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Abstract
Computational materials science plays an important role in the discovery and design
of new materials. With accurate and efficient methods for computing the properties of
materials it is possible to search through large compositional spaces with the purpose
of screening for materials with specific properties. In recent years, the use of machine
learning methods in materials science has become increasingly useful. This is a result
of the vast amounts of materials data generated using first-principles methods such as
density functional theory (DFT), but also the development of new machine learning
methods for materials science has had an impact.

Finding good representations or fingerprints of materials as inputs to machine learn-
ing models is essential. This thesis presents novel fingerprint methods utilizing ad-
ditional information from the electronic density and wavefunction obtainable from
standard DFT calculations besides the atomic structure. More specifically, the energy
decomposed operator matrix elements (ENDOME) fingerprint is constructed using
matrix elements of quantum mechanical operators, e.g. the position and momentum
operators. Additionally, the radially decomposed projected density of states (RAD-
PDOS) fingerprint is developed using projections of DFT wavefunctions onto atoms
and angular orbitals. The presented methods differs from other fingerprints by encod-
ing individual quantum states.

The ENDOME and RAD-PDOS fingerprints of individual states are then applied
in a machine learning model. The model predicts the difference in state eigenenergies
between a low-fidelity DFT calculation and a high-fidelity G0W0 calculation for 2D
materials. The model predicts the G0W0 correction energies for individual states with
a mean absolute error (MAE) of 0.11 eV. This converts to a MAE of 0.15 eV on the
G0W0 band gap by using the model to compute full G0W0 band structures.

Additionally, the RAD-PDOS fingerprint is used to evaluate the dynamical stability
of 2D materials. This is done by training a binary machine learning classification model
predicting the stability. The model achieves an excellent receiver operating character-
istic with an area under the curve of 0.90, and the model can thus be used to screen
materials for dynamic stability without performing expensive phonon calculations.

The dynamical stability is further investigated by developing approximative methods
for calculating electron-phonon coupling matrix elements. The methods are based on
replacing the DFT effective potential with a potential set up from atomic potentials.
With this approximation, the matrix elements are quantitatively similar to the true
DFT matrix elements. The approach is further improved by using machine learning
to reconstruct the DFT potentials from the atomic potentials, which reduces the error
by a factor of ≈ 2.





Resumé
Databaseret materialevidenskab spiller en vigtig rolle i opdagelsen og design af nye
materialer. Med nøjagtige og effektive metoder til beregning af materialers egenskaber
er det muligt at gennemsøge store kompositionsrum med det formål at screene for
materialer med specifikke egenskaber. I de senere år er brugen af maskinlæringsme-
toder i materialevidenskab blevet mere og mere nyttig. Dette er et resultat af de
enorme mængder af materialedata, der er genereret ved hjælp af ab-initio-metoder
såsom tæthedsfunktionalteori (DFT), mens også udviklingen af nye maskinlæringsme-
toder indenfor materialevidenskab har haft en indflydelse.

Det er vigtigt at finde gode repræsentationer eller fingeraftryk af materialer som input
til maskinlæringsmodeller. Denne afhandling præsenterer nye fingeraftryksmetoder,
der anvender yderligere information fra den elektroniske tæthed og bølgefunktion, der
kan opnås ved standard DFT-beregninger, udover atomstrukturen. Mere specifikt er
fingeraftrykket for energi-dekomponerede operatormatrixelementer (ENDOME) kon-
strueret ved hjælp af matrixelementer af kvantemekaniske operatorer, f.eks. positions-
og momentum-operatorer. Derudover er det radialt dekomponerede projekterede til-
standstæthed (RAD-PDOS) fingeraftryk udviklet ved hjælp af projektioner af DFT-
bølgefunktioner på atomer og angulære orbitaler. De præsenterede metoder adskiller
sig fra andre fingeraftryk ved at beskrive individuelle kvantetilstande.

ENDOME- og RAD-PDOS-fingeraftrykkene for individuelle tilstande anvendes derefter
i en maskinlæringsmodel. Modellen forudsiger forskellen i tilstandsegenenergier mellem
en mindre nøjagtig DFT-beregning og en mere nøjagtigG0W0-beregning for 2D-materialer.
Modellen forudsiger G0W0 korrektionsenergierne for individuelle tilstande med en gen-
nemsnitlig absolut fejl (MAE) på 0.11 eV. Dette konverteres til en MAE på 0.15 eV på
G0W0-båndgabet ved at bruge modellen til at beregne hele G0W0-båndstrukturer.

Derudover bruges RAD-PDOS-fingeraftrykket til at evaluere den dynamiske sta-
bilitet af 2D-materialer. Dette gøres ved at træne en binær maskinlæringsklassifika-
tionsmodel, der forudsiger stabiliteten. Modellen opnår en udmærket ROC med et
areal under kurven på 0.90, og modellen kan således bruges til at screene materialer
for dynamisk stabilitet uden at udføre dyre fononberegninger.

Den dynamiske stabilitet undersøges yderligere ved at udvikle approksimative metoder
til beregning af elektron-fonon-kobling-smatrixelementer. Metoderne er baseret på at
erstatte det effektive potentiale fra DFT med et potentiale sat op fra atomare po-
tentialer. Med denne tilnærmelse svarer matrixelementerne kvantitativt til de sande
DFT-matrixelementer. Fremgangsmåden forbedres yderligere ved at bruge maskin-
læring til at rekonstruere DFT-potentialerne ud fra de atomare potentialer, hvilket
reducerer fejlen med en faktor på ≈ 2.
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CHAPTER 1
Introduction

The global society is in constant need of new materials. New materials to facilitate
the increasing energy consumption and to enable the transition from a fossil-fuel based
energy consumption to renewable energy sources. We seek materials to support new
technologies and to optimize existing technologies. New materials to replace the current
materials relying on scarce resources or materials with negative health effects.

As the title reveals, the work of the Ph.D. project presented in this thesis intersects
the subjects of machine learning, quantum mechanics and materials science.
These three subjects are individual complex research fields, and therefore the purpose
of this introduction is to define the playground of this Ph.D. project and point in the
direction of relevant literature.

Materials science is the interdisciplinary study of materials design and discovery.
This covers both the experimental work of synthesising and testing materials, and the
theoretical aspects of understanding and explaining the underlying phenomena and
calculating the desired properties of the materials. The work in this thesis focuses
on the computational part of materials science, where the generation of databases of
material properties is essential [1–3].

Quantum mechanics is the fundamental theory describing the physical properties at
the scale of atoms and elementary particles such as electrons [4–6]. The characteristic
length scale of the materials investigated in this thesis is of atomic scale, and there-
fore quantum mechanics is a necessity for accurately describing and calculating the
properties of the materials.

Machine learning is the field of mathematical algorithms learning from data, and this
is the main tool for the work presented in this thesis. Machine learning in the context
of materials science often relates to predicting material properties based on the atomic
structure of the materials [7–11]. This project also focuses on machine learning mate-
rial properties, but with the aim to incorporate information from quantum mechanics
into the machine learning models. Using machine learning methods is a pathway to ac-
celerate the materials discovery cycle, since the machine learning models are orders of
magnitudes faster at predicting properties compared to quantum mechanical modelling
methods such as density functional theory (DFT).

The starting point of any project doing machine learning for materials science is the
data. While experimental data of materials provides the true baseline, it is cumber-
some to achieve suitable amounts of data needed for machine learning. Also, experi-
mental data does not eliminate uncertainties, and therefore the use of alternative data
sources such as computational material databases is highly relevant [12]. A frequently
used first-principles method for calculating properties of atomic-scale materials is DFT
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[13, 14]. DFT is in principle an exact method for determining the ground state elec-
tronic structure of many-body systems such as molecules and solid state materials [15].
DFT is used in many high-throughput projects, where large amounts of materials are
screened and stored in databases [16–18]. This thesis focuses mainly on the specific
class of materials of two-dimensional (2D) materials. 2D materials are atomically thin
solid state materials of which graphene (single layer of graphite) is a classical example.
2D materials have a variety of different properties, and they open for the opportunity
for stacking different 2D layers. In this way, the properties of the materials can be
engineered for specific purposes [19, 20].

The natural representation of a material is the atomic structure, i.e. lists of the chem-
ical elements in the material and their corresponding positions. The atomic structure
is often used as the basic level of information when encoding materials for machine
learning, but the encoding can be enriched using information from atomic properties
[21–25].

The general method of using machine learning to predict material properties is ap-
plicable across a wide range of different properties. Common properties predicted
with machine learning include total energies and formation energies. These are widely
available properties which can be predicted with high accuracy compared to the DFT
data [26–28]. While formation energies are relevant for screening materials for ther-
modynamic stability, the electronic band gap is a property with relevance for specific
applications. The band gap is an important property when designing photovoltaic cells,
lasers, transistors and other semi-conductor applications. Typically, the band gap is
a challenging property to map directly from atomic structures, and a lot of effort is
made for developing machine learning methods specifically for band gaps [29–31].

This thesis presents the development of machine learning methods focusing on utiliz-
ing information from quantum mechanical simulations of materials. Besides the atomic
structure, information from the electronic density and wavefunction is coded into the
representations used as input to machine learning models. The novel representation
methods are then used for predicting material properties such as electronic band gaps
and band structures, elastic properties and dynamic stability of materials, in particular
2D materials.

1.1 Thesis overview
Following this introduction, Chapter 2 introduces the general machine learning con-
cepts, including an overview of the machine learning algorithms and methods used in
this project. Also, an introduction to representing materials and atomic structures is
given.

Chapter 3 provides the basic electronic structure theories and methods used for
data generation and construction of specific electronic fingerprints of materials. This
includes an introduction to density functional theory (DFT) and a brief overview of
the GW approximation used in many-body perturbation theory. Finally, a short in-
troduction to electron-phonon interactions and its reference to the dynamical stability
of materials is presented.
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Chapter 4 introduces the computational 2D-materials database (C2DB), which
is the primary data set of this project. Additionally, a small exercise of combining
unsupervised and supervised machine learning methods based on data from C2DB is
presented.

Chapter 5 presents the main results of this thesis which are related to a novel set of
fingerprints encoding electronic structure information for individual electronic states.
These fingerprints are then applied in a machine learning model to predict G0W0
eigenenergies and band gaps. Additionally, the electronic fingerprints are applied to
predict the dynamical stability of 2D materials using a classification model. Finally,
the electronic fingerprint is benchmarked against structural fingerprints on mulitple
properties of 2D materials. As a brief excursion from 2D materials to molecules, a
small study applying similar methods for predicting G0W0 energies of molecules is
presented.

Chapter 6 continues on the work in the previous chapter related to the dynamical
stability of materials. This is done by introducing a method that approximates the
electron-phonon coupling matrix elements using machine learning.

Chapter 7 makes an overall conclusion of the thesis and gives an outlook of the
open questions raised by this project.

1.1.1 Reading guide
This thesis aims to present the output of the Ph.D. project in a results and applications
oriented manner, but also in an easy-to-read way enabling readers with various levels
of expertise in the different fields to gain something from the reading experience. This
means that only the most relevant theory is included in order to build the foundation
of understanding the results.

If the reader is familiar with machine learning in general, most of Chapter 2 can be
skipped. For some introduction to machine learning in a context of materials science, it
can be advantageous to read Section 2.5 regarding representations of atomic structures
for machine learning.

For readers with some knowledge of electronic structure methods, it can be advanta-
geous to skip Chapter 3.

For readers with experience with machine learning for materials science, it is sug-
gested to start from chapter 4 for an introduction to the specific data used in this
project.



CHAPTER 2
Theory: Machine learning

in materials science
In this chapter, the basic concepts of machine learning is explained to support the
understanding of the results and applications in later chapters. Additionally, machine
learning in a context of materials science is introduced by giving an overview of some
of the most frequently used structural fingerprints.

In the context of this project, machine learning is interpreted as the study of al-
gorithms that learn from experience in form of data in an automated way. Within
machine learning several fundamental terms exist and sometimes multiple terms are
used interchangeably for similar concepts, with this thesis being no exception. There-
fore, a thought example of a machine learning application is used to explain some of
the terminology.

Consider an algorithm that predicts the price of a house. Some data is needed to
build such algorithm using machine learning. This data should consist of observations
of houses and their corresponding prices, which is the target variable of the algorithm,
i.e. the variable being predicted by the algorithm. Each observation needs to repre-
sented by a set of features, e.g. construction year, size in square meters, number of
floors, postal code, distance to different points of interest etc. These features can be
both continuous, integers or categorical. The set of features may also be called the
fingerprint or representation of the houses. The key element of this algorithm is the
model or mathematical function, that takes the features as input variables and returns
the predicted price as the output variable. This model could for instance be a simple
linear model, which needs to be trained or fitted to the data. The training involves
determining the optimal set of model parameters, i.e. the coefficients and intercept
of the linear model. Depending on the choice of model, some hyperparameters are
introduced which cannot be determined by fitting to the data. This could for example
be the order of a polynomial function. These hyperparameters can be determined by
comparing an objective or evaluation metric such as the average prediction error for
multiple models with different hyperparameters. Finally, we have a machine learned
model for predicting house prices.

In the following sections, some important concepts of machine learning will be intro-
duced with perspectives to applications in material science.
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2.1 Supervised learning
This project involves two different tasks of machine learning, namely supervised and
unsupervised learning. In supervised learning, all observations in the data set are
associated with a target variable, and the purpose is then to give predictions of the
target variable based on features of the observations.

Supervised learning tasks are distinguished by the nature of the target variable,
resulting in the important terms of classification and regression.

2.1.1 Classification and regression
In classification, the target variable is discrete, i.e. for each observation the output is
the predicted class that the observation belongs to. The classification models can be
binary or multi-class.

In a context of material science, classification models could be used to predict using
e.g. the atomic structure as input if a specific material is

- Metallic

- Dynamically and thermodynamically stable

- Magnetic

For regression models, a continuous response is predicted for each observation. Similar
to the classification examples, regression models can give predictions of the values of
continuous material properties such as:

- Total energy

- Heat of formation

- Electronic band gap

- Stiffness

2.1.2 Learning algorithms
There is a wide variety of available algorithms for supervised learning differing in model
complexity, computational costs, number of hyperparameters, abilities to estimate pre-
diction uncertainties etc. There is the famous ”No free lunch” theorem [32] stating that
any algorithm showing an elevated performance over one class of problems is offset by
the performance over another class. In the context of machine learning algorithms this
means that there is no universal algorithm that always performs better than others.
Therefore, for each specific problem a suitable algorithm must be chosen. In the fol-
lowing sections, some of algorithms relevant for the work of this thesis is presented.
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Common for all supervised learning tasks is the aim to find a model to predict the
target variable y from the observations x:

y = f(x,w) + ε (2.1)

where w is the parameters of the model f and ε is the noise of the predictions.

2.1.2.1 Linear models

The perhaps simplest family of machine learning models are the linear models:

f(x,w) = w0 + w1x1 + ...+ wMxM = wT x (2.2)

where the prediction is simply a linear combination of the input features. This can be
expanded to a linear combination of some basis functions (e.g. polynomials

{
1, x, x2, ..., xM

}
),

which are feature transformations of x

f(x,w) = wT ϕ(x) = wT Φ (2.3)

There are several ways to find the optimal set of parameters w∗. One way is to define
an objective function of the predictions, e.g. the sum of squares L(y, ŷ) =

∑
i(yi − ŷi)2,

and then minimize the objective function. The solution w∗ is:

w∗ = (ΦT Φ)−1ΦT y (2.4)

This is referred to as the ordinary least squares (OLS) solution. OLS might lead to
significant overfitting, which is often due to very large parameters chosen by OLS, and
therefore it is useful to introduce some regularisation of the parameters w. This can be
done by adding a term to the objective function that tends to decrease the size of the
parameters. This is typically done by adding a L1 or L2 norm term to the objective
function with regularisation strengths α and λ:

L1(y, ŷ) =
∑

i

(yi − ŷi)2 + α
∑

j

|wj | (2.5)

L2(y, ŷ) =
∑

i

(yi − ŷi)2 + λ
∑

j

w2
j (2.6)

The first method is often referred to as LASSO (least absolute shrinkage and selection
operator) regression while the second is called ridge regression. Both tend to give
smaller parameters than OLS, while LASSO has the additional advantage that it forces
some of the parameters to be strictly zero. Therefore LASSO can be used as a feature
selection method.

2.1.2.2 Artificial neural networks

Artificial neural networks (ANN) were invented as a mathematical model of the infor-
mation processing in the neurons of the human brain [33]. In ANN, a neuron is the
basic processing unit, and the neurons are organized in connected layers. Figure 2.1



2.1 Supervised learning 7

shows a simple schematic of a feed-forward neural network (FFNN) with one input
layer with a neuron per input feature, two hidden layers and one output layer. The
FFNN maps from M input features to D output variables, but the hidden layers can
have more neurons.

Information is passed through the network using the forward pass algorithm. In the
input layer, the activities for the neurons are simply the value of the input features x.
The j-th neuron in the first hidden layer has activity

a
(1)
j = xT w(1)

j (2.7)

where w(1)
j holds the weights of all input neurons. This is then passed through an

activation function h(x) giving

z
(1)
j = h(a(1)

j ), z(1) =
[
z

(1)
1 z

(1)
2 . . . z

(1)
H

]
(2.8)

Neuron k in the next layer then has activation a
(2)
k = (z(1))T w(2)

k . In general

z(l) = h(l)
(

(z(l−1))T W(l))
)

(2.9)

where W(l) is the weight matrix connecting all neurons between layer l− 1 and l. The
activation functions h(x) play an important role in the ANN since these are responsible
for introducing the non-linearity to the models. There are endless options for the
activation functions, but two commonly used functions are the hyperbolic tangent
h(x) = tanh(x) = ex−e−x

ex+e−x , which maps any number x to the interval [−1, 1], and the
rectified linear unit h(x) = ReLU(x) = 0 if x < 0 else x.

Training a neural network involves finding the optimal set of weights W∗. This
is typically done by defining an objective function for the output values and then
using gradient descent backpropagation. In backpropagation, the partial derivatives
(gradients) of the objective function with respect to the parameters are propagated
backwards through the network from the output layer through the hidden layers to the
input layer, and the weights are then updated using gradient descent. The details of
backpropagation are elegant but out of scope for this introduction.

So far, only the most simple architecture of an ANN has been considered, i.e. the
feed-forward neural network, but there is a lot of flexibility in the design of neural
network architectures. One specific design, which has also been used briefly in this
project, is the convolutional neural network (CNN). CNNs are often used for image
processing. The key difference from a FFNN is that weights are shared across neurons
in a layer, typically by sliding a filter of weights across the feature space. This can
extract information that is invariant to the position in feature space, which is often
useful in image processing, where e.g. the specific location of an object in an image is
not relevant, but only the presence of that object is relevant.

2.1.2.3 Decision trees and ensembles

Another frequently used family of algorithms is those based on decision trees such as
classification and regression trees (CART). In a CART classes or values are assigned
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Input Hidden layers

Output

Figure 2.1: Schematic of a feed-forward neural network. Information from the input neurons
are passed through the neurons in the two hidden layers before reaching the output layer.

to the observations by hierarchically splitting the observations based on the feature
values. Figure 2.2 shows an example of a CART where a value is assigned based on
splits of three features. The interpretation of a decision tree is straightforward, at least
for smaller trees, since it is based directly on splits of features, and in some cases this
can be used to extract knowledge from the model.

Even though a single decision tree may be used as a machine learning model, it
is often used in an ensemble method. In decision tree ensembles, multiple trees are

𝑥! ≤ 𝑐!

𝑦 = 𝑦! 𝑥" ≤ 𝑐"

𝑥# ≤ 𝑐#

yes

yes

no

no

𝑦 = 𝑦"

yes no

𝑦 = 𝑦# 𝑦 = 𝑦$

Figure 2.2: Schematic of a simple classification and regression tree (CART). The tree output
y depends on the values of features x0, x1 and x2.
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trained and the final result is then typically the majority vote (classification) or the
average prediction (regression) of the trees in the ensemble. With ensemble methods
some of the interpretability vanishes due the larger number of trees and splits.

Several decision tree ensemble methods exist, such as bagging trees and random
forests [34, 35], but for this project the focus is on gradient boosted trees and more
specifically the software package XGBoost [36, 37]. The core model in XGBoost is the
decision tree ensemble, i.e. the predicted value ŷi for the observation xi is a sum over
trees

ŷi =
K∑

k=1

fk(xi), fk ∈ F (2.10)

where K is the number of trees in the ensemble, fk is a single decision tree and F is
the functional space of all CARTs. As for all machine learning algorithms, the model
is trained by defining an objective function and optimizing it. The objective function
for XGBoost is a combination of training loss and regularization:

obj =
n∑

i=1
l(yi, ŷi) +

K∑
k=1

ω(fk) (2.11)

where l(yi, ŷi) is the loss function, which is typically mean squared error (MSE) for
regression and logistic loss for classification, and ω(fk) is a measure of the complexity
of the tree fk. The trees are trained using additive learning, which means that a single
tree is added at a time with the previous trees being fixed:

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi) (2.12)

and for each step the tree that optimizes the objective function is added:

obj(t) =
n∑

i=1
l(yi, ŷ

(t)
i ) +

K∑
k=1

ω(fk) (2.13)

=
n∑

i=1
l(yi, ŷ

(t−1)
i + ft(xi)) + ω(ft) + c (2.14)

where the complexity of the previous trees is simply a constant. In the case of a general
loss function, the Taylor expansion of the loss function up to second order is taken:

obj(t) =
n∑

i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi) + 1

2
hift(xi)2

]
+ ω(ft) + c (2.15)

where gi = ∂
ŷ

(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ). Since l(yi, ŷ

(t−1)
i ) is a

constant, the objective becomes (after removing all constants):

obj(t) =
n∑

i=1

[
gift(xi) + 1

2
hift(xi)2

]
+ ω(ft) (2.16)
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So far, the complexity has been only vaguely introduced, since no universal measure
of the complexity of a decision tree exists. In XGBoost it is defined as:

ω(f) = γT + 1
2
λ

T∑
j=1

w2
j (2.17)

where T is the number of leaves in the tree, and wj is the value assigned to leaf j. This
resembles the L1 and L2 regularization of a linear model.

By using the defined complexity and changing the summation to sum over leafs, the
objective is rewritten as

obj(t) =
T∑

j=1

(
∑
i∈Ij

gi)wj + 1
2

(
∑
i∈Ij

hi + λ)w2
j

+ γT (2.18)

=
T∑

j=1

[
Gjwj + 1

2
(Hj + λ)w2

j

]
+ γT (2.19)

where Ij is the set of observations in the j-th leaf, and this objective has the optimal
set of leaf scores wj given by

w∗
j = − Gj

Hj + λ
(2.20)

and the objective value

obj∗ = 1
2

T∑
j=1

G2
j

Hj + λ
+ γT (2.21)

This is used to determine how good a specific tree is, and in principle all possible trees
should be examined. In practice, this is intractable and therefore a tree is build one
branch at a time. By looking at one leaf, it is to be split if the gain of splitting the
leaf is larger than some threshold value. The gain is given by:

Gain = 1
2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL +GR)2

HL +HR + λ

]
− γ (2.22)

where the subscripts refer to the left and right parts of the split. This way the tree is
build one step at a time until no more gain is achievable and the tree is pruned.

The reason for choosing XGBoost for many of the machine learning models in this
thesis is a combination of its ability to handle large amounts of data and that the
importances of features can be interpreted. Compared to neural networks which also
handles large amounts of data, XGBoost is easier to tune in terms of hyperparameters.

2.1.2.4 Gaussian process regression

As an alternative to the previously described machine learning algorithms, Gaussian
process regression (GPR) is also used throughout this project. GPR has the main
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advantage compared to most ML algorithms that it is probabilistic, i.e. uncertainties
are provided along with the predicted value. Another advantage is that it is generally
possible to fit a reasonable GPR model with a relatively small amount of data, while
e.g. a neural net typically requires much more data. On the other hand, a GPR is not
well suited for large amounts of data since both the training and prediction involves
inverting a matrix of size N ×N with N being the number of observations.

A Gaussian process is a collection of random variables of which any finite set has
a joint Gaussian distribution [38]. A Gaussian process is completely determined by
a mean function m(x) and a covariance function or kernel function k(x,x′), i.e. a
function f(x) is expressed as a Gaussian process

f(x) ∼ GP(m(x), k(x,x′)) (2.23)

If x is a set of training points with target values y, then predictions for a set of test
points x∗ are calculated as

y(x∗) = m(x∗) + k(x∗,x)T (K + σ2I)−1(y − m(x)) (2.24)

with variances

σ2(x∗) = k(x∗,x∗) − k(x∗,x)T (K + σ2I)−1k(x∗,x) (2.25)

Here, Knm = k(xn,xm) is the kernel matrix for points in the training set, I is the
idenity matrix and σ is the noise parameter. There is a long list of possible kernel
functions, but the most frequently used is the radial basis function:

k(x,x′) = α exp(−||x − x′||2/2l2) (2.26)

with a prefactor α and length scale l.
GPR are very useful machine learning models since reasonable models can typically

be trained with much smaller amounts of data compared to e.g. neural networks and
decision trees. Additionally, GPR provides estimates of the prediction uncertainties,
which is often as valuable as the actual prediction. In this project, GPRs are mainly
used in Bayesian optimization methods, e.g. for optimizing hyperparameters.

2.2 Unsupervised learning
In unsupervised learning, the observations are not associated with a target variable and
therefore prediction models in terms of classification or regression are not an option.

In this project, the two main applications of unsupervised learning are clustering and
dimensionality reduction.

2.2.1 Clustering
In clustering, labels are assigned to the observations rather than given from the data.
This is typically done based on a distance metric, e.g. the euclidean distance, in the
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feature space of the observations. A common obstacle in many clustering algorithms is
that the number of clusters is a hyperparameter of the algorithm, and since no target
variable is taken into consideration in unsupervised learning, the optimal number of
clusters is typically unknown.

2.2.1.1 k-means clustering

One of the frequently used clustering algorithm is the k-means algorithm which labels
the observations based on the euclidean distance to the closest cluster centroid [39–41].
The algorithm takes the number of clusters as a hyperparameter and then optimizes
the cluster means by aiming to minimize the momentum, i.e. the within-cluster sum
of squares :

argminS

k∑
i=1

∑
x∈Si

||x − µi||2 (2.27)

This problem is computationally difficult, so typically the naive k-means method is
applied. This consists of an assignment step where the observations are assigned to
the cluster with the nearest mean, and then the new cluster means are computed.
These two steps are the iterated until some convergence criteria is met. An example of
applying k-means clustering on the structures of 2D materials is presented in Section
4.2.

2.2.2 Dimensionality reduction
Another aspect of unsupervised learning is dimensionality reduction, which is very use-
ful both for visualisation purposes, e.g. being able to show high-dimensional feature
vectors in a low-dimensional space, but also as a data processing step in a supervised
learning approach. Reducing the number of features prior to training a supervised
model can both decrease the computational costs and additionally increase the predic-
tion accuracy. For some of the material fingerprints presented later in this chapter and
the following chapters, the number of features can be quite high and also higher than
the number of observations, which makes it impossible to fit e.g. a linear model using
least squares.

2.2.2.1 PCA

In principal component analysis (PCA), the high-dimensional feature vectors are pro-
jected onto subspaces using linear transformations. These subspaces are refered to as
the principal components and they are chosen such that they are orthogonal and that
the variance of the projected data is maximised.

Suppose there are N observations of dimension M , x1,x2, ...,xN ∈ RM . In PCA, the
aim is to find a new n-dimensional representation b1,b2, ...,bN ∈ Rn where n < M .
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Here bi is the projection of xi onto a subspace V :

bT
i = x̃T

i V, x̃i = xi − 1
N

N∑
i=1

xi (2.28)

The projection matrix V = [v1v2 · · · vn] is chosen such that the variance

W =
N∑

i=1
(bi − b̄)2 (2.29)

is maximised. In practice this is done using singular value decomposition where any
N×M matrix X can be decomposed as X = UΣVT where UT U = I and VT V = I and
Σ is a diagonal matrix with elements σ1, σ2, ..., σM . The n first principal components
are then chosen from V.

2.2.2.2 t-SNE

An alternative to the linear PCA method is t-distributed stochastic neighbor embed-
ding (t-SNE) [42]. Here, the similarity between high-dimensional observations xi and
xj is modelled as the conditional probability that xi chooses xj as its neighbor using
a Gaussian probability density:

pj|i = exp(−||xi − xj ||2/2σi)∑
k ̸=i exp(−||xi − xk||2/2σi)

(2.30)

The observation xi is mapped to yi in the low-dimensional space, and in this space
the similarity between points are modelled using the Student t-distribution with one
degree of freedom

qij = (1 + ||yi − yj ||2)−1∑
k

∑
l ̸=k(1 + ||yk − yl||2)−1 (2.31)

By defining the joint probability pij = pj|i+pi|j

2N for the N observations, the aim of
the t-SNE algorithm is to make the two joint probabilities similar and this is done by
minimizing the Kullback-Leibler divergence:

KL(P ||Q) =
∑

ij

pij log pij

qij
(2.32)

which is minimized using gradient descent. It should be noted that t-SNE can only be
used as a visualization method and not as a dimensionality reduction step in a machine
learning process.

2.2.2.3 Auto-encoder

A simple feed-forward neural network can also be used in an unsupervised learning
setting using an network architecture called an auto-encoder. Figure 2.3 shows such
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architecture which consists of an encoder that compresses the input into a latent space,
and then a decoder that tries to reconstruct the input. The network is trained using
back-propagation using a loss function that measures the difference between the input
and output (typically just L2-loss L =

∑
i ||xi −x̂i||2). The latent space can be used for

visualisation where the dimension of the latent space is typically chosen to be 2−3, but
the decoder can also be used as a data pre-processing step before training a supervised
regression or classification model.

2.3 Model selection and evaluation
The goal of machine learning is not to find the model that fits the data most accurately,
both to find the model that generalises the best to new data not seen by the model in
the training phase. Therefore the data set is split in a train and a test set, and the
model is trained only on a subset of the data. The prediction accuracy on the test set
is then a measure of the models ability to generalise to new data.

Usually a lot of different models are compared, corresponding to different choices of
algorithms or different hyperparameter values, in order to find the optimal model for
the specific problem. In this case, the test set should not be used to select the best
model, because then information from the test set will leak into the model selection
routine. Therefore, it is useful to further split the train set to create a validation set.
This can for example be done using a leave-out method such as k-fold cross validation
(CV), which is sketched in Figure 2.4. In k-fold CV, the train set is split in k subsets.
The training routine is then repeated k times, where for each iteration or fold, the
model is trained on k − 1 subsets and validated on the k-th set. This method also

Input

Latent space

Output

Encoder Decoder

Figure 2.3: Schematic of a neural net auto-encoder. The encoder compresses the input
information to the low-dimensional latent space, while the decoder aims to reconstruct the
original input.
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Figure 2.4: Schematic of a train-test split strategy for training machine learning models.
First, the data set is split in train and test sets. The train set is then further split using k-fold
cross validation.

has the advantage that statistics can be calculated based on the k prediction accuracy
scores.

In this project, the standard approach is to split the data set in a 80% train and 20%
test set, and then perform 5- or 10-fold cross validation on the train set.

2.3.1 Prediction error metrics
A key element in machine learning is choosing a metric to evaluate the prediction errors.
The choice of such metric will depend on the learning task (classification or regression)
but also more specifically on the nature of the problem being solved, e.g. how sensitive
the metric should be to outliers in a regression setting or how to deal with imbalanced
classes in a classification setting.

2.3.1.1 Regression metrics

For regression, mainly two metrics are used in this project. The mean absolute error
(MAE) for a prediction ŷi and the corresponding true value yi:

MAE = 1
N

N∑
i

|yi − ŷi| (2.33)
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and the root mean squared error (RMSE):

RMSE =

√√√√ 1
N

N∑
i

(yi − ŷi)2 (2.34)

The main difference between the two is that RMSE is more sensitive to outliers.

2.3.1.2 Classification metrics

The most simple metric for a classification problem is the accuracy which is simply the
fraction of correct labels:

Accuracy = Ncorrect

Ncorrect +Nwrong
(2.35)

For a binary classification problem with a positive and negative class, there are four
different scenarios for a prediction. A true positive/negative (TP/TN) is a correctly
labeled positive/negative sample, a false positive (FP) is a negative sample incorrectly
labeled as positive while a false negative (FN) is a positive sample labeled as negative.
From these definitions several metrics can be derived:

Sensitivity or true positive rate (TPR) = TP
TP + FN

= 1 − FNR (2.36)

Specificity or true negative rate (TNR) = TN
TN + FP

= 1 − FPR (2.37)

Fall-out or false positive rate (FPR) = FP
FP + TN

(2.38)

Miss-rate or false negative rate (FNR) = FN
FN + TP

(2.39)

Precision = TP
TP + FP

(2.40)

Additionaly, the receiver operating characteristic (ROC) curve is a plot showing the
true positive rate (TPR) vs. the false positive rate (FPR) for various probability
thresholds of the underlying model [43]. From this, the area under the curve (AUC) is
a very useful metric for classification models. A perfect classifier will have a ROC-AUC
of 1 while random guessing yields a ROC-AUC of 0.5. This metric is especially useful
when dealing with imbalanced classes.

2.3.2 Hyperparameter optimization
Finding the optimal set of hyperparameters is an essential yet difficult part of machine
learning. Typically, the space of hyperparameters can be quite large, and depending
on the choice of learning algorithm it can be infeasible to explore the full space. For
projects in this thesis, mainly two different approaches to hyperparameter optimization
has been used:
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• Grid search. Define a one-dimensional grid for each parameter and iterate
through all combinations of parameters calculating the objective function (e.g.
the validation set accuracy of a ML model).

• Bayesian optimization. Train a Gaussian Process Regression model to predict
the objective as function of the hyperparameter values and then use this surrogate
model to perform an optimization to select new set of parameters based on a
acquisition function. Repeat until some convergence criteria is met.

If the hyperparameter space is sufficiently small and the training routine is compu-
tationally cheap it is preferred to do a full grid search, but in other cases it can be
necessary to settle for a method, e.g. Bayesian optimisation, that does not necessarily
explore the entire space but samples the space in a smart way depending on the choice
of acquisition function.

