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Abstract
This thesis presents dark-field x-ray microscopy (DFXM) as a tool for characterizing ferro-
electric domain structures and investigates new approaches to the data analysis of DFXM
images based on methods from computational, coherent microscopy.

The underlying theory of DFXM is described and applied to study characteristic diffraction
peak splitting due to coherent twinning in perovskite ferroelectrics. This constitutes the
first quantitative comparison of DFXM measurements with theoretical predictions based
on coherent twinning of ferroelectrics and thereby provides new evidence for the quanti-
tativeness of DFXM.

It is shown that using Fourier Ptychography (FP), the phase-profile of the x-ray beam in
transmission- and Bragg-scattering experiments can be recovered. This is promising for
the study of crystals containing inversion domain boundaries, that are visible to x-ray scat-
tering in the phase of the scattered beam. Furthermore, images of the complex aperture-
function of the objective lens can be acquired. The reconstructions do not succeed in
improving the resolution of the images compared to the conventional data-analysis which
is shown to be identical to a kind of differential phase contrast (DPC).

Several experimental challenges are investigated both theoretically and experimentally.
This includes thick-lens behavior of the applied CRL objective lenses, multiple x-ray scat-
tering effects in the sample crystal, and partial coherence of the incident x-ray light. The
role of these experimental sources of error are discussed both in relation to conventional
DFXM as well as FP. Finally, a complete simulation of a DFXM experiment based on
the propagation of coherent wave fronts and the Takagi-Taupin approach to dynamical
scattering is presented. The simulation is compared to experiment and good agreement
is found.
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Resumé
I denne afhandling præsenteres Dark-Field X-ray Microscopy (DFXM) som en værktøj til
karakterisering af ferroelektriske domænestrukturer og nye metoder til databehadnling af
DFXM data undersøges, baseret på metoder fra computerbaseret kohærent mikroskopi.

Den tilgrundliggende teori bag metoden bliver beskrivet og anvendt til at studere karakter-
istiske splitning af diffrakionspletter i ferroelektrika med preovskit strukturen. Dete udgør
den første kvantitative sammenligning af DFXM målinger med teoretiske forudsigelser
baseret på den mekaniske teori for tvillingekrystaller i ferroelektrika.

Det demonstreres at Fourier Ptychografi (FP) kan benyttes til at genskabe faseprofilen af
røntgenstrålen i transmissionsgeometri og Bragg-sprædningsgeometri. Dette er lovende
for at kunne studere krystaller med inversionsdomæner, som kun er synlige for røntgen-
sprædningseksperimenter i fasen af den sprædte stråle. Derudover kan billeder af den
komplekse blændefunktion opnås. Rekonstruktionerne lykkedes ikke med at forbedre
opløsningen af billederne, sammenlignet med den konventionelle dataanalyse i DFXM,
som kan omformuleres som en slags differential fasekontrast.(DPC)

Adskillelige eksperimentelle udfordringer undersøges både teoretisk og eksperimentels.
Dette inkluderer tyk-linse effekter, multiple sprædning i prøvekrystallen og partiel ko-
hærens i den indkommende røntgenstråle. Konsekvenserne af disse eksperimentelle
fejlkilder bliver diskuteret i relation til konventionel DFXM så vidt som FP. Til sidst præsen-
teres en komplet computersimulering af DFXM baseret på propagering af kohærente
bølgefonter og Takagi-Taupin formuleringen af dynamisk sprædning. Resultaterne af så-
dan en simulering sammenlignes med eksperimentale billeder og god overensstemmelse
findes.
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1 Introduction
Many functional properties of crystalline materials are thought to be influenced by the
generation, annihilation and movement of crystal defects. The macroscopic properties
of the materials are the result of complicated interactions between these defects with
the lattice, other defects in the crystal, grain boundaries, and macroscopic fields. This
is fundamentally a problem with multiple length-scales ranging from the unit cell of the
crystal lattice to the size of the macroscopic object of interest. The understanding of these
materials therefore require methods that cover all these length-scales.

Ferroelectrics are one such family of materials with a long list of technological applica-
tions, ranging from dielectric layers in capacitors to ultrasonic transducers. These materi-
als are used for their strong electrical and mechanical response to external perturbations
which is caused by the movement of twin-domain boundaries. Microscopic studies of
these materials typically only probe the surfaces of large samples or thin slices that must
be cut out of macroscopic samples. These samples are therefore taken out of the en-
vironment where they are used and the interactions with the features on longer length
scales are lost.

Dark-Field X-ray Microscopy (DFXM)[66, 59] is a microscopy technique that makes full ad-
vantage of the high penetrating power of x-rays to non-destructively image small buried
volumes (field of view ≈ 300 µm) of a macroscopic sample in a realistic sample envi-
ronment with sub-micron resolution. Thanks to the high sensitivity of x-ray scattering to
small lattice distortions DFXM has excellent angular sensitivity (≈ 10−4 rad) and is able
to image fundamental defects of the crystal lattice such as twin-domain boundaries and
dislocations.

DFXM has been used to study a broad spectrum of phenomena including re-crystallization
in deformed polycrystalline metals,[2, 85] failure in battery materials,[16] lattice distortions
in bio-minerals,[63] and dynamics of fundamental defects in large single crystals.[54, 22]

Ferroelectrics constitute interesting samples for DFXM as they form hierarchical struc-
tures over a long range of length scales. The most important defect is the twin-domain
boundary or the domain wall, a planar defect that separates two different regions of dif-
ferent space group symmetry. This domain structure arises from the slight breaking of
a number of symmetries that are still approximately maintained in the ferroelectric crys-
tal. The application of these broken symmetries on the ferroelectric crystal generates a
number of different domain variants separated by domain walls. Because the symmetry
breaking is small, the lattices of the different domains can also be regarded as slightly
strained and rotated versions of each other.

From an x-ray scattering point of view, it is useful to distinguish two different types of
domain walls: Elastic domain walls are domain walls that separate two domains of the
crystal where the lattices are related by a rotation (or mirror-symmetry) that is not a sym-
metry of the point group of either lattice. And non-elastic domain walls where the twinning
symmetry is a symmetry of the point group and both domains have the same point group.
Typically in ferroelectrics, the non-elastic domain walls are those where the spontaneous
polarization between the two domains are anti-parallel.

The non-elastic domain walls are a particular challenge to image with DFXM as the crystal
lattice is not affected by the domain wall. Therefore the Bragg-condition is the same in
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the two domains and x-ray beam is scattered into the same direction. For this reason,
the normal approach to data analysis in DFXM, which relies on determining the direction
of the scattered beam, does not work to characterize these domain walls. This however
does not mean that the domain walls do not generate contrast in DFXM images. The
phase of the scattered beam is different on each side of the domain wall which should
give subtle phase-contrast on the images.

The overarching goal of the work done in the course of this PhD programme was to inves-
tigate whether computational phase contrast microscopy methods can be implemented
on a DFXM instrument to yield a new approach to data analysis that can account for the
contrast caused by these domain walls and possibly other sample features, that cause
phase contrast.

The theoretical description of the DFXM method in the existing literature[59] has relied on
geometric optics. To understand the phase contrast in DFXM, we need results from wave-
optics. For this we use the formalism of the Takagi-Taupin equations(TTE)[72, 74, 73] to
treat the scattering in the sample-crystal and a cascacded-lenses approach to model the
compound refractive lenses(CRL) used as the objective lens the the microscope.

In the wave-optics description of DFXM, we can describe the measurement as a band-
pass filtered image of a high-resolution scattering function, where the position of the filter
is scanned in 3D reciprocal space. This is similar to certain methods in computational
visible light microscope such as differential phase contrast(DPC) and Fourier ptychogra-
phy(FP) which we implement on the existing hardware of the ID06-HXM instrument in a
proof-of-principle experiment.

We have developed and presented a numerical approach to simulate the full DFXM ex-
periment including multiple-scattering events, partial coherence, thick-lens effects in the
CRL, and aberrations. This simulation is compared against experimental data from a
near perfect crystal containing a stacking fault, which can be seen as a kind of prototype
of the inversion domain boundary that displays only phase contrast.

All in all, this thesis provides a comprehensive presentation of the DFXM method in the
view of coherent optics and discusses a number of errors and experimental challenges
that the method is faced with.
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2 X-ray Scattering
In this chapter we will derive the equations of x-ray scattering by a periodic medium and
derive a number of equations that will be used throughout the rest of this thesis.

Often when x-ray scattering is treated, multiple scattering effects are small and can be
ignored. This leads to the kinematical theory of x-ray scattering. This turns out to be
insufficient for DFXM where multiple scattering effects are a common source of errors
and a fundamental restriction to be considered when designing experiments. We there-
fore need to include these multiple scattering events and derive what is known as the
dynamical theory of X-ray scattering.

We start by deriving the Takagi-Taupin-equations, which are the dynamical equations for
scattering by a deformed crystal. We recover the theory for scattering by perfect crystals
as a special solution to these equations. Finally, we make the approximations to arrive at
the kinematical equations and geometric optics.

2.1 Derivation of the Takagi-Taupin Equations
X-rays are a part of the electromagnetic spectrum with wavelengths in the range below
10 nm.[4] X-rays have a number of desirable qualities that are utilized in DFXM: they are
able to penetrate through thick (>10 µm) samples of dense material, and because the
wavelength is on the same order of magnitude as the lattice parameter of crystalline ma-
terials, interference of the scattered waves lead to scattering at large angles, characteristic
of the crystal structure.

Like in any other classical problem concerning electromagnetic radiation, the governing
equations are the Maxwell’s equations:

∇ · D = ρf

∇× E = −∂B
∂t

∇ · B = 0

∇× H = Jf +
∂D
∂t

(2.1)

At x-ray frequencies, we can assume that the charge distribution does not have time to
respond to the rapidly changing fields and therefore the charge and current terms are
zero. Taking the curl of the second equation yields:

∇× (∇× E) = ∇×
�
− ∂

∂t
B
�

(2.2)

Assuming no magnetic response (B = µ0H) and no free currents (Jf = 0) we can elimi-
nate the magnetic field from the expression, by inserting the fourth of Maxwell’s equations:

∇× (∇× E) = −µ0
∂

∂t
(∇× H) = −µ0

∂2

∂t2
D (2.3)
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Using an identity for the curl-of-curl, we can rewrite this equation in terms of the vector
laplacian and the gradient of the divergence.

∇(∇ · E)−∇2E = −µ0
∂2

∂t2
D (2.4)

Assuming a linear, isotropic, local, and instantaneous response means: D = ϵ0(1 +
χ(r))E. Importantly, we do not assume that the medium is homogeneous and the sus-
ceptibility χ(r) is allowed to vary as a function of position in space, r. We can then write
the equation only in terms of the E-field:

∇(∇ · E)−∇2E = −µ0ϵ0(1 + χ(r)) ∂
2

∂t2
E (2.5)

Introducing the monochromatic vector field E(r, t) = exp(−iωt)E′(r) we finally arrive at
the Helmholtz equation for monochromatic radiation in a medium:

∇2E−∇(∇ · E) = −k2(1 + χ(r))E (2.6)

Here we have utilized the equation µ0ϵ0 = 1/c2 and defined k = ω/c. c is the speed of
light in a vacuum.

2.1.1 Perfect periodic medium
We want to solve the Helmholtz equation for the propagation of a monochromatic, linearly
polarized X-ray beam inside a periodic medium. With the term beam we mean a field that
is spatially confined in two directions orthogonal to the direction of propagation, given by
the vector k0. The field of such a beam can be written as a modulated plane wave:

E(r) = E(r)e−ik0·rp (2.7)

Where p is the polarization vector. Importantly, the scalar envelope function E(r) should
be a slowly varying function on the scale of the wavelength, λ = 2πc/ω. This requirement
does not give a unique choice of k0 as a small change of this vector by a value much
smaller than one over the wavelength will also yield a slowly varying envelope function.

In a periodic medium, we can write the susceptibility as a Fourier series:

χ =
�

h′

χh′ exp(−ih′ · r) (2.8)

where the sum runs over all the infinitely many reciprocal lattice vectors h′ = B[h, k, ℓ]T

of the crystal. We use the bold h do denote the reciprocal lattice vector in units of angu-
lar spatial frequency (rad/length) and we use the italic h as a subscript as a shorthand
for the three integer indexes. The constants χh′ are the Fourier coefficients of the pe-
riodic susceptibility function. χ0 is the average electric susceptibility of the crystal that
describes both refraction and absorption in the situations where Bragg-scattering can be
ignored. Definitions of the notation used here is explained in Appendix A.1 along with a
brief introduction to Fourier transforms and crystallography.

Now we make a guess for the solution to the Helmholtz equations which is a sum of
modulated plane waves:
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E(r) =
�

h′′

Eh′′(r) exp(−ikh′′ · r) (2.9)

where kh′′ = k0 + h′′.

We have not fully specified the choice of the vector k0 yet. The conventional choice[72,
74, 73] is the complex wave vector of the refracted wave inside the crystal with |k0| =
k(1 + 1/2χ0). With this choice one arrives at two-beam equations, without the refrac-
tion/absorption term in the equation for the transmitted beam, but with complicated bound-
ary conditions connecting the interior and exterior of the crystal.

Another choice, is to take k0 as the average vacuum wave vector of the incident radiation,
that is |k0| = k. This choice gives a set of more physically intuitive equations, the authors
call them the symmetrical TTEs because the incident and scattered beam are handled
equivalently.[78]

The functions Eh′′(r) are a set envelope functions of modulated plane waves.1 They are
assumed to be slowly varying functions, which will allow us to ignore terms involving their
second derivatives.

We plug in these expressions for E and χ into equation 2.6 and rewrite term by term. First
the vector laplacian:

∇2E =
�

h′′

�
∇2Eh′′ − 2i (kh′′ ·∇)Eh′′ − |kh′′ |2Eh′′

�
exp(−ikh′′ · r) (2.10)

Now the grad-div term:

−∇(∇ · E) = −∇
��

h′′

∇ · Eh′′ exp(ikh′′ · r)− i exp(ikh′′ · r)kh′′ · Eh′′

�

≈ −
�

h′′

�
∇(∇ · Eh′′) + (∇ · Eh′′)ikh′′

�
exp(ikh′′ · r)

(2.11)

where the kh′′ ·Eh′′ terms have been omitted because the waves are approximately trans-
verse. The first term on the final line is a 2nd order derivative of the slowly varying enve-
lope function. The final term is also omitted in the usual form of the TTEs.[74, 40]

Right hand side of Eq. (2.6):

−k2(1 + χ)E = −k2

�
1 +

�

h′

χh′ exp(−ih′ · r)
��

h′′

Eh′′ exp(−ikh′′ · r)

= −k2
�

h′

(δ0h′ + χh′) exp(−ih′ · r)
�

h′′

Eh′′ exp(−ikh′′ · r)

= −k2
�

h′,h′′

(δ0h′ + χh′)Eh′′ exp(−i(kh′′+h′) · r)

= −k2
�

h′,h′′

(δh′′h′ + χh′′−h′)Eh′ exp(−ikh′′ · r)

(2.12)

1These are sometimes called Bloch waves in the litterature[74], but they are not th same as the usual Bloch-
waves known from electron structure in crystals. In our case the fast variation is described by a harmonic and
the slow variation is given by the arbitrary function.

Phase Resolved Dark-Field X-ray Microscopy 5



Where the last line results from the second-to-last by the substitution h′ → h′ − h′′ and
then swapping the two dummy indices. Comparing Eq (2.10) and (2.12) we see that both
the LHS and the RHS contain sums over h′′ and the same exponential functions. Since
the complex exponentials constitute an orthogonal basis and the equation holds for any
r, the equation must hold term for term in the h′′ sum which, after some re-organization,
gives the set of coupled equations:

2 (kh′′ ·∇)Eh′′ = −i
�

h′

��
k2 − |kh′′ |2

�
δh′′h′ + k2χh′′−h′

�
Eh′ (2.13)

for all h′′ in the reciprocal lattice. This is the general form of the TT equations. We will
deal with scattering situations, where the incoming field is smooth and can be given by a
single modulated plane wave, E0. In this case only waves where the term (|kh′′ |2 − k2)
is close to zero will contribute significantly to the solution while all other terms are killed
off due to destructive interference. Writing out this requirement as: |k0 + h′′|2 = k2, we
recognize it as the Bragg-condition.

2.2 Dynamical scattering in the two beam case
We now look at the case where only a single reciprocal lattice vector satisfies the Bragg-
condition. In this case only two modulated waves contribute significantly: the transmitted
wave E0 and the scattered wave Eh. The set of equations (2.13) simplifies to two coupled
differential equations.

We furthermore assume that the incident radiation consists of a single polarization state.
Either we have σ-polarization where both E0 and Eh are orthogonal to the plane spanned
by k0 and kh, called the scattering plane. Or we have π-polarization, where both vectors
fall within this plane. This approximation allows us to rewrite the vectorial equations as
scalar equations by the introduction of the parameter C:

C =

�
1 for σ-polarization.
cos(2θ0) for π-polarization.

(2.14)

Where 2θ0 is the angle between the vectors k0 and kh. The 2D plane spanned by these
vectors is called the scattering plane.2 The resulting two-beam TT equations are:

2 (k0 ·∇)E0 = −i
�
k2χ0 − (|k0|2 − k2)

�
E0 − ik2CχhEh

2 (kh ·∇)Eh = −i
�
k2χ0 − (|kh|2 − k2)

�
Eh − ik2CχhE0

(2.15)

We now choose k0 = R(µ)kExact
0 where kExact

0 is a wave-vector that exactly satisfies the
Bragg condition and R(µ) is a rotation within the scattering plane by an angle µ. To illus-
trate the reciprocal space geometry of the k-vectors, one often makes use of a drawing
called the Ewalds constructions. which is drawn as follows:

The 2D slice of reciprocal space parallel to the scattering plane and passing through zero
is considered. The reciprocal lattice vectors of the crystal lattice are plotted as points
where the zeroth lattice vector lies on the origin, labeled O. The wave vector of the

2This should not be confused with the scattering planes, which is sometimes used to denote the set of lattice
planes corresponding to a given reciprocal lattice vector.
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incident light is drawn in from a point T and ending on the origin. Now a circle is drawn
centered on T with radius k. If any point of the reciprocal lattice falls on this circle, the
Bragg condition is fulfilled for the reflection corresponding to that Bragg reflection. Figure
2.1 shows the Ewald construction for the two incident wave-vectors kExact

0 and k0 used
here.

Writing up the 2-beam TTEs with this choice yields:

2 (k0 ·∇)E0 = −ik2χ0E0 − ik2CχhEh

2 (kh ·∇)Eh = −ik2 (χ0 + β)Eh − ik2CχhE0

(2.16)

where β = (|kh| − k2)/k2 ≈ 2 sin(2θ0)µ and h is used a a shorthand for −h. These are
the same symmetric 2-beam TT equations as stated by [78].

Figure 2.1: Ewald construction for 2-beam diffraction a) with exact satisfaction of the
Bragg condition and b) a slightly rotated geometry. In the rotated geometry, kh does not
end on the Ewald sphere.

2.2.1 Ewald-Laue Theory
In the simplest geometric case, that of a plane wave incident on a perfect semi crystal
(spanning the semi-infite space z > 0) we can calculate analytical solutions to the TT
equations. The result of this is known as Ewald-Laue theory3 and will give us the charac-
teristic length-scales of dynamical diffraction as well as insight into some of the features
we can expect to see in the diffraction patterns of near-perfect crystals. Our approach
shall be to solve the PDEs (2.16) in a semi crystal for z > 0 as boundary-value problems
in a single variable z utilizing the fact that both the crystal and initial condition is constant
in the two transverse directions. We distinguish between two different geometries: the
Laue-geometry (transmission) where both the incident and the scattered beam propa-
gate into the semi-crystal, and the Bragg-geometry(reflection) where the scattered beam

3Named after the two authors who developed it in 1917[26] and in 1931[49] respectively.
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travels out of the crystal. For simplicity we only write up the result for symmetric geome-
tries, where both the incident and the scattered beam make the same angle relative to
the surface. The two different geometries are sketched in Fig 2.2.

x

z

x

z

Laue Geometry Bragg Geometry

k0

kh

θ

θ
k0

kh

θ

θ

Figure 2.2: Schematic drawing of symmetric Laue and Bragg geometries. Note the dif-
ferent coordinate systems.

Symmetric Laue diffraction
In Laue diffraction both the transmitted and the scattered waves travel into the crystal.
Symmetric means that both waves make the same angle with the surface normal, or
equivalently, that the scattering vector is orthogonal to the surface normal. This condition
can be written: k0 · ẑ = kh · ẑ = k cos(θ0) > 0, where θ0 is half of 2θ0. The appropri-
ate boundary conditions (which in this case turns out to be a pair of initial conditions) is:
E0(x, y, 0) = Einit and Eh(x, y, 0) = 0.

The PDEs (2.16) turn into a pair of coupled homogeneous linear ODEs in the parameter,
z and can be written:

d
dz

�
E0

Eh

�
=

k

2i cos(θ0)

�
χ0 Cχh

Cχh χ0 + β

� �
E0

Eh

�
(2.17)

The system has two linearly independent solutions (called wave fields in the traditional
literature on the subject) found by solving the eigenvalue problem of the 2-by-2 system
matrix. The Eigenvalues are:

λ± =
k

2i cos θ

�
χ0 + β/2±

�
C2χhχh + (β/2)2

�
(2.18)

and the eigenvectors are:

v± =

� β
2χh

±
�
C2χhχh + (β/2)2/χh

−1

�
(2.19)
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The solution that satisfies the initial condition, is given by:

E =
E0Cχh�

C2χhχh + (β/2)2

�
v+ exp(zλ+)− v− exp(zλ−)

�
(2.20)

In the special case where µ = 0 and assuming that the product χhχh is real4, the result
simplifies to:

E0(z) = E0 exp
�
z

kχ0

2i cos(θ)

�
cos

�
z

k

2 cos(θ)C
√
χhχh

�

Eh(z) = −E0

�
χh

χh

exp
�
z

kχ0

2i cos(θ)

�
sin

�
z

k

2 cos(θ)C
√
χhχh

� (2.21)

The solution here is an exponentially dampened oscillation traveling into the crystal, with
an attenuation length LAtt. = − π cos θ

λIm(χ0)
and an oscillation period ofLPendel. = λ cos(θ)

πC
√
χhχh

.
Oscillating solutions of this kind are abundant in dynamical diffraction in a lot of different
geometries and when they can be observed as fringes in scattering patterns or rocking
curves they are called pendellösung fringes due to the similarity of Eq. (2.17) with the
equation of a pendulum.
Symmetric Bragg diffraction
In Bragg diffraction the transmitted beam travels into the crystal, but the scattered beam
travels out of the crystal. Symmetric means that both waves make the same angle with the
surface or equivalently that the scattering vector is normal to the surface. This condition
can be written: k0 · ẑ = −kh · ẑ = k sin(θ0). The boundary conditions this time read:
E0(x, y,∞) = Eh(x, y,∞) = 0.
We can again write the TT equations as a pair of coupled ODEs now with a sign change
for the scattered beam:

d
dz

�
E0

Eh

�
=

k

2i sin(θ)

�
χ0 Cχh

−Cχh −χ0 − β

� �
E0

Eh

�
(2.22)

We can calculate the eigenvalues:

λ± =
k

2i sin θ

�
±
�
(χ0 + β/2)2 − C2χhχh − β/2

�
(2.23)

and eigenvectors:

v± =

�
χ0+β/2

χh
±
�

(χ0 + β/2)2 − C2χhχh/χh

−1

�
(2.24)

The boundary conditions are only satisfied by the one of these two solutions, which de-
cays exponentially into the crystal. This is the case only for the eigenvalue with negative
real part. Which one of the two eigenvalues has a negative real part changes from one

4This is the case when anomalous absorption effects can be ignored.
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Figure 2.3: The Darwin reflectivity curve in a Bragg geometry as given in Eq. (2.24)
calculated with typical parameters for diamond at 17keV for the (111) reflection.

side of the rocking curve to the other. The first component of the corresponding wave-
vector gives the relative amplitude of the scattered wave to the direct wave which is the
same as the reflectivity of the crystal. It is difficult to write a closed-form expression of this
function but numerical computation is straight forward. A plot of this function in shown in
Fig 2.3. The reflectivity curve has a characteristic width called the Darwin width and falls
off sharply on either side of this plateau. The reflectivity curve is shifted by a small angle
from µ = 0 due to refraction.

At β = χ0 = 0 and χhχh real, the solution has the shape:

E0(z) = E0 exp
�
−z

kCχh

2 sin(θ)

�

Eh(z) = E0 exp
�
−z

kCχh

2 sin(θ)

� (2.25)

This solution shows an exponential decay of intensity into the crystal with characteristic
length: LEx. =

λ sin(θ)
π|Cχh| . This phenomenon is know as extinction5 and for hard x-rays is

typically much faster than the attenuation characterized by the attenuation length LAtt..
This ensures that x-rays close to the Bragg condition only penetrate a short distance into
a perfect crystal in the Bragg-geometry.

2.2.2 Deformed crystals
Takagi[72] extended the dynamical diffraction theory to deformed crystals. For deformed
crystals, the Fourier series representation of equation (2.8) does not hold exactly. Rather
we introduce the spatially varying susceptibility functions, called scattering functions:

χ′
h(r) = χh exp(iu(r) · h) exp(ir ·∆Q) (2.26)

5Sometimes secondary extinction or dynamical extinction.
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Figure 2.4: Drawing of a) a perfect and b) a deformed crystal. The red crosses mark the
positions of atoms, the blue arrows are the un vectors. The green T marks a dislocation
and the dashed line marks an apparent discontinuity in the displacement field.

Where u(r) is the displacement field from continuum mechanics. We assume that a given
distorted crystal may be described as a deformed version of an initially perfect crystal
where the atoms have been moved from their ideal positions. In an atomistic view, a
given atom, n sat at a position in the initial perfect crystal, r(i)n . After the deformation that
same atom has been moved to a new position r(f)n . The displacement of every atom is
then the distance between these two points un = r(f)n −r(i)n . In transitioning to a continuum
model, we assume that atoms close to each other are displaced by similar vectors and
as such we can define a continuous field u(r) ∈ R3 → R3 where:

un = u(r(i)n ) (2.27)

A sketch of this situations is drawn in Fig. 2.4.

Of central interest are the partial derivatives of the displacement field, that can be col-
lected into a tensor:

∇u =



∇u11 ∇u12 ∇u13

∇u21 ∇u22 ∇u23

∇u31 ∇u32 ∇u33


 =




∂u1

∂x
∂u1

∂y
∂u1

∂z
∂u2

∂x
∂u2

∂y
∂u2

∂z
∂u3

∂x
∂u3

∂y
∂u3

∂z


 (2.28)

where u1,2,3 refer to the x, y, and z components of the displacement field.

A complication arises here when the deformed crystal contains dislocations. In this case
the displacement field will contain a discontinuity along an infinite half-plane where the
derivative is then not defined. It turns out however, that the gradient approaches the same
value from both sides of the discontinuity, so we can define a smooth gradient function
that only has a divergence along the dislocation core.

Also, we note that the discontinuities that appear in the displacement field due to disloca-
tions will always have the magnitude of a lattice vector. Therefore the dot product of this
discontinuity with h, as it appears in Eq. 2.26, gives an integer times 2π and does not
give a discontinuity in the scattering functions except a phase-vortex at the dislocation
core.
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The second factor in Eq. (2.26) describes small rotations of the crystal where ∆Q =
RQ−Q and R is the rotation matrix describing the rotation of the crystal. Rotations of the
crystal can also be handled by the β factor of the previous subsections or by a modification
of the initial condition. We will prefer to use the β parameter for numerical calculations in
the later chapters.

The introduction of the displacement field complicates the derivation of the TT equations
significantly and changes the approximations needed to reach them, but does ultimately
not change the final shape of the equations. We skip the derivation here and refer to the
original papers.[74, 73]

2.2.3 Perfect crystal propagators
Scattering by a perfect crystal of any incident light can be handled by a method simi-
lar to the one shown in Section 2.2.1 for plane-wave illumination. Utilizing the continu-
ous Fourier transform, any incident monochromatic wave-field can be decomposed into
plane waves of different angle of incidence. The scattered and transmitted light can thus
be found by first Fourier transforming the incident wave field and then solving a 2-by-2
eigenvalue problem for each component to find the complex reflectivity and transmitivity
for each plane wave component. Finally we inverse Fourier transform the reflectivity and
transmitivity times the Fourier coefficients of the incident light to find the profile of the
scattered and transmitted beams.

The final result will have the shape of a Fourier convolution and is conceptually similar
to a family of operators – called propagators – used to calculate the propagation of light
through a vacuum. We therefore call this a perfect crystal propagator. Such a method
has been described and implemented in the computer-program, SRW[71] which however
only treats Bragg-geometry so we give a derivation for Laue geometries here.

We focus on an infinite slab-shaped (with two parallel infinite surfaces) crystals of finite
thickness, t. We define an orthogonal grid with the three orthonormal unit-vectors x̂, ŷ,
and ẑ. As for the Ewald-Laue theory we require that ẑ is parallel to the normal vector
of the surface where the beams exit the crystal. We are interested in a Laue-geometry
which is to say:

k0 · ẑ = k0,⊥ > 0 and kh · ẑ = kh,⊥ > 0, (2.29)

such that the z-axis takes the role of a quasi-optical axis. We can treat z as the dynamical
variable and x and y as transverse variables. To this end, we decompose the vectors
k0 and kh into their z-components and their projection onto the x − y plane, i.e. k0 =
k0,z ẑ+ k0,⊥ and kh = kh,z ẑ+ kh,⊥. We can now re-write Equations (2.15) as:

2k0,z
∂

∂z
E0(r) = −ik2χ0E0(r)− 2(k0,⊥ ·∇⊥)E0(r),−ik2χ′

h
(r)Eh(r),

2kh,z
∂

∂z
Eh(r) = −ik2(χ0 + β)Eh(r)− 2(kh,⊥ ·∇⊥)Eh(r)− ik2χ′

h(r)E0(r),
(2.30)

where ∇⊥ = [∂/∂x, ∂/∂y, 0].

