these calculations to the total number of points on
the orbit, which gives the signal that one ion on this orbit would
give rise to, which is precisely the orbit weight that we are after.
The orbit weight functions presented in this work have been calcu-
lated for a 100 × 100 × 100 orbit-space grid with E : [20.65, 149.35]
keV, pm : [−0.99, 0.99], and Rm : [3.03, 3.80]m. To achieve these rel-
atively smooth weight functions, nomore than 500(E, p,R,Z) points
were used for each orbit. Often, the number of (E, p,R,Z) points was
significantly lower. The computational time is dependent on a num-
ber of factors. To calculate the orbit weight functions presented in
this paper, 40 Intel(R) Xeon(R) Scalable Gold CPUs 6148 2.20GHz
were used, with an estimated maximum of 17.21 GB utilized RAM
memory and a total computational time of ∼25 h (including pro-
gramming package initialization and calculation of the orbits). How-
ever, it should be noted that an orbit weight function calculated on
a 100 × 100 × 100 orbit-space grid uses about five orders of magni-
tude more valid orbits than what is needed to accurately mimic the
physics of the forward model in this case. For JET shot No. 96100,
an orbit weight function using just the valid orbits of a 17 × 15 ×
13 orbit-space grid (for example) is enough to closely reproduce the
expected diagnostics signal when multiplied with the fast-ion dis-
tribution [Eq. (1)]. The number of valid orbits needed to correctly
mimic the physics of the forward model with the orbit weight func-
tions will depend on the size of the non-zero areas of the fast-ion
distribution in phase space as well as the phase-space resolution
requirements for both the fast-ion distribution and the diagnostic.

IV. VISUALISATION OF ORBIT WEIGHT FUNCTIONS
Since orbit weight functions are three-dimensional, the pro-

cess of visualization is difficult. For every point in three-dimensional
orbit space, there is a corresponding weight. Thus, the data are four-
dimensional (one phase-space location and one weight). Previous
work has visualized orbit weight functions via projection onto the
three orthogonal coordinate planes.35 To be able to get a detailed
picture of how the sensitivity is distributed in terms of different orbit
types, this work has chosen to instead examine the orbit weight func-
tions slice-by-slice in terms of fast-ion energy E. The topological
boundaries for a specific energy can then be superimposed onto the
orbit weight function to easily identify the topological areas of high-
est sensitivity. In Fig. 4, it can be observed how, for the given fast-ion
energy and TOFOR neutron energy bin, large weights can be found
for potato orbits and heavily localized counter-passing orbits. It can
also be noted how a narrow region of large weights extends from
the potato region, through the trapped region, and out to the JET
wall. This is due to the “banana tips” of those trapped orbits coincid-
ing with the TOFOR viewing cone, where the fast ions then spend
a relatively large fraction of their poloidal transit times. Hence, the

FIG. 4. A slice of a normalized TOFOR orbit weight function with superimposed
topological boundaries. For a fast-ion orbit with E = 88.25 keV, the TOFOR neu-
tron energy bin with (E1,d ,E2,d) = (2.775, 2.875)MeV will be most sensitive to
potato orbits and counter-passing orbits heavily localized around the magnetic axis
(small Rm value). The three colored points indicate the coordinates of the trapped
orbits depicted in Figs. 3(a) and 3(b). The equilibrium is the same as in Fig. 1. The
colorbars indicate normalized weight.

sensitivity is higher. For the NE213-scintillator, the general struc-
ture of the orbit weight functions differs, as can be seen in Fig. 5. For
the given fast-ion energy and neutron energy bin, the sensitivity to
stagnation orbits is relatively high. This is in agreement with expec-
tations since many stagnation orbits will have their poloidal orbit
path projection completely within the NE213 viewing cone. The
slices presented in Figs. 4 and 5 are typical for most neutron energy
bins and fast-ion energies, albeit great variations do exist. Note that
the above results have been obtained assuming DD reactions only

FIG. 5. A slice of a normalized NE213 orbit weight function with superimposed
topological boundaries. For a fast-ion orbit with E = 88.25 keV, the NE213 neu-
tron energy bin with (E1,d ,E2,d) = (2.325, 2.425)MeV will be most sensitive to
stagnation orbits. The equilibrium is the same as in Fig. 1. The colorbars indicate
normalized weight.
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and exclusively beam-target neutron yield. The orbit-space sensitiv-
ity will likely vary for other scenarios. Recall also that the topology
of orbit space itself will vary depending on themagnetic equilibrium.
However, the discussion regarding orbits with a relatively high sensi-
tivity attributable to a relatively large fraction of the time being spent
within the viewing cone of the diagnostic is valid in general.

V. CONCLUSION AND OUTLOOK
Orbit weight functions have been developed for the TOFOR

and NE213-scintillator diagnostics at JET. They are comprised of
weights where each weight is the signal per fast ion on a unique
orbit. On their own, they describe the orbit-space sensitivity, that
is, for a given diagnostic, how sensitive a measurement of a spe-
cific energy bin is to the different regions of orbit space. The weight
functions show that both diagnostics are highly sensitive to orbits
whose fast ions spend a large fraction of their orbit transit times
inside the viewing cone of the diagnostic. In particular, TOFOR is
found to have relatively large weights for potato orbits and heavily
localized counter-passing orbits. The NE213-scintillator is found to
have relatively large weights for stagnation orbits. Together with a
TOFOR- or NE213-signal originating from a fast-ion distribution,
the orbit weight functions can be used to reconstruct the orbit-space
fast-ion distribution, which can then be transformed to obtain the
four-dimensional, gyro- and toroidally averaged fast-ion distribu-
tion function in energy, pitch, R, and Z. This will be shown in future
work.
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Abstract
Fast ions in the MeV-range can be diagnosed by neutron emission spectroscopy (NES) and
gamma-ray spectroscopy (GRS). In this work, we present orbit weight functions for one-step
fusion reactions, using NES and GRS diagnostics on perpendicular and oblique lines-of-sight
(LOS) at Joint European Torus (JET) as examples. The orbit weight functions allow us to
express the sensitivities of the diagnostics in terms of fast-ion (FI) orbits and can be used to
swiftly reproduce synthetic signals that have been computed by established codes. For
diagnostically relevant neutron energies for the D(D, n)3He reaction, the orbit sensitivities of
the NES diagnostics follow a predictable pattern. As the neutron energy of interest increases,
the pattern shifts upwards in FI energy. For the GRS diagnostic and the T(p,γ)4He reaction,
the orbit sensitivity is shown to be qualitatively different for red-shifted, blue-shifted and
nominal gamma birth energies. Finally, we demonstrate how orbit weight functions can be
used to decompose diagnostic signals into the contributions from different orbit types. For a
TRANSP simulation of the JET discharge (a three-ion ICRF scenario) considered in this work,
the NES signals for both the perpendicular and oblique LOS are shown to originate mostly
from co-passing orbits. In addition, a significant fraction of the NES signal for the oblique
LOS is shown to originate from stagnation orbits.
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1. Introduction

In future fusion reactors and experiments, fast ions will play
a vital role in maintaining the self-sustained heating of burn-
ing plasmas [2]. However, the interaction of fast ions with
the fusion plasma may lead to unstable magnetohydrodynamic
mode growth [3–5]. Fast ions can also be subject to anomalous
transport [3] and be lost from the plasma [6], which may lead
to a reduced heating efficiency and damage to first-wall com-
ponents [7]. An understanding of the coupling between fast
ions and the background plasma is therefore seen as impera-
tive for the success of fusion energy as a viable energy source
[6, 8–10].

The dynamics of fast ions is determined by the fast-ion
(FI) distribution function in phase-space, which consists of
position- and velocity-space. With velocity-space tomography
[11–18], the velocity-space FI distribution function can be
reconstructed from measurements by using the velocity-space
sensitivity of the diagnostics. This sensitivity can be expressed
in the form of two-dimensional weight functions. Velocity-
space weight functions have been developed for numerous
FI diagnostics: fast-ion D-α spectroscopy (FIDA) [19, 20],
collective Thomson scattering [21], one-step [22] and two-
step [23] gamma-ray spectroscopy (GRS), FI loss detectors
[24, 25], neutral particle analyzers (NPAs) [18], neutron emis-
sion spectroscopy (NES) [26, 27] as well as 1D weight func-
tions for ion cyclotron emission diagnostics [28]. However,
velocity-space weight functions only map the phase-space
sensitivity at a single point in position space. Hence, the FI
distribution function can only be reconstructed in a small
measurement volume at one major radius position R and ver-
tical position z. Orbit weight functions overcome this limi-
tation by using the known physical relationship between the
points along charged particle orbits to link isolated (R, z)
points to each other. Assuming magnetic equilibrium [29],
toroidal symmetry, a guiding-centre picture and low collision-
ality (ντ p � 1 where ν is the ion–ion collisional frequency
and τ p is the orbit poloidal transit time), the complete FI dis-
tribution function can be reconstructed in terms of orbits [30],
which can then be transformed into a distribution in energy E
and pitch p = v‖/v for all R and z. Orbit weight functions have
so far been developed for neutron scintillators [31], NPA [31],
FIDA [31] and NES [32].

In this work, we map out how the orbit sensitivity of NES
[33] and GRS [34] diagnostics vary with FI- and fusion prod-
uct energy (detected by the diagnostic). We examine the orbit
weight functions in detail for several fusion-product ener-
gies using a perpendicular and an oblique line-of-sight (LOS)
as examples, as relevant for e.g. the time-of-flight diagnos-
tic TOFOR [35], a LaBr3 detector [36, 37] and an NE213-
scintillator [38] diagnostic at the Joint European Torus (JET)
[1]. However, the methods developed in this work can be used
to compute orbit weight functions for any diagnostic sightline
and one-step fusion reaction with a neutron or gamma-photon
product. The more complicated two-step fusion reactions are
deferred to future work since these would require a reformu-
lation of the methods presented in this work via the treatment

of random variables [23]. Furthermore, we demonstrate that
the weight functions are able to reproduce the forward model
that predicts the diagnostic energy spectrum for a given fusion
reaction. Lastly, the orbit weight functions are combined with
FI distribution functions to analyze diagnostic signals in terms
of their orbit-type constituents.

The paper is organized as follows. In section 2, orbit space
and its various topological regions are introduced and the
dependence on energy is explained. In section 3, we discuss
the formalism behind orbit weight functions and how they can
be used to rapidly compute synthetic diagnostic signals. Orbit
weight functions are presented and discussed for a perpen-
dicular sightline in section 4 (relevant for TOFOR [35] and
the LaBr3 GRS diagnostic [36, 37]) and for an oblique sight-
line in section 5 (relevant for the NE213-scintillator [38]). In
section 6, orbit weight functions are used to split synthetic
signals into their orbit-type constituents as well as to exam-
ine from where in orbit space the signal can be expected to
originate. Lastly, a conclusion is presented in section 7.

2. Orbit space (E, pm, Rm), including the MeV range

The full six-dimensional charged particle motion in space x
and velocity v can be dimensionally reduced under relevant
assumptions. If we assume toroidal symmetry, we can reduce
the number of spatial dimensions by one. Similarly, by assum-
ing the variation of the magnetic field to be negligible on the
scale of the gyro-motion of the ion, so that the gyro-motion
is approximately a rotation around a circle, we can reduce
the number of velocity dimensions by one. If we also assume
the motion of the ion to have been unperturbed as it revisits the
same (R, z) coordinate, we can uniquely label all charged parti-
cle trajectories in a magnetic equilibrium with just one spatial
coordinate and two velocity coordinates. Given these assump-
tions, the particle motion is periodic and follows fixed spatial
trajectories called orbits. Since our aim is to ultimately utilize
three-dimensional orbit phase space for tomographic inver-
sion, the coordinates should be chosen carefully. It is arguably
preferable to choose the coordinates so that the space has
clear, finite boundaries and does not mix position and velocity
space [39]. Therefore, in this work, we use the (E, pm, Rm)
orbit-space coordinates [31]. E is the kinetic energy of the par-
ticle, and pm is the pitch (v‖/v) at the maximum major radius
position Rm of (the guiding-centre of) the orbit. All possible
orbits in a given tokamak equilibrium can be uniquely identi-
fied with an (E, pm, Rm) triplet. For a given FI energy E, orbit
space is bounded by [−1, 1] in pm and [Raxis − δR, RLFS] in Rm,
where Raxis and RLFS are the major radius positions of the mag-
netic axis and the low-field side wall, respectively. δR can vary
but has a natural maximum of δR = Raxis − RHFS where RHFS

is the location of the high-field side wall. However, in prac-
tice, δR = 1/5(Raxis − RHFS) is usually enough to include all
possible populatable orbits when working with orbit space.

In this work, all orbit-space quantities have been computed
assuming the magnetic equilibrium of JET shot No. 94701

2



Nucl. Fusion 62 (2022) 112005 H. Järleblad et al

Figure 1. Example (deuterium) orbits with (E [keV], pm [—], Rm [m])-coordinates (412.6, 0.333, 3.31) (potato), (69.9, 0.535, 3.53)
(trapped), (2125.9, 0.333, 3.22) (stagnation), (481.1, 0.758, 3.64) (co-passing), (138.5, −0.980, 3.73) (counter-passing) and
(2262.9, −0.333, 2.91) (counter-stagnation) for JET shot No. 94701 at 10.79 s. The colored lines show the poloidal projections of the
guiding-centre trajectories. The dotted white lines correspond to the magnetic flux surfaces. The colored points mark the Rm-coordinates of
the orbits.

at 10.79 s [34, 40–42], a three-ion ICRF scheme with core-
localized FI generation. Examples of the different orbit types
and their corresponding (E, pm, Rm) coordinates are shown in
figure 1.