2.4 Interpretation of features
When doing machine learning projects, the overall aim is often to train a model as
accurate as possible with the data available. But as an additional outcome, information
about the importance of features in the model is desirable. This is both to build trust
in the model by being able to verify some of the choices made by the machine learning
algorithm, but also to possibly gain some knowledge from the model, e.g. how the
model output depends on the value of a specific input.

For a linear model, the importance of features can be directly evaluated by looking
at the coefficients in the model, but for more complex and non-linear models, this task
is more cumbersome. In this section, methods for evaluating feature importance and
dependence by first discussing the specific case of decision tree models and then for a
general model using SHAP analysis.

2.4.1 Feature importance for decision trees
As mentioned in the introduction of decision tree methods in Section 2.1.2.3, decision
tree models are in principle easy to interpret, but for ensembles of trees it is more com-
plicated. It is, however, still possible to evaluate the relative importance of features
by looking at statistics of which features are used in the model. In XGBoost, three
different feature importance methods are implemented [36]:
Weight. The feature importance is calculated as the number of times a feature is used
to perform a split.
Gain. The average gain as calculated in (2.22) is used as measure of feature impor-
tance.
Coverage. The average coverage is defined as the average number of samples affected
by splits performed by a specific feature, i.e. this method typically favors features used
near the root of the trees.

These three methods naturally give different results, which is to be considered when
concluding on feature importance.
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2.4.2 SHAP analysis for explainable ML
The SHAP method aims to explain why a model makes a certain prediction [44]. For
a single prediction f(x) based on a single point x, SHAP uses an additive explanation
model g to the real model f that is a linear combination of binary variables:

g(z′) = ϕ0 +
M∑

i=1
ϕiz

′
i (2.41)

where z′ ∈ {0, 1}M is a simplified binary input that maps to the original input through
some mapping function. M is the number of simplified inputs. This additive explana-
tion model assigns an effect ϕi to each feature. The chosen method for determining the
set of parameters ϕ yields the differences between various explanation methods. The
SHAP method inherits from classic Shapley regression values where

ϕi(f, x) =
∑

z′⊆x′

|z′|!(M − |z′| − 1)!
M !

[fx(z′) − fx(z′ \ i)] (2.42)

Here, |z′| is the number of non-zero elements in z′, z′ ⊆ x′ is all z′ where the elements
are a subset of non-zero elements in x′ and z′ \ i means setting z′

i = 0. The exact
computation of these SHAP values is complicated and beyond the scope of this project,
but the interpretation of the SHAP values is very clear. The SHAP value of a feature
for a specific prediction approximates the effect on the prediction output of having that
feature in the model compared to a model without the feature.

2.5 Representation of atomic structures
So far, the application of machine learning in a context of materials science has only
been discussed on an abstract level. Using machine learning methods for materials
requires first of all that the data (typically just in terms of the atomic structure, e.g. a
list of atomic numbers and their position in some unit cell) is represented as a feature
vector serving as input to the machine learning algorithms. In this section, examples
of such representations/fingerprints of atomic structures will be introduced along with
an outline of the general fingerprint requirements, that should be considered when
developing new fingerprint methods.

Many different fingerprints methods have been developed [11, 45–48], also methods
which uses other information sources than just the atomic structures (e.g. atom specific
properties), but the focus here is on fingerprints encoding just the atomic structure.
This section does not aim to provide a full overview of atomic structure fingerprints,
but merely an introduction to a few selected fingerprints. For this project, the Python
package DScribe has been especially useful, since it contains implementations of some
of the most common structural fingerprints [49].
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2.5.1 Fingerprint requirements
In principle, it should be possible to map any material property from the atomic
structure, i.e. the list of atoms and their positions should be enough information for
a machine learning model to predict any property given that a reasonable dataset
exists. This means that if we just have enough data and a suitable complex machine
learning model, then it should be possible to learn any property directly from the
atomic structure. The reason that the atomic structure is not used directly as a
fingerprint is that it does not fulfill some basic requirements for fingerprints. These
requirements represent the lowest level of domain knowledge that are coded into the
fingerprint methods, which makes it easier for the machine model to learn the mapping
from structure to property.

A material fingerprint should exhibit the following requirements [11, 22, 47]:

1. Invariance. The fingerprint should be invariant to transformations that preserve
the property being predicted, e.g. rotations, translations, permutations of atom
indexing. For periodic systems, a supercell (repetition of the unit cell) should
have the same fingerprint as the unit cell.

2. Uniqueness. The fingerprint should be able to describe materials with different
properties uniquely, i.e. if two materials have different properties they should
have different fingerprints.

3. Descriptive. If two materials have similar properties they should also be close
in fingerprint space.

4. Continuity. The fingerprint should be continuous and ideally differentiable with
respect to the atomic coordinates.

5. Computational efficiency. The computational costs of generating the finger-
print should be significantly cheaper than the reference method, e.g. if the model
predicts a property calculated using DFT, then costs of generating the fingerprint
and predicting the property using machine learning should be cheaper than the
corresponding DFT calculation.

6. Generality. The fingerprint should be able to encode any type of material
(atoms, molecules, periodic systems of both one, two and three dimensions).
Also, the fingerprint should ideally be applicable for learning several different
properties.

2.5.2 Coulomb and Ewald sum matrices
A very simple structural fingerprint is the Coulomb matrix where the individual matrix
elements are [22]:

Mij =


0.5Z2.4

i for i = j

ZiZj

Rij
for i ̸= j

(2.43)
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Here Zi is the atomic number of atom i and Rij is the euclidean distance between
atoms i and j for atoms in the unit cell. Thus, the Coulomb matrix is not very
suitable for periodic systems, since no interactions with neighboring cells are included.
An extension of the Coulomb matrix for periodic systems is the Ewald sum matrix.
The basic idea here is to represent the full Coulomb interaction energy corresponding
to all infinite repetitions of the periodic lattice, i.e. the matrix element is a double
infinite sum over all atoms:

xij = 1
N
ZiZj

∑
k,l,k ̸=l

1
Rkl

(2.44)

This type of sum has some convergence issues, and therefore it is split into parts of
two rappidly converging sums and one constant:

xij = x
(r)
ij + x

(m)
ij + x0

ij (2.45)

where x(r)
ij is the short-term interaction calculated in real space, x(m)

ij is the long-term
interactions calculated in reciprocal space and x0

ij is a constant. The short-term part
is given by

x
(r)
ij = ZiZj

∑
L

erfc(a||ri − rj + L||2)
||ri − rj + L||2

(2.46)

where the sum runs over lattice vectors L within a sphere defined by Lmax. The
long-range term is

x
(m)
ij = ZiZj

πV

∑
G

exp
(

−||G||2
2

(2a)2

)
G||22

cos (G · (ri − rj)) (2.47)

where the sum runs over all reciprocal lattice vectors G in a sphere of radius Gmax and
V is the unit cell volume. The last constant term is

x0
ij = − a√

pi
(Z2

i + Z2
j ) − (Zi + Zj)2 π

2V a2 (2.48)

where the first part is the Ewald self-terms and the second is a background compensat-
ing term. The Ewald sum matrix components are defined by the screening parameter
a which affects how quickly the sums converge.

A common artefact of the Coulomb and Ewald matrix representation methods is
that the size of the matrix depends on the number of atoms in the unit cell, which is
generally not suitable for machine learning algorithms. Therefore, the matrix size is
defined by the system with the highest number of atoms in the unit cell, and for all
other systems the matrix is simply padded by zeros. Also, to make the fingerprints
invariant to the change of atom indexing, the matrix rows/columns can be sorted
according to e.g. their L2 norms.
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2.5.3 Many-body Tensor Representation (MBTR)
The many-body tensor representation (MBTR) is a collection of broadened distribu-
tions of k-body terms described by the general formula [11, 47]:

fk(x, z1, z2, ..., zk) =
∑

i1,...,ik

wkN (x|gk, σ)
k∏

j=1
δzj ,Zij

(2.49)

Here wk is a weighting function reducing the contribution from atoms far away from
each other, gk is a k-body function depending on the atoms i1, ..., ik. N (x|µ, σ) is
a normal distribution with mean µ and variance σ2 evaluated at x, and δi,j is the
Kronecker delta function. Though this is a general k-body formula, the method is
typically applied to encode one-body (atomic numbers), two-body (distances, inverse
distances) or three-body (dihedral angles) functions.

Since MBTR uses the atomic number Z to encode different types of atoms, the
dimension of the fingerprint scales with Zk. When using MBTR for machine learning
model, all relevant Z must be encoded in the fingerprint. This typically results in very
high-dimensional fingerprints.

2.5.4 Smooth Overlap of Atomic Positions (SOAP)
The Smooth Overlap of Atomic Positions (SOAP) uses an expansion of an atoms local
neighborhood density approximated by Gaussian functions located at atom positions
onto orthogonal radial basis functions and spherical harmonics [47, 48]. The SOAP
fingerprint uses a partial power spectrum defined as

p(r)Z1Z2
nn′l = π

√
8

2l + 1
∑
m

cZ1
nlm(r)∗cZ2

n′lm(r) (2.50)

where the coefficients are

cZ
nlm(r) =

∫
R3

dV gn(r)Ylm(θ, ϕ)ρZ(r) (2.51)

Here gn(r) are radial basis functions, Ylm(θ, ϕ) are spherical harmonics and ρZ(r) is
the Gaussian smoothed density at r for atoms with atomic number Z. For a global
fingerprint, the power spectrum is averaged over the atomic sites in the (periodic)
system. This averaging can be done either before summing up the magnetic quantum
numbers such that pZ1Z2

nn′l ∼
∑

m( 1
n

∑
i c

i,Z1
n′lm)∗( 1

n

∑
i c

i,Z2
n′lm) or by averaging the power

spectrum of different sites as pZ1Z2
nn′l ∼ 1

n

∑
i

∑
m(ci,Z1

n′lm)∗(ci,Z2
n′lm). As for MBTR, SOAP

fingerprints are typically also high-dimensional due to use of the atomic number Z to
encode atoms.



CHAPTER 3
Theory: Electronic
Structure Methods

The second dimension in the theoretical foundation of this project regards electronic
structure methods, which have both been used for generating the data used for machine
learning but also to develop machine learning fingerprints with some domain knowl-
edge originating from the theories and concepts of quantum mechanics and electronic
structure methods.

This chapter starts by introducing the basics of density functional theory (DFT),
which is an approach for calculating ground state properties of interacting many-body
systems. Next, the GW approximation for calculating excited state properties of sys-
tems using many-body Green’s functions is briefly introduced. Finally, a short intro-
duction to the theory of the electron-phonon coupling is given, which is used later for
designing a fingerprint with the specific purpose of learning the structural stability of
materials.

3.1 Density functional theory
The basic equation for developing the concepts of density functional theory is the
time-independent Schrödinger equation [15]:

ĤΨn(r,R) = εnΨn(r,R) (3.1)

where Ψn(r,R) are the eigenstates with eigenenergies εn for a system with electronic
coordinates of N electrons r = r1, ..., rN and nuclear coordinates R = R1, ...,RP .
The Hamiltonian Ĥ includes the kinetic energies of electrons and nuclei as well as all
Coulomb interactions between charged particles (nuclei-nuclei, electron-electron and
electron-nuclei):

Ĥ = −
P∑

I=1

ℏ
2MI

∇2
I −

N∑
i=1

ℏ
2m

∇2
i + e2

2

P∑
I=1

P∑
J ̸=I

ZIZJ

|RI − RJ |

+ e2

2

N∑
i=1

N∑
j ̸=i

1
|ri − rj |

− e2

2

P∑
I=1

N∑
i=1

ZI

|RI − ri|
(3.2)

= T̂n + T̂e + V̂nn + V̂ee + V̂ne (3.3)



3.1 Density functional theory 23

The full electron+nuclear wavefunction Ψn(r,R) is a function of 3(N + P ) variables
and this is not feasible (nor possible) to solve mainly due to the two-body Coulomb
interactions making the Schrödinger equation not seperable and simplifications/ap-
proximations are thus needed.

3.1.1 Born-Oppenheimer approximation
The first level of approximations is the Born-Oppenheimer approximation which orig-
inates from the fact that the large difference in masses between electrons and nuclei
makes the dynamics of the electrons much faster than that of the nuclei. This means
that the wavefunction Ψ(r,R) can be written as a product state Ψ(r,R) = Φ(R)ϕ(r,R)
where Φ(R) is the nuclear wavefunction which only depends on the nuclei coordinates
while the electronic wavefunction ϕ(r,R) depends on the electronic coordinates r and
parametrically on the on the nuclei coordinates R. The electronic Schrödinger equation
then reads

ĥeϕn(r,R) = εnϕn(r,R) (3.4)

with the electronic Hamiltonian

ĥe = −
N∑

i=1

ℏ
2m

∇2
i + e2

2

N∑
i=1

N∑
j ̸=i

1
|ri − rj |

− e2

2

P∑
I=1

N∑
i=1

ZI

|RI − ri|

= T̂e + V̂ee + V̂ne (3.5)

In other words, the role of the nuclei is merely to set up a potential for the electrons
to interact with and this can also be thought of as an external potential Vext(R).

This electronic problem is still intractable to solve for most realistic systems since the
size of the wavefunctions scales exponentially with the number of electrons. Therefore
further approximations are needed, of which DFT is the method of choice for this
project. The key element in DFT is the electronic density

ρ(r) = N

∫ N∏
i=1

dri |ϕ(r1, ..., r, ..., rN )|2 (3.6)

3.1.2 Hohenberg-Kohn theorems
The two Hohenberg-Kohn theorems [50] build on top of the Thomas-Fermi theory [51,
52] that the ground state energy can be expressed as a functional of the ground state
density. The two theorems read:

1. The external potential is determined directly by the electronic density, and this
is unique up to an additive constant. As a corollary to this theorem, the ground
state wavefunction is indeed also directly determined from the ground state den-
sity.
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The ground state energy E0 is then a functional of the ground state density ρ0:

E0 = E[ρ0] = T [ρ0] + Vee[ρ0] +
∫
drvext(r)ρ0(r) (3.7)

where the two first terms are the kinetic and potential energy functionals of the
density.

2. The energy functional gives the ground state energy only if the true ground state
density is given as input:

E[ρ0] ≤ E[ρ′] (3.8)

for ρ ̸= ρ0.

These two theorems are the mathematical foundation of DFT. Using this formulation,
the ground state density can be found by minimization due to the variational principle
of the energy functional, though this is extremely difficult in practice since the universal
form of the functional is unknown.

3.1.3 Kohn-Sham equations
Kohn and Sham introduced a scheme for determining the ground state [53]. The general
idea is that since the ground state energy is a functional of the density, all systems with
the same density will give the same energy, even some self-constructed non-interacting
system as long as it has the same density as the full interacting system. The general
energy functional is rewritten as

E[ρ] = TNI[ρ] + Vext[ρ] + VH[ρ] + EXC[ρ] (3.9)

where TNI[ρ] is the kinetic energy of the non-interacting system which is much simpler
to calculate as the kinetic energy of the interacting system is formally unknown. Vext[ρ]
is the external potential setup by the nuclei and other external perturbations. VH[ρ] is
the Hartree potential describing the electrostatic repulsion of electrons in the system,
and finally EXC[ρ] is the exchange-correlation functional which is designed to account
for all the electron-electron interactions missed in the non-interacting terms. This is a
much simpler task to solve, since all the unknown terms are grouped in the exchange-
correlation functional which needs to be approximated.

For the non-interacting Kohn-Sham system, the functional is constructed as

EKS[ρ] = TNI[ρ] + VKS[ρ] (3.10)

with the Kohn-Sham potential energy functional VKS[ρ] which is written as

VKS[ρ] =
∫
drρ(r)veff(r) (3.11)

where the Kohn-Sham effective potential veff(r) is designed as

veff(r) = vext(r) + vH(r) + vXC(r) (3.12)
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such that the non-interacting system has the same ground state density as the inter-
acting system. The exchange-correlation potential is given as the functional derivative
of the exchange-correlation energy functional

vXC(r) = δEXC[ρ]
δρ(r)

(3.13)

and the Hartree potential is simply

vH(r) =
∫
dr′ ρ(r′)

|r − r′|
(3.14)

The non-interacting Kohn-Sham states ϕi(r) are the eigenstates of the one-particle
Schrödinger equation[
− ℏ2

2m
∇2 + veff(r)

]
ϕi(r) = εiϕi(r) (3.15)

from which the density of the system with N electrons can be calculated as

ρ(r) =
N∑

i=1
|ϕi(r)|2 (3.16)

This closes the circle of the Kohn-Sham formalism as the effective potential depends
on the density which depends on the Kohn-Sham states calculated using the effective
potential. This means that the solutions are to be determined self-consistently using
the following algorithm:

1. Initial guess of the density ρ(r)

2. Calculate the Hartree potential vH(r) =
∫
dr′ ρ(r′)

|r − r′|
and then the effective po-

tential veff(r) = vext(r) + vH(r) + vXC(r)

3. Solve the one-particle Schrödinger equations
[
− ℏ2

2m
∇2 + veff(r)

]
ϕi(r) = εiϕi(r)

4. Recalculate the electronic density ρ(r) =
∑N

i=1 |ϕi(r)|2

5. Compare the new and old densities. Restart from 2 until converged

3.1.4 Exchange-correlation functionals
Using the Kohn-Sham equations in practice comes down to selecting a suitable ap-
proximation to the exchange-correlation functional. The simplest example is the local
density approximation (LDA), where the exchange-correlation energy is calculated us-
ing:

ELDA
XC [ρ] =

∫
drρ(r)ϵhom

XC [ρ(r)] (3.17)



3.2 Many-body perturbation theory: The GW approximation 26

which is designed to be exact for the homogeneous electron gas. ϵhom
XC [ρ(r)] is the

exchange-correlation energy per volume for the homogeneous electron gas, which can
be divided into an exchange and a correlation part. The exchange contribution has
an analytic form while the correlation contribution is estimated using Monte-Carlo
simulations. LDA works well for systems with slowly varying densities and poorly for
systems with localized states.

The next level in XC-functional approximations is to also use information of the
gradient of the density, which is done in the generalised gradient approximation (GGA):

EGGA
XC [ρ] =

∫
drFGGA

XC [ρ(r),∇ρ(r)] (3.18)

The most commonly used GGA functional is the PBE functional [54, 55], which is also
the one used for most of the data in this project.

Both LDA and GGA tends to underestimate band gaps of systems, due to a derivative
discontinuity, i.e. derivatives of certain quantities depend on the number of electrons in
a discontinuous way while this is continuous for GGA and LDA. One way to reduce this
problem is to use hybrid functionals, where the exchange part is mixed with exchange
from Hartree Fock

Ehybrid
XC [ρ] = αEHF

X [ρ] + (1 − α)EGGA
X [ρ] + EGGA

C [ρ] (3.19)

where α is a parameter fitted to some dataset. A specific hybrid function often used
for more accurate band gaps is the HSE06 functional [56].

3.2 Many-body perturbation theory: The GW

approximation
A general issue with Kohn-Sham DFT is that it tends to underestimate band gaps [57,
58]. A commonly used method to acquire more accurate band gaps is many-body per-
turbation theory and more specifically the GW approximation [59], which is a method
well-suited for explaining the processes behind direct and inverse photoemission, i.e.
the emission and adsorption of electrons [60]. The experimental observable here is the
photocurrent, which is the probability of emitting an electron with a specific kinetic
energy within a time interval. This is closely related to the intrinsic spectral function
of the electronic system A(r, r′, ω):

A(r, r′, ω) = 1
π

ImG(r, r′, ω) sign(EF − ω) (3.20)

i.e. the spectral function is given by the imaginary part of the single-particle Green’s
function G(r, r′, ω), which is the probability that an electron created or destroyed at
r is correlated with the inverse process at r′.

In the case of non-interacting electrons the spectral function becomes a series of delta
functions Ass′(ω) = ⟨ψs|A(ω) |ψs′⟩ = δss′δ(ω−ϵs). When interactions is turned on the
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matrix elements Ass′(ω) may reform into peaks appearing as a delta peak broadened by
electron-electron interactions, which is interpreted as the excitation of a quasiparticle,
which is an important concept in many-body perturbation theory. The broadening
of the spectral peak of the quasiparticle depends on the lifetime of the excitation
due to electron-electron scattering and the area of the peak is the renormalisation or
quasiparticle weight Z. The real space image of a quasiparticle is that of an additional
electron or hole interacting with its own polarisation cloud, i.e. the electron/hole is
screened by the other electrons in the system.

3.2.1 Hedin’s GW approximation
The actual calculation of the single particle Green’s function is often done by writing
is as a Dyson equation:

G(1, 2) = G0(1, 2) +
∫
G0(1, 3)Σ(3, 4)G(4, 2)d(3, 4) (3.21)

where G0 is the non-interacting Green’s function, Σ is the self-energy and the notation
(i) refers to the spacetime point (ri, ti). The self-energy is constructed to capture the
effects of exchange and correlation which corrects the single particle Hamiltonian. The
Green’s function G is related to other quantities through Hedin’s equations, which is
a set of 5 integral-differential equations. In the GW approximation, Hedin’s equations
are (together with Eq. 3.21):

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (3.22)
χ0(1, 2) = −iG(1, 2)G(2, 1) (3.23)

W (1, 2) = V (1, 2) +
∫
V (1, 3)χ0(3, 4)W (4, 2)d(3, 4) (3.24)

Σ(1, 2) = iG(1, 2)W (1+, 2) (3.25)

Here Γ is a three-point interaction vertex, χ0 is the irreducible polarizability and W
is the screened Coulomb interaction. The GW approximation is named such because
the self-energy Σ is approximated as the product of G and W .

3.2.2 The G0W0 approximation
Hedin’s GW equations can be solved iteratively, but due to large computational costs,
the calculations may be iterated only once, which gives the G0W0 approximation.
G0W0 calculations are typically performed on top of a Kohn-Sham DFT calculation,
where the G0W0 quasiparticle energy can be found as

ϵQP
s = ϵKS

s + Zs ⟨ψKS
s | Σ(ϵKS

s ) − Vxc |ψKS
s ⟩ (3.26)

with the quasiparticle weight given as

Zs =

(
1 − ∂

∂ω
⟨ψKS

s | Σ(ω) |ψKS
s ⟩
∣∣∣∣
ω=ϵKS

s

)−1

(3.27)
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The DFT exchange-correlation energy Vxc is subtracted because the self-energy is de-
signed specifically to account for exchange and correlation.

3.3 Electron-phonon interactions
A very central type of interaction between (quasi)-particles in solids is the electron-
phonon interaction, which is the source of many interesting physical phenomena. The
lowest order process of electron-phonon interactions is that of an electron being scat-
tered by the creation or annihilation of a single phonon. The Hamiltonian modelling
such process is [61]:

Ĥ = Ĥel + Ĥph + Ĥel−ph (3.28)

with the electron Hamiltonian

Ĥel =
∑
nkσ

ϵnkc
†
nkσcnkσ (3.29)

where c†
nkσ (cnkσ) are the creation (annihilation) operators of electrons with band index

n, momentum k, spin σ and eigenenergies ϵnk. The phonon Hamiltonian is expressed
as

Ĥph =
∑
qj

ωqj

(
b†

qjbqj + 1
2

)
(3.30)

where b†
qj (bqj) are creation (annihilation) operators of a phonon with momentum q,

branch index j and energy ωqj . The final term is the coupling between electrons and
phonons:

Ĥel−ph =
∑

nn′kσ

∑
qj

gqj
n′k+q,nkc

†
n′k+qσcnkσ

(
bqj + b†

−qj

)
(3.31)

where gqj
n′k+q,nk is the electron-phonon matrix element describing the probability of

the scattering process. To first order, this matrix element is

gqj
n′k+q,nk =

∑
sα

Aqj
ai ⟨n′k + qσ| δq

aiV |nk⟩ (3.32)

with Aqj
ai = ηai(qj)√

2Msωqj

describing the mass-scaled polarization vector where ηsα(qj) is
the eigenvector of phonon mode qj with a and i indexing the atom and cartesian
coordinate, respectively.

3.3.1 Dynamical stability from perturbation theory
In the following, uaiN denotes the displacement of atom a along cartesian axis i in unit
cell N . us = uaiN is used as collective notation of such displacement. The energy from
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displacements of all atoms us to second order is given by:

E({us}) = E0 + 1
2
∑
ss′

usFss′us′ , (3.33)

where

Fss′ = Fs′s = ∂2E

∂us∂us′
(3.34)

is the force constant matrix. The first order contribution is zero since the system is
assumed relaxed in the unit cell making the forces on the atoms zero.

The potential induced by displacements us is

V =
∑

s

Ws =
∑

s

∂V (r −Rs)
∂us

, (3.35)

i.e. Ws is the gradient of the potential with respect to displacement of atom a in
direction i in cell N . Considering V as a perturbation, the second order energy is then:

E(2)({us}) =
∑
ss′

usus′

∑
nk

∑
mk′

fnk(1 − fmk′) ⟨nk|Ws |mk′⟩ ⟨mk′|Ws′ |nk⟩
εnk − εmk′

(3.36)

=
∑
ss′

usus′Mss′ (3.37)

and the force constant matrix is given as
Fss′ = Mss′ +Ms′s (3.38)
The dynamical matrix is the Fourier transform of the force constant matrix:

Dai,a′i′(q) =
∑
NN ′

exp(iq · RN )FaiN,a′i′N ′ exp(−iq · RN ′) (3.39)

= Mai,a′i′(q) +Ma′i′,ai(q) (3.40)
with

Mai,a′i′(q) =
∑
nk

∑
mk′

fnk(1 − fmk′)
εnk − εmk′

⟨nk|
∑
N

exp(iq · RN )WaiN |mk′⟩ ×

⟨mk′|
∑
N ′

exp(−iq · RN ′)Wa′i′N ′ |nk⟩

=
∑
nk

∑
mk′

fnk(1 − fmk′)
εnk − εmk′

⟨nk|Wai(q) |mk′⟩ ⟨mk′|Wa′i′(−q) |nk⟩

=
∑
nk

∑
mk+q

fnk(1 − fmk+q)
εnk − εmk+q

⟨nk|Wai(q) |mk + q⟩ ⟨mk + q|Wa′i′(−q) |nk⟩

(3.41)
By diagonalising Dai,a′i′(q) the electron-phonon coupling frequencies can be retrieved.
The eigenvalues of the dynamical matrix ultimately gives the dynamical stability of
the system, with negative eigenvalues indicating instability since the energy can be
decreased by translating atoms along a phonon mode.



CHAPTER 4
Data: Computational
2D-materials database

With the theoretical foundation of both machine learning and electronic structure
methods summarised in the previous chapters, this chapter focuses on presenting the
primary data source for the projects of this thesis, namely the Computational 2D
Materials Database (C2DB)[62], of which Publication [III] outlines the progress since
the first introduction of the database in 2018 [63].

C2DB is a highly curated database differentiating itself from other material databases
by its high number of calculated properties. The data has a high level of consistency
since all calculations are performed using the same code, parameters and workflow
to ensure transparency, reproducibility and consistency. The database consists of ≈
4000 atomically thin materials, of which a minority of the materials have actually
been experimentally synthesised in lab. The majority of the materials are hypothetical
materials generating using lattice decorations.

The general method for materials generation is sketched in Figure 4.1. By using the
subset of experimentally known 2D materials, the lattices of these are decorated with
atoms from a chemically reasonable subset of the periodic system. This generates a
large space of hypothetical materials which are then passed through the computational
workflow.

Figure 4.1: Schematic of the material candidate generation of C2DB (reprinted from [62]).
Starting from a set of prototypes from experimentally known 2D materials, lattice decoration
is used to generate new hypothetical materials. The generated candidates are then passed
through the database workflow.
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Figure 4.2: Schematic of the workflow of C2DB (reprinted from [63]).

4.1 High throughput calculations and workflow
As mentioned, one of the key advantages of the C2DB is the high level of consistency
due to all calculations being done using the same code stack and workflow. The code
stack consists of GPAW [64, 65] used for DFT calculations, ASE[66] for manipulating
atomic structures in Python and ASR[67] for handling workflows. Figure 4.2 shows the
workflow for C2DB. For a potential candidate structure, the first step is to relax the
structure. This is done in a symmetry constrained way ensuring the symmetries of the
prototype structure from the candidate generation method. Next up are two filtering
steps which takes out materials that have either disintegrated into a non-2D structure
during relaxation or that already exists in the database. After this, the structure is
classified based on its stoichiometry, space group and occupied Wyckoff positions, and
also its magnetic state. Two central energetic stability properties in terms of the heat
of formation and the energy above the convex hull are then calculated, which is used
to filter out thermodynamically unstable materials (materials with an energy above
the convex hull larger than 0.2 eV/atom). Following the thermodynamical stability
check, the dynamical stability of the structure is analysed. Since the structures are
relaxed with DFT using symmetry constraints, they may lie on a saddle point on the
potential energy surface due to the symmetry constraints or an insufficient number of
atoms in the unit cell. The dynamical stability is assessed based on the eigenvalues of
the stiffness tensor relating the stress of the material to the applied strain, and the Γ-
point Hessian matrix for a 2x2 supercell with no relaxation performed for the supercell.
If any of the minimal eigenvalues are negative, the material is labeled as dynamical
unstable, since this indicates that the total energy can be reduced by either deforming
the unit cell (negative minimum eigenvalue of the stiffness tensor) or displacing some
atoms (negative minimum eigenvalue of the Hessian matrix).

The thermodynamically and dynamically stable materials are then passed through
the property workflow calculating a wide range of different electronic, magnetic and
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optical properties. Properties of certain interest for this thesis are electronic band
structures and band gaps, projected band structures, effective masses, polarisabilities
and phonons. Some of the property methods introduce specific criteria in terms of
the number of atoms per unit cell or the electronic band gap, and therefore not all
properties are calculated for all materials. Figure 4.3 shows a pairplot of five properties
from the C2DB, i.e. the HSE06 band gap, heat of formation, exciton binding energy,
in-plane static polarisability calculated in the RPA and averaged over the x and y
polarisation directions and the in-plane Voigt modulus.

4.2 Insights from unsupervised clustering of 2D materials
As an initial showcase of machine learning applications using the data from C2DB,
an unsupervised clustering based on the atomic structures represented by MBTR fin-
gerprints is performed. The data is split into a 80% train and 20% test set and the
k-means clustering algorithm is applied on the train set. The algorithm takes the
number of clusters as the primary parameter, and then iteratively assigns labels to the
input structures based on the minimum distance to a cluster center and then recom-
putes the cluster centers until convergence. Since the optimal number of clusters is
ill-defined, a range from 1 to 10 clusters is examined. Figure 4.4 shows the number
of materials per cluster vs. the number of clusters. For small number of clusters, it
tends to create one large cluster holding the majority of materials, but as the number
of clusters is increased, the majority cluster is split into separate clusters. In the case
of 10 clusters, 8 of the 10 clusters hold more than 200 materials. In order to investigate
how the clusters differ, Figure 4.5 shows the mean (µ) vs. standard deviations (σ) of
the materials per cluster for six selected properties, which is used to examine differ-
ences in the distribution of properties per cluster. The properties are the number of
atoms in the unit cell, dynamic stability, heat of formation, energy above the convex
hull, PBE band gap and Voigt modulus. The mean axis are scaled to cover the 5-95%
percentile range of the property distribution for the entire data set. It is seen that for
most of the properties the cluster distributions mainly differ in terms of the standard
deviations, though for the heat of formation and Voigt modulus some of the clusters
have significantly different means as well.

The generated clusters (with the number of clusters varying from 1 to 10) are then
used in a supervised approach to predict the heat of formation and the PBE band gap.
A Random Forest regression model is fitted per cluster for the training observations
within the cluster, and then predictions are made for the observations in the test set
labeled to the same cluster. Finally, the mean absolute error is calculated for the entire
test set (with elements from the different cluster regression models). Figure 4.6 and
4.7 shows the results for the cluster-regression method for the heat of formation and
the PBE band gap, respectively. The bars in the top panels show the test MAE per
cluster with the black dots corresponding to the MAE of the 1-cluster model, i.e. the
model trained on all observations. It is seen that for both heat of formation and PBE
band gap some of the clusters have MAEs significantly lower than that of the model
trained on all data, while other clusters have MAEs similar to or even larger than
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Figure 4.3: Pair plot of five properties from C2DB (HSE06 band gap, heat of formation,
exciton binding energy, in-plane static polarisability and Voigt modulus). The diagonal plots
show the histograms of the individual properties. Below and above the diagonal are scatter
plots and density plots, respectively. Reprinted from Publication [III].
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the all-data-model. The bottom panels show the weighted MAEs of the entire test
set, which yield that for both properties there are significant improvements in the test
MAEs when increasing the number of clusters. This is a quite interesting conclusion,
since the general machine learning thesis is that more data gives more accurate models.
Obviously, the full amount of data is used to generate the clusters, but even with
the reduced amount of data within the clusters, the cluster-specific models are better.
This means that training models on data that are more uniform is better than adding
more data. Of course, this analysis is limited to only the MBTR fingerprint, k-means
clustering and Random Forest regression, so a more thorough analysis should be carried
out to determine if this conclusion is merely an artefact of e.g. the chosen fingerprint.
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Figure 4.4: The number of materials per cluster vs. the number of clusters found using
k-means clustering of materials from C2DB. For low number of clusters, the materials group
in one large majority cluster and few minority clusters. As the number of clusters is increased,
the majority cluster is split and the cluster sizes become more similar.
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Figure 4.5: Scatter plots of the mean vs. standard deviation of the six properties in the
case of 10 clusters.
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Figure 4.6: Mean absolute errors for the prediction of the heat of formation vs. the number
of clusters when fitting a model per cluster. The bars in the top panel shows the MAEs of the
single clusters with the black dot showing the corresponding MAE when using the 1-cluster
model. The bottom panel shows the MAEs weighted over all clusters.
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Figure 4.7: Mean absolute errors for the prediction of the PBE band gap vs. the number of
clusters when fitting a model per cluster. The bars in the top panel shows the MAEs of the
single clusters with the black dot showing the corresponding MAE when using the 1-cluster
model. The bottom panel shows the MAEs weighted over all clusters.