Using the definition of th continuous Fourier transform given in Appendix A.2, we Fourier-
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transform the Equations (2.30):

∂

∂z
Ẽ0(sx, sy, z) =

�
−ik2

2k0,z
χ0 −

i2π

k0,z
s · k0,⊥

�
Ẽ0(sx, sy, z)

− ik2

2k0,z
F⊥{χ′

h
(x, y, z)Eh(x, y, z)}

∂

∂z
Ẽh(sx, sy, z) =

�
−ik2

2kh,z
(χ0 + β)− i2π

kh,z
s · k0,⊥

�
Ẽh(sx, sy, z)

− ik2

2kh,z
F⊥{χ′

h(x, y, z)E0(x, y, z)}

(2.31)

where s = [sx, sy, 0] are the full-period spatial frequencies. Here we have assumed that
χ0 is constant. We introduce the angles, α0 and αh given by k0 · ẑ = |k0| cos(α0) and
kh · ẑ = |kh| cos(αh) to give:

∂

∂z
Ẽ0(sx, sy, z) =

� −ik

2 cos(α0)
χ0 −

i2π

cos(α0)
s0,⊥

�
Ẽ0(sx, sy, z)

− ik

2 cos(α0)
F⊥{χ′

h
(x, y, z)Eh(x, y, z)}

∂

∂z
Ẽh(sx, sy, z) =

� −ik

2 cos(αh)
(χ0 + β)− i2π

cos(αh)
sh,⊥

�
Ẽh(sx, sy, z)

− ik

2 cos(αh)
F⊥{χ′

h(x, y, z)E0(x, y, z)}

(2.32)

where s0,⊥ = s · k0,⊥/k and sh,⊥ = s · kh,⊥/k.

For a perfect crystal, the functions χ′
h and χ′

h
are constants, so the convolution terms

become simple products giving a final simplification:

∂

∂z

�
Ẽ0(sx, sy, z)

Ẽh(sx, sy, z)

�

=

� −ik
2 cos(α0)

χ0 − i2π
cos(α0)

s0,⊥ − ik
2 cos(α0)

χh

− ik
2 cos(αh)

χh
−ik

2 cos(αh)
(χ0 + β)− i2π

cos(αh)
sh,⊥

� �
Ẽ0(sx, sy, z)

Ẽh(sx, sy, z)

�

=

�
A00(sx, sy) A0h(sx, sy)
Ah0(sx, sy) Ahh(sx, sy)

� �
Ẽ0(sx, sy, z)

Ẽh(sx, sy, z)

�
(2.33)

For any given frequency component, we have a system of 2 coupled linear homogeneous
first order differential equations. The solution is found by first solving the eigenvalue
problem and matching the initial condition. A numerical implementation of this, as well
as the (finite and infinite) Bragg cases is given in
https://github.com/Multiscale-imaging/dynamical_diffraction.
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Figure 2.5: Line focused beam with a Gaussian profile propagated through a perfect
crystal. a) Line focused beam on the entrance surface of the crystal. b) Transmitted
beam on the exit surface of the crystal , c) Scattered beam on the exit surface. d) Depth
profile of the scattered beam at x = 50 µm.

Figure 2.5 shows a simulation of a section topography [47] type experiment where a line-
focused beam is incident on a perfect crystal using this propagator. The transmitted
and scattered beams contain horizontal pendellösung fringes that are typical of section
topography and DFXM of near-perfect crystals.

2.3 Kinematical scattering & geometric optics
For small crystals, and for very imperfect crystals, scattering can be treated in the kine-
matical approximation where we ignore refraction, absorption, and the back-scattering
from the scattered wave into the direct wave. In this approximation the scattered beam is
given by a simple integral over the volume of the crystal. Also, we can derive a relation
between the direction of the scattered beam and the components of the displacement-
gradient tensor. Usually the equations of kinematical diffraction are stated for the far-field
diffraction patterns where the results can be written up in a short form using the three-
dimensional continuous Fourier transform. Here we are interested the real space, near
field diffraction pattern instead.

In the formalism of the Takagi-Taupin equations (eq. (2.15)), we can arrive at the kine-
matical equations by setting χ0 = 0 and χh = 0:
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2i (k0 ·∇)E0 = 0

2i (kh ·∇)Eh = k2βEh + k2Cχ′
hE0

(2.34)

The solution of the first equation is an interpolation of the boundary condition along the
direction of k0. If the incident field is given on some plane k0 · r = 0 may write for E0:

E0(r) = Einit(r− k̂0 · r) (2.35)

By introducing a coordinate, sh, parallel to kh, we re-write the second equation as a ODE
by inserting the solution of the first:

∂

∂sh
Eh = −ik/2βEh − kC/2χ′

h(r)E0(r) (2.36)

Figure 2.6: Geometry used in the derivations in section 2.3. The scattered amplitude at
the point P depends only on an integral along the red part of the line r(sh).

We now introduce a coordinate system with the z-axis parallel to the scattering vector and
the scattering plane coinciding with the x-z plane. We assume that the scattering crystal
is confined to some finite volume, V, and we are interested in finding the scattered field at
some point downstream of the sample P1 = [L, y1, z1]

T . The scattered field at this point
depends only on the scattering function a along the line:

r(sh) = sh




cos θ
0

sin θ


+




0
y1

z1 − L tan θ


 (2.37)
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The incident field is everywhere equal to:

E0(x, y, z) = Einit(cos θz + sin θx, y) (2.38)

which gives us the expression for the scattered field:

Eh(x1, y1, L) = Eexit(cos θx1 − sin θL, y1)

= −ik/2βeikβL/2

�

r(sh)∈V
e−ikβsh/2χ′

h (r(sh))E0 (r(sh)) dsh (2.39)

where Eexit(x
′′, y′′) is the scattered field downstream of the sample given on a pair of

coordinates orthogonal to kh. The integral is only over the part of the line that falls within
the sample.

We will go one step further and look at the contribution to this integral from a small sub
volume of the sample δV of length a centered on the point P1 = r(sh = b).

In this small volume we approximate the value of the scattering function with its 1st order
Taylor expansion:

χ′
h(r) = χheiQ(∇u31x+∇u32y+∇u33z) (2.40)

where Q = |h| and ∇u3j for j = 1, 2, 3 is the gradient of u(r) · ẑ. For the incident field we
write:

Einit(x
′, y′) = |E0|eik(ζvx

′+ζhy
′) (2.41)

where ζx and ζy are related to the phase gradient of the incident wave front and can be
regarded as divergence angles in the x and y direction respectively.

We write out the integral, ignoring constant phase factors and get:

Eh(P1) ∝ eiz1(Q∇u33+k cos θζv)eiy1(Q∇u32+kζh)

×
� b+a/2

b−a/2

eish(−kβ/2+Q cos θ∇u31+Q sin θ∇u33+k sin 2θζv)dsh (2.42)

If we choose the same form for the scattered wavefront as we did for the incident:

Eexit(x
′′, y′′) = |Eh|e

ik(∆2θx′′+ψy′′)
(2.43)

we can equate the three variables |Eh|, ∆2θ, and ψ with quantities from Eq. (2.42):

∆2θ = 2 tan θ∇u33 + ζv

ψ = ζh + 2 sin θ∇u32

|Eh| =
�����

� b+a/2

b−a/2

eish(−kβ/2+Q cos θ∇u31+Q sin θ∇u33+k sin 2θζv)dsh

�����

(2.44)
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where we have substituted in Q = 2 sin θk and applied some trigonometric identities. In
the limit of a → ∞, the integral on the last line will only be non-zero when the argument
of the exponential function is zero. Writing out this condition yields:

µ = ∇u31 + ζv + tan θ∇u33 (2.45)

where we have substituted in the expression for β. The linear system of three equations
given by the first two equations of (2.44) and Eq. (2.45) taken together relate the diver-
gence angles of the incident and scattered light with the rocking angle of the sample and
components of the strain tensor. These equations are of central importance for interpret-
ing DFXM data. They are the same set of equations as the ones arrived at by Poulsen et
al.[59] (repeated as Eq. 3.21 of this thesis) using geometric optics in the case of δE = 0
and χ = 0.

The purpose of this derivation is to establish the relationships between the phase gradi-
ents of the scattered beam (∆2θ and ψ) and the strain of the sample crystal that are used
when we interpret the phase-data from the experiments in Chapter 7. Secondly, it shows
that the wave optics theory of Bragg scattering pursued in this chapter reaches the same
conclusions as the traditional ray-optics treatment.

The derivation here also illustrates under what conditions the ray-optics treatment is ap-
propriate. We first introduce a small sub-volume of the sample, where we assume that the
strain and orientation of the lattice is constant. Second, we impose the rules of Bragg-
scattering by an infinite lattice, by taking the limit a → ∞, on this small volume. We
interpret this as follows: there are two very different length scales in the system. One
small, on the order of many unit cells of the crystal lattice, where diffraction takes place.
And a long length scale, suitably much larger than the other, on where the structure of
the sample varies. It is clear that this separation of length scales does not hold at the
edges of a crystal and close to cores of crystal defects, where the structure varies on the
scale of a few unit cells.

The last approximation we need to make to arrive at geometric optics is that the scat-
tering from all these sub-volumes does not give rise to interference, but adds together
incoherently. Typically, this behavior is ensured by a small coherence length of the inci-
dent illumination. But in the case of a DFXM, the small volume from which scattered light
can interfere is also guaranteed by the small finite point-spread of the microscope optics.
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3 Dark-Field X-ray Microscopy with
twinned crystals

Dark-field x-ray microscopy[66, 59] is an x-ray scattering-imaging method in the vein of
x-ray topography[7, 47] characterized by the use of an x-ray objective lens placed in the
Bragg-scattered beam of a sample crystal to create a real-space image on an x-ray detec-
tor. The objective lens brings with it a number of advantages compared to conventional
x-ray topographic imaging:

• The optical magnification of the sample – x-ray lens– detector configuration allows
better resolution better than the point spread of the detector. (In the experiments
presented here typically around ×15)

• In topography, the necessary finite distance between sample and detector means
that x-rays scattered in different directions will diffuse before they reach the detec-
tor. This problem is avoided by measuring exactly in the image plane, which allows
one to study more disordered crystals than what is possible with x-ray topography.

• The small angular acceptance of the objective lens means that x-rays scattered
from parts of the sample that are not on the optical axis of the objective lens do
not reach the detector. This allows one to study single grains inside poly-crystals
without overlapping intensity scattered from other grains.

• The long working distance of the applied lenses leave a lot of room for sample en-
vironments. (≈ 1m for the condenser- and ≈ 30 cm for the objective lens)

• The direction of the scattered beam, and therefore the strain-rotation field of the
sample crystal, can be measured directly thanks to the small numerical aperture of
the objective lens.

DFXM has clear similarities with dark-field transmission electron microscopy (DF-TEM)
which also generates real space images of Bragg-reflected radiation. The parallel how-
ever has certain limitations. In DF-TEM images are generated using many simultaneous
reflections. In DFXM images, only a single reflection is measured at one time and measur-
ing several reflections from the same sample requires essentially a separate experiment
to be carried out for each reflection. This difference owes to the much higher k-space
resolution of x-ray scattering compared to electron scattering in usual experimental set-
tings.

In this chapter we derive the usual theory of DFXM based on geometric optics and show
how this quantitative theory can be used to analyze experimental data from crystals with
pseudomerohedral twinning. The experimental geometry and typical length-scales given
here correspond to the ID06-HXM instrument as the ESRF where the experiments for this
thesis were carried out.
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Figure 3.1: a) Sketch of the experimental geometry of the DFXM instrument as ID06-
HXM at the ESRF in laboratory coordinates. b) Sketch of the imaging point-spread. c)
Designation of the three assumed rotations used in this chapter. The laboratory y-axis
points into the paper.
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3.1 The geometry of a DFXM instrument
Figure 3.1 a) shows the experimental geometry of a DFXM instrument with the most im-
portant components and with directions denoted in laboratory coordinates. A monochro-
matic and collimated x-ray beam is incident from the left hand side parallel to the labo-
ratory x-axis. z is the vertical direction. We operate in a geometry where the scattering
plane is vertical, coinciding with the x-z plane in laboratory coordinates. The four most
important components are:

• The condenser lens: A 1D focusing lens used to shape the incident light into a flat
sheet beam of a small thickness σcond in the z direction and a large extent in the y
direction. The condenser lens is optional and is only used when doing experiments
in the slicing mode.

• The sample crystal: The sample is mounted on a number of rotations stages called
µ, χ, and ϕ. The sample is oriented such that the lattice (or the lattice of the grain
of interest) is aligned to the Bragg condition with scattering in a vertical plane when
all rotation stages are set to zero. In practice this alignment is done using these
same rotation stages, so their position is not exactly zero and their axes of rotation
are not exactly those drawn in Fig. 3.1 c), but we will use these symbols to denote
small rotations equivalent to those plotted here. The µ rotations, which is the same
as the µ used in the previous chapter, is called the rocking rotation. χ is called the
rolling rotation.

• The objective lens: A 2D imaging lens placed on the center of the scattered beam
at a distance from both the sample and the detector such that a magnified image of
the sample is created on the detector.

• The detector: A 2D image detector with a small pixel size. In our experiments
the detector is mounted vertically as drawn on the figure and not orthogonal to the
scattered beam. The combined effect of the lens and the detector gives an effective
incoherent point spread of width σobj.

We define a number of vectors and write them in the laboratory coordinates:

k0 = k



1
0
0


 and kh = k




cos(2θ0)
0

sin(2θ0)


 and Q0 = 2 sin(θ0)k



− sin(θ0)

0
cos(θ0)


 (3.1)

where θ0 is chosen such thatQ0 is exactly a reciprocal lattice vector of the sample crystal.
Q0 = h The line connecting the center of the sample (which we choose to be the origin
of the coordinate system) with the objective lens an the detector is called the optical axis
and is parallel to the vector kh.

DFXM operates both in a projection- and a slicing- mode depending on whether or not a
1D condenser lens is inserted in the beam. In the projection mode, without the condenser
lens, the image on the detector is a projection of the sample along the direction of kh. In
the slicing mode, only a thin slice of the sample centered on z = 0 is illuminated. This
means that the signal on a single detector pixel stems only from a small 3D volume inside
the bulk of the sample with a size determined only by the performance of the optical
components and the detector. Figure 3.1b) shows the point-spread of this configuration.
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The condenser lens focuses the incident light onto a slice of width σcond. The point spread
of the combination of x-ray optics and the detector defines a cylinder parallel to the optical
axis. The intersection of these two volumes defines the point-spread of a given pixel.
Typically the point spread of the condenser lens is larger than that of the imaging optics
and the scattering angle 2θ0 is close to 20°. This means the microscope has better spatial
resolution in the two directions normal to the scattered beam than in the parallel direction.

3.1.1 Sample alignment – the U matrix
The DFXM experiment is in essence a single-crystal diffraction experiment. Even if the
sample may be a poly-crystal, only a single crystalline grain is studied at one time. As in
any other single-crystal diffraction experiment the first step is to determine the orientation
of the crystal lattice. The three basis vectors of the crystal lattice, a, b, c, can be written
in the laboratory coordinates and are stacked together into a matrix:

UA = [a,b, c] (3.2)

called the lattice matrix. This is a non-singular real 3-by-3 matrix. In general this matrix
will not have any obvious symmetric structure (e.g. it will not be diagonal for a cubic
lattice). The symmetric structure only appears when we write up the lattice matrix in a
special coordinate system, where the axes of the coordinate system are aligned with high-
symmetry directions of the lattice. We call this matrix the reference lattice matrix, A. It is
related to the laboratory lattice matrix by the rotation that carries this special coordinate
system into the laboratory system, which is the rotation given by the matrix U, a real
rotation matrix.

A rotation matrix has three degrees of freedom that must be determined. In a DFXM
experiment we always know the orientation of the measured scattering vector and its
corresponding hkℓ indexes, which gives two constraints. This leaves one last degree of
freedom to be determined – the rotation of the lattice about Q – before we can uniquely
specify U. In single-crystal diffraction experiments, you would typically measure one other
reflection of the crystal lattice which gives two more constraints and leaves the problem
over-determined. But due to the short travel range of some of the motors and due to the
small detectors used in DFXM, a measurement of a second Bragg-reflection is not always
easy.

When measuring single crystals, we often use a polished surface of the sample as the
second direction to determine the orientation. This has to be done already in the mounting
of the sample by the following procedure:

1. The sample is mounted on the goniometer head with the flat surface orthogonal
to the incident beam (n||x) and the reciprocal lattice vector of interest somewhere
in the x-z plane. An alignment error of up to a few degrees of the sample crystal
should be expected.

2. The sample is rotated using two orthogonal rotations µ and ϕ to make the surface
horizontal to a high precision. This is achieved by inspecting the transmission image
of the sample in the nearfield detector.

3. The sample is rotated again using only the µ rotation to bring the Q vector into the
Bragg condition, such that a scattered beam is seen on a near-field detector. As µ
is the lowest of the rotation stages this keeps the surface normal in the x-z plane.
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4. The diffraction peak is brought into the vertical direction (Q · ŷ = 0) using small
movements of µ and the third orthogonal rotation, χ.

After this procedure, both the vectors Q and n can be determined. The surface normal
was vertical after Step 2 in the alignment procedure, so the orientation of the surface
normal is given by the difference in the goniometer orientation between Step 2 and the
final alignment:

n̂ = R4RT
2 ẑ (3.3)

where R4 and R2 are the rotation matrices describing the goniometer setting after step 2
and step 4 respectively.

If the sample was mounted exactly and there is no mis-cut orientation of the polished
surface, then we wouldn’t have to use the χ and ϕ rotations for the final alignment step
and we would be sure that n̂ still lies within the (x, z) plane in the final orientation. In that
case, n̂ can be determined purely from the relative angle between Q0 and n̂ which can be
calculated from their hkℓ indices. This assumption is used in the experiments presented
here in this chapter.

Under this approximation, and if the probed reciprocal lattice vector is orthogonal to the
polished surface (symmetric Laue geometry), the real rotation motors of the instrument
correspond to the rotations drawn in Fig. 3.1c). If the sample was aligned by another
procedure, we should not expect the rotation axes of the motors to be aligned with any
specific direction and we fall back to using rotation matrices.

When the two vectors Q0 and n̂ and their hkℓ indices Qhkℓ and nhkℓ are known, the U
matrix is build in the following way: [10]

1. Calculate the normalized Q in both frames: Q̂ = Q/|Q|, and Q̂ref = BQhkℓ/|BQhkℓ|

2. Calculate and normalize the component of n that is normal to Q in both frames:
n⊥ = n̂− (n̂ · Q̂)Q̂, n̂⊥ = n⊥/|n⊥| and similar for nref = Bnhkℓ.

3. A third orthogonal direction is constructed as ô = Q̂× n̂⊥ in both frames.

4. U is calculated as: U = [Q̂, n̂⊥, ô][Q̂ref, n̂⊥,ref, ôref]
T

Where ”×” denotes the cross-product of 3-vectors and B = 2πA−T .

3.1.2 Reciprocal space map measurements
During a DFXM experiment, we typically aslo perform a traditional far-field diffraction mea-
surement which we call a reciprocal space map(RSM). The purpose of this measurement
is to characterize the mosaic spread of the crystal or grain of interest prior to performing
the DFXM measurements.

Thanks to the long sample-to-detector distance, the small pixel-size of the available mi-
croscopy detectors, and the highly coherent x-ray source, this measurement has ex-
tremely high resolution in reciprocal space.1 For the RSM measurement, the sample
is placed in the direct beam. The extent of the beam is limited by a slit upstream of
the sample. Typical dimensions are 200 µm in the vertical direction and 500 µm in the
horizontal.

1Probably limited by the energy bandwidth in one direction and – since the EBS upgrade – by mechanical
instability of the sample in the two orthogonal directions.
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We could also choose to use the condenser lens while measuring the diffraction peak.
In that case, we would illuminate the same volume as in the DFXM experiment but this
however blurs out the diffraction features in the x direction. Furthermore, the RSM can be
seen as a pre-characterization of the whole sample before microscopy both to identify the
extent of the scattering in reciprocal space to be sure that the DFXM measurements cover
the whole mosaic spread, but also to make sure that the region chosen for microscopy is
representative of the sample as a whole. Therefore, we usually omit the condenser lens
for RSM measurements.

Typically, the spatial extent of the sample is small compared to the width of the scat-
tered beam at 5 m distance.2 In this case we can treat each detector pixel as a point-
measurement in reciprocal space. For a given pixel, we know its physical position in
space P(x, y) = [xdet, y, z]

T , where xdet is the position of the detector along the labora-
tory x axis and the origin is the position of the sample. The wave vector of the scattered
beam is parallel to P and has magnitude k so the scattering vector probed by this pixel,
Q(z, y), is given by:

Q(z, y) = k′h(z, y)− k0 = k(P(z, y)/|P(z, y)− x̂) (3.4)

The detector-coordinates y and z thus map out a section of a sphere in reciprocal space.
To access different parts of reciprocal space, we rotate the sample around the laboratory
y axis using the µ rotation stage by a small angle, −µ. We choose to artificially view this
small rotation as a rotation of the entire experiment about a fixed sample in the opposite
sense. In this picture, the scattering vector for each measured point becomes:

Q(z, y, µ) = kRy(µ)(P(z, y)/|P(z, y)|− x̂) (3.5)

where Ry(µ) is a rotation by the angle µ about the laboratory y axis. In practice we
measure at a number of different µ values, using a 2D image detector, to get a 3D grid of
data points in (z, y, µ)-space. This corresponds to a curved grid in Q space, but to a good
approximation, we can linearize Eq. (3.5) around the central point, (z, y, µ) = (zdet, 0, 0),
where zdet is the coordinate of the center of the detector:

Q(z, y, µ) = Q0 + k cos 2θ0



− sin 2θ0

0
cos 2θ0


 (z − zdet)/|P0|+ k



0
1
0


 y/|P0|

+ 2 sin θ0k




cos θ0
0

sin θ0


µ (3.6)

where |P0| =
�

x2
det + z2det and z′ = z−zdet. The quantities (z−zdet)/|P0| and (z−zdet)/|P0|

can be thought of as small deflection angles of the scattered beam, equivalent to ∆2θ and
ψ of Eq. (2.43).

In this linear approximation, the three measured variables (z, y, µ) map out a regular grid
in Q-space. But, as noted in [59], the three directions that define this grid (given by
the three column vectors in Eq. (3.6)) are non-orthogonal. In the data-analysis presented

2For near-perfect single crystals this is not the case and the analysis here should be used with caution.
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here, we fall back to the non-linear relations in Eq. (3.5) and use a 3D histogram approach
to transform the data set into an orthogonal grid in reciprocal space.

3.1.3 Coordinate systems for reciprocal space information
The laboratory coordinate system is not ideal for plotting RSM data because the direc-
tions along the scattering vector is not one of the axes of the coordinate system. Rather,
Q0 is parallel to [− sin θ0, 0, cos θ0]T . (See Fig. 3.1) The normal choice in the DFXM
literature[59, 57, 58] is therefore to plot reciprocal space data in a different coordinate-
system which is rotated by θ0 about the y-axis relative to the laboratory coordinate sys-
tem.3 Furthermore, the measured Q is normalized by |Q0| to yield dimensionless coor-
dinates that are directly equivalent to angles measured in radians and to components
of the displacement-gradient tensor. The three directions in reciprocal space in this co-
ordinate system are given special names: The coordinate along the scattering vector is
called q-parallel (q||), the component perpendicular to the scattering plane is called ei-
ther q-perpendicular or q-roll (q⊥ or qroll) and the third orthogonal direction is called q-rock
(qrock)



qrock
q⊥
q||


 = Ry(θ0)

Q−Q0

Q0
(3.7)

For some phenomena such as twinning, it is convenient to represent the reciprocal space
information in the hkℓ-basis of the crystal lattice.[33] The Q-vector corresponding to a
given (hkℓ) is given by Q = UB[h, k, ℓ]T , where UB = 2π(UA)−T . This implies the oppo-
site relation between a measured Q and a set of non-integer hkℓ values:



h
k
ℓ


 = (UB)−1Q (3.8)

Finally, it is also quite common[66, 2, 68] to plot reciprocal space information as a function
of the measured angles:



2θ = arctan

��
z2 + y2/xdet

�

µ
η = arctan(y/z)


 (3.9)

which as shown before corresponds to a non-orthogonal frame in reciprocal space.

3.1.4 Reciprocal space geometry of DFXM
In a DFXM experiment, the probed volume of reciprocal space is given by the position
of the objective lens and the orientation of the sample. We operate with two sample
rotations: The rocking rotation, µ, and the rolling rotation, χ.

The small finite aperture (≈ 0.2mm) of the objective lens acts as a filter in reciprocal space
so that we only sample a small part of the angular spectrum of the scattered beam. The
position of the objective lens is given by the vector [obx, 0, obz]T . In the slicing mode of
DFXM we measure a real-space image of a slice of the sample near the (x, y, 0)-plane.

3This only holds in the vertical geometry where the scattering plane is orthogonal to the laboratory y. The
existing literature is more thorough and also handles the oblique case.[59]
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We find the Q vector of a given pixel in the sample plane by looking at the vector that
connects said pixel to the center of the objective lens:

D(∆2θ;x, y) =




obx(∆2θ)− x
y

obz(∆2θ)


 (3.10)

We write the distance vector D as a function of ∆2θ because 2θ scans are implemented
by moving the objective lens along a direction orthogonal to D, such that:

obx = obx0 − sin 2θ0|D0|∆2θ (3.11)

and
obz = obz0 + cos 2θ0|D0|∆2θ (3.12)

where obx0 and obz0 denote the reference position where the lens is centered on the
scattered beam and D0 = D(0; 0, 0). In practice the objective lens is also rotated by the
angle ∆2θ and the detector is translated to follow the image, but this is not important for
the calculations here.

The Q-vector corresponding to the ray passing through the center of the objective lens is
then

Q(∆2θ;x, y) = k

�
D(∆2θ;x, y)

|D(∆2θ;x, y)| − x̂
�

(3.13)

When we rotate the crystal, we treat that as the opposite rotation of the entire experiment
around a fixed sample and write:

Q(µ,χ,∆2θ;x, y) = kRy(µ)Rroll(−χ)

�
D(2θ;x, y)��D(2θ;x, y)

�� − x̂
�

(3.14)

where again Ry(µ) is a rotation about the y axis by the angle ϕ and Rroll(−χ) about the
direction [cos θ, 0, sin θ]T . The (x, y)-dependence in the above expression gives a cou-
pling between the real space coordinates and the reciprocal space information. For near-
perfect crystals this geometric effect is important and data analysis uses this expression
for calculations. Going forward in this chapter, we omit this geometric effect and only
consider the center pixel, (x, y) = (0, 0).

We observe that by varying the two angles µ and χ we can map out a section of a sphere
centered on zero in reciprocal space and ∆2θ changes the radius of this sphere. For
practical purposes we can linearize Eq. (3.14) and will by doing so (Eq. (3.21)) find that
the direction mapped out by ∆2θ is not orthogonal to the one mapped by µ.

3.1.5 The resolution function
The aperture of the objective lens is small (NA≈ 10−3) but still the lens accepts rays scat-
tered in more than just a single direction, and we can no longer treat each measurement
as a point measurement in reciprocal space. Rather, we are integrating over a small 3D
volume of reciprocal space and we would like to determine the size and shape of this
volume. To do so, we model the incident beam as a continuum of rays that each have a
wave vector close to k0, parameterized by two divergence angles and an energy offset:
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k′0 = R(ζv, ζh)k0(1 + δE/E) (3.15)

where δE/E is the deviation of photon energy of a given ray relative to the average photon
energy. R(ζv, ζh) is a rotation matrix about a small divergence angle where ζv is the angle
in the scattering plane and ζh is the angle out of plane. In free-space, the rays propagate
along a straight line and the intensity of x-rays in any given point is proportional to an
integral over the distribution of rays, p(ζv, ζh, δE/E) times a delta-function constraining
the integral to only rays that pass through the point of interest.

The real crystal lattice is a deformed version of the reference lattice. The deformation
is characterized by the displacement field, u(r). If the displacement gradient is slowly
varying, the sample will locally have approximate translational symmetries with a local
lattice matrix: UA = (I +∇u)UA0, where I is the 3-by-3 identity matrix.

This linear transformation of the real lattice implies a transformation of the reciprocal lat-
tice by the inverse transpose of the same transformation matrix. By writing the inverse
as a Neumann series and only keeping linear terms, we get an expression for the trans-
formation on the reciprocal lattice:

(I +∇u)−1 =

∞�

k=0

(−∇u)k ≈ I −∇u (3.16)

Furthermore we may rotate the sample by the rocking and rolling rotations described in
the previous subsection. This finally gives us an expression for the local scattering vector
of the deformed lattice:

Q′
h = R(µ,χ)(I −∇uT )Qh (3.17)

Following the rules of ray-tracing: if we consider some local region of the deformed crystal,
then a given ray with wave vector k0′ gives rise to a scattered ray of wave vector kh′ if
and only if the Bragg condition of the local deformed lattice is exactly fulfilled. That is to
say:

|k′h| = |k′0 +Q′
h| = |k′0| = k(1 +∆E/E) (3.18)

We parameterize k′h in a similar way to k′0 and fix its energy to that of the incident beam
to ensure energy conservation:

k′h = R(∆2θ,ψ)kh(1 + δE/E) (3.19)

where ∆2θ is a rotation in the scattering plane and ψ is a rotation out of plane.

To proceed, we write up this vectorial equation in the coordinates implied by Eq. (3.7).
These are the coordinates along the qrock, q⊥, and q|| directions in fig. 3.2. We include
only linear terms in the rotation angles and the relative energy.
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Figure 3.2: Reciprocal space geometry and parameters used in deriving expression for
the resolution function.

k




cos θ + cos θδE/E + sin θζv
ζh

− sin θ − sin θδE/E + cos θζv




= |Q|



−(∇u)3,1 − µ
−(∇u)3,2 − χ
1− (∇u)3,3


+ k




cos θ + cos θδE/E + sin θ∆2θ
ψ

sin θ + sin θδE/E + cos θ∆2θ


 (3.20)

We simplify the above equations and introduce the angle η = ψ sin 2θ, which is the az-
imuthal angle of the scattered beam relative to the x−z plane, an angle which is commonly
used in the existing literature.

−(∇u)3,1 = µ+ ζv/2 +∆2θ/2

−(∇u)3,2 = −χ− cos θη + ζh/(2 sin θ)

−(∇u)3,3 = δE/E + cot θ(−ζv/2 +∆2θ/2)

(3.21)

We identify that the three resolved components of the displacement gradient here are
the components of the q-vector of equation (3.7): qrock = −(∇u)3,1, q⊥ = −(∇u)3,2 and
q|| = −(∇u)3,3.

