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Abstract

This thesis presents research within development and characterisation of thermal
heterogeneous catalyst for the reactions of methanol synthesis from CO2, ethanol
synthesis from CO, and propene oxidation to CO2. The first two reactions are
propositions for synthesising fuels from sustainable H2 and captured CO2, which is
either used directly or preprocessed into CO. Propene oxidation is used as a model-
reaction to investigate atomised platinum catalysts. In this research catalytic activity
experiments, transmission electron microscopy and spectroscopy, X-ray diffraction
and X-ray absorption have been used to assess and characterise the catalysts.
For the methanol synthesis from CO2 ternary alloy catalyst Ni2FeGa/SiO2 has been
optimised. The optimisation lead to the conclusion that a temperature of 550�C
in H2 during the formation of the nanoparticles from metal-nitrates is optimal for
when the catalyst is subsequently used for methanol synthesis. Characterisation
elucidated that this temperature is optimal for forming the alloy while at the same
time avoiding sintering. Ni2FeGa/SiO2 was assessed in perspective to industrial grade
Cu/ZnO/Al2O3/MgO, where it performs similarly at temperatures below 200�C,
though Ni2FeGa/SiO2 has a lower selectivity towards methanol.
For the ethanol synthesis from CO, a ternary alloy catalyst, namely CoCu2Ga/SiO2,
was conceived and developed. These metals are carefully selected: cobalt and copper
because literature shows that the combination of the two will efficiently catalyse
ethanol synthesis, and gallium to offer stability to the alloy. Different weight-loadings
of the CoCu2Ga on the SiO2 was synthesised and tested. Having 3.5% weight of
CoCu2Ga did produce ethanol and in larger amounts, methanol and methane. This
catalyst was compared with purchased Rh/C, which made mostly methane with
smaller amounts of acetaldehyde, methanol and ethanol. Characterisation showed
that ternary alloyed nanoparticles were in fact formed in the CoCu2Ga/SiO2 catalysts
following a synthesis by reduction of metal-nitrates at 620�C in H2. By a combination
of in situ X-ray methods and microscopy with spectroscopy it has been shown that
small cobalt-rich particles segregates from the ternary alloy when heated in reaction
conditions.
Finally a catalyst comprised of only 0.05% weight platinum supported on MgAl2O4

was tested for propene oxidation reaction. This catalyst was found to be very
catalytically active when comprised of small nano-sized clusters and inactive when
the platinum atomised into single atomic sites. These states was found to be reversibly
changed by heating at above 750�C in either H2 or O2 to produce clusters or atomic
sites. The atomisation was found to be a deactivation mechanism when using the
catalyst in oxidising environments, but this deactivation could be remedied not only
by heating in H2 but also by steam reforming the propene thus producing H2.
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Resume