CHAPTER 5
Electronic structure

fingerprints
Predicting material properties using machine learning requires a method for represent-
ing the material in a fingerprint used as input to the machine learning model. This is
typically done by using the atomic structure as the main source of information. Sev-
eral fingerprint methods for encoding the atomic structure already exist (see Section
2.5 for an introduction to structural fingerprints). In most high-throughput studies,
the atomic structure is determined based on a DFT relaxation of the structure. This
means that the Kohn-Sham wavefunction and electronic structure are already available,
which makes it possible to utilize such information directly in the fingerprints.

In this chapter, two novel types of fingerprints (ENDOME and RAD-PDOS) [68]
encoding the electronic structure are presented. These fingerprint are some of the
main outcomes of this Ph.D. project and they were originally developed for Publication
[I]. This is followed by short summaries of the three publications associated with this
thesis, each demonstrating different applications of the electronic structure fingerprints.
The summaries are intended to briefly showcase the results, while the more detailed
discussions are found in the actual papers enclosed in the thesis.

5.1 Global, local and state fingerprints
Fingerprints used in machine learning for materials science are typically encoding ei-
ther the entire structure of a material (global fingerprint) or a specific point in space
with information from its surroundings (local fingerprint). However, when fingerprint-
ing electronic structures, another level of information is relevant i.e. the individual
quantum mechanical states of the system. In the following sections, new fingerprints
that takes this extra level of information into account are introduced.

5.2 Energy decomposed operator matrix elements
(ENDOME)

In quantum mechanics, each measurable physical observable of a system is associated
with a hermitian operator acting on the wave function or state. For periodic systems
such as 2D materials these states are typically labelled by the band index n and wave
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vector index k (ideally also a spin index, which is neglected here). Information between
states |nk⟩ and |n′k′⟩ in the system can be extracted from operator matrix elements
of a given operator Â:

Ank,n′k′ = | ⟨nk| Â |n′k′⟩ |2 (5.1)

The motivation behind the energy decomposed operator matrix elements (ENDOME)
fingerprint is that standard DFT wave functions holds a lot of useful information,
but the wavefunctions of realistic systems are high-dimensional and unmanageable.
Therefore, ENDOME aims to provide some of the information from the wavefunction in
a lower dimensional representation by extracting the operator matrix elements from the
wavefunctions. The general ENDOME fingerprint for a state (n, k) with eigenenergy
εnk is defined as

mA
nk(E) =

∑
n′k′

Ank,n′k′G (E − (εnk − εn′k′); δE) exp (−αEE) sign(EF − εn′k′) (5.2)

The ENDOME fingerprint is thus a function of the energy distance E from the reference
state. Here, matrix elements between the reference state and other states are weighted
by a Gaussian function G(x; δ) = 1

δ
√

2π
exp

(
− 1

2
x2

δ2

)
centered at x = 0 with width δ.

Additionally, the contributions are weighted by an exponentially decaying function in
the energy E with rate αE . This decreases the influence from states far away from the
reference state. Finally, the sign of the fingerprint component is given by the occupancy
of the states (n′k′).

The ENDOME fingerprint is represented on e.g. a uniformly spaced grid with NE

points between limits Emin and Emax. Therefore, the fingerprints introduces the hy-
perparameters δE , αE , NE , Emin and Emax that should be determined depending on
the problem.

A global ENDOME fingerprint encoding the entire system instead of a single state
can also be constructed as

mA(Ei, Ef ) =
∑

nn′kk′

Ank,n′k′G (Ei − (εnk − EF ); δE)G (Ef − (εn′k′ − EF ); δE) (5.3)

Here, the two Gaussians are encoding the distance from the Fermi level to states (nk)
and (n′k′) with the variables Ei and Ef , respectively.

In principal, any quantum mechanical operator can be used in the ENDOME finger-
prints. Publication [I] presents a study where the state specific ENDOME fingerprints
based on the position operator r̂, the nabla operator ∇ and the squared nabla operator
∇2 are used to predict G0W0 eigenenergies.
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5.3 Radially decomposed projected density of states
(RAD-PDOS)

Another valuable information that can be extracted from the electronic structure is
the projections of the wavefunction ψnk onto atom a and angular orbital ν:

ρaν
nk = | ⟨ψnk|aν⟩ |2 (5.4)

The radially decomposed projected density of states (RAD-PDOS) fingerprint is con-
structed using these projections. For a single state (n, k) the RAD-PDOS fingerprint
for the coupling between electrons in angular orbitals ν and ν′ is defined as:

ρνν′

nk (E,R) = 1
Ne

∑
n′k′aa′

ρaν
nkρ

a′ν′

n′k′G (R− |Ra −Ra′ |; δR) exp (−αRR) (5.5)

×G (E − (εnk − εn′k′); δE) exp (−αEE) sign(EF − εn′k′)

The RAD-PDOS fingerprint is a function of the radial distance R between atoms a and
a′ and energy distance E between eigenstates (nk) and (n′k′). Similar to ENDOME,
the fingerprint contributions are weighted by Gaussians and exponential functions of
R and E.

The RAD-PDOS fingerprint introduces additional hyperparameters of δR, αR, NR,
Rmin and Rmax besides the hyperparameters of ENDOME. The RAD-PDOS fingerprint
have different components corresponding to different combinations of atomic orbitals
ν and ν′. For the materials in C2DB, only the s, p and d orbitals are relevant giving
a total of six RAD-PDOS components (ss, sp, sd, pp, pd and dd).

The RAD-PDOS also comes in a global fingerprint version which uses a radial pair
correlation function for atomic orbitals in a given wave function:

ρnk
νν′(R) =

∑
aa′

ρaν
nkρ

a′ν′

nk G (R− |Ra −Ra′ |; δR) exp (−αRR) (5.6)

The energy dependence is then introduced to achieve the global RAD-PDOS finger-
print:

ρνν′(E,R) =
∑
nk

ρnk
νν′(R)G (E − (εnk − EF ); δE) exp (−αEE) (5.7)

Compared to ENDOME, RAD-PDOS has the advantage that it encodes both the
electronic structure and the atomic structure.

Figure 5.1 shows examples of the state specific ENDOME and RAD-PDOS finger-
prints for the 2D material MoS2. Panel a) shows the PBE band structure. Panels b)
and c) show six different ENDOME fingerprints for the valence band maximum and
conduction band minimum at the K-point. The six fingerprints correspond to matrix
elements of a unitary DOS operator, the in-plane (xy) and out-of-plane (z) elements of
the position operator, similarly for the momentum operator (pxy and pz) and the square
of the momemtum operator (p2). The panels d)-i) shows the six different RAD-PDOS
components.
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As an approach to visualise the ENDOME DOS fingerprint of many states in two
dimensions, a neural net autoencoder is trained. The autoencoder has a latent space
with two neurons, and both the encoder and decoder have a single hidden layer. In
Figure 5.2 (left) the observations are plotted in the latent space colorcoded with the
G0W0 correction energies. Using only the two latent features, the autoencoder clearly
separates states with low and high correction energies. Additionally, three random
input samples are plotted in the center panels with the corresponding output samples in
the right panels. The decoder is able to reproduce the inputs from the two-dimensional
latent space with relatively good accuracy.

The ENDOME and RAD-PDOS fingerprints are implemented in Python using GPAW
[64, 65] to calculate the operator matrix elements and projections.

5.4 Summary of Publication 1: Representing individual
electronic states for machine learning GW band
structures of 2D materials

The electronic structure fingerprints ENDOME and RAD-PDOS representing individ-
ual states are introduced in this publication, which is printed in copy from page 72. The
fingerprints are applied to the problem of predicting the G0W0 eigenenergies of indi-
vidual states using machine learning. The inputs are based on a DFT calculation using
the PBE functional, i.e. the ML model is bridging the gap between a computationally
cheaper method (PBE) and an expensive method (G0W0). Besides the ENDOME and
RAD-PDOS fingerprints, the ML model also uses the available properties of the PBE
band gap, the occupation of the state, the distance of the state energy to the Fermi
level and the in-plane and out-of-plane static polarisabilities as features.

Using a data set of 286 G0W0 band structures of non-magnetic two-dimensional
materials, which results in a total of 46.000 observations of individual (n, k) states, a
machine learning model is trained using the gradient boosting method XGBoost [36,
37] to predict the difference between the G0W0 and PBE eigenenergies. The XGBoost
algorithm is introduced in Section 2.1.2.3. Figure 5.3 shows an example of PBE and
G0W0 band structures of MoS2 in panel a), while panel b) and c) show the total data
set distribution of the G0W0 correction energies and the absolute correction energies,
respectively. The distribution of the G0W0 correction energies is seen to consist of two
separate distribution corresponding to occupied and unoccupied states.

Figure 5.4 shows low-dimensional visualizations of the ENDOME fingerprint using
the in-plane momentum operator pxy and the RAD-PDOS pd fingerprint. These are
visualized in two dimensions using the tSNE method, where each observation is color-
coded by the G0W0 correction energy. The ENDOME pxy is seen to be able to clearly
distinguish between occupied and unoccupied states, and also between states with high
and low absolute correction energies. The RAD-PDOS pd shows some of same trends,
but it also shows a large blob of observations with mixed correction energies and occu-
pancies. These observations correspond to the materials with no d-electrons resulting



5.4 Summary of Publication 1: Representing individual electronic states for machine learning GW band
structures of 2D materials 41

M K

4

2

0

2

4

E
E F

 [e
V]

a)

DOS xy z pxy pz p2

10

5

0

5

10

E
E n

k [
eV

]

b)

DOS xy z pxy pz p2

10

5

0

5

10

E
E n

k [
eV

]

c)

10

5

0

5

10

E
E n

k [
eV

]

ss

d)

0 1 2 3 4 5
R [Å]

10

5

0

5

10

E
E n

k [
eV

]

sp

e)

sd

f)

0 1 2 3 4 5
R [Å]

pp

g)

pd

h)

-2e-04

0e+00

2e-04

0 1 2 3 4 5
R [Å]

dd

i)

Figure 5.1: Visualization of ENDOME and RAD-PDOS state fingerprints for MoS2. a)
shows the PBE band structure. b) and c) show ENDOME fingerprints of the conduction
band minimum and valence band maximum states for the K-point. d)–i) show six RAD-
PDOS fingerprints for combinations of s, p, and d orbitals. Reprinted from Publication [I].
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Figure 5.2: Example of using an autoencoder on the ENDOME DOS fingerprint. The left
panel shows the latent space observations colorcoded by the G0W0 correction energy. The
center and right panel show three input samples and the corresponding reconstructed output
samples, respectively.

in the RAD-PDOS fingerprint d-components being all zero.
The XGBoost model is fitted to the G0W0 correction energies based on the electronic

fingerprints. Figure 5.5 shows the predicted vs. true values of the train and test set in
panel a), the histograms of the prediction residuals in b) and a learning curve of the
ML model performance with respect to the amount of training data in c). Using the
full training set, the model yields a MAE of 0.11 eV on the test set.

The ML model can be used to construct full band structures by predicting the G0W0
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Figure 5.3: a) shows examples of PBE and G0W0 of MoS2. b) shows the distributions of
the G0W0 correction energies for occupied and unoccupied states. c) shows histograms of the
absolute values of the G0W0 corrections with a mean of 1.17 eV. Reprinted from Publication
[I].
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in the train set. Reprinted from Publication [I].
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energies along the chosen band path. Figure 5.6 shows examples of the PBE, G0W0
and ML band structures for four materials from the test set. The examples show great
agreement between the ML model and the target G0W0 band structures in most cases,
but as seen in d) there can be deviations though the ML model still offers a better
estimate than the corresponding PBE band structures.

Using the ML model, the band gaps of the materials can be directly derived from
the predictions. Figure 5.7 shows the predicted band gaps vs. true G0W0 band gaps
for the general ML model, a ML model trained only on valence and conduction bands
(VB+CB) and the DFT band gaps using functionals PBE and HSE06. The general ML
model yields a test set MAE of 0.18 eV for the prediction of the G0W0 band gaps, while
the ML model trained only on VB+CB has a MAE of 0.15 eV. This is to be compared
to the PBE and HSE06 predictions with MAEs of 1.70 and 0.85 eV, respectively.

With the ability of the ML model to predict the G0W0 energies for any k-point grid,
the model can be used to estimate effective masses, which is typically challenging with
G0W0 due to the high computational costs of calculating the energies at a densely
sampled k-point grid around the band extrema. The valence and conduction band
effective masses have been calculated using the ML model for ≈ 330 materials yielding
significant deviations from the corresponding masses calculated using PBE. The mean
absolute deviations are 0.31m0 and 0.19m0 for the VBM and CBM, respectively. There
is also a tendency of the ML model to give effective masses with a smaller absolute
value than PBE.

In order to assess the importance of the different components of the fingerprints
a feature importance analysis is performed using a feature subset hold-out method
where the MAE is evaluated when the model is trained with/without the subset. The
fingerprint is divided into four major feature groups, i.e. the static polarisabilities, the
electronic properties (PBE band gap, occupancy and distance to the Fermi level), the
ENDOME components and the RAD-PDOS components. Figure 5.8 shows the results
of the feature analysis. In a), the major feature groups are evaluated and in b) these
groups are further broken down, i.e. the ENDOME is split to the individual operators
and the RAD-PDOS is split to the individual components. The analysis concludes
that there is a lot of redundant information in the fingerprint since any feature group
can be dropped from the fingerprint without causing a large increase in the MAE. On
the other hand, there is also some synergy in the full fingerprint since no individual
group of features results in as low an MAE as for the full fingerprint. Looking at the
low level feature groups in b) it is seen that dropping the in-plane static polarisability
αxy causes the highest increase in MAE suggesting that this feature brings information
that is difficult to extract from the rest of the features.

As an additional analysis of the αxy feature, a SHAP analysis is carried out. The
SHAP value for a certain feature corresponds to the effect on the prediction value when
including this feature as compared to a model without the feature. Figure 5.9 shows the
SHAP values of αxy for the prediction of individual state energies in a) and band gaps
in b). For materials with a low polarisability, the ML model predicts a lower G0W0
correction energy for the occupied states and a higher energy for the empty states. For
the high polarisability materials, the model predicts a more positive correction energy
for the occupied states while predictions of the empty states are only weakly affected.
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Figure 5.6: Examples of band structures for materials from the test set for a) PtO2, b)
SbClTe, c) GeS2 and d) CaCl2. The plots show both the PBE, G0W0 and ML band structures.
Reprinted from Publication [I].
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bands (VB+CB) with MAEs of 0.18 eV and 0.15 eV, respectively. Reprinted from Publication
[I].

5.5 Summary of Publication 2: Predicting and machine
learning structural instabilities in 2D materials

This publication seeks to address the problem of predicting the dynamical stability of
2D materials without calculating the full phonon band structures [69]. The full paper
is appended to the thesis from page 83. Two different approaches to this problem are
made; one is the Center and Boundary Phonon (CBP) protocol where phonons are
calculated at the center and boundary of the Brillouin zone from which the stability
can be well estimated. The CBP protocol then proceeds by displacing the atoms
along the potentially unstable phonon mode which results in 49 of 137 investigated
dynamically unstable materials being stable after the displacement and relaxation.
More information on the CBP protocol is found in the paper.

The other approach to assess dynamical stability is by using machine learning to
build a classification model, which is the contribution of this Ph.D. project to the
publication. Two models with different sets of fingerprints are trained using a dataset
of > 3000 2D materials and their dynamical stability label (stable/unstable) as target
variable. Both models are trained using the gradient boosting method XGBoost, which
is explained in Section 2.1.2.3. The first model uses the relatively basic electronic
properties consisting of the energy above the convex hull, PBE band gap, DOS at the
Fermi level, total energy per atom and heat of formation as descriptors in the model.
The second model uses the RAD-PDOS fingerprint as input. Figure 5.10 shows the
distribution of the features in the first fingerprint for both dynamically stable and
unstable materials. None of the features are clearly separating the two classes, but
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Figure 5.8: Feature importance analysis of the ML model predicting G0W0 correction ener-
gies. The solid bars refer to models trained with only the given subset of features while the
shaded bars refer to models trained without the subset. a) shows high-level feature groups
and b) shows low-level feature groups. The green subset holds the in-plane and out-of-plane
static polarisabilities, while the red holds the PBE band gap, state occupation and distance
to the Fermi level. Reprinted from Publication [I].

both the convex hull energy, the band gap and the DOS at the Fermi level show some
correlation with dynamical stability.

The two models are evaluated using the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC) as performance metric [43]. Figure
5.11 shows the results, with ROC curves of the two models shown in a) and b), and a
feature importance analysis of the RAD-PDOS model in c). Both models have good
classification performances with the model using the simple fingerprint yielding an
AUC of 0.82 ± 0.01 while the model using RAD-PDOS as fingerprint gives an AUC of
0.90±0.01. Based on a feature importance analysis of the model trained with the RAD-
PDOS fingerprint it is found that the most important components of the fingerprint
are those corresponding to couplings between two s electrons.

Due to the strong performance of the ML model, it is possible to utilize it as a
screening step in a high-throughput workflow where dismissing unstable materials is
of importance. The applied ML method opens up for some freedom in choosing a
threshold value for dismissing materials depending on how many false classifications
one can afford. The curvature of the ROC curve can be used to investigate this. For
the ML model trained on the RAD-PDOS fingerprint a true unstable prediction rate
of 85 ± 3% can be achieved if a false unstable prediction rate of 20% can be accepted.
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Figure 5.9: SHAP analysis for the in-plane static polarisability αxy. a) shows SHAP values
for αxy for the prediction of G0W0 correction energies color-coded by occupancy. b) shows
SHAP values for αxy for the prediction of G0W0 band gaps. For materials with a low polaris-
ability, the ML model predicts a more negative G0W0 correction for the occupied states and
a more positive correction for the unoccupied states. For materials with a high polarisability,
the occupied states are predicted with a more positive correction when using the polarisability
as a feature while the unoccupied states are only weakly affected. Reprinted from Publication
[I].

Similarly, true unstable rates of 70 ± 6% and 56 ± 9% for false prediction rates of 10%
and 5%, respectively.

5.6 Summary of Publication 3: Recent progress of the
computational 2D materials database (C2DB)

This publication describes the advancements of the Computational 2D-materials Database
(C2DB) after its initial publication in 2018 [62]. The publication reports on: (1) Gen-
eral updates in the workflow used for selection, stability classification and assessment
of new materials, (2) Developments of the properties already introduced in the first
version of the database, (3) New properties, (4) New materials and (5) Examples of
applying machine learning methods to predict properties using atomic structures as
input.

A more comprehensive introduction to the C2DB workflow is found in chapter 4,
while this summary focuses on the machine learning section of the paper, which is based
entirely on outputs of this Ph.D. project. The section introduces machine learning as
an efficient method to make computationally cheap predictions of material properties
based on fingerprints encoding atomic and electronic structure information. A bench-
mark study is performed investigating how well different fingerprints can be used to
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Figure 5.10: Histograms of electronic features for dynamically stable and unstable materials.
The properties are a) energy above the convex hull, b) PBE band gap, c) density of states
at the Fermi level, d) total energy per atom and e) heat of formation. The energy above
convex hull, PBE band gap and DOS at the Fermi level show some correlation with stability.
Reprinted from Publication [II].
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Figure 5.11: Machine learning results for the classification of dynamical unstable materials.
a) show the ROC curve for the model trained with the RAD-PDOS fingerprint (AUC =
0.90±0.01) and the baseline model trained on simple electronic features (AUC = 0.82±0.01).
b) shows a zoomed version of the ROC curve. c) shows the feature importance of RAD-PDOS
components as evaluated by the model. Reprinted from Publication [II].
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predict various properties. The properties include the HSE06 band gap, PBE heat of
formation, BSE exciton binding energy, in-plane static polarisability calculated with
RPA, and Voigt modulus derived from the elastic stiffness tensor. These properties are
predicted using three different fingerprints; two structural fingerprints in terms of the
Ewald sum matrix and many-body tensor representation (MBTR), and additionally
the global RAD-PDOS fingerprint encoding projected density of states is tested. All
the properties are predicted using a Gaussian process regression model, which is chosen
due to its ability to handle relatively small number of observations.

The conclusion of the ML work in this publication is that across the five properties
there is a clear hierarchy between the fingerprints. Fig 5.12 shows the MAEs rela-
tive to the sample standard deviations for all fingerprints and properties. The Ewald
sum matrix performs the worst while the RAD-PDOS fingerprint outscores the other
fingerprints for all the investigated properties.

Figure 5.12: Test MAEs normalized to the standard deviation of the property for ML models
using Ewald sum matrix, MBTR and RAD-PDOS fingerprints. The properties on the x-axis
are the in-plane static polarisability, exciton binding energy, Voigt modulus, heat of formation
and HSE06 band gap. Reprinted from Publication [III].

5.7 Excursion: G0W0 energies of molecules
So far, the concept of electronic fingerprints has only been showcased in a context of
periodic systems, i.e. the 2D materials from C2DB. As an excursion from 2D materials
to the world of molecules, this section presents a minor study of predicting G0W0
energies of molecules.

Using the OE62 database, which is a spectroscopy benchmark dataset containing
61,489 crystal forming molecules [70]. All molecules have orbital energies reported at
PBE level of DFT. Additionally, for 5239 molecules the G0W0 quasiparticle energies
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are calculated. This 5k subset is used for machine learning the G0W0 correction to
the PBE orbital energies. Besides the energetic properties, the dataset also contains
Hirshfeld partial charges for each atom in the molecules [71].

The 5k molecules gives ≈ 300,000 observations of G0W0 correction energies. Figure
5.13 visualizes the data. Panels a) and b) show the distribution of PBE and G0W0
energies for the occupied and unoccupied states, respectively. Panels c) and d) show
the G0W0 energies vs. the PBE energies. For all the occupied states, the G0W0
energies are shifted down compared to the PBE energy, while the opposite happens for
the unoccupied states. Panels e) and f) show the distribution of the G0W0 correction
energies, which is the target variable of the study.

Unlike the study in Publication [I], it was out of scope to acquire matrix elements or
projected density of states for the molecules in this study. Therefore, the fingerprint is
based primarily on the PBE energies. The first part of the fingerprint is an ENDOME-
like DOS fingerprint, which encodes the state n with PBE energy εn as:

fn(E) =
∑
m

G(E − (εm − εn); δE) sign(EHOMO − εm) (5.8)

where EHOMO is the energy of the highest occupied molecular orbital. Figure 5.14
shows examples of such DOS fingerprints. Panels a) and b) show the PBE energies
for two molecules with three states per molecule highlighted. Panel c) show the DOS
fingerprints of these 2 × 3 states.

The second part of the fingerprint utilizes the Hirshfeld charges available in the
dataset. A simple analysis of the distribution of charges for each chemical element is
shown in Figure 5.15. It is seen that some chemical elements have a quite distinct
distribution. By combining the charges and atomic distances in a fingerprint, the
structural information of the molecule is encoded in an enriched way. This fingerprint
component is defined as:

f(Q,R) =
∑

ij

G(Q− qiqj ; δQ)G(R− |Ri − Rj |; δR) exp(−αRR) (5.9)

where qi and Ri are the charge and position of atom i. This fingerprint is thus mapped
in the QR space of charge products and distances.

A gradient boosting tree ensemble model using XGBoost is trained to predict the
G0W0 correction energies for the individual states. By evaluating on a test set with
20% of the molecules, the machine learning model yields a test MAE of 0.15 eV. The
model is then used to calculate G0W0 HOMO-LUMO gaps for all molecules. Figure
5.16 shows the distribution of G0W0 gaps in panel a). Panel b) shows the predicted vs.
true gaps while panel c) shows the residuals.

This study shows that the electronic fingerprints based on individual state energies
is a powerful tool for bridging the gap between a cheap computational method (PBE)
and an expensive method (G0W0). This is the case for predicting individual state
energies but also material properties such as energy gaps.
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Figure 5.14: Examples of DOS fingerprints for two molecules with reference codes PUGDAX
and BASWOI. a) and b) show the PBE energies of the two molecules with 3 states highlighted
for each molecule. c) shows the corresponding DOS fingerprints of the six states.



5.7 Excursion: G0W0 energies of molecules 54

0

10

20

No
rm

al
ize

d 
co

un
t H

a)

0

5

10

15 Li
b)

0

5

10

15 B
c)

0

5

10

15

No
rm

al
ize

d 
co

un
t C

d)

0

2

4

6 N
e)

0

2

4

6 O
f)

0
5

10
15
20

No
rm

al
ize

d 
co

un
t F

g)

0.0

2.5

5.0

7.5

10.0 Si
h)

0

2

4
P

i)

0

2

4

No
rm

al
ize

d 
co

un
t S

j)

0

5

10

15 Cl
k)

0

5

10

15

20 As
l)

0.50 0.25 0.00 0.25 0.50
Atomic Hirshfeld charge [qe]

0

2

4

6

8

No
rm

al
ize

d 
co

un
t Se

m)

0.50 0.25 0.00 0.25 0.50
Atomic Hirshfeld charge [qe]

0

5

10

15
Br

n)

0.50 0.25 0.00 0.25 0.50
Atomic Hirshfeld charge [qe]

0

5

10
I

o)

Figure 5.15: Histograms of Hirshfeld charges for the chemical elements present in the
molecules in the OE62 database. Some of the elements have somewhat distinct charge distri-
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CHAPTER 6
Electron-phonon coupling

and dynamical stability
The work presented in this chapter is a continuation of the work outlined in Publication
[II] where the dynamical stability is predicted with a machine learning model trained
using the RAD-PDOS fingerprint.

The dynamical stability is derived from a phonon calculation, but here the focus will
be on the corresponding coupling between phonons and electrons with the electron-
phonon matrix elements between states i and j:

gu
ij ∼ ⟨i| ∇uVeff(r) |j⟩ (6.1)

where Veff(r) is the effective potential and the gradient ∇u is with respect to atomic
displacements u.

In practice, the gradient of the effective potential is calculated using a finite difference
method by displacing all atoms in the unit cell in both directions of all three Cartesian
axes, i.e. for a system with N atoms in the unit cell, 6N DFT calculations are needed
to calculate the matrix elements [72]. The work presented in this chapter is based on
approximating the electron-phonon matrix elements to avoid performing the 6N DFT
calculations. To calculate the full phonon band structure for arbitrary q-vectors for
periodic systems, the finite difference calculations are performed in a supercell, i.e. the
primitive cell is repeated. This makes the computations of phonon band structures
computationally expensive.

6.1 Atomic potentials
The first approximative step in this approach is to replace the true effective potential
Veff(r) of a system with a potential setup by atomic contributions:

Veff(r) ≈
∑

a

va
eff(r − ra) = V a

eff(r) (6.2)

where the atomic potentials va
eff(r) are DFT effective potentials of the isolated atoms

calculated once for all atoms. The sum runs over all atoms in the system, though
for periodic systems it is limited to only the primitive cell and up to second nearest
neighboring cells. This assumes that potentials from atoms further away are effectively
zero inside the primitive cell.
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In the following sections, two different sample systems are used for demonstrating
the concepts. One is the periodic 2D material GaF2 from C2DB, which is dynamically
unstable based on a phonon calculation for a 2x2 supercell. The other system is an
ethylene molecule (C2H4). Figure 6.1 and 6.2 shows examples of the potential setup
from atomic contributions for the periodic system GaF2 and C2H4, respectively. The
top left panels show contour plots of the DFT effective potential in the xy-plane with
the z-coordinated fixed at the center of the unit cell. The top center panels show the
corresponding atomic potential and the top right panels show the difference between
the two potentials V a

eff(r) − Veff(r). The bottom panels show the same information in
the x-direction where both y- and z-coordinates are fixed at the center of the unit cell.
It is seen that for both the periodic system and the molecule, the atomic potentials are
qualitatively similar to the true potentials, though the differences can be quantitatively
large. For GaF2 in Figure 6.1, the difference is almost constant at least for the chosen
hyperplane. This means that the gradients of the two potentials will be similar, which
motivates the use of these atomic potentials as an approximation when calculating
electron-phonon matrix elements.
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Figure 6.1: Plots showing potentials for GaF2. The left plots show the DFT effective
potential, the center plots show the atomic potential and the right plots show the difference
between the two. The difference is nearly constant for this system.
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Figure 6.2: Plots showing potentials for C2H4. The left plots show the DFT effective
potential, the center plots show the atomic potential and the right plots show the difference
between the two. The DFT and atomic potentials are qualitatively similar, but the difference
is quantitatively large especially close to the center of the molecule.

6.2 Electron-phonon matrix elements from atomic
potentials

Approximated electron-phonon matrix elements can be calculated using the method to
set up the potential from the atomic potentials. This is done using a finite difference
method where each atom is displaced 0.01 Å along all directions. The difference is
that instead of performing a DFT calculation to extract the effective potential for each
displacement of atoms, the atomic potentials are used to calculate the atomic gradients
of the effective potential, which is significantly faster.

In order to validate the method, the electron-phonon matrix elements are calculated
using both the true effective potential and the summed atomic potentials. This is done
for both GaF2 and C2H4. The two systems are expanded by a factor of d, i.e. the cell
and unit cell positions are multiplied by d, such that d = 1 corresponds to the equi-
librium structure. This is done to evaluate the matrix elements in the limit where the
systems are approaching isolated atoms. Figure 6.3 and 6.4 shows the matrix elements
between the six first eigenstates of GaF2 and C2H4, respectively, versus the expansion
factor d. The dashed lines corresponds to the matrix elements calculated using the
atomic potentials while the solid lines are matrix elements for the true potential. The
matrix elements calculated using the atomic potentials are qualitatively similar to the
true matrix elements. There is a tendency that the approximated matrix elements are
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quantitatively larger, but as the expansion factor is increased the two methods are
approaching each other as expected.

6.3 Dynamical matrix from perturbation theory
The original thought was to use the approximated electron-phonon matrix elements to
calculate the dynamical matrix using perturbation theory (see Section 3.3.1 for details).
Dynamical stability is derived from the eigenvalues of the dynamical matrix. Negative
eigenvalues of the dynamical matrix indicate that the total energy of the system can
be reduced by displacing atoms along a certain mode. When calculating the dynamical
matrix using perturbation theory, the change in the total energy is approximated as
the change in eigenenergies of the occupied states of the system.

This approach of calculating the eigenvalues of the dynamical matrix using pertur-
bation theory has been tested for 10 different materials from C2DB including both
stable and unstable materials. Unfortunately, it was not possible to determine dy-
namical stability with this method. This is concluded since no correlation between
the eigenvalues and the dynamical stability was found, i.e. the eigenvalues from the
perturbation theory are wrong.

As a further investigation of why the approach of using perturbation theory to cal-
culate changes in total energies fails, a small experiment is carried out. By calculating
the total energy, the sum of eigenvalues of occupied states and their respective finite
difference derivatives for the molecule C2H4 while varying the expansion factor d from
0.8 to 1.5, the perturbation theory approach is tested. This investigates the underlying
assumption of using the changes in eigenvalues as a measure of the change in the total
energy is examined.

Figure 6.5 shows the total energy and derivative in the top panels, and the sum of
eigenvalues and derivative in the bottom panels. For the total energy, there is a clear
minimum at d = 1 as expected, meaning that the derivative is zero at this point. The
sum of eigenvalues of the occupied states is found to be monotonically increasing, i.e.
the changes in eigenvalues cannot be used to measure the change in the total energy.
For periodic 2D materials, the same conclusion is made based on similar experiments
of a few materials.

6.4 Machine learning approaches to electron-phonon
coupling

At this point, the conclusion is that the electron-phonon matrix elements can be ap-
proximated reasonably well by replacing the effective potential with a potential set
up by atomic potentials. On the other hand, the matrix elements cannot be used to
calculate the dynamical matrix and thereby the dynamical stability using perturbation
theory. The next step is to use machine learning to utilize the information from the
approximated electron-phonon matrix elements. This is done in two different steps;
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Figure 6.3: Electron-phonon matrix elements between the six lowest states of GaF2 versus
the expansion factor d. The solid lines refer to matrix elements calculated using the DFT
potential while the dashed lines refer to matrix elements calculated using the atomic potentials.
The two methods are qualitatively similar and approaching each other as the expansion factor
is increased.
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Figure 6.4: Electron-phonon matrix elements between the six lowest states of C2H4 versus
the expansion factor d. The solid lines refer to matrix elements calculated using the DFT
potential while the dashed lines refer to matrix elements calculated using the atomic potentials.
The two methods are qualitatively similar and approaching each other as the expansion factor
is increased.
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Figure 6.5: Analysis of total energy and sum of eigenenergies of occupied states as function
of the expansion factor d. The two left panels show the total energy of C2H4 and the sum of
eigenenergies while the right panels show the corresponding finite difference derivatives. The
total energy is found to have a minimum at d = 1, but the sum of eigenenergies are monoton-
ically increasing. This highlights that the sum of eigenenergies is not a good approximation
to the total energy.

the first is to improve the approximated matrix elements by learning a mapping be-
tween the DFT effective potential and the atomic potential using a local fingerprint
in real space. In this way, the potential is set up from the atomic potentials and then
corrected by the machine learning model before calculating the electron-phonon matrix
elements. The second approach is to use the matrix elements to generate an ENDOME
fingerprint and then learn the dynamical stability using a classification model.

6.4.1 Learning the DFT effective potential
Since a DFT for the primitive cell is required to calculate the electron-phonon matrix
elements, the true DFT effective potential is already available. The difference between
the DFT effective potential and the potential set up by atomic potentials for the
primitive cell is used as the target variable for a machine learning model. In this
way, a relatively cheap mapping between the atomic potentials and the DFT effective
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potential is achieved. This mapping is then used to correct the potential and thereby
improve the approximated electron-phonon matrix elements. A local many-body tensor
representation (LMBTR) fingerprint is used to encode a local point in space for which
the potential correction is predicted [73]. LMBTR is a modification of the regular
MBTR where the k = 1 term is removed and the descriptor encodes 2 or 3-body
interactions (distances, angles) between a point in space and the atoms in the system.
For this purpose, only the 2-body distance interaction is used for the fingerprint. The
distances is encoded using a grid of 25 points between 0 and 5 Å with Gaussian widths
of 0.1 Å. This means that the number of features in the fingerprint is 25 times the
number of atomic species in the system.