These equations relate the energy and divergence angle of a given incident ray to the
angles of the scattered ray. For a specific ray (which means a fixed choice of ζv, ζh, and
δE/E) and fixed sample angles this is a linear system of 3 equations with 2 variables
(∆2θ and η). The y equation is decoupled from the rest, so this means that for a given
energy, only one specific vertical divergence angle will give rise to a scattered ray and
vice versa. Eliminating ∆2θ from the first and the last equation yields:

δE/E(ζv) = cot θ
�
ζv + qrock − ϕ

�
− q|| (3.22)

The divergence angles of the scattered rays can be written as:

η(ζh) = sec θ
�
q⊥ + χ+ ζh/(2 sin θ)

�
(3.23)
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and

∆2θ(ζv) = 2ϕ− 2qrock − ζv (3.24)

We are now interested in predicting the intensity on the detector in a DFXM experiment
stemming from the point r = [0, 0, 0]T in the sample. This intensity is proportional to an
integral of the phase-space distribution of incident rays multiplied by a 1D Dirac delta
function enforcing the Bragg-law and multiplied by the transmission of the imaging optics
at the particular divergence angle of the corresponding scattered ray. The delta function
is used to raise the energy integral, which yields:

I ∝
� �

p
�
ζv, ζh, δE/E(ζv)

�
T
�
∆2θ(ζv), η(ζh)

�
dζvdζh (3.25)

where p(ζv, ζh, δE/E) is phase space distibution function of the incident beam and T (∆2θ, η)
is the transmission coefficient of the imaging optics at the given angle of the scattered
ray, and δ(·) represents the Dirac-delta function.

The expression on the RHS of the Eq. (3.25) depends parametrically on the vector q.
Choosing to view it as a function of q instead, we call this the resolution function: Resq(q).
This function tells us what values of the local deformation tensor will give rise to a signal
on the detector and how strongly. The position of this function in reciprocal space can be
shifted by rotating the sample or by displacing the objective lens but its shape and size is
unaffected in the small-angle approximation.

The evaluation of this function is only straight-forward for certain choices of p and T and
therefore the evaluation has typically been done by numerical MC-integration.[57, 58]
For this demonstration, we choose a pair of functions where the two integrals factorize
and perform a simple 1D numerical integral for the x-integral and find an analytical so-
lution for the y-integral. In Fig. 3.3 we compare two calculated resolution functions with
measurements of single crystals and see that the theory agrees agrees well with the
measurements.

With these parameters (that should be applicable for most experiments performed at
ID06-HXM) we find that the q|| and q⊥ resolution is set by the NA of the objective lens,
the qrock resolution is given by the NA of the condenser lens. The bandwidth is small
compared to the numerical apertures and only contributes a small blurring of the edges
of the resolution function. In some other experiments, a set of slits is inserted in the beam
before the condenser in which case the opening of this slit replaces the condenser lens
aperture as the determining factor for the resolution in the qrock direction.
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Figure 3.3: Calculated resolution functions compared with measurements of near-perfect
single crystals. a) Calculated resolution function plotted as a function of µ and ∆2θ. b)
Measured intensity in a DFXM experiment using a near-perfect single crystal. c) Cal-
culated resolution function plotted as a function of µ and χ. d) Measured intensity in a
DFXM experiment using a near-perfect single crystal.

3.1.6 Types of measurements
Often, it will be too time consuming to map out the diffraction pattern completely in 3D
by scanning all three angles, (µ, χ, ∆2θ) in a 3D grid. Instead we only measure on a 2D
grid. The two most common measurements are:

1. Mosaicity map: When a sample has a relatively small amount of uniaxial strain,
we can assume that the aperture of the lens always captures the diffracted peak
in the q||-direction. In that case we only need to vary the sample angles (µ,χ) to
cover the entire diffraction peak. This measurement measures only the tilt of the
lattice planes, not the d-spacing.

2. Strain map: The resolution function is wider in the χ direction (equivalent to q⊥)
than in the two other directions. It may therefore be appropriate in some cases to
assume that the entire diffraction peak is covered in the q⊥-direction. In this case,
we vary only (µ,∆2θ). This measurement resolves the d-spacing (or equivalently
the uniaxial strain) and the lattice plane orientation in the in-plane direction but not
in the out-of-plane direction.

The mosaicity map is the easiest and most flexible of the two measurements as it is often
the case that the diffraction peak has larger extent in the two transverse direction qrock and
q⊥ than in the parallel direction. The drawback is that the q|| direction is not resolved. This
direction is special because it uniquely tells us about the strain in the sample and not pure
rotations of the lattice. The strain map is more difficult to measure because it involves
moving the objective lens which requires careful calibration of the geometric parameters
and computational corrections in the data treatment to avoid registration errors in the
measurements.
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3.2 Twinned crystals
DFXM typically has an anisotropic spatial resolution of 0.1− 0.5 µm and reciprocal space
resolution of around 10−4rad. DFXM is therefore particularly well suited studying crys-
talline materials containing structural twins of the kind commonly observed in ferroelec-
tric materials as these contain variation on those length-scales. In this section we will
introduce the concept of twinning and describe how twins affect the scattering pattern
of twinned crystals and finally demonstrate how to analyze DFXM data from such crys-
tals. We focus here on ferroelectrics, but the formalism is applicable to a wider range of
twinned crystals.

We consider a ferroelectric crystal that stems from a cubic parent phase with lattice:

Ac =



ac 0 0
0 ac 0
0 0 ac


 (3.26)

The ferroelectric crystal can be regarded as a strained version of the parent phase. The
lattice matrix of the the ferroelectric phase can be written as:

A0 = (I + ϵ)Ac (3.27)

The strain tensor, ϵ, has a lower symmetry than the cubic parent phase and there exists a
number of symmetries, represented by matrices, Pn for n = 1, 2, ..., that are symmetries
of the cubic phase but not of the ferroelectric. We can therefore generate a number of
different variants of the ferroelectric phase, by applying the broken symmetries to the
strain tensor:

An = (I + PnϵPT
n )Ac = PnA0GT

n (3.28)

where Gn = AT
c PnA−T

c . 4

These broken symmetries can be any of the 90 ° and 120 ° rotations that can also be
written as (column-)permutations of the cubic lattice matrix. Since we are only interested
in the lattice, we can ignore inversion and mirror symmetries. The number of different
variants is the difference in order of the two symmetry groups.

In ferroelectrics, the symmetry breaking strain is also associated with a spontaneous
polarization that breaks inversion symmetry. The inversion operation does not change the
strain-tensor so two domains related by an inversion symmetry have opposite polarization
but have the same lattice. The domain walls that connect such two domains are not
governed by a rule of the type presented in this section and can from a mechanical-
compatibility point of view form along any lattice orientation but electrical interactions
favor a domain wall parallel to the spontaneous polarization. We say that such a domain
wall is non-elastic and call it a 180° domain wall. In this chapter, we will only deal with
elastic domains where the lattices are different.

4This expression also holds when the parent-phase is non-cubic. For cubic materials specifically we have
Gn = Pn.
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Two lattice matrices describe different variants, if their respective metric tensors (T =
AT A) are different. The metric tensor is invariant to rotations of the lattice and two lattice
matrices with the same metric tensor can always be rotated into each other.5

When a large crystal goes through a cubic to ferroelectric phase transition, the crystal
doesn’t choose one of these symmetry-equivalent lattices globally but rather different
parts of the macroscopic crystal choose different lattice variants and the crystal becomes
separated into domains with different lattices. The relative orientation of the lattices in
adjacent domains is governed by twin laws. The macroscopic crystal is called a twinned
crystal and the individual domains are called twins. The interfaces between domains
are called domain boundaries or domain walls and typically form along planes parallel to
specific crystallographic directions.[11]

The diffraction pattern of a twinned crystal consists of the overlapping diffraction patterns
of the individual domains. For a given set of integers hkℓ there will now be a number of
separated peaks, where the relative distance of separation ∆Q/|Q| is of the same order of
magnitude as the symmetry breaking strain. In powder-diffraction experiments, one only
measures the magnitude of the scattering vector, not the direction. We can therefore
determine the number of sub-peaks of a given reflection with the indices h, k, ℓ using the
equation:

|Qn| =
���Bn[h, k, ℓ]

T
��� = 1/2π

���A−T
n [h, k, ℓ]T

��� (3.29)

for every n. The number of different values found are equal to the number of peaks
observed in a powder-diffraction experiment (if the experiment has high enough resolution
to resolve them). While a powder-diffraction experiment only measures the splitting the
in the q||-direction, DFXM also measure the splitting in the two perpendicular directions.
The peak splitting in the q⊥ and qrock directions, is more complicated to calculate as it also
requires the knowledge of the relative orientation of the lattices in different domains.

3.2.1 Elastically compatible domain walls
When the crystal undergoes the transition from cubic to ferroelectric, the single crystal is
split in a number of domains: regions with different lattice variants and different orientation
of the lattices. The interfaces between these domains form along straight planes that
correspond to special crystallographic planes.

By requiring that the lattices of both domains are connected along the domain wall, we
can write equations that allow us determine the specific planes where domain walls can
form. Doing so we will find that the lattices are slightly rotated from one side of the domain
wall to the other. As a result of this, there can be more differently oriented domains in a
twinned crystal than the number of symmetry related domain variants.

The combination of the symmetry lowering strain and the rotation associated with a given
domain wall, w, can be written as a single linear transformation: Sw If the domain wall
connects two adjacent domains (a) and (b), we can write:

�
a(b),b(b), c(b)

�
= Sw

�
a(a),b(a), c(a)

�
(3.30)

5A1 =
(

A1A−1
2

)
A2 and

(
A1A−1

2

)
is unitary because

(
A1A−1

2

)(
A1A−1

2

)T
= A1T−1

2 AT
1 =

A−T
1 T1T−1

2 AT
1 = I
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where the subscripts refer to specific domains and not to the domain variant. This further
implies a transformation of the reciprocal lattices by the matrix S−T

w according a scaling
property of the Fourier transform. We can use these transformation matrices to calculate
the splitting of a given reciprocal lattice vector. In hkℓ-space we can write this splitting as:

∆hw =
�
S−T
w − I

�
[h, k, ℓ]T

An important general rule is that the splitting of a diffraction peak ∆hw associated with a
given domain wall is parallel to the domain wall normal nw.[33] The calculation of these
transformation matrices and of the domain wall normals is the subject of an extensive
literature.[29, 62, 24, 33]

The domain walls are found by requiring that the lattices of two adjacent domains are
connected along the domain wall. This means that for any two points on the domain wall,
the vector that connects these two points, r, is simultaneously a lattice vector of both the
two lattices with the same lattice coordinates ξ. As a consequence of this, the vector
must have the same length, whether it is given by one lattice or the other, which we can
write as an equation:

ξT(a)ξ
T = ξT(b)ξ

T (3.31)

for any ξ on the domain wall. In order for this to be true we must have:

ξ
�
T(a) − T(b)

�
ξT = ξ∆TξT = 0 (3.32)

for all points on the domain wall. It turns out, that by solving the eigenvalue problem of
∆T and re-writing the above equation in a special coordinate system, the result will be
the equation of a plane only under certain circumstances.

For any pair of two domain variants, we will find either 0, 1, or 2 allowed domain walls.
The literature distinguishes between two types of domain walls: W -domain walls that form
along specific high-symmetry directions of the lattice with integer hkℓ indices guaranteed
by a symmetry of the low-symmetry phase[62] and S-domain walls that form along a
general direction of the lattice determined by the magnitude of the symmetry-breaking
strain.

We use a numerical implementation of the algorithm outlined in [33] to calculate domain
walls and transformation matrices. To illustrate the method we will go through the simplest
case, that of a tetragonal distortion of a cubic lattice in the subsection bellow.
The tetragonal ferroelectric
A tetragonal distortion is given by the strain-tensor:

ϵ =




a
ac

− 1 0 0

0 a
ac

− 1 0

0 0 c
ac

− 1


 (3.33)

and

A0 =



a 0 0
0 a 0
0 0 c


 (3.34)
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Figure 3.4: Sketch of a 2D view of a twinned tetragonal crystal with exaggerated symmetry
breaking. The crystal is split in two super-domains, that each show stripes of domains
separated by repeating domain walls of the same kind. The insert in the top right shows
the splitting of a representative Bragg-peak.

The broken symmetries are are any rotation that involves the ’c’ axis. We only need to
consider two, e.g:

P1 =



0 0 −1
0 1 0
1 0 0


 and P2 =



1 0 0
0 0 −1
0 1 0


 (3.35)

that generate the two other domain variants:

A1 =



c 0 0
0 a 0
0 0 a


 and A2 =



a 0 0
0 c 0
0 0 a


 (3.36)

applying the other permutations will give one of these three variants.

We now want to find the possible domain walls between the two domains A1 and A2.
Performing the calculation described in [33, 29] gives two compatible domain walls, w1

and w2 that form along the (110) and (110) directions respectively.

The linear transformations, that connect the lattices are:[33]

Sw1 =



1 0 0
0 1− τ −τ
0 τ 1 + τ


 and Sw2 =



1 0 0
0 1− τ τ
0 −τ 1 + τ


 (3.37)

where τ = (c2−a2)/(c2+a2). The transformation can be decomposed into an axial strain
part and a small rotation by an angle of arcsin(τ), commonly called ’the clapping angle’.

In many ferroelectrics, the domains form hierarchical structures of domains and super-
domains. The simplest super-domain structure is the stripe domain, where large regions
of the crystal consists of regular lamellar of flat domains connected by a single type of
domain wall as is sketched in Fig. 3.4 and observed experimentally in Fig. 3.6. The rel-
ative orientation of such super-domains are governed by a higher order theory of elastic
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compatibility which we will not pursue here.[77] The total number of sub-peaks in a split
Bragg peak can be more than the number of domain-variants present in the crystal as is
exemplified in the figure where only domains of two types are present, but they are ro-
tated compared to each other to cause a shift of the scattering peak along the q⊥ direction
resulting in four separate sub-peaks.

3.3 Experimental demonstration
In this section we demonstrate typical DFXM experiments with a focus on the quantitative
analysis of coherent twin-walls. We will find that the quantitative theory outlined in this
chapter gives good agreement with the experiments.

3.3.1 Potassium Niobate (KNbO3)
Experimental information
The sample is a single-crystal of potassium niobate which is a ferroelectric in the pre-
ovskite crystal structure that has an orthorhombic lattice at room temperature. The sam-
ple was made by top seeded solution growth, purchased from FEE GmbH (Devision of
EOT, Idar Oberstein, Germany).

A square of size 4 mm×4 mm was cut out along the [101]p.c. and [101]p.c. directions and
polished down to a thickness of 300µm. The polished surface is of orientation n =
[010]p.c.. The scattering experiments were carried out at the ID06-HXM instrument at
the ESRF in June 2021.

RSM
In orthohombic KNbO3, the conventional crystallographic unit cell is not a slightly de-
formed version of the cubic unit cell. Rather, a larger, orthohombic unit cell, that contains
two times the atoms of the cubic unit, is chosen. The orthohombic unit cell that can be
found in the literature[41] is:

Aortho =



5.697 0 0
0 3.971 0
0 0 5.721


Å (3.38)

The pseudo cubic unit cell is often chosen instead. The pseudocubic lattice vectors are
ap.c. = UAortho[1/2, 0, 1/2]

T , bp.c. = UAortho[0, 1, 0]
T , and cp.c. = UAortho[−1/2, 0, 1/2]T .

The standard, upper triangular, form of the pseudo cubic lattice can be found by calcu-
lating the the QR-decomposition of the resulting lattice matrix and is:

A0 =



4.0369 0 −0.01697

0 3.971 0
0 0 4.0368


Å (3.39)

This has the form of a monoclinic lattice, but it has two extra symmetries. We can also
write the lattice matrix on a symmetric form where the symmetries are more evident:

A0,sym =



a cos γ 0 a sin γ

0 b 0
a sin γ 0 a cos γ


 (3.40)
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Figure 3.5: a) Integrated rocking curve as a function of q|| b-d)Three orthogonal projec-
tions of an RSM of KNbO3 (101)pc in the units of Eq (3.8). The cyan and orange lines
mark the two calculated twin-laws. The white dashed lines mark planes of constant q||.
Because the splitting is along one of the primary directions of the lattice, each pair of
peaks a,c and b,d appear as a single peak in one of the three projections.

with a = 4.037Å, b = 3.971Å and γ = ±0.120°.

This corresponds to a spontaneous strain of:

ϵ =




a
ac

cos γ − 1 0 a
ac

sin γ

0 b
ac

− 1 0
a
ac

sin γ 0 a
ac

cos γ − 1


 (3.41)

This lattice retains only four rotational symmetries of the cubic lattice but loses the rest, so
we find six (a fourth of the 24 rotational symmetries in the octahedral group) twin-variants.6
With up to two domain walls per domain-variant pair, this gives an enormous number (up
to 30) of possible domain walls. However in the sample at hand, we only observe two
domain variants and two domain walls of the same type but different orientation.

We investigate the (101)p.c. reflection and observe four separate sub-peaks that fall on
two different 2θ shells in reciprocal space. We integrate the diffraction peak over the q⊥
and qrock directions and look at the splitting along the q||-direction in figure 3.5 a). The
observed distance of 0.004 between these two peaks is only compatible with one pair of
domain variants, namely the ones with unit cells given by:

6In the symmetric version: first pick the b axis out of three options and then choose the sign of the γ angle
gives 3×2 different versions.
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A0,sym =




4.037 0 −0.00849
0 3.971 0

−0.00849 0 4.037


Å

and A1,sym =




4.037 0 0.00849
0 3.971 0

0.00849 0 4.037


Å (3.42)

related to each other by the broken 4-fold rotational symmetry about the [010]ortho =
[010]p.c. axis. This pair of domains therefore allows two domain walls with normals or-
thogonal to the axis of this rotation.[29] By performing the calculation described in [33]
we find nw1 = (100)p.c. and nw2 = (001)p.c. respectively. These are consistent with the
domain wall orientations found in tables.[62, 24] The transformation matrices are:

Sw1
=



1 0 2 sin 2γ
0 1 0
0 0 1


 and Sw2

=




1 0 0
0 1 0

2 sin 2γ 0 1


 (3.43)

The splittings of the [101]p.c. are

∆hw1
= [0.0084, 0, 0] and ∆hw2

= [0, 0, 0.0084] (3.44)

These are the distances marked with cyan and orange lines in figure 3.5 b-d) which cor-
responds well with the measured peak splitting.

The RSM in Fig. 3.5 shows weak streaks of intensity between the sub-peaks that are
connected by domain walls. These streaks also extend to the other side of the individual
peaks and appear to be symmetric around the peaks. This is expected for an infinitely
sharp domain wall where the sharp cut-off would lead to 1/q2-intensity streaks7 similar
to the well-known truncation-rods in the scattering signals from thin crystals and crystal
surfaces.
DFXM
In a single image in a DFXM measurement, we only measure a small volume of recipro-
cal space, on the order of 5 · 10−4 along the narrowest directions, around one twentieth
of the extent of the whole diffraction peak seen in Fig. 3.5. Therefore, covering the en-
tire diffraction peak by a 3D grid scan would require more than about 203 scan points.
However, we see that the sample only has prominent features in two distinct shells or
reciprocal space. Therefore, we can cover the full diffraction peak by doing two mosaic-
ity scans (called scan1 and scan2) centered at each of the 2θ sub-peaks respectively
with only 2 × 202 images. In each scan we observe two separate peaks in (ϕ,χ)-space.
Figure 3.6 shows the integrated intensity of each of these sub peaks in different colors
corresponding to the color of the labels in Fig. 3.5 b). We see that the imaged region of
the sample is separated into two super domains, respectively in the top and bottom of the
displayed region separated by a straight line.

The observed stripe features are individual elastic domains bounded by parallel planar
domain walls. What we see is the intersection of these structures with the transmitted
line-beam in the plane z = 0. This trace is calculated as:

7The Fourier transform of a step-function falls off as 1/q.
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Figure 3.6: DFXM measurements of KNbO3 (101)p.c. The plotted quantity is the integrated
intensity of the four sub-peaks displayed in Fig. 3.5. The lines represent the traces of the
theoretical domain walls on the z = 0 plane. The colors of the lines match those in Fig.
3.5 b-d) .

t =
�
1 0 0
0 1 0

�
ẑ× UA0nw (3.45)

where the matrix on the RHS is a projection onto the (x, y)-plane. The lines of this orien-
tation are plotted on top of the intensity images in Fig. 3.6 using the same colors as the
peak splitting in Fig, 3.5. The directions correspond well to the observed stripe features,
which gives us further confidence in our interpretation of the micro-structure: the sample
contains two large stripe super-domains. On in the top of the displayed region of interest,
containing striped of the w1 domain wall and one in the bottom containing the w2 domain
wall.

In theory, the stripes observed here should perfectly fill in the gaps left by the other do-
mains. In certain areas one can find especially broad stripes that correspond to broad
gaps in the other image, but the picture is somewhat distorted and irregular features ap-
pear inside the domains. These distortions are likely due to multiple scattering effects.
The narrow diffraction peaks in the RSM (Fig. 3.5) suggests that the crystal is highly
perfect and we only see a few dislocations in the imaged FOV.

The theory of elastically compatible twinning does not allow for any domain wall that can
explain the line separating the two super-domains. The splitting of the diffraction peaks
from domains separated by this boundary also do not fall along a high-symmetry direction
of the lattice. A theory for compatible higher order domain structures exists but will not
be pursued here.[28, 77]

The study here demonstrates that auto-correlations in the RSM along certain directions
that can be predicted by the theory of elastically compatible twinning are indicators of
the presence of a given domain wall, as was also demonstrated in a recent paper using
only farfield diffraction data.[33] Furthermore, we give further experimental verification of
the conclusions made in that paper by also imaging the domain walls in real space. We
have shown that DFXM, thanks to the high resolution in reciprocal space, is able to resolve
twinning relationships of this kind and that the precision of the measured reciprocal-space
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information is high enough to be quantitatively compared to twin relationships, that can
be calculated solely from the unit cell lattice constants.

3.3.2 Large-grained barium titanate (BaTiO3) ceramic
The study presented in the last subsection is in some sense the best case of a DFXM
data-set. All features of the sample are well resolved in both real- and reciprocal space.
With many samples, we will not be so lucky and the sample may contain real-space
structures or strains that are too small to be resolved. To show how DFXM can be used
in this case, we look at a data set from a large-grained ceramic sample of BaTiO3, where
we expect to see small (≈ 1µm) elastic domains.

BaTiO3 is a perovskite ferroelectric. The structure is tetragonal with τ ≈ 0.01. The sample
was prepared by sintering a commercially bought powder (99.5% >2µm particle size,
Sigma Aldrich). The experiment was carried out at ID06-HXM in April 2015 and data
from this study has previously been published in a paper that focused on the presence of
small strains not related to coherent twinning.[68] Here we focus on identifying coherent
twinning relationships.
RSM
Figure 3.7 shows the RSM of a grain in the BaTiO3 sample imaged in the (200)p.c. re-
flection. As predicted by the theory, the peaks are separated into two distinct 2θ shells of
constant q|| marked by dotted white lines.

Since the sample at hand is a polycrystal, we don’t have a surface of known crystallo-
graphic orientation to constrain the orientation by the method of Section 3.1.1. Therefore,
there is one degree of freedom in the determination of the U matrix: the rotation about
Q. We refine this last degree of freedom by identifying coherent-twin relationships in the
RSM shown in figure 3.7. There are two distinct features in the RSM that can be rec-
ognized in both the high-2θ and low-2θ shells, but at different positions. The distance
between these features matches the theoretical splitting given by the 110-type domain
walls. If we assume that these features are related by coherent-twin relationships, we can
use this information to fully determine U down to an ambiguity of the cubic symmetries.
In later stages if the analysis we will see even stronger evidence that this assignment of
the U matrix is correct.

The reciprocal space map shown in Fig. 3.7 does not split into a few well-defined sub-
peaks as was seen for the KNbO3 single crystals. This tells us that the grain is less
ordered than the single crystal, possibly due to inelastic-deformation, that was already
present in the cubic parent phase such as low angle grain boundaries as is commonly
observed in grains of poly-crystals[2] or possibly due to lattice rotations caused by super-
domain boundaries.[77]

The RSM separates into two flat shells, one for each 2θ value. The fact that these planes
are narrow shows us that there is little uniaxial strain in the Q-direction. This agrees
well with the common understanding that the grain adopts a domain-configuration that
minimizes the elastic strain that can be caused by interactions with neighboring grains.[5]

3.3.3 DFXM
The data set contains two separate 2D mosaicity scans centered on the high- and low-2θ
values respectively (marked with while lines in Fig. 3.7). These two scans allow us to
cover the whole peak, and therefore measure all the diffracting elements present in the
sample. Because we only measure on fixed values of 2θ, we are not sensitive to small
uniaxial strains that could be resolved by a different scanning approach. Also, to keep
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Figure 3.7: Two orthogonal projections of an RSM of BTO (200)pc in the units of Eq (3.7).
The white lines mark the positions of the two 2θ-planes. The high- c) and low d) 2θ regions
of the RSM respectively (marked by dotted white lines in Fig. 3.7). The dashed circles
mark features that can be recognized in both sub-regions.
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Figure 3.8: Intensity in a single pixel in the DFXM scans of the a) high 2θ and b) low 2θ
sub-peaks respectively. The position of the pixel is marked with a red cross in Fig. 3.9.

measurement time short, the experiment used relatively large steps in µ and χ, similar to
the size of the resolution function, so we also do not resolve very fine tilts of the lattice.

In these scans we identify areas where we see an isolated peak in both the high- and low-
2θ scans (Fig. 3.8 shows the RSM from one such pixel) and regions where we only see
a signal above a threshold value in the high-2θ peak. The regions are identified by first
thresholding an image of the maximum-value recorded in each pixel, after background
subtraction to create a mask. Isolated pixels are then removed from the masks and the
edges of the masks are smoothed.

In the pixels where we identify a signal in both scans, we identify the peak position by
the point with the highest intensity and compute the corresponding q-vector for each sub-
peak using the equations (3.14) and (3.8) and calculate the difference between these two
vectors, ∆q, for each pixel. In Fig. 3.9 b) we plot a 2D histogram of the k and l components
of these computed splitting vectors. The h component of all these vector are ∆h = 0.014,
due to the geometry of the scans. We see that the pixels preferentially fall within four
peaks in the histogram that correspond well to the computed peak splitting values of
∆h = [0.0014,±0.0014, 0]T for the domain walls with normal nw = U[1,±1, 0]T and ∆h =
[0.0014, 0,±0.0014]T for the domain walls with normal nw = U[1, 0,±1]T . This supports
that our assignment of the U matrix is correct, since otherwise the histogram would be
rotated. There is nothing in the analysis that forces the points to organize into these
four peaks. The only tuneable parameters in this analysis are the one free angle in the
determination of U and the threshold level and smoothing parameters used to generate
the masks, as well as a shift correction used to align the two scans with each other. This
alignment is done to compensate for shift-errors that appear when the lens is translated.

In Fig. 3.9a), we plot the angle of the individual vectors as a color-plot in real space
and see that the crystal is separated into regions where the ∆q vector falls on an angle
of either 0°, 90°, 180°, or 270°. We interpret this to be stripe-superdomains that are
characterized by the presence of only a single type of domain wall where the individual
stripes are not resolved in real space. The voids in the image are pixels where there is
a signal in the high-2θ scan but none in the low-2θ scan. We interpret these areas to
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Figure 3.9: a) Pixel-wise orientation of the ∆q vector. The voids in the image are pixels
where there is no signal in the low-2θ scan. Dashed lines mark the traces of the three
{100}-planes. The red cross marks the position of the measurement shows in Fig. 3.8.
b) 2D-histogram of the ∆q vectors from the same image as a).

be super-domains dominated by domain walls of orientation either (011) or (011), both of
which do not cause a splitting of the probed (200) peak.

In the real space-images, we see that the features have interfaces that form along 3
specific directions. In our interpretation of the data these are the interfaces where stripe-
domains of different domain wall orientation meet. We observe that these three directions
correspond well to the three {100} planes (the traces of these are marked by dashed lines
in Fig. 3.9a ). In the existing literature, domain super-structure in BTO polycrystals has
primarily been studied on the surfaces of polished ceramics[35] or in thinned samples
of sub-micron thickness.[17] In these studies, the connecting lines between stripe super-
domains are commonly found to be traces of the {110} planes[5], which is inconsistent
with our observations here. In this study, we only measure one slice through the grain so
we can’t fully determine the orientation of the features. This could in a future experiment
be resolved by capturing data at several, closely spaced, planes by translating the sample
and thereby building a 3D model of the superdomain structure.

In some pixels we see more that one peak in each scan. The existence of multiple peaks
can be explained by the fact that two different super-domains fall within the point spread
of a given pixel. An alternative interpretation is that some areas consist of higher-order
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laminations with more than one ferroelastic domain wall.[77] These pixels contribute to
the streaks between the coherent-twin peaks in Fig. 3.9b). In this paper we do not try to
account for multiple peaks in each mosaicity map, but only use the max intensity mea-
surement. A more advanced analysis that takes into account multiple peaks has been
described in [32, 64].

It appears that super-domains of the type {101} are connected with superdomains of type
{011} and {011} but not {101} and a similar rules for the permutations. (in the color code
of Fig 3.9 we see that blue and yellow domains are not connected and red and green
domains are not connected) This is also suggested by a lack of streaks connecting the
opposite peak in Fig. 3.9b) similar to the streaks connecting neighboring peaks. There
are a few points in the image that appear to break these rules.

Phase Resolved Dark-Field X-ray Microscopy 43



44 Phase Resolved Dark-Field X-ray Microscopy



4 Paraxial Fourier optics and
coherent phase contrast
microscopy

The geometric optics description presented in the preceding chapter is convenient for
understanding DFXM and interpreting experimental data. But for all its merits it fails
to describe some aspects of the experiments. As was already described in Chapter 2,
the geometric model is based on kinematical scattering and does not capture multiple
scattering effects. Furthermore, diffraction effects were omitted in the model. For this
reason, the geometrical model cannot predict the spatial resolution of the microscope
and it does not correctly describe a certain type of contrast in the microscope, called
phase contrast, which is critical to understand contrast from certain sample features.

To understand these effects, we need a different model called wave optics. In this ap-
proach, rather that describing the beam as an ensemble of rays, the beam is modeled by
a scalar wave field (the same quantity as the envelope functions Eh(r), introduced in Eq.
(2.7)). This is, once again, only an approximation to the time-dependent problem given by
the Maxwell’s equations and relies on the beam being monochromatic and transversely
coherent. We will take a closer look at the validity of these approximations in Chapter 7.