Denne afhandling omhandler forskning inden for udvikling og karakterisering af
termisk heterogene katalysatorer til brug under reaktionerne metanolsyntese fra CO2,
ætanolsyntese fra CO og propenoxidation til CO2. De to første reaktioner er forslag
til at syntetisere brændstoffer fra bæredygtig H2 og opfanget CO2, som enten bruges
direkte eller reageret til CO først. Propenoxidation bruges som en modelreaktion
til at undersøge katalysatorer med enkelt-atom-fikseret platin. I den præsenterede
forskning er aktivitetseksperimenter for katalytisk aktivitet, elektronmikroskopi og
spektroskopi, røntgendiffraktion og røntgenabsorption blevet brugt til at vurdere og
karakterisere katalysatorerne.
Til metanolsyntesen fra CO2 er en ternært legeret katalysator, Ni2FeGa/SiO2, blevet
optimeret. Konklusion fra optimeringen var, at en temperatur p̊a 550�C i H2 un-
der dannelsen af nanopartiklerne fra metalnitrater er optimal, n̊ar katalysatoren
efterfølgende anvendes til metanolsyntese. Karakteriseringen belyste, at denne tem-
peratur er optimal til dannelsen af legeringen, samtidig med at sintring undg̊aes.
Ni2FeGa/SiO2 blev vurderet imod industriel Cu/ZnO/Al2O3/MgO, hvor de yder
ens ved temperaturer under 200�C, dog har Ni2FeGa/SiO2 en laver selektivitet mod
metanol.
Til ætanolsyntesen fra CO blev en ternært legeret katalysator, CoCu2Ga/SiO2,
udtænkt og udviklet. Disse metaller er nøje udvalgt: kobolt og kobber, fordi littera-
turen viser, at kombinationen af disse er en effektiv katalysator for ætanolsyntese; og
gallium for at give legeringen stabilitet. Forskellige vægtconcentrationer af CoCu2Ga
p̊a SiO2 blev syntetiseret og testet. En vægtconcentration p̊a 3.5% CoCu2Ga pro-
ducerede ætanol og i større mængder metanol og metan. Denne katalysator blev
sammenlignet med indkøbt Rh/C, som for det meste lavede metan med mindre
mængder ætanal, metanol og ætanol. Karakterisering viste, at ternære legerede
nanopartikler faktisk blev dannet i CoCu2Ga/SiO2-katalysatorerne efter en syntese
ved reduktion af metalnitrater ved 620�C i H2. Ved en kombination af in situ
røntgenmetoder og mikroskopi viste det sig, at sm̊a kobolt-rige partikler udskilles fra
den ternære legering, n̊ar de opvarmes under reaktionsbetingelser.
Slutteligt blev en katalysator best̊aende af kun 0.05% vægtkoncentration platin sup-
porteret p̊a MgAl2O4 testet for propenoxidation. Denne katalysator viste sig at være
meget katalytisk aktiv, n̊ar den bestod af sm̊a nano-klynger, og inaktiv, n̊ar platinet
spreder sig til fikserede enkelt atomer. Disse tilstande viste sig at være reversible
ved opvarmning over 750�C i enten H2 eller O2 for at producere nano-klynger eller
atomariseret platin. Atomariseringen viste sig at være en deaktiveringsmekanisme,
n̊ar katalysatoren blev brugt under oxiderende betingelser, men denne deaktivering
kunne afhjælpes ikke kun ved opvarmning i H2, men ogs̊a ved dampreforming af
propengassen som derved producerer H2.
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Chapter 1

Introduction

This thesis presents research performed within heterogeneous thermal catalysis with
emphasis on novel ternary alloys for the synthesis of methanol and ethanol, as well
as more fundamental research into ultra-low loading noble catalysts. The intention
of this �rst chapter is to give the reader an overview of, what heterogeneous thermal
catalysis is and why it is an important �eld of research. It is not a technical
prerequisite to read the �rst chapter, however for the layman an introduction is in
order.

Our Way of Life Breathing down our Necks

Throughout human history, our standards of living have increased through our
development of tools and ideas, that help us live and understand living. Inventions
and engineering are improving our everyday life in such a pace and to such an
extend that we cannot grasp the everyday-life predating modern technology or
industrialisation, let alone having the least idea of what future generations might
bring of technology. Such development do come at a cost. All the processes we use
for manufacturing, transportation, entertainment, things that have been developed
to solve problems and ease the way of life also requires input of energy. A good
visualisation of this is shown in Figure 1.1 where the size of the gross domestic
product(GDP) is shown versus the energy consumption for individual countries. The
lines indicate the change from 2005 and to 2015. We see that poor countries move
vertically up in energy-consumption where rich countries moves horizontally up in
GDP. What seems to be the case is an activation-barrier of tens of MWh per person
for getting over � $10k GDP1 in order to achieve the way of life cherished in the
developed world.

Beyond the activation-barrier in the developed world, the spread in both GDP and
energy consumption is very large, which might stem from the di�erent makeup of
the respective industry of the speci�c country. If we look closely in Figure 1.1, some
countries are actually moving down in energy consumption, exempli�ed by Denmark

1This is roughly the same size as the income-poverty line of the US.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Countries' annual energy consumption per capita versus their gross domestic
product per capita shown as lines running from 2005 to 2015. Countries with less than 1 mil-
lion inhabitants are omitted. GDP is in constant 2017 international $. Data is from https:
//ourworldindata.org/grapher/energy-use-per-capita-vs-gdp-per-capita .

in red bold font. The logic behind this behaviour is to be found on the back-side of
the energy-consumption: the negative environmental impact.

The fact that parts of the world could develop into the high technology societies they
are today, is carried by the use of fossil-fuels. Since the start of industrialisation and
up to now, fossil-fuels such as oil, natural gas and coal used in combustion engines
and manufacturing e.g., of plastic, inevitably end up in the end of the chemical
food-chain as carbon dioxide. The left-axis on Figure 1.1 might as well have read
CO2-emission.2 The emission of carbon dioxide and other green-house gasses have
a huge impact on our climate by absorbing infrared radiation from the surface of
the earth, thereby accelerating global warming leading to the rapid heating of our
atmosphere observed in the last couple of decades.