A feed-forward neural net with 2 hidden layers of 100 neurons each and ReLU activa-
tion functions is used as the machine learning algorithm. The fundamental requirement
of the ML model is that it has to be continuous with respect to the input since the
potential is a continuous function, which rules out e.g. decision tree based models.
Also, the model should be able to handle large number of observations, since even for
a single material the number of grid points can be large (> 20.000).

This approach of learning the mapping between the potentials is demonstrated for
GaF2. The data is split into a 50/50% train and test set by splitting the primitive
cell along the x-axis. Figure 6.6 shows the distribution of the target variable, i.e. the
difference between the potentials in the top left panel, while the top right shows the
MAE of the train and test sets vs. the number of epochs. In the bottom left panel, the
predicted values are plotted against the true values with a MAE of 0.004 Ha (0.11 eV).
The bottom right shows the residuals, i.e. the difference between true and predicted
values.

Another way to visualise the effect of the model is by plotting contours of the poten-
tials. Figure 6.7 shows the DFT effective potential (top left), the atomic potential (top
right), the atomic potential corrected by ML (bottom left) and the residuals between
the DFT and the ML potentials (bottom right). The atomic potential is shifted down
compared to the DFT potential, but the ML model corrects for this.

Since this method is in fact used to calculate the gradient of the potential wrt. atomic
displacements using a finite difference method, it is interesting to see if the ML model
is sensitive enough to catch the small changes in the potential when making a small
displacement of an atom. Figure 6.8 shows the gradient when moving the atom located
at (x, y) = (0, 0). The left plot shows the gradient of the DFT effective potential, the
center plot shows the gradient of the atomic potential and the right plot shows that of
the potential corrected with the ML model. Even though the gradient of the atomic
potential in this case is quite close to that of the DFT potential, the ML model is
improving the gradient slightly.

To showcase the method further, the electron-phonon matrix elements are calculated
using the gradients of the DFT potential, the atomic potentials and the potential
corrected by the neural network for GaF2. Figure 6.9 shows the approximated matrix
elements vs. the true matrix elements (calculated with the DFT potential). Without
the correction, the approximated matrix elements are typically larger than the true
matrix elements. With the atomic potential corrected by the neural network, the
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Figure 6.6: Results for the prediction of difference between the DFT potential and the
atomic potential for GaF2. The top left plot shows the distribution of the train and test set.
The top right plot shows the learning curve when fitting the neural network, and the bottom
left plot shows the predicted vs. true values for the final model. The bottom right plot shows
the distribution of prediction residuals with a MAE of 0.004 Ha or 0.11 eV.

matrix elements are closer to the true matrix elements, and the RMSE is decreased
from 37.0 eV2

Å2 to 19.3 eV2

Å2 .

6.4.2 Preliminary results for electron-phonon ENDOME model
With the approximative electron-phonon matrix elements it is possible to construct an
ENDOME fingerprint encoding a material as:

mq(Ei, Ef ) =
∑

nmku

| ⟨mk + q| ∇uV |nk⟩ |2G (Ei − (εnk − EF ); δE)

×G (Ef − (εmk+q − EF ); δE) (6.3)

Figure 6.10 shows examples of such fingerprints for GaF2 at two different q-points.
The electron-phonon ENDOME fingerprint along with the RAD-PDOS fingerprints
are used to train a XGBoost classification model predicting dynamical stability as in
Publication [II].
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Figure 6.7: Contour plots of the potentials for GaF2. The top left plot shows the DFT
potential. The top right plot shows the atomic potential, which is shifted down in energy
compared to the DFT potential. The bottom left plot shows the atomic potential corrected
by the ML model and the bottom left shows the residual of the ML model.

0 2
x [Å]

0

1

2

3

y 
[Å

]

0 2
x [Å]

0 2
x [Å]

1.6
1.2
0.8
0.4

0.0
0.4
0.8
1.2
1.6

dV
/d

R 
[H

a/
Å]

1.6
1.2
0.8
0.4

0.0
0.4
0.8
1.2
1.6

dV
/d

R 
fro

m
 a

to
m

s [
Ha

/Å
]

1.6
1.2
0.8
0.4

0.0
0.4
0.8
1.2
1.6

dV
/d

R 
fro

m
 N

N 
[H

a/
Å]

Figure 6.8: Plots showing the gradients of the DFT potential (left), atomic potential (center)
and atomic potential corrected by the ML model (right) when moving an atom located at
(x, y) = (0, 0). Even though the gradient of atomic potential is already a good approximation
in this case, the gradient is still improved slightly by the ML model.
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Figure 6.9: Parity plot showing the square of the approximated electron-phonon matrix
elements vs. the true values calculated with DFT effective potential. Blue corresponds to
matrix elements calculated with the atomic potentials while orange corresponds to the case
where the atomic potentials are corrected using the trained neural network before calculating
matrix elements. The RMSE is reduced from 37.0 to 19.3 (eV/Å)2 by using the neural net.

In the following, the preliminary results of using this fingerprint to predict dynamical
stability are presented. Unfortunately, the project was not brought to conclusion before
handing in this thesis, so a few things should be noted: First, the dataset for this model
only contains 2352 materials from C2DB, which is > 1000 less than in Publication [II].
This means that a direct comparison of the results is difficult. Secondly, the ENDOME
fingerprint is actually based on the approximative electron-phonon matrix elements
calculated without the correction of the potential using the neural net.

Figure 6.11 shows the preliminary results. The left panel shows the test ROC-AUC
scores for three models based on 5-fold cross-validation. One model trained only with
the RAD-PDOS fingerprint, one with only the electron-phonon ENDOME fingerprint
and one trained with both fingerprints. The right panel shows the feature importance
as evaluated by the model trained with both fingerprints. From the feature impor-
tance analysis, it is seen that the model actually uses a mixture of both fingerprints
and not just the RAD-PDOS. The conclusion here is that the model trained with both
RAD-PDOS and electron-phonon ENDOME fingerprints has a performance equal to
the one trained only with RAD-PDOS within the uncertainties (AUC= 0.87). This
means that the model does not gain performance by using the electron-phonon EN-
DOME fingerprint, even though the electron-phonon ENDOME show some predictive
power itself by yielding an AUC of 0.67. There is reason to believe that the results
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can be improved, since the electron-phonon ENDOME fingerprint does not use the ap-
proximative electron-phonon matrix elements calculated without the correction of the
potential using the neural net. Therefore, the hope is to gain some synergy between
the electron-phonon ENDOME fingerprint and the RAD-PDOS fingerprint resulting
in even better classifications of dynamical stability.

Figure 6.10: Examples of ENDOME fingerprints using the approximated electron-phonon
matrix elements for GaF2 for q = [0, 0, 0] and q = [0.5, 0, 0].
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Figure 6.11: Preliminary results for the prediction of dynamical stability using the electron-
phonon ENDOME fingerprint. The left panel shows the test ROC-AUC scores for models
trained with the RAD-PDOS fingerprint, the electron-phonon ENDOME fingerprint and both
fingerprints. The right panel show the feature importance of the model trained with both
fingerprints.



CHAPTER 7
Conclusion

The application of machine learning methods in materials science is a fascinating re-
search field. It combines theories of physics and quantum mechanics with computa-
tional concepts and mathematical algorithms from the field of machine learning. This
Ph.D. project aimed to contribute to the active research by developing new methods
useful for the computational materials science community.

After laying the theoretical foundation by reviewing the most fundamental concepts
of machine learning and electronic structure methods applied in the project, the Com-
putational 2D Materials Database (C2DB) was introduced as the primary dataset of
the project. An initial machine learning application of C2DB was presented by com-
bining unsupervised and supervised machine learning models. Based on a structural
fingerprint, the materials were clustered using a k-means clustering method. Since the
optimal number of clusters is ill-defined, the range from 1 to 10 clusters were exam-
ined. In the 10-cluster case, the clusters were found to differ in the distributions of
selected material properties. The unsupervised approach was combined with super-
vised regression of the heat of formation and electronic band gap. By fitting Random
Forest models for each cluster in the range from 1 to 10, it was found that increasing
the number of clusters decreased the weighted mean absolute error of the clusters.

Next, the main contribution of this Ph.D. project was presented in terms of new
fingerprint methods. The novelty of the fingerprint methods is that they encode an
individual quantum state, and that they use information extracted from the electronic
density and wavefunctions obtained by a DFT calculation. The energy decomposed op-
erator matrix elements (ENDOME) fingerprint was constructed using matrix elements
of quantum mechanical operators. Additionally, the radially decomposed projected
density of states (RAD-PDOS) fingerprint was developed using projections of DFT
wavefunctions onto atoms and angular orbitals. The ENDOME and RAD-PDOS fin-
gerprints were applied in a machine learning model predicting the G0W0 correction
energies to PBE eigenenergies for individual states using data from C2DB. The model
was able to predict the correction energies with a MAE of 0.11 eV and G0W0 band
gaps with a MAE of 0.15 eV. An analysis of the importance of different features in the
fingerprint was performed. This showed that the fingerprint contains some redundant
information but also that synergy effects between different features occurred.

The RAD-PDOS fingerprint was also used for machine learning the dynamical sta-
bility of 2D materials. The dynamical stability was based on phonon calculations, and
a classification model was trained yielding a ROC-AUC score of 0.90. Additionally,
the RAD-PDOS fingerprint was benchmarked against structural fingerprints across
multiple properties from C2DB. This showed that the electronic fingerprint outper-
forms general structural fingerprints when used for machine learning different material
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properties.
Finally, the challenge of evaluating dynamical stability was revisited. This was done

by developing approximative methods for calculating the electron-phonon coupling ma-
trix elements. The key element in the approximation was replacing the DFT effective
potential by a potential set up from atomic potentials. Calculating electron-phonon
matrix elements for these approximated potentials yielded quantitatively good results.
By training a neural network model to the differences between the DFT effective po-
tential and the atomic potentials, the approximative method was further improved.
When correcting the atomic potentials using the model before calculating the matrix
elements, the error was reduced by a factor of ≈ 2.

7.1 Outlook
When doing research as a relatively inexperienced researcher, it is a challenge to end
a Ph.D. project like this with a completely satisfied feeling, since there is always more
that can be done. One key learning has been that it takes time to do things thoroughly,
but it pays off in the end.

The work with the development of electronic fingerprints of individual states was left
in a good state with Publication [I]. Naturally, the method could be further developed
e.g. by testing other operators in ENDOME or constructing other fingerprints. From a
personal point of view, it would be very interesting to test the method on other classes
of materials than 2D materials, e.g. their bulk counterparts or other 3D crystals.
This would also open for an exciting study of transfer learning, where transferring
machine learning models trained on one class of materials would be applied on other
classes. Another interesting application of transfer learning is transferring models
between different properties, i.e. retraining a model pre-trained on a different property.
This could be useful when training models on computationally expensive data such
as GW band gaps, since a pre-trained model trained on cheaper data might be a
good starting point, e.g. a model trained on cheaper band gaps such as PBE or even
completely different properties like heat of formation.

Another logical follow-up study of the electronic fingerprints is a more thorough
benchmark study. Publication [III] presented a small benchmark study comparing the
RAD-PDOS to two structural fingerprints, but it could be interesting to test even
more fingerprints. Also, the aspect of the choice of machine learning algorithm would
be exciting to investigate. In other words, this would be a three-dimensional benchmark
study comparing the use of various fingerprints in different machine learning algorithms
across multiple material properties.

Finally, the electron-phonon project is left in an unfinished state. While the current
method is capable of approximating the electron-phonon coupling matrix elements
with reasonable accuracy, the actual connection to dynamical stability is still to be
investigsated further. From a machine learning perspective, the electron-phonon EN-
DOME fingerprint should be improved in order to find the synergy effects with the
RAD-PDOS fingerprint resulting in an improved result compared to Publication [II].
This also includes utilizing that in C2DB the dynamical matrix is calculated for indi-



7.1 Outlook 71

vidual q-points. This means that a classification model predicting the stability for a
given q-point is achievable. In that way, the amount of data points can be increased
which hopefully improves the model.



CHAPTER 8
Publications

8.1 Publication 1: Representing individual electronic
states for machine learning GW band structures of
2D materials
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Representing individual electronic states for
machine learning GW band structures of 2D
materials
Nikolaj Rørbæk Knøsgaard 1✉ & Kristian Sommer Thygesen 1

Choosing optimal representation methods of atomic and electronic structures is essential

when machine learning properties of materials. We address the problem of representing

quantum states of electrons in a solid for the purpose of machine leaning state-specific

electronic properties. Specifically, we construct a fingerprint based on energy decomposed

operator matrix elements (ENDOME) and radially decomposed projected density of states

(RAD-PDOS), which are both obtainable from a standard density functional theory (DFT)

calculation. Using such fingerprints we train a gradient boosting model on a set of 46k G0W0

quasiparticle energies. The resulting model predicts the self-energy correction of states in

materials not seen by the model with a mean absolute error of 0.14 eV. By including the

material’s calculated dielectric constant in the fingerprint the error can be further reduced by

30%, which we find is due to an enhanced ability to learn the correlation/screening part of

the self-energy. Our work paves the way for accurate estimates of quasiparticle band

structures at the cost of a standard DFT calculation.
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The electronic band structure is one of the most funda-
mental and important characteristics of a crystalline solid.
It relates the quantum mechanical energy levels of an

electron in the solid to its (crystal) momentum and provides the
basis for describing and understanding a range of materials
properties. As a consequence, the accurate prediction of electro-
nic band structures represents a cornerstone problem of com-
putational condensed matter physics.

Density functional theory (DFT)1 with semi-local exchange-
correlation functionals2 is the standard method for solving the
electronic structure problem of materials from first principles.
However, the DFT single-particle energies do not in general
provide an accurate model for the electronic band structure3.
Instead, the gold standard for band structure calculations is
represented by the GW self-energy method4, which provides the
true quasiparticle (QP) band structure, i.e., it goes beyond a
mean-field description by explicitly accounting for exchange and
many-body screening effects5,6. In ref. 7 the mean absolute error
on the calculated bandgap relative to experimental references for
a set of ten simple semiconductors and insulators was found to be
2.05 eV for DFT-LDA and 0.31 eV for non-self-consistent
G0W0@LDA. Very similar results have been found in other
studies8,9. The improved accuracy of the GW method comes at
the price of a significantly more involved methodology and a
much higher computational cost. In practice, this means that GW
calculations are limited to small-scale studies of relatively simple
materials.

Recently, machine learning (ML) has attracted widespread
interest as a means to predict materials properties without per-
forming expensive quantum mechanical calculations10–15. In the
context of bandgap predictions, Zhou et al. trained a support
vector machine on 3896 experimental bandgaps using a repre-
sentation based only on elemental properties of the constituent
atoms16. Rajan et al. used different regressions methods to predict
bandgaps of MXene crystals using a training set of 76 G0W0

bandgaps and a representation encoding atomic and structural
properties17. Liang et al. used a representation based on atomic
ionicity descriptors to predict GW bandgaps of a set of 2D
semiconductors18. In all these previous studies, the ML model
was trained to predict the size of the bandgap rather than the full
k-resolved band structure. Thereby, important information is
missed including the type of the bandgap (direct or indirect), the
curvature of the valence and conduction bands at the extrema
points (effective masses), and the position and dispersion of other
bands away from the bandgap. Predicting the full band structure
directly from the atomic structure of the material is a daunting
challenge that, although possible in principle, would require
highly sophisticated ML models and immense amounts of
training data.

Here we take a different approach, in which the output from a
DFT calculation is taken as input to an ML model to predict the
full GW band structure. The philosophy behind our approach is
that standard DFT calculations are computationally very cheap,
in particular, compared to GW, and although they do not directly
produce the desired precision, they hold the gist of the material’s
genome and thus should provide an excellent starting point for
accurate property predictions. In our scheme, the rich, but
unmanageable, information contained in the DFT wave functions
is encoded into low dimensional fingerprints via energy-resolved
orbital projections and operator matrix elements. These state-
specific electronic fingerprints provide a description of the local
environment of a given electronic eigenstate in the infinite-
dimensional Hilbert space and are thus analog to the well-known
fingerprints used to describe atoms in chemical environments19.

Using a data set of 286 G0W0 band structures of non-magnetic
2D semiconductors comprising a total of 46,000 ðεQPnk ; kÞ pairs, we
train a gradient boosting algorithm to predict the G0W0 correc-
tion of an eigenstate from its DFT fingerprint. The method
achieves a mean absolute error (MAE) of 0.14 eV for individual
band energies and 0.18 eV for the bandgap. These deviations are
significantly smaller than the typical size of the G0W0 corrections
and also lower than the accuracy of the G0W0 method itself. The
model can be further and significantly improved by adding static
electronic polarisability to the fingerprint. A SHAP feature ana-
lysis reveals that the inclusion of the polarisability allows the ML
model to distinguish between materials with similar PBE band
structures but different dielectric screening properties, which is
directly related to the size of the GW correction.

We have used the resulting ML model to obtain G0W0 band
structures for ∼700 2D semiconductors from the Computational
2D Materials Database (C2DB)20,21. These materials are addi-
tional to the data set used in this study, and the band structures
will be published on the C2DB web page22.

Results
Figure 1a shows an example of a PBE (orange) and G0W0 (green)
band structure for monolayer MoS2 (note that spin–orbit inter-
actions are not included throughout this work). It is clear that
there are significant differences between the two descriptions.
First of all, G0W0 yields a QP bandgap of 2.53 eV in good
agreement with the experimental value of 2.5 eV23 while PBE
yields a significantly smaller bandgap of 1.58 eV. It can also be
noted that unoccupied bands are shifted up in energy while
occupied bands are shifted down. This is in fact a general trend
across all the materials in the data set and it leads to a double
peak in the histogram of G0W0 corrections with the peak of
negative (positive) corrections corresponding to occupied

Fig. 1 G0W0 data. a Example of PBE and G0W0 band structures of monolayer MoS2. The prediction target data is the difference in energy between the PBE
and G0W0 energies. b Histogram of the G0W0 corrections for all states in all materials. c Histogram of the absolute values of the G0W0 corrections with a
mean of 1.17 eV.
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(empty) bands, see Fig. 1b. The absolute values of the G0W0

corrections range from 0 to 3 eV with an average value of 1.17 eV,
see the histogram in Fig. 1c. Returning to the band diagram in
panel (a) we further note that not all the bands are shifted by the
same amount—even when disregarding the different signs for
occupied/empty bands. Although for most materials, all the
occupied bands experience similar, though material-specific,
shifts and the same holds for the empty bands, there are several
examples, like MoS2, where this is not the case. Therefore, an
accurate prediction of G0W0 corrections for general bands
requires a representation that not only encodes the occupation of
the state but also information about the energy and shape of the
wave function and its relation to other relevant states of the
crystal.

Electronic fingerprints. The ENDOME and RAD-PDOS repre-
sentations, defined in the Methods Section, are attempts to gen-
eralize the notion of the local environment of an atom, which has
been successfully employed to represent solids and molecules in
machine learning studies, to the case of an electronic state. The
ENDOME fingerprint represents the local environment of an

energy eigenstate nkj i in terms of operator matrix elements
between the state itself and other eigenstates of the crystal,
j nkh jÂ n0k0j ij2. These matrix elements are arranged on a grid as a
function of the energy difference εnk � εn0k0 , and their sign is used
to encode the occupation of the final state n0k0j i. With the
ENDOME fingerprint, two states are thus considered similar if
they have similar matrix elements with other states of similar
relative energies. In this work, we include matrix elements for the
position operator, momentum operator, and Laplacian operator.
Since we exclusively consider 2D materials in the present work,
the fingerprints are split into in-plane and out-of-plane compo-
nents for the position operator (labeled xy and z, respectively)
and the momentum operator (labeled pxy and pz). The RAD-
PDOS fingerprint is a correlation function in energy and radial
distance between the atomic orbital projections (onto angular
momentum channels s, p, and d) of the reference eigenstate
and all other eigenstates of the crystal. Figure 2 visualizes the
two types of fingerprints for three different electronic states
of MoS2.

Any reasonable fingerprint should comply with certain general
requirements13 of which invariance and simplicity are the most

Fig. 2 Visualization of electronic state fingerprints for MoS2. a Shows the PBE band structure. b, c Show ENDOME fingerprints of the conduction band
minimum and valence band maximum states for the K-point. d–i Show six RAD-PDOS fingerprints for combinations of s, p, and d orbitals.
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fundamental. In the present context, this means that the
fingerprint should be invariant with respect to the choice of the
unit cell (number of primitive cells, rotations, and translations),
the gauge used for the Bloch wave functions and that it should be
computationally cheap to generate compared to a full G0W0

calculation. Both the ENDOME and RAD-PDOS fingerprints
clearly fulfill these requirements. Besides the invariance and
simplicity conditions, the fingerprints should also be unique such
that two different systems (here electronic states) are not mapped
to the same fingerprint, and they should be descriptive such that
systems with similar properties are close in fingerprint space. The
interpretation and quantitative assessment of notions such as
different systems and similar properties are obviously problem-
dependent. This fact can make it difficult for problem
independent fingerprints like the ENDOME and RAD-PDOS to
meet these requirements in general. This is, however, not a
principal problem, and can usually be solved by increasing the
size of the training data set, at least as long as the fingerprints are
complex and flexible enough to capture the variations in the
considered systems that are relevant to the specific learning
problem.

An impression of the descriptiveness of the fingerprints can be
obtained from Fig. 3, which shows two-dimensional projections
of the ENDOME-pxy and RAD-PDOS-dd fingerprints using t-
distributed stochastic neighbor embedding (tSNE) color-coded by
the GW corrections. It is clear that data points, which are close in
pxy-space have similar GW corrections. The pd fingerprint is also
descriptive for some data points, but there is also a large blob of
data points that are indistinguishable in fingerprint space but
have very different GW corrections. Not unexpectedly, these
points correspond to the subset of materials without valence d-
electrons, which results in all-zero pd fingerprint vectors. The
tSNE plots for the other components of the ENDOME and RAD-
PDOS fingerprints look similar.

State energies. To predict the state-specific G0W0 corrections to
the PBE eigenvalues of 2D semiconductors, we use the XGBoost
package24 to build a machine learning model based on a gradient
boosting algorithm for decision tree ensembles. The G0W0 data
set was described and analysed in detail in ref. 25. We split the
data set into a training set of 228 randomly selected materials
(37,851 electronic states) and a test set consisting of the
remaining 58 materials (8766 electronic states). As an objective
function, we use the mean absolute error (MAE) between
the predicted and actual G0W0 corrections. The electronic states

are represented by the ENDOME and RAD-PDOS fingerprints
supplemented by a set of extra features consisting of the occu-
pation of the state (fnk= 0, 1), its distance to the Fermi energy
(εnk− EF), the PBE bandgap of the material (Egap), and the static
averaged in-plane and out-of-plane polarisabilities of the material
(12 ðαx þ αyÞ and αz). The averaged in-plane polarisability is used
to ensure invariance of the feature with respect to rotations of the
2D material in the plane, which is important for materials with
in-plane anisotropy. The effect of including the polarisabilities in
the fingerprint has been analysed separately (see later discussion).

The results of the model together with relevant baselines for
assessing its performance are summarized in Table 1. The first
row shows the estimated accuracy of our target G0W0 data
relative to experiments based on previous reports in the
literature7–9. Experimental data for individual band/state QP
energies are scarce and subject to significant uncertainties, and
thus do not represent a meaningful reference. The remaining
rows of the Table show the mean absolute error (MAE) on the
bandgap and individual state energies for different approximate
methods versus G0W0. The MAE on state energies is evaluated
over all the bands for which G0W0 data is available, namely the
eight highest valence bands (VB) and four lowest conduction
bands (CB). The second and third rows are straightforward
comparisons of band energies from PBE and HSE06 with G0W0,
respectively. The fourth row shows the MAE between G0W0 and

Fig. 3 tSNE visualizations of fingerprints. a tSNE components of ENDOME pxy. b tSNE components of RAD-PDOS pd fingerprints color-coded with the
GW corrections. For pxy, states with similar GW corrections are also close in fingerprint space. In b a large amount of the states with both positive and
negative GW corrections have similar distances in fingerprint space, corresponding to the materials without d-electrons where the RAD-PDOS pd
fingerprint will be all zeros.

Table 1 Summary of results.

Methods Target property MAE

Bandgap (eV) State energies (eV)

G0W0 vs. experiment ≈ 0.3 N/A
PBE vs. G0W0 1.70 1.17
HSE06 vs. G0W0 0.85 0.47
PBE with ideal scissor-operator
vs. G0W0

0 0.17

ML (8VB+ 4CB) vs. G0W0 0.23, 0.18(*) 0.14, 0.11(*)

ML (VB+CB) vs. G0W0 0.18, 0.15(*) 0.31, 0.22(*)

The table shows the mean absolute error (MAE) on the bandgap and individual state energies
for G0W0 versus experiments and different approximate methods versus G0W0, respectively.
The MAE on state energies is always evaluated for the eight highest valence bands (VB) and
four lowest conduction bands (CB). ML(X) refers to the test set MAE of the gradient boosting
model after training on all bands (8VB+4CB) or only the highest valence and lowest
conduction band (VB+CB), respectively. The values marked by (*) are obtained after training
the model with the static polarisability of the materials included as extra features in the
fingerprint.
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PBE after the occupied and unoccupied PBE energies have been
rigidly shifted (by applying a scissors operator) to match the
valence band maximum (VBM) and conduction band minimum
(CBM) of the G0W0 band structure. From this, it follows that the
lowest possible MAE on individual band energies obtainable with
a model trained to predict only the VBM and CBM energies is
0.17 eV. The last two rows of the table show the MAE on the test
set obtained with the XGBoost model (see below for more
details). Improved performance for the bandgap can be obtained
by training the model only on the highest valence and lowest
conduction band (last row); however, such a restriction on the
training data reduces the prediction accuracy for bands further
away from the bandgap. The numbers marked by (*) refer to the
MAE obtained when the static polarisability of the materials is
included in the fingerprint (see later discussion).

In the following, unless stated otherwise, results refer to the
case where the model has been trained on all bands (8VB+ 4CB)
and with the static polarizabilities included in the fingerprint.

Figure 4a shows a parity plot of the predicted vs. true values for
the train and test set. The evaluation yields MAEs of 0.05 and
0.11 eV for the train and test set, respectively. To test for the
potential bias of the model, the residual distributions are plotted
in Fig. 4b, showing that both the train and test set have residuals
distributed evenly around 0 eV. To estimate the effect of adding
more data to the train set, a learning curve is shown in Fig. 4c.
The learning curve is calculated by continuously adding more
materials to the training set while evaluating the performance on
a constant test set. The test set MAE decreases significantly up to
≈50 materials after which the learning curve flattens considerably,
although still presenting a slightly decreasing MAE. This suggests
that a generalizable model can be trained using a rather limited
number of materials, though it should be noted that overfitting
issues decrease with the amount of materials in the training set. In
general, it is difficult to assess whether the learning ability of the
model is limited by the flexibility of the model/fingerprint or by
the noise level in the data set. We do stress, however, that the
numerical precision of the G0W0 corrections is not expected to be
much better than 0.05 eV due to errors introduced by e.g., plane-
wave extrapolation and linearisation of the self-energy, see ref. 25.
This could explain (part of) the finite prediction error of the
model.

All MAEs reported in this paper were evaluated for a specific,
randomly generated test set of 58 materials. We have verified that
this test set is representative and fair by comparing it to MAEs
obtained for 100 different random test sets, see Methods section.

The data used to train and evaluate the ML model represent
states/energies evaluated at discrete uniformly distributed k-
points of the Brillouin zone. However, the resulting ML model

can of course be used to predict the G0W0 energy corrections of
states at arbitrary k-points and thereby generate full, densely
sampled band structures. Figure 5 shows examples of ML-
generated band structures for PtO2, SbClTe, GeS2, and CaCl2,
which are all test set materials. For comparison, the PBE and the
true discrete G0W0 energies are also shown. Overall, the ML
bands closely interpolate the true G0W0 energies. In cases where
the ML bands deviate, e.g. the conduction bands of CaCl2, they
still present a better description than PBE. Interestingly, the ML
model is able to deviate from a scissors operator that would
ascribe the same corrections to all occupied and all unoccupied
bands, respectively. This is for example clear in the PtO2 band
structure where the four conduction bands are shifted by different
amounts. We note that the single-point regression nature of the
model, i.e., the fact that the model does not explicitly couple
different k-points, can sometimes lead to weak and unphysical
wiggles in the machine-learned band energies. These qualitative
errors may be reduced by applying a smoothing function (e.g., a
Gaussian filter) as post-processing of the ML energies across
bands. This has been done for the plots in Fig. 5.

Bandgaps. The ML state energies can be translated into ML
bandgaps by simply calculating the vertical difference between
conduction band minimum and valence band maximum. Figure 6
shows parity plots of the predicted bandgaps vs. G0W0 bandgaps
for an ML model trained on all bands and an ML model trained
only on valence and conduction bands. Due to the discreteness of
the original G0W0 data, the ML bandgap has been evaluated on
the same states (discrete k-points) that define the G0W0 gap. The
PBE and HSE06 data are also shown as baselines. Only data from
the test set has been used for the comparison. The PBE and
HSE06 functionals systematically underestimate the bandgaps
leading to MAEs of 1.70 and 0.85 eV, respectively. The ML model
trained on all bands achieves an MAE on the bandgap of 0.18 eV,
while training the ML model only on valence and conduction
bands reduces the bandgap MAE to 0.15 eV, but at the cost of
increasing the MAE on the individual state energies across all
bands from 0.11 to 0.22 eV.

While our ML model and fingerprints allow for the prediction
of state-specific properties, such as individual band energies, it is
of interest to compare its accuracy on bandgap predictions to
alternative schemes reported in the literature. Lee and
coworkers26 used nonlinear support vector regression with
fingerprints containing the Kohn-Sham bandgap obtained with
both the PBE and the mBJ xc-functionals, together with a set of
features describing the constituent chemical elements, to predict
G0W0 bandgaps of inorganic bulk semiconductors. Using a

Fig. 4 Machine learning results. a Parity plot showing the ML predicted vs. true values of the GW correction for individual states for the train and test set.
The MAEs of the train and test set are 0.05 and 0.11 eV, respectively. b Histograms of the prediction residuals of the train and test set. c Learning curve for
the ML model showing validation MAE as a function of the number of materials/states in the training set.
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database of 270 G0W0 bandgaps, they obtained a root mean
square error (RMSE) of 0.24 eV. Rajan et al. used a Gaussian
process to predict G0W0 bandgaps of 2D MXene crystals with a
fingerprint encoding atomic and structural properties of the
MXenes17. Employing a training set of 76 G0W0 MXene
bandgaps, they obtained an RMSE of 0.14 eV.

We stress that both the inorganic bulk semiconductors
considered ref. 26 and, in particular, the MXene 2D crystals of
ref. 17, represent more homogeneous sets of materials than the 2D
crystals considered in the present work. Nevertheless, with an
RMSE of 0.26 and 0.21 eV on the predicted G0W0 bandgap for
the models trained on 8VB+ 4CB and VB+ CB, respectively, our
general ML model with purely electronic fingerprints, is
comparable in accuracy to the more system-specific ML models.

Additionally, by applying our ML model on ∼700 semiconduc-
tors from C2DB we have found the bandgap to change nature
(direct/indirect) in 12% of the materials when comparing the PBE
and ML bandgaps. For these materials, 72% shift from direct to
indirect gaps.

Effective masses. Since the ML model can be used to calculate
G0W0 energies at any k-point grid, it is possible to use the method
to calculate effective masses. Effective masses at the valence and
conduction band extrema can be calculated by fitting a second-

Fig. 6 Comparison of bandgaps. Parity plots for predicted bandgaps vs.
GW bandgaps for PBE and HSE06 and two different ML models predicting
GW corrections for either all bands (MAE= 0.18 eV) or only valence and
conduction bands (MAE= 0.15 eV) which significantly outperform PBE and
HSE06 with MAEs of 1.70 and 0.85 eV, respectively.

Fig. 5 Machine-learned band structures. Examples of band structures for four 2D materials from the test set. Both PBE and GW band structures are shown
along with the ML predictions. The materials are selected to cover a wide range in the prediction accuracy of the test set. Band structures for PtO2 (a),
SbClTe (b), GeS2 (c), and CaCl2 (d).
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order polynomial to the energies at a densely sampled k-point
grid centered around the band extrema20,21. This method is
generally challenging with G0W0 due to the high computational
cost of calculating the energies at sufficiently dense k-point grids,
but using the ML model it is possible to achieve accurate esti-
mates of the G0W0 effective masses.

Figure 7 shows effective masses calculated using PBE and ML
energies for ≈330 materials using a k-point density of 55/Å−1 in a
radius of 0.16Å−1.

The validity of the polynomial fit is evaluated using a mean
absolute relative error (MARE) metric. The MARE is defined as
the absolute difference between the parabolic fit and the actual
ML-G0W0 band energies averaged over an energy range of
100 meV (from the band extremum) relative to the actual band
energies averaged over the same energy range. The data shown in
Fig. 7 includes only fits with MARE less than 10%.

Returning to Fig. 7 we note that the effective masses obtained
with ML-G0W0 can deviate quite significantly from the PBE
values. Specifically, the mean absolute deviation is 0.31m0 and
0.19m0 for valence and conduction bands, respectively, corre-
sponding to relative deviations of 32 and 28%. We can also
deduce that the ML-G0W0 method has a general tendency to yield
smaller effective masses than PBE, although deviations from this
trend occur relatively often.

Discussion
Feature importance. Often the evaluation of a machine learning
model stops after considering the overall performance in terms of an
objective function like the MAE. However, important insight may be
gained by analysing how the model responds to different features in
the input data. This is particularly important when devising new
types of fingerprints. To extract information about the role of the
different features composing the fingerprint vectors used in the
present work, a feature importance analysis is performed using a
feature subset hold-out method. The features are grouped at two
different levels: The first level has four groups, namely the RAD-
PDOS components, the ENDOME components, the extra features
covering the PBE gap, occupation number, distance to the Fermi
level, and finally the in-plane and out-of-plane polarizabilities. The
second level breaks the RAD-PDOS and ENDOME components
further down into their individual ll0 angular momentum blocks and
operator matrix elements, respectively. The analysis is carried out in
two complementary ways where a group of features is either used
exclusively or dropped from the full fingerprint when training the
ML model.