Together, the three coordinates span a three-dimensional
space, named orbit space, where every point corresponds
to a unique orbit. As can be seen in figure 2, orbit space
can be divided into different topological regions where every
region corresponds to a specific orbit type. The exact shape,
position and size of a topological region depend on the
magnetic equilibrium, particle species and FI energy. Near
thermal energies of a few keV, there are primarily three regions
of appreciable size: co-passing, trapped and counter-passing.
At higher energies, three additional regions grow to significant
size: potato, stagnation and counter-stagnation. At the same
time, the trapped, co- and counter-passing regions shrink. This
means that at progressively higher FI energies, an increasing
fraction of the populatable orbits will be potato, stagnation
and counter-stagnation orbits. This is relevant for fusion-born
ions [such as DT-born alpha particles (3.52 MeV), DD-born
protons (3.02 MeV) and 3He ions (0.82 MeV), and D3He-
born protons (14.7 MeV) [43]]. Furthermore, a large por-
tion of orbit space will contain invalid and lost orbits (gray
and brown regions in figure 2, respectively). Invalid orbits
are orbits whose (E, pm, Rm) coordinates correspond to unre-
alizable particle trajectories given the magnetic equilibrium.
Lost orbits are orbits with trajectories that intersect the toka-
mak wall. The lost region also grows at increasingly high FI
energies.

Lastly, the orbit-space topology depends on the particle
species and magnetic equilibrium. This can be understood
from the Lorentz force law ma = q(E + v × B) which deter-
mines the particle acceleration and hence trajectory.

3. Weight function formalism

To derive the phase-space sensitivity of diagnostics, consider a
fast ion with position coordinate x and velocity coordinate v. A
weight function can be viewed as a mapping between a general
FI distribution f (x, v) and the resulting diagnostic signal s via
the following relation [19, 20, 44]:

s(E1,d, E2,d) =

∫
w(E1,d, E2,d, x, v) f (x, v)dx dv (1)

where E1,d and E2,d mark the lower and upper boundaries of a
diagnostic energy bin and w(E1,d, E2,d, x, v) is the weight func-
tion. Both the signal and the weight function will thus depend
on the diagnostic energy bin for which the measurement is con-
sidered. Equation (1) can then be written specifically for our
(E, pm, Rm) orbit space as follows

s(E1,d, E2,d) =

∫
w(E1,d, E2,d, E, pm, Rm)

× f (E, pm, Rm)dE dpm dRm. (2)

Here, we have assumed toroidal symmetry, a guiding-centre
picture and low collisionality as explained in section 1.
Equation (2) can then be discretized to give

s(E1,d, E2,d) =
∑

i, j,k

w(E1,d, E2,d, Ei, pm, j, Rm,k)

× f (Ei, pm, j, Rm,k)ΔEΔpmΔRm. (3)

To get a practical relationship between the signal of a diag-
nostic, which consists of several energy bins, and the FI
orbit-space distribution, we write the matrix equation

S = WF, (4)

3
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Figure 2. Orbit-space topology for JET shot No. 94701 at 10.79 s for three energy slices (FI energy held constant). The black line marks the
JET low-field side wall. The topology was computed for deuterium ions. 6.5 keV is the temperature of the bulk ion distribution at the
magnetic axis. 500 keV and 3500 keV were chosen to illustrate the energy dependence of the orbit-space topology.

where S has the size number of diagnostic energy bins ×1,
W has the size number of diagnostic energy bins × number
of valid orbits and F has the size number of valid orbits ×1.
The factor ΔEΔpmΔRm has been absorbed into W. We have
thus vectorized our orbit-space quantities and stacked the
weight functions row by row into a matrix. Hence, every row
of equation (4) is a case of equation (3). Equation (4) is math-
ematically the same equation as is used for velocity-space
tomography (and position-space tomography).

At this point, it can be helpful to introduce and explain some
nomenclature. In the context of orbit space,

• a weight relates a single diagnostic energy bin to a single
(E, pm, Rm) grid point. For a specific diagnostic energy bin
(E1,d, E2,d), it describes the sensitivity of the diagnostic to
the orbit at that particular orbit-space grid point. It has the
dimensions of signal per ion (the dimensions of the signal
depend on what diagnostic is used).

• a weight function relates a single diagnostic energy bin to
all points in orbit space. A discretized weight function is
thus comprised of many individual weights. It is a function
of the three orbit-space coordinates as w(E, pm, Rm).

• a weight function matrix (or weight matrix for short) is a
matrix where each row is a vectorized discretized weight
function. Each row corresponds to a specific diagnostic

energy bin and each column corresponds to a particular
orbit.

From here on, the label ‘discretized’ will be omitted for
brevity.

3.1. Computing weight matrices and orbit weight functions

To compute a weight matrix, the forward model of the diag-
nostic is used to compute predicted signals for all valid orbits
of a particular orbit grid. A set of diagnostic energy bins of
interest ([E1,d, E2,d), [E2,d, E3,d ), . . . , [En−1,d, En,d )), reflecting
the spectral resolution of the diagnostic, must be assumed for
the weight matrix. Each valid orbit is assumed to be popu-
lated by only a single particle (to achieve correct normaliza-
tion) and the orbit is split up into its (E, p, R, z) constituent
points. Each (E, p, R, z) point is then weighted according to
the fraction of the total poloidal transit time spent by the par-
ticle on a path length dl between that (E, p, R, z) point and
the next. The number of (E, p, R, z) points needed to accu-
rately represent an orbit will vary depending on the required
numerical accuracy [45], the complexity of the orbit as well
as the width of the (R, z)-projection of the viewing cone of
the diagnostic. In this work, �500 points were used through-
out. For one orbit, all weighted points effectively constitute
an (E, p, R, z) distribution for which the expected signal can
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Figure 3. The predicted diagnostic signals computed via the forward model (S) and via the weight matrix (WF) for NES with a
perpendicular sightline (a) and an oblique sightline (b), as well as for GRS with a perpendicular sightline (c). The NES signals are computed
using the D(D, n)3He reaction and the GRS signal is computed using the T(p, γ)4He reaction. The NES WF signals were computed using a
2400 × 102 × 104 grid in orbit space with E = [1.4, 2400.0] keV, pm = [−1.0, 1.0] and Rm = [2.76, 3.89] m. The GRS WF signal was
computed using the same grid points in pm and Rm but with 600 grid points in FI energy E and E = [1.4, 600.0] keV. Please note that this
relatively high orbit-space grid resolution was only used in order to validate that the WF and S signals converge as grid resolution
increases.

be computed with the forward model [46] for a given instru-
ment (e.g. TOFOR). This signal represents one column in the
weight matrix and the process is then repeated for all valid
orbits, resulting in the complete weight matrix. Every row of
the matrix then corresponds to an orbit weight function and
describes the orbit-space sensitivity for a specific diagnostic
energy bin.

Mathematically, this way of computing the weight func-
tions can be understood via equation (2) and setting
f (E, pm, Rm) = δ(E − Ei)δ(pm − pm, j)δ(Rm − Rm,k) to model
the single-particle valid orbit. We get

s(E1,d, E2,d) =

∫
w(E1,d, E2,d, E, pm, Rm)δ(E − Ei)

× δ(pm − pm, j)δ(Rm − Rm,k)dE dpm dRm

= w(E1,d, E2,d, Ei, pm, j, Rm,k), (5)

where (Ei, pm, j, Rm,k) denotes the orbit-space coordinate
of interest. Note that equation (5) simply describes the sensi-
tivity in orbit space but does not yet account for the extent to
which these orbits are actually populated (via F). As can be
understood from equation (4), for a given FI distribution F,
the weight matrix W can be used to very rapidly compute the
expected diagnostic signal S instead of performing the more
time-consuming computations usually needed to compute
synthetic signals. This is advantageous if synthetic signals for
many distribution functions are to be computed.

3.2. Validating orbit weight functions

To confirm that the weight matrix is equivalent to the standard
forward model, synthetic signals S (computed via the DRESS
code [46] forward model) are plotted together with the ’weight
matrix signals’ WF for given FI distributions in figure 3. This
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Figure 4. The viewing cones of the perpendicular (green) and oblique (red) sightlines, projected onto a toroidal (a) and poloidal (b) view.
The plasma within the last closed flux surface (LCFS) is depicted in indigo. The bulk (deuterium) density ni and temperature T i profiles for
JET shot No. 94701, averaged over our time window of interest, are shown as an inset. The electron density ne and temperature Te were
measured with high resolution Thomson scattering, after which T i = Te was assumed. ni was estimated from ne together with measurements
of Zeff made by visible bremsstrahlung diagnostics and the assumption that impurity ions are exclusively beryllium. The ni and T i profiles
correspond to data between Raxis and RLCFS at zaxis and are representative for the plasma as a whole.

Figure 5. The total injected NBI and ICRH power as functions of time for JET shot No. 94701 are shown in (a). The dotted lines delimit the
time window of this work. The corresponding average TRANSP NUBEAM-computed FI deuterium distribution function for the time
window is shown in (b) as a function of energy.

has been done for NES and GRS diagnostics with perpendicu-
lar sightlines (corresponding to the LOS of TOFOR [35] and a
LaBr3 gamma-ray detector [36, 37]) and for an additional NES
diagnostic with an oblique sightline (corresponding to the LOS
of a NE213-scintillator [38]). Their sightlines are illustrated
in figure 4. The D(D, n)3He reaction was used for the NES
diagnostics and the T(p, γ)4He reaction was used for the GRS
diagnostic.

For the NES diagnostics, the average FI deuterium distri-
bution function was computed for JET shot No. 94701 for our
time window of interest using the TRANSP [47] code (v19.2)
with the NUBEAM [48] module coupled to TORIC [49] (for

the RF-acceleration of the ions) together with the RF kick
operator [50, 51]. The magnetic equilibrium at 10.79 s is thus
used as the average magnetic equilibrium for our time win-
dow. The time traces of the neutral beam injection (NBI) and
ion cyclotron resonance heating (ICRH) power are shown in
figure 5(a), and the FI deuterium distribution function is plot-
ted as a function of energy in figure 5(b) (where the other
dimensions have been integrated out). The thermal deuterium
distribution is plotted as an inset in figure 4.

For the GRS diagnostic, the same ni and T i profiles as in
figure 4 were used for the thermal tritium distribution but the
ni profile was re-normalized so that nT = 1013 m−3 on-axis.
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Figure 6. Three orbit weight functions for the perpendicular sightline (corresponding to the LOS of e.g. TOFOR [35]) and D(D, n)3He
reaction. The number of grid points in pm and Rm is 100. The neutron energies of (a) 3, (b) 5 and (c) 7 MeV were chosen because neutron
energies down-shifted below the nominal D(D, n)3He birth energy of 2.45 MeV are diagnostically indistinguishable from scattered neutrons.
The FI energy refers to one of the fusing deuterium ions. For ease of visualization, the data in each energy slice has been normalized to have
a maximum value of 1.0. The actual maximum value wE,max is found in the title of each slice plot as wE,max = 1.0.
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Figure 7. The same TRANSP NUBEAM-computed FI deuterium distribution function as shown in figure 5(b), but split into its orbit-type
constituents. The sum of all the colored lines equals the black line in figure 5(b). The significant population of MeV-range co-passing fast
ions for three-ion ICRF schemes at JET has been discussed in [52]. The noise at high energies is due to sampling and can be reduced if we
increase the number of orbit samples when transforming the FI distribution to orbit space.

For the fast protons, a Maxwellian distribution was used with
T = 30 keV and with the same 2D (R, z) density profile as that
of the TRANSP FI deuterium distribution used in this work.
The total number of fast protons was set to Np = 6 × 1013.

As we can observe from figure 3, the signals produced by
multiplying the orbit weight functions (W ) with the FI distribu-
tion functions (F) closely match the signals computed via the
conventional forward model (S). This confirms that the orbit
weight functions are computed correctly and provide an accu-
rate map of the orbit-space sensitivity of the diagnostics, which
we will examine in sections 4 and 5.