In this chapter, we first introduce the basics of wave-optics: the free space propagator,
the projection approximation, and the coherent microscope. Then we describe how to
perform numerical calculations using discrete Fourier transforms. Finally we introduce
two approaches to analyze data from a coherent microscope: differential phase contrast
and Fourier ptychography.

4.1 Free-space propagation
Starting from Eq. 2.6, we introduce the monochromatic modulated plane wave:

E(r, t) = E(r)e−iωt+ik·rp̂ (4.1)

where p̂ is the polarization vector and k is an average wave-vector and E(r) is a slowly
varying envelope function. Plugging this into Eq. 2.6 we get the scalar Helmholtz equation
for the envelope function:

�
∇2 + 2ik

∂

∂z
+ k2χ0

�
E = 0 (4.2)

where we’ve chosen k = ẑ. We are interested in finding the complex amplitude of E
at some plane z = z2 given the amplitude at some other plane z = z1 < z2. For this
purpose it is convenient to split the Laplacian into a transverse and a longitudinal com-
ponent, ∇2 = ∇2

⊥ + ∂2

∂z2 .
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The paraxial approximation is to assume that the field is beam-like and therefore varies
much more slowly in the direction of propagation than in the transverse directions. There-
fore we can discard the second order term in z. Finally, we set χ0 = 0 and we arrive at
the paraxial Helmholtz equation in a vacuum:

∇2
⊥E = −2ik

∂E

∂z
(4.3)

The equation is now first order in the dynamical variable, z. To solve it we introduce the
transverse Fourier transformation, defined as:

Ẽ(sx, sy) = F{E(x, y)} =

�
dx dyE(x, y)e−2πi(xsx+ysy) (4.4)

where sx, sy are the full period spatial frequencies. A number of definitions and useful
properties of the Fourier transform are given in Appendix A.2. We Fourier transform both
sides of (4.3) and use the derivative theorem to re-write the partial differential equation
as a first-order ordinary differential equation in z.

4π2(s2x + s2y)Ẽ(sx, sy, z) = −2ik
∂

∂z
Ẽ(sx, sy, z) (4.5)

Which is solved by:

Ẽ(sx, sy, z2) = P(z2−z1)Ẽ(sx, sy, z1) (4.6)

where we have defined the propagator function PL = ei2π
2(s2x+s2y)L/k. As the Fourier

transform is exactly inverted by the inverse Fourier transform, we can write the solution
to the differential equation (4.3) as:

E(x, y, z2) = F−1
�
P (sx, sy)z2−z1F{E(x, y.z1)}

�
(4.7)

This describes a way to propagate a wave front from one plane to another and we define
a linear operator, called a propagator, according to:

P(L){E(x, y)} = F−1
�
e−iπ(s2x+s2y)λLF {E(x, y)}

�
(4.8)

This is the free space Fourier-propagator, which can be implemented in numerical cal-
culations with the use of discrete Fourier transforms. The Fourier propagators (both the
continuous and the discrete versions) are linear operators on the 2D wave fronts.

4.2 The projection approximation
In free space we can propagate wave fronts from one plane to another using the free
space propagator, but in a medium, the problem is more difficult. There are a number of
basic optical components we would like to be able to handle: apertures, lenses and sam-
ples. For all of these there is a useful approximation called the projection approximation,
which makes the propagation through these components a simple multiplication of the
wave fronts in real space by a transmission function. When the projection approximation
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is appropriate for a given optical component, we say that the given component is optically
thin.

The projection approximation is to omit the Laplacian term in the Helmhotz equation en-
tirely. This lets us symbolically integrate the Helmholtz equation:

∂E

∂z
= −i

k

2
χ0(x, y, z)E

⇒ E(x, y, z) = exp
�
ik/2

� z

z0

χ0(x, y, z)dz
�
E(x, y, z0)

⇒ E(x, y, z) = T (x, y)E(x, y, z0)

(4.9)

where we have defined the transmission function, T (x, y), of the thin optical compo-
nent. If the component consists of a homogeneous material with varying thickness,
h(x, y) and vacuum in the gaps not filled by the component, then we can write this as:
T (x, y) = exp (ikh(x, y)χ0/2). If the component is also physically thin we may choose
z → z0 and treat the effect of the component as purely a multiplication by a transmission
function.

The susceptibility function is related to the complex refractive index, n, by:

n =
�
1 + χ0 ≈ 1 + χ0/2 (4.10)

Optical set-ups that consist of several lenses and apertures can be treated as a number
of free-space propagators and a number of thin components.

4.2.1 The coherent microscope
The simplest microscope consists of 4 components: a light source, a sample, an objective
lens, and a detector. These components are placed on a common axis and separated by
the distances d0, d1, and d2. (see Fig. 4.1) When we say that the microscope is coherent,
we mean that the source is taken to be infinitely small.1 In practice, it is sufficient to require
that the angular divergence of the incident light at the sample is much smaller than the
numerical aperture (NA) of the objective lens where the NA is the sine of the largest angle
of scattered light from the sample that is captured by the objective lens. Some authors
work with a coherence parameter,[76] S, which is the ratio of the NA of the condenser
lens to the NA of the objective lens. S = 1 is a normal incoherent microscope and S → 0
is a coherent microscope.

In the following, we will assume that the source-to-sample distance is infinite, which
means the sample is illuminated by a flat wave front of constants phase and intensity.
We set the sample position to z = 0.

We want an expression that allows us to propagate the wave front from the sample plane
at z = 0 through the lens onto the image plane. We could approach this with the simple

1This comes from the old theory (before lasers) when all sources were assumed to be spatially incoherent.
Modern synchrotrons are considered to be partially coherent sources and the distinction between coherent and
incoherent is a bit more complicated.
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d0

d1

d2
Figure 4.1: Sketch of a simple coherent microscope.

Fourier propagator from Eq. (4.8) but this would turn out to be difficult to handle numeri-
cally because of the large convergence of the light directly after the lens. Instead we start
from the Fresnel diffraction integral, which is a solution of the paraxial Helmholtz-equation:

E(x′, y′, d1) =
exp(i2πd1/λ)
(iλd1)1/2

exp
�
iπ(x′2 + y′2)

λd1

�

×
� �

dxdy exp
�−i2π(xx′ + yy′)

λd1

�
× exp

�
iπ(x2 + y2)

λd1

�
E(x, y, 0) (4.11)

This integral gives the field at the lens-plane (z = d1) by an integral over the field at the
sample plane. We multiply this by the transmission function of the lens, TLens, and write
up another integral giving the amplitude at the image plane by the amplitude at the sam-
ple plane:

E(x′′, y′′, d1 + d2) =
exp(i2πd2/λ)
(iλd2)1/2

exp
�
iπ(x′′2 + y′′2)

λd2

�

×
� �

dx′dy′ exp
�−i2π(xx′ + yy′)

λd2

�

× exp
�
iπ(x′2 + y′2)

λd2

�
TLens(x

′, y′)E(x′, y′, d1) (4.12)

Combining equations (4.11) and (4.12) and taking the absolute square gives:

|E(x′′, y′′, d1 + d2)|2 =
1

λ2d1d2

�����

� �
dx′dy′A(x′, y′) exp

�−i2π(x′′x′ + y′′y′)
λd2

�

×
� �

dxdy exp
�−i2π(x′x+ y′y)

λd1

�
exp

�
iπ(x2 + y2)

λd1

�
E(x, y, 0)

�����

2

(4.13)

where the aperture function, A(x, y), is:

A(x, y) = exp
�
iπ(x2 + y2)

λd1

�
TLens exp

�
iπ(x2 + y2)

λd2

�
(4.14)
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We want to rewrite this expression using a pair of Fourier transforms. In order to bring
the integrals to match the definition of the Fourier transform and its inverse, we introduce
the scaled integration variables sx = x′

λd1
and sy = y′

λd1
and the magnification factor:

M = −d2
d1

(4.15)

Using this we re-write Eq. (4.13):

|E(Mx,My, d1 + d2)|2

=
d1
d2

�����F
−1

�
A (−sxλd1,−syλd1)F

�
exp

�
iπ(x2 + y2)

λd1

�
E(x, y, 0)

�������

2

(4.16)

A special case of this expression comes when we assume that the lens is a perfect lens
which is a thin optical component with the transmission function:

TLens = exp
�
−iπ

x2 + y2

λf

�
(4.17)

where f is a real constant called the focal length. With this particular transmission func-
tion, the aperture function A simplifies to:

A(x, y) = exp
�
iπ(x2 + y2)

λ

�
1

d1
+

1

d2
− 1

f

��
(4.18)

A(x, y) becomes everywhere equal to one, when the following equation is fulfilled:

1

f
=

1

d1
+

1

d2
(4.19)

which is the the thin-lens equation.

When the thin lens equation is fulfilled, the two Fourier transforms cancel each other out
and the intensity at z = d1 + d2 is an exact – magnified and inverted – image of the
intensity at z = 0. Any deviation of the aperture function from unity is thus a deviation of
the lens from a perfect lens and will introduce errors in the image.

Necessarily, the lens is of a limited size. For a circular lens we have A(x′, y′) = 0 outside
of some radius x′2+y′2 > R2

A. This cut-off sets a maximum spatial frequency, smax = RA
λd1

that can be captured by the lens, which in turn sets an approximate resolution limit on the
imaging system: The Abbe-diffraction limit

dAbbe =
1

2smax
=

λRA
2d1

=
λ

2NA (4.20)

where NA is the numerical aperture of the microscope. dAbbe is the smallest spacing
between parallel straight lines in a sample, where the individual lines can still be distin-
guished in the image and sets an upper limit on the resolution of the microscope.
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The quadratic phase factor remaining in equation (4.16) is called the near field phase
factor. It determines how light stemming from different points on the sample plane strike
the lens at different points. It becomes significant when the size of the sample is of a
similar size to or larger than the aperture of the lens, and can only be safely ignored
when

RA >> Lx (4.21)

where Lx is the linear size of the sample.

This is not immediately obvious from the equations but it can be motivated by seeing
that the near field term can locally be approximated by a harmonic function ei2π/λd1x0

at a point in the sample plane (x0, 0, 0). From the Fourier shift theorem (Eq. A.14),
we see that the role of this term is to shift the Fourier spectrum by a spatial frequency,
x0/λd1. Comparing this to the characteristic scale in reciprocal space, smax, we see that
the near field term can be ignored when x0 << RA. This argument doesn’t hold when
there are other significant length-scales in the aperture function, which will be the case
for aberrated lenses. In this case, the near-field terms will be responsible for creating
a de-focused image of the lens aberrations on the image-plane. For the types of x ray
microscopy investigated in this thesis, the size of the FOV is limited by the NA of the lens,
so we will always have to include the near field phases.

Aside from the aperture, the value of the lens transmission function may deviate from that
of an ideal lens in several other ways. We call these deviations aberrations.

Equation (4.16) can be seen as a propagator that includes both the propagation and the
effect of the lens in a single Fourier convolution. It can be implemented with discrete
Fourier transforms in a way similar to the paraxial propagator of Eq (4.8).

4.3 Discetization & numerical calculations
In the preceding section, we derived a number of equations describing how to relate the
amplitudes of coherent wave fronts in one plane to the amplitudes in a different plane
using continuous Fourier transforms. In this section we deal with the numerical repre-
sentation of these wave fronts and the implementation of propagators.

When doing numerical calculations, both for simulation and data-analysis, we will rep-
resent the coherent wave fronts by 2D arrays containing values of the complex enve-
lope functions, E(xj , yk; z0), sampled at discrete points (xj , yk) = (axjx, ayk), where
j = 0, 1, ...Nx − 1 and j = 0, 1, ...Ny − 1. When working with experimental data, these
grids will be defined by the pixels of the image-detectors.

The discrete 2D Fourier transforms (DFT) of these arrays are proportional to the contin-
uous 2D Fourier transform evaluated on a grid of points in (sx, sy)-space: (s′x,l, s

′
y,m) =

(∆sxl,∆sym) where l = 0, 1, ...Nx − 1 and m = 0, 1, ...Ny − 1 and ∆sx = 1/(Nxax) and
∆sy = 1/(Nyay). This may be shown from Eq. (4.4), by approximating the integral by a
sum:

Ẽ(sx, sy) =

�
dx dyE(x, y)e−2πi(xsx+ysy) ≈ axay

Nx−1,Ny−1�

j,k=0

E(xj , yk)e
−2πi(xjsx+yksy)

(4.22)
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which, apart from a constant pre-factor, matches the definition of the DFT in exactly these
points. It is clear that this can only be a good approximation if the function E(x, y; z0) is
close to zero outside the range covered by the sum x ∈ [0, (Nx−1)ax], y ∈ [0, (Ny−1)ay].

Because of aliasing, the points in the higher half of the frequency spectrum are equivalent
to points at small negative frequencies. Therefore we can make a new grid, where the
higher half is shifted down in frequency so that the grid covers a rectangle in (sx, sy)-
space centered on zero. We refer to the points of this shifted grid with the coordinates
(sx,l, sy,m).

By the same argument we used to require that E(x, y) is close to zero outside the grid in
(x, y)-space, we also need to require that Ẽ(sx, sy) is non zero outside the grid in (sx, sy)-
space when we write up the inverse Fourier transform. The highest frequency in this box
is called the Nyquist frequency and is given by sNy,x = 1/2ax. When this requirement
holds, we say that the function is well-sampled.

This suggests an implementation of the propagator (Eq. 4.8) using DFTs to approximate
the Fourier transforms. In expressions like this, where a direct and an inverse Fourier
transform appear as a pair, the pre-factors cancel out and we can write:

PL{E(xj , yk)} ≈ DFT−1
�
e−iπ(s2x,l+s2y,m)λLDFT {E(xj , yk)}

�
(4.23)

this is a good approximation only when the chirp-function in this expression is well sam-
pled by the grid in q-space. At the edge of the reciprocal space grid the chirp function
does a full phase wrap in a distance ax/(Lλ). Requiring that this distance is more than
twice the step-size of the grid: L < a2xNx/2λ, sets an upper limit on the length over which
we can use this propagator.

One can show that this discrete propagator is in fact the exact solution for the paraxial
propagation of an infinite, periodic wave-front, where the grid covers one periodic unit.
DFT methods implicitly assume periodic boundary conditions of the fields. This has the
consequence that intensity that would diffuse out of the edge of the grid appears back at
the other side of the grid. To avoid errors caused by this effect, simulations of confined
beams should be set up with a some margin in the 2D arrays on all sides of the wave-front
filled with zeros called the padding.

4.3.1 The coherent microscope
As was done in the last subsection, we can straightforwardly write up the discrete version
of Eq. 4.16 by replacing the continuous Fourier transforms by DFTs:

|E(Mxj ,Myk, d1 + d2)|2

=
d1
d2

�����DFT−1

�
A (−sx,lλd1,−sy,mλd1)DFT

�
exp

�
iπ(xj

2 + yk
2)

λd1

�
E(xj , yk, 0)

�������

2

(4.24)

In contrast to the free-space propagator, the intensities we calculate with this equation
are not given on the same grid as the input. The output grid is scaled by a factor of M ,
the magnification of the microscope.
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For this model to work, we have to require that both the aperture function and the near
field phase factors are well sampled. The requirement for the near field factors read
(2λd1)/Lx > 2ax. For the aperture function, the reciprocal space grid corresponds to a
real-space grid on the lens plane with step-size ∆xlens = λd1∆sx = λd1/(Nxax).

We can re-write the double Fourier transformations, in both this expression and the con-
tinuous version, as a convolution of the phase-corrected sample plane field by a coherent
point spread function (cPSF) by applying the convolution theorem.

|E(Mx,My, d1 + d2)|2 =
d1
d2

�����cPSF(x, y)⊗
�
exp

�
iπ(x2 + y2)

λd1

�
E(x, y, 0)

� �����

2

(4.25)

where

cPSF(x, y) = F−1 {A (−sxλd1,−syλd1)} (4.26)

The complex amplitude of the cPSF describes how the image of a point-like field in the
sample plane is broadened in the image plane. For a good microscope this is a narrow
real positive function centered on zero, but aberrations in the aperture function tend to
broaden the cPSF and therefore degrade the resolution of the microscope.

4.4 Differential phase contrast (DPC)
With an ideal lens, the simple coherent microscope presented Section 4.2.1 generates
an image in the image plane, which is an exact magnified copy of the intensity of the field
in the sample plane. The measured image is thus independent of the phase of the wave-
front. By introducing any deviation from this ideal microscope, however, one changes the
image in a way that depends not only on the intensity in the sample plane but also on
the phase.[86] By designing specific deviations from an ideal lens or by systematically
varying specific parameters of the microscope geometry, one can maximize the contrast
due to the phase, or even construct measurement schemes that allows one to recover
the phase of the wave front in the sample plane. Such methods are called phase contrast
microscopy. In this and the following section we will describe two of these methods that
we have implemented in an x-ray microscopes.

Differential phase contrast (DPC) is a family of such microscopy techniques that image the
phase-delay imparted by a sample, by either illuminating the sample obliquely[86, 76] or
by measuring the deflection angle of the transmitted light with optical components down-
stream of the sample.[81, 82] Typically DPC is done in incoherent microscopes, but a
similar technique can be performed in a coherent microscope by shifting the position of
the lens. Starting from Eq. (4.16), we introduce a shifted lens with transmission function:

Tσ(x, y) = A(x− σx, y − σy) exp
�
−iπ

(x− σx)
2 + (y − σy)

2

λf

�
(4.27)

Where σx and σy parameterize the shift of the lens. Applying the Fourier shift theorem
and moving around some terms we will find that the shifted lens produces an image,
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Figure 4.2: a) Simulated image using Eq. (4.28) with σ = 0, b) σ = [50 µm, 50 µm] and c)
σ = [50 µm, 50 µm] with an adjusted colormap to make the weak intensity visible.

shifted by a distance (|M | + 1)σ and with the aperture function shifted in s-space by an
amount sσ = − σ

λd1
. We write up an expression for the shifted and magnified image:

I(Mx− (M + 1)σx,My − (M + 1)σy;σx,σy)

=

�����F
−1

�
Aσ (−sxλd1,−syλd1)F

�
exp

�
iπ(x2 + y2)

λd1

�
E(x, y, 0)

�������

2

(4.28)

where Aσ(x, y) = A(x − σx, y − σy) is the shifted aperture function. Figure 4.2 shows a
few simulated images calculated with this model. For this simulation the lens was taken
to have a square absorbing aperture of full width 0.1 mm. In Fig. 4.2 a) the square shape
of the aperture is clearly visible. We see a bright image of the part of the sample inside a
certain region with the same shape as the lens. The area outside of this region appears
dark. When the lens is moved, the outline of the aperture is also moved. In c) we adjust
the colormap to show that the dark region does contain some intensity around sharp
edges and high-frequency features of the sample. This type of contrast is typically called
dark field contrast and on the other hand the image inside the square region is called
bright field contrast.

We will avoid this word due to the double-meaning of dark-field as it is also used in the
name DFXM to denote the Bragg-scattered beam rather than the transmitted beam. This
can be seen as an example of the same phenomenon where the lattice of the crystal
is the high-frequency feature causing contrast at a large scattering angle. In the DFXM
literature sometimes the terms weak beam and strong beam is used instead.

By shifting the lens to a number of different positions, σ(p) for p = 0, 1, 2...P − 1 and
sequentially measuring a stack of images, we can measure the function I(x, y;σ) at dif-
ferent shifts and use these measurements to infer information about the field in the sample
plane, E(x, y, 0). The approach to this is to consider the function for a single point in x
and y, that is to say, for a single pixel on the detector, and to look at the intensity in this
pixel as a function of the 2-dimensional shift variable σ. From this function, we calculate
a number of quantities which we will refer to as the moments, equivalent to the central
moments of a probability distribution:
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Iint(x, y) =
�

p

I(x, y;σ(k)) (4.29)

COMx(x, y) =
1

Iint(x, y)

�

p

I(x, y;σ(k))σ(k)
x (4.30)

COMy(x, y) =
1

Iint(x, y)

�

p

I(x, y;σ(k))σ(k)
y (4.31)

Varx(x, y) =
1

Iint(x, y)

�

p

I(x, y;σ(k))(σ(k)
x − COMx(x, y))

2 (4.32)

Vary(x, y) =
1

Iint(x, y)

�

p

I(x, y;σ(k))(σ(k)
y − COMy(x, y))

2 (4.33)

COV(x, y) = 1

Iint(x, y)

�

p

I(x, y;σ(k))

× (σ(k)
y − COMy(x, y))(σ

(k)
x − COMx(x, y)) (4.34)

The benefit of these computed quantities is that the integrated intensity, Iint, is an estimate
of the field amplitude |E(x, y, 0)|2 and the center-of-mass (COM) functions give estimates
of the gradients of the phase of the sample field. The three variances (Varx, Vary and the
covariance (COV)) together provide a measure of the amount and direction of unresolved
high-frequency features in the sample field. Figure 4.3 shows the calculated moments
from a calibration sample containing two sets of dense line-patters close to the resolution
limit of the objective lens. The images were measured at the ID06-HXM x-ray microscope
by the method described in this section. The sample consists of a 650 nm thick tungsten
pattern deposited on top of a flat silicon substrate. The COM signals are asymmetric
around sample features. The two variances have a high signal at the vertical and hori-
zontal stripes respectively. The co-variance shows a small negative signal for the vertical
lines and a small positive signal for the horizontal lines revealing a small misalignment of
the sample compared to the translations of the lens.
Quantitative phase from COM measurements
The quantitative phase-gradients may readily be estimated from the COM measurements
and can be integrated to yield an estimate of the quantitative phase of the sample field
(down to a constant offset). What follows is a motivating derivation of the relation between
the phase gradient and the COM.

We re-write Eq. (4.28) using the convolution theorem:

I(x, y;σ) =
d1
d2

�����cPSFs(x, y)⊗ exp
�
iπ(x2 + y2)

λd1

�
E(x, y)

�����

2

(4.35)

The quantity:

cPSFσ(x, y) = F−1

�
Aσ (−sxλd1,−syλd1)

�
= cPSF(x, y)ei2π(σxx+σyy) (4.36)

is the coherent point spread function of the shifted objective lens, which we have written
as a product of the cPSF and a harmonic function by applying the Fourier shift theorem.
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Figure 4.3: Moments calculated using the the equations (4.29) - (4.34) after correcting
registration errors. The linear, geometric term in the COM images has been subtracted
before plotting to make the sample features more visible.
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In a good microscope, the point spread function has tight support around x, y = 0. So the
intensity in a single point (x0, y0) only depends on the sample field in the neighborhood of
that point. If we then assume that the phase of the the sample field is slowly varying in the
neighborhood of this point, we may replace the phase by its 1st order Taylor expansion:

exp
�
iπ(x2 + y2)

λd1

�
E(x, y) ≈ ei2π(xx0+yy0)/(λd1)|E(x, y)|ei∇xϕx+i∇yϕy (4.37)

where we have also discarded constant phase terms because it will not have any impact
on the final result. We Fourier transform this expression and re-write the RHS using the
Fourier shift theorem:

F
�
eiπ(x

2+y2)/(λd1)E(x, y)
�
(sx, sy)

≈ F {|E(x, y)|} (sx −∇xϕ/2π − x0/(λd1), sy −∇yϕ/2π − y0/(λd1)) (4.38)

From this final expression we see that the role of the phase-gradient is to shift the Fourier
spectrum of the sample function. Since the Fourier transform of the absolute is a sym-
metric function around zero, the center of the intensity distribution, which the COM is an
approximation of, is given by the magnitude of this shift. We set the argument of the
function on the RHS equal to zero and identify the corresponding s-values as the COM:

COMx(x0, y0) ≈ x0 +∇xϕ(x0, y0)
λd1
2π

(4.39)

COMy(x0, y0) ≈ y0 +∇yϕ(x0, y0)
λd1
2π

(4.40)

The choice of the point (x0, y0) was arbitrary to begin with, so we can generalize the result
to any point (x, y). These equations also reveal the important result that the center of the
intensity distribution is shifted as a function of x and y according to a simple geometric law.
This results in a large linear component to the calculated COM images, which should be
subtracted to yield the phase-gradient. Fig. 4.4 shows the measured intensity distribution
from the same data set but at two different positions in the Field Of View (FOV). In this
experiment, the lens contained a square absorbing aperture and the intensity distribution
appears to be a low-resolution image of the aperture function. This is the case when the
sample field has a narrow Fourier transform compared to the aperture of the objective
lens.

The phase-gradients estimated by this approach from the COM of the image stack can
be integrated to yield an estimate of the quantitative phase. Fig. 4.5 shows the result of
this integration. We use the least-squares cosine transform method described in [8, 39].
The phase recovered directly by this method shows clear signs of defocus, but when the
quantitative phase is available we can digitally re-focus the complex amplitudes to recover
the focused phase.

In DFXM the COM is often used as a way to find the centroid of the scattered intensity in
reciprocal space as a function of the scan angles.[3] Therefore the DPC method that we
state here is identical to one of the conventional approaches to DFXM, when it is used
on a scattered x-ray beam.
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Figure 4.4: Measured single pixel intensity distributions from the same data set at two
different points in the FOV.

Figure 4.5: Integrated phase based on the COM phase gradients and a digitally re-
focused version of the same phase function.
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4.5 Fourier ptychography (FP)
Fourier ptychography is a different approach to the treatment of the same data set as
for DPC. That is to say, a set of P images, Ip(xi, yj), measured at a number of different
2-dimensional misalignment positions σp.

Where the approach in DPC was to slice the data set along the σ-dimension to estimate
the phase-gradients in each pixel individually, the approach of FP is to treat the estimation
of the complex amplitudes as a global problem and to minimize the difference between
the measured images and a prediction Ipred by optimizing the parameters of the forward
model that generates the predictions.

Fourier Ptychography does not only aim to recover the quantitative phase of the sample
field, but aims to aims to reconstruct a high-resolution image of the sample that beats
both the resolution limits set by the Abbe diffraction limit of the objective lens and the
Nyquist frequency set by the grid of detector pixels.

4.5.1 Discretization
In general, the model is that of Equation (4.28) where the shifts σx and σy are known
beforehand and the function E is found by optimization. The problem is closely related
to the more well known problem of “normal” ptychography and the algorithms for solving
one can be applied to the other. A large number of such algorithms have been investi-
gated in the literature.[44] Some of these are presented as gradient-based optimization
algorithms that aim to minimize an error function, related to the difference between the
model predictions and the measured images. More commonly, the optimization strategy
is formulated as a search for a common solution to a number of low-dimensional con-
straints.

The different methods all share the same discrete forward-model to describe the imaging-
process: A number of images Ip ∈ RNxNy are given. The images define a Nx by Ny grid
with step-sizes ax, ay in the respective directions, given by the demagnified spacing of
the detector pixels. To this grid belongs a corresponding reciprocal-space grid with the
same shape and with step sizes given by ∆sx = 1/(Nxax) and ∆sy = 1/(Nyay). The
grid is centered on zero, and thus covers the range sx ∈ [−1/(2ax), 1/(2ax)−∆sx]. 2

The aperture function A ∈ CNxNy is given on this reciprocal-space grid. The transformed,
phase-corrected, sample field, Ẽ ∈ CNxMxNyMy is represented on a larger grid of shape
NxMx by NyMy. The larger grid in reciprocal space thus corresponds to a super-sampled
grid in real space with step-sizes ax/Mx and ay/My.

Each image has an associated 2D shift-vector σp =
�
σ
(x)
p ,σ

(y)
p

�
. This corresponds to a

reciprocal space shift parameter in pixel units:

σ̃p =
�
round

�
σ(x)
p /λd1∆qx

�
, round

�
σ(y)
p /λd1∆qy

��
(4.41)

where the shifts have been rounded to the nearest integer, so that we can treat the shifting
of the aperture as a matter of indexing rather than interpolation. We use these shifts to
construct a binary matrix for each image (containing only zeros and ones)

Bp ∈ BNxNy×NxMxNyMy (4.42)
2This is valid for Nx even. When Nx is odd, the positive Nyquist frequency is also included.
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Bp takes the large grid Fourier spectrum Ẽ and returns the part corresponding to the p’th
shift. After multiplying by the aperture function, the resulting complex vector is called the
view : ψp = A⊙ (BpẼ) ∈ CNx×Ny

With all these parameters given, the model can be stated:

Ip =
���UTA⊙ (BpẼ)

���
2

(4.43)

where ‘⊙’ denotes the Hadamard (element-wise) product and where the inverse DFT has
been written as the product with a unitary matrix UT . The problem is then the determina-
tion of a pair of vectors A and Ẽ, that simultaneously satisfy the equation for all P images
in the data set. For a single image p, the model in Eq. (4.43) is under-constrained. Ẽ
has 2NxMxNyMy degrees of freedom while Ip has only NxNy. The full problem of all the
images is an over-determined system when the shifted aperture functions have sufficient
overlap.

Figure 4.6 shows examples of some of these quantities from a FP reconstruction and the
relations between them.

Here we choose to write the indexing operations and Fourier-transforms as matrix prod-
ucts. This is only done to make the syntax more elegant. When implementing the algo-
rithms for a computer, the products with Bp will be implemented as an indexing statement
and UT using FFT-operations.

4.5.2 ePIE
One of the first algorithms suggested for solving the ptychographic problem numerically
is the Ptychographic Iterative Engine (PIE).[60] Here we treat each image in the data
set as a low-dimensional constraint on the higher dimensional space of possible fields.
The solution is then found by iteratively projecting an initial guess of Ẽ onto the solution
spaces set by each image in the data set until it converges to a solution.

We define an operator Pp{·} that takes a estimate at the high-resolution sample transform
and returns a vector Pp{Ẽ} according to:

ψ̃p = UTA⊙ (BpẼ)

Pp{Ẽ} = U ψ̃p ⊙ (
�
Ip/|ψ̃p|)

(4.44)

where the forwardslash denotes element-wise division. If any element of ψ̃p is equal to
zero, we replace the corresponding element of Pp{Ẽ} with a zero. If we divide out the
aperture array and replace the elements of Ẽ with the corresponding elements of Pp{Ẽ},
the result will be an exact solution to Eq. (4.43) for the given image p. However, doing this
for elements of A with low (or even zero) value would lead to an operation that is highly
sensitive to noise in the measurements of Ip. Therefore we apply a filter that weighs the
size of the update depending on the absolute value of A:

Ẽ(j+1) = Ẽ(j) + βBT
p

|A|
max(|A|) ⊙

A∗

|A|2 + α
⊙
�
Pk

�
Ẽ(j)

�
−A⊙BpẼ

(j)
�

(4.45)

Here β is a step-size parameter, α is a small positive number used to avoid divide-by-zero
errors, and ∗ denotes complex conjugation. The product with BT

p can be implemented by
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Figure 4.6: Example of different vectors used in Eq. (4.43)
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Name Symbol Value Unit
Nx 512
Ny 512

Upsampling x Mx 2
Upsampling y My 2
Working distance d1 300.0 mm
Demagnified pixel size x ax 50.0 nm
Demagnified pixel size y ay 50.0 nm
X-ray wavelength λ 0.73 Å

Table 4.1: Table of simulation/reconstruction parameters of the ideal test case.

zero-padding. The factor |A|
max(|A|) is a weight function, which ensures that the update will

be smaller at points where |A| is small. This update should be repeated for every image
in the data set and this should be repeated until the Ẽ converges to a solution.