Figure 8 shows the test set MAE on individual state energies for
the various feature groups with the all-feature baseline indicated by
the vertical black line. Focusing first on panel (a), the analysis shows
that both the RAD-PDOS and ENDOME perform well by

themselves, though not as well as the full fingerprint. The extra
features, in particular the polarisabilities, are unable to produce an
accurate ML model. The poor performance of the polarisability-only
feature is unsurprising as this feature is fully material-specific and not
even able to distinguish between occupied and unoccupied states.
Panel (b) shows the same analysis when the feature groups are
broken further down. When used alone, the pp, ss, and sp
components of the RAD-PDOS perform best followed by the
various operator matrix elements of the ENDOME. An interesting
observation is that at this level of feature grouping, almost any group
of features can be dropped without increasing the MAE, except for
the in-plane polarisability, αxy, which results in a significant 27%
increase of the MAE from 0.11 to 0.14 eV. This reveals a clear feature
synergy since αxy in itself does not have any predictive ability unless it
is combined with other features (see below). In general, there seems
to be some redundant information in the various fingerprint
components since dropping any of the feature sets, at least at the
second level of grouping, does not affect the test score by much. In
some cases, the model might even gain performance when dropping
some features (not visible on the scale of the plot). This suggests that
a feature selection algorithm prior to the prediction algorithm might
in general slightly improve the performance of the model. However,
since gradient boosting algorithms like XGBoost already has some
implicit feature selection in the training iterations, the improvement
is not expected to be significant and is thus not considered here.

SHAP analysis. The role of the αxy feature and its synergy with
other features is further investigated using the general feature
importance method SHAP, which is a game-theoretic approach to
explain the output of any machine learning model27. SHAP builds
an explanation model on top of an ML model which relates the
output from the ML model to the importance of individual fea-
tures for each predicted output. The SHAP values for a given
feature can thus be interpreted as the direct effect of that feature
on the model output, i.e. the difference between the model’s
prediction when used with and without that particular feature in
the input. Figure 9a shows the SHAP values for αxy as a function
of αxy. Only states from the test set are shown in Fig. 9, and the
color code in panel (a) reflects the occupancy of the state. The plot
shows a surprisingly clear trend: The SHAP values for occupied
states increase consistently and monotonously for increasing αxy
while the opposite trend is seen for the empty states. In the fol-
lowing, we present a physical explanation for this observation.

The G0W0 correction can be split into two terms with distinctly
different physical origin: ΔEQP

nk ¼ ðvxnk � vxcnkÞ þ Δscr
nk . The first term

(in parenthesis) represents the difference between the local xc-
potential (in this case the PBE potential) and the nonlocal exact
exchange potential while the last term accounts for the interaction of

Fig. 7 Effective masses. Comparison of effective masses calculated using PBE and ML-G0W0 eigenvalues for valence and conduction band of ∼800
materials. a Shows effective masses for the valence bands and b shows for the conduction bands. There seems to be a (weak) systematic trend for the ML
model to predict smaller effective masses than PBE for both valence and conduction bands.
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the electron/hole with its own polarization cloud. The first term is
typically negative for occupied states and positive for unoccupied
states (Hartree–Fock typically opens the PBE gap), but its
magnitude depends on the detailed shape of the wave functions of
the system. In particular, this term can be quite different for
different states of the same material. Moreover, one does not expect
the size of this term to correlate with the material’s static
polarisability and thus it should not be captured by the αxy-SHAP
values. The second term is always positive for occupied states (hole
quasiparticles) and negative for unoccupied states (electron
quasiparticles) because the Coulomb interaction of the bare particle
with its oppositely charged polarization cloud will always stabilize
the quasiparticle, thus shifting occupied states up and empty states
down in energy28–30. Now, the shape and size of the polarization
cloud does not depend on the detailed shape of the wave function
but is largely governed by the (microscopic) polarisability of the
material. Therefore, on purely physical grounds, the static
macroscopic polarisability, αxy, is expected to provide a good
descriptor for Δscr

nk : A large value of αxy signals high screening ability

of the material and therefore large QP polarization clouds, which in
turn will yield a large Δscr

nk (with opposite signs for occupied/empty
states). This is exactly what is seen in Fig. 9a. By subtracting the αxy-
SHAP values for the states at the CBM and VBM, we obtain the αxy-
SHAP values for the bandgap correction, see Fig. 9b. These show
that the αxy feature increases the bandgap in materials with low
screening and decreases the bandgap in materials with high
screening. Again, this is perfectly in line with the physical
understanding of screening-induced renormalization of the
bandgaps28–30.

It can be noted that the αxy-SHAP values for the state energies
and bandgaps are significantly larger than the change in the MAE
upon including/dropping αxy from the feature set, see Fig. 8b. For
example, the αxy-SHAP values for the bandgap range from −0.50 to
0.70 eV while the MAE decreases by 0.03 eV when αxy is included.
This is due to the redundant information carried by the feature set.
When the model is trained without αxy as a feature, other features
can, to a large extent, provide the same information. For example,
the PBE bandgap alone correlates fairly well with αxy. To test this

Fig. 9 SHAP analysis. a SHAP values for αxy for the prediction of GW correction energies color-coded by occupancy. For materials with a low polarisability,
the ML model predicts a more negative GW correction for the occupied states and a more positive correction for the unoccupied states. For materials with
a high polarisability, the occupied states are predicted with a more positive correction when using the polarisability as a feature while the unoccupied states
are only weakly affected. b SHAP values for αxy for the prediction of bandgaps. This shows that the bandgap increases for materials with a low αxy and
decreases for high αxy values.

Fig. 8 Feature analysis of ML model. Solid bars refer to an ML model using only the specific features while the shaded bars are for an ML model without
these features. a High-level feature group. b Low-level feature groups.
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hypothesis, we have carried out the same SHAP analysis for EPBE
g on

a model trained with and without αxy in the feature set. The analysis
shows that when αxy is used to train the model, the EPBE

g -SHAP
values are fairly low (below ±0.1 eV) and do not show any clear
trends. In contrast, when αxy is not included in the fingerprint, the
EPBE
g -SHAP values are very similar to the αxy-SHAP values shown

in Fig. 9, although the values are slightly smaller and the trend less
pronounced. This shows that in the absence of αxy the model uses
EPBE
g to encode similar information. However, the model also finds

that αxy provides a better description of Δscr
nk than does EPBE

g , which

is why the SHAP values of EPBE
g are dwarfed by those of αxy when

both features are available for learning.

Summary. In summary, we have introduced two different
methods to generate fingerprints of individual electronic states
based on information available from a standard DFT ground-
state calculation (eigenvalues and wave functions). The finger-
prints were used to train a decision-tree-based ML model to
predict the G0W0 corrections to the PBE band structure of a 2D
semiconductor. The model achieves an MAE of 0.14 eV for
individual state energies, which is reduced to 0.11 eV when the
static polarisability is included in the fingerprint. For the band-
gap, the MAE is 0.15–0.23 eV depending on whether the model is
trained on all bands or only the valence/conduction bands and
whether or not the static polarisability is included in the finger-
print. This level of precision is highly encouraging considering
that the noise on the employed G0W0 data for individual state
energies could be on the order of 0.05 eV and that the accuracy of
the G0W0 method itself, when evaluated against experimental
bandgaps, is about 0.3 eV. Since the bottleneck of the computa-
tions is the self-consistent DFT calculation (in particular the
structural relaxation if performed), the method enables GW-
quality band structures at the cost of a DFT calculation. Although
the current work has focused on states in periodic 2D crystals, the
methods can be straightforwardly used to fingerprint states in 3D
crystals as well as non-periodic structures like molecules or sur-
faces. While the fingerprint methods can be used for e.g., 3D
crystals, the ML model trained on 2D materials will not be
transferable since some of the fingerprint components are divided
into in-plane and out-of-plane parts. To use the full method of
fingerprints and ML model for 3D crystals would require an ML
model trained on a database of GW calculations of such systems.

Methods
This section describes the definition and generation of the Energy Decomposed
Operator Matrix Elements (ENDOME) and Radially Decomposed Projected Density
Of States (RAD-PDOS) fingerprints. In addition, the G0W0 band structure data set is
presented along with a description of the employed machine learning model.

Electronic state fingerprints. The ENDOME fingerprint is based on operator
matrix elements between electronic states (here assumed to be Bloch states of a
periodic crystal)

Ank;n0k0 ¼ j nkh jÂ n0k0
�
�

�j2 ð1Þ

where Â is some operator. For a reference state nkj i with energy εnk, the ENDOME
fingerprint is defined as

mA
nkðEÞ ¼ ∑

n0k0
Ank;n0k0G E � ðεnk � εn0k0 Þ; δE

� �

exp �αEE
� �

signðEF � εn0k0 Þ; ð2Þ

where G(x; δ) is a Gaussian of width δ centered at x= 0. This function encodes the
matrix element between the reference state and all other states at an energy dis-
tance of E from the reference state. In principle, any operator can be used to create
fingerprints, but in this study, we include the position operators (x, y, z), the
momentum operators (∇x, ∇y, ∇z), and the Laplace operator (∇2). These operators
are all diagonal in the k index. In addition, we include the all-one matrix,
Ank;n0k0 ¼ 1, which essentially yields the density of states (DOS) translated to the
energy of the reference state, εnk.

In practice, the function mA
nkðEÞ is represented on a uniformly spaced energy

grid with 50 energy points from −10 to 10 eV around the reference state. Since we
consider 2D materials, the in-plane (x and y) components of both the position and
momentum operators are collected into a single fingerprint vector (i.e., mxy

nk ¼
mx

nk þmy
nk and similarly for the momentum operator) while the out-of-plane z

component is treated separately. For a given reference state, the ENDOME
fingerprint thus consists of six 50-dimensional vectors resulting in a total of 300
features.

The RAD-PDOS encodes the electronic structure in terms of the density of
states projected onto atomic orbitals. Specifically, a correlation function in energy
and radial distance is defined as

ρνν
0

nk ðE;RÞ ¼
1
Ne

∑
n0k0aa0

ρaνnkρ
a0ν0
n0k0G R� jRa � Ra0 j; δR

� �

exp �αRR
� �

G E � ðεnk � εn0k0 Þ; δE
� �

´ exp �αEE
� �

signðEF � εn0k0 Þ
ð3Þ

where Ne is the number of electrons in the system, a and a0 denote atoms in the
primitive unit cell and the entire crystal, respectively, and ν and ν0 denote atomic
orbitals. The atomic projections are given by

ρaνnk ¼ j ψnkjaν
� �j2 ð4Þ

The functions ρνν
0

nk ðE;RÞ are represented on a uniform (E, R)-grid of size
25 × 20 spanning the intervals from −10 to 10 eV (centered around the reference
energy εnk) and 0 to 5Å, respectively. For the Gaussian smearing functions we use
δE= 0.3 eV and δR= 0.25Å, respectively. For a given state, the RAD-PDOS fingerprint
consists of six 2D grids of 500 points each resulting in a total of 3000 features.

Figure 2 shows examples of ENDOME and RAD-PDOS fingerprints for three
different states at the K-point of MoS2. Note that some of the RAD-PDOS
fingerprints are qualitatively similar (e.g., sp and pp) but the scales differ by about
an order of magnitude. This is due to the fact that the density of states projected
onto s and p orbitals have a similar dependence on energy.

The G0W0 data set. The data set comprises quasiparticle (QP) energies from 286
G0W0 band structures of non-magnetic 2D semiconductors covering 14 different
crystal structures and 52 chemical elements. The QP energies have been obtained
from plane-wave-based one-shot G0W0@PBE calculations with full frequency inte-
gration and were produced as a part of the Computational 2D Materials Database
(C2DB)20,21. The data set has been described and analysed in detail in ref. 25.

The QP energies of the data set have been calculated under the standard
assumption that the G0W0 self-energy can be treated within first-order
perturbation theory and linearized around the non-interacting reference energy,
ω= εnk, leading to the expression

EQP
nk � ϵnk þ ZRe ψnk

� �
�ΣðϵnkÞ ψnk

�
�

�� � ð5Þ
where

Z ¼ 1� ∂Σ

∂ω

�
�
�
�
ω¼ϵnk

 !�1

ð6Þ

is the QP weight and ψnk is the PBE wave function with eigenvalues ϵnk. In practice,
the G0W0 correction to the PBE energies, ΔEQP

nk ¼ EQP
nk � ϵnk , were used as targets

for the machine learning model.
To ensure the highest data quality, the original data set was filtered such that

only states with QP weights between 0.7 and 1.0 were kept. As shown in ref. 25 the
MAE on the QP correction of such states due to the linearization of the QP
equation is 0.04 eV.

Machine learning model. The choice of learning algorithm for a machine-learned
model depends on different considerations such as the amount of training data
available and the nature of the learning objective (regression/classification, discrete/
continuous). The fingerprints presented here are not designed for a specific
learning algorithm and can thus be used to train a wide range of algorithms. For
this specific purpose of predicting G0W0 QP energies, several types of algorithms
including tree-based ensemble methods, neural networks, and Gaussian process
regression have been considered and tested. The machine learning model is built
using a gradient boosting method from the XGBoost distribution based on decision
trees in an ensemble24. The choice of XGBoost as a learning algorithm is based on
its generality and good performance across multiple machine learning applications,
the possibility to extract knowledge from single features, and the ability of training
on large amounts of data. For this specific purpose, a neural network and a
gaussian process regression method have also been tested resulting in similar
prediction accuracy.

A train and test set is created using a random 80/20% split on the material level
which results in a train set of 228 materials (37851 QP energies) and a test set of 58
materials (8766 QP energies). Hyperparameters of the learning algorithm (max
depth= 5, learning rate= 0.15, and number of estimators= 60) are tuned using a
grid search method with fivefold cross-validation of the 80% train set. The
performance of the machine learning is based on the mean absolute error (MAE) of
the 20% test set.
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Since the test set size is only 58 materials, the test MAE might exhibit some test
set dependence. To evaluate this effect, the entire process of splitting the data in 80/
20% train/test set, training the model using fivefold cross-validation on the train
set, and evaluating the MAE of the test set, has been repeated 100 times using
different seeds for the random split. The distribution of the 100 test MAEs have a
mean of 0.13 eV and a standard deviation of 0.02 eV. We note that the specific test
set used for Table 1 yields an MAE within one standard deviation from the mean.

Since the XGBoost model is based on decision trees some small discontinuities
in-band energies might be introduced by the model. When calculating effective
masses using a harmonic fit on a much smaller energy scale than the full band
structures it was necessary to use a neural network (feed-forward network with
three hidden layers with 200 neurons and tanh activation functions) to ensure a
more continuous output. This NN yielded a test MAE of 0.13 eV compared to the
0.11 eV of the XGBoost model.

Data availability
The structures of the materials used in this study have been deposited in C2DB22 (https://
doi.org/10.11583/DTU.14616660.v1). The data set generated for this study is available at
https://gitlab.com/knosgaard/electronic-structure-fingerprints.

Code availability
The Python code used to compute the fingerprints can be found here https://gitlab.com/
knosgaard/electronic-structure-fingerprints.
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Abstract. We address the problem of predicting the zero temperature
dynamical stability (DS) of a periodic crystal without computing its full phonon
band structure. Using data for two-dimensional (2D) crystals, we first present
statistical evidence that DS can be inferred with good reliability from the
phonon frequencies at the center and boundary of the Brillouin zone (BZ). This
analysis represents a validation of the DS test employed by the Computational
2D Materials Database (C2DB). For 137 dynamically unstable 2D crystals, we
displace the atoms along an unstable mode and relax the structure. This
procedure yields a dynamically stable crystal in 49 cases. The elementary
properties of these new structures are characterised using the C2DB workflow,
and it is found that their properties can differ significantly from those of the
original unstable crystals, e.g. band gaps are opened by 0.3 eV on average. All
the crystal structures and properties are available in the C2DB. Finally, we train
a classification model on the DS data for 3295 2D materials in the C2DB using
a representation encoding the electronic structure of the crystal. We obtain an
excellent receiver operating characteristic (ROC) curve with an area under the
curve (AUC) of 0.89, showing that the classification model can drastically reduce
computational efforts in high-throughput studies.
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1. Introduction

Computational materials discovery aims at identifying
novel materials for specific applications, often employ-
ing first principles methods such as density functional
theory (DFT) [1]. The potential of a given material
for the targeted application is usually evaluated based
on elementary properties of the crystal, such as the
electronic band gap, the optical absorption spectrum,
or the magnetic order. Such properties can be highly
sensitive to even small distortions of the lattice that
reduce the symmetry of the crystal, and it is therefore
important to develop efficient methods for identifying
and accounting for such distortions.

Lattice distortions can be classified according to
their periodicity relative to the primitive cell of the
crystal. Local instabilities conserve the periodicity
of the crystal, i.e. they do not enlarge the number
of atoms in the primitive cell. Other distortions,
known as charge density wave (CDW) [2], lead to an
enlargement of the period of the crystal, which can
be either commensurate or incommensurate with the
high-symmetry phase. A universal microscopic theory
of the CDW phase is still missing due to the many
possible and intertwined driving mechanisms, e.g.
electron-phonon interaction [3], Fermi surface nesting,
or phonon-phonon interactions[4], which makes a
precise clear-cut definition of the CDW phase difficult.
In addition, the CDW state is sensitive to external
effects such as temperature and doping[5]. As a
testimony to the complexity of the problem, different
models and concepts are used to describe the CDW
phase depending on the dimensionality of the material
[6, 7, 8, 9, 10].

The last few years have witnessed an increased
interest in CDW states of two-dimensional (2D)
materials. For example, CDW physics is believed to
govern the transition from the trigonal prismatic T-
phase to the lower symmetry T’-phase in monolayer
MoS2 [11] as well as the plethora of temperature
dependent phases in monolayers of NbSe2 [12, 13],
TaS2 [14, 15], TaSe2 [16, 17], and TiSe2 [18, 19]. In
addition, a number of recent studies have investigated
the possibility to control CDW phase transitions.
For instance, the T-phase of monolayer MoS2 can
be stabilized by argon bombardment [20], exposure
to electron beams [11], or Li-ion intercalation [21].
Similar results have been reported for MoTe2 [22].

Regardless of the fundamental origin of possible
lattice distortions, it remains of great practical
importance to devise efficient schemes that makes it
possible to verify whether or not a given structure is
dynamically stable (DS), i.e. whether it represents
a local minimum of the potential energy surface.
Structures that are not DS are frequently generated
in computational studies, e.g. when a structure is

relaxed under symmetry constraints or the chosen
unit cell is too small to accommodate the stable
phase. Tests for DS are rarely performed in large-scale
discovery studies, because there is no established way
of doing it apart from calculating the full phonon band
structure[23], which is a time-consuming task. At the
same time, the importance of incorporating such tests
is in fact unclear; that is, it is not known how much
symmetry-breaking distortions generally influence the
properties of a materials.

A straightforward strategy to generate potentially
stable structures from dynamically unstable ones, is
to displace the atoms along an unstable phonon mode
using a supercell that can accommodate the distortion.
This approach has previously been adopted to explore
structural distortions in bulk perovskites [24, 25] and
one-dimensional organometallic chains [26]. However,
systematic studies of structural instabilities in 2D
materials, have so far been lacking.

In this work, we perform a systematic study
of structural distortions in thermodynamically sta-
ble 2D crystals from the Computational 2D Mate-
rials Database (C2DB)[27, 28] and explore a ma-
chine learning-based approache to DS classification.
Throughout, we focus on the most common case of
small-period, commensurate distortions that can be ac-
commodated in a 2× 2 repetition of the primitive cell
of the high-symmetry phase. We shall refer to the test
for the occurrence of such distortions as the Center
and Boundary Phonon (CBP) protocol. The motiva-
tion behind the present work is fourfold: (i) To assess
the reliability of the CBP protocol (which is currently
used for DS classification by the C2DB). (ii) To elu-
cidate the effect of symmetry-breaking distortions on
the basic electronic properties of crystals. (iii) To ob-
tain the DS phases of a set of dynamically unstable 2D
materials that were originally generated by combinato-
rial lattice decoration, and make them available to the
community via the C2DB. (iv) To explore the viability
of a machine learning based classification scheme for
predicting DS using input from a DFT calculation of
the prospect high-symmetry phase.

The paper is structured as follows. In Section
2 we describe the CBP protocol. In Section 3
we first benchmark the CBP protocol against full
phonon band structure calculations and evaluate its
statistical success rate. For 137 dynamically unstable
2D materials, we further analyse how the small-period
distortions that stabilise the materials influence their
electronic properties. Section 4 concludes the paper.

2. Methodology

In this Section we briefly discuss the CBP protocol
for testing the dynamical stability of a crystal and for
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generating distorted, dynamically stable stable crystal
structures. We also describe the methodology and
computational details of the phonon calculations.

2.1. The CBP protocol: Stability test

Given a material that has been relaxed in some unit
cell (from hereon referred to as the primitive unit cell),
the CBP protocol proceeds by evaluating the stiffness
tensor of the material and the Hessian matrix of a
supercell obtained by repeating the primitive cell 2×2
times. In the current work, the stiffness tensor is
calculated as a finite difference of the stress under an
applied strain, while the Hessian matrix is calculated
as a finite difference of the forces on all the atoms of
the 2× 2 supercell under displacement of the atoms in
one primitive unit cell (this is equivalent to calculating
the phonons at the center and specific high symmetry
points at boundary of the BZ of the primitive cell, see
Fig. (3). Next, the stiffness tensor and the Hessian
matrix are diagonalised, and the eigenvalues are used
to infer a structural stability. A negative eigenvalue of
the stiffness tensor indicates an instability of the lattice
(the shape of the unit cell) while a negative eigenvalue
of the 2×2 Hessian signals an instability of the atomic
structure. The obvious question here, is whether it
suffices to consider the Hessian of the 2 × 2 supercell,
or equivalently consider the phonons at the BZ center
and boundaries.

All phonon calculations were performed using
the asr.phonopy recipe of the Atomic Simulation
Recipes (ASR) [29], which makes use of the Atomic
Simulation Environment (ASE)[30] and PHONOPY
[31]. The DFT calculations were performed with
the GPAW[32] code and the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [33]. The BZ
was sampled on a uniform k-point mesh of density of
6.0 Å2 and the plane wave cutoff was set to 800 eV. To
evaluate the Hessian matrix, the small displacement
method was used with a displacement size of 0.01
Å and forces were converged up to 10-4 eV/Å. To
benchmark the CBP protocol, we compare to full
phonon band structures. In these calculations, the size
of the supercell is chosen such that the Hessian matrix
includes interactions between pairs of atoms within a
radius of at least 12 Å. (This implies that the supercell
must contain a sphere of radius 12 Å).

We can distinguish three possible outcomes when
comparing the CBP protocol against full phonon
calculations (see Figure (1) ), namely a true positive
result, a true negative result, and a false positive result.
We note that the case of a false negative is not possible,
because a material that is unstable in a 2× 2 cell is de
facto unstable. The false positive case occurs when a
material is stable in a 2 × 2 supercell, but unstable if
allowed to distort in a larger cell. Our results show

that such large-period distortions that do not show as
distortions in a 2×2 cell, are relatively rare (see Section
3.1).

2.2. The CBP protocol: Structure generation

Here we outline a simple procedure to generate
distorted and potentially stable structures from an
initial dynamically unstable structure. The basic idea
is to displace the atoms along an unstable phonon mode
followed by a relaxation. In practice, the unstable
mode is obtained as the eigen function corresponding
to a negative eigenvalue of the Hessian matrix of the
2× 2 supercell. The procedure is illustrated in Figure
(2) for the well known T-T’ phase transition of MoS2

[11]. The left panel shows the atomic structure and
phonon band structure of monolayer MoS2 in the T-
phase. Both the primitive unit cell (black) and the 2×2
supercell (orange) are indicated. The CBP method
identifies an unstable mode at the BZ boundary (M
point). After displacing the atoms along the unstable
mode, a distorted structure is obtained, which after
relaxation leads to the dynamically stable T’-phase of
MoS2 shown in the right panel.

In this work, we have applied the method system-
atically to 137 dynamically unstable 2D materials. The
137 monolayers were selected from the C2DB according
to the following two criteria: First, to ensure that all
materials are chemically ”reasonable”, only materials
with a low formation energy were selected. Specifi-
cally, we require that ∆Hhull < 0.2 eV/atom, where
∆Hhull is the energy above the convex hull defined by
the most stable (possibly mixed) bulk phases of the rel-
evant composition[34, 28]. Secondly, we consider only
materials with exactly one unstable mode, i.e. one
negative eigenvalue of the Hessian matrix at a given
q-point.

The 137 dynamically unstable materials were
displaced along the only unstable mode. The
size of the displacement was chosen such that the
maximum atomic displacement was exactly 0.1 Å.
This displacement size was chosen based on the MoS2

example discussed above, where it results in a minimal
number of subsequent relaxation steps. A smaller
value does not guarantee that the system leaves the
saddle point, while a larger value creates a too large
distortion resulting in additional relaxation steps.
During relaxation the unit cell was allowed to change
with no symmetry constraints and the relaxation was
stopped when the forces on all atoms were below 0.01
eV / Å.

2.3. Machine learning method

Finally, we describe the machine learning approach
that we will employ in an attempt to accelerate the pre-
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Figure 1. Phonon band structure for monolayer MoS2 in the H-phase (left), NbSSe (middle), and MoS2 in the T-phase (right).
Note that imaginary phonon frequencies are represented by negative values. The CBP protocol (orange dots) is sufficient to conclude
that a material is dynamically stable (unstable) in the situations depicted in the left (right) panels. In contrast, when the relevant
distortion requires a supercell larger than a 2 × 2, and the phonon frequencies are real at the center and boundary of the BZ, the
CBP protocol will result in a false positive result.
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Figure 2. The CBP protocol captures the instability of the T-phase (left) of MoS2. Both the primitive unit cell (black) and the
2 × 2 supercell (orange) are shown. Displacing the atoms along the unstable TA mode at the M-point (q = ( 1

2
, 0)), which can be

accommodated in the 2× 1 supercell, and subsequently relaxing the structure results in the dynamically stable T’-phase (right).

diction of dynamic instabilities. Our choice of machine
learning algorithm is the library, XGBoost [35], due
to its robustness and flexibility, while being a simpler
model compared to neural network methods. XGBoost

is a regularized high-performance implementation of
gradient tree boosting, which makes predictions based
on an ensemble of gradient boosted decision trees. The
decision trees of the ensemble are grown sequentially
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while learning from the mistakes of the previous trees
by minimizing the loss function through gradient de-
scent. This loss function is regularized to reduce the
complexity of the individual decision trees which re-
duces the risk of overfitting. In contrast, in the widely
used decision tree ensemble model Random Forest, the
decision trees are grown independently and without
any regularization.

The dataset used is a subset of C2DB and
consists of 3295 materials, which does not include the
137 distorted materials identified in the first part of
the paper (as these will be used as a particularly
challenging test case for the model performance). As
input for the model we use the radially projected
density of states (RAD-PDOS) material fingerprints.
The RAD-PDOS starts from the wave functions
projected onto the atomic orbitals (ν) of all the atoms
(a) of the crystal, ρaνnk = |〈ψnk|aν〉|2. For each state,
these projections are then combined into a radially
distributed orbital pair correlation function,

ρνν
′

nk (R) =
∑
aa′

ρaνnkρ
a′ν′

nk G
(
R− |Ra −Ra′ |; δR

)
× exp (−αRR) (1)

Finally, the radial functions are distributed on an
energy grid,

ρνν
′
(R,E) =

∑
nk

ρνν
′

nk (R)G
(
E − (εnk − EF ); δE

)
× exp (−αER) , (2)

where G(x; δ) is a Gaussian of width δ centered at
x = 0. For the materials in the dataset, the s, p,
and d orbitals lead to six unique components of the
RAD-PDOS fingerprint. The fingerprint involves some
hyperparameters for which we use the values Emin =
−10eV, Emax = 10eV, NE = 25, δE = 0.3eV, αE =
0.2eV−1, Rmin = 0, Rmax = 5Å, NR = 20, δR =

0.25Å, αR = 0.33Å
−1

.
In addition to the RAD-PDOS fingerprint, we

consider a low-dimensional fingerprint consisting of six
features, namely the PBE electronic band gap (εPBE

gap ),
crystal formation energy (∆H), density of states at the
Fermi level (DOS@EF ), energy above the convex hull
(∆Hhull), the total energy per atom in the unit cell
and the total energy. The six-dimensional fingerprint
is used to train a ”baseline” ML model that we use to
benchmark the performance of the ML model based on
the more involved RAD-PDOS fingerprint. Common
to all the features considered is that they are obtained
from a single DFT calculation and thus are much faster
to compute that the phonon frequencies.

The gradient boosting model introduces several
hyperparameters such as depth of the trees, learning

rate, minimum loss gain to perform a split and
minimum weights in tree leafs. These parameters
are optimized using Bayesian optimization where a
Gaussian process is fitted to the mean test ROC-AUC
of a 10-fold cross-validation.

The XGBoost classification model is in fact a
logistic regression model, i.e. the output of the model
is a number between 0 and 1 which is interpreted as a
probability. In our case, 0 (1) refers to a dynamically
stable (unstable) material.

3. Results

3.1. Assessment of the CBP protocol

To test the validity the CBP protocol, we have
performed full phonon calculations for a set of 20
monolayers predicted as dynamically stable by the
CBP protocol. The 20 materials were randomly
selected from the C2DB and cover 7 different
crystal structures. Out of the 20 materials 10 are
metals and 10 are insulators/semiconductors. The
calculated phonon band structures are reported in
the supplementary material. For all materials, the
phonon frequencies obtained with the CBP protocol
equal the frequencies of the full phonon band structure
at the q-points q ∈ {(0, 0), ( 1

2 , 0), (0, 12 ), ( 1
2 ,

1
2 )}. This

is expected as the phonons at these q-points can be
accommodated by the 2× 2 supercell.

Within the set of 20 materials, we find three
False-positive cases, namely CoTe2, NbSSe, and TaTe2.
These materials exhibit unstable modes (imaginary
frequencies or equivalently negative force constant
eigenvalues) in the interior of the BZ (NbSSe and
TaTe2) or at the K-point (CoTe2), while all phonon
frequencies at the q-points covered by the CBP
protocol, are real. This relatively low percentage
of False-positives in our representative samples is
consistent with the work by Mounet et al.[23] who
computed the full phonon band structure of 258
monolayers predicted to be (easily) exfoliable from
known bulk compounds. Applying the CBP protocol
to their data yields 14 False-positive cases; half of these
are transition metal dichalcogenides (TMDs) with Co,
Nb or Ta.

We note that the small imaginary frequencies in
the out of plane modes around the Γ-point seen in some
of the phonon band structures are not distortions, but
are rather due to the interpolation of the dynamical
matrix. In particularly, these artifacts occur because
of the broken crystal point-group symmetry in the
force constant matrix and they will vanish if a larger
supercell is used or the rotational sum rule is imposed
[36].
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Figure 3. The 137 dynamically unstable 2D materials studied in this work can be divided into two groups depending on whether
the negative eigenvalues of the Hessian matrix at q = {( 1

2
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2
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2

)} are equal (left panel) or different (right panel). For the

first group of materials, displacing the atoms along the mode at q = ( 1
2
, 0) and relaxing in a 2 × 1 supercell, yields a dynamically

stable structure in 43/91 cases. For the second group, displacing the atoms along q = ( 1
2
, 1
2

) and relaxing in a 2× 2 supercell, yields
a dynamically stable structure in 6/46 cases.

3.2. Stable distorted monolayers

The 137 dynamically unstable materials, which were
selected from the C2DB according to the criteria
described in Section 2.2, can be divided into two groups
depending on whether the eigenvalues of the Hessian
at the wave vectors qx = ( 1

2 , 0), qy = (0, 12 ) and qxy =
( 1
2 ,

1
2 ), are equal or not. Equality of the eigenvalues

implies an isotropic Hessian. For such materials, we
generate distorted structures by displacing the atoms
along the unstable mode at qx = ( 1

2 , 0), followed by
relaxation in a 2 × 1 supercell. In the case of an
anisotropic Hessian, the atoms were displaced along
qxy = ( 1

2 ,
1
2 ) and relaxed in a 2× 2 supercell.

After atomic displacement and subsequent relax-
ation, the CBP protocol was applied again to test for
dynamical stability of the distorted structures. His-
tograms of the minimum eigenvalue of the Hessian ma-
trix are shown in Figure (3) with the materials before
and after atomic displacement shown in the upper and

lower panels, respectively. Negative eigenvalues, corre-
sponding to unstable materials, are shown in red while
positive eigenvalues are shown in green. Out of the
137 unstable materials, 49 become dynamically stable
(according to the CBP protocol). By far the highest
success rate for generating stable crystals was found
for the isotropic materials (left panel), where 43 out of
91 materials became stable while only 6 out of the 43
anisotropic materials became stable.

A wide range of elementary properties of the 49
distorted, dynamically stable materials were computed
using the C2DB workflow (see Table (1) in [28] for a
complete list of the properties). The atomic structures
together with the calculated properties are available
in the C2DB. Table (1) provides an overview of
the symmetries, minimal Hessian eigenvalues, total
energies, and electronic band gap of the 49 materials
before and after the distortion.