4. Orbit weight functions for perpendicular
sightlines

4.1. Neutron emission spectroscopy

Based on the formalism in sections 2 and 3, figure 6 shows
examples of the orbit sensitivity of the perpendicular sightline
at JET (the sightline of TOFOR) for selected FI energies E and
diagnostic (neutron) energies Ed. For each diagnostic energy of
an NES (or GRS) spectrum, we will show three selected slices
of the corresponding 3D orbit weight function. The orbit sen-
sitivity displays a complicated dependence on the orbit-space
coordinates and diagnostic (here neutron) energy Ed. Never-
theless, certain general features can be identified. For all three
neutron energies, the orbit sensitivity is relatively concen-
trated around the potato region (figures 6(aa), (ba) and (ca))
for the lowest E considered here and then widens outwards
towards the pm = ±1.0 boundaries at increasing FI energies
((ab)–(ad), (bb)-(bd) and (cb)-(cd)). For potato orbits, the ion
spends a large fraction of its poloidal transit time inside the
LOS and v‖ → 0 (v⊥/v → 1) at the same time. Ions on potato
orbits are thus able to produce a large amount of up-shift of
the neutron nominal birth energy (which is most important
at low FI energies) for a large fraction of the poloidal tran-
sit time. This results in a relatively large orbit sensitivity for

the E and Ed of interest (figures 6(aa), (ba) and (ca)). Fur-
thermore, the narrow region of relatively high sensitivity of
trapped orbits (most clearly visible in figures 6(aa)–(ad)) is
due to the ‘banana tips’ perfectly coinciding with the perpen-
dicular sightline [32]. The ions spend a relatively large fraction
of their poloidal transit time at these banana tips, which results
in a relatively large sensitivity. At higher FI energies, the
counter-stagnation region becomes the area of highest sensitiv-
ity. This is because counter-stagnation orbits have the poloidal
projection of their trajectories almost completely within the
perpendicular sightline. For the TRANSP FI deuterium dis-
tribution examined in this work, the counter-stagnation orbits
are scarcely populated, as shown in figure 7. However, in
future fusion devices, the counter-stagnation orbits are likely
going to be populated by fusion-born alpha particles because
of their high energy and (approximately) isotropic birth pitch
distribution.

As we look at increasingly higher neutron energies, the fea-
tures of the weight functions stay roughly the same but the 3D
structures are translated ‘upwards’ to higher FI energies.

4.2. Gamma-ray spectroscopy

The GRS diagnostic examined in this paper has the same
sightline as the perpendicular NES diagnostic. Therefore, the
NES and GRS orbit weight functions will have similar orbit
sensitivity due to the usage of the same sightline, but differ-
ences due to the masslessness of the T(p, γ)4He gamma photon
[22]. As can be seen in figure 8(a), the orbit sensitivity for
gamma energies below the nominal birth energy is relatively
low (maximum wE,max in figure 8(a) is an order of magnitude
smaller than maximum wE,max in figure 8(b) and three orders
of magnitude smaller than maximum wE,max in figure 8(c)).
This is consistent with the often strongly asymmetric shape of
one-step reaction GRS spectra, which have low signal levels
below the nominal gamma nominal birth energy [53]. The
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Figure 8. Three orbit weight functions for the perpendicular sightline (corresponding to the LOS of e.g. the LaBr3 diagnostic [36, 37]) and
T(p, γ)4He reaction. One at red-shifted gamma energies (a), one at the T(p, γ)4He gamma nominal energy (b) and one at blue-shifted gamma
energies (c). The number of grid points in pm and Rm is 100. The FI energy refers to the proton energy of the T(p, γ)4He fusion reaction. For
ease of visualization, the data in each energy slice has been normalized to have a maximum value of 1.0. The actual maximum value wE,max
is found in the title of each slice plot as wE,max = 1.0.
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Figure 9. Three orbit weight functions for the oblique sightline (corresponding to the LOS of e.g. the NE213-scintillator diagnostic [38]) and
D(D, n)3He reaction. The number of grid points in pm and Rm is 100. The FI energy refers to one of the fusing deuterium ions. For ease of
visualization, the data in each energy slice has been normalized to have a maximum value of 1.0. The actual maximum value wE,max is found
in the title of each slice plot as wE,max = 1.0.
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Figure 10. Diagnostic signals split into their orbit type constituents for (a) NES with perpendicular LOS, (b) NES with oblique LOS and
(c) GRS with perpendicular LOS. The same orbit-space grid points, FI- and bulk distributions were used as those in figure 3.

sensitivity is mostly concentrated around the tip of the
counter-stagnation region in the pm < 0.0 half-plane
and the potato region in the pm > 0.0 half-plane. All
weights become zero for higher FI energies (figure 8(ad)).
This is because fast ions with such a high energy will
result in gamma photons with too high energy for the
19.7 MeV diagnostic energy bin. At gamma energies
close to the nominal birth energy, the orbit sensitivity is
non-zero down to thermal ion energies and up to the several
hundreds of keVs, as can be observed in figure 8(b). Just above
thermal ion energies, the area of highest sensitivity tends out-
wards towards the pm = ±1.0 boundaries (figure 8(bb)) before
reverting back in towards the tip of the counter-stagnation
and potato regions (figure 8(bc)) at increasing E. Similar
to the orbit weight function for the 19.7 MeV diagnostic energy
bin, all weights become zero for sufficiently high FI energies.

At gamma energies above the nominal birth energy,
the orbit sensitivity follows a predictable pattern. At rel-
atively low FI energies (figure 8(ca)), the sensitivity is
mainly concentrated around the potato region and tip of the
counter-stagnation region. This is similar to the orbit sensi-
tivity for gamma energies below the nominal birth energy

(figures 8(aa)–(ac)), but the reason is now due to the need
for blue-shift instead of red-shift of the gamma birth energy.
At increasing FI energy (figures 8(cb) and (cc)) the sensitivity
becomes more concentrated towards the pm = ±1.0 bound-
aries, but again migrates inward towards the potato region
and the tip of the counter-stagnation region at E ≈ 2 MeV
(figure 8(cd)). At FI energies above ≈2500.0 keV, all weights
become zero for the 21.0 MeV diagnostic energy bin. For
increasingly high gamma energy bins (Ed > 21.0 MeV), the
whole pattern observed for the 21.0 MeV orbit weight func-
tion will stay roughly the same and move ‘upwards’ to higher
FI energies.

5. Orbit weight functions for an oblique sightline
(NES)

The viewing cone of the NE213-scintillator NES diagnos-
tic considered in this paper has an oblique sightline w.r.t. B.
Therefore, the patterns of the weight functions will differ sig-
nificantly compared to those associated with the perpendic-
ular sightline. However, the non-zero weights will be found
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Figure 11. Same as figure 10, but the sum of the orbit constituents has been normalized to 1.0 for all diagnostic energies of interest. The
normalized ‘WF’ signals taken from figure 3 have been superimposed for convenience.

in similar FI- and neutron energy ranges as for the perpen-
dicular sightline because the same fusion reaction D(D, n)3

He is being considered. In figure 9, we can observe how the
non-zero weights are mostly concentrated to the pm > 0.0
half-plane. The orbits in the pm < 0.0 half-plane will result
in ion motion exclusively away from the oblique NES diag-
nostic. Ions on these orbits are therefore mostly unable to
produce the up-shift required for the neutron energies of inter-
est. However, at high FI energies, the counter-stagnation orbits
have enough energy and just the right pitch as they cross the
oblique sightline that they can produce sufficient up-shift as
well (figures 9(ad) and (bd)). Furthermore, the following sim-
ilar overall features can be observed in all weight functions
(figures 9(a)–(c)). The areas of highest sensitivity are con-
centrated to two islands close to the stagnation region and in
the middle of the co-passing region. These areas then split at
increasingly high FI energies. They tend toward the pm = 1.0
boundary and the bottom of the stagnation region. At very high
FI energies (figures 9(ad), (bd) and (cd)), the sensitivity close
to the pm = 1.0 boundary starts to become zero since ions on
those orbits will now produce too much up-shift for the neutron
energies of interest. Similar to the case of the perpendicular

diagnostics, for increasingly high neutron energies the 3D pat-
tern will stay roughly the same and move ‘upwards’ to higher
FI energies.

6. Orbit-space origin of diagnostic signals for
given FI distribution functions

With orbit weight functions, we can split the predicted diag-
nostic signal of a FI distribution function into orbit-type con-
stituents. Mathematically, this can be expressed as

WF =
∑

h

WhFh, (6)

where h labels all the different orbit types (co-passing, trapped,
etc). The FI distribution function in terms of orbit types (Fh)
can be obtained by transforming the FI distribution function
into orbit space to obtain f (E, pm, Rm), and identifying the
(E, pm, Rm) coordinates corresponding to a given orbit type.
This is also the method which allows us to split e.g. f (E) into
its orbit-type constituents (as in figure 7). Via pointwise mul-
tiplication between Fh and w(E, pm, Rm), we can obtain signal
contributions for every diagnostic energy bin in terms of orbit
types. This allows us to re-examine the diagnostic signals of
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Figure 12. (a) An orbit-space energy slice of the average FI deuterium distribution function for JET shot No. 94701 for our time window of
interest. (b) The data in panel (a) is pointwise multiplied with the NES orbit weight function w(150, pm, Rm) for the neutron energy
Ed = 3 MeV, corresponding to the weight function slice in figure 6(aa)).

figure 3 in terms of orbit types, as shown in figure 10. For the
perpendicular LOS with NES and the average FI deuterium
distribution function for JET shot No. 94701 for our time
window of interest, the signal comes mainly from co-passing
orbits for all neutron energies of interest. At neutron energies
around the nominal birth energy (2.45 MeV), there are also sig-
nificant contributions from trapped and counter-passing orbits
to the signal generated by fast ions. However, this neutron
energy range is difficult to diagnose due to the presence of
down-scattered neutrons. For the oblique LOS with NES and
the same FI distribution, in addition to co-passing orbits a
large portion of the signal comes from stagnation orbits. For
the perpendicular LOS with GRS and the Maxwellian FI test
distribution (discussed in section 3.2), the signal comes from
co-passing, counter-passing and trapped orbits in comparable
fractions.

By normalizing the signal to 1.0 for all neutron energies
of interest (figure 11), we can examine the signal contribu-
tions from different orbit types more closely. For the diag-
nostics with the perpendicular LOS (figures 11(a) and (c),
respectively), the normalized plots confirm the deductions
made from figures 10(a) and (c). For the oblique LOS with
NES (figure 11(b)), we can observe how the contributions
from all orbit types but counter-passing and counter-stagnation
orbits vanish for neutron energies below 2.0 MeV. This is
because heavy down-shift of the neutron nominal birth energy
is required for a neutron to be detected in those diagnostic
energy bins. The only orbit types that can produce that type
of down-shift, given the oblique sightline, are counter-passing
and counter-stagnation orbits. However, note that the abso-
lute magnitude of the diagnostic signal starts to vanish for
such heavily down-shifted neutron energies. In addition, the
signal at those neutron energies is usually heavily dominated
by scattered neutrons, which makes the neutron energy range
unusable for diagnosing fast ions [2].

Finally, we can also examine the expected origin of the
diagnostic signal in orbit space in detail. This is illustrated in
figure 12. At E = 150 keV, we have populated orbits of all
types, and we might expect them all to contribute to the signal.

However, when pointwise multiplied with an NES orbit weight
function, such as the w(150 keV, pm, Rm) for neutron energy
Ed = 3 MeV (corresponding to figure 6(aa)), we can observe
that almost all NES signal will originate from potato-like orbits
for the neutron and FI energies of interest. This is because at
E = 150 keV and Ed = 3 MeV, the NES orbit weight function
for the perpendicular LOS (e.g. TOFOR) is non-zero almost
exclusively for potato-like orbits.

7. Conclusion

In this work, orbit weight functions have been presented for
one-step fusion reactions, using a perpendicular and an oblique
LOS with NES and GRS diagnostics as examples. The orbit
weight functions have been examined for different diagnostic-
and FI-energies for the first time. Sensitivity patterns can
be identified and understood via slice-by-slice examination
in terms of FI energy, while superimposing the topological
boundaries between different orbit types.

For the perpendicular LOS and the D(D, n)3He reaction, at
relatively low FI energies the sensitivity is highest for potato
and counter-stagnation orbits. At increasingly high FI ener-
gies, the area of highest sensitivity tends toward the pm = ±1.0
boundaries, corresponding to co- and counter-passing orbits
with ion pitch (v‖/v) values close to 1.0. Orbit weight func-
tions for increasingly high neutron energies have 3D patterns
that remain qualitatively similar but are shifted ’upward’ to
increasingly high FI energies. The results can be used to con-
clude that TOFOR [35] (and any diagnostic sharing the LOS)
is in general sensitive to neutrons originating from fast ions
on potato orbits but not sensitive at all to neutrons originating
from fast ions on stagnation orbits. This is because stagnation
orbits at JET are mostly localized outside the viewing cone of
TOFOR.

For the perpendicular LOS and the T(p, γ)4He reaction, the
orbit sensitivity is generally low for gamma energies below the
gamma nominal birth energy and is concentrated to potato-
like and counter-passing orbits localized near the magnetic
axis. At the nominal birth energy, the weights are non-zero
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down to thermal energies where the sensitivity decreases as
Rm increases. At E ≈ 50 keV, the sensitivity is relatively high
for orbits localized close to the magnetic axis with pm → ±1.0.
At increasingly high FI energies, the area of highest sensitivity
tends towards potato-like and counter-stagnation orbits, before
all weights become zero for sufficiently high FI energies.

For the oblique LOS and the D(D, n)3He reaction, the areas
of highest orbit sensitivity correspond to co-passing and stag-
nation orbits. The sensitivity is almost exclusively zero for
counter-passing and counter-stagnation orbits since ions on
those orbits are unable to produce the upshift required for the
neutron energies of interest (Ed > 2.5 MeV).