The e�ect of this emission has so far contributed to an increase of about 1� C in the
global average temperature since the year 1900, shown in Figure 1.2(a). Of course a
layman-argument could be that this is just coincidental and possible other factors are
the cause. For the same reason, Figure 1.2(b) shows the predicted global temperature
anomaly modelled by Broecker in 1975 based on predicted growth in fuel consumption
and the available information at the time on, how global temperature respond to
carbon dioxide-concentrations[9]. The resemblance between the temperature-curves
in Figure 1.2(a) and (b) are remarkable and should make it quite clear that the

2The corresponding plot to Figure 1.1 is available athttps://ourworldindata.org/grapher/
co2-emissions-vs-gdp?xScale=linear&yScale=log .
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(a) (b)

Figure 1.2: (a): Current data on global atmospheric CO2 concentration and
global change in temperature. Data-set from https://ourworldindata.org/
co2-and-other-greenhouse-gas-emissions , full details in [8]. (b): Modelled change to
global temperature based on CO2 emissions, natural climatic cycles, along with measure-
ments from meteorological records. From Broecker (1975)[9]. Reprinted with permission
from AAAS.

carbon dioxide turning the atmosphere into a greenhouse is an excellent explanation.
The subsequent e�ects of rising global temperatures are felt today in the extreme
weather and following events such as wild�res, droughts, oods, coral bleaching[10],
not to mention the expected rising sea levels[11].

So in spite of the good things that fossil fuels have given us as a society, we cannot
depend on them in the future, as the costs to the environment are far too high.
Carbon-neutral energy sources are a bare necessity. But the challenge is not easy:
currently the world consume 20 TW worth of energy, and with a large number
of very populated countries still in need to develop, this consumption is bound to
increase. So not only do we need to substitute all our current fossil-based sources;
we need to meet the increasing demand as well. Nobel Laureate in chemistry (1996)
Richard Smalley coined this challenge as the "Terawatt-challenge" in 2005[12]. The
challenge to transition our energy system, but also to double the output. As Smalley
formulated it, we need to �nd a "new oil". A "new oil" that can o�er the same
possibilities for prosperity in the coming centuries as fossil fuels have done in the
past.

"New Oil" - Renewable Electricity

What could be the "New Oil"? Smalley puts his emphasis on renewable electricity
with long-distance distribution and storage as a prerequisite[12]. He describes a
solution based on solar-cells and nuclear powerplants with very small local storage-
devices for electricity in every home able to run a household for a day3[12]. Though

3Smalley do not specify that the device is a battery, just that it is the size of a lectern. Maybe
the point is to be open-minded.
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Figure 1.3: The power-consumption and production from solar and wind on the Dan-
ish electrical grid during the year of 2021. Solar power is plotted on-top of wind
power. The plot extends over two text-pages. An arrow indicate the same point in
time on the di�erent text-pages. Data from https://energinet.dk/Gron-omstilling/
Noegletal-om-den-gronne-omstilling#vedvarende .

the political landscape has changed and the technologies have evolved in all kinds of
direction since the ideas of Smalley,4 renewable electricity is still the energy-source
coming closest to the "new oil". In the following text, we will discuss current solutions
with the Kingdom of Denmark as a case.

Case - Kingdom of Denmark

Renewable sources of electricity are highly based on what is available, eg. hydro-
power requires mountains and rivers, solar power requires sunshine. The Kingdom
of Denmark is not blessed with any of these, but instead it has plenty of sea and
wind. For the same reason, a very large portion of electricity in Denmark is produced
by wind. Figure 1.3 shows the power-consumption in Denmark together with the
power-output of Danish wind-turbines and solar-cells from Christmas of 2020 to
Christmas of 2021. The demand has a very periodic and consistent pattern: during
day and night time, the demand rises and falls with about 1.5 GW; day-dependent
demand come in groups of �ve high-demand days and two low-demand days being
workdays and weekends; and the general power-demand increases during winter and
decreases during summer. These behaviours make sense, as people has no need
for power while they sleep, society use most power during the work-week, and at
winter the houses need to be held warm and cosy. As for the renewable power
production: it goes as the wind blows, maybe with a slight tendency to blow more
during winter than summertime. There is a noticeable increase in solar power during
the summer, though it is niche compared to wind power.5 At few instances, the
renewable electricity actually exceeds the demand. In total solar and wind produced
the equivalent of 4% and 44% of the total power consumption since Christmas of

4Nuclear power-plants are not as popular as they could have been useful.
5But Denmark