Apart from the reduction in symmetry, the
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Material Space group - Wyckoff ∆Hhull [eV/atom] min(ω̃2) [eV/Å2] εPBE
gap [eV]

before after before after before after before after

AgBr2 187-bi 1-a 0.05 0.00 -1.01 0.00 0.00 0.00
AgCl2 164-bd 1-a 0.05 0.00 -2.60 0.06 0.00 0.00
AsClTe 156-ac 1-a 0.19 0.02 -0.51 0.25 1.29 1.48
CdBr 2-i 1-a 0.18 0.07 -1.00 0.03 0.00 1.28
CdCl 156-ab 1-a 0.17 0.04 -0.74 0.17 0.00 1.67
CoSe 164-bd 2-i 0.05 0.03 -4.82 0.09 0.00 0.00
CrBrCl 156-abc 1-a 0.11 0.06 -0.98 0.15 0.00 0.64
CrBr2 164-bd 1-a 0.10 0.06 -0.59 0.07 0.00 0.49
CrCl2 164-bd 1-a 0.11 0.05 -1.87 0.15 0.00 0.76
CrSSe 156-abc 1-a 0.15 0.09 -9.75 0.71 0.00 0.00
CrS2 156-abc 2-i 0.18 0.05 -15.62 0.74 0.00 0.00
CrSe2 156-abc 2-i 0.14 0.05 -12.17 0.77 0.00 0.00
CrTe2 156-abc 2-i 0.02 0.01 -1.71 0.08 0.00 0.00
CrPS3 3-1-a 1-a 0.09 0.03 -3.13 0.00 0.00 0.34
FePSe3 3-1-a 1-a 0.13 0.12 -0.42 0.04 0.13 0.13
FeSe2 187-bi 1-a 0.15 0.00 -2.04 0.00 0.00 0.00
HfBrCl 156-abc 1-a 0.14 0.03 -9.61 0.40 0.00 0.82
HfBrI 156-abc 1-a 0.22 0.05 -10.41 0.39 0.00 0.73
HfBr2 164-bd 2-i 0.14 0.04 -10.21 0.41 0.00 0.8
HfCl2 164-bd 2-i 0.14 0.04 -8.51 0.38 0.00 0.85
HgSe 156-ab 1-a 0.11 0.04 -0.83 0.04 0.08 0.37
HgTe 156-ab 1-a 0.11 0.04 -0.61 0.04 0.08 0.37
InTe 156-ab 1-a 0.18 0.10 -0.41 0.23 0.00 0.00
InBrSe 59-ab 2-i 0.03 0.02 -0.50 0.04 1.23 1.23
InSe 187-hi 6-ab 0.00 0.00 -0.28 0.01 1.39 1.39
MoSeTe 156-abc 1-a 0.20 0.08 -10.67 0.69 0.00 0.00
MoTe2 164-bd 2-i 0.17 0.01 -13.23 0.67 0.00 0.00
NbS2 187-bi 6-ab 0.00 0.00 -1.08 0.06 0.00 0.00
NbTe2 187-bi 1-a 0.00 0.00 -0.37 0.51 0.00 0.00
PdI2 164-bd 1-a 0.17 0.03 -0.56 0.12 0.00 0.59
RhI2 164-bd 1-a 0.17 0.17 -0.64 0.04 0.00 0.00
RhO2 164-bd 2-i 0.16 0.15 -2.19 0.65 0.00 0.00
RhTe2 164-bd 1-a 0.11 0.07 -1.67 0.36 0.00 0.13
ScI3 162-dk 1-a 0.00 0.00 -0.25 0.02 1.85 1.85
TiBrCl 156-abc 1-a 0.05 0.00 -9.15 0.52 0.00 0.29
TiBr2 164-bd 1-a 0.06 0.04 -0.54 0.30 0.00 0.12
TiCl2 164-bd 2-i 0.11 0.00 -9.99 0.53 0.00 0.32
TiO2 164-bd 6-ab 0.14 0.12 -1.96 0.47 2.70 2.85
TiS2 187-bi 4-a 0.14 0.14 -0.49 0.00 0.73 0.79
TiPSe3 1-a 4-a 0.16 0.00 -1.24 0.00 0.00 0.00
VTe2 164-bd 6-ab 0.02 0.00 -1.05 0.38 0.00 0.00
ZrBrCl 156-abc 1-a 0.12 0.02 -8.05 0.40 0.00 0.59
ZrBrI 156-abc 1-a 0.15 0.02 -8.89 0.38 0.00 0.48
ZrBr2 164-bd 2-i 0.11 0.00 -8.65 0.47 0.00 0.59
ZrClI 156-abc 1-a 0.19 0.07 -8.69 0.26 0.00 0.48
ZrCl2 164-bd 1-a 0.11 0.03 -7.13 0.46 0.00 0.60
ZrI2 164-bd 2-i 0.14 0.00 -8.59 0.48 0.00 0.43
ZrS2 187-bi 2-i 0.19 0.18 -0.80 0.15 0.96 1.13

Table 1. Some of the calculated properties of the subset of the 137 materials that became dynamically stable after displacing the
atoms along an unstable phonon mode. The properties are shown before and after the distortion, i.e. for the original dynamically
unstable structures and the final dynamically stable structures, respectively.

distortion also lowers the total energy of the materials.
An important descriptor for the thermodynamic
stability of a material is the energy above the convex
hull, ∆Hhull. Figure (4) shows a plot of ∆Hhull before
and after the distortion of the 49 materials. The
reduction in energy upon distortion ranges from 0 to
0.2 eV/atom. In fact, several of the materials come
very close to the convex hull and some even fall onto the
hull, indicating their global thermodynamic stability
(at T = 0 K) with respect to the reference bulk phases.

We note that all DFT energies, including the reference
bulk phases, were calculated using the PBE xc-
functional, which does not account for van der Waals
interactions. Accounting for the vdW interactions will
downshift the energies of layered bulk phases and thus
increase ∆Hhull for the monolayers slightly. This effect
will, however, not influence the relative stability of the
pristine and distorted monolayers, which is the main
focus of the current work.

Another characteristic trend observed is the



Predicting and machine learning structural instabilities in 2D materials 8

0.00 0.05 0.10 0.15 0.20

H (before)
hull [eV/atom]

0.00

0.05

0.10

0.15

0.20
H

(a
fte

r)
hu

ll
[e

V
/a

to
m

]

Figure 4. The energy above the convex hull for the 49
monolayers before and after distortion. Materials with a

∆H
(after)
hull close to zero are expected to be thermodynamically

stable. The range up to 0.05 eV/atom above the convex
hull has been indicated by a shaded blue region to visualise
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Figure 5. The average energy gain for the new stable materials
is -0.067 eV / atom and the average gap opening is 0.29 eV.

opening/increase of the electronic band gap. The
increase of the single-particle band gap is expected to
be related to the total energy gained by making the
distortion. Figure (5) shows the relation between the
two quantities. Simplified models, for low dimensional
systems and weak electron-phonon coupling, predict
a proportionality between these two quantities [37].
From our results it is clear that there is no universal
relationship between the change in band gap and total
energy. In particular, several of the metals show large

gain in total energy while the gap remains zero.
It is interesting that within a threshold of 0.1 eV

21 of the distorted and dynamically stable materials
exhibit direct band gaps. Atomically thin direct band
gap semiconductors are highly relevant as building
blocks for opto-electronic or photonic devices, but
only a hand full of such materials are known to date
e.g. monolayers of transition metal dichalcogenides
[38, 39] and black phosphorous [40]. As an example
of a monolayer material that drastically changes from
a metal to a direct band gap semiconductor upon
distortion, we show the band structure of CdBr in
Figure (6). The initial unstable metallic phase of the
material becomes a dynamically stable upon distortion
and opens a direct band gap of 1.28 eV at the C point.

3.3. Machine learning accelerated prediction of
dynamical stability

We next attempt to accelerate the dynamic stability
prediction using the machine learning model outlined
in Section 2.3.

As an introductory exercise we consider the
correlation between dynamical stability and six
elementary materials properties, namely the energy
above the convex hull, the PBE band gap, the DOS
at the Fermi level, the total energy, the total energy
per atom, and heat of formation. Figure 7 shows
the distribution of these properties over the 3295
2D materials. The materials have been split into
dynamically stable (blue) and dynamically unstable
materials (orange), respectively. There is a clear
correlation between dynamical stability and the first
three materials properties shown in panels a-c. In
particular, dynamically stable materials are closer to
the convex hull, have larger band gap, and lower DOS
at EF as compared to dynamically unstable materials.
The observed correlation with ∆Hhull is consistent with
previous findings based on phonon calculations[28]. In
contrast, no or only weak correlation is found for the
last three quantities in panels d-f. These six properties
were used as a low-dimensional feature vector for
training an XGBoost machine learning model that will
serve as a baseline for an XGBoost model trained
on the higher dimensional RAD-PDOS representation
described in Sec. 2.3.

To evaluate the performance of our model we
employ the receiver operating characteristic (ROC)
curve. The ROC curve maps out the number
of materials correctly predicted as unstable as a
function of the number of materials incorrectly labelled
as unstable, and it is calculated by varying the
classification tolerance of the model. The area under
the curve(AUC) is a measure of the performance of the
classifier. Random guessing would amount to a linear
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Figure 6. Extreme case of gap opening for the new stable material (CdBr) where the difference in the gap between the initial
unstable metallic phase and the final structure is 1.28 eV.

ROC curve with unit slope, shown in Fig. 8 by the
dashed grey line, and correspond to an AUC of 0.5
whereas a perfect classification model would have an
AUC of 1. When calculating the ROC curve of our
dynamic stability classifier we employ ten fold cross-
validation (CV). This allows us to obtain a mean ROC
curve and its standard deviation, which we then use to
evaluate the performance of our model.

The results from the machine learning model is
shown in Fig. 8. The mean ROC curve is shown
in blue in Fig.8a; it achieves an excellent 10-fold CV
AUC of 0.90 ± 0.01. This suggests that the XGBoost
model is able to efficiently detect the dynamically
unstable materials in the C2DB. We quantify the
effect of the RAD-PDOS fingerprints by comparing
the performance of the full model with a model
trained on a reduced fingerprint based only on the
six electronic properties: the PBE electronic band
gap (εPBE

gap ), crystal formation energy (∆H), density
of states at the Fermi level (DOS@EF ), energy above
the convex hull (∆Hhull), the total energy per atom
in the unit cell and the total energy. We observe
that the effect on including the RAD-PDOS in the
fingerprint is statistically significant raising the AUC
from 0.82± 0.01 to 0.90± 0.01. The relative impact of

the RAD-PDOS fingerprints is shown in the feature
importance evaluation in Fig. 8c. Here feature
importance refers to how many times a feature is
used to perform a split in the decision trees, and
the feature importance have been summed for the six
different components of the RAD-PDOS fingerprints,
i.e. summing the radial distance and energy axes of the
fingerprint. The vertical dashed black line shows the
feature importance of random noise for reference. We
observe that especially the RAD-PDOS ss fingerprint
leads to many splits in the gradient boosted trees.

Because of the strong performance of the model,
we envision that it can be deployed directly after the
initial relaxation step of a high-throughput workflow to
reduce the number of phonon calculations needed to re-
move the dynamically unstable materials. Depending
on the number of stable candidates that one is willing
to falsely label as unstable, it is possible to save a signif-
icant amount of phonon-calculations by pre-screening
with the ML model. The willingness to sacrifice mate-
rials is controlled by the classification tolerance. The
trade-off between the number of unstable materials re-
moved and the number of stable materials lost is di-
rectly mapped out by the ROC curve. In Fig. 8b we
have indicated the classification thresholds where we



Predicting and machine learning structural instabilities in 2D materials 10

0.0 0.5 1.0

Hhull [eV/atom]

0

2

4

6

N
or

m
al

iz
ed

co
un

t
a)

Dyn. stable
Dyn. unstable

0 1 2 3 4

εPBE
gap [eV]

0.0

0.2

0.4

×0.1

b)

0.0 2.5 5.0 7.5 10.0

DOS at EF

0.0

0.1

0.2

×0.2

c)

−80 −60 −40 −20

Etotal [eV]

0.00

0.01

0.02

0.03

0.04

N
or

m
al

iz
ed

co
un

t

d)

−10 −8 −6 −4 −2

Etotal/atom [eV/atom]

0.0

0.1

0.2

e)

−2 −1 0

H [eV/atom]

0.0

0.2

0.4

0.6

0.8

f)

Figure 7. Histograms of electronic features for stable and unstable materials. a) shows the distribution of the energy above the
convex hull for high and low stability predicted materials. The stable materials tend to be closer to the convex hull. b) shows
that materials predicted to be stable more frequently have a PBE band gap larger than zero. c) shows the DOS at the Fermi level
distributions, which supports that stable materials have lower DOS at EF . d) is for the total energy while e) is for total energy
per atom, which shows a slightly better seperation between stable and unstable materials as stable materials tend to have a slightly
lower total energy per atom. In f) the unstable materials tend to have a slightly larger heat of formation. Note that for b) and c)
the peaks at x = 0 for both stable and unstable materials have been scaled down by a factor of 10 and 5, respectively.

0.0 0.5 1.0
False unstable prediction rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

un
st

ab
le

pr
ed

ic
tio

n
ra

te

a)

ML model
AUC = 0.90 ± 0.01
Baseline ML model
AUC = 0.82 ± 0.01

0.0 0.1 0.2 0.3
False unstable prediction rate

b)

TPR = 56 ± 9
TPR = 70 ± 6
TPR = 85 ± 3

0 1000 2000
Importance

sd

pd

dd

sp

pp

ss

c)

Noise

Figure 8. Machine learning results. a) shows the ROC curves for a machine learning model trained on RAD-PDOS fingerprints
and a baseline model trained on electronic features from the C2DB. The AUC scores are 0.91 and 0.82, respectively. b) shows the
ROC curves zoomed on low false prediction rates with different classification thresholds highlighted with vertical lines. By accepting
5% of the stable materials being falsely characterised as unstable, we can correctly label 56± 9% of the unstable materials. For 10%
the true prediction rate is 70± 6% and for 20% it is 85± 3%. c) shows feature importances of the different RAD-PDOS fingerprints
measured as how many times the fingerprints are used to perform a split in the ML model. The RAD-PDOS ss fingerprint is found
to be the most important fingerprint for the ML model.
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lose 5%, 10% and 20 % of the stable materials, and we
observe that we can save 56±9%, 70±6% and 85±3% of
the computations for the three thresholds, respectively.

As an additional test of the machine learning
model we apply it to the set of the 137 dynamically
unstable materials that were investigated using the
CBP protocol in the first part of the paper. The
dynamical stability of the materials is evaluated by
the ML model both before and after being pushed
along an unstable mode (recall that before the push
all the 137 materials are unstable; after the push the
subset of 49 materials listed in Table 1 become stable
while the other materials remain unstable). It is found
that before the push 56% of the unstable materials are
labeled correctly. After the push, only 29% of the
unstable materials are labelled as unstable while the
accuracy of the stable materials are 72%. Overall, the
ML model performs worse on this test set than on a
randomly selected test set from the original data set.
An obvious explanation is that the 137 materials were
selected according to (i) low energy above the convex
hull (∆Hhull < 0.2eV/atom) and (ii) dynamically
unstable. As seen from Fig. 7a such materials are
highly unusual and not well represented by the set of
materials used to train the model.

4. Conclusions

In conclusion, we have performed a systematic study
of structural instabilities in 2D materials. We have
validated a simple protocol (here referred to as the
CBP protocol) for identifying dynamical instabilities
based on the frequency of phonons at the center and
boundary of the BZ. The CBP protocol correctly
classifies 2D materials as dynamically stable/unstable
in 236 out of 250 cases[23] and is ideally suited for
high-throughput studies where the computational cost
of evaluating the full phonon band structure becomes
prohibitive.

For 137 dynamically unstable monolayers with
low formation energies, we displaced the atoms along
an unstable phonon mode and relaxed the structure
in a 2 × 1 or 2 × 2 supercell. This resulted in
49 distorted, dynamically stable monolayers. The
success rate of obtaining a dynamically stable structure
from this protocol was found to be significantly
higher for materials with only one unstable phonon
mode as compared to cases with several modes.
In the latter case, the displacement vector is not
unique and different choices generally lead to different,
(dynamically unstable) structures. The 49 stable
structures were fully characterised by an extensive
computational property workflow and the results are
available via the C2DB database. The properties of

the distorted structures can deviate significantly from
the original high symmetry structures, and we found
only a weak, qualitative relation between the gain in
total energy and band gap opening upon distortion.

Finally, we trained a machine learning classifica-
tion model to predict the dynamical stability using a
radially decomposed projected density of states (RAD-
PDOS) representation as input and a gradient boosting
decision tree ensemble method (XGBoost) as learning
algorithm. The model achieves an excellent ROC-AUC
score of 0.90 and lends itself to high-throughput assess-
ment of dynamical stability.

5. Acknowledgments

The Center for Nanostructured Graphene (CNG)
is sponsored by the Danish National Research
Foundation, Project DNRF103. This project has
received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020
research and innovation program grant agreement No
773122 (LIMA). K. S. T. is a Villum Investigator
supported by VILLUM FONDEN (grant no. 37789).

References

[1] Kohn W and Sham L J 1965 Phys. Rev. 140(4A) A1133–
A1138
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Abstract
The Computational 2D Materials Database (C2DB) is a highly curated open database organising a
wealth of computed properties for more than 4000 atomically thin two-dimensional (2D)
materials. Here we report on new materials and properties that were added to the database since its
first release in 2018. The set of new materials comprise several hundred monolayers exfoliated from
experimentally known layered bulk materials, (homo)bilayers in various stacking configurations,
native point defects in semiconducting monolayers, and chalcogen/halogen Janus monolayers. The
new properties include exfoliation energies, Bader charges, spontaneous polarisations, Born
charges, infrared polarisabilities, piezoelectric tensors, band topology invariants, exchange
couplings, Raman spectra and second harmonic generation spectra. We also describe refinements
of the employed material classification schemes, upgrades of the computational methodologies
used for property evaluations, as well as significant enhancements of the data documentation and
provenance. Finally, we explore the performance of Gaussian process-based regression for efficient
prediction of mechanical and electronic materials properties. The combination of open access,
detailed documentation, and extremely rich materials property data sets make the C2DB a unique
resource that will advance the science of atomically thin materials.

1. Introduction

The discovery of new materials, or new properties
of known materials, to meet a specific industrial
or scientific requirement, is an exciting intellectual
challenge of the utmost importance for our envir-
onment and economy. For example, the successful
transition to a society based on sustainable energy
sources and the realisation of quantum technologies
(e.g. quantum computers and quantum communic-
ation) depend critically on new materials with novel
functionalities. First-principles quantum mechanical
calculations, e.g. based on density functional the-
ory (DFT) [1], can predict the properties of mater-
ials with high accuracy even before they are made

in the lab. They provide insight into mechanisms
at the most fundamental (atomic and electronic)
level and can pinpoint and calculate key properties
that determine the performance of the material at
the macroscopic level. Powered by high-performance
computers, atomistic quantum calculations in com-
bination with data science approaches, have the
potential to revolutionise the way we discover and
develop new materials.

Atomically thin, two-dimensional (2D) crystals
represent a fascinating class of materials with excit-
ing perspectives for both fundamental science and
technology [2–5]. The family of 2D materials has
been growing steadily over the past decade and counts
about a hundred materials that have been realised

© 2021 The Author(s). Published by IOP Publishing Ltd
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in single-layer or few-layer form [6–10]. While some
of these materials, including graphene, hexagonal
boron nitride (hBN), and transition metal dichal-
cogenides (TMDCs), have been extensively studied,
the majority have only been scarcely characterised
and remain poorly understood. Computational stud-
ies indicate that around 1000 already known layered
crystals have sufficiently weak interlayer (IL) bond-
ing to allow the individual layers to be mechanic-
ally exfoliated [11, 12]. Supposedly, even more 2D
materials could be realised beyond this set of already
known crystals. Adding to this the possibility of stack-
ing individual 2D layers (of the same or different
kinds) into ultrathin van der Waals (vdW) crystals
[13], and tuning the properties of such structures
by varying the relative twist angle between adjacent
layers [14, 15] or intercalating atoms into the vdW
gap [16, 17], it is clear that the prospects of tailor
made 2D materials are simply immense. To support
experimental efforts and navigate the vast 2D mater-
ials space, first-principles calculations play a pivotal
role. In particular, FAIR5 [18] databases populated by
high-throughput calculations can provide a conveni-
ent overview of known materials and point to new
promising materials with desired (predicted) proper-
ties. Such databases are also a fundamental require-
ment for the successful introduction and deployment
of artificial intelligence in materials science.

Many of the unique properties exhibited by 2D
materials have their origin in quantum confinement
and reduced dielectric screening. These effects tend
to enhance many-body interactions and lead to pro-
foundly new phenomena such as strongly bound
excitons [19–21] with nonhydrogenic Rydberg series
[22–24], phonons and plasmons with anomalous dis-
persion relations [25, 26], large dielectric band struc-
ture renormalisations [27, 28], unconventional Mott
insulating and superconducting phases [14, 15], and
high-temperature exciton condensates [29]. Recently,
it has become clear that long range magnetic order
can persist [30, 31] and (in-plane) ferroelectricity
even be enhanced [32], in the single layer limit.
In addition, first-principles studies of 2D crystals
have revealed rich and abundant topological phases
[33, 34]. The peculiar physics ruling the world of 2D
materials entails that many of the conventional the-
ories and concepts developed for bulk crystals break
down or require special treatments when applied to
2D materials [26, 35, 36]. This means that com-
putational studies must be performed with extra
care, which in turn calls for well-organised and well-
documented 2D property data sets that can form
the basis for the development, benchmarking, and
consolidation of physical theories and numerical
implementations.

5 FAIR data are data which meet principles of findability, accessib-
ility, interoperability, and reusability.

The Computational 2D Materials Database
(C2DB) [6, 37] is a highly curated and fully open
database containing elementary physical properties
of around 4000 2D monolayer crystals. The data
has been generated by automatic high-throughput
calculations at the level of DFT and many-body
perturbation theory as implemented in the GPAW
[38, 39] electronic structure code. The computa-
tional workflow is constructed using the atomic sim-
ulation recipes (ASR) [40]—a recently developed
Python framework for high-throughput materials
modelling building on the atomic simulation envir-
onment (ASE) [41]—and managed/executed using
the MyQueue task scheduler [42].

The C2DB differentiates itself from existing
computational databases of bulk [43–45] and low-
dimensional [11, 12, 46–50] materials, by the large
number of physical properties available, see table 1.
The use of beyond-DFT theories for excited state
properties (GW band structures and Bethe–Salpeter
equation (BSE) absorption for selectedmaterials) and
Berry-phase techniques for band topology and polar-
isation quantities (spontaneous polarisation, Born
charges, piezoelectric tensors), are other unique fea-
tures of the database.

The C2DB can be downloaded in its entirety or
browsed and searched online. As a new feature, all
data entries presented on the website are accom-
panied by a clickable help icon that presents a sci-
entific documentation (‘what does this piece of data
describe?’) and technical documentation (‘how was
this piece of data computed?’). This development
enhances the usability of the database and improves
the reproducibility and provenance of the data con-
tained in C2DB. As another novelty it is possible to
download all property data pertaining to a specific
material or a specific type of property, e.g. the band
gap, for allmaterials thus significantly improving data
accessibility.

In this paper, we report on the significant C2DB
developments that have taken place during the
past two years. These developments can be roughly
divided into four categories: (1) General updates
of the workflow used to select, classify, and stabil-
ity assess the materials. (2) Computational improve-
ments for properties already described in the 2018
paper. (3) New properties. (4) New materials. The
developments, described in four separate sections,
cover both original work and review of previously
published work. In addition, we have included some
outlook discussions of ongoing work. In the last
section we illustrate an application of statistical learn-
ing to predict properties directly from the atomic
structure.

2. Selection, classification, and stability

Figure 1 illustrates the workflow behind the C2DB. In
this section we describe the first part of the workflow

2
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Table 1. Properties calculated by the C2DB monolayer workflow. The computational method and the criteria used to decide whether the
property should be evaluation for a given material is also shown. A ‘∗’ indicates that spin–orbit coupling (SOC) is included. All
calculations are performed with the GPAW code using a plane wave basis except for the Raman calculations, which employ a double-zeta
polarised basis of numerical atomic orbitals [51].

Property Method Criteria Count

Bader charges PBE None 3809
Energy above convex hull PBE None 4044
Heat of formation PBE None 4044
Orbital projected band structure PBE None 2487
Out-of-plane dipole PBE None 4044
Phonons (Γ and BZ corners) PBE None 3865
Projected density of states PBE None 3332
Stiffness tensor PBE None 3968
Exchange couplings PBE Magnetic 538
Infrared polarisability PBE EPBEgap > 0 784
Second harmonic generation PBE EPBEgap > 0, non-magnetic,

non-centrosymmetric
375

Electronic band structure PBE PBE∗ None 3496
Magnetic anisotropies PBE∗ Magnetic 823
Deformation potentials PBE∗ EPBEgap > 0 830
Effective masses PBE∗ EPBEgap > 0 1272
Fermi surface PBE∗ EPBEgap = 0 2505
Plasma frequency PBE∗ EPBEgap = 0 3144
Work function PBE∗ EPBEgap = 0 4044
Optical polarisability RPA@PBE None 3127
Electronic band structure HSE06@PBE∗ None 3155
Electronic band structure G0W0@PBE

∗ EPBEgap > 0, Natoms < 5 357
Born charges PBE, Berry phase EPBEgap > 0 639
Raman spectrum PBE, LCAO basis set Non-magnetic, dyn. stable 708
Piezoelectric tensor PBE, Berry phase EPBEgap , non-centrosym. 353
Optical absorbance BSE@G0W0

∗ EPBEgap > 0, Natoms < 5 378
Spontaneous polarisation PBE, Berry phase EPBEgap > 0, nearly centrosym.

polar space group
151

Topological invariants PBE∗, Berry phase 0< EPBEgap < 0.3 eV 242

Figure 1. The workflow behind the C2DB. After the structural relaxation, the dimensionality of the material is checked and it is
verified that the material is not already present in the database. Next, the material is classified according to its chemical
composition, crystal structure, and magnetic state. Finally, the thermodynamic and dynamic stabilities are assessed from the
energy above the convex hull and the sign of the minimum eigenvalues of the dynamical matrix and stiffness tensor. Unstable
materials are stored in the database; stable materials are subject to the property workflow. The C2DB monolayer database is
interlinked with databases containing structures and properties of multilayer stacks and point defects in monolayers from the
C2DB.
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until the property calculations (red box), focusing
on aspects related to selection criteria, classification,
and stability assessment, that have been changed or
updated since the 2018 paper.

2.1. Structure relaxation
Given a prospective 2D material, the first step is to
carry out a structure optimisation. This calculation is
performed with spin polarisation and with the sym-
metries of the original structure enforced. The latter is
done to keep the highest level of control over the res-
ulting structure by avoiding ‘uncontrolled’ symmetry
breaking distortions. The prize to pay is a higher risk
of generating dynamically unstable structures.

2.2. Selection: dimensionality analysis
A dimensionality analysis [52] is performed to
identify and filter out materials that have disin-
tegrated into non-2D structures during relaxation.
Covalently bonded clusters are identified through an
analysis of the connectivity of the structures where
two atoms are considered to belong to the same
cluster if their distance is less than some scaling of
the sum of their covalent radii, i.e. d< k(r covi + r covj ),
where i and j are atomic indices. A scaling factor
of k= 1.35 was determined empirically. Only struc-
tures that consist of a single 2D cluster after relaxation
are further processed. Figure 2 shows three examples
(graphene, Ge2Se2, and Pb2O6) of structures and
their cluster dimensionalities before and after relax-
ation. All structures initially consist of a single 2D
cluster, but upon relaxation Ge2Se2 and Pb2O6 disin-
tegrate into two 2D clusters as well as one 2D and two
0D clusters, respectively. On the other hand, the relax-
ation of graphene decreases the in-plane lattice con-
stant but does not affect the dimensionality. Accord-
ing to the criterion defined above only graphene will
enter the database.

2.3. Selection: ranking similar structures
Maintaining a high-throughput database inevitably
requires a strategy for comparing similar structures
and ranking themaccording to their relevance. In par-
ticular, this is necessary in order to identify differ-
ent representatives of the same material e.g. result-
ing from independent relaxations, and thereby avoid
duplicate entries and redundant computations. The
C2DB strategy to this end involves a combination of
structure clustering and Pareto analysis.

First, a single-linkage clustering algorithm is used
to group materials with identical reduced chem-
ical formula and ‘similar’ atomic configurations. To
quantify configuration similarity a slightly modi-
fied version of PyMatGen’s [53] distance metric is
employed where the cell volume normalisation is
removed to make it applicable to 2D materials sur-
rounded by vacuum. Roughly speaking, the metric
measures the maximum distance an atom must be
moved (in units of Å) in order to match the two

Figure 2. Three example structures from C2DB (top:
graphene, middle: Ge2Se2, bottom: Pb2O6) with their
respective cluster dimensionalities cluster before (left) and
after (right) relaxation. The number NxD denotes the
number of clusters of dimensionality x. Note that the
number of atoms of the structures depicted in the left and
right columns can differ because the relaxation can change
the lattice constants.

atomic configurations. Two atomic configurations
belong to the same cluster if their distance is below
an empirically determined threshold of 0.3 Å.

At this point, the simplest strategy would be to
remove all but the most stable compound within a
cluster. However, this procedure would remove many
high symmetry crystals for which a more stable dis-
torted version exists. For example, the well known
T-phase of MoS2 would be removed in favour of
the more stable T ′-phase. This is undesired as high-
symmetry structures, even if dynamically unstable at
T= 0, may provide useful information and might in
fact become stabilised at higher temperatures [54].
Therefore, the general strategy adopted for the C2DB,
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Figure 3. Illustration of the Pareto analysis used to filter out duplicates or irrelevant structures from the C2DB. All points
represent materials with the same reduced chemical formula (in this case ReS2) that belong to the same cluster defined by the
structure metric. Only structures lying on the (N,∆H)-Pareto front are retained (black circles) while other materials are excluded
(red circles). The philosophy behind the algorithm is to keep less stable materials if they contain fewer atoms per unit cell than
more stable materials and thus represent structures of higher symmetry.

is to keep a material that is less stable than another
material of the same cluster if it has fewer atoms in
its primitive unit cell (and thus typically higher sym-
metry). Precisely, materials within a given cluster are
kept only if they represent a defining point of the (N,
∆H)-Pareto front, where N is the number of atoms
in the unit cell and ∆H is the heat of formation. A
graphical illustration of the Pareto analysis is shown
in figure 3 for the case of ReS2.

2.4. Classification: crystal structure
The original C2DB employed a crystal prototype clas-
sification scheme where specific materials were pro-
moted to prototypes and used to label groups of
materials with the same or very similar crystal struc-
ture. This approach was found to be difficult to
maintain (as well as being non-transparent). Instead,
materials are now classified according to their crys-
tal type defined by the reduced stoichiometry, space
group number, and the alphabetically sorted labels of
the occupiedWyckoff positions. As an example,MoS2
in the H-phase has the crystal type: AB2-187-bi.

2.5. Classification: magnetic state
In the new version of the C2DB, materials are classi-
fied according to their magnetic state as either non-
magnetic or magnetic. A material is considered mag-
netic if any atomhas a localmagneticmoment greater
than 0.1 µB.

In the original C2DB, the magnetic category was
further subdivided into ferromagnetic (FM) and anti-
ferromagnetic (AFM). But since the simplest anti-
ferromagnetically ordered state typically does not
represent the true ground state, all material entries
with an AFM state have been removed from the
C2DB and replaced by the material in its FM state.
Although the latter is less stable, it represents a

more well defined state of the material. Crucially, the
nearest neighbour exchange couplings for all mag-
netic materials have been included in the C2DB (see
section 5.8). This enables amore detailed and realistic
description of the magnetic order via the Heisenberg
model. In particular, the FM state of a material is not
expected to represent the true magnetic ground if the
exchange coupling J< 0.

2.6. Stability: thermodynamic
The heat of formation,∆H, of a compound is defined
as its energy per atom relative to its constituent ele-
ments in their standard states [55]. The thermody-
namic stability of a compound is evaluated in terms of
its energy above the convex hull, ∆Hhull, which gives
the energy of the material relative to other compet-
ing phases of the same chemical composition, includ-
ing mixed phases [6], see figure 4 for an example.
Clearly, ∆Hhull depends on the pool of reference
phases, which in turn defines the convex hull. The
original C2DB employed a pool of reference phases
comprised by 2807 elemental and binary bulk crys-
tals from the convex hull of the Open Quantum
Materials Database (OQMD) [55]. In the new ver-
sion, this set has been extended by approximately
6783 ternary bulk compounds from the convex hull of
OQMD, making a total of 9590 stable bulk reference
compounds.

As a simple indicator for the thermodynamic
stability of a material, the C2DB employs three
labels (low, medium, high) as defined in table 2.
These indicators are unchanged from the original
version of the C2DB. In particular, the criterion
∆Hhull < 0.2 eV atom−1, defining the most stable
category, was established based on an extensive
analysis of 55 experimentally realised monolayer
crystals [6].

5
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Figure 4. Convex hull diagram for (Bi,I,Te)-compounds.
Green (red) colouring indicate materials that have a convex
hull energy of less than (greater than) 5 meV. The
monolayers BiI3, Bi2Te3 and BiITe lie on the convex hull.
The monolayers are degenerate with their layered bulk
parent because the vdW interactions are not captured by
the PBE xc-functional.

Table 2. Thermodynamic stability indicator assigned to all
materials in the C2DB.∆H and∆Hhull denote the heat of
formation and energy above the convex hull, respectively.

Thermodynamic stability
indicator Criterion (eV atom−1)

Low ∆H> 0.2
Medium ∆H< 0.2 and∆Hhull > 0.2
High ∆H< 0.2 and∆Hhull < 0.2

It should be emphasised that the energies of
both monolayers and bulk reference crystals are
calculated with the Perdew-Burke-Ernzerhof (PBE)
xc-functional [56]. This implies that some inac-
curacies must be expected, in particular for mater-
ials with strongly localised d-electrons, e.g. certain
transition metal oxides, and materials for which
dispersive interactions are important, e.g. layered
van der Waals crystals. The latter implies that the
energy of a monolayer and its layered bulk parent (if
such exists in the pool of references) will have the
same energy. For further details and discussions see
reference [6].

2.7. Stability: dynamical
Dynamically stable materials are situated at a local
minimumof the potential energy surface and are thus
stable to small structural perturbations. Structures
resulting from DFT relaxations can end up in saddle
point configurations because of imposed symmetry
constraints or an insufficient number of atoms in the
unit cell.