For all diagnostics, the orbit sensitivity is mostly deter-
mined by the location and orientation of the sightline
(perpendicular, oblique, co-current, counter-current, poloidal
projection etc). For a given FI distribution function, the syn-
thetic signals computed via the orbit weight functions are
shown to closely match those computed with established for-
ward models (in this work, the DRESS code [46] was used).
In addition, the weight function signals can be split into their
orbit-type constituents, which makes it possible to deduce sig-
nal origin in terms of orbit types. For JET shot No. 94701 and
the time window of interest, the synthetic NES signals (cor-
responding to signals detectable by e.g. TOFOR [35] and the
NE213-scintillator [38] but without an instrumental response
function) are found to originate mostly from co-passing orbits.
In addition, for the oblique LOS NES signal (e.g. the NE213-
scintillator), a significant fraction originates from stagnation
orbits.

In future work, orbit weight functions will be developed
for two-step fusion reactions as well, which will enable us to
express the sensitivities of diagnostics using e.g. alpha-particle
FI orbits. In addition, orbit weight functions will be used to
optimise the design of existing and new FI diagnostics via, for
example, maximising the amount of non-zero weights in orbit
space. Finally, orbit weight functions will be used to recon-
struct the full (E, p, R, z) FI distribution function from fusion-
product measurements via orbit tomography as was recently
achieved for FIDA measurements [30]. This is expected to
help illuminate key relationships between the behavior of fast
ions (including alpha particles) and various plasma instabilities
such as Alfvén eigenmodes, sawteeth and energetic particle
modes, causing undesired redistribution of fast ions. This is
highly relevant both for ongoing experiments such as JET and
future tokamaks such as ITER where fast ions will be crucial
to achieve self-sustained heating of burning plasmas.
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Abstract

In fusion plasma physics, the trajectories of energetic particles in magnetic
confinement devices are known as orbits. To effectively and efficiently be able
to work with orbits, the Orbit Weight Computational Framework (OWCF)
was developed. The OWCF constitutes a set of scripts, functions and ap-
plications capable of computing, visualizing and working with quantities re-
lated to fast-ion (FI) orbits in toroidally symmetric fusion devices. The
current version is highly integrated with the DRESS code, which enables the
OWCF to compute and analyze the orbit sensitivity for arbitrary neutron-
and gamma-diagnostics. However, the OWCF is modular in the sense that
any future codes (e.g. FIDASIM) can be easily integrated. The OWCF can
also compute projected velocity spectra for FI orbits, which play a key role in
many FI diagnostics. In terms of magnetic equilibrium, the OWCF accepts
any magnetic equilibrium file used by the TRANSP code, as well as any
user-specified Solov’ev magnetic equilibrium. The interactive applications
of the OWCF can function both as tools for investigative research but also
for intuitive pedagogical purposes. The OWCF will be used to analyze and
simulate the diagnostic results of current and future fusion experiments such
as ITER. The orbit weight functions computed with the OWCF can be used
to reconstruct the FI distribution in terms of FI orbits from experimental
measurements using tomographic inversion.
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1. Introduction

In magnetic confinement fusion devices, such as tokamaks, the popula-
tion of particles can be categorized into two sets; thermal and energetic [36].
In tokamaks of size similar to the Joint European Torus (major radius ∼ 3
meters)[16], the following distinction can be made. If we take three times
the thermal velocity as a threshold, 3vth, the energetic fast ions are ∼ 10
times more energetic than the thermal (bulk) ions. For a typical plasma
temperature of 1− 10 keV (≈ 1− 11× 107 K), the lower limit for energetic
particles should arguably be placed around 10 keV. In reality, the transi-
tion from thermal to fast is naturally continuous. Even though the fast-ion
(FI) population can be 2-3 orders of magnitude smaller than the thermal
population[12], fast ions can cause damage to first-wall components[41] and
drive plasma instabilities[42, 46]. Fast ions also need to be confined for a
sufficient length of time (several slowing-down times, i.e. slowing down from
fast to slow speeds) so as to heat the thermal ions and enable a self-sustained
plasma burn[41].

Because of their relatively low energy, the thermal ions stay mostly con-
fined to the magnetic flux surfaces, while the fast ions have more exotic mo-
tion that can deviate substantially from the magnetic flux surfaces[17, 12].
This exotic motion is commonly named a fast-ion orbit (FIO). The distance
that the fast ions deviate from the flux surfaces is roughly proportional to
the FI energy. Since EFI ≈ 10Ebulk, the FI drift speed is about 10 times
larger than the thermal drift speed. In a tokamak, the FIOs constitute fixed
trajectories that the fast ions must follow. A suitable analogy would be that
the fast ions can be thought of as cars and the FIOs as highways. Since
the fast ions must follow these highways, energy and particles flow along
them and effectively define the FI distribution. The analogy also works for
thermal ions, but with less exotic orbits as highways. The particle flow is
dominated by the bulk (thermal) plasma, while energy flow is often carried
to a significant fraction by the the fast ions.

Depending on the energy, starting position and angle of the particle ve-
locity with respect to the magnetic field, the path of the FIOs can vary
substantially. Therefore, it is of great importance to know how sensitive a
diagnostic is to different FIOs, since various diagnosable particles or quanta
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(e.g. fusion-born neutrons and γ-rays) might originate more strongly from
certain FIOs[12]. Depending on the heating scheme of the tokamak plasma,
certain FIOs will be more populated than others[12] and the exact shape of
the diagnostic signal is thus dependent on a multitude of factors, including
the magnetic equilibrium (which determines the shape of the topological FIO
regions in phase space)[11] and the heating scheme, as well as the density
and temperature profiles of the fusion plasma[14].

By knowing the sensitivity of a plasma diagnostic in phase space, the
signal can be directly related to the FI distribution, given the assumption
of a linear relationship between the signal and the FI distribution[32]. The
sensitivity of the FI diagnostic can be expressed with varying dimensional-
ity depending on the phase space of interest. For example, in velocity-space
tomography[27, 28, 33, 35, 34], the sensitivity is two-dimensional and can
be expressed as a so-called weight function of the parallel and perpendic-
ular velocity components (v||, v⊥) of the ion with respect to the magnetic
field (or, equivalently, via the energy E and pitch p = v||/v[6]). In terms of
computational resources, this 2D weight function is almost always possible
to compute on a regular laptop, for any phase-space grid resolutions of in-
terest; both in terms of RAM and CPU power. However, these 2D weight
functions can relate a diagnostic measurement to the FI distribution only
at a single point (R, z) in position space[48, 23, 34, 30, 31, 29], where R is
the major radius cylindrical coordinate and z the vertical coordinate. To
be able to relate a measurement to the FI distribution at all (R, z) points
via FIOs, three-dimensional so-called orbit weight functions (OWs) can be
used[11, 12, 23, 22]. The (E, pm, Rm) so-called orbit space is the 3D co-
ordinate space of choice for the current version of the OWCF, due to its
semi-bounded space and favorability for tomographic reconstructions[12]. E
is the energy of the fast ion and pm is the pitch (p) at the maximum major
radius position Rm of the fast ion as it traverses its orbit. All quantities
computed with the OWCF can be mapped to the standard (E, µ, Pφ;σ) co-
ordinates (where µ is the magnetic moment, Pφ is the toroidal canonical
angular momentum and σ is a binary coordinate), provided that a Jacobian
is not required. OWs, topological maps, poloidal and toroidal transit time
maps are ok, but FI distributions are not, since distributions are defined per
phase-space volume. This provides the user with the flexibility to analyze
and export computed results in either (E, pm, Rm) or (E, µ, Pφ;σ) coordi-
nates. This is useful for e.g. stability analysis, which is often performed in
the (E, µ, Pφ;σ) coordinates. It should be mentioned that, in addition to

3



OWs, other ways of relating a diagnostic signal to the full FI distribution
exist. These include expressing the FI distribution in terms of a basis of
slowing-down distribution functions[5, 7]. For orbit-space grid resolutions of
interest, 3D OWs usually need to be computed using a computational cluster
to be able to complete the calculation within a reasonable timeframe, due to
both RAM and CPU requirements. Naturally, to be able to calculate, ana-
lyze and work with these 3D OWs, a speed-optimized framework written in
a high-performance programming language is useful. To this end, the orbit
weight computational framework (OWCF) was developed.

In short, the OWCF is a collection of scripts, utilities, structures and
functions written in the Julia programming language[13]. The efficient com-
putation of guiding-center FIOs (where the finiteness of the Larmor radius
is not taken into account), made possible by the Julia language, serves as
the foundation for the framework. The OWCF provides answers to several
questions, such as:

� How to compute orbit weight functions efficiently

� How to analyze orbit weight functions effectively and intuitively

� How to streamline transformations of arbitrary fast-ion distributions
into fast-ion orbits

� How to investigate populatable fast-ion orbits for every (R, z) point

� How to compute synthetic diagnostic signals using orbit weight func-
tions with an exceptionally large amount of orbit-space grid points
(> 100× 100× 100)

� How to decompose diagnostic signals into the contributions from fast-
ion orbit types

� How to streamline the possibility of reconstructing fast-ion orbit dis-
tributions from measurements

In addition, even though the OWCF is currently heavily integrated with
the DRESS[14] code for computing synthetic diagnostic neutron and γ-ray
spectra, the OWCF maintains a modular approach towards synthetic diag-
nostics codes in general. This enables future codes to be easily integrated
with the OWCF, for computing OWs via synthetic diagnostic FIO spectra.
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This paper is structured as follows. In section 2, an overview of the
OWCF is given. In sections 3 and 4, discussions on topological maps and
orbit weight functions are provided, respectively. In 5, the capability of the
OWCF to transform between (E, pm, Rm) and (E, p,R, z) is outlined and in
section 6 the tools of the OWCF for decomposing diagnostic signals in terms
of orbit types are presented. Finally, a conclusion follows in section 7.

It should be mentioned that the OWCF contains more utilities and tools
than can be included in this paper. For a complete and detailed breakdown
of the whole OWCF, the reader is referred to the manual included with the
OWCF.

2. Overview of the OWCF

At the time of publication, the current version of the OWCF (v1.0) com-
prises many scripts and file structures, and it is written almost entirely in the
Julia programming language. It was chosen as a suitable language for the
OWCF since it is high-level and yet maintains high-performance via efficient
code compilation and execution[13]. Future code maintenance of the OWCF
is therefore envisioned to be easily accessible without the need to sacrifice
performance.

To help the reader understand the structure of the OWCF, a basic build-
ing block of the framework has been visualized in Figure 1a, and a basic
relationship between different scripts has been visualized in Figure 1b. We
can observe how the inputs and outputs form an I/O chain between the
scripts, including optional inputs and integrated usage of dependencies. To-
gether, this simple example serves as a basic illustration of the much larger
system that is the full OWCF. Additionally, since two different scripts in
the OWCF often require different inputs, the OWCF provides templates for
input files used to specify the necessary inputs and to easily execute the per-
taining script following input specification. These input files will be discussed
further in later sections of this paper.

A graphical overview of the full OWCF (as it stands at the time of publi-
cation) is given in Figure 2. We can observe how there are four main groups
of code (inside dotted lines): main scripts, apps, data and misc. The main
scripts (colored purple) constitute the bulk of the computational tools of the
OWCF. Depending on the quantity needed to be computed, one of the main
scripts is used. The output of a main script can then be visualized by using,
for example, one of the apps (colored red). The apps provide interactive
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main scriptdependencies

script B

script A
1

1 2

1

2script
OUTIN

3

a) b)

Figure 1: a) An illustration of a basic building block of the OWCF. The script has some
input data visualized as an ’IN’ circle in the top-left corner. The script has some output
data visualized as an ’OUT’ circle in the top-right corner. In b), we would like to compute
output data ’3’ using main script. This ’3’ data can be an orbit weight function, an
orbit signal etc. However, we can see that main script requires input data ’2’. This ’2’
data is the output of script B, so we must execute script B prior to running main script.
However, script B requires input data ’1’. This ’1’ data is the output of script A, so
we must run script A prior to running script B. Furthermore, the main script optionally
accepts input data ’1’; the optional input has been visualized with a dotted circle. We
can also observe how a line runs from dependencies to main script. This means that
main script is dependent on dependencies, i.e. it uses dependencies in an integrated way
internally and cannot function without it.
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analysis of computed quantities using web-based plotting, enabled via the
Interact.jl [40] and Mux.jl [37] Julia packages. We shall explore the user inter-
face and capabilities of the OWCF main scripts and apps in later sections.
However, some outputs of the main scripts might need to be post-processed
before being usable by the apps. This post-processing can be achieved by
using the helper functions and scripts (colored blue). There are different
helper scripts for different usage scenarios. Furthermore, with the OWCF,
the user has the possibility of using various forms of data to perform analy-
sis. As we can observe in Figure 2, there are five forms of basic data for the
OWCF: a magnetic equilibrium, a fast-ion (FI) distribution in (E, p,R, z)
coordinates, a diagnostic line-of-sight (LOS), a .cdf-file with TRANSP[8]
discharge (shot) data and a .cdf-file with TRANSP NUBEAM[2] FI data.
TRANSP is a 1.5D equilibrium and transport solver for interpretation and
prediction of tokamak discharges. Its simulations and results are widely used
in the plasma physics community, thus making its output a natural basic
data input for the OWCF. NUBEAM is the FI module of TRANSP. Let us
investigate the different forms of basic data for the OWCF in detail.