An extended version of the algorithm, called ePIE[52], refines both the field and the aper-
ture and the sample simultaneously. The update rule for the field is still Eq (4.45) and at
each iteration the aperture is similarly updated according to:

A(j+1) = A(j) + γ
BpẼ

(j)∗

|BpẼ(j)|2 + α
⊙
�
Pk

�
Ẽ(j)

�
−A⊙BpẼ

(j)
�

(4.46)

where γ is a step-size parameter.

4.6 Examples of FP reconstructions
4.6.1 Test case
In this section we perform a number of FP reconstructions of ideal data sets generated
with the exact forward model of Equation (4.24). The parameters of the simulated test
case are chosen in accordance with the transmission experiment of Section 6.3 and are
given in Table 4.1.

The aperture is a square top-hat function of full width 0.1 mm with a small spherical-type
aberration. The phantom sample is chose to have similar features to the resolution-target
sample used in the experiments. It contains fields with dense line-patterns of full-period
0.5 µm, so that the individual lines have width 0.25µm. The transmission function takes
either the value 1 or the value 0.79 + 0.51i, which simulates the contrast of a 650 nm
thick layer of tungsten. Furthermore, the phantom sample is padded with zeros to avoid
breaking the periodic boundary conditions that are implicitly assumed by DFT methods.
Images of the phantom sample and apertures can be seen on the first column of Fig. 4.7.

Figure 4.7 shows the result of reconstructions of the test case using the three differ-
ent reconstruction algorithms with 90 iterations of each. Aside from the ePIE algorithm
presented in the previous subsection we also test the error reduction (ER) and hybrid
input-output (HIO) algorithms as they are stated by Thibault.[75] The reconstructions of
the sample function succeeds in all three cases, but both the ER and HIO reconstructions
contain low-frequency artifacts in the reconstructed phase function that are less evident
in the ePIE reconstruction.

Beyond the basic algorithms as they are stated in the previous section, we found that it
was beneficial to use a different random ordering of the images between each iterations
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Figure 4.7: FP reconstructions of idea simulated data mirroring the transmission exper-
iment of Section 6.3. The rows contain the amplitude of the reconstructed sample, the
phase of the reconstructed sample, the amplitude of the reconstructed aperture and the
phase of the reconstructed aperture. The columns contain the ground truth of the sim-
ulations, the ePIE reconstruction, the ER reconstruction, and the HIO reconstruction re-
spectively.
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in the ePIE algorithm. For the HIO algorithm we use a mask for the aperture function, that
sets all values outside a certain region equal to zero as a part of the object projection.
This doesn’t speed up the convergence, but it prevents a certain type of high-frequency
artifact from appearing in early iterations of the reconstructions.

Only the HIO reconstruction succeeds in recovering the spherical aberration in the aper-
ture after 90 iterations. All three methods eventually recover the spherical aberration after
many iterations.

4.6.2 Error metrics
For FP reconstructions we use a number of metrics to track the convergence of the iter-
ative reconstruction. The first is the update error, which is given by:

EUpdate =





�
l

���Ẽ(j−1) − Ẽ(j)
���
2

for ePIE
�

p

�
l

��Ψ(j−1) −Ψ(j)
��2 for ER and HIO

(4.47)

Secondly, the prediction error:

EPrediction =
1

P

P−1�

p

�

l

����Ip −
���UTA⊙ (BpẼ)

���
2
���� (4.48)

Finally, and only for simulations, the reconstruction error:

EReconstruction =
�

l

���Ẽ − Ẽgt

���
2

(4.49)

where Ẽgt is the ”ground truth” used to simulate the images. The reconstruction error
cannot be used for real data, where the ground truth is not known. It is also not ideal for
simulations due to a number of degeneracies in the FP problem. For example, a shift
of the sample may be compensated by a shift type aberration in the aperture function to
give a perfect solution of the constraints with a different sample vector.

Figure 4.8 shows the convergence of the three FP algorithms measured with three dif-
ferent error metrics. Only the Prediction error is directly comparable between the three
figures. The prediction error suggests that the ePIE method has the fastest convergence
in the first few iterations but that the HIO algorithm catches up quickly and performs better
through iterations 50-400 approximately. After many iterations, the ePIE reconstruction
converges exponentially – faster than the two other algorithms – and beats the HIO re-
construction for the remaining iterations.

4.6.3 Fourier ring correlation
One of the purposes of FP is to increase the resolution of the reconstruction beyond the
Abbe-limit of set by the aperture of the x-ray lens. To see if we reach this goal we want
a measure of the resolution of our reconstruction. Fourier ring correlation (FRC) is the
standard measure of resolution in the literature. FRC is the correlation of two images as a
function of resolution. It is computed by Fourier transforming the two images, separating
the spectra in a number of resolution bins based on the amplitude of the spatial frequency
(which are rings in 2D reciprocal space) and calculating the Pearson correlation coeffi-
cient between the Fourier coefficients of the two images for every bin.
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Figure 4.8: Convergence of three different FP algorithms tested on ideal simulated data.
The HIO reconstruction starts with 1000 iterations of HIO and applies 200 iterations of
ER in the end.

In FP reconstructions the sample array may be shifted, in real or reciprocal space, which
is compensated by related modification of the aperture function. This represents a valid
FP reconstruction, but the FRC calculated between such a reconstruction and the ground
truth would show a low resolution. To avoid making this error, it is important that the two
arrays are registered to each other before the FRC is calculated.

We have also found that it is necessary to multiply the images by a window-function in
real-space. If this isn’t done, the reconstruction will appear to have a higher resolution
than they really have. When we calculate the FRC, we will have to decide if we divide
out the quadratic phase term beforehand. The quadratic phase term effectively shifts the
Fourier spectrum of the sample in points away from the optical axis. Keeping the quadratic
phase term will therefore sometimes give a higher FRC value at high resolution.

Figure 4.9 show the FRC between three different reconstructions and the ground truth.
We see that the FRC is close to one all the way to the resolution limit set by the range in
reciprocal space covered by the scan and sharply falls off to zero outside this range.
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Figure 4.9: a) FRC between the ground truth and different FP reconstructions with ideal
simulated data. b) Fourier transform of reconstruction with 900 iterations of ePIE after
dividing out the quadratic phase term. The red dots mark the values of σ̃ used in the
simulation. The red square marks the extent of the aperture function for the last image in
the data set.
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5 Aberrated compound refractive
lenses

The phase-microscopy methods introduced in the previous chapter both rely on the simple
model of a coherent microscope given by Eq. (4.28). This equation uses the thin lens
approximation for the objective lens. The compound refractive lenses(CRL) which is used
as an objective lens in the experiments has a length of approximately 10 cm compared
to a focal length of around 30 cm. It is well established in the literature[43, 67] that the
thin-lens approximation makes an error on the value of the focal length of around 2 cm,
but aside from this can be treated as a thin lens.[56]

These prior treatments, however do not consider errors in the individual lenses used to
make the CRL. When aberrated CRLs have been investigated in the literature,[15, 51]
they have typically only been considered as focusing optics and not as an objective lens.
In this chapter we show how to simulate aberrated CRLs and investigate how the thick-
lens behavior then impacts the images in a coherent microscope.

The chapter starts with the thin-lens approximation then we derive a theoretical framework
for simulating CRLs based on the existing literature.[56, 19] Finally we simulate a CRL with
parameters matching those of the experiment and investigate the impact of aberrations.

5.1 CRLs in the thin lens approximation
The CRL is one of a few types of lenses available at hard x-ray wavelengths. It operates
on the sample principle as normal visible light lenses which use the refractive properties
of bulk matter to modify the wave-front of the light-field. Unlike at visible light wavelengths,
the refractive index of matter at hard x-ray wavelengths is less than one, which means
refractive focusing x-ray lenses have concave surfaces instead of the convex surfaces
seen in visible light focusing lenses. It is conventional to introduce two real parameters,
δ and β, to describe the complex refractive index, n.

n = 1− δ + iβ (5.1)

δ is a small positive number describing the refracting properties of the material and β
describes the absorption. They are both related to the electric susceptibility, χ0, through:

n =
�

1 + χ0

⇒δ ≈ −Re(χ0)/2

β ≈ Im(χ0)/2

(5.2)

CRLs are usually constructed from light materials such as Be, Al, diamond, and plastics
because these materials have the lowest absorption. At a photon energy of 17keV, which
is a typical wavelength for DFXM, beryllium has δ = 1.2 · 10−6 and β = 2.4 · 10−10.

We can calculate the transmission function of a biconcave parabolic x-ray lens (sketched
in Fig. 5.1) in the projection approximation. For a symmetric parabola the x- and y-
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R

n = 1 - δ + iβ 

n = 1

Figure 5.1: Sketch of single biconcave x-ray lens.

dependence of the transmission function simply factorizes, so we continue with only the
x-dependence:

Tsingle lens = exp
�
i
k(−δ)x2

R

�
exp

�
i
kiβx2

R

�

= exp
�
−i

πx2

λf

�
exp

�
− x2

2σ2
Abs

� (5.3)

The first factor is an ideal-lens term and the second factor is a Gaussian shaped absorbing
aperture. In the last line, we have defined the focal length and the characteristic width of
the aperture:

f =
R

2δ
and σAbs =

�
Rλ

πβ
(5.4)

At 17 keV photon energy, a single beryllium lens with apex curvature 50µm has f ≈ 20m
and σAbs ≈ 2mm. This focal length of 20m is too long to be practically used as an objective
lens. A CRL therefore consists of many such lenses placed closely after one another on
a common axis. If we treat this construction in the projection approximation we would get:

TCRL =
�
Tsingle lens

�N (5.5)

where N is the number of lenses. This gives:

fN =
f

N
and σAbs,N =

σAbs√
N

(5.6)

This approximation is not sufficient for CRLs. By using this approximation we will make
an error on fN on the order of the physical length of the whole CRL. In fact there is no one
number, f , that we can assign to a CRL, which would make the thin-lens focus condition
Eq. (4.19) true in general. We therefore say that the CRL behaves as a thick lens.
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5.2 The quadratic-phase propagator
In order to investigate the thick-lens behaviour of CRLs, we would like to treat them in a
multislice approach where each individual lens is treated in the projection-approximation
and a free-space propagator is used between each lens. If we try to do this numerically
using Eq. (4.23), it will turn out that the large quadratic phase factor that is accumulated
after successively propagating through all the lenses will be very quickly varying at the
edges of the FOV and therefore, in order to over sample this function, we would need to
use a very fine computational grid that would be impractical for numerical simulation.

Instead we use a new paraxial propagator that divides out the quadratic phases from the
lenses and handles the propagation of these analytically. In order to do so we have to
allow the grid, on which the complex envelope is given, to expand and contract from slice
to slice in the calculation. In this section we derive this special propagator and a few
analytical results, that are useful for calculating the properties of CRLs.

This new propagator has been used by a number of authors in the past.[19, 15] The
fractional Fourier transform-approach[55] used to treat CRLs by Pedersen[56] is appar-
ently a more general method than the propagator given by Chubar[19], but Pedersen only
uses a subset of the fractional Fourier transforms that are easy to calculate numerically.
This subset is the same as the propagators given by Chubar. Since the notation and
derivations of the fractional Fourier transforms are not easy to follow, we will give a brief
derivation here which is similar to the treatment by Chubar.

First we define the notation:

F (x; z,R, a) =
√
aE(ax; z)e−ix2/(λR) (5.7)

where we will choose R to cancel out any quadratic phase in a given the wave-front and a
is a scaling parameter that will determine the expansion/contraction of the grid. We start
from the Fresnel integral as it is stated in Eq. (4.11) and introduce our F -notation on the
LHS to absorb one of quadratic the phase-factors:

F (x;R+ z0, R, 1) =
ϕ

(iλR)1/2

�
dx′e−i2πxx′/(λR)eiπx

′2/(λR)E(x′; z0) (5.8)

where ϕ is a constant phase factor which we ignore from here on. For another length
(R+ z) we also write up the Fresnel integral. This time without using the “F -notation”:

E(x;R+ z + z0)

= exp
�

iπx2

λ(R+ z)

�
ϕ

(iλ(R+ z))1/2

�
dx′ exp

�−i2πxx′

λ(R+ z)

�
exp

�
iπx′2

λ(R+ z)

�
E(x′; z0) (5.9)

We want to eliminate E(x′; z0) from these two equations to get an expression, which
works as a propagator between the new F -functions.

In equation (5.8) we substitute the integration variable s′ = x′/λR, multiply by exp(i2πsx),
and integrate over x.
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�
dxei2πsxF (x;R+ z0, R, 1)

=
ϕλR

(iλR)1/2

�
dxei2πsx

�
ds′e−i2πs′xeiπs

′2λRE(s′λR; z0) (5.10)

The integral over x on the RHS evaluates to a Dirac-delta function, which will the lift the
s′ integral to give:

�
dxei2πsxF (x;R+ z0, R, 1) =

ϕλR

(iλR)1/2
eiπs

2λRE(sλR; z0)

⇔ E(sλR; z0) =
(iλR)1/2

ϕλR
e−iπs2λR

�
dxei2πsxF (x;R+ z0, R, 1) (5.11)

Now in equation (5.9), we change the integration variable to s = x′/λR:

E(x;R+ z + z0) =
λR

(λ(R+ z))1/2
exp

�
iπx2

λ(R+ z)

�

×
�

ds exp
�
−i2πxs

R

R+ z

�
exp

�
iπs2λ

R2

(R+ z)

�
E(sλR; z0) (5.12)

Now plugging equation (5.11) into equation (5.12) and simplifying some fractions, we get:

E(x;R+z+z0) =

�
R

R+ z
exp

�
iπx2

λ(R+ z)

� �
ds exp

�
−i2πxs

R

R+ z

�
exp

�
−iπs2λ

Rz

(R+ z)

�

×
�

dx′ei2πsx
′
F (x′;R+ z0, R, 1) (5.13)

This has the shape of a Fourier-convolution with a chirp-function except for the inconve-
nient factor of R

R+z in the inverse Fourier transform. We get rid of this by one last scaling
of a variable: x′′ = x R

R+z = a−1x after which we can write:

E(ax′′;R+ z + z0)

= 1/
√
a exp

�
iπ(ax′′)2

λ(R+ z)

�
F−1

�
exp

�
iπs2λRz

(R+ z)

�
F {F (x′;R+ z0, R, 1)}

�

(5.14)

Now we can introduce our F notation on the LHS and use this to absorb the pre-factors
on the RHS. z0 was an arbitrary origin to begin with, so we choose z0 = −R to make the
result look nicer.
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�
x; z,R+ z,

R+ z

R

�
= F−1

�
exp

�
iπs2λRz

(R+ z)

�
F {F (x; 0, R, 1)}

�
(5.15)

Equation (5.15) defines a new paraxial Fourier propagator that can be implemented with
normal discrete Fourier transform approaches. The chirp function will, for the cases we
are interested in, typically be well-sampled. In the case of R → ∞, we recover the normal
propagator from Eq. (4.8).

The benefit of these scaled functions is that we can symbolically multiply by a perfect
lens term by changing the R-parameter, which means we have lifted the requirement to
sample these quickly varying phases.

When the CRL consists of perfect lenses, the calculation is a series of successive con-
volutions with these chirp terms, which may be written instead as a single convolution of
a combined chirp by making use of some properties of this chirp and its Fourier trans-
form. Without carrying out this calculation we can simply notice that the propagator only
modifies the phases in the Fourier-space and not the amplitudes. This means that the
ideal CRL (one consisting of perfect lenses) will create a perfect image of the intensity in
the sample plane. When the absorbing apertures of the lenses are taken into account,
this treatment no longer works and we have to do one convolution per lens to calculate
the resulting images.

5.2.1 Analytical rules for cascading lenses
As was mentioned in the last subsection, the multiplication by a perfect lens term is han-
dled exactly by changing the R parameter according to:

F (x; z,R, a) exp
�
iπx2

λf

�
=

√
aE(ax; z) exp

�
−i

x2

λR

�
exp

�
iπx2

λf

�

= F

�
x; z,

Rf

f −R
, a

� (5.16)

which means a perfect lens term, in the calculation, is handled by changing the parame-
ters according to the update rule:

Rn+1 =
Rnf

f −Rn

an+1 = an

(5.17)

We can also write up a rule for free-space propagation by a distance z:

Rn+1 = Rn + z

an+1 = an
Rn

Rn + z

(5.18)

This gives us an iterative approach to calculating the focus condition of the CRLs without
needing to do any heavy calculations. The procedure is as follows:
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1. Start at the sample-plane with R = 0

2. Propagate to the first lens, changing R = p according to Eq. 5.18 and set a = 1.

3. For each lens in the CRL propagate between the lenses using Eq. (5.18) and
through the lenses using (5.17)

4. After the final lens, if R is negative, there will be a focused image at the distance
q = −R from the last lens. The magnification is M = −ap/q where a is the value of
a at the last lens.

See fig 5.3 for a sketch of the geometry.

The iterative rules given in (5.18) and (5.17) can be used to calculate the focusing condi-
tion of a CRL for a given geometry and focal length of the individual lenses. This method
unfortunately does not yield short analytical expressions but it can readily be used for
numerical calculations. The algorithm outlined here allows one to quickly calculate the
distance to the focus plane for any given sample-to-lens distance. More often, we are
interested in finding the magnification and in-focus lens position for a fixed sample-to-
detector distance. This is achieved using a root finding algorithm.

Focusing condition of a realistic CRL
For verification, we plug in a set of typical values used in the ID06 microscope and com-
pare with experimental values and other approximate results.(Fig 5.2) If we consider only
homogeneous CRLs, by which we mean a CRL made up of identical lenses equally
spaced through it entire length, a number of analytical results are available. An approx-
imation given by Kohn[43] states that a homogeneous CRL consisting of N lenses at a
distance T apart can be treated as a thin lens – placed at the center of of the CRL – with
focal length:

fCRL = f/N +NT/6 (5.19)

The problem of the basic homogeneous CRL was also treated in a ray-tracing setting
by Simons[67] who states two different results. One exact using trigonometric functions,
which gives the same result as the iterative procedure outlined in Eq.(5.17) down to nu-
merical error and an approximate result valid in the limit of thin lenses, which is the same
result as the simple thin-lens approach given by Eq. (5.6).

With the normal parameters of the ID06 microscope, the thin lens approximation overesti-
mates the magnification by about 10% compared to the cascaded lenses result while the
approximation by Kohn only overestimates the magnification by 0.2%. The experimen-
tally measured magnification follows the expected trend, but are about 5% higher than
predicted by theory. This deviation is thought to be due to production errors that increase
the actual radius of curvature.

When we have the magnification of the CRL in the focusing condition in a given geometry,
we can define an effective thin lens and an effective focal length. The effective thin lens
is one which, if placed at the effective thin lens plane, would create an image with the
same magnification as the CRL. The position and focal length of such a lens is uniquely
determined by the two equations (4.15) and (4.19). Figure 5.3 sketches the geometry of
the CRL in focusing condition and defines a number of distances.
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Figure 5.2: Magnification of a CRL as a function of total length along the optical axis
calculated in three different approximations. Parameters used were: N = 68, λ = 0.73Å,
R = 0.05mm, T = 1.6mm, and δ = 1.18 · 10−6. The experimental magnifications were
calculated as the ratio of effective pixel-sizes found by scanning the sample and detec-
tor position respectively. The experimental values were calculated from three different
experiments done in the same week in February 2021 with the same horizontal sample-
to-detector distance but at three different 2θ angles.
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Figure 5.3: Sketch of a CRL in the focusing condition and the effective thin lens that gives
rise to the same image in a given configuration.

Phase Resolved Dark-Field X-ray Microscopy 73



Pd1

P-b

(PTAlens)
N

P-(L-b)

Pd2

= ACRL

Figure 5.4: Sketch of the computational approach taken to simulate the effective aperture.

5.3 Effective apertures
The formulation of Fourier ptychography was based on the coherent model of a micro-
scope defined by Eq. (4.28), where the intensity image is given by the absolute square
of the convolution of a pair of complex-valued functions. The multislice model of a CRL,
that we have presented in this chapter, does not have that form. Therefore one has to
ask whether FP is an appropriate technique for treating images captured in a CRL-based
microscope.

To investigate this, we want an approach to simulate the images in a CRL-based micro-
scope similar to Eq.(4.28). We introduce the operator, ACRL, which is a combination of
propagators that first back-propagates a wave-front from the effective thin lens plane to
the position of the first lens, then propagates the field through the lenses one by one, and
finally back propagates the field to the original plane. The approach is sketched in Fig.
5.4. With this operator, we can write the imaging-operation of the CRL-microscope as:

��E(Mx,My, d1 + d2)
��2 =

d1
d2

�����F
−1

�
ACRL

�
F
�

exp
�
iπ(x2 + y2)

λd1

�
E(x, y, 0)

��������

2

(5.20)

Because all the propagators and lenses used to construct ACRL are represented by linear
operators, ACRL is also a linear operator. If we find that this operator is well approximated,
under certain reasonable conditions, by a simple product. That is:

ACRL {E(x, y)} ≈ ACRL(x, y)E(x, y) (5.21)

then Eq. (5.20) reduces to Eq. (4.16) and we have found a thin-lens approximation
of the CRL. To investigate this operator, we perform numerical calculations using the
quadratic-phase propagator given in (5.15). For this particular choice of parameters, the
successive application of the quadratic-phase propagators will lead to a total change of
the R parameter from d1 in the input to −d2 at the output and the a parameter will be
unchanged. This means the field is given on the same grid at the input and the output
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Figure 5.5: Misalignment of the CRL. σ is the distance from the z-axis to the center of
the CRL. γ is the angle of CRL relative to the z-axis, and x0 is the coordinate of a given
point-of-interest in the sample-plane.

and the approximate aperture function for a given input field, Etest(x, y), can be calculated
as:

ACRL(x, y) = ACRL{Etest(x, y)}/Etest(x, y) (5.22)

Where we can use the discretized components of Etest without the need of any interpo-
lation. As test functions, we will use narrow Gaussians in the sample plane that have a
large enough divergence to fill the aperture of the CRL. By scanning the position of this
Gaussian around in the field of view, we will get different position-dependent effective
apertures. These will vary systematically as a function of the position and be approxi-
mately identical within a local area, which we can then treat with a single effective aper-
ture. The notion of a FOV dependent aberration function is often used in computational
microscopy at visible light wavelengths.[88]

Moving the test function is naturally equivalent to shifting the position of the lens by the
same distance in the opposite direction. Furthermore, if the lens is rotated by a small
angle γ and if we can ignore effects that are second order and higher in the rotation
angle, the rotation has the same effect as shifting the sample by a distance −γd1.(see
Fig. 5.5) The FOV dependent aperture function should thus only depend on the quantity:
x0 − σ + γd1, which is the distance in the sample plane from the optical axis of the CRL
to the point of interest in the sample.

5.3.1 A CRL containing an absorbing aperture
We would like to limit the aperture of our CRL-lenses to get a hard transition from the
bright- to the dark field and to limit the effect of aberrations in the off-axis part of the
lenses. We do this by inserting an absorbing aperture at some point in the CRL. We are
then faced with a simple question with practical consequences: at what position in the
lens should we place this aperture?

To answer this question we calculate the on-axis effective aperture for a series of such
CRLs in a magnifying geometry and compare the resulting curves. Figure 5.6 a) shows
a number of these calculated curves. We see that for a general position of the aperture,
the effective aperture function does not go sharply to zero, as we want, but has tail. For
the particular choice of placing the aperture after the 38th lens, the size of this tail is
minimized. This position is close to, but not exactly the same as the effective thin lens
plane (Fig. 5.6 b).
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a) b)

Figure 5.6: a) Calculated effective aperture functions for a CRL consisting of 70 individual
Beryllium lenses lenses with λ = 0.73Å, R = 0.05mm, T = 1.6mm, and δ = 1.18 · 10−6.
The CRL is modified with a top hat absorbing aperture of full width 0.1mm. The placement
of this aperture is varied between the curves and the position of the aperture is given in
the legend. b) A sketch of the geometry of the CRL with an aperture placed directly after
the 38th lens.

We see (Fig. 5.7) that placing the aperture at this position also leads to an effective aper-
ture, that is less dependent on the position of the test-function relative to the optical axis
than in would be for a general choice of this position. This means it behaves more like a
thin lens than otherwise.

To see if the thick-lens effects are important for the stability of FP reconstructions, we
simulate three FP data sets with a model of a CRL with a square aperture. One using the
thin lens approximation, ie. the same forward model as used in the reconstruction. One
using the cascaded lenses approach and with the aperture placed at the end of the lens-
stack. And finally one with the aperture placed at the ”ideal” position at the 38th lens.
Figure 5.8 shows the phase of FP reconstructions made from simulated images using
each of these three lens models. We see that the reconstruction using an aperture at
the end of the CRL has a large low-frequency error in the reconstructed phase. Both the
thin lens reconstruction and the thick lens reconstruction, with the aperture at the optimal
plane make reconstructions of similar quality.

5.4 Aberrated lenses
In practice, we observe that the lenses in our CRLs have strong high-frequency aber-
rations. When the sample is coherently illuminated, these aberrations cause strong
speckle-like noise in the images.

When the lenses are aberrated, we can still assign an effective aperture using Eq.(5.22)
but now it is unavoidable that this effective aperture varies with the position in the FOV
because the aberrations are spread out in the entire length of the CRL. There is no way
to avoid inherent thick-lens behavior of the lenses.

There is a simple geometric interpretation of this issue illustrated in Fig. 5.9, where we
have made a toy-model of an aberrated lens containing aberrations only at the first and
last lenses with recognizable geometric shapes. The calculated effective aperture ap-
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Aperture at lens #38 Aperture at lens #70Aperture at lens #0

Figure 5.7: Calculated effective aperture functions for a CRL consisting of 70 individual
Beryllium lenses lenses with λ = 0.73Å, R = 0.05mm, T = 1.6mm, and δ = 1.18 · 10−6.
The CRL is modified with a top hat absorbing aperture of full width 0.1mm a) placed
before the first lens, b) after the 38th lens, and c) after the last lens respectively. The
figure shows a number of calculated aperture functions with the a test-function placed at
different distances from the optical axis.

Figure 5.8: FP reconstructions of simulated data sets using 3 different models of the
lens. One is the thin-lens approximation, one is a thick lens, with an aperture at the
optimal position, and the last is a thick lens with the aperture at the last lens in the CRL.
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CRL

Figure 5.9: Calculated effective thin-lens apertures for two different positions in the FOV
showing the importance of thick-lens effects in aberrated CRLs. The aberrations are
located at the first and last lens of the CRL to highlight the geometric origin of the thick
lens effects. Reconstructions were made using 50 iterations of the ePIE algorithm.

pears to be a sum of the two individual aberrations (respectivey over- and underfocused)
but depending on the position of the test-function, the two images are offset by some
distance relative to each other which may be understood in terms of the parallax dis-
placement.

The aperture functions that we reconstruct using FP should also re-create this shifting
of features in the aperture as a function of position on the FOV. We simulate a data-set
using the same toy-model of an aberrated CRL displayed in Fig. 5.9. From this data set a
number of FP reconstructions were computed using different 512x512 pixel regions of the
same images. In the refined aperture functions, the thick-lens behavior is clearly visible
by a shift of the two different aberration-features relative to each other. The reconstructed
sample arrays are of high quality and show that the reconstructions succeed up to the
full resolution covered by the scan but the reconstructed aperture arrays contain strong
noise.
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Figure 5.10: Reconstructed effective aperture function made with FP. The images were
simulated using a thick CRL with aberration function placed at the position of the first and
the last lens respectively. The three reconstructions were made using data from three
different regions of the images. Reconstructions were made with 60 iterations of HIO and
10 iterations of error reduction.
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6 Implementing Fourier ptychography
in an X-ray microscope

Both DFXM and FP are microscopy techniques that measure a stack of band-pass filtered
real-space images where the filter is displaced in reciprocal space between each image.
In DFXM this is partly achieved by rotating the sample but it may also be achieved by
translating the objective lens. FP is typically done with a shifting angle of illumination,
but has also been demonstrated with a moving lens.[80] We therefore want to investigate
whether we can apply the FP data treatment for DFXM data?

This chapter describes a number of FP experiments performed in the ID06-HXM micro-
scope at the ESRF. First a transmission experiment meant as a test of the implementa-
tions and then a thin-film Bragg-diffraction experiment.

6.1 Experimental description
6.1.1 Instrumentation
The experiments that were performed in connection with this thesis were carried out at the
ID06-Hard X-ray Microscope(ID06-HXM) at the European Synchrotron Radiation Facility
(ESRF).

A hard x-ray microscope, typically operating between 15keV and 32keV, based on CRLs
in a full field imaging geometry. The most unique feature of this instrument is a pair of
large gantries, with range of movement of several meters and high precision, that are
used to place the objective lens and detector in the path of a Bragg-reflected beam at
angles away from the incident beam direction of up to 22°. This great range of movement
of both the objective lens and the detector allows DFXM and transmission experiments
to be carried out using the same set of lenses and detectors without re-mounting any
components between experiments.[46]

The ID06-HXM uses a U18 cryogenic permanent magnet in-vacuum undulator. For the
experiments presented here we use a photon energy of 17keV which is accessible with
the first harmonic of the undulator.

The beam is monochromatized by a symmetric Si(111) double crystal monochromator
located at 35.8 m downstream of the source. The monochromatic beam has a relative
bandwidth of approximately ∆E/E = 10−4

The experiments were carried out in 2020-2021, after an upgrade of the ESRF storage
ring called Extremely Brilliant Source(EBS). After this upgrade the transverse size of the
electron beam was reduced giving increased brilliance of the x-ray sources but more
importantly for this work, the effective source-size of the x-ray source was decreased,
which gives a more coherent beam at the microscope. [25]

Between the source and the sample we further have the option to insert a decoherer
consisting of a spinning disc of amorphous carbon. This acts as a random diffuser and
due to the fast spinning, the diffuser varies on a timescale much shorter that the exposure
time of the detector, effectively making the incident light less coherent.
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In the slicing mode of DFXM, we insert a 1D focusing lens called the condenser lens
approximately 1 m upstream of the sample that focuses the incident radiation onto a hor-
izontal line at the sample position. At the lower end of the energy spectrum used at the
beamline, the condenser lens is a CRL consisting of 58 individual Be lenses of apex-
curvature 100 µm.