In C2DB, the dynamical stability is assessed from
the signs of the minimum eigenvalues of (1) the
stiffness tensor (see section 3.1) and (2) the Γ-point

Hessian matrix for a supercell containing 2× 2 repe-
titions of the unit cell (the structure is not relaxed in
the 2× 2 supercell). If one of these minimal eigen-
values is negative the material is classified as dynam-
ically unstable. This indicates that the energy can be
reduced by displacing an atom and/or deforming the
unit cell, respectively. The use of two categories for
dynamical stability, i.e. stable/unstable, differs from
the original version of the C2DB where an interme-
diate category was used for materials with negative
but numerically small minimal eigenvalue of either
the Hessian or stiffness tensors.

3. Improved property methodology

The new version of the C2DB has been generated
using a significantly extended and improved work-
flow for property evaluations. This section focuses on
improvements relating to properties that were already
present in the original version of the C2DB while new
properties are discussed in the next section.

3.1. Stiffness tensor
The stiffness tensor, C, is a rank-4 tensor that relates
the stress of amaterial to the applied strain. InMandel
notation (a variant of Voigt notation) C is expressed
as anN ×N matrix relating theN independent com-
ponents of the stress and strain tensors. For a 2D
material N = 3 and the tensor takes the form:

C=

 Cxxxx Cxxyy

√
2Cxxxy

Cxxyy Cyyyy

√
2Cyyxy√

2Cxxxy

√
2Cyyxy 2Cxyxy

 , (1)

where the indices on the matrix elements refer to the
rank-4 tensor. The factors multiplying the tensor ele-
ments account for their multiplicities in the full rank-
4 tensor. In the C2DB workflow, C is calculated as a
finite difference of the stress under an applied strain
with full relaxation of atomic coordinates. A negat-
ive eigenvalue of C signals a dynamical instability, see
section 2.7.

In the first version of the C2DB only the diagonal
elements of the stiffness tensor were calculated. The
new version also determines the shear components
such that the full 3× 3 stiffness tensor is now avail-
able. This improvement also leads to a more accurate
assessment of dynamical stability [57].

3.2. Effective masses with parabolicity estimates
For all materials with a finite band gap the effective
masses of electrons and holes are calculated for bands
within 100 meV of the conduction band minimum
and valence band maximum, respectively. The Hes-
sian matrices at the band extrema (BE) are determ-
ined by fitting a second order polynomium to the
PBE band structure including SOC, and the effective
masses are obtained by subsequent diagonalisation of
the Hessian. The main fitting-procedure is unaltered
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Figure 5. Left: The PBE band structures of Rh2Br6 and MoS2 (coloured dots) in regions around the conduction band minimum.
The dashed red line shows the fit made to estimate the effective masses of the lowest conduction band. The shaded grey region
highlights the error between the fit and the true band structure. The mean absolute relative error (MARE) discussed in the main
text is calculated for energies within 25 meV of the band minimum. For MoS2 the fit is essentially on top of the band energies.
Right: The distribution of the MARE of all effective mass fits in the C2DB. The inset shows the full distribution on a log scale. As
mentioned in the main text, very large MAREs indicate that the band minimum/maximum was incorrectly identified by the
algorithm and/or that the band is very flat. Only three materials have MAREs> 1000% but these each have several bands for
which the fit fails.

from the first version of C2DB, but two important
improvements have been made.

The first improvement consists in an additional k-
mesh refinement step for better localisation of the BE
in the Brillouin zone. After the location of the BE has
been estimated based on a uniformly sampled band
structure with k-point density of 12 Å, another one-
shot calculation is performed with a denser k-mesh
around the estimated BE positions. This ensures a
more accurate and robust determination of the loc-
ation of the BE, which can be important in cases
with a small but still significant spin–orbit splitting or
when the band is very flat or non-quadratic around
the BE. The second refinement step is the same as
in the first version of C2DB, i.e. the band energies
are calculated on a highly dense k-mesh in a small
disc around the BE, and the Hessian is obtained by
fitting the band energies in the range up to 1 meV
from the BE.

The second improvement is the calculation of the
mean absolute relative error (MARE) of the polyno-
mial fit in a 25 meV range from the BE. The value of
25 meV corresponds to the thermal energy at room
temperature and is thus the relevant energy scale for
many applications. To make the MARE independent
of the absolute position of the band we calculate the
average energy of the band over the 25meV and com-
pare the deviation of the fit to this energy scale. The
MARE provides a useful measure of the parabolicity

of the energy bands and thus the validity of the effect-
ive mass approximation over this energy scale.

Figure 5 shows two examples of band struc-
tures with the effective mass fits and corresponding
fit errors indicated. Additionally, the distribution of
MARE for all the effective mass fits in the C2DB
are presented. Most materials have an insignificant
MARE, but a few materials have very large errors.
Materials with a MARE above a few hundreds of per-
centages fall into two classes. For some materials the
algorithm does not correctly find the position of the
BE. An example is Ti2S2 in the space group C2/m. For
others, the fit and BE location are both correct, but
the band flattens away from the BE which leads to a
large MARE as is the case for Rh2Br6 shown in the
figure or Cl2Tl2 in the space group P-1. In general a
small MARE indicates a parabolic band while materi-
als with large MARE should be handled on a case-by-
case basis.

3.3. Orbital projected band structure
To facilitate a state-specific analysis of the PBE Kohn–
Sham wave functions, an orbital projected band
structure (PBS) is provided to complement the pro-
jected density of states (PDOS). In the PAW meth-
odology, the all-electron wave functions are projec-
ted onto atomic orbitals inside the augmentation
spheres centred at the position of each atom. The
PBS resolves these atomic orbital contributions to the

7
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Figure 6. Orbital projected band structure and orbital projected density of states of MoS2 in the H-phase. The pie chart symbols
indicate the fractional atomic orbital character of the Kohn–Sham wave functions.

wave functions as a function of band and k-point
whereas the PDOS resolves the atomic orbital char-
acter of the total density of states as a function of
energy. The SOC is not included in the PBS or PDOS,
as its effect is separately visualised by the spin-PBS
also available in the C2DB.

As an example, figure 6 shows the PBS (left) and
PDOS (right) of monolayer MoS2 calculated with
PBE. The relative orbital contribution to a givenBloch
state is indicated by a pie chart symbol. In the present
example, one can deduce from the PBS that even
though Mo-p orbitals and S-p orbitals contribute
roughly equally to the DOS in the valence band, the
Mo-p orbital contributions are localised to a region in
the BZ around theM-point, whereas the S-p orbitals
contribute throughout the entire BZ.

3.4. Corrected G0W0 band structures
The C2DB contains G0W0 quasiparticle (QP) band
structures of 370 monolayers covering 14 different
crystal structures and 52 chemical elements. The
details of these calculations can be found in the ori-
ginal C2DB paper [6]. A recent in-depth analysis of
the 61.716 G0W0 data points making up the QP band
structures led to several important conclusions relev-
ant for high-throughput G0W0 calculations. In par-
ticular, it identified the linear QP approximation as
a significant error source in standard G0W0 calcu-
lations and proposed an extremely simple correc-
tion scheme (the empirical Z (empZ) scheme), that
reduces this error by a factor of two on average.

The empZ scheme divides the electronic states
into two classes according to the size of the QP
weight, Z. States with Z ∈ [0.5, 1.0] are classified as
QP consistent (QP-c) while states with Z ̸∈ [0.5,1.0]
are classified as QP inconsistent (QP-ic). With this
definition, QP-c states will have at least half of their
spectral weight in the QP peak. The distribution of

the 60.000+ Z-values is shown in figure 7. It turns
out that the linear approximation to the self-energy,
which is the gist of the QP approximation, introduces
significantly larger errors for QP-ic states than for
QP-c states. Consequently, the empZmethod replaces
the calculated Z of QP-ic states with the mean of the
Z-distribution, Z0 ≈ 0.75. This simple replacement
reduces the average error of the linear approximation
from 0.11 to 0.06 eV.

An illustration of the method applied to MoS2 is
shown in figure 7. The original uncorrected G0W0

band structure is shown in blue while the empZ cor-
rected band structure is shown in orange. MoS2 has
only one QP-ic state in the third conduction band at
the K-point. Due to a break-down of the QP approx-
imation for this state, the G0W0 correction is greatly
overestimated leading to a local discontinuity in the
band structure. The replacement of Z by Z0 for this
particular state resolves the problem. All G0W0 band
structures in the C2DB are now empZ corrected.

3.5. Optical absorbance
In the first version of the C2DB, the optical absorb-
ance was obtained from the simple expression [6]

A(ω)≈ ωImα2D(ω)

ϵ0c
, (2)

whereα2D is the long wavelength limit of the in-plane
sheet polarisability density (note that the equation
is written here in SI units). The sheet polarisabil-
ity is related to the sheet conductivity via σ2D(ω) =
−iωα2D(ω). The expression (2) assumes that the elec-
tric field inside the layer equals the incoming field (i.e.
reflection is ignored), and hence, it may overestimate
the absorbance.

In the new version, the absorbance is evaluated
from A= 1−R−T, where R and T are the reflected
and transmitted powers of a plane wave at normal
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Figure 7. Top: Distribution of the 61 716 QP weights (Z)
contained in the C2DB. The blue part of the distribution
shows QP-consistent (QP-c) Z-values while the orange part
shows QP-inconsistent (QP-ic) Z values. In general, the
linear expansion of the self-energy performed when solving
the QP equation works better for Z closer to 1. About 0.3%
of the Z-values lie outside the interval from 0 to 1 and are
not included in the distribution. Bottom: G0W0 band
structure before (blue) and after (orange) applying the
empZ correction, which replaces Z by the mean of the
distribution for QP-ic states. In the case of MoS2 only one
state at K is QP-ic.

incidence, respectively. These can be obtained from
the conventional transfer matrix method applied to
a monolayer suspended in vacuum. The 2D mater-
ial is here modelled as an infinitely thin layer with a
sheet conductivity. Alternatively, it can be modelled
as quasi-2D material of thickness d with a ‘bulk’ con-
ductivity of σ = σ2D/d [58], but the two approaches
yield very similar results, since the optical thickness
of a 2D material is much smaller than the optical
wavelength. Within this model, the expression for the
absorbance of a suspended monolayer with the sheet
conductivity σ2D reads:

A(ω) = Re
{
σ2D(ω)η0

}∣∣∣∣ 2

2+σ2D(ω)η0

∣∣∣∣2 , (3)

where η0 = 1/(ϵ0c)≈ 377 Ω is the vacuum imped-
ance.

If the light–matter interaction is weak, i.e.
|σ2Dη0| ≪ 1, equation (3) reduces to equation (2).

Nonetheless, due the strong light–matter interaction
in some 2D materials, this approximation is not reli-
able in general. In fact, it can be shown that the max-
imum possible absorption from equation (3) is 50%,
which is known as the upper limit of light absorp-
tion in thin films [59]. This limit is not guaranteed
by equation (2), which can even yield an absorbance
above 100%.

As an example, figure 8 shows the absorption
spectrum of monolayer MoS2 for in- and out-of-
plane polarised light as calculated with the exact
equation (3) and the approximate equation (2),
respectively. In all cases the sheet polarisability is
obtained from the BSE to account for excitonic effects
[6]. For weak light–matter interactions, e.g. for the z-
polarised light, the two approaches agree quite well,
but noticeable differences are observed in regions
with stronger light–matter interaction.

4. Newmaterials in the C2DB

In this section we discuss the most significant exten-
sions of the C2DB in terms of new materials. The
set of materials presented here is not complete, but
represents the most important and/or well defined
classes. The materials discussed in sections 4.1 and
4.2 (MXY Janus monolayers and monolayers extrac-
ted from experimental crystal structure databases)
are already included in the C2DB. The materials
described in sections 4.3 and 4.4 (homo-bilayers and
monolayer point defect systems) will soon become
available as separate C2DB-interlinked databases.

4.1. MXY Janus monolayers
The class of TMDC monolayers of the type MX2
(where M is the transition metal and X is a chalco-
gen) exhibits a large variety of interesting and unique
properties and has been widely discussed in the liter-
ature [60]. Recent experiments have shown that it is
not only possible to synthesise different materials by
changing the metal M or the chalcogen X, but also by
exchanging the X on one side of the layer by another
chalcogen (or halogen) [61–63]. This results in a class
of 2D materials known as MXY Janus monolayers
with brokenmirror symmetry and finite out-of-plane
dipolemoments. The prototypicalMXY crystal struc-
tures are shown in figure 9 for the case of MoSSe
and BiTeI, which have both been experimentally real-
ised [61–63]. Adopting the nomenclature from the
TMDCs, the crystal structures are denoted as H- or
T-phase, depending on whether X and Y atoms are
vertically aligned or displaced, respectively.

In a recent work [64], the C2DB workflow was
employed to scrutinise and classify the basic elec-
tronic and optical properties of 224 different MXY
Janus monolayers. All data from the study is avail-
able in the C2DB. Here we provide a brief discussion
of the Rashba physics in these materials and refer the

9
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Figure 8. Optical absorption of standalone monolayer MoS2 for x/y-polarisation (left) and z-polarisation (right) at normal
incident in the BSE framework, obtained using equation (2) (blue) or equation (3) (orange). The crystal structure cross-sectional
views are shown in the inset with the definition of directions.

Figure 9. Atomic structure of the MXY Janus monolayers in
the H-phase (left) and T-phase (right). The two prototype
materials MoSSe and BiTeI are examples of experimentally
realised monolayers adopting these crystal structures (not
to scale).

interested reader to [64] for more details and analysis
of other properties.

A key issue when considering hypothetical mater-
ials, i.e. materials not previously synthesised, is their
stability. The experimentally synthesised MoSSe and
BiTeI are both found to be dynamically stable and
lie within 10 meV of the convex hull confirming
their thermodynamic stability. Out of the 224 ini-
tial monolayers 93 are classified as stable according to
the C2DB criteria (dynamically stable and ∆Hhull <
0.2 eV atom−1). Out of the 93 stable materials, 70
exhibit a finite band gap when computed with the
PBE xc-functional.

The Rashba effect is a momentum dependent
splitting of the band energies of a 2D semiconductor
in the vicinity of a band extremum arising due to
the combined effect of spin–orbit interactions and
a broken crystal symmetry in the direction perpen-
dicular to the 2D plane. The simplest model used to
describe the Rashba effect is a 2D electron gas in a per-
pendicular electric field (along the z-axis). Close to

the band extremum, the energy of the two spin bands
is described by the Rashba Hamiltonian [65, 66]:

H= αR(σ× k) · êz, (4)

whereσ is the vector of Pauli matrices, k= p/ℏ is the
wave number, and the Rashba parameter is propor-
tional to the electric field strength, αR ∝ E0.

Although the Rashba Hamiltonian is only meant
as a qualitative model, it is of interest to test its valid-
ity on the Janus monolayers. The electric field of
the Rashba model is approximately given by E0 =
∆Vvac/d, where∆Vvac is the shift in vacuumpotential
on the two sides of the layer (see left inset of figure 10)
and d is the layer thickness. Assuming a similar thick-
ness for all monolayers, the electric field is propor-
tional to the potential shift. Not unexpected, the lat-
ter is found to correlate strongly with the difference in
electronegativity of the X and Y atoms, see left panel
of figure 10.

The Rashba energy, ER, can be found by fitting
E(k) = ℏ2k2/2m∗ ±αRk to the band structure (see
right inset of figure 10) and should scale with the elec-
tric field strength. However, as seen from the right
panel of figure 10, there is no correlation between the
two quantities. Hence we conclude that the simple
Rashba model is completely inadequate and that the
strength of the perpendicular electric field cannot be
used to quantify the effect of spin–orbit interactions
on band energies.

4.2. Monolayers from known layered bulk crystals
The C2DB has been extended with a number of
monolayers that are likely exfoliable from experi-
mentally known layered bulk compounds. Specific-
ally, the Inorganic Crystal Structure Database (ICSD)
[67] and CrystallographyOpenDatabase (COD) [68]

10
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Figure 10. Left: Correlation between the electronegativity difference of X and Y in MXY Janus monolayers and the vacuum level
shift across the layer. Right: Correlation between the Rashba energy and the vacuum level shift. Structures in the H-phase (e.g.
MoSSe) are shown in black while structures in the T-phase (e.g. BiTeI) are shown in orange. The linear fit has the slope
1.35 eV/∆χ (Pauling scale). The insets show the definition of the vacuum level shift and the Rashba energy, respectively.
Modified from [64].

have first been filtered for corrupted, duplicate and
theoretical compounds, which reduce the initial set
of 585.485 database entries to 167.767 unique mater-
ials. All of these have subsequently been assigned a
‘dimensionality score’ based on a purely geometrical
descriptor. If the 2D score is larger than the sum of
0D, 1D and 3D scores we regard the material as being
exfoliable and we extract the individual 2D compon-
ents that comprise the material (see also section 2.2).
We refer to the original work on the method for
details [52] and note that similar approaches were
applied in [11, 12] to identify potentially exfoliable
monolayers from the ICSD and COD.

The search has been limited to bulk compounds
containing less than six different elements and no
rare earth elements. This reduces the set of relevant
bulk materials to 2991. For all of these we extracted
the 2D components containing less than 21 atoms
in the unit cell, which were then relaxed and sorted
for duplicates following the general C2DB workflow
steps described in sections 2.1–2.3. At this point 781
materials remain. This set includes most known 2D
materials and 207 of the 781 were already present
in the C2DB prior to this addition. All the materi-
als (including those that were already in C2DB) have
been assigned an ICSD/COD identifier that refers to
the parent bulk compound fromwhich the 2Dmater-
ial was computationally exfoliated.We emphasise that
we have not considered exfoliation energies in the
analysis and a subset of these materials may thus be
rather strongly bound and challenging to exfoliate
even if the geometries indicate van der Waals bonded
structures of the parent bulk compounds.

Figure 11 shows the distribution of energies
above the convex hull for materials derived from

parent structures in ICSD or COD as well as for the
entire C2DB, which includes materials obtained from
combinatorial lattice decoration as well. As expected,
the materials derived from experimental bulk materi-
als are situated rather close to the convex hull whereas
those obtained from lattice decoration extend to ener-
gies far above the convex hull. It is also observed that
a larger fraction of the experimentally derived mater-
ials are dynamically stable. There are, however, well
known examples of van der Waals bonded structures
where the monolayer undergoes a significant lattice
distortion, which will manifest itself as a dynamical
instability in the present context. For example, bulk
MoS2 exists in van derWaals bonded structures com-
posed of either 2 H-MoS2 or 1 T-MoS2 layers, but a
monolayer of the 1 T phase undergoes a structural
deformation involving a doubling of the unit cell [69]
and is thus categorised as dynamically unstable by
the C2DBworkflow. The dynamically stablematerials
derived from parent bulk structures in the ICSD and
COD may serve as a useful subset of the C2DB that
are likely to be exfoliable from known compounds
and thus facilitate experimental verification. As a first
application the subset has been used to search for
magnetic 2Dmaterials, which resulted in a total of 85
ferromagnets and 61 anti-ferromagnets [70].

4.3. Outlook: multilayers
The C2DB is concerned with the properties of cova-
lently bonded monolayers (see discussion of dimen-
sionality filtering in section 2.2). However, multilayer
structures composed of two or more identical mono-
layers are equally interesting and often have prop-
erties that deviate from those of the monolayer. In
fact, the synthesis of layered vdW structures with a
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Figure 11. Distribution of energies above the convex hull
for the 2D materials extracted from bulk compounds in
ICSD and COD (top) and for the entire C2DB including
those constructed from combinatorial lattice decoration
(bottom). Dynamically stable materials are indicated in
blue.

controllable number of layers represents an interest-
ing avenue for atomic-scale materials design. Several
examples of novel phenomena emerging in layered
vdW structures have been demonstrated including
direct-indirect band gap transitions inMoS2 [71, 72],
layer-parity selective Berry curvatures in few-layer
WTe2 [73], thickness-dependent magnetic order in
CrI3 [74, 75], and emergent ferroelectricity in bilayer
hBN [76].

As a first step towards a systematic exploration of
multilayer 2D structures, the C2DB has been used as
basis for generating homobilayers in various stack-
ing configurations and subsequently computing their
properties following a modified version of the C2DB
monolayer workflow. Specifically, the most stable
monolayers (around 1000) are combined into bilay-
ers by applying all possible transformations (unit
cell preserving point group operations and transla-
tions) of one layer while keeping the other fixed. The
candidate bilayers generated in this way are subject
to a stability analysis, which evaluates the binding
energy and optimal IL distance based on PBE-D3 [77]
total energy calculations keeping the atoms of the
monolayers fixed in their PBE relaxed geometry, see
figures 12 and table 3.

Figure 12. An illustration of the optimisation of the
interlayer (IL) distance for MoS2 in the AA stacking. The
black crosses are the points sampled by the optimisation
algorithm while the blue curve is a spline interpolation of
the black crosses. The inset shows the MoS2 AA stacking
and the definition of the IL distance is indicated with a
black double-sided arrow.

Table 3. Exfoliation energies for selected materials calculated with
the PBE+D3 xc-functional as described in section 4.3 and
compared with the DF2 and rVV10 results from [11]. The
spacegroups are indicated in the column ‘SG’. All numbers are in
units of meV Å−2.

Material SG PBE+D3 DF2 rVV10

MoS2 P-6m2 28.9 21.6 28.8
MoTe2 P-6m2 30.3 25.2 30.4
ZrNBr Pmmn 18.5 10.5 18.5
C P6/mmm 18.9 20.3 25.5
P Pmna 21.9 38.4 30.7
BN P-6m2 18.9 19.4 24.4
WTe2 P-6m2 32.0 24.7 30.0
PbTe P3m1 23.2 27.5 33.0

The calculated IL binding energies are generally in
the range from a few to a hundred meV Å−2 and IL
distances range from1.5 to 3.8 Å. A scatter plot of pre-
liminary binding energies and IL distances is shown
in figure 13. The analysis of homobilayers provides an
estimate of the energy required to peel a monolayer
off a bulk structure. In particular, the binding energy
for the most stable bilayer configuration provides a
measure of the exfoliation energy of the monolayer.
This key quantity is now available for all monolayers
in the C2DB, see section 5.1.

4.4. Outlook: point defects
The C2DB is concerned with the properties of 2D
materials in their pristine crystalline form. How-
ever, as is well known the perfect crystal is an ideal-
ised model of real materials, which always contain
defects in smaller or larger amounts depending on
the intrinsic materials properties and growth condi-
tions. Crystal defects often have a negative impact on

12



2D Mater. 8 (2021) 044002 M N Gjerding et al

Figure 13. Scatter plot of the calculated interlayer distance
and binding energies of (homo)bilayers of selected
materials from C2DB. A few well known materials are
highlighted: MoS2, graphene (C2), and hexagonal boron
nitride (hBN). The bilayer binding energies provide an
estimate of the monolayer exfoliation energies, see
section 5.1.

physical properties, e.g. they lead to scattering and life
time-reduction of charge carriers in semiconductors.
However, there are also important situations where
defects play a positive enabling role, e.g. in doping of
semiconductors, as colour centres for photon emis-
sion [78, 79] or as active sites in catalysis.

To reduce the gap between the pristine model
material and real experimentally accessible samples,
a systematic evaluation of the basic properties of the
simplest native point defects in a selected subset of
monolayers from the C2DB has been initiated. The
monolayers are selected based on the stability of the
pristine crystal. Moreover, only non-magnetic semi-
conductors with a PBE band gap satisfying Egap >
1 eV are currently considered as such materials are
candidates for quantum technology applications like
single-photon sources and spin qubits. Following
these selection criteria around 300 monolayers are
identified and their vacancies and intrinsic substitu-
tional defects are considered, yielding a total of about
1500 defect systems.

Each defect system is subject to the same work-
flow, which is briefly outlined below. To enable point
defects to relax into their lowest energy configuration,
the symmetry of the pristine host crystal is intention-
ally broken by the chosen supercell, see figure 14 (a).
In order tominimise defect–defect interaction, super-
cells are furthermore chosen such that the minimum
distance between periodic images of defects is larger
than 15 Å. Unique point defects are created based on
the analysis of equivalent Wyckoff positions for the
host material. To illustrate some of the properties that
will feature in the upcoming point defect database, we
consider the specific example of monolayer CH2Si.

First, the formation energy [80, 81] of a given
defect is calculated from PBE total energies. Next,

Slater–Janak transition state theory is used to obtain
the charge transition levels [82, 83]. By combining
these results, one obtains the formation energy of
the defect in all possible charge states as a function
of the Fermi level. An example of such a diagram is
shown in figure 14 (b) for the case of the VC and CSi
defects in monolayer CH2Si. For each defect and each
charge state, the PBE single-particle energy level dia-
gram is calculated to provide a qualitative overview of
the electronic structure. A symmetry analysis [84] is
performed for the defect structure and the individual
defect states lying inside the band gap. The energy
level diagram of the neutral VSi defect in CH2Si is
shown in figure 14 (c), where the defect states are
labelled according to the irreducible representations
of the Cs point group.

In general, excited electronic states can be mod-
elled by solving the Kohn–Sham equations with non-
Aufbau occupations. The excited-state solutions are
saddle points of the Kohn–Sham energy functional,
but common self-consistent field (SCF) approaches
often struggle to find such solutions, especially when
nearly degenerate states are involved. The calcula-
tion of excited states corresponding to transitions
between localised states inside the band gap is there-
fore performed using an alternative method based
on the direct optimisation (DO) of orbital rotations
in combination with the maximum overlap method
(MOM) [85]. This method ensures fast and robust
convergence of the excited states, as compared to SCF.
In figure 14 (d), the reorganisation energies for the
ground and excited state, as well as the zero-phonon
line (ZPL) energy are sketched. For the specific case of
the Si vacancy inCH2Si, theDO-MOMmethod yields
EZPL = 3.84 eV, λ

reorg
gs = 0.11 eV and λreorgexc = 0.16 eV.

For systems with large electron-phonon coupling (i.e.
Huang–Rhys factor > 1) a one-dimensional approx-
imation for displacements along the main phonon
mode is used to produce the configuration coordin-
ate diagram (see figure 14 (d)). In addition to the ZPL
energies and reorganisation energies, the Huang–
Rhys factors, photoluminescence spectrum from the
1D phonon model, hyperfine coupling and zero field
splitting are calculated.

5. New properties in the C2DB

This section reports on new properties that have
become available in the C2DB since the first release.
The employed computational methodology is
described in some detail and results are compared
to the literature where relevant. In addition, some
interesting property correlations are considered along
with general discussions of the general significance
and potential application of the available data.

5.1. Exfoliation energy
The exfoliation energy of a monolayer is estimated as
the binding energy of its bilayer in the most stable

13



2D Mater. 8 (2021) 044002 M N Gjerding et al

Figure 14. Overview of some of the properties included in the 2D defect database project for the example host material CH2Si.
(a) The supercell used to represent the defects (here a Si vacancy). The supercell is deliberately chosen to break the symmetry of
the host crystal lattice. (b) Formation energies of a C vacancy (green) and C–Si substitutional defect (purple). (c) Energy and
orbital symmetry of the localised single-particle states of the VSi defect for both spin channels (left and right). The Fermi level is
shown by the dotted line. (d) Schematic excited state configuration energy diagram. The transitions corresponding to the vertical
absorption and the zero-phonon emission are indicated.

stacking configuration (see also section 4.3). The
binding energy is calculated using the PBE+D3 xc-
functional [86] with the atoms of both monolayers
fixed in the PBE relaxed geometry. Table 3 compares
exfoliation energies obtained in this way to values
from Mounet et al [11] for a representative set of
monolayers.

5.2. Bader charges
For all monolayers we calculate the net charge on the
individual atoms using the Bader partitioning scheme
[87]. The analysis is based purely on the electron
density, which we calculate from the PAW pseudo
density plus compensation charges using the PBE xc-
functional. Details of the method and its implement-
ation can be found in Tang et al [88]. In section 5.4
we compare and discuss the relation between Bader
charges and Born charges.

5.3. Spontaneous polarisation
The spontaneous polarisation (Ps) of a bulk mater-
ial is defined as the charge displacement with respect
to that of a reference centrosymmetric structure
[89, 90]. Ferroelectric materials exhibit a finite value

of Ps that may be switched by an applied external field
and have attracted a large interest for a wide range of
applications [91–93].

The spontaneous polarisation in bulk materials
can be regarded as electric dipole moment per unit
volume, but in contrast to the case of finite systems
this quantity is ill-defined for periodic crystals [89].
Nevertheless, one can define the formal polarisation
density:

P=
1

2π

e

V

∑
l

ϕlal, (5)

where al (with l ∈ {1,2,3 }) are the lattice vectors
spanning the unit cell,V is the cell volume and e is the
elementary charge. ϕl is the polarisation phase along
the lattice vector defined by:

ϕl =
∑
i

Zibl ·ui −ϕelecl , (6)

where bl is the reciprocal lattice vector satisfying bl ·
Rl = 2π and ui is the position of nucleus iwith charge
eZi. The electronic contribution to the polarisation
phase is defined as:
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Figure 15. Depicted in the blue plot is the formal
polarisation calculated along the adiabatic path for GeSe,
using the methods described in the main text. The orange
plot shows the energy potential along the path as well as
outside. Figure inset: The structure of GeSe in the two
non-centrosymmetric configurations corresponding to
−Ps and Ps and the centrosymmetric configuration.

ϕelecl =
1

Nk⊥bl
Im

∑
k∈BZ⊥bl

× ln
Nk∥bl−1∏
j=0

det
occ

[
⟨unk+jδk⟩

∣∣umk+( j+1)δk

]
,

(7)

where BZ⊥bl = {k|k · bl = 0} is a plane of k-points
orthogonal to bl, δk is the distance between neigh-
bouring k-points in the bl direction andNk∥bl (Nk⊥bl)
is the number of k-points along (perpendicular to)
the bl direction. These expression generalise straight-
forwardly to 2D.

The formal polarisation is onlywell-definedmod-
ulo eRn/V where Rn is any lattice vector. However,
changes in polarisation are well defined and the spon-
taneous polarisation may thus be obtained by:

Ps =

ˆ 1

0

dP(λ)

dλ
dλ, (8)

where λ is a dimensionless parameter that defines an
adiabatic structural path connecting the polar phase
(λ= 1) with a non-polar phase (λ= 0).

The methodology has been implemented in
GPAW and used to calculate the spontaneous polar-
isation of all stable materials in the C2DB with a PBE
band gap above 0.01 eV and a polar space group
symmetry. For each material, the centrosymmetric
phase with smallest atomic displacement from the
polar phase is constructed and relaxed under the con-
straint of inversion symmetry. The adiabatic path
connecting the two phases is then used to calculate the
spontaneous polarisation using equations (5)–(8). An
example of a calculation forGeSe is shown in figure 15
where the polarisation along the path connecting
two equivalent polar phases via the centrosymmet-
ric phase is shown together with the total energy. The

spontaneous polarisation obtained from the path is
39.8 nCm−1 in good agreement with previous calcu-
lations [94].

5.4. Born charges
The Born charge of an atom a at position ua in a solid
is defined as:

Za
ij =

V

e

∂Pi
∂uaj

∣∣∣∣∣
E=0

. (9)

It can be understood as an effective charge assigned to
the atom to match the change in polarisation in dir-
ection i when its position is perturbed in direction j.
Since the polarisation density and the atomic position
are both vectors, the Born charge of an atom is a rank-
2 tensor. The Born charge is calculated as a finite dif-
ference and relies on the Modern theory of polarisa-
tion [95] for the calculation of polarisation densities,
see reference [96] for more details. The Born charge
has been calculated for all stable materials in C2DB
with a finite PBE band gap.

It is of interest to examine the relation between the
Born charge and the Bader charge (see section 5.2). In
materials with strong ionic bonds one would expect
the charges to follow the atoms. On the other hand,
in covalently bonded materials the hybridisation pat-
tern and thus the charge distribution, depends on the
atom positions in a complex way, and the idea of
charges following the atom is expected to break down.
In agreement with this idea, the (in-plane) Born
charges in the strongly ionic hexagonal hBN (± 2.71e
for B and N, respectively) are in good agreement
with the calculated Bader charges (± 3.0e). In con-
trast, (the in-plane) Born charges in MoS2 (−1.08e
and 0.54e for Mo and S, respectively) deviate signi-
ficantly from the Bader charges (1.22e and−0.61e for
Mo and S, respectively). In fact, the values disagree
even on the sign of the charges underlining the non-
intuitive nature of the Born charges in covalently bon-
ded materials.

Note that the out-of-plane Born charges never
match the Bader charges, even for strongly ionic insu-
lators, and are consistently smaller in value than the
in-plane components. The smaller out-of-plane val-
ues are consistent with the generally smaller out-of-
plane polarisability of 2D materials (for both elec-
tronic and phonon contributions) and agrees with the
intuitive expectation that it is more difficult to polar-
ise a 2Dmaterial in the out-of-plane direction as com-
pared to the in-plane direction.

Figure 16 shows the average of the diagonal of
the Born charge tensor, Tr(Za)/3, plotted against the
Bader charges for all 585 materials in the C2DB for
which the Born charges have been computed. The
data points have been coloured according to the ion-
icity of the atom a defined as I(a) = |χa −⟨χ⟩|, where
χa and ⟨χ⟩ are the Pauling electronegativity of atom
a and the average electronegativity of all atoms in the
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Figure 16. Born charges, Tr(Z)/3, vs. Bader charges for
3025 atoms in the 585 materials for which the Born charges
are calculated. The colors indicate the ionicity of the atoms
(see main text).

Figure 17. Bader and in-plane Born charges vs. band gap.

unit cell, respectively. The ionicity is thus a measure
of the tendency of an atom to donate/accept charge
relative to the average tendency of atoms in themater-
ial. It is clear from figure 16 that there is a larger
propensity for the Born and Bader charges to match
in materials with higher ionicity.

Figure 17 plots the average (in-plane) Born charge
and the Bader charge versus the band gap. It is clear
that large band gap materials typically exhibit integer
Bader charges, whereas there is no clear correlation
between the Born charge and the band gap.

5.5. Infrared polarisability
The original C2DB provided the frequency depend-
ent polarisability computed in the random phase
approximation (RPA) with inclusion of electronic
interband and intraband (for metals) transitions [6].
However, phonons carrying a dipole moment (so-
called IR active phonons) also contribute to the polar-
isability at frequencies comparable to the frequency of
optical phonons. This response is described by the IR
polarisability:

Figure 18. Total polarisability, including both electrons and
phonons, of monolayer hBN in the infrared (IR) frequency
regime. The resonance at around 180 meV is due to the
Γ-point longitudinal optical phonon. At energies above all
phonon frequencies (but below the band gap) the
polarisability is approximately constant and equal to the
static limit of the electronic polarisability, α∞.