The magnetic equilibrium (D1) can be of two types. It can be provided
as an .eqdsk file (e.g. used by TRANSP) containing estimated data for
the magnetic equilibrium from experimental measurements, as well as data
about the tokamak first wall. The magnetic equilibrium can also be generated
from the fully customizable Solov’ev equilibrium template provided with the
Equilibrium.jl [20, 3] package. In this case, a first wall of the hypothetical
tokamak should be provided as data arrays of R and z values. This is to be
able to distinguish between confined and lost orbits. The OWCF provides
an easy way for the user to generate a Solov’ev equilibrium .jld2-file via the
compSolovev.jl (E1) extra script.

The FI distribution in (E, p,R, z) coordinates (D2) can be provided as
either a .jld2- or .h5 (.hdf5)-file type. Specific data keys are then required to
be able to load the data correctly, such as ’f’ identifying the 4D data array
containing the (E, p,R, z) FI distribution. Sometimes, due to data conversion
mismatch, this 4D array might be reversed in terms of dimensional order (i.e.
f(z,R, p, E)) when loading from the .h5-file format. The OWCF therefore
automatically re-reverses this order, if needed.

The inclusion of a diagnostic LOS (D3) is perhaps one of the less flexible
features of the OWCF. As of this version of the framework, the LOS has to be
provided either as a .txt-file containing data in the output format provided
by the LINE21[39] code, or not specified at all, whereupon a spherical 4π sr
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Figure 2: A graphical overview of the OWCF.
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emission angle is assumed. However, this rather non-flexible feature is only
required when using the OWCF together with the DRESS code. Should the
user wish to compute orbit weight functions (or other quantities in orbit-
space) using other codes, e.g. FIDASIM[45, 4], then the requirement for the
LOS is given by that code.

The TRANSP shot (D4) and FI (D5) data are given in .cdf-file format
and provided as output files of TRANSP runs. The TRANSP FI data is
provided as output of the TRANSP-module NUBEAM[2]. The TRANSP FI
data can be provided as input to the extra script getEpRzFIDistrFrom-
TRANSP.jl (E4). The output will then be the TRANSP FI data converted
into (E, p,R, z) coordinates, stored as a .jld2-file (D2). To clarify, in several
OWCF scripts, the FI distribution can be provided either as a D2 or D5 data
type. We can convert a D5 data type into a D2 data type via the E4 extra
script.

Finally, the OWCF also contains some miscellaneous (misc) Julia files.
These provide the framework with extra functionality that help the frame-
work in various ways; such as keeping track of the fusion reactions currently
supported by the DRESS code, a default normalized plasma temperature
and density profile in case the user has provided none as input, and func-
tions mapping simple ion species input (’D’ for deuterium, ’T’ for tritium
etc) to properties such as mass and charge in kilograms and Coulombs, and
atomic mass and charge units, respectively. The default plasma tempera-
ture and density profiles have been plotted in Figure 3. Lastly, the OWCF
makes use of functions in dependencies.jl (E2) and gui.jl (E3) to serve as
’backend’ and for non-interactive plotting, respectively.

3. Topological maps

Even though orbit weight functions are arguably the main feature of
the OWCF, the true intelligibility can be found in the usage of topologi-
cal maps (topoMaps) to easily interpret and analyze computed quantities in
3D (E, pm, Rm) orbit space[17, 43, 22, 23, 11] and 4D (E, p,R, z) guiding-
center phase space. By identifying which parts of phase space correspond to
the six basic FIOs (co-passing, counter-passing, trapped, stagnation, counter-
stagnation and potato)[11, 12, 47], we can identify the boundaries between
the topological regions and use them to gain further insight about the phase-
space quantities. The topological maps also serve as the ’discrete prism’
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Figure 3: The default bulk temperature and density profiles used by the OWCF, in case
the user provided none. The profiles can be re-scaled by specifying a temperature and
density values on axis (ρpol = 0). The profiles are based on the temperature and density
profiles of JET shot No 96100 at 13 seconds.

when splitting synthetic diagnostic signals into their orbit-type constituents,
as we shall discuss in later sections.

3.1. (E, pm, Rm) orbit space

The computation of topological maps in orbit space is done via the
calcTopoMap.jl (M4) main script. As we can see in Figure 2, a mag-
netic equilibrium has to be provided as input. The specification of the grid
points in (E, pm, Rm) can be done in various ways, including automatically
loading them by providing the filepath to the output of the calcOrbGrid.jl
(H1) helper script or the calcOrbWeights.jl (M2) script. Additionally, the
user can specify whether or not incomplete (i.e. problematic to integrate)
and/or lost orbits should be included in the topological map, respectively.
The option to save poloidal and toroidal transit times for all valid orbits is
also provided. When all the inputs have been provided the calcTopoMap.jl
script can be correctly executed. This can be advantageously achieved by
modifying the OWCF template for a calcTopoMap input file and then sim-
ply executing the input file. The calcTopoMap.jl script will then compute a
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3D topological map by computing 2D topological maps[11, 12] sequentially
for each fast-ion energy E of interest, as illustrated in Figure 4.

With the M4 output, we can use the orbitsWebApp.jl (A4) to interac-
tively visualize the orbit-space topology. A screenshot of the web application
can be seen in Figure 5. As we change the value of the energy E slider, we
can scan through the 2D ’slices’ of constant energy and examine how the
topology changes.

When examining the orbit-space topology, it makes most sense to look at
slices of constant energy E, and not pm or Rm. This is because only slices
of constant E contain all orbit types. We can use the pm and Rm sliders to
interactively move the (pm, Rm) coordinate for a given energy E and examine
what the corresponding FIO looks like. Maps of the poloidal and toroidal
transit times τp and τt for all valid orbits can be seen in the top-right and
middle-left plot of the app, respectively. The top view and poloidal projec-
tions of the FIO are shown in the bottom left- and right-hand plots of the
orbitsWebApp.jl, respectively. The FIOs are computed in real-time (∼ 1
ms) thanks to the optimized algorithms of the GuidingCenterOrbits.jl [21]
Julia package. The plots can be automatically saved as .png files by us-
ing the ’save plots’ toggle button. Finally, the user can easily switch from
(E, pm, Rm) to (E, µ, Pφ;σ) via the toggle button. All the plots correspond-
ing to a (pm, Rm) ’slice’ of constant fast-ion energy will then automatically
change to a (µ, Pφ) slice. The σ = +1 slice is viewed when pm > 0 and
the σ = −1 slice is viewed when pm < 0. This switch from (E, pm, Rm) to
(E, µ, Pφ;σ) coordinates is illustrated in Figure 6.

3.2. (E, p,R, z) phase space

The OWCF can also compute topological maps for (E, p,R, z) phase
space, as well as maps of τp and τt. This is done via the calcEpRz-
TopoMap.jl (M1) main script. Topological maps for (E, p,R, z) phase space
are useful when the user would like to know which orbit types pass through
a certain (R, z) point, what the (E, p) topological map looks like and how
that changes from one (R, z) point to another. As for the calcTopoMap.jl
(M4) script, the required inputs are most easily specified using a template
input file, readily provided by the OWCF. As we can see in Figure 2, a FI
(E, p,R, z) distribution (D2) may be optionally provided as input to the cal-
cEpRzTopoMap.jl script. The script will then automatically load the E-, p-,
R- and z-arrays from the D2 file and compute the topological map for the
same grid points.
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Figure 4: A graphical overview of the process by which the OWCF computes topological
maps for the (E, pm, Rm) coordinate space. Each valid orbit type (co-passing, counter-
passing, trapped etc.) is numerically represented as an integer in [1, 2, 3, 4, 5, 8]. Lost
orbits and invalid coordinate triplets are given the integers 7 and 9, respectively. This
allows correct colors (green, purple, blue etc.) to represent the topological regions when
plotting. All the energy slices (E1, E2, ..., En) are computed sequentially and then put
together into a 3D topological map of the whole (E, pm, Rm) coordinate space.
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Figure 5: A screenshot of the orbitsWebApp.jl web application for interactively visualizing
FIOs, topological maps, poloidal and toroidal transit time maps in (E, pm, Rm) orbit space
and (E,µ, Pφ;σ) constants-of-motion space. By changing the values of the E, pm and
Rm sliders, the app will respond in real-time by computing the corresponding FIO and
changing the topological map. The options to switch to constants-of-motion (E,µ, Pφ;σ),
to show the tokamak wall, to save the plots in .png-format or to show the (pm, Rm)
(or (µ, Pφ)) coordinate have been implemented via toggle buttons. ’τp(7.6, 0.26) = 13.5
microseconds’ means that τp at (Rm, pm) = (7.6 m, 0.26) is 13.5 microseconds.
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Figure 6: An example of how the OWCF can be used to map a) topological regions and b)
poloidal transit times (τp) from (E, pm, Rm) orbit coordinates to (E,µ, Pφ;σ) constants-
of-motion coordinates. The slices in b) correspond to the same energy slices as in a). The
mapping can be done for quantities that do not require a Jacobian. We can observe how
the apparent size of the topological regions change between the phase spaces. The lost
region (brown) was not included for the poloidal transit times.
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When the script has completed, the resulting topological map in (E, p,R, z)
phase space can be visualized using the EpRzWebApp.jl (A3) web applica-
tion. A screenshot of A3 can be seen in Figure 7. As we can observe, the user
can explore the topological map by changing the values of the E-, p-, R- and
z-sliders. The app will then respond by computing a new FIO in real-time
and changing the topological map accordingly. To assist the user in judging
the relative areas of the topological regions (bottom left plot), the EpRzWe-
bApp.jl web application also includes a bar plot (top right) of the different
populatable orbit types at (R, z). The EpRzWebApp.jl web application is
envisioned to assist fast-ion diagnostics that observe small (compared with
minor radius) measurement volumes, e.g. fast-ion D-α diagnostics, in deter-
mining which orbit types are able to produce signals at given (R, z) points.
Several other usage areas can also be imagined, such as for teaching and a
deeper insight into the populated orbits for a fast-ion distribution given in
(E, p,R, z) coordinates. For example, it can be imagined how students can
use the OWCF apps to perform numerical experiments by modifying the or-
bit parameters interactively. This could provide a quick and effective way
of teaching FIOs and orbit-space topologies, and help the students faster
develop an intuition for FIOs and FIO-related quantities.

4. Orbit weight functions

The computation and visualization of orbit weight functions (OWs) are
arguably the main features of the OWCF. Hence, the discussion concern-
ing OWs will be given extra care, and it has therefore been split into two
subsections: computation and visualization.

4.1. Computation

The computation of OWs is done via the calcOrbWeights.jl main script
(M2). Similar to the computation of topological maps, the OWCF provides
the user with several flexible options for the input quantities required to
compute OWs, such as the grid in (E, pm, Rm) orbit space. Using output
from the calcOrbGrid.jl (H1) helper script to specify the grid and FIOs is
advantageous since that ensures fidelity in terms of FIOs (the same grid and
FIOs can be used in many scripts and apps).

The magnetic equilibrium is specified analogously to the computation of
topological maps. The LOS may be either a data output file from the LINE21
code or simply not specified (for 4π sr emission). When computing OWs for
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Figure 7: A screenshot of the EpRzWebApp.jl web application for interactively visualizing
FIOs and topological maps in (E, p,R, z) orbit space. The app controls have been omitted
for brevity. The app controls include E-, p-, R- and z-sliders, as well as toggle buttons
for showing the tokamak wall, the fast-ion distribution, τp, τt and saving the plots. By
changing the values of the E, p, R and z sliders, the app will respond in real-time by
computing the corresponding FIO and changing the topological map. In addition, the
user can also optionally include a fast-ion distribution in (E, p,R, z) coordinates, and
visualize it with superimposed FIOs and topological boundaries in (E, p). Finally, the
EpRzWebApp.jl web application also includes a bar plot (top right) of the populatable
orbit types at point (R, z), as fractions of the total number of populatable orbits, and a
plot of how the pitch of the fast ion changes (bottom right) as it goes around the FIO. If
the user chooses to visualize a fast-ion distribution, the bar plot will instead show orbit
type fractions of the total number of populated orbits for that fast-ion distribution at
(R, z).
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e.g. neutron emission spectroscopy[15] or gamma-ray spectroscopy[25, 26] by
coupling the OWCF to the DRESS code, there are several fusion reactions
for the user to choose between. The following fusion reactions are currently
supported by the OWCF (via DRESS)[24, 18]:

� D + D → n (2.45 MeV) + 3He (0.82 MeV)

� D + T → n (14.1 MeV) + 4He (3.5 MeV)

� D + 3He → p (14.7 MeV) + 4He (3.6 MeV)

� T + p → γ (19.8 MeV) + 4He

Please note however, that any other fusion reaction can be added to the
list, by simply implementing the required cross-sectional data. Also, please
note that the fusion-product proton from the D(3He,p)4He reaction has a
non-zero charge. The proton trajectory would therefore have to be followed
post-fusion to enable diagnostic investigation. As of v1.0 of the OWCF, this
is not implemented. Instead, the resulting proton energy distribution for the
plasma as a whole is returned (assuming 4π emission, i.e. ignoring any diag-
nostic LOS input). In future versions of the OWCF, implementation could
utilize e.g. the methods developed in[49]. When it comes to providing the
calcOrbWeights.jl script with data of the thermal plasma density n and tem-
perature T profiles, the user has several options. 1) They can be provided by
specifying the TRANSP shot data (D4) and the corresponding TRANSP FI
data (D5) .cdf-files. The OWCF will then identify the timepoint of interest
from D5 and load the corresponding n and T profiles from D4. In future ver-
sions of the OWCF, when computing OWs, the need to provide D5 together
with D4 will be superseded by the user having to simply specify a timepoint
t of interest, and a small increment dt around t. Continuing, the user may
instead 2) specify their own n and T profiles as functions of the normalized
flux coordinate ρ,

ρ =

(
ψ − ψaxis

ψsep − ψaxis

)1/2

, (1)

where ψ is the magnetic flux function, ψaxis is the magnetic flux at the
magnetic axis and ψsep is the magnetic flux at the plasma separatrix. Finally,
3) the user may ignore to specify any n and/or T profiles. The OWCF will
then respond by using its own default n and T profiles (Figure 3). If desired,
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the user can choose to re-scale the default profiles by specifying the values
of n and T on-axis.