The sample goniometer consists of a number of translation and rotation stages. For the
FP-experiments presented here, it is only used to place and orient the sample in the
beam, not actively as a part of the scanning.

The objective lens is placed on a gantry allowing for accurate positioning of the lens in
three dimension (obx, oby, obz) as well as two rotation stages named obpitch and obyaw
that rotate the lens around the y- and z axis respectively. The objective lens has a working
distance of ≈ 250 cm from the sample to the nearest lens in the CRL.

The detector is positioned on a separate gantry at a fixed position in x = 4776mm but
can be moved in the z and y directions by the motors ffz and ffy. The detector is an
indirect scintillator detector using a 10x objective lens to reach an effective pixel-size of
0.71 µm.

6.1.2 Experimental procedure
The FP scans were implemented by two coupled movements of the objective lens posi-
tion, orientation and detector position effectively giving a complete rotation of the imaging
optics around the position of the sample by small angles on the order of 10−3 rad.

Initially, the lens was centered on and aligned with the beam in transmission mode by
maximizing the flux through the lens as measured by an ionization chamber placed at its
exit. Then the detector was brought into the center of the beam. After this the objective
lens is moved along its optical axis to bring the sample into focus while the sample is
moved perpendicular to the optical axis to bring the feature of interest into the center of
the FOV. Finding focus position is difficult due to the coherent nature of the microscope
and the fact that the sample provides stronger phase- than absorption contrast, leading
to a maximum of image intensity variation at some small defocus distance.

When the sample is in focus, the effective magnification of the microscope is measured
by translating the sample perpendicular to the optical axis and tracking sample features
across the detector. This was done for each sample using an automated registration
procedure to yield the shift in pixels between each image. When possible, the pixel size
was compared with known features of the sample and typically we get an agreement
between the found pixel sizes on two significant digits. As discussed earlier, the measured
magnification size was typically 5% smaller that the one expected by theory. (Fig. 5.2)

We parameterize the movements of the lens and detector by the equivalent real-space
shift of the thin-lens aperture function: σx and σy as in Eq. 4.27. The implementation of
the σx-scan is identical to the normal implementation of ∆2θ-scans in traditional DFXM.
The physical movements are described by:




∆obz
∆obpitch

∆ffz


 = σx




1/mm
180/πd1

|M + 1|/mm


 and




∆oby
∆obyaw
∆ffy


 = σy




1/mm
180/πd1

|M + 1|/mm


 (6.1)

where ∆obz and ∆oby are the increments of the motors controlling the objective lens
position, ∆obpitch and ∆obyaw are the increments of the motors controlling the objective
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lens angle, and ∆ffz and ∆ffy are the increments of the motors controlling the detector
position.

The magnification is measured as described above and d1 is calculated from M and the
known sample-to-detector distance using Eq. (4.19). For the FP scans we measure on
an irregular grid of (σx,σy). This is commonplace in ptychography to avoid a certain type
of artifacts that appear when a regular grid is used.

6.2 Registration correction
When the objective lens is moved – both in FP scans and in ∆2θ-scans in traditional
DFXM – the image is shifted by a distance given by the lens shift times the magnification
plus one. For this reason, we translate the detector by the same distance to keep the
image in the same place. Even so, we always see small errors in the positioning of both
the lens and the detector that lead to registration errors in the collected images. When not
accounted for, these are limiting to the resolution of the experiment. Therefore registration
correction of measured images is an important part of the DFXM data analysis.

There are two distinct sources of positioning errors. First of all the values of d1 and M
in Eq. (6.1) used to make the scan may be wrong. This leads to a systematic linear
shift of the measured images as a function of σ. This is normally the dominant source of
position errors, but it can be eliminated by carefully refining the values of the geometric
parameters. When the systematic shift is removed, small random errors in the lens and/or
detector position cause apparently random shifts of the measured images on the order
of 10 pixels.

The registration correction methods used in this work are all based on phased cross-
correlation methods using the scikit-image implementation of a super-sampling cross
correlation method.[34] This function takes two pixelated images, that are assumed to be
images of the same ground-truth, but are shifted with respect to each other. The output
is a 2D vector giving the shift of the one image relative to the other.

We test two different approaches to correcting for registration errors. One, inspired by
the literature,[80] calculates a registration correction once as a pre-processing step by
starting at the center of the data set and and comparing each image to its immediate
neighbors. We found that this approach fails to register images in the transition from
bright field to dark field images. We therefore only use the registration values from the
bright-field part of the data set. For the remaining images we fit a linear trend to the
calculated values and extrapolate this fit to the edges of the data set to take care of
any systematic errors. We also replace outliers in the center of the data set if there are
any. With this initial registration we hope to have removed the systematic shifts, but the
recovered shifts typically have low accuracy and the random shifts are still present in the
dark field images.

Therefore we also test an iterative approach to registration correction, where the reg-
istration values are re-calculated at several points throughout the FP reconstruction by
comparing the raw data with the forward model of the reconstruction at the given point of
convergence. This allows us to find registration values extending all the way to the edge
of the data set.

We test the registration correction on simulated data. Figure 6.1 shows that both regis-
tration approaches perform better that no registration correction but fall short of using the
ideal registration values, that were used to generate the simulated data. We note that
using the ideal values does not give the same exponential convergence observed when
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Figure 6.1: Convergence plots of four different approaches to reconstructing data with
registation errors. The simulation- and reconstruction parameters are the same as in
Sec. 4.6 with added random registration errors of RMS 5 pixels in both directions. a)
Normal reconstruction with no registration correction. b) Reconstruction using known
registration errors that were used to generate the data. c) Reconstruction using the reg-
istration correction as a pre-processing step. d) Reconstruction using iterative registration
corrections as a part of the reconstruction.

84 Phase Resolved Dark-Field X-ray Microscopy



Figure 6.2: Comparison of reconstructions of simulated data using the inital (a,c) and
iterative (b,d) approaches to registration correction. (a,b) shows the nomalized prediction
error for each image. (c,d) show the phase of the reconstructed aperture functions in
radians.
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using perfect data. This might be due to the slightly different methods used to shift the
simulated images (Fourier interpolation) and back-shift the images in the reconstruction
(quadratic spline interpolation).

In the test case used here, the iterative registration procedure sometimes falls victim to a
behavior where a small number of images close to the bright-field to dark-field transition
are registered incorrectly, shifting the image by exactly one period of the line-patters used
in the phantom sample. This causes a localized error in the recovered aperture function
corresponding to the position of this image. This in turn affects the neighboring images
and deteriorates the quality of the reconstruction for these images. This error can easily
be identified from the reconstructed aperture when it appears, and we can avoid it by re-
stricting the magnitude of the registration correction and by not refining the aperture in the
initial cycles of the reconstruction. This restriction is what causes the slow convergence
in the first ≈ 50 iterations as seen in Fig. 6.1.

From Fig. 6.2 a,b) we see that, while the initial correction approach fails at high-shift
where the registration is not calculated, the iterative correction gives a good prediction
of all images except in a single image, where the registration appears to have failed.
Neither of the two reconstruction approaches are able to reconstruct the small spherical
aberration included in the simulation data (Fig. 6.2c,d), but the initial correction approach
erroneously reconstructs a much larger aberration with the opposite curvature.

Now that we have reliable values of the experimental registration errors, we use the
chance to document our result to give some insight into the average size and repeata-
bility of the positioning errors. The result of the initial registration step for the central 50
images in the data set are shown in Fig. 6.3. For this experiment we were very careful
to calibrate the geometric parameters and eliminate the systematic shifts. The registra-
tion errors have a standard deviation of 4 pixels in the y-direction and 14 pixels in the
x-directions. A shift of 1 pixel corresponds to either an error of the detector position of
0.7 µm or of the lens position of 50 nm. Both the detector and lens is mounted on a gantry,
where the y-stages are mounted on top of the heavier z-stages.

It is clear from Fig. 6.3a) that the positioning errors are spatially correlated. They appear
to be correlated in space rather than in time (the images were collected in a spiral pat-
tern starting from the middle). We have also observed that they are correlated with the
registration errors we observe if we repeat the same measurement several times.

We have performed individual scans of the lens- and detector positions independently,
where the position of the image has been tracked using the cross-correlation. For these
scans we find a much smaller deviation from the linear trend with a standard deviation of
less than one pixel. The ranges of these scans are approximately half of the range of the
FP scan presented in Fig. 6.3. The large shift-errors seen in the FP scan of upwards of
15 pixels is not observed in these individual scans.

6.3 Transmission experiments
We have carried out a number of FP experiments at the ID06-HXM. First, to test the im-
plementation we perform a transmission-experiment. The sample is a resolution-chart
with a number of structures containing dense line-patterns of known line width. We have
collected a data set both with and without using the decoherer. Examples of the raw
images are shown in Fig. 6.5. On the raw coherent images, we see that the detector
is separated in two regions, one bright and one dark. The edges separating these two
regions form a magnified image of the aperture of the objective lens, which is a 0.1 mm
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Figure 6.3: Initial registration of transmission experiment with the JIMA250 sample with
decoherer. a) shows the direction of each calculated shift at the position of the image in
the data set. The length of the arrows are not to scale with the separation between the
arrows. b) shows a 2D histogram of the shift values from a).

Figure 6.4: Measured image shifts as a function of objective lens position (a,b,e,f) and
detector position (c,d,g,h). Figures a-d) show the calculated shift of the image and e-h)
shows the deviations from a linear trend.
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Figure 6.5: Examples of experimental images from a FP data set in transmission mode.
a-c) shows a data set captured without the use of a decoherer. d-f) shows a data set
captured using a decoherer. a,d) and b,e) are images of the full detector at two different
positions of the objective lens. c,f) show a zoomed in region of the same images as a,d).
The size and position of this region is marked by the red square in a).

by 0.1 mm square slit inserted for the purpose of this experiment. The dark-field region
appears uniformly dark in these images but if the color map is adjusted, we see dark-field
contrast at points where the sample has structure. Comparing the two images, we see
that the bright-field region is moved when the objective lens is moved. The bright field re-
gion is not uniform, but contains speckle-like features due to high-frequency aberrations
in the lens. In the images taken while using the decoherer (Fig. 6.5d,e) ), the speckle fea-
tures have disappeared and the edges of the aperture are less sharp. This is consistent
with the model of a less coherent incident illumination which blurs out-of-focus features
like the aperture of the objective lens.

Figures 6.5 c,f) show a zoomed-in region of the detector, where we see the features of
the sample. We see both a pattern of vertical and horizontal line features with full-period
500 µm and line-width 250µm as well as the inverted text “0.25”. In the coherent image
we see a large number of line-features extending beyond the dense line pattern. We
believe these are ringing-artifacts, common in coherent microscopes due to the top-hat
type filtering imposed by the hard cut-off of the objective lens aperture. The sample
contrast is superimposed on much stronger contrast due to the lens aberrations. In the
incoherent image, both the ringing artifacts and the lens noise have disappeared. We
can still see effects of the objective-lens aberrations, however. In the top of Fig. 6.5f) The
vertical lines appear sharp and only very little overshoot can be seen on the left hand
side of the pattern. On the right hand side, the overshoot is a more significant while in the
bottom of the image, the sample features appear strongly defocused. This is evidence
of aberrations that cause different contrast from identical features depending on their
position in the FOV.
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Figure 6.6: Phased cross-correlation between two adjacent images from a FP data set
near the center of the data set. a) Images captured with a decoherer. b) Images captured
without a decoherer.

In Fig. 6.6 we plot the phased cross-correlation between two adjacent images near the
center of a FP data set respectively with and without using a decoherer. For these images
the sample had been tilted by 10° to make features due to the straight lines of the cal-
ibration sample easily distinguishable from other features. In a) we clearly see a strong
peak near 0-pixels in the center of the image with a number of satellite peaks correspond-
ing to the period of the line-patterns in the sample. The feature is slightly offset from 0
due to the positioning error discussed in the previous section. When the decoherer is
not used, another strong feature appears (lower right corner of b) ) which is due to the
shifting lens-aberrations.

In the mechanical set-up of the experiment, there is an uncertainty regarding the exact
position of the center of the lens relative to the center-of-rotation of the stages that rotate
the lens. An error of the position would lead to an extra linear translation on top of the one
required for the FP scan. Therefore, we utilize a scale parameter in the reconstruction
that scales the σ vectors used in the forward model. To find the final value of this scale pa-
rameter we have to perform a sweep over a range of values and perform an independent
reconstruction for each value. In figure 6.7 we plot the value of the prediction error at the
final step of each of these reconstructions. We find that the final prediction error shows
a minimum with a choice of the scale parameter around 1.3-1.35. This corresponds to a
distance between the lens and the center of rotation of 10 cm. Equivalent to saying that
the lens is rotating about the end of the CRL rather than the center.

6.3.1 Reconstructions
We perform the FP reconstruction using the ePIE algorithm of the data set collected both
with and without use of the decoherer. The full data set contains 300 images covering a
range of shifts up to about σ = 0.2mm, twice the aperture of the objective lens, however
we are only able to achieve reconstruction of the low-shift part of the data set up to about
the bright-field to dark-field transition. Including more images was found to give noise at
high frequencies about roughly twice the NA of the objective lens. Therefore we only use
first 50 images of the data set. Figure 6.8 shows the result of the reconstruction in Fourier
space. We see that at approximately two times the aperture of the lens, the size of which
is marked by the red square, the reconstruction fails and the reconstruction drowns in
noise.
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Figure 6.7: Final error function value of the reconstruction of transmission data as a
function of the geometric correction factor.

Figure 6.8: Fourier transform of reconstructed sample function of the resolution target
sample in transmission mode using a) the data set taken with a decoherer and b) the
data set taken without a decoherer. The red dots mark the different lens positions and
the red square marks the size of the lens at the last position in the data set.
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Figure 6.9: Plots of the reconstructed amplitude (a,b) and phase (c,d) of the resolution
target using the data set with (a,c) and without (b,d) the decoherer.

We filter out the high-frequency noise by a simple Fourier filter and plot the reconstructed
amplitude and phase in Fig. 6.9. The reconstructions are able to recover the expected
features of the sample. The phase recovered from the dataset with decoherer suffers
from low-frequency noise while both the amplitude and phase of the reconstruction with-
out the decoherer suffer from stronger noise with higher frequency. While the coherent
reconstruction does contain a lot of noise, it compares favorably to single raw images
from the data set. (Fig. 6.5 c) )

Both the reconstruction with and without decoherer appear to be defocused. This is visible
by ringing artifacts around the dot-features lining the sample pattern and by the inverted
contrast of the reconstructed phase in the dense line patterns. Using the normal free
space propagator (Eq. (4.23)) we can digitally re-focus the reconstruction. To find the
appropriate defocus distance, we calculate a stack of propagated images with different
defocus distances and plot a line through the reconstruction as a function of defocus dis-
tance. Figure 6.10 shows a number of these images. We find good agreement between
the simulated defocus-stack and the one calculated from the reconstruction and use this
to detemine the proper defocus-distance.

Figure 6.11 shows a zoomed in region of the original and the refocused image. The im-
provement of the phase-image is clear. The numbers are now readable and the contrast
in the line-pattern now has the expected sign. In the amplitude image the improvement
is mainly evident from the improved visibility of the line of dots in the right hand side of
the images.

We have shown that we are able to achieve stable reconstruction in transmission mode,
where we recover the expected sample features to a resolution of approximately 2 times
the NA of the objective lens. It is interesting to compare our result to the much simpler
DPC, as described in Sec. 4.4 method of treating the same data set. The results achieved
with DPC are very similar to those of FP. The DPC result does not have the high-frequency
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Figure 6.10: Slices through defocus stack showing the amplitude (a-c) and phase (d-f) of
respectively vertical lines (a,d) and horizontal lines (b,e) of the incoherent reconstruction.
The final column (d,f) shows a simulated defocus stack of a perfect line-pattern at approx-
imately the same resolution. The defocus parameter is given in units of the Talbot length.
The black line marks the original image and the red line marks the focused position.

Figure 6.11: Plots of the reconstructed amplitude (a,b) and phase (c,d) of the resolution
target using the data set with the decoherer. a,c) show the original image and b,d) show
the digitally refocused image. The plotted region is a zoomed in version of Fig. 6.9.
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Figure 6.12: Plots of the reconstructed amplitude (a,b) and phase (c,d) of the resolution
target using the data set with the decoherer. a,c) show DPC result b,d) show FP result.
Both phase-images have been high-pass filtered to remove the low-frequency artifacts.
The plotted region is a zoomed in version of Fig. 6.9.

errors that had to be filtered out of the FP reconstructions, but DPC has similar resolution
and shows the same defocus. The reconstruction made without the decoherer contains
noise of similar amplitude and frequency as that observed in the FP reconstruction (Fig.
6.9 b,d) ) but the noise is apparently not spatially correlated between the two images. We
can digitally re-focus the DPC images by the same method as the FP images and find
approximately the same defocus distance. In Fig. 6.12 we plot a comparison between
the FP and DPC images. The two images appear to be of similar quality.

Considering that the quality of the FP reconstruction and the DPC images are of such
similar quality, we cannot argue that our FP reconstruction succeeds in the aim of com-
pensating for lens-aberrations and beating the resolution limit of the objective lens. The
approximate resolution of the reconstruction of 2 times the NA is also the theoretical res-
olution limit for this type of DPC method.[76]

6.4 Thin film Bragg-reflection experiments
We now move on to look at FP of a Bragg-scattered beam. We want to avoid the com-
plications caused by the condenser lens and by multiple diffraction effects, so as a first
experiment, we use an epitaxial thin film. The sample chosen is a Bismuth ferrite (BFO)
film which is known from previous studies[18, 69] to have a small mosaic spread and
to contain elastic twin domain of a sub-micron size. It therefore constitutes a good test
sample for Fourier Ptychography to test the resolution of the reconstructions.

In this experiment the sample is full-field illuminated and we collect data sets both with
and without a decoherer in the beam. Figure 6.13 shows the experimental geometry.
The experiment is done in a symmetric Bragg-geometry with scattering vector is normal
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Figure 6.13: Experimental geometry of the thin-film diffraction experiment. The red bar
marks the point-spread of the objective lens projected through the thickness of the sam-
ple.

to the surface of the thin-film. The scattered field is given by an integral of the scattering
function through the thickness of the sample along the direction of the scattered beam,
marked with a red stripe.

Inspecting the raw DFXM images in Fig. 6.14 we see a behavior very similar to the
one observed for transmission images (Fig. 6.5) where there is a bright field and a dark
field region and the shape of the bright field region is an outline of the aperture. The
interpretation is similar to the one in transmission mode: If we consider the sample to be
a single near-perfect crystal containing only small strained regions, then the scattering
will primarily be in one single direction. The strained regions will give rise to weak diffuse
intensity away from this direction. In some part of the image this strong beam hits within
the aperture of the lens – we call this the strong beam region – and in other regions
it hits outside of the aperture – the weak beam condition. In the images taken with the
decoherer, the edges of the strong beam region are blurred. Furthermore, some speckle-
like noise, which is present in the coherent images disappear in the incoherent images
due to the averaging-out of high frequency lens aberrations.

The images contain two distinct types of contrast. We see a handful of dislocations in
the film that appear as dark spots in the bright field images (6.14 b,e) ) and as bright
spots in the dark field images (6.14 b,e) ). In areas away from these dislocations there
is high-frequency features that appear as a random grainy pattern. This high-frequency
contrast is characteristic of the BFO film and does not appear in other thin-films, we have
investigated. The coherent DFXM images shown here appear to contain slightly less
speckle noise than the coherent transmission images shown in Fig. 6.5.

Like in the transmission experiments, we are only able to achieve stable reconstructions
up to a limited resolution and including images taken at a higher shift causes a high-
frequency artifact, as shown in Fig. 6.15.

The reconstructions appear to be of a similar quality to those made in the transmission
experiments. In Fig. 6.16 we plot the reconstructions of a region away from any disloca-
tion in the thin film. In both the phase- and amplitude images we see sub-micron features.
The features are recognizable from one image to the other, giving confidence that they
are features of the sample and not artifacts of the reconstruction. The contrast appears
to be stronger in the coherent reconstruction than in the incoherent. Especially the high-
frequency features of the phase map appear dampened in the incoherent reconstruction
compared to the coherent.
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Figure 6.14: Examples of experimental images from a FP data set in transmission mode.
a-c) shows a data set captured without the use of a decoherer. d-f) shows a data set
captured using a decoherer. a,d) are images of the full detector b,e) show a zoomed in
region containing a single dislocation of the same images as a,d). The size and position
of this region is marked by the red square in a). b,f) show the same region in an image
with larger s showing weak beam contrast from the dislocation.

Figure 6.15: Fourier transform of reconstructed sample function of the BFO thin-film sam-
ple in Bragg-mode mode using a) the data set taken with a decoherer and b) the data
set taken without a decoherer. The red dots mark the different lens positions and the red
square marks the size of the lens at the last position in the data set.
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Figure 6.16: Plots of the reconstructed amplitude (a,b) and phase (c,d) of the BFO sam-
ple using the data set with (a,c) and without (b,d) the decoherer. The phase images
have been high-pass filtered to remove a large ”saddle point” type artifact present in both
reconstructed phase maps.

To estimate the resolution of the reconstructions, we perform two independent reconstruc-
tions, each using half of the images from the same data set. We calculate the Fourier ring
correlation between these two reconstructions (Fig. 6.17) and find a half-period resolution
between 0.2 and 0.1 µm.

We have also made FP reconstruction of regions of the sample around dislocations. As
discussed in Sec. 2.2.2, dislocations cause vortex lines in the scattering function and
therefore the projection through a thin film containing a surface-to-surface dislocation
should contain a phase vortex with winding number given by the dot-product of the hkℓ
vector and the Burger’s vector of the dislocation. These phase vortexes do not appear
spontaneously in our FP reconstructions, but we can achieve stable reconstructions con-
taining phase-vortexes by initializing the reconstruction with such a phase vortex.

The DPC approach does not handle phase vortexes well. While we can still calculate the
phase-gradients (and thereby the deflection angles) using Eq. 4.34, these gradients can-
not be integrated by normal gradient-field integration methods since the phase function
does not exist. The integration algorithms could likely be adapted to give the wrapped
phase, but this is not pursued here, rather we compare only the phase-gradients.

Figure 6.18 shows the phase-gradients calculated using DPC and two different FP recon-
structions with respective 0 and 2 phase vortexes. From comparing the images, it is clear
that the reconstruction without a phase-vortex does not match the DPC phase gradients.
The reconstruction made with the phase vortexes appears to fail close to the dislocation
core, where the two phase-vortexes are separated by a distance of about 1 µm, but further
away from the dislocation core the agreement is excellent.
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Figure 6.17: Fourier ring correlation between two independent reconstructions and be-
tween two different images. Figure reproduced from [13]

Figure 6.18: Deflection angles of the scattered beam as defined in Eq. (2.43) calculated
from a,b) differential phase contrast, c,d) an FP reconstruction without phase vortexes and
e,f) a FP reconstruction with two phase vortexes of the same sense. Figure reproduced
from [13]
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Figure 6.19: a-c) Amplitude and d-f) phase of reconstructed aperture functions. From a,d)
the Bragg scattering experiment including the decoherer and b,e) without the decoherer.
c-f) Are from the transmission experiment without the decoherer. Figure reproduced from
[13]

6.5 Role of the decoherer
The decoherer is a spinning disk of amorphous material, that is inserted in the beam up-
stream of the sample to make the beam less coherent.[21, 27] The disk can be modeled
as a random diffuser screen. Because the disk is spinning fast, this random diffuser is
replaced many times over on the timescale of the exposure of the x-ray detector. There-
fore, the collected images are a time average (or an ensemble average) over the different
possible realizations of the random diffuser. This time-average is equivalent to how par-
tially coherent light is described in the usual theory of partially coherent radiation based
on statistical optics.[9]

The effect of the decoherer is seen in the raw images (Fig. 6.5) where the noise features
due to lens-aberrations disappear and the edge of the bright field region is smoothed.
This effect is also apparent from the reconstructed aperture function from FP shown in
Fig. 6.19. Comparing the reconstructed aperture made with the decoherer (Fig. 6.19a,d)
) with those made without a decoherer (Fig. 6.19b,e) ), it appears that the first is a blurred
version of the second. This makes sense intuitively, as the role of the decoherer is to in-
crease the divergence of the incident light and therefore to smear out features in reciprocal
space.

We find the same behavior in reconstructions of simulated data using a partially coherent
forward model. The forward model is based on Abbe’s method[1] for incoherent sources,
where the incoherent image is given by the superposition of the intensity from a range of
coherent images with different angle of illumination, which can be rewritten to:

Iincoh(x, y) =

�
I(x, y;σ)p(σ)dσ (6.2)
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Figure 6.20: a) FRC between ground truth and simulated reconstructions. b) Images of
reconstructed apertures. Figure adapted from [13]

using the notation from Eq. (4.35) where p(σ) is a scaled version of the source angular
distribution. For the simulation, we choose a symmetric 2D normal distribution centered
on zero with variance σ2

ζ for a number of different values of the variance. We then carry
out FP reconstructions of the simulated data sets.

Figure 6.20 shows some results of this simulation. We see the same blurring effect in
the reconstructed apertures as was seen in the experiments. From the FRC curves we
see that the low coherence results in a lower resolution reconstruction, but that the re-
constructions are not immediately broken by a small amount of partial-coherence.

6.6 Discussion & outlook
We have made a proof-of-principle demonstration of a Fourier ptychographic approach
to the analysis of DFXM data. The experiments were a partial success in that we were
able to recover the phase of the wave-front and to reconstruct images of the objective
lens aberrations but we did not achieve a significant improvement of the resolution and
image-quality compared to the traditional data-treatment.

There is a number of possible explanations as to why the reconstructions fail at high
resolution. We list a few of them here:

1. Geometric errors: Determining the exact geometry of the DFXM instrument relies
on calibrating a number of motor positions. Typically in DFXM this is not critical to
the experiment, as we only rely on the relative distances and do not require high
quantitative accuracy of the absolute positions of all optical components. The cali-
bration of the geometry for our FP experiments was done by attempting reconstruc-
tion with different values of the correction factor as shown in Fig. 6.7. This shows a
wide minimum of the error function value and does not give us a lot of confidence
that this parameter was assigned correctly with high precision. Furthermore there
are a number of other geometric parameters that possibly cause problems for FP
reconstructions, such as misalignment angles of the detector and translation stages
relative to the laboratory coordinates.
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2. Weak signal in high shift images: When the objective lens is shifted to a high
angle, the intensity of the images goes down quickly. This is a problem because
the images at high shift will then have a poor signal-to-noise ratio. The noise in
the experimental images seems to be dominated by electrical readout noise of the
detector but other sources such as counting noise and gas scattering probably also
contributes.

3. Non-ideal detector behavior: The detector used for the experiments was an in-
direct x-ray detector based on a thin scintillator screen and an optical microscope.
This detector was chosen because of the small pixel size, which is needed to over-
sample the images, a prerequisite of FP. We are aware that the effective resolution
of this detector is lower than the pixel size, which we tried to compensate for by
including an aperture in the objective lens to make the required resolution as low
as 2 times the pixel pitch. We did however not do a proper characterization of the
detector point spread. Other non-ideal detector behavior like a non-linear inten-
sity response, geometric image distortions[15] and readout noise could also be a
problem for the FP reconstructions.

It is instructive to compare the method of data treatment presented here with “normal”
ptychography, [60, 75] where a focusing lens is used to focus the incident light onto the
sample. The sample is then raster-scanned while a diffraction pattern is collected for
every sample position. As the name suggests, FP is closely related to ptychography. In
FP, the Fourier transform of the sample function takes the role of the sample in normal
ptychography and the aperture function takes the role of the focused beam profile.

Ptychography has also been used in a Bragg-scattering geometry to image the scatter-
ing function of small crystals and thin films,[38] a technique the authors call projection
Bragg ptychography. The experimental set-up of this method has many similarities to our
experiment, the main difference being that the lens is placed before the sample, rather
than behind it. This difference makes some aspects of the experiments easier. First of
all, the lens does not have to be moved but can remain in a fixed position on the optical
axis while only the sample is moved. This means that only one 2D translation stage is
needed to do the experiment and a much smaller range of movement is needed.

Another advantage is that since Ptychography measures the far field diffraction pattern,
the pixel-size needed to oversample the field can be made larger by moving the detector
further away from the sample. This means direct detectors with better noise characteris-
tics can be used instead of the indirect detectors used in DFXM.

Another recently introduced method, called ptychographic topography [79] is even more
similar to our FP-DFXM. In this method a pinhole aperture is scanned in the scattered
beam while diffraction patterns in the far field of the aperture are collected. These diffrac-
tion patterns are used to make a ptychographic reconstruction of the scattered field. Be-
cause this method only scans optical components placed downstream of the sample, one
has the option to introduce a focusing component before the sample to achieve a geome-
try similar to the slicing mode of DFXM. This has been shown using a pencil-beam rather
than a sheet beam.[61] This method is very new and has so far only been demonstrated
on small and near-perfect crystals.

The big advantage that DFXM has compared to the various focused-probe methods is
the ability to study large 3D samples in the slicing mode by placing the sample in the
focus of a 1D condenser that forms a sheet beam. We have made attempts to do FP in
the slicing mode of the DFXM microscope but did not achieve stable reconstructions.
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It is difficult to suggest a good sample to test FP in the slicing mode. If we choose a
near perfect crystal with a few isolated defects, we have to deal with dynamical diffraction
effects. It is not clear if the assumption of a coherent field is appropriate in this case. The
energy bandwidth of the incident light is comparable to the Darwin width of dynamical
scattering and when the condenser is used, the angular spectrum of the incident beam
is much wider than this, so the scattered beam at any one setting is given by an integral
over the dynamical rocking curve.