αIR(ω) =
e2

A
ZTM−1/2

(∑
i

did
T
i

ω2i −ω2− iγω

)
M−1/2Z,

(10)

whereZ andM arematrix representations of the Born
charges and atomicmasses,ω2i and di are eigenvectors
and eigenvalues of the dynamical matrix, A is the in-
plane cell area and γ is a broadening parameter rep-
resenting the phonon lifetime and is set to 10 meV.
The total polarisability is then the sum of the elec-
tronic polarisability and the IR polarisability.

The new C2DB includes the IR polarisability of
all monolayers for which the Born charges have been
calculated (stable materials with a finite band gap),
see section (5.4). As an example, figure 18 shows the
total polarisability of monolayer hexagonal hBN. For
details on the calculation of the IR polarisability see
reference [96].

5.6. Piezoelectric tensor
The piezoelectric effect is the accumulation of
charges, or equivalently the formation of an electric
polarisation, in a material in response to an applied
mechanical stress or strain. It is an importantmaterial
characteristic with numerous scientific and techno-
logical applications in sonar, microphones, acceler-
ometers, ultrasonic transducers, energy conversion,
etc [97, 98]. The change in polarisation originates
from the movement of positive and negative charge
centres as the material is deformed.

Piezoelectricity can be described by the (proper)
piezoelectric tensor cijk with i, j,k ∈ {x,y,z}, given by
[99]:

cijk =
e

2πV

∑
l

∂ϕl
∂ϵjk

ali, (11)

which differs from equation (5) only by a derivative of
the polarisation phasewith respect to the strain tensor
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Table 4. Comparison of computed piezoelectric tensor versus
experimental values and previous calculations for hexagonal BN
and a selected set of TMDCs (space group 187). All numbers are
in units of nC/m. Experimental data for MoS2 is obtained from
[102].

Material Exp. Theory [101] C2DB

BN — 0.14 0.13
MoS2 0.3 0.36 0.35
MoSe2 — 0.39 0.38
MoTe2 — 0.54 0.48
WS2 — 0.25 0.24
WSe2 — 0.27 0.26
WTe2 — 0.34 0.34

ϵjk. Note that cijk does not depend on the chosen
branch cut.

The piezoelectric tensor is a symmetric
tensor with at most 18 independent components.
Furthermore, the point group symmetry restricts the
number of independent tensor elements and their
relationships due to the well-knownNeumann’s prin-
ciple [100]. For example, monolayerMoS2 with point
group D3h, has only one non-vanishing independ-
ent element of cijk. Note that cijk vanishes identic-
ally for centrosymmetric materials. Using a finite-
difference technique with a finite but small strain
(1% in our case), equation (11) has been used to
compute the proper piezoelectric tensor for all non-
centrosymmetric materials in the C2DB with a finite
band gap. Table 4 shows a comparison of the piezo-
electric tensors in the C2DB with literature for a
selected set of monolayer materials. Good agreement
is obtained for all these materials.

5.7. Topological invariants
For all materials in the C2DB exhibiting a direct band
gap below 1 eV, the k-space Berry phase spectrum
of the occupied bands has been calculated from the
PBE wave functions. Specifically, a particular k-point
is written as k1b1+ k2b2 and the Berry phases γn(k2)
of the occupied states on the path k1 = 0→ k1 = 1 is
calculated for each value of k2. The connectivity of
the Berry phase spectrum determines the topological
properties of the 2D Bloch Hamiltonian [103, 104].

The calculated Berry phase spectra of the relev-
ant materials are available for visual inspection on the
C2DB webpage. Three different topological invari-
ants have been extracted from these spectra and are
reported in the C2DB: (1) The Chern number, C,
takes an integer value and is well defined for any
gapped 2D material. It determines the number of
chiral edge states on any edge of the material. For any
non-magnetic material the Chern number vanishes
due to time-reversal symmetry. It is determined from
the Berry phase spectrum as the number of crossings
at any horizontal line in the spectrum. (2) The mir-
ror Chern number, CM , defined for gapped mater-
ials with a mirror plane in the atomic layer [105].
For such materials, all states may be chosen as mirror

eigenstates with eigenvalues ±i and the Chern num-
bers C± can be defined for each mirror sector separ-
ately. For a material with vanishing Chern number,
the mirror Chern number is defined as CM = (C+ −
C−)/2 and takes an integer value corresponding to
the number of edge states on any mirror symmetry
preserving edge. It is obtained from the Berry phase
spectrum as the number of chiral crossings in each
of the mirror sectors. (3) The Z2 invariant, ν, which
can take the values 0 and 1, is defined for materi-
als with time-reversal symmetry. Materials with ν= 1
are referred to as quantum spin Hall insulators and
exhibit helical edge states at any time-reversal con-
serving edge. It is determined from the Berry phase
spectrum as the number of crossing points modulus
2 at any horizontal line in the interval k2 ∈ [0, 1/2].

Figure 19 shows four representative Berry phase
spectra corresponding to the three cases of non-
vanishing C, CM and ν as well as a trivial insulator.
The four materials are: OsCl3 (space group 147)—
a Chern insulator with C= 1, OsTe2 (space group
14)—a mirror crystalline insulator with CM = 2, SbI
(spacegroup 1)—a quantum spin Hall insulator with
ν= 1 and BiITe (spacegroup 156)—a trivial insulator.
Note that a gap in the Berry phase spectrum always
implies a trivial insulator.

In [106] the C2DB was screened for materi-
als with non-trivial topology. At that point it was
found that the database contained 7 Chern insulat-
ors, 21 mirror crystalline topological insulators and
48 quantum spin Hall insulators. However, that does
not completely exhaust the the topological proper-
ties of materials in the C2DB. In particular, there
may be materials that can be topologically classified
based on crystalline symmetries other than themirror
plane of the layer. In addition, second order topolo-
gical effectsmay be present in certainmaterials, which
imply that flakes will exhibit topologically protected
corner states. Again, the Berry phase spectra may be
used to unravel the second order topology by means
of nested Wilson loops [107].

5.8. Exchange coupling constants
The general C2DB workflow described in
sections 2.1–2.3 will identify the FM ground state
of a material and apply it as starting point for sub-
sequent property calculations, whenever it is more
stable than the spin-paired ground state. In reality,
however, the FM state is not guaranteed to comprise
the magnetic ground state. In fact, AFM states often
have lower energy than the FM one, but in general
it is non-trivial to obtain the true magnetic ground
state. We have chosen to focus on the FM state due
to its simplicity and because its atomic structure and
stability are often very similar to those of other mag-
netic states. Whether or not the FM state is the true
magnetic ground state is indicated by the nearest
neighbour exchange coupling constant as described
below.
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Figure 19. Berry phase spectra of the Chern insulator OsCl3 (top left), the crystalline topological insulator OsTe2 (top right), the
quantum spin Hall insulator SbI (lower left) and the trivial insulator BiITe (lower right).

When investigating magnetic materials the ther-
modynamical properties (for example the critical
temperatures for ordering) are of crucial interest. In
two dimensions the Mermin–Wagner theorem [108]
comprises an extreme example of the importance of
thermal effects since it implies that magnetic order
is only possible at T= 0 unless the spin-rotational
symmetry is explicitly broken. The thermodynamic
properties cannot be accessed directly by DFT. Con-
sequently, magnetic models that capture the crucial
features of magnetic interactions must be employed.
For insulators, the Heisenberg model has proven
highly successful in describing magnetic properties
of solids in 3D as well as 2D [109]. It represents the
magnetic degrees of freedom as a lattice of localised
spins that interact through a set of exchange coup-
ling constants. If the model is restricted to include
only nearest neighbour exchange and assume mag-
netic isotropy in the plane, it reads:

H=− J

2

∑
⟨ij⟩

Si · Sj −
λ

2

∑
⟨ij⟩

SziS
z
j −A

∑
i

(
Szi
)2
, (12)

where J is the nearest neighbour exchange constant,
λ is the nearest neighbour anisotropic exchange con-
stant andAmeasures the strength of single-ion aniso-
tropy. We also neglect off-diagonal exchange coup-
ling constants that give rise to terms proportional to
Sxi S

y
j , S

y
i S

z
j and SziS

x
j . The out-of-plane direction has

been chosen as z and ⟨ij⟩ implies that for each site i
we sum over all nearest neighbour sites j. The para-
meters J, λ and A may be obtained from an energy
mapping analysis involving four DFT calculations
with different spin configurations [70, 110, 111]. The
thermodynamic properties of the resulting ‘first prin-
ciples Heisenberg model’ may subsequently be ana-
lysedwith classicalMonte Carlo simulations or renor-
malised spin wave theory [36, 112].

The C2DB provides the values of J, λ, and A as
well as the number of nearest neighbours Nnn and
the maximum eigenvalue of Sz (S), which is obtained
from the total magnetic moment per atom in the
FM ground state (rounded to nearest half-integer for
metals). These key parameters facilitate easy post-
processing analysis of thermal effects on themagnetic
structure. In [113] such an analysis was applied to
estimate the critical temperature of all FM materials
in the C2DB based on a model expression for TC and
the parameters from equation (12).

For metals, the Heisenberg parameters available
in C2DB should be used with care because the Heis-
enberg model is not expected to provide an accur-
ate description of magnetic interactions in this case.
Nevertheless, even for metals the sign and magnitude
of the parameters provide an important qualitative
measure of the magnetic interactions that may be
used to screen and select materials for more detailed
investigations of magnetic properties.
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A negative value of J implies the existence of an
AFM state with lower energy than the FM state used
in C2DB. This parameter is thus crucial to consider
when judging the stability and relevance of a mater-
ial classified as magnetic in C2DB (see section 2.5).
Figure 20 shows the distribution of exchange coupling
constants (weighted by S2) of the magnetic materials
in the C2DB. The distribution is slightly skewed to the
positive side indicating that FM order is more com-
mon than AFM order.

The origin ofmagnetic anisotropymay stem from
either single-ion anisotropy or anisotropic exchange
and it is in general difficult a priori to determ-
ine, which mechanism is most important. There
is, however, a tendency in the literature to neglect
anisotropic exchange terms in a Heisenberg model
description of magnetism and focus solely on the
single-ion anisotropy. In figure 20 we show a scat-
ter plot of the anisotropy parameters A and λ for the
FM materials (J> 0). The spread of the parameters
indicate that the magnetic anisotropy is in general
equally likely to originate from both mechanisms
and neglecting anisotropic exchange is not advis-
able. For ferromagnets, the model (equation (12))
only exhibits magnetic order at finite temperatures if
A(2S− 1)+λNnn > 0 [113]. Neglecting anisotropic
exchange thus excludes materials with A< 0 that sat-
isfiesA(2S− 1)+λNnn > 0. This is in fact the case for
11 FM insulators and 31 FM metals in the C2DB.

5.9. Raman spectrum
Raman spectroscopy is an important technique used
to probe the vibrational modes of a solid (or
molecule) by means of inelastic scattering of light
[114]. In fact, Raman spectroscopy is the domin-
ant method for characterising 2D materials and can
yield detailed information about chemical composi-
tion, crystal structure and layer thickness. There exist
several different types of Raman spectroscopies that
differ mainly by the number of photons and phon-
ons involved in the scattering process [114]. The first-
order Raman process, in which only a single phonon
is involved, is the dominant scattering process in
samples with low defect concentrations.

In a recent work, the first-order Raman spec-
tra of 733 monolayer materials from the C2DB were
calculated, and used as the basis for an automatic
procedure for identifying a 2D material entirely from
its experimental Raman spectrum [115]. The Raman
spectrum is calculated using third-order perturba-
tion theory to obtain the rate of scattering processes
involving creation/annihilation of one phonon and
two photons, see reference [115] for details. The
light field is written as F(t) = Finuin exp(−iωint)+
Foutuout exp(−iωoutt)+c.c. where Fin/out and ωin/out
denote the amplitudes and frequencies of the
input/output electromagnetic fields, respectively. In
addition, uin/out =

∑
i u

i
in/outei are the correspond-

ing polarisation vectors, where ei denotes the unit

Figure 20. Top: Distribution of exchange coupling
constants in C2DB. Bottom: Single-ion anisotropy A vs
anisotropic exchange λ for ferromagnetic materials with
S> 1/2. The shaded area indicates the part of parameter
space where the model (equation (12)) does not yield an
ordered state at finite temperatures.

vector along the i-direction with i ∈ {x,y,z}. Using
this light field, the final expression for the Stokes
Raman intensity involving scattering events by only
one phonon reads [115]:

I(ω) = I0
∑
ν

nν + 1

ων

∣∣∣∣∑
ij

uiinR
ν
iju

j
out

∣∣∣∣2 δ(ω−ων).

(13)

Here, I0 is an unimportant constant (since Raman
spectra are always reported normalised), and nν
is obtained from the Bose–Einstein distribution,
i.e. nν ≡ (exp[ℏων/kBT]− 1)−1 at temperature T
for a Raman mode with energy ℏων . Note that
only phonons at the Brillouin zone center (with
zero momentum) contribute to the one-phonon
Raman processes due tomomentum conservation. In
equation (13), Rν

ij is the Raman tensor for phonon
mode ν, which involves electron–phonon and dipole
matrix elements as well as the electronic trans-
ition energies and the incident excitation frequency.
Equation (13) has been used to compute the Raman
spectra of the 733 most stable, non-magnetic mono-
layers in C2DB for a range of excitation frequen-
cies and polarisation configurations. Note that the
Raman shift ℏω is typically expressed in cm−1 with
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Figure 21. Comparison of the calculated and experimental (extracted from [62]) Raman spectrum of MoS2 (left) and MoSSe
(right). The excitation wavelength is 532 nm, and both the polarisation of both the incoming and outgoing photons are along the
y-direction. The Raman peaks are labelled according to the irreducible representations of the corresponding vibrational modes.
Adapted from [115].

1 meV equivalent to 8.0655 cm−1. In addition, for
generating the Raman spectra, we have used a Gaus-
sian [G(ω) = (σ

√
2π)−1 exp(−ω2/2σ2)] with a vari-

ance σ= 3 cm−1 to replace the Dirac delta function,
which accounts for the inhomogeneous broadening
of phonon modes.

As an example, figure 21 shows the calcu-
lated Raman spectrum of monolayer MoS2 and the
Janus monolayer MoSSe (see section 4.1). Experi-
mental Raman spectra extracted from reference [62]
are shown for comparison. For both materials,
good agreement between theory and experiment is
observed for the peak positions and relative amp-
litudes of the main peaks. The small deviations can
presumably be attributed to substrate interactions
and defects in the experimental samples as well as
the neglect of excitonic effects in the calculations.
The qualitative differences between the Raman spec-
tra can be explained by the different point groups
of the materials (C3v and D3h, respectively), see ref-
erence [115]. In particular, the lower symmetry of
MoSSe results in a lower degeneracy of its vibrational
modes leading tomore peaks in the Raman spectrum.

Very recently, the Raman spectra computed
from third order perturbation theory as described
above, were supplemented by spectra obtained from
the more conventional Kramers–Heisenberg–Dirac
(KHD) approach. Within the KHD method, the
Raman tensor is obtained as the derivative of the static
electric polarisability (or equivalently, the susceptib-
ility) along the vibrational normal modes [116, 117]:

Rν
ij =

∑
αl

∂χ
(1)
ij

∂rαl

vναl√
Mα

. (14)

Here, χ(1)
ij is the (first-order) susceptibility tensor, rα

and Mα are the position and atomic mass of atom

α, respectively, and vναl is the eigenmode of phonon
ν. The two approaches, i.e. the KHD and third-order
perturbation approach, can be shown to be equi-
valent [114], at least when local field effects can be
ignored as is typically the case for 2D materials [35].
We have also confirmed this equivalence from our
calculations. Furthermore, the computational cost of
both methods is also similar [115]. However, the
KHD approach typically converge faster with respect
to both the number of bands and k-grid compared
to the third-order perturbation method. This stems
from the general fact that higher-order perturba-
tion calculations converge slower with respect to k-
grid and they require additional summations over a
complete basis set (virtual states) and hence a lar-
ger number of bands [118]. Currently, Raman spec-
tra from both approaches can be found at the C2DB
website.

5.10. Second harmonics generation
Nonlinear optical (NLO) phenomena such as har-
monic generation, Kerr, and Pockels effects are
of great technological importance for lasers, fre-
quency converters, modulators, etc. In addition,
NLO spectroscopy has been extensively employed
to obtain insight into materials properties [119]
that are not accessible by e.g. linear optical spec-
troscopy. Among numerous nonlinear processes,
second-harmonic generation (SHG) has been widely
used for generating new frequencies in lasers as well
as identifying crystal orientations and symmetries.

Recently, the SHG spectrum was calculated for
375 non-magnetic, non-centrosymmetric semicon-
ducting monolayers of the C2DB, and multiple 2D
materials with giant optical nonlinearities were iden-
tified [120]. In the SHGprocess, two incident photons
at frequency ω generate an emitted photon at fre-
quency of 2ω. Assume that a mono-harmonic electric
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Figure 22. (Left panel) SHG spectra of monolayer Ge2Se2, where only non-vanishing independent tensor elements are shown.
The vertical dashed lines mark ℏω= Eg /2 and ℏω= Eg , respectively. The crystal structure of Ge2Se2 structure is shown in the
inset. (Right panel) The rotational anisotropy of the static (ω= 0) SHG signal for parallel (blue) and perpendicular (red)
polarisation configurations with θ defined with respect to the crystal x-axis.

field writtenF(t) =
∑

iFieie−iωt+c.c. is incident on
the material, where ei denotes the unit vector along
direction i∈ {x, y, z}. The electric field induces a SHG
polarisation density P(2), which can be obtained from

the quadratic susceptibility tensor χ(2)
ijk ,

P(2)i (t) = ϵ0
∑
jk

χ
(2)
ijk (ω,ω)FiFje

−2iωt + c.c., (15)

where ε0 denotes the vacuum permittivity. χ(2)
ijk is a

symmetric (due to intrinsic permutation symmetry

i.e. χ(2)
ijk = χ

(2)
ijk ) rank-3 tensor with at most 18 inde-

pendent elements. Furthermore, similar to the piezo-
electric tensor, the point group symmetry reduces the
number of independent tensor elements.

In the C2DB, the quadratic susceptibility is calcu-
lated using density matrices and perturbation theory
[118, 121] with the involved transition dipole mat-
rix elements and band energies obtained from DFT.
The use of DFT single-particle orbitals implies that
excitonic effects are not accounted for. The number
of empty bands included in the sum over bands was
set to three times the number of occupied bands.
The width of the Fermi–Dirac occupation factor was
set to kBT= 50 meV, and a line-shape broadening
of η= 50 meV was used in all spectra. Furthermore,
time-reversal symmetry was imposed in order to
reduce the k-integrals to half the BZ. For various 2D
crystal classes, it was verified by explicit calculation
that the quadratic tensor elements fulfil the expec-
ted symmetries, e.g. that they all vanish identically for
centrosymmetric crystals.

As an example, the calculated SHG spectra for
monolayer Ge2Se2 is shown in figure 22 (left panel).

Monolayer Ge2Se2 has five independent tensor ele-

ments, χ(2)
xxx, χ

(2)
xyy , χ

(2)
xzz , χ

(2)
yyx = χ

(2)
yxy , and χ

(2)
zzx =

χ
(2)
zxz , since it is a group-IV dichalcogenide with an
orthorhombic crystal structure (space group 31 and
point group C2v). Note that, similar to the linear
susceptibility, the bulk quadratic susceptibility (with
SI units of mV−1) is ill-defined for 2D materi-
als (since the volume is ambiguous) [120]. Instead,
the unambiguous sheet quadratic susceptibility (with
SI units of m2 V−1) is evaluated. In addition to
the frequency-dependent SHG spectrum, the angu-
lar dependence of the static (ω= 0) SHG intens-
ity at normal incidence for parallel and perpendic-
ular polarisations (relative to the incident electric
field) is calculated, see figure 22 (right panel). Such
angular resolved SHG spectroscopy has been widely
used for determining the crystal orientation of 2D
materials. The calculated SHG spectra for all non-
vanishing inequivalent polarisation configurations
and their angular dependence, are available in the
C2DB.

Since C2DB has already gathered various mater-
ial properties of numerous 2D materials, it provides
a unique opportunity to investigate interrelations
between different material properties. For example,
the strong dependence of the quadratic optical
response on the electronic band gap was demon-
strated on basis of the C2DB data [120]. As another
example of a useful correlation, the static quadratic
susceptibility is plotted versus the static linear sus-
ceptibility for 67 TMDCs (with formula MX2, space
group 187) in figure 23. Note that for materials with
several independent tensor elements, only the largest
is shown. There is a very clear correlation between
the two quantities. This is not unexpected as both
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Figure 23. Scatter plot (double log scale) of the static sheet

quadratic susceptibility |χ(2)
ijk | versus the static sheet linear

susceptibility |χ(1)
ij | for 67 TMDCs (with chemical formula

MX2 and space group 187). A few well known materials are
highlighted.

the linear and quadratic optical responses are func-
tions of the transition dipole moments and transition
energies. More interestingly, the strength of the quad-
ratic response seems to a very good approximation to
be given by a universal constant times the linear sus-
ceptibility to the power of three (ignoring polarisation
indices), i.e.

χ(2)(0,0)≈ Aχ(1)(0)3, (16)

where A is only weakly material dependent. Note that
this scaling law is also known in classical optics as
semi-empirical Miller’s rule for non-resonant quad-
ratic responses [122], which states that the second
order electric susceptibility is proportional to the
product of the first-order susceptibilities at the three
frequencies involved.

6. Machine learning properties

In recent years, material scientists have shown great
interest in exploiting the use of machine learning
(ML) techniques for predicting materials properties
and guiding the search for new materials. ML is the
scientific study of algorithms and statistical models
that computer systems can use to perform a specific
task without using explicit instructions but instead
relying on patterns and inference. Within the domain
of materials science, one of the most frequent prob-
lems is the mapping from atomic configuration to
material property, which can be used e.g. to screen
large material spaces in search of optimal candidates
for specific applications [123, 124].

In the ML literature, the mathematical represent-
ation of the input observations is often referred to as
a fingerprint. Any fingerprint must satisfy a number
of general requirements [125]. In particular, a finger-
print must be:

(a) Complete: The fingerprint should incorporate all
the relevant input for the underlying problem,
i.e. materials with different properties should
have different fingerprints.

(b) Compact: The fingerprint should contain no or
a minimal number of features redundant to the
underlying problem. This includes being invari-
ant to rotations, translations and other trans-
formations that leave the properties of the system
invariant.

(c) Descriptive: Materials with similar target values
should have similar fingerprints.

(d) Simple: The fingerprint should be efficient to
evaluate. In the present context, this means that
calculating the fingerprint should be signific-
antly faster than calculating the target property.

Several types of atomic-level materials finger-
prints have been proposed in the literature, includ-
ing general purpose fingerprints based on atom-
istic properties [126, 127] possibly encoding inform-
ation about the atomic structure, i.e. atomic pos-
itions [125, 128, 129], and specialised fingerprints
tailored for specific applications (materials/proper-
ties) [130, 131].

The aim of this section is to demonstrate how
the C2DB may be utilised for ML-based prediction
of general materials properties. Moreover, the study
serves to illustrate the important role of the finger-
print for such problems. The 2Dmaterials are repres-
ented using three different fingerprints: two popular
structural fingerprints and a more advanced finger-
print that encodes information about the electronic
structure via the PDOS. The target properties include
the HSE06 band gap, the PBE heat of formation
(∆H), the exciton binding energy (EB) obtained from
the many-body BSE, the in-plane static polarisability
calculated in the RPA averaged over the x and y polar-
isation directions (⟨αi⟩), and the in-plane Voigt mod-
ulus (⟨Cii⟩) defined as 14 (C11+C22+ 2C12), whereCij

is a component of the elastic stiffness tensor in Man-
del notation.

To introduce the data, figure 24 shows pair-plots
of the dual-property relations of these properties. The
plots in the diagonal show the single-property histo-
grams, whereas the off-diagonals show dual-property
scatter plots below the diagonal and histograms above
the diagonal. Clearly, there are only weak correla-
tions between most of the properties, with the largest
degree of correlation observed between the HSE06
gap and exciton binding energy. The lack of strong
correlations motivates the use of ML for predicting
the properties.

The prediction models are build using the Ewald
sum matrix and many-body tensor representation
(MBTR) as structural fingerprints. The Ewald finger-
print is a version of the simple Coulomb matrix fin-
gerprint [128] modified to periodic systems [125].
The MBTR encodes first, second and third order
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Figure 24. Pair-plot of selected properties from C2DB. The diagonal contains the single property histograms. Below the diagonal
are two-property scatter plots showing the correlation between properties and above the diagonal are two-property histograms.
properties include the HSE06 band gap, the PBE heat of formation (∆H), the exciton binding energy (EB) calculated from the
BSE, the in-plane static polarisability calculated in the RPA and averaged over the x and y polarisation directions (⟨αi⟩), and the
in-plane Voigt modulus (⟨Cii⟩) defined as 14 (C11+C22+ 2C12), where Cij is a component of the elastic stiffness tensor.

terms like atomic numbers, distances and angles
between atoms in the system [129]. As an alternative
to the structural fingerprints, a representation based
on the PBE PDOS is also tested. This fingerprint6

encodes the coupling between the PDOS at different
atomic orbitals in both energy and real space. It is
defined as:

ρνν ′(E,R) =
∑
a∈cell

∑
a ′

ρaν(E)ρa ′ν ′(E)G

× (R− |Ra −Ra ′ |) , (17)

where G is a Gaussian smearing function, a denotes
the atoms, ν denotes atomic orbitals, and the PDOS
is given by:

ρaν(E) =
∑
n

|⟨ψn|aν⟩|2G(E− ϵn) , (18)

6 Details will be published elsewhere.

where n runs over all eigenstates of the system. Since
this fingerprint requires a DFT-PBE calculation to
be performed, additional features derivable from the
DFT calculation can be added to the fingerprint. In
this study, the PDOS fingerprint is amended by the
PBE band gap. The latter can in principle be extrac-
ted from the PDOS, but its explicit inclusion has been
found to improve the performance of the model.

A Gaussian process regression using a simple
Gaussian kernel with a noise component is used as
learning algorithm. The models are trained using 5-
fold cross validation on a training set consisting of
80% of the materials with the remaining 20% held
aside as test data. Prior to training the model, the
input space is reduced to 50 features using principal
component analysis (PCA). This step is necessary to
reduce the huge number of features in the MBTR
fingerprint to a manageable size. Although this is
not required for the Ewald and PDOS fingerprints,
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Figure 25. Prediction scores (MAE normalised to standard deviation of property values) for the test sets of selected properties
using a Gaussian process regression.

Figure 26.ML predicted HSE06 gap values vs. true values for Ewald, MBTR and PDOS fingerprints with MAE’s for train and test
set included. The PDOS is found to perform significantly better for the prediction of HSE06 gap.

we perform the same feature reduction in all cases.
The optimal number of features depends on the
choice of fingerprint, target property and learning
algorithm, but for consistency 50 PCA components
are used for all fingerprints and properties in this
study.

Figure 25 shows the prediction scores obtained
for the five properties using the three different fin-
gerprints. The employed prediction score is the mean
absolute error of the test set normalised by the
standard deviation of the property values (stand-
ard deviations are annotated in the diagonal plots
in figure 24). In general, the PDOS fingerprint out-
performs the structural fingerprints. The difference
between prediction scores is smallest for the static
polarisability ⟨αi⟩ and largest for the HSE06 gap. It
should be stressed that although the evaluation of
the PBE-PDOS fingerprint is significantly more time
consuming than the evaluation of the structural fin-
gerprints, it is still much faster than the evaluation of
all the target properties. Moreover, structural finger-
prints require the atomic structure, which in turns

requires a DFT structure optimisation (unless the
structure is available by other means).

The HSE06 band gap shows the largest sensitiv-
ity to the employed fingerprint. To elaborate on the
HSE06 results, figure 26 shows the band gap predicted
using each of the three different fingerprints plotted
against the true band gap. The mean absolute errors
on the test set is 0.95 and 0.74 eV for Ewald and
MBTR fingerprints, respectively, while the PDOS sig-
nificantly outperforms the other fingerprints with a
test MAE of only 0.21 eV. This improvement in pre-
diction accuracy is partly due to the presence of the
PBE gap in the PDOS fingerprint. However, our ana-
lysis shows that the pure PDOS fingerprint without
the PBE gap still outperforms the structural finger-
prints. Using only the PBE gap as feature results in a
test MAE of 0.28 eV.

The current results show that the precision ofML-
based predictions are highly dependent on the type
of target property and the chosen material repres-
entation. For some properties, the mapping between
atomic structure and property is easier to learn while
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others might require more/deeper information, e.g.
in terms of electronic structure fingerprints. Our res-
ults clearly demonstrate the potential of encoding
electronic structure information into thematerial fin-
gerprint, and we anticipate more work on this relev-
ant and exciting topic in the future.

7. Summary and outlook

We have documented a number of extensions and
improvements of the C2DBmade in the period 2018–
2020. The new developments include: (1) A refined
and more stringent workflow for filtering prospect-
ive 2D materials and classifying them according to
their crystal structure, magnetic state and stability.
(2) Improvements of the methodology used to com-
pute certain challenging properties such as the full
stiffness tensor, effective masses, G0W0 band struc-
tures, and optical absorption spectra. (3) Newmater-
ials including 216 MXY Janus monolayers and 574
monolayers exfoliated from experimentally known
bulk crystals. In addition, ongoing efforts to system-
atically obtain and characterise bilayers in all possible
stacking configurations as well as point defects in the
semiconducting monolayers, have been described.
(4) New properties including exfoliation energies,
spontaneous polarisations, Bader charges, piezoelec-
tric tensors, IR polarisabilities, topological invariants,
magnetic exchange couplings, Raman spectra, and
SHG spectra. It should be stressed that the C2DB will
continue to grow as new structures and properties are
being added, and thus the present paper should not be
seen as a final report on the C2DB but rather a snap-
shot of its current state.

In addition to the above mentioned improve-
ments relating to data quantity and quality, the C2DB
has been endowed with a comprehensive document-
ation layer. In particular, all data presented on the
C2DB website are now accompanied by an inform-
ation field that explains the meaning and representa-
tion (if applicable) of the data and details how it was
calculated thus making the data easier to understand,
reproduce, and deploy.

The C2DB has been produced using the ASR
in combination with the GPAW electronic structure
code and theMyQueue task and workflow scheduling
system. The ASR is a newly developed Python-based
framework designed for high-throughput materi-
als computations. The highly flexible and modular
nature of the ASR and its strong coupling to the well
established community-driven ASE project, makes
it a versatile framework for both high- and low-
throughput materials simulation projects. The ASR
and the C2DB-ASR workflow are distributed as open
source code. A detailed documentation of the ASR
will be published elsewhere.

While the C2DB itself is solely concerned with
the properties of perfect monolayer crystals, ongo-
ing efforts focus on the systematic characterisation

of homo-bilayer structures as well as point defects in
monolayers. The data resulting from these and other
similar projects will be published as separate, inde-
pendent databases, but will be directly interlinked
with the C2DB making it possible to switch between
them in a completely seamless fashion. These devel-
opments will significantly broaden the scope and
usability of the C2DB+ (+ stands for associated data-
bases) that will help theoreticians and experimental-
ists to navigate one of the most vibrant and rapidly
expanding research fields at the crossroads of con-
densed matter physics, photonics, nanotechnology,
and chemistry.
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[48] Kormányos A, Burkard G, Gmitra M, Fabian J, Zólyomi V,

Drummond N D and Fal’ko V 2015 2D Mater. 2 022001
[49] Zhou J et al 2019 Sci. Data 6 1–10
[50] Choudhary K, Kalish I, Beams R and Tavazza F 2017 Sci.

Rep. 7 1–16
[51] Larsen A H, Vanin M, Mortensen J J, Thygesen K S and

Jacobsen K W 2009 Phys. Rev. B 80 195112
[52] Larsen P M, Pandey M, Strange M and Jacobsen K W 2019

Phys. Rev. Mater. 3 034003
[53] Ong S P et al 2013 Comput. Mater. Sci. 68 314–19
[54] Patrick C E, Jacobsen K W and Thygesen K S 2015 Phys.

Rev. B 92 201205
[55] Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W,

Aykol M, Rühl S and Wolverton C 2015 npj Computat.
Mater. 1 1–15

[56] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.
77 3865–8
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We are constantly looking for new materials. We need these new materials to develop new
technologies and to improve existing technologies such as constructing more efficient solar cells
and longer lasting batteries, and to replace materials depending on limited resources.

So how do we find new materials with the right properties? In computational materials sci-
ence, the laboratory is a computer. Here we can design new materials and calculate their
properties. The materials we are interested in are atomic-scale materials, and more specifically
two-dimensional crystals. On this scale, the applicable laws of nature are those of quantum
mechanics, and the relevant properties are quantum mechanical properties calculated using
first-principles electronic structure methods. This has been done in many years resulting in large
databases of materials and their properties, and these are the foundation of the next step in ma-
terials science; use machine learning models to reduce the computational costs of calculating
material properties. Machine learning models are mathematical models learning automatically
from experience in form of data.

This thesis presents developments and applications of machine learning methods for computa-
tional materials science. First, novel methods for representing individual quantum states as input
features to machine learning models are introduced. The representation methods utilize infor-
mation from the electronic structure and quantum mechanical wavefunctions of the materials.
These methods are then applied in a machine learning model predicting accurate electronic
band structures and band gaps of two-dimensional materials, which are important properties for
e.g. photovoltaic applications such as solar cells.

Additionally, the concept of dynamical stability of 2D materials is studied. Dynamical stability
tells whether it is favorable for a material to dislocate from the equilibrium structure, and it is an
important check when doing computational studies of materials. Approximative methods for
determining the dynamical stability is developed using simple atomic potentials and machine
learning methods.
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