Finally, calcOrbWeights.jl also gives the user the option of computing
weights binned into projected velocities u instead of e.g. neutron energies.
The projected velocity of a fast-ion can be written as[27]

u = v|| cosφ+ v⊥ sinφ cos Γ, (2)

where v|| and v⊥ are the fast-ion velocity components parallel and perpendic-
ular to the magnetic field, respectively. φ is the observation angle between
the line-of-sight and the magnetic field vector and Γ is the gyrophase[9]. The
projected velocity is a good proxy for spectral fast-ion diagnostics since it
reflects essential features of the spectrum formation. u is an analytic mea-
sure of the sensitivity of a diagnostic in the sense that u does not require any
thermal density and temperature data. When u has been computed, a value
of w is added to its corresponding velocity bin. The binning weights w are

w =
∆τp
τp

Ω∆φ

2π
, (3)

where ∆τp/τp is the fraction of the total poloidal transit time for the FIO
spent at the point of interest, Ω is the solid angle of the diagnostic view-
ing cone voxel and ∆φ/2π is the toroidal angle fraction that the diagnostic
viewing cone voxel of interest occupies. As mentioned earlier, the finiteness
of the Larmor radius is not taken into account by the OWCF. The process
of creating the resulting projected velocity spectrum has been illustrated in
Figure 8.

The output of calcOrbWeights.jl will be a 2D matrix where the columns
correspond to the expected synthetic diagnostic signals for every valid FIO
of interest. Every row of the matrix is a 3D function that has been reshaped
into a 1D vector.

4.2. Visualization

To be able to effectively visualize the M2 output, we have to inflate our
2D matrix to its full 4D form. The size of this 4D array will be nEd

× nE ×
npm × nRm where

� nEd
is the number of diagnostic measurement bins for the synthetic

signals,
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Figure 8: An illustration of the computation of projected velocity u spectrum by the
OWCF. Let ui,j denote the projected velocity of sample j from gyro-center i. AO Two
samples (yellow), with projected velocities u1,1 and u1,2, along the gyro-orbit of the same
guiding-center (red) end up in the same u-bin, even though u1,1 6= u1,2. This is because
of the finite discretization of u, and u1,1 ≈ u1,2 so the samples end up in the same bin. BO
A sample with u = v‖,1 cosφ. Because of cos Γ in eq. (2), not many samples end up here.
CO Samples from both gyro-centers can end up in this bin. From the first point because
of up-shift from v‖,1 cosφ and from the second point because of down-shift from v‖,2 cosφ,
where v‖,1 < v‖,2. DO Again, because of cos Γ a lot of samples will end up here, from both
gyro-centers. EO A sample with v‖,2 cosφ. FO Even though this sample is outside of the
LOS, the OWCF still includes it in the binning, since its guiding-center is inside of the
LOS. The orbit trajectory is depicted as a pink line.
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� nE is the number of fast-ion energies of our grid used as input to M2,

� npm is the number of pitch maximum grid points used as input to M2,

� nRm is the number of radius maximum grid points used as input to M2.

This will allow us to visualize the orbit sensitivity ’slice-by-slice’ where
every slice has constant fast-ion energy. The conversion from 2D to 4D can
be done using orbWeights 2Dto4D.jl helper script (H3). The user can
otherwise ask calcOrbWeights.jl to automatically call H3 when the 2D weight
matrix has been computed, saving both a 2D- and a 4D-output array. The
os2com.jl helper script (H9) can be used to map the (Ed, E, pm, Rm) weight
matrix H3 output to (Ed, E, µ, Pφ;σ) constants-of-motion coordinates.

In Figure 9, we can see a screenshot of the weightsWebApp.jl (A7) web
application, which is used to interactively analyze OWs. We can observe that
the web application shows the user an extensive amount of information and
consists of several interactive sliders. In addition to visualizing OWs slice-by-
slice, the user can also choose to visualize a synthetic signal S and a weight
function-computed signal WF simultaneously. The app will then keep track
of what diagnostic measurement bin Ed the OW corresponds to, and visualize
a marker (black dot in upper-left plot) that tracks the Ed as the user moves
the Ed-slider. This functionality is useful when the S and WF do not match
perfectly, and the OWs for the Ed values of interest need to be examined in
detail.

In addition, the user can also choose to simultaneously visualize a fast-ion
distribution in (E, pm, Rm) coordinates. The so-called ’signal density’ (WF -
density) will then be computed automaticallly by the app and visualized as
well. The WF -density is the OWs multiplied by the fast-ion distribution, as
described in [12], but without summing up all the terms. It will thus still
be a 3D quantity and a function of the three (E, pm, Rm) coordinates. The
WF -density tells the user where the signal is likely to have originated from
in orbit space for the given fast-ion distribution.

Another way of thinking about OWs is: given an orbit with the coordinate
(E, pm, Rm), what is the expected signal? What signal is that particular
orbit likely to produce? To answer these questions, the weightWebApp.jl
(please note the signular form weight in the name) (A8) web application was
developed. The user can scan the valid orbits of orbit space and examine
what their expected signals look like. In Figure 10, we can observe how the
user can examine the expected signals for various orbits and orbit types by

20



Figure 9: A screenshot of the weightsWebApp.jl web application for interactively visual-
izing orbit weight functions. The app controls have been omitted for brevity. The app
controls include sliders for the diagnostic measurement bins, orbit-space grid points and
for switching between several fast-ion distributions. They also include toggle buttons for
the tokamak wall, the fast-ion distribution, colorbar scales, switch to (E,µ, Pφ;σ) (not
including fast-ion distribution and WF -density), show (pm, Rm) coordinate and to save
all plots in .png-format. The user can utilize the sliders to scan through 2D slices of OWs
with topological boundaries superimposed as the figure shows.
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Figure 10: A screenshot of the weightWebApp.jl web application for interactively visualiz-
ing orbit weight functions. The top left-hand plot shows the expected signal for the orbit
visualized in the bottom plots. The app controls have been omitted for brevity. They
include sliders for the orbit-space grid points and toggle buttons for the tokamak wall,
(pm, Rm), switch to (E,µ, Pφ;σ) and to save all plots in .png-format.

changing the (E, pm, Rm) coordinate with the sliders. It should be mentioned
that, for every web application that includes poloidal projections of orbits,
the option to show/hide the tokamak wall is always implemented. This is
because some orbits, e.g. stagnation orbits, become so localized poloidally
(i.e. approaching a point) for certain (E, pm, Rm) coordinates that they need
to be plotted without the tokamak wall for the user to be able to fully zoom
in and accurately evaluate their trajectory.

5. Transforming to orbit space

To transform fast-ion distributions given on a rectangular grid in (E, p,R, z)
coordinates (grid points need not be evenly spaced) to (E, pm, Rm) orbit co-
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Figure 11: An example of a Delaunay tesselation performed on TRANSP fast-ion dis-
tribution data known only at discrete, irregular (R, z) points. The energy E and
pitch p dependency of the distribution was integrated out to enable illustrative plot-
ting, i.e. f(Ri, zi) =

∫
f(E, p,Ri, zi)dEdp. f(Ri, zi) was then normalized so that

max(f(Ri, zi))=1.0 to enable clean plotting. The true maximum value of f(Ri, zi) is
shown in the plot title as max(f(Ri, zi))=1.0.

ordinates, the user can utilize the ps2os.jl (M5) main script. However, let
us say that the user instead only had the TRANSP fast-ion distribution in
.cdf-file format (D5), which is given on an irregular grid spiraling outwards
from the magnetic axis. How would the user transform such a distribution
into orbit space? The user can then utilize the getEpRzFIdistrFrom-
TRANSP.jl (E4) helper script. The E4 script takes D5 data and creates a
Delaunay tessellation for the spiral (R, z) grid points[44, 23]. An example is
shown in Figure 11.

Linear barycentric interpolation[19] can then be used to find the fast-ion
distribution f(E, p) at rectangular query points (R, z). In getEpRzFIdistr-
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FromTRANSP.jl, the barycentric weights have been chosen as suggested by
[10], that is

µ(R, z,Rj, zj) =
λ(R, z,Rj, zj)
3∑
j=1

λ(R, z,Rj, zj)

(4)

with

λ(R, z,Rj, zj) =
1

(R−Rj)2 + (z − zj)2
. (5)

where (Rj, zj) are the individual coordinates of the three vertices of the De-
launay triangle containing the query point (R, z). Query points outside of
the Delaunay tessellation will be treated with nearest neighbour extrapola-
tion, followed by forcing all f(E, p) outside of the separatrix to be identically
zero.

Once f(E, p,R, z) has been obtained via the usage of H9, we can use
the ps2os.jl (M5) main script to transform f(E, p,R, z) into f(E, pm, Rm).
It uses Monte-Carlo sampling of f(E, p,R, z), followed by binning weighted
samples into bins in (E, pm, Rm) orbit space. More specifically, the Monte-
Carlo sampling is done by ’spaghettifying’ the 4D data array that is the
discretized representation of f(E, p,R, z). The cumulative sum vector is
then computed and an evenly distributed random number between 0 and the
last cumulative sum vector element is drawn. The corresponding element
in the vector is identified, as well as the pertaining (E, p,R, z) coordinate.
The FIO is then computed and the (E, pm, Rm) coordinate of the FIO is
identified. This is done for a sufficient number of Monte-Carlo samples and
the f(E, pm, Rm) distribution is obtained. The f(E, p,R, z)→ f(E, pm, Rm)
process has been visualized in Figure 12. Other methods of transforming
f(E, p,R, z) → f(E, pm, Rm) might be integrated in the OWCF in updated
versions of the framework. This is discussed in the future work section of
this paper.

Regardless of which method the user chooses to transform f(E, p,R, z)→
f(E, pm, Rm), the successfully transformed f(E, pm, Rm) 3D data array can
be interactively visualized using the distrWebApp.jl (A1) web application.
The A1 web app is similar to the weightsWebApp.jl (A7), but does not in-
clude OWs. In contrast to the A7 web app, the A1 web app allows the user to
visualize and compare two fast-ion distributions in (E, pm, Rm) coordinates,
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Figure 12: An example of a f(E, p,R, z) → f(E, pm, Rm). In a) the f(R, z) distribution
has been illustrated, where the E- and p-dependances have been integrated out. In b) the
opposite can be observed, i.e. f(E, p). In c) the resulting fast-ion distribution in orbit-
space f(E, pm, Rm) has been split into slices of constant E. It is usually helpful to use a
new colorscale for every E-slice, to be able to observe detailed orbit-space dependencies.
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to easily identify any differences between the two.

6. Orbit constituents of diagnostic signals

With the OWCF, the user can also decompose synthetic diagnostic sig-
nals into orbit type constituents, to investigate what fractions of orbit types
are most likely to have produced a certain diagnostic measurement. Mathe-
matically, this can be expressed as[12]

WF =
∑

h

WhFh, (6)

where ’h’ stands for the different orbit types (co-passing, trapped etc). To
investigate the dependency on (E, pm, Rm) in terms of orbit types, we can
further expand (6) as

∑

h

WhFh =
∑

h

∑

E

Wh,EFh,E (7)

=
∑

h

∑

pm

Wh,pmFh,pm (8)

=
∑

h

∑

Rm

Wh,RmFh,Rm (9)

where e.g. Fh,E is the fast-ion distribution for a particular orbit type h at a
certain fast-ion energy E.

To compute these kinds of signal splits, the user can employ the ps2WF.jl
(M6) main script. In addition to being able to compute orbit split signals,
the M6 main script can also compute WF signals for ultra high-resolution
grids in orbit space. That is, grids that consist of tens of millions of valid
orbits and that require a computational cluster to compute within a rea-
sonable timeframe. These kinds of grids can be useful when the S = WF
identity needs to be validated. S is the synthetic signal from e.g. a regular
Monte-Carlo code and the validity of the OWs depends on the perfect match
between the WF vector and the S vector. For too coarse grids, the identity
S = WF will likely not hold. This is because accurate representation of the
orbit-space sensitivity (i.e. W ) of the diagnostic requires a discretization of
(E, pm, Rm) space with a sufficiently high resolution.
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The M6 output of the ps2WF.jl main script can be visualized using the
signalWebApp.jl (A6) web application. Input-wise it is among the most
simple of the OWCF web applications. Output-wise it is among the most
complex, as Figure 13 shows.