Choosing, on the other hand, a highly deformed crystal, where we can ignore dynamical
scattering effects, we face the problem that the scattered beam at a fixed rocking angle
consists of small disconnected regions, where the crystal satisfies the Bragg condition,
separated by regions of zero intensity. In this case the scattering pattern would not have
enough non-zero intensities to be able to refine the aperture function. Also, DFXM images
are only sensitive to short-distance correlation in the phase function (over the size of the
coherent point spread function), so the relative phase between such disconnected regions
can not be determined.
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7 Simulating a Dark-Field X-ray
Microscope

In the existing literature on DFXM, efforts to describe and simulate the method have typ-
ically relied on ray optics.[59, 67] In ray optics, one assumes that interference only takes
place over a small length scales which gives rise to refraction and Bragg-scattering that
changes the path of a given ray, but rays that have taken significantly different paths to
reach the same point on the detector are assumed to have uncorrelated phases. In Sec.
we observed strong speckle-like noise in transmission and thin-film diffraction data, an

example of these diffraction effects, that are not handled by ray optics.

Another subject of interest are the multiple scattering effects, dynamical scattering, that
are present in diffraction images of near-perfect crystals. FP is thought as a possible tool
for studying weak defects in near perfect crystals, where dynamical scattering features
are bound to show up. So in order to better understand these effect, we set out to develop
a computational model of the DFXM-instrument based on the propagation of coherent
wave-fronts. In this model diffraction effects are included by using coherent wavefront
propagators and dynamical diffraction can be included within the framework of the Takagi-
Taupin Equation.

Figure 7.1 sketches the flow of such a simulation. The steps are as follows:

1. Characterization of the incident beam.

2. Characterization of the sample crystal.

3. Propagation of the beams (transmitted and scattered) through the sample crystal
by numerical integration of the TTEs.

4. Propagation of the scattered beam through the CRL and onto the detector.

5. Simulating detector characteristics.

7.1 Characterizing the incident beam
The starting point for the simulation is a description of the incident x-rays at the plane
where they meet the sample. One way to achieve this would be to model the electron
beam, undulator source and beam-shaping optics of the beamline using existing software
packages such as SRW.[19] Due to time constrains, we instead choose to make the
assumption that the beam is spatially uniform at the plane of the condenser lens with
a Gaussian energy bandwidth set by the monochromator and with a Gaussian mutual
coherence function.

To get the transverse coherence lengths, we use the source parameters specified on the
ESRF website and propagate them using a Gauss-Schell[70, 83] model to the plane of
the condenser lens. We find (Fig. 7.2) that both the vertical beam width and coherence
lengths are longer that the aperture of the condenser lens typically used (≈ 200 µm).
Therefore, we can use a model where the beam is fully coherent in the vertical direction.
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Figure 7.1: Sketch of the flow of the simulation of the DFXM microscope. Figure adapted
from [12].

Figure 7.2: Beam widths and coherence lengths calculated using a Gauss-schell model
with full lines. The dashed lines are the coherence lengths calculated assuming an inco-
herent source of the same size.
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Figure 7.3: a) Vertical divergence and b) spatial profile of the incident beam at the sample
plane. Figure reproduced from [12].

The horizontal coherence length is found to be around 40 µm, which is smaller than the
FOV of the microscope and therefore we should include several partially coherent modes
in the horizontal direction, but since a microscope can typically be considered to be fully
coherent when the coherence length is lager than the point spread function we believe
that the effects of partial coherence in the horizontal direction will be small. We therefore
approximate the beam is horizontally coherent and describe the beam by only one mode
in the horizontal direction as well. Thereby we end up with a model of the incident beam
that is transversely fully coherent but has a finite energy bandwidth.

The condenser lens used in the ID06-HXM is a 1D CRL of either Be or plastic depending
on the X-ray wavelength used. Typically a set of slits close to the condenser lens is used
to limit the vertical extend of the beam incident on the condenser lens and thereby the
vertical divergence of the beam incident on the sample. For our purposes we would like
to treat the slits and the lens as a single optical component in the thin lens approxima-
tion. The transmission function of this component will be the product of a 1D ideal-lens
term that focuses the beam in the vertical direction onto the plane of the sample and an
aperture function consisting of both a hard cut-off in both directions from the slits and a
Gaussian profile in the vertical direction due to the absorption in the lens-material. We
will condider both ideal condenser lenses and aberrated condenser lenses, that have
high-frequency errors in the aperture functions. The aperture and line-beam profile of the
condensed beam with an ideal condenser lens are plotted in figure 7.3.

As a first test of the chosen model, we place a analyzer crystal in the focused beam and
measure the rocking curve. The measured rocking curve of the analyzer crystal is shown
in figure 7.4 a). We see that there is some misalignment of the hard cut off compared
to the Gaussian profile. The hard cut-off is blurred due to a combination of dynamical
scattering effects, diffuse scattering from the surface, and the finite bandwidth. When the
effects are taken into account, using a perfect-crystal propagator to handle the dynamical
scattering, we get the simulated rocking curve of Fig. 7.4 b) where the hard cutoffs are
blurred to approximately the same width as on the measured curve.

The detector used to measure the rocking curve was an image detector with small pixel
size. We can use the spatial profile of the rocking curve to infer some information about
the kind of aberrations present in the condenser lens. Figure 7.5 a) shows the integrated
intensity of the rocking curve. This is a section topgraphy image and displays pendelö-

Phase Resolved Dark-Field X-ray Microscopy 105



Figure 7.4: a) Measured and b) simulated rocking curve of an analyzer crystal. Figure
reproduced from [12].

Figure 7.5: Measured near-field rocking curve of an analyzer crystal. a) section topogra-
phy integrated over rocking curve. b) Intensity of a line-profile marked with a dashed red
line in a) as a function of rocking angle.
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Figure 7.6: Simulated near-field analyzer rocking-curve with a) an ideal condenser lens,
b) a condenser lens containing a large spherical aberration and c) a condenser lens with
high-frequency aberrations.

sung fringes in the form of horizontal stripes. In the center of the image is a stacking
fault. The bright line is the direct image of the intersection between the transmitted beam
and the stacking fault. We plot the intensity in one line of this image as a function of the
rocking angle in Fig. 7.5 b). Here we see the width of the angular spectrum of the inci-
dent beam and a sharp cut-off. Furthermore we see that the image shifts position as the
crystal is rocked. This is due to the finite distance between the sample and the detector
and has a purely geometrical interpretation. More interestingly, there appear to be some
vertical stripe-features in the image, which we interpret to be due to aberrations in the
condenser lens.

As a test we simulate a number of such rocking curves with different models of the con-
denser lens shown in Fig. 7.6. Here we see that the vertical stripe features observed
experimentally also appear in simulations using a condenser lens with high-frequency
aberrations. The characteristic width of these stripes are due to the finite bandwidth of
the incident light. The aberration function used contains structures on all length scales
and monochromatic simulations contain stripes of much shorter width than the ones ob-
served in this image but these are blurred out by the integration over photon energy.

The simulated rocking curve using a condenser lens with (the 1D equivalent of) spherical
aberration has wavy lines instead of the straight lines observed in the two other images.
This is because the analyzer crystal only reflects a small part of the incident angular
spectrum at any one angle. With a spherically aberrated lens, different parts of the angular
spectrum is focused into slightly different positions on the sample plane, therefore the
image moves up and down.

All of the simulated images appear sharper than the measured one. This is probably due
to the relatively poor point spread of the near-field detector. This is also probably why we
don’t see any signs of aberrations in the horizontal direction, that would appear as vertical
stripes in figure 7.5 a.

7.2 Model of the sample crystal
In order to simulate a DFXM image, we need a model of the sample crystal. The quantity
of interest is the spatially varying susceptibility functions of Eq. (2.26). To determine
this function, we need to know the value of the Fourier coefficients χ0, χh and χh, that
depend on the atomic structure. When a sample contains twin domain boundaries without
twinning strain, these coefficients are spatially varying. But in most cases these can be
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assumed to be constants and can be calculated from the crystal structure.

χh and χh are not uniquely defined, as they depend on the choice of origin of the unit
cell. We can always pick a unit cell where one of the two is real. A Bragg reflection with
a real-valued coefficient is sometimes called a central reflection. For a given reciprocal
lattice vector h, the value of χh is given by:

χh =
1

VU.C.

�

U.C.

χ(r)eih·rdr (7.1)

where the integral is over the first unit cell. This constant is directly proportional to the
more commonly utilized structure factor Fh:

χh = −
�

4πr0
k2Vu.c.

�
Fh (7.2)

where Vu.c. is the volume of the unit cell and r0 = 2.82 · 10−15m is a physical constant
known as the classical electron radius.

If we change the origin by a vector ∆r, we change the value of the exponential function by
a factor eih·∆r which we can draw outside of the integral thereby changing the scattering
function by an arbitrary phase factor. By the same consideration, we would also change
the value of opposite scattering function by the opposite phase. Therefore, the product
of the two scattering functions is constant and is the real physical quantity of interest. We
note that only the product of the scattering functions appears in measurable quantities
such as the pendellösung length, the extinction length, and the Darwin width. When we
can ignore anomalous absorption effects, that is to say when χ(r) is real, Friedel’s law
holds and the product of the scattering functions is real. It is therefore tempting to consider
the two real quantities ϕh = Re(χhχh) and ψh = Im(χhχh) that describe the strength of
the reflection and the anomalous absorption respectively.[48]

The quantity χ0 does not have this ambiguity and can be determined from the density
and atomic content of the crystal. The real part, χ(r)

0 = −2δ, describes refraction and is
for the most part not important. The imaginary part, χ(i)

0 = 2β, describes absorption and
can have a large impact on the dynamical diffraction patterns. χ(i)

0 is related to the linear
attenuation coefficient: µatt = χ

(i)
0 k/2. In the literature on X-ray topography it is common

to classify Laue-experiments based on the dimensionless quantity µattt, where t is the
thickness of the crystal.

When µattt < 1 we call it a thin crystal or a low-absorption topography. When µattt > 10
we correspondingly call it a thick crystal and a high-absorption topography. In DFXM we
typically only use thin crystals. In thick crystals the contrast mechanisms are different.
Especially in the case where ψh is also large (of similar size to χ

(i)
0 ) where the Borrmann

effect comes to dominate the diffraction patterns.[48]

The scattering constants of a number of relevant materials are listed in Table 7.1. The first
three entries show the trend that as the atom-number is increased, both the refraction- and
absorption constants increase, but the absorption increases more quickly. The large ab-
sorption is a problem for the experiment as it attenuates the measured signal. Increasing
the photon energy conversely decreases both the refraction- and absorption constants.
For all the materials listed here, the refraction constants are at least an order of magnitude
larger than the absorption constants.
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Material Energy Reflection −Re(χ0) Im(χ0) Re(√χhχh) Im(
√
χhχh)

Diamond 17 keV (111) 5.0 · 10−6 1.4 · 10−9 1.8 · 10−6 1.0 · 10−9

Aluminium 17 keV (111) 3.8 · 10−6 1.6 · 10−8 2.6 · 10−6 1.6 · 10−8

α Iron 17 keV (110) 1.1 · 10−5 3.7 · 10−7 7.8 · 10−6 3.7 · 10−7

33 keV (220) 2.9 · 10−6 2.8 · 10−8 1.3 · 10−6 2.8 · 10−8

BaTi03 17 keV (200) 7.6 · 10−6 2.1 · 10−7 5.2 · 10−6 2.1 · 10−7

17 keV (111) 7.6 · 10−6 2.1 · 10−7 3.2 · 10−6 1.4 · 10−7

Table 7.1: Scattering parameters of relevant materials. Materials, reflections and ener-
gies are taken to match the experiments presented here as well as a number of recent
publications. [53, 84, 85]

For most samples, the scattering constants can be assumed to be constant throughout
the crystal and the real quantity of interest is the displacement field u(r). For a number
of ideal defects such as isolated dislocations, symbolic expressions for the associated
displacement fields are given in the literature.[36]. For perfect twin-domain boundaries,
like the ones described in Section 3.2, the displacement field is related to the strain-
tensor, and can in a fairly straight forward manner be constructed from the transformation
matrices S by separating space the space into two regions separated by a domain wall
with normal nw centered on zero. The displacement field is then:

u(r) =
�
0, r · nw ≤ 0

(S − I)r, r · nw > 0
(7.3)

As discussed in Section 3.2, some combinations of a specific domain wall and a Bragg-
peak cause a split-Bragg peak. When a splitting occurs, the distance between the sub-
peaks is on the order of the symmetry breaking strain, typically orders of magnitude larger
that the Darwin-width, so we believe that we can essentially treat the domains on either
side of such a domain wall as two separate crystals. That is to say, we believe that x-rays
scattered inside one domain should not be re-scattered inside a different domain.

For domain walls that do not split a given Bragg-peak, including non-elastic inversion
domain boundaries in ferroelectic crystals, the difference in the scattering function due
to the domain boundary will at most be a discrete jump of the phase of the scattering
function from one side of the boundary to the other. The value of this jump depends both
on the crystal structure and on the structure of the domain wall. Namely, the position
within the unit cell of the twinning operation (either the rotation axis or the mirror plane)
that generates the twin.[42] The structure of domain walls is not often reported in the
literature, so the value of this phase jump is not straight forward to predict.

7.2.1 Implementation
For the simulations presented here, we only consider slab shaped crystals and Laue
geometries.

We use a discrete representation of the sample structure on an orthogonal grid defined
by the three directions x̂, ŷ, and ẑ = n̂ and corresponding step sizes dx, dy, and dz. The
beam enters the crystal through the surface at z = 0 and, as we are only considering
Laue-geometries, both the transmitted and scattered beam exit the crystal through the
opposite surface. n̂ is the outward pointing unit normal of the exit surface.
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We do not need to restrict the final free rotation about the z-axis, but we get a simplifi-
cation of the scattering calculation by choosing a coordinate system where the x-z plane
coincides with the scattering plane.

The number of grid points in each direction will be labeled Nx, Ny, and Nz, giving a total
size of the simulated domain of Lx = dx(Nx − 1), Ly = dy(Ny − 1), t = dz(Nz − 1). t is
the thickness of the simulated crystal slab.

The complex value of these scattering functions needs to be known with high resolution.
For simple test-cases, where the displacement field is given by an analytical expression,
this is not a point of concern. If, however, the displacement field is generated by a numer-
ical simulation, then it needs to be computed with sufficient resolution to at least match
the resolution of the experiment (≈50 nm) throughout the volume of the sample. The size
of the sample can be up to several hundred micrometers.

For strained samples, the scattering function contains a phase factor of the shape eiQ·u.
In order to limit the phase variation between adjacent voxels to less than 2π, step-sizes
must be bellow |∇u|/(2π|Q|), which means small steps must be used for highly deformed
samples. In samples with nanometer-sized domains or other small structures, all struc-
tural features has to be resolved.

7.3 Integrating the Takagi-Taupin Equations
The Takagi-Taupin equations (TTEs) introduced in Chapter 2 are system of coupled first
order PDEs and provide a way to calculate the complex envelope of scattered and trans-
mitted beam when the amplitude of the incident beam and the structure of the sample
crystal is given. In that chapter, we showed how to solve the TTEs in perfect crystals. For
deformed crystals, these (semi-)analytical methods fail and we have to resort to numerical
integration of the PDEs.

The TTEs are typically solved using a finite difference integration scheme. A number of
different algorithms have been used in the literature, the most common being a simple
2nd order finite difference scheme called the half-step method [74, 6, 23]. This method
uses a computational grid where two of the axes are aligned with k0 and kh respectively
and therefore needs the input of the crystal displacement field given on a sheared grid.

We instead choose to use a scheme that works directly on an orthogonal input for the
displacement field. To do this we implicitly utilize Fourier interpolation at the level of
the indivisual steps in the intragration algorithm inspired by the methods outlined by Li
et al.[50] that we were previously using to simulate kinematical scattering in an earlier
version of the simulation. This scheme is derived and tested in the following subsection.

7.3.1 A novel finite difference scheme for integrating the TTEs
The TTEs on the form given in Equations (2.30) have the shape of an initial value problem
in z. In order to apply boundary conditions in the two transverse directions, we assume
that the initial condition given for E0 on the plane z = 0 is only non-zero inside an area
Ω. Following the arguments in [72], we know that the fields are only non-zero inside a
finite volume defined by the projection of Ω along the directions of k0 and kh. (see Fig
7.7) If this volume is contained inside the simulated grid, we can impose zero boundary
boundary conditions in the x- and y-directions.

This will be fulfilled if Ω is contained in the rectangle
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Figure 7.7: Sketch of simulation geometry. Figure reproduced from [14].

max(0, tk0,x/k, tkh,x/k) <x < min(Lx, Lx + tk0,x/k, Lx + tkh,x/k) (7.4)
max(0, tk0,x/k, tkh,x/k) <y < min(Ly, Ly + tk0,y/k, Ly + tkh,y/k) (7.5)

Starting from the Fourier transformed form of the TTEs in Equation (2.31), we re-write
them:

∂

∂z

�
Ẽ0(sx, sy, z)

Ẽh(sx, sy, z)

�
=

�
A00(sx, sy) 0

0 Ahh(sx, sy)

� �
Ẽ0(sx, sy, z)

Ẽh(sx, sy, z)

�

+

�
0 B0

Bh 0

� �
F⊥{χ′

h(x, y, z)E0(x, y, z)}
F⊥{χ′

h
(x, y, z)E0(x, y, z)}

�
(7.6)

where

A00(sx, sy) =
−ik2

2k0,z
χ0 −

i2π

k0,z
s · k0,⊥

Ahh(sx, sy) =
−ik2

2kh,z
(χ0 + β)− i2π

kh,z
s · k0,⊥

B0 = − ik2

2k0,z

Bh = − ik2

2kh,z

(7.7)

We can consider these equations to be equations for the Fourier components of the DFT
of the discretized fields. In that case the last term in Eq. (7.6) has the appearance of a
convolution:

F⊥{χ′
h(x, y, z)E0(x, y, z)} = F⊥

�
χ′
h(x, y, z)F−1

⊥ {Ẽ0(sx, sy, z)}
�

(7.8)
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This quantity can be numerically evaluated by replacing the Fourier transforms on the
RHS by DFTs. Collecting the components of Ẽ0 and Ẽh into a single vector E, we write
the systems of equations as:

∂

∂z
E = AE+B(E, z) (7.9)

where A is a diagonal matrix containing the values of A00(sx, sy) and Ahh(sx, sy) eval-
uated on the computational grid and B(E, z) contains the scattering terms. We have
thereby separated the RSH into a diagonal term that is easy to integrate exactly and an
off diagonal term, that we will treat with an appropriate finite difference scheme.
Exponential Runge-Methods and convergence behaviour
The Fourier-transformed TTEs can be solved by exponential Runge-Kutta methods of the
type given by [37] . To test the convergence of this approach, we utilized two different
exponential integrators. The first is an archetypal exponential integrator based on the
explicit Euler scheme, given by:

E(z + h) = exp(hA)E(z) + h(hA)−1(exp(hA)− 1)B (z,E(z)) . (7.10)

The second exponential integrator is an explicit second-oder method based on Heun’s
method, given by the steps: [31]

E∗
1 = E(z),
b1 = B(zn, E∗

1 ),

E∗
2 = ϕ0E

∗
1 + hϕ1b1,

b2 = B(zn + h,E∗
2 ),

E(z + h) = ϕ0E
∗
1 +

h

2
((2ϕ1 − ϕ2)b1 + ϕ2b2),

(7.11)

where the ϕ-functions are given by: ϕ0 = exp(hA) and ϕn = n(hA)−1(ϕn−1 − 1), and
exp(hA) is in general the matrix-exponential which here is equal to the element-wise
exponential because A is diagonal. We choose this scheme based on Heun’s method
because it only evaluates the B function on the same regular intervals where the field is
calculated, and therefore only requires the value of the scattering function on the same
grid where the fields are evaluated.

For comparison with existing methods, we also implemented a normal finite difference
method based on a recent publication by Shabalin et al.[65] using the half-step finite
difference for the derivatives.

To evaluate the convergence behaviour of these exponential methods, we generated a
virtual sample consisting of a perfect single crystal with a single edge dislocation with
Burger’s vector (100) close to the path of the direct beam. Plots of the displacement field
as well as the amplitudes of the converged solution are shown in figure 7.8.

The fields are simulated under low absorption and highly dynamical conditions, and we
simulated only a single slice in the y-direction with the dimensions 50 µm × 115 µm at a
point 1µm from the dislocation core. The incident beam is a narrow Gaussian of width
σ = 0.2 µm,with parameters chosen corresponding to the (111) reflection of a diamond
crystal with at 17 keV photon energy. The incident beam has a Gaussian envelope with
width σx = 0.2µm
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Figure 7.8: Plots of the sample and calculated fields used in the second convergence
test. a) displacement field in units of the lattice constant, a. b) Transmitted field on a
logarithmic scale, c) scattered field on a logarithmic scale. The calculated fields are for
the case β = 0. Figure reproduced from [14].
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Figure 7.9: Convergence of the new exponential integrators and a traditional finite differ-
ence scheme. The black lines mark first- and second-order convergence respectively.
All errors are calculated relative to the solution using the traditional half step method with
10,241 steps. We tested integration schemes on two different samples. One a) is a
perfect crystal the other b) is the edge dislocation type sample shown in Fig. 7.8. All
calculations are in the case β = 0. Figure reproduced from [14].

In order to accommodate the comparison with existing methods, we utilized a grid with
step sizes ∆z = h and ∆x = 2 tan(θ)h for the exponential methods and a grid with
the same density of points for the normal finite difference method. Then. to check the
convergence of the methods we calculate the fields on progressively finer grids from a first
grid consisting of 101×41 points. The error represents the deviation of the exit surface
amplitudes to that computed using the normal finite different approach on a very fine
grid of 10,241×25,601 steps (evaluated at the points where the coarse and fine grids
coincide).

Figure 7.9 shows the convergence of the three integration methods. While all methods
show the expected convergence on a perfect sample a), the traditional half-step method
does not show the expected second order convergence with the edge dislocation sample
b). The first order exponential Euler method suffers from an exponential instability and
only gives a qualitatively correct result when impractically small step-sizes are utilized.

For the simulation presented here we use the exponential Heun scheme. Further details
of the algorithm are given in.[14]

7.3.2 Energy-angle effect
So far we have treated the incident beam as monochromatic with a photon energy fre-
quency ω0, but we would now like to handle incident illumination with a finite bandwidth.
To simulate polychromatic x-rays, we simulate a number of different energy components
and sum over the energies in the final step of the simulation. This is the normal approach
in partially coherent wave front simulations.[20]

Consider one such energy component with frequency ω. We introduce the relative offset
in energy δE = ω/ω0 − 1 and we assume that this number is much smaller than 1. It
is then natural to define the envelope-function (first defined in Eq. (2.7)) of this energy
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Figure 7.10: a) Sketch of the experimental geometry in a non-symmetric Laue geometry
in laboratory coordinates with the cooridnated used in the scttering calculation given as
x and y. b) reciprocal space geometry for the central energy component, δE = 0. c)
Reciprocal space geometry for a different energy component with δE < 0.

component with the k-vector, k0(δE) = k0(0)(1 + δE).

E(r, δE) = E0e
−ik0(δE)·rp (7.12)

This wave-vector, however, does not satisfy the Bragg-condition. When we derived the
Takagi-Taupin Equations, we assumed exact satisfaction of the Bragg-condition, which
means we need to choose a different wave-vector, k′0(δE), that satisfies the Bragg-
condition exactly. (see Fig. 7.10)

If the central energy component, with energy ω0, satisfies the Bragg-condition with a
Bragg angle of θ0, the δE energy component satisfies the Bragg-condition with an angle:

θ(δE) = arcsin
�

c

2ω0
(δE + 1)|Q|

�
≈ θ0 + tan(θ0)δE (7.13)

where the last expression results from a 1st order Taylor expansion of the second. In
laboratory coordinates, we therefore have:

k′0(δE) = k(1 + δ)
�

cos
�
θ(δE)− θ0

�
x̂lab + sin

�
θ(δE)− θ0

�
ẑlab

�
(7.14)

To account for this, the initial condition has to be modified by a factor e−i[k0(δE)−k′0(δE)]·r

when going from the laboratory space to the coordinates used for the scattering calcula-
tion and back. To demonstrate the energy-angle correlations and to test the implementa-
tion, we perform a simulation of the scattering by a perfect crystal using the perfect crystal
propagators of Section 2.2.3.

Figure 7.11 a) shows the power spectral density of the scattered beam as a function
of the simulated photon energy. The peak intensity follows the trend predicted by Eq.
(7.13) but is has a small constant offset due to refraction of the x-rays. The scattered
beam has a limited width and oscillatory features due to the finite width of the crystal and
multiple scattering effects. When we integrate over the energy the oscillations are lost
and the width is determined by the energy bandwidth of the incident light. Figure 7.11 b)
shows the power spectral density integrated over photon energy as a function of rocking
angle. The maximum follows see the expected ∆2θ = ϕ trend predicted by the geometric
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theory. When the rocking angle becomes higher that the NA of the condenser aperture,
the scattering disappears.

Figures 7.11 c,d) illustrate the geometric-optics interpretation of these effects. At ϕ = 0,
the Bragg condition intersects the phase space density of the incident light at an angle
θ. When the sample is rotated the Bragg conditions travels up-and-down the angular
spectrum of the incident beam and eventually “falls of the rocking curve”. Therefore the
scattered beam intensity as a function of rocking angle maps out the spectrum of the
incident beam in a distorted coordinate system. This figure differs from the measured
curves Fig. 3.3b) because it does not account for the aperture of the objective lens,
which effectively blurs the pattern along the ∆2θ direction.

7.4 Propagating through the imaging forming optics
To model the propagation of the scattered x-ray beam from the exit-surface of the sample
through the objective lens to the detector, we make use of the quadratic phase propa-
gators described in Section 5.2. Numerical modeling of CRLs was already dealt with at
length in that section.

In the DFXM experiments, the objective lens is aligned with the scattered beam, which
is at an angle 2θ0 relative to the incident beam and therefore not aligned with any special
direction of the laboratory coordinate system. We therefore introduce a new coordinate
system, the imaging coordinate system, with the zimg-axis aligned with kh and the y-axis
orthogonal to the scattering plane.

To bridge the gap between the two coordinate systems, we project the points of the com-
putational grid on the exit-surface onto the zimg = 0 plane and keep the value of the
complex amplitudes. This way we omit diffraction effect that take place in the gap be-
tween these two planes. This is commonly done in wave-optical simulations involving
Bragg-scattering. [71, 65]

Both the focusing length and the absorbing aperture of the CRL is a function of the photon
energy, through the energy dependence of χ0. Most critical is the focus length. The
photon energies typically used are far above any transition lines of Be, so Re(χ0) scales
as one over photon energy squared. Therefore, the focal length scales as the energy
squared. With a typical focus-length of 300mm and relative energy bandwidth of 10−4,
the focus length varies by 0.06mm which is comparable to the thickness of the sample
but small compared to the depth-of-focus and, as was also found in [56], we find that the
chromaticity of the lenses only adds a small contribution to the overall point-spread of the
CRL. This effect is included in our simulations but does not give a noticeable effect in the
final images.

When the beam has been propagated to the detector-plane, we incoherently sum over the
modes of the beam to find the x-ray intensity on the detector. The effect of the detector is
included by convoluting this intensity by a incoherent point spread function characteristic
to the detector. This blurred intensity is then interpolated to the positions of the detec-
tor pixels to yield the image intensities. Counting- and read-out noise can be added to
simulate other non-ideal behavior or the detector.

The detector used at the ID06-HXM is a indirect detector composed of a thin scintillator
screen and an optical microscope. The spatial resolution of the combined detector de-
pends both on the characteristics of the scintillator screen and of the optical microscope.
A detailed characterization of the detector used at the ESRF was not possible. A Gaus-
sian point spread with a FWHM of 1.5 µm, about two times the effective pixel size, was
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Figure 7.11: a) Simulated power spectral density of the beam scattered by a perfect
crystal as a function of the relative photon energy. The red dashed line marks the Bragg-
condition. b) Simulated power spectral density integrated over the photon energy as
a function of rocking angle. The simulations were done for a perfect Aluminium crystal
(111) reflection using the parameters of Table 7.1. c) Ewald-construction for the simulated
geometry in laboratory coordinates at zero rocking angle. The blue rectangle marks the
phase-space density of the incident beam with its characteristic dimensions given by the
energy bandwidth and the numerical aperture of the condenser lens. The dotted line
marks the Bragg condition. O is the origin in reciprocal space, Q is the probed reciprocal
lattice vector. d) Ewald-construction at a finite positive rocking angle. The reciprocal
lattice and Q have been rotated by an angle µ around the origin. The result is a scattered
beam at a higher angle compared to c).
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assumed for the simulations shown here.

7.5 Comparison with experiment
We want to test our simulation by comparison with an experiment. We therefore need
a test sample where we know the structure beforehand, so that we can model the scat-
tering. This necessarily means that we need a near perfect crystal with a low defect
concentration so that we can find an isolated ideal defect. We find this in a high-pressure
high-temperature diamond made as a phase-plate for x-ray optical purposed in which we
know there to be a few isolated dislocations and stacking faults.

The stacking fault is a planar defect, which arises by the addition or removal of a single
close-packed plane of atoms in the FCC parent-lattice of the diamond. This can be seen
as a discontinuous jump in the value of the displacement field. The magnitude of this jump
is a vector of the family bsf =

1
3 ⟨111⟩ which is not a symmetry of the fcc lattice. These

planar defects are bounded either by the surfaces of the crystal and or by Frank-type
partial dislocations.[30, 45]

Sufficiently far away from these bounding dislocations, the stacking fault can be regarded
as an ideal flat discontinuity of the displacement field and therefore in the TTE-formalism,
a discrete jump in the phase of the scattering function of magnitude 2π[hkℓ] ·bsf = ±2/3π
when imaged using any [111] reflection that is not orthogonal to the stacking fault normal.
In this way the stacking fault can be seen as a prototype of the inversion twin domain
boundary, which has been discussed earlier. The dynamical scattering patterns produced
by isolated stacking faults in diamonds have previously been studied in detail by classical
x-ray topography.[45]

Figure 7.5 show a near-field measurement of a sample containing such a stacking fault.
The image contains a bright feature, called the direct image, going diagonally through
from edge to edge of the crystal. The dynamical fringes found in a perfect crystal are
disturbed in a characteristic hourglass shape around the direct image.

Figure 7.12 shows the result of the full DFXM simulation and experimental data with two
different positions of the objective lens and a comparison to experimental data. The region
is a zoomed in image compared to Fig. 7.5 showing only one edge of the crystal and most
of the direct image. The center of the hourglass shape appears on the right-hand side
of these images. In the experimental images, the direct image of the stacking fault was
over-exposed, so when plotting the images, we choose a colormap that clops the highest
intensities. The simulation qualitatively recreates the features of the experimental images.
However, there are a number of deviations:

• We underestimate the magnification of the imaging set-up by about 5%. As dis-
cussed in section 5.2.1 we believe this deviation to be due to systematic production
errors of the Be lenses.