We can see from Figure 13 that the user has several options when it
comes to viewing the data. One-dimensional line plots will be displayed for
the coordinate of interest (where the other coordinates have been integrated
out). This provides the user with insight on which orbit types that make
up a certain measurement. In the example shown, the user can also distin-
guish the energy depenedence of the signal origin of the orbit types. This
is also provided for the fast-ion distribution f and the orbit sensitivity w.
For every measurement bin, a color-coded bar plot will show how much of
the measurement is likely to originate from the different orbit types. The
measurement bin of interest can be interactively changed by the user via the
top slider (Ed). The signalWebApp.jl (A6) web application thus provides the
possibility for detailed insight into where in orbit space a certain diagnostic
measurement is likely to originate from.

In addition, if a simple overview of the orbit-type constituents of a diag-
nostic signal is sought, the user can utilize the plotSignalOrbSplits() function
via loading the gui.jl (E3) extra Julia file. By providing the M6 output file
as input, the function will save plots of a diagnostic signal decomposed into
its likely orbit-type constituents, as shown in Figure 14. A quick overview of
the fractions of orbit types that are likely to make up a diagnostic signal can
thus be achieved. To know the likely orbit-type origin of diagnostic signals
can be useful when e.g. verifying certain heating schemes, such as the three-
ion heating scheme[50]. It can also be useful when investigating the orbit
types of the birth distribution of alpha particles in burning plasmas, given a
TRANSP simulation.

7. Conclusion

The OWCF is a framework of scripts, functions, routines and apps that
combine to enable computation, visualization and analysis of fast-ion orbits
and quantities in (E, pm, Rm) (orbit-space) coordinates, such as orbit weight
functions and fast-ion distribution functions. It is written in the Julia pro-
gramming language to enable efficient computation of fast-ion orbits, pushing
the computation time down to ∼ 1 ms (deeply passing ∼ 1 ms, marginally
trapped ∼ 3 ms). With the OWCF, the user can compute topological maps
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Figure 13: An example screenshot of the signalWebApp.jl (A6) web application. The
user controls have been omitted for brevity. The coordinate of interest (E, pm or Rm) is
controlled via a toggle button. The app will then display the diagnostic signal and the
orbit type decomposition (first plot row). The app will also display the signal density wf
(second plot row), the fast-ion distribution f (third) and the orbit sensitivity w (fourth)
as functions of the coordinate of interest. Additional user controls (orbit-type splitting,
fractions, logarithmic and save plots) are accessed via toggle buttons. The app will respond
by updating the plots in real-time.
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Figure 14: An example of a) a diagnostic signal WF split into its orbit-type constitutents.
In b) the signal amplitude has been set to 1.0 for all diagnostic measurement bins, to allow
the orbit-type fractions to be examined in detail. The absolute and normalized diagnostic
signal has been superimposed for reference in a) and b), respectively.

of the different orbit types in both (E, pm, Rm) and (E, p,R, z) coordinates.
The topological boundaries can then be superimposed onto e.g. orbit weight
functions to analyze the sensitivity of fast-ion diagnostics to the different
orbit types. The orbits and orbit-space quantities can be visualized interac-
tively via the OWCF apps, where fast-ion orbits are computed in real-time
based on the user’s controls, made possible by the highly optimized guiding-
center codes[44, 21].

The OWCF has been designed to be modular in terms of forward model
codes. In addition to the already integrated DRESS code, future forward
models such as FIDASIM can be added to the OWCF framework by simply
altering a few lines of code.

Furthermore, the OWCF also contains tools for splitting synthetic diag-
nostic signals into their likely orbit-type constituents. This can be analyzed
at varying levels of detail, depending on the needs of the user.

Tools that allow for transforming quantities back and forth between (E, p,R, z)
and (E, pm, Rm) are incorporated into the OWCF. This enables the user to
e.g. reconstruct the fast-ion distribution in terms of fast-ion orbits using
the orbit weight functions, and then transform the results to guiding-center
phase space.

Future work for the OWCF includes continuing to make the scripts and
apps more user-friendly by improving their efficiency and speed, making the
OWCF compatible with additional forward models and computational clus-
ter architectures, as well as adding further transformation capabilities to be
able to transform more efficiently back and forth between (E, pm, Rm) and
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(E, p,R, z). Such capabilities include the methods developed by [38] and
[1], that transforms via grid-optimized automatic differentiation and marker
distributions, respectively.

Finally, the versity and standard of the OWCF will provide a useful and
easy-to-use toolbox for understanding the complexity of fast-ion orbits in
tokamaks. It will help pave the way for future tomographic reconstructions of
fast-ion distributions, and contribute to the realization of fusion as a virtually
limitless source of sustainable energy.
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Abstract. In the JET DTE2 deuterium-tritium campaign, neutron diagnostics
were employed to measure 14 MeV neutrons originating from D(T,n)4He
reactions. In discharge 99965, a diamond matrix detector (KM14) and a magnetic
proton recoil (MPRu) detector with a vertical and an oblique line-of-sight were
used, respectively. Using a TRANSP simulation, a significant decrease in the
expected signals can be observed as ion-cyclotron resonance heating (ICRH) is
switched off. Analysis performed using orbit weight functions shows that the
majority of the neutrons in the KM14 Ed = 9.3 MeV and MPRu Xcm = 33 cm
measurement bins are likely to have originated from fast-deuterium ions on co-
passing orbits. In contrast, at the timepoints of interest, the fast-ion distribution
is likely to have been composed mostly of trapped orbits. This work explains why
how this can be, and shows that the relative signal decrease as ICRH is switched off
is largest for counter-passing orbits. Finally, for the magnetic equilibria of interest,
it is shown how ∼ 1 % of the fast-ion distribution, corresponding to stagnation
orbits, was very likely completely unobservable by the KM14 diagnostic.

∗ See the author list of [1].
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1. Introduction

The recent deuterium-tritium (DT) campaign [2, 3]
at the Joint European Torus (JET) [1] marked an
important milestone on the path to viable fusion energy
for the production of electricity on a societal scale.
Compared to the previous JET DT campaign in 1997
(JET-DTE1), this campaign (JET-DTE2) planned
a twenty-fold increase in the budget of reprocessed
tritium gas (∼ 700 g vs ∼ 35 g) and more than a five-
fold increase in the budget of produced DT-neutrons
(1.7×1021 vs 3×1020) [2,4]. To measure the fusion-born
DT-neutrons during such plasma operation is therefore
seen as vital; both to ensure that the neutron budget
is respected and to confirm fusion power output, but
also to provide experimental data to reconstruct the
distribution of fast ions [5–7].

Compared to the 2.45 MeV neutrons produced
in D(D,n)3He reactions, a different diagnostic setup
if often required to measure the 14 MeV neutrons
produced in D(T,n)4He reactions [8, 9]. For JET-
DTE2, two fast-ion neutron diagnostics that were
readily employed were the upgraded magnetic proton
recoil diagnostic (MPRu) [9] and the KM14 diamond
matrix diagnostic [10]. Given their frequent use, it
can be argued to be of importance to investigate what
type of fast ions that can produce the DT-neutrons
measured by the MPRu and the KM14 diagnostics. Or,
in other words, how sensitive these diagnostics are to
fast ions with different energies, pitch (p = v‖/v where
v is the speed and v‖ is the magnitude of the velocity
component parallel to the magnetic field), major radius
and vertical positions. Given the measurements of a
certain number of neutrons with a certain energy, how
many of those are likely to have originated from co-
passing, counter-passing and trapped fast ions, and in
what fractions? Are there fast-ion trajectories (also
known as orbits) that are not observable at all by the
MPRu and the KM14 diagnostics?

To answer these questions, we usually need to
employ so-called weight functions [6, 11–18]. Given
the assumption of a linear relationship between a
measurement signal s and the fast-ion distribution
f , the weight functions provide the link between the
two as s =

∫
w(x,v)f(x,v)dxdv [19–21], where x is

the position and v the velocity, defining the phase
space, and the integral is computed for the phase-
space areas of interest. However, the validity of the
linear relationship relies on the assumption that the
fraction of neutrons originating from beam-thermal
reactions is much larger than the fraction of neutrons
originating from thermal-thermal and/or beam-beam
reactions [14]. With ’beam’, we mean the fast ions shot
into the plasma via neutral beam injection (NBI). With
’thermal’, we mean the bulk plasma below the fast-
ion energy range. Fortunately, for the JET discharge

No 99965 examined in this paper, the beam-thermal
reactions dominate (by a factor ≈ 4), making orbit
weight functions suitable to use for analysis.

Together with fast-ion data (acquired either
from e.g. TRANSP [22] via the NUBEAM [23]
module, or via tomographic reconstruction), orbit
weight functions can be used to decompose a synthetic
diagnostic signal in terms of orbit-type constituents
[19]. If the synthetic signal matches the experimental
data adequately well, and s ≈

∫
w(x,v)f(x,v)dxdv

still holds after a discretization of phase space,
the most likely fast-ion orbit origin of a diagnostic
(e.g. neutron) measurement can be inferred. We
can for example say in what fractions the fast-
ion orbit types (co-passing, counter-passing, trapped,
potato, stagnation and counter-stagnation) are likely
to contribute to measurements of neutrons with a
specific detected energy (which is up- or downshifted
with respect to the nominal birth energy). With
the orbit weight functions alone, we can also identify
fast-ion orbits that are not observable by a certain
diagnostic; thus providing the answer to all our
questions above.

In this work, orbit weight functions have been used
to perform a so-called fast-ion orbit analysis of the
neutron measurements made by the MPRu and KM14
diagnostics in JET DT-shot No 99965 at 7.9 and 8.4
seconds. The difference between the signals at the two
timepoints, corresponding to a decrease in measured
neutrons, is also investigated and likely fast-ion orbits
are identified. This paper is organized as follows...

2. Analysis setup

JET discharge No 99965 was a DT shot with a
hydrogen minority X [H] ∼ 1 % [24]. Heating schemes
included NBI and ion-cyclotron resonance heating
(ICRH). Deuterium beams were shot into a tritium-
rich plasma where the mixture was D/T ∼ 0.15/0.85.
Time traces of the heating scheme can be seen in
Figure 1a. For the ICRH heating, heating deuterium at
the fundamental frequency of 29 MHz was used. The
magnetic field strength on-axis was B0 = 3.85 T and
the plasma current was Ip = 2.45 MA. As we can see
in Figure 1, when the ICRH was on at 7.9 seconds,
the fast-ion distribution (Figure 1b) has a ’tail’ that
stretches up into the MeV range. When ICRH was
off at 8.4 seconds, the fast-ion high-energy tail has
almost completely disappeared, and only the energy
distribution resulting from the NBI heating remains.

To investigate the measurement of DT-neutrons
(originating from the interaction between the fast-
ion deuterium distribution and the thermal tritium
plasma), models of the MPRu and KM14 sightlines
were used. They have been visualized in Figure 2.
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Figure 1. Time traces for the NBI and ICRH heating
a) of JET shot No 99965. The energy dependence of the
resulting deuterium fast-ion distribution has been plotted in
b). The solid and dotted profiles correspond to the fast-ion
distribution averaged over the solid and dotted time windows
in a), respectively. The fast-ion distribution TRANSP ID is
99965K71.

The MPRu has an oblique line-of-sight (LOS) which
views the plasma in the counter-clockwise direction.
The KM14 has an almost completely vertical LOS and
views the plasma from above.

To model the instrumental response (diagnostic
resolution) of the diagnostics, the following response
functions were used. For the MPRu, a transfer matrix
between incoming neutrons energies and measured
proton impact positions was used, and has been
visualized in Figure 3. It was computed via Monte
Carlo methods [9]. For the KM14, a Gaussian response
function centered around 5.7 MeV and with a full-
width at half-maximum of 100 keV was used as a
proxy. This was deemed to be a good approximation of
the true instrumental response function for the KM14
diagnostic.

With the model of the diagnostic sightlines in
Figure 2 and the instrumental response functions,
we can use the DRESS code [25] to compute the
expected measurement signals given the deuterium
fast-ion distributions in Figure 1b and the thermal
tritium plasma profiles in Figure 4a and 4b. The
resulting synthetic signals for the MPRu and the KM14
diagnostics can be viewed in Figure 5. We can observe
how there is a decrease in the expected signals for
both diagnostics when the ICRH has been switched
off. This decrease is significant and noticeable across
both diagnostic spectra. Most of the decrease is
likely to originate from the loss of the fast-ion high-
energy tail (Figure 1b) as ICRH is switched off. With
the Orbit Weight Computational Framework (OWCF)
[26], we can investigate the origin of this signal decrease
more in detail by splitting the synthetic signals into
their orbit-type constituents, allowing detailed analysis

Figure 2. Sightlines for the MPRu and KM14 diagnostics,
projected onto the JET poloidal cross-section in a) and viewed
from above in b).

Figure 3. Instrumental response function for the MPRu
diagnostic [9] at JET, for detecting neutrons in the range of
14 MeV.
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Figure 4. The a) density and b) temperature profiles for the
bulk plasma of JET discharge 99965 at 7.9 and 8.4 seconds. The
temperature profiles were assumed to be the same for deuterium
and tritium at both timepoints.

in terms of fast-ion orbit types (co-passing, counter-
passing, trapped etc). Using the OWCF, we can also
split the fast-ion distribution itself into its orbit-type
constituents, thereby enabling further analysis. This is
done in the following section.

3. ICRH On/Off Effects

When ICRH is switched off, the density and
temperature profiles for the thermal plasma changes
(Figure 4). Since the phase-space sensitivity [6, 7, 13,
17, 18, 27–29] of a fast-ion diagnostic depends on the
thermal plasma profiles, one might expect the so-called
fast-ion orbit sensitivity [19, 20, 29–31] to change as
well. However, as we can observe in Figure 6, in this
case the change is only marginal. We can therefore
conclude that most of the decrease in the diagnostic
signals as ICRH is switched off (Figure 5) is likely due
to the retraction of the high-energy tail of the fast-ion
deuterium distribution (Figure 1b). But as the high-
energy tail disappeares when ICRH is switched off, how
do the individual populations of orbit types change?

To answer these questions, we can split the fast-

Figure 5. The synthetic diagnostic signals for the a) KM14
and b) MPRu diagnostics, computed using the DRESS [25] code
with models of the sightlines, instrumental response functions
and TRANSP [22] data for JET shot 99965 at 7.9 and 8.4
seconds. In c) and d), the same signals have been plotted with
logarithmic scaling for the y-axis. The black lines mark the
diagnostic measurement bins of interest, Edep = 9.3 MeV and
Xcm = 33 cm, for analysis in section 3 and 4.

ion distribution into its orbit-type constituents. As
can be observed in Figure 7, as ICRH is switched off,
regardless of orbit type, the orbit distributions retract
downwards in fast-ion energy. For some higher energies
that are still populated (e.g. E ≈ 250 keV), the
populations are approximately two orders of magnitude
smaller. For E = 300 keV, when ICRH is switched
off there are more populated trapped than counter-
passing orbits (ftrapped > fcounter-passing), compared
to when ICRH was on when the opposite was true
(ftrapped < fcounter-passing).

In Figure 7, we can also observe how the peak of
the trapped orbit population is the highest of all orbit
types. One might therefore expect an e.g. diagnostic
neutron signal s to be a result of 14 MeV-neutrons
originating from mostly trapped orbits. However, as
discussed earlier, a diagnostic signal s can be written
as the result of a multiplication between the fast-
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Figure 6. A 2D slice of constant fast-ion energy E = 250
keV of the full 3D orbit weight function for the Edep = 9.3
MeV measurement bin of the KM14 neutron diamond matrix
diagnostic at a) 7.9 and b) 8.4 seconds of JET DT shot
99965, respectively. The marginal change between timepoints
is representative for other 2D slices of constant fast-ion energy
and the MPRu diagnostic as well.

ion distribution f and the weight function w of the
diagnostic, i.e. in its discretized form s = wf .
Similarly to f , we can split w into its orbit-type
constituents to examine how sensitive a diagnostic is to
different orbit types. However, here we need to average
over the number of grid points for each orbit type, to
take the orbit-space metric into account. This has been
done for the KM14 and MPRu diagnostics in Figure 8
and 9, respectively. As we can observe, for the Edep =
9.3 MeV measurement bin of the KM14 diagnostic, the
orbit sensitivity is highest for counter-passing orbits,
followed by co-passing orbits. The trapped sensitivity
peak is about half the height of the co-passing peak,
and about a third of the height of the counter-passing
peak. We would therefore expect a corresponding
reduction and increase in the signal contribution from
trapped and passing orbits, respectively. For the
MPRu and the X = 33 cm measurement bin, the co-
passing sensitivity peak is almost 6 times higher than
the trapped peak. Therefore, even if we had a fast-ion

distribution consisting of six times as many trapped as
co-passing orbits, we could expect the measurement of
a proton at X = 33 cm to be (roughly) just as likely
to have originated from a trapped orbit as from a co-
passing orbit.

In Figure 8 and 9, it is also interesting to note that
the orbit sensitivity increases in general when ICRH
is switched off (7.9 s → 8.4 s timepoints). This is
likely due to the general increase of the thermal tritium
density profile (Figure 4a) as ICRH is switched off,
which would affect the orbit sensitivity more directly
than the thermal tritium temperature profile (Figure
4b). In addition, the relative increase of the thermal
tritium density profile (≈ 25 %) is similar to the
relative increase of the sensitivity peaks (≈ 25 %),
further supporting the hypothesis. However, this
only holds for the KM14 diagnostic (Figure 8), for
which the increase in sensitivity is more pronounced.
This is likely resolved by the fact that KM14 has a
LOS observing a larger portion of the plasma center
compared to the outer plasma. A change in the plasma
center would thus be likely to result in a larger change
in the orbit sensitivity, compared to e.g. the MPRu
with a less poloidally localized LOS.

4. Orbit Origin of Signal Loss

Having discussed the change of the fast-ion distribution
f and the (discretized) orbit sensitivity w as ICRH
is switched off in section 3, we are now ready to
investigate the diagnostic signal s in terms of orbit
types. As we can observe in Figure 10, for the
measurement bins of interest Edep = 9.3 MeV and
X = 33 cm, the signals from all orbit types decreases
as ICRH is switched off. We can also observe how
the KM14 and MPRu signals at Edep = 9.3 MeV and
X = 33 cm are dominated by contributions from co-
passing orbits, even though the trapped fast-ion orbit
population is the largest (Figure 7). As previously
discussed, this is because of the relatively high co-
passing sensitivity of the KM14 and MPRu diagnostics
at Edep = 9.3 MeV and X = 33 cm (Figure 8 and 9).

Furthermore, it is also interesting to note that
the KM14 diagnostic signal at Edep = 9.3 MeV is
likely to have no contribution from stagnation orbits
whatsoever. This is simply because, for JET discharge
99965 at 7.9 and 8.4 seconds, the LOS of the KM14
diagnostic (Figure 2) misses the region of the poloidal
cross-section where the stagnation orbits ’live’ (i.e. the
low-field side area close to the magnetic axis). For
JET discharge 99965 at 7.9 and 8.4 seconds, about
0.3 % of the fast-ion population consists of stagnation
orbits. Therefore, unless the orbit sensitivity is very
concentrated to the stagnation region in orbit phase-
space, such a small fraction would have made a
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Figure 7. A plot showing the split of the energy dependence of the fast-ion distribution into its orbit-type constituents. The sum
of the colored lines equals the black line in Figure 1 (minus the more ’exotic’ potato, stagnation and counter-stagnation orbit types;
omitted for clarity). The solid and dotted profiles correspond to the time windows at 7.9 and 8.4 seconds, respectively. The fast-ion
distribution TRANSP ID is 99965K71.

Figure 8. A plot showing the split of the energy dependence of the KM14 orbit weight function for the Edep = 9.3 MeV measurement
bin into its orbit-type constituents. The solid and dashed profiles correspond to the time windows at 7.9 and 8.4 seconds, respectively.
For both timepoints, the orbit sensitivity was mapped only for the energy range of interest, i.e. where f(E) > 0. The profiles
correspond to averages for each orbit type and energy.

Figure 9. A plot showing the split of the energy dependence of the MPRu orbit weight function for the X = 33 cm measurement bin
into its orbit-type constituents.The solid and dashed profiles correspond to the time windows at 7.9 and 8.4 seconds, respectively.
For both timepoints, the orbit sensitivity was mapped only for the energy range of interest, i.e. where f(E) > 0. The profiles
correspond to averages for each orbit type and energy.
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Figure 10. The (synthetic) diagnostic measurements at Edep =
9.3 MeV and X = 33 cm for the a) KM14 and b) MPRu
diagnostics, respectively, split into their most likely orbit-type
constituents. The sum of the solid bars in a) and b) equals
the value of the solid lines in Figure 5a/c and Figure 5b/d at
Edep = 9.3 MeV and X = 33 cm, respectively. The sum of the
striped bars in a) and b) equals the value of the dotted lines in
Figure 5a/c and Figure 5b/d at Edep = 9.3 MeV and X = 33
cm, respectively.

negligible contribution to the diagnostic signal anyway
(e.g. Figure 10b). However, as has been discussed
in [19], the relative population of stagnation orbits is
likely to be larger in future burning plasmas.

Continuing, we can perform a more detailed
analysis via a so-called ’split of the split’, where
(for example) the energy dependence of the signal
contributions in Figure 10 can be investigated. This
has been performed for the KM14 and MPRu
diagnostics in Figure 11 and 12, respectively. We can
observe how most of the measurements at Edep = 9.3
MeV and X = 33 cm are likely to have originated from
fast ions with an energy of around E = 100 keV. This
energy is approximately in the middle of the peak of
the fast-ion distribution (Figure 7) and the orbit weight
functions (Figure 8 and 9) where the wf product is
maximized. We can also observe how, when ICRH is
switched off, even though the signal densities for all

orbit types decrease, the peaks of the signal densities
remain roughly at the same fast-ion energy E ≈ 100
keV.

Finally, we can examine the difference between the
solid and striped bars in Figure 10, color by color, to
deduce the most likely orbit-type origin of the decrease
of the diagnostic signals in Figure 5 at Edep = 9.3 MeV
(difference between the solid and dotted lines in Figure
5a/c) and X = 33 (difference between the solid and
dotted lines in Figure 5b/d), respectively. This has
been done in Figure 13. We can observe how most
of the decrease in both the KM14 and MPRu signals
is likely due to a loss in co-passing orbit contribution
to the signals. This is because the orbit sensitivity
is relatively high towards co-passing orbits for both
diagnostics (Figure 8 and 9) for the measurement
bins of interest (Edep = 9.3 MeV and X = 33 cm,
respectively). Combined with a substantial decrease in
the co-passing distribution in the fast-ion energy range
where the peak of the orbit sensitivities are located
(E ≈ 250 keV)(Figure 7), this results in a substantial
decrease in the signal originating from co-passing fast-
ion orbits.

Furthermore, we can also examine the relative
decrease of the signal per orbit type. This has been
done in Figure 14. We can observe how the relative
decrease in signal contribution is greatest for counter-
passing orbits. As we can observe in Figure 8 and
9, the sensitivity to counter-passing orbits is quite
different for the KM14 and MPRu diagnostics for the
measurement bins of interest. One can thus conclude
that the great relative decrease in counter-passing
signal contribution is due to the great decrease in
the counter-passing distribution (Figure 8) as ICRH
is switched off.

5. Conclusion

In this work, we have investigated the decrease in
signal for the KM14 and MPRu fast-ion neutron
diagnostics at JET as ICRH was switched off in
DT-discharge 99965. It was found that, for the
measurement bins of interest, the signal decrease was
likely due to a decrease in contribution from co-passing
deuterium orbits. This was likely due to the relatively
high sensitivity towards co-passing orbits for both
diagnostics for the measurement bins of interest. It
was also likely due to the decrease in the high-energy
co-passing population by several orders of magnitude
as ICRH was switched off.

In JET DT-discharge 99965, the KM14 diamond
matrix diagnostic is very likely completely unable to
observe any signal originating from stagnation orbits.
This is due to its sightline not observing the volume
just on the low-field side of the magnetic axis, where
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Figure 11. A plot showing the split of the energy dependence of the KM14 signal density for the Edep = 9.3 MeV measurement bin
into its orbit-type constituents. The solid and dashed profiles correspond to the time windows at 7.9 and 8.4 seconds, respectively.
The integral of a solid (or dashed) profile with a specific color equals the height of the solid (or striped) bar with the same color in
Figure 10a.

Figure 12. A plot showing the split of the energy dependence of the MPRu signal density for the X = 33 cm measurement bin
into its orbit-type constituents.The solid and dashed profiles correspond to the time windows at 7.9 and 8.4 seconds, respectively.
The integral of a solid (or dashed) profile with a specific color equals the height of the solid (or striped) bar with the same color in
Figure 10b.

the stagnation orbits are localized. However, for the
7.9s and 8.4s timepoints, the stagnation orbits are
unlikely to make up more than about 0.3 % of the
fast-ion population, making their contribution likely
to have been negligible anyway.

Furthermore, even though the fast-ion distribution
is likely to be comprised of mostly trapped orbits for
JET DT-discharge 99965 at 7.9s and 8.4s, the signals
in the measurement bins of interest for the KM14
and MPRu diagnostics are likely to have originated
mostly from co-passing orbits. This is due to the orbit
sensitivity being greater towards co-passing orbits than
trapped orbits for the KM14 and MPRu diagnostics,
for the timepoints and measurement bins of interest.

In future work, this method of splitting the fast-
ion distribution and diagnostic signals into their orbit-
type constituents will have several areas of application.

This includes confirming the presence of high-energy
co-passing orbits as a result of heating schemes such
as the three-ion heating scheme. It can also be
used to optimize the design of fast-ion diagnostics, to
ensure that their sightlines are able to observe the
full fast-ion distribution function. This is seen as
vital for understanding how the behaviour of the fast-
ion distribution function will affect the fusion plasma
as a whole, in both present-day and future fusion
experimental reactors such as JET and ITER.
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