• The simulated images contain a smaller number of dynamical fringes than the mea-
sured data. This error could be due to an error of any number of parameters. The
photon energy, the crystal thickness, or the scattering constant.

• The simulated images have a regular pattern of vertical streaks close to the right
hand side of the images that are not seen in the measured images. These are Fres-
nel diffraction fringes and appear because we assume the edges of the aperture to
be perfectly sharp and because we assume that the light is perfectly coherent in
the transverse direction.
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Figure 7.12: Measured (a,c) and simulated (b,d) DFXM images of a stacking fault defect
in a diamond single crystal. (a,b) show images where the objective lens is placed in the
center of the diffracted beam. (c,d) show images where the lens is displaced from the
diffracted beam leaving the bottom half of the FOV in the dark field. The dotted white line
marks the edge of the Borrmann triangle. Figure reproduced from [12].
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Figure 7.13: a) Monochromatic and b) polychromatic simulation using an aberrated ob-
jective lens. c) Monochromatic and d) polychromatic simulation using an aberrated con-
denser lens. The scale bar refers to distances on the detector. Figure reproduced from
[12].

• The measured images contain noise with the appearance of vertical streaks and
speckle-like features close to the brightest features,. This can be explained either
by the aberrations in the condenser lens or in the objective lens.

So far, we have ignored the effect of the aberrations in the lenses. In the transmission
and thin-film diffraction images shown in the previous chapter we see that aberrations
in the objective lens cause strong noise features in the images when the decoherer is
not included. The experimental images in Fig. 7.12a,c) also contains noise that is not
present in the simulated image. This noise, compared to the features observed in the
transmission images appears to be less strong and appear to vary more quickly in the
horizontal (normal to the scattering plane) than the vertical direction. We know that low
coherence averages out this speckle noise. In this case, the averaging out is caused by
the finite energy bandwidth of the incident light and the ”energy-angle effect” discussed
in Section 7.4.

Figure 7.13 a) shows a simulated image with an aberrated objective lens but assuming
a monochromatic source. In this image, we see strong noise similar to that observed in
transmission images. When we include the finite bandwidth in the simulation (Fig. 7.13
b) ) this noise gets partially averaged out and what remains is weaker noise that has the
appearance of vertical stripes similar to those observed in the experimental images.

In Fig. 7.13 c,d) we look at the effect of including the same type of aberrations in the
condenser lens instead of the objective lens. We again see that the polychromatic simu-
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lation has less strong noise than the monochromatic. Also, like before the noise has the
appearance of vertical stripes but in this case the noise appears a full unbroken lines that
can be traces from the top to the bottom of the images rather than the short stripes seen
in the experimental images.

7.6 Future prospects for simulations
The simulation described in this chapter is quite flexible and can be used to simulate the
scattering pattern of near perfect crystals containing a range of different crystal defects.
The main obstacle to applying these simulations is to construct a model of sample’s mi-
crostructure. Aside from a number of ideal defects, dislocations, domain walls, stacking
faults, and point defects, we can also construct combinations of ideal defects such as
low-angle domain boundaries (regular arrays of dislocations) and lamellar twin-domain
patterns can be constructed by combining several of these ideal defects, but more real-
istic models of the sample micro-structure are hard to come by.

Another idea is to use the output of numerical modeling methods such as phase-field
models, commonly used to simulate ferroelectric domain structures,[87] as an input for
the optical simulation. In general though, it will be difficult to come up with a model of the
micro-structure that matches a real sample, since DFXM images appear quite chaotic.

The computation time of the simulations presented here might prove to be an obstacle
for applying such simulation more widely.

The simulations presented here used a grid of 2048 × 2048 × 3001 points with corre-
sponding step sizes of 60 nm, 60 nm, and 100 nm respectively. This matches the 300 µm
thickness of the sample and gives a simulated FOV of ≈100 µm in the transverse direc-
tions. The step sizes here are chosen small enough that the nearfield phase factors and
the objective lens aperture are well sampled, but for a more disordered sample, smaller
step-sizes might be necessary.

The execution time is dominated by the integration of the Takagi-Taupin equations, which
took 3.5 hours per energy mode running on a single core. The simulation was parallelized
over the modes. The use of computer resources scales linearly with the number of modes,
so if a transversely incoherent model was to be used, the needed resources would in-
crease with a factor of the number of modes. In the study presented here computation
time was not an issue, but if high throughput simulation was needed, large performance
gains could likely be achieved by applying a more efficient algorithm for the integration of
the TTEs.

Phase Resolved Dark-Field X-ray Microscopy 121



122 Phase Resolved Dark-Field X-ray Microscopy



Bibliography
[1] Ernst Abbe. Beiträge zur theorie des mikroskops und der mikroskipischen

wahrnehmung. Archiv für Mikroskopische Anatomie, 9:413–468, 1873.

[2] S. R. Ahl, H. Simons, Y. B. Zhang, C. Detlefs, F. Stohr, A. C. Jakobsen, D. Juul
Jensen, and H. F. Poulsen. Ultra-low-angle boundary networks within recrystallizing
grains. SCRIPTA MATERIALIA, 139:87–91, OCT 2017.

[3] Sonja Rosenlund Ahl. Elements of a Method for Multiscale Characterization of Re-
crystallization in Deformed Metals. PhD thesis, 2018.

[4] J. Als-Nielsen and D. McMorrow. Elements of Modern X-ray Physics. Wiley, 2011.

[5] G. Arlt and P. Sasko. Domain configuration and equilibrium size of domains in
BaTiO3 ceramics. Journal of Applied Physics, 51(9):4956–4960, 1980.

[6] A. Authier, C. Malgrange, and M. Tournarie. Etude théorique de la propagation des
rayons X dans un cristal parfait ou légèrement déformé. Acta Crystallographica
Section A, 24(1):126–136, Jan 1968.

[7] W Berg. Über eine röntgenographische Methode zur Untersuchung von Gitterstörun-
gen an Kristallen. NATURWISSENSCHAFTEN, 19:391–396, 1931.

[8] Pierre Bon, Serge Monneret, and Benoit Wattellier. Noniterative boundary-artifact-
free wavefront reconstruction from its derivatives. Appl. Opt., 51(23):5698–5704,
Aug 2012.

[9] M. Born and Wolf. Principles of Optics. Cambridge University Press, 1959.

[10] W. R. Busing and H. A. Levy. Angle calculations for 3- and 4-circle X-ray and neutron
diffractometers. Acta Crystallographica, 22(4):457–464, Apr 1967.

[11] R.W. Cahn. Twinned crystals. Advances in Physics, 3(12):363–445, 1954.

[12] Mads Carlsen, Carsten Detlefs, Can Yildirim, Trygve M Ræder, and Hugh Simons.
Simulating dark-field x-ray microscopy images with wave front propagation tech-
niques. Acta Crystallographica Section A, 2022. (in press).

[13] Mads Carlsen, Trygve M Ræder, Can Yildirim, Raquel Rodriguez-Lamas, Carsten
Detlefs, and Hugh Simons. Fourier ptychographic dark field x-ray microscopy. Opt.
Express, 30(2):2949–2962, Jan 2022.

[14] Mads Carlsen and Hugh Simons. A finite difference scheme for integrating the
Takagi–Taupin equations on an arbitrary orthogonal grid. Acta Crystallographica
Section A, 78(5), Sep 2022.

[15] Rafael Celestre, Oleg Chubar, Thomas Roth, Manuel Sanchez del Rio, and Ray-
mond Barrett. Recent developments in X-ray lens modelling with SRW. In Oleg
Chubar and Kawal Sawhney, editors, Advances in Computational Methods for X-
Ray Optics V, volume 11493, pages 88 – 101. International Society for Optics and
Photonics, SPIE, 2020.

[16] Chunguang Chen, Tao Zhou, Dmitri L. Danilov, Lu Gao, Svenja Benning, Nino
Schoen, Samuel Tardif, Hugh Simons, Florian Hausen, Tobias U. Schulli, R-A Eichel,

Phase Resolved Dark-Field X-ray Microscopy 123



and Peter H. L. Notten. Impact of dual-layer solid-electrolyte interphase inhomo-
geneities on early-stage defect formation in Si electrodes. NATURE COMMUNICA-
TIONS, 11(1), JUL 1 2020.

[17] Shun-Yu Cheng, New-Jin Ho, and Hong-Yang Lu. Transformation-induced twinning:
The 90° and 180° ferroelectric domains in tetragonal barium titanate. Journal of the
American Ceramic Society, 89(7):2177–2187, 2006.

[18] Y.-H. Chu, Q. Zhan, L. W. Martin, M. P. Cruz, P.-L. Yang, G. W. Pabst, F. Zavaliche,
S.-Y. Yang, J.-X. Zhang, L.-Q. Chen, D. G. Schlom, I.-N. Lin, T.-B. Wu, and
R. Ramesh. Nanoscale domain control in multiferroic bifeo3 thin films. Advanced
Materials, 18(17):2307–2311, 2006.

[19] Oleg Chubar and Rafael Celestre. Memory and cpu efficient computation of the fres-
nel free-space propagator in fourier optics simulations. Opt. Express, 27(20):28750–
28759, Sep 2019.

[20] Oleg Chubar, Yong S. Chu, Konstantine Kaznatcheev, and Hanfei Yan. Application
of partially coherent wavefront propagation calculations for design of coherence-
preserving synchrotron radiation beamlines. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, 649(1):118–122, 2011. National Synchrotron Radiation Instrumen-
tation conference in 2010.

[21] Peter Cloetens, Raymond Barrett, José Baruchel, Jean-Pierre Guigay, and Michel
Schlenker. Phase objects in synchrotron radiation hard x-ray imaging. Journal of
Physics D: Applied Physics, 29(1):133–146, jan 1996.

[22] Leora E. Dresselhaus-Marais, Grethe Winther, Marylesa Howard, Arnulfo Gonza-
lez, Sean R. Breckling, Can Yildirim, Philip K. Cook, Mustafacan Kutsal, Hugh Si-
mons, Carsten Detlefs, Jon H. Eggert, and Henning Friis Poulsen. In situ visual-
ization of long-range defect interactions at the edge of melting. Science Advances,
7(29):eabe8311, 2021.

[23] Y. Epelboin and A. Soyer. Simulation of X-ray traverse topographs by means of a
computer. Acta Crystallogr. A, 41(1):67–72, Jan 1985.

[24] J. Erhart. Domain wall orientations in ferroelastics and ferroelectrics. Phase Transi-
tions, 77(12):989–1074, 2004.

[25] ESRF. ”ESRF upgrade program phase II (2015-2022) - Technical Design Study
(Orange book)”. 2022.

[26] PP Ewald. On the explanation of crystal optics. ANNALEN DER PHYSIK,
54(23):519–556, 1917.

[27] Ken Vidar Falch, Carsten Detlefs, Magnus Sebastian Christensen, David Paganin,
and Ragnvald Mathiesen. Experimental investigation of gaussian random phase
screen model for x-ray diffusers. Opt. Express, 27(15):20311–20322, Jul 2019.

[28] J. Fousek and P. Mokry. Stress-free domain quadruplets in ferroics. Ferroelectrics,
323(1):3–9, 2005.

[29] Jan Fousek and Vaclav Janovec. The orientation of domain walls in twinned ferro-
electric crystals. Journal of Applied Physics, 40(1):135–142, 1969.

124 Phase Resolved Dark-Field X-ray Microscopy



[30] F.C. Frank. Lxxxiii. crystal dislocations.—elementary concepts and definitions. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
42(331):809–819, 1951.

[31] A. Friedli. Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differential-
gleichungssysteme. In Numerical treatment of differential equations (Proc. Conf.,
Math. Forschungsinst., Oberwolfach, 1976), pages 35–50. Lecture Notes in Math.,
Vol. 631, 1978.

[32] Semën Gorfman, Hyeokmin Choe, Guanjie Zhang, Nan Zhang, Hiroko Yokota, An-
thony Michael Glazer, Yujuan Xie, Vadim Dyadkin, Dmitry Chernyshov, and Zuo-
Guang Ye. New method to measure domain-wall motion contribution to piezoelec-
tricity: the case of PbZr0.65Ti0.35O3 ferroelectric. Journal of Applied Crystallogra-
phy, 53(4):1039–1050, Aug 2020.

[33] Semën Gorfman, David Spirito, Guanjie Zhang, Carsten Detlefs, and Nan Zhang.
Identification of a coherent twin relationship from high-resolution reciprocal-space
maps. Acta Crystallographica Section A, 78(3):158–171, May 2022.

[34] Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup. Efficient sub-
pixel image registration algorithms. Opt. Lett., 33(2):156–158, Jan 2008.

[35] Detlev Hennings. Barium titanate based ceramic materials for dielectric use. Inter-
national Journal of High Technology Ceramics, 3(2):91–111, 1987.

[36] John Price Hirth and Jens Lothe. Theory of Dislocations. Krieger Pub Co, 1992.

[37] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numer-
ica, 19:209–286, 2010.

[38] S. O. Hruszkewycz, M. Allain, M. V. Holt, C. E. Murray, J. R. Holt, P. H. Fuoss,
and V. Chamard. High-resolution three-dimensional structural microscopy by single-
angle Bragg ptychography. NATURE MATERIALS, 16(2):244–251, FEB 2017.

[39] Lei Huang, Mourad Idir, Chao Zuo, Konstantine Kaznatcheev, Lin Zhou, and Anand
Asundi. Comparison of two-dimensional integration methods for shape reconstruc-
tion from gradient data. Optics and Lasers in Engineering, 64:1–11, 2015.

[40] Jürgen Härtwig. Hierarchy of dynamical theories of x-ray diffraction for deformed
and perfect crystals. Journal of Physics D: Applied Physics, 34(10A):A70–A77, may
2001.

[41] L. Katz and H. D. Megaw. The structure of potassium niobate at room temperature:
the solution of a pseudosymmetric structure by Fourier methods. Acta Crystallo-
graphica, 22(5):639–648, May 1967.

[42] H Klapper. X-Ray topography of twinned crystals. Prog. Cryst. Growth Charact.
Mater., 14:367–401, 1987.

[43] V. G. Kohn. On the theory of x-ray refractive optics: Exact solution for a parabolic
medium. Journal of Experimental and Theoretical Physics Letters, 76(10):600–603,
2002.

[44] Pavan Chandra Konda, Lars Loetgering, Kevin C. Zhou, Shiqi Xu, Andrew R. Har-
vey, and Roarke Horstmeyer. Fourier ptychography: current applications and future
promises. Opt. Express, 28(7):9603–9630, Mar 2020.

Phase Resolved Dark-Field X-ray Microscopy 125



[45] G Kowalski, A R Lang, A P W Makepeace, and M Moore. Studies of stacking-fault
contrast by synchrotron x-ray section topography. J. Appl. Crystallogr., 22(5):410–
430, OCT 01 1989.

[46] M Kutsal, P Bernard, G Berruyer, P K Cook, R Hino, A C Jakobsen, W Ludwig,
J Ormstrup, T Roth, H Simons, K Smets, J X Sierra, J Wade, P Wattecamps,
C Yildirim, H F Poulsen, and C Detlefs. The ESRF dark-field x-ray microscope at
ID06. IOP Conference Series: Materials Science and Engineering, 580(1):012007,
aug 2019.

[47] AR LANG. A METHOD FOR THE EXAMINATION OF CRYSTAL SECTIONS US-
ING PENETRATING CHARACTERISTIC X-RADIATION. ACTA METALLURGICA,
5(7):358–364, 1957.

[48] M. v. Laue. Die Absorption der Röntgenstrahlen in Kristallen im Interferenzfall. Acta
Crystallographica, 2(2):106–113, Apr 1949.

[49] M. von Laue. Die dynamische Theorie der Röntgenstrahlinterferenzen in neuer
Form. Ergebn. d. Exakten Naturwiss., 10:133–158, 1931.

[50] P. Li, S. Maddali, A. Pateras, I. Calvo-Almazan, S.O. Hruszkewycz, W. Cha,
V. Chamard, and M. Allain. General approaches for shear-correcting coordinate
transformations in Bragg coherent diffraction imaging. Part II. Journal of Applied
Crystallography, 53(2):404–418, Apr 2020.

[51] Ivan Lyatun, Peter Ershov, Irina Snigireva, and Anatoly Snigirev. Impact of beryllium
microstructure on the imaging and optical properties of X-ray refractive lenses. J.
Synchrotron Rad., 27(1):44–50, JAN 1 2020.

[52] Andrew M. Maiden and John M. Rodenburg. An improved ptychographical phase re-
trieval algorithm for diffractive imaging. Ultramicroscopy, 109(10):1256–1262, 2009.

[53] Jeppe Ormstrup, Emil V. Østergaard, Magnus S. Christensen, Can Yildirim, Philip K.
Cook, Mustafacan Kutsal, Thomas Olsen, and Hugh Simons. Bulk heterogene-
ity in barium titanate above the curie temperature. Applied Physics Letters,
119(20):202901, 2021.

[54] Jeppe Ormstrup, Emil V. Østergaard, Carsten Detlefs, Ragnvald H. Mathiesen, Can
Yildirim, Mustafacan Kutsal, Philip K. Cook, Yves Watier, Carlos Cosculluela, and
Hugh Simons. Imaging microstructural dynamics and strain fields in electro-active
materials in situ with dark field x-ray microscopy. Review of Scientific Instruments,
91(6):065103, 2020.

[55] H.M. Ozaktas, O. Arikan, M.A. Kutay, and G. Bozdagt. Digital computation of the
fractional fourier transform. IEEE Transactions on Signal Processing, 44(9):2141–
2150, 1996.

[56] Anders Filsøe Pedersen, Hugh Simons, Carsten Detlefs, and Henning Friis Poulsen.
The fractional fourier transform as a simulation tool for lens-based x-ray microscopy.
Journal of Synchrotron Radiation, 25(3), 2018.

[57] H. F. Poulsen, P. K. Cook, H. Leemreize, A. F. Pedersen, C. Yildirim, M. Kutsal, A. C.
Jakobsen, J. X. Trujillo, J. Ormstrup, and C. Detlefs. Reciprocal space mapping and
strain scanning using X-ray diffraction microscopy. Journal of Applied Crystallogra-
phy, 51(5):1428–1436, Oct 2018.

126 Phase Resolved Dark-Field X-ray Microscopy



[58] H. F. Poulsen, L. E. Dresselhaus-Marais, M. A. Carlsen, C. Detlefs, and G. Winther.
Geometrical-optics formalism to model contrast in dark-field X-ray microscopy. Jour-
nal of Applied Crystallography, 54(6):1555–1571, Dec 2021.

[59] H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs. X-ray
diffraction microscopy based on refractive optics. Journal of Applied Crystallography,
50(5):1441–1456, Oct 2017.

[60] J. M. Rodenburg and H. M. L. Faulkner. A phase retrieval algorithm for shifting
illumination. Applied Physics Letters, 85(20):4795–4797, 2004.

[61] Angel Rodriguez-Fernandez, Ana Diaz, Anand H. S. Iyer, Mariana Verezhak, Klaus
Wakonig, Magnus H. Colliander, and Dina Carbone. Imaging ultrafast dynami-
cal diffraction wave fronts in strained si with coherent x rays. Phys. Rev. Lett.,
127:157402, Oct 2021.

[62] J. Sapriel. Domain-wall orientations in ferroelastics. Phys. Rev. B, 12:5128–5140,
Dec 1975.

[63] Vanessa Schoeppler, Phil K. Cook, Carsten Detlefs, Raffaella Demichelis, and Igor
Zlotnikov. Untangling the mechanisms of lattice distortions in biogenic crystals
across scales. Advanced Materials, 34(28):2200690, 2022.

[64] Jan Schultheiß, Lukas Porz, Lalitha Kodumudi Venkataraman, Marion Höfling, Can
Yildirim, Phil Cook, Carsten Detlefs, Semën Gorfman, Jürgen Rödel, and Hugh Si-
mons. Quantitative mapping of nanotwin variants in the bulk. Scripta Materialia,
199:113878, 2021.

[65] A. G. Shabalin, O. M. Yefanov, V. L. Nosik, V. A. Bushuev, and I. A. Vartanyants.
Dynamical effects in bragg coherent x-ray diffraction imaging of finite crystals. Phys.
Rev. B, 96(6):064111, Aug 2017.

[66] H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Sni-
gireva, A. Snigirev, and H. F. Poulsen. Dark-field x-ray microscopy for multiscale
structural characterization. Nature Communications, 6-98(6), 2015.

[67] Hugh Simons, Sonja Rosenlund Ahl, Henning Friis Poulsen, and Carsten Detlefs.
Simulating and optimizing compound refractive lens-based X-ray microscopes. Jour-
nal of Synchrotron Radiation, 24(2):392–401, Mar 2017.

[68] Hugh Simons, Astri Bjørnetun Haugen, Anders Clemen Jakobsen, Søren Schmidt,
Frederik Stöhr, Marta Majkut, Carsten Detlefs, John E. Daniels, Dragan Damjanovic,
and Henning Friis Poulsen. Long-range symmetry breaking in embedded ferro-
electrics. Nature Materials, 17(9):814–819, 2018.

[69] Hugh Simons, Anders Clemen Jakobsen, Sonja Rosenlund Ahl, Henning Friis
Poulsen, Wolfgang Pantleon, Ying-Hao Chu, Carsten Detlefs, and Nagarajan
Valanoor. Nondestructive mapping of long-range dislocation strain fields in an epi-
taxial complex metal oxide. Nano Letters, 19(3):1445–1450, 2019.

[70] A. Starikov and E. Wolf. Coherent-mode representation of gaussian schell-model
sources and of their radiation fields. J. Opt. Soc. Am., 72(7):923–928, Jul 1982.

[71] John P. Sutter, Oleg Chubar, and Alexey Suvorov. Perfect crystal propaga-
tor for physical optics simulations with Synchrotron Radiation Workshop. In
Manuel Sanchez del Rio and Oleg Chubar, editors, Advances in Computational

Phase Resolved Dark-Field X-ray Microscopy 127



Methods for X-Ray Optics III, volume 9209, pages 171 – 185. International Soci-
ety for Optics and Photonics, SPIE, 2014.

[72] S. Takagi. Dynamical theory of diffraction applicable to crystals with any kind of
small distortion. Acta Crystallographica, 15(12):1311–1312, Dec 1962.

[73] S TAKAGI. A DYNAMICAL THEORY OF DIFFRACTION FOR A DISTORTED CRYS-
TAL. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 26(5):1239–&, 1969.

[74] D TAUPIN. THEORIE DYNAMIQUE DE LA DIFFRACTION DES RAYONS X PAR
LES CRISTAUX DEFORMES. BULLETIN DE LA SOCIETE FRANCAISE MINER-
ALOGIE ET DE CRISTALLOGRAPHIE, 87(4):469–&, 1964.

[75] Pierre Thibault, Martin Dierolf, Oliver Bunk, Andreas Menzel, and Franz Pfeiffer.
Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy,
109(4):338–343, 2009.

[76] Lei Tian and Laura Waller. Quantitative differential phase contrast imaging in an led
array microscope. Opt. Express, 23(9):11394–11403, May 2015.

[77] N. T. Tsou, P. R. Potnis, and J. E. Huber. Classification of laminate domain patterns
in ferroelectrics. Phys. Rev. B, 83:184120, May 2011.

[78] IA Vartanyants and MV Kovalchuk. Theory and applications of x-ray standing waves
in real crystals. REPORTS ON PROGRESS IN PHYSICS, 64(9):1009–1084, SEP
2001.

[79] Mariana Verezhak, Steven Van Petegem, Angel Rodriguez-Fernandez, Pierre Go-
dard, Klaus Wakonig, Dmitry Karpov, Vincent L. R. Jacques, Andreas Menzel, Lu-
dovic Thilly, and Ana Diaz. X-ray ptychographic topography: A robust nondestructive
tool for strain imaging. Phys. Rev. B, 103:144107, Apr 2021.

[80] Klaus Wakonig, Ana Diaz, Anne Bonnin, Marco Stampanoni, Anna Bergamaschi,
Johannes Ihli, Manuel Guizar-Sicairos, and Andreas Menzel. X-ray fourier ptychog-
raphy. Science Advances, 5(2):eaav0282, 2019.

[81] Timm Weitkamp, Bernd Nöhammer, Ana Diaz, Christian David, and Eric Ziegler.
X-ray wavefront analysis and optics characterization with a grating interferometer.
Applied Physics Letters, 86(5):054101, 2005.

[82] Harold H. Wen, Eric E. Bennett, Rael Kopace, Ashley F. Stein, and Vinay Pai. Single-
shot x-ray differential phase-contrast and diffraction imaging using two-dimensional
transmission gratings. Opt. Lett., 35(12):1932–1934, Jun 2010.

[83] Emil Wolf. New theory of partial coherence in the space–frequency domain. part i:
spectra and cross spectra of steady-state sources. J. Opt. Soc. Am., 72(3):343–351,
Mar 1982.

[84] C. Yildirim, C. Jessop, J. Ahlström, C. Detlefs, and Y. Zhang. 3d mapping of orienta-
tion variation and local residual stress within individual grains of pearlitic steel using
synchrotron dark field x-ray microscopy. Scripta Materialia, 197:113783, 2021.

[85] C. Yildirim, N. Mavrikakis, P.K. Cook, R. Rodriguez-Lamas, M. Kutsal, H.F. Poulsen,
and C. Detlefs. 4d microstructural evolution in a heavily deformed ferritic alloy: A
new perspective in recrystallisation studies. Scripta Materialia, 214:114689, 2022.

[86] F. Zernike. Phase contrast, a new method for the microscopic observation of trans-
parent objects. Physica, 9(7):686–698, 1942.

128 Phase Resolved Dark-Field X-ray Microscopy



[87] W. Zhang and K. Bhattacharya. A computational model of ferroelectric domains. part
i: model formulation and domain switching. Acta Materialia, 53(1):185–198, 2005.

[88] Guoan Zheng, Roarke Horstmeyer, and Changhuei Yang. Wide-field, high-
resolution Fourier ptychographic microscopy. NATURE PHOTONICS, 7(9):739–
745, SEP 2013.

Phase Resolved Dark-Field X-ray Microscopy 129



130 Phase Resolved Dark-Field X-ray Microscopy



A Appendicies
A.1 Fourier series & crystallography
A crystal is a periodic arrangement of matter. Because of the preiodic arrangement of
matter in a crystal, many physical properties of a crystal are represented by periodic
functions of the same period as the crystal itself. In this section we introduce periodic
functions and their Fourier series representation.

A periodic function, f(x) is defined by the equation, f(x+L) = f(x) for all x. The constant
L is called the period. By successive application of the rule we see that the value of the
function at any point x can be equated to the value at a point lying the interval 0 < x < L.

In three dimensions, we need a set of three linearly independent vectors: a, b, c. The
value of the periodic function is constant after the addition of an integer times any of these
three vectors to the argument. The choice of these basis vectors is not unique, but we
will assume that it is given. Collecting the three vectors into a matrix, A and the three
indices into a vector i, we can write:

f(r+ Ai) = f(r) (A.1)

the infinite set of vectors Ai for i ∈ I3 are called the crystal lattice. The parallelepiped
constructed by drawing the three basis vectors from a common origin is called the unit
cell of the crystal. The unit cell constructed by choosing r = 0 as the origin is called the
first unit cell. Sometimes it will be useful to specify a position inside the crystal by a linear
combination (might also be non-integer) of basis vectors, r = A[p1, p2, p3]T . The length
of such a vector is:

|r|2 = rT r = pAT Ap (A.2)

The matrix T = AT A is called the metric.

Periodic functions can be exactly represented by a Fourier series: an infinite sum of
harmonic functions with a discrete set of spatial frequencies. In three dimensions, these
spatial frequencies are three dimensional vectors and fall on a different lattice defined by:

h = B[h, k, ℓ]T (A.3)

where h, k, and ℓ are three integers. These vectors have the units of reciprocal lengths
and the lattice is typically called the recriprocal lattice of the crystal. B is a 3-by-3 matrix
given by:

B = 2πA−T (A.4)

In the special case of a cubic lattice, that is a lattice where the three lattice vectors are
mutually orthogonal and of equal length, a, the reciprocal lattice is also cubic with the
same orientation and length 2π/a.
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Using this, an arbitrary periodic function may be written:

F (r) =
�

h

che
−ih·r (A.5)

The scalar constants ch are called the Fourier coefficients and can be calculated by
Fourier’s trick :

ch =
1

VU.C.

�

U.C.

F (r)eih·rdr (A.6)

where the integral is over a single real-space unit cell and VU.C. = | det(A)| is the volume
of the unit cell.

A.2 Properties of the continuous Fourier transform
In this chapter we define the form of the continuous Fourier transform used in the thesis
and state the most important properties of the Fourier transform with this definition. We
use a Fourier transform with full-period-frequencies following the convention in Fourier
optics. The DFXM literature uses the letter q for normalized angular frequencies (Eq.
(3.7)) so we instead choose the letter s following Guinier.

We define the direct continuous 2D Fourier transform, which takes a function, E defined
on (x, y) ∈ R2 and returns a function Ẽ on (sx, sy) ∈ R2

Ẽ(sx, sy) = F{E(x, y)} =

�
dx dyE(x, y)e−i2π(xsx+ysy) (A.7)

Along with this definition follows a definition of the inverse Fourier transform.

F−1{Ẽ(sx, sy)} =

�
dsx dsyẼ(sx, sy)e

i2π(xsx+ysy) (A.8)

The inverse Fourier transform is the inverse of the Fourier transform:

F−1{F{E(x, y)}} = E(x, y) (A.9)

for any function E(x, y) where the Fourier transform exists.
The Fourier transform is unitary, it conserves the L2 norm of the function. This is also
known as Parseval’s theorem:

�
dx dy|E(x, y)|2 =

�
dsx dsy|F{E(x, y)}|2 (A.10)

The following property, called the Fourier derivative theorem:

F
�

∂

∂x
E(x, y)

�
= i2πxF {E(x, y)} (A.11)
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The convolution theorem allows us to rewrite transforms of products. First we define the
convolution of two functions denoted by the symbol: ⊗:

E(x, y)⊗H(x, y) =

�
dx′ dy′E(x′, y′)H(x+ x′, y + y′) (A.12)

The transform of such a convolution is a product of the individual transforms:

F {E(x, y)⊗H(x, y)} = F {E(x, y)}F {H(x, y)} (A.13)

Finally the Fourier shift theorem:

F {E(x− x0, y − y0)} = ei2π(x0sx+y0sy)F {E(x, y)} (A.14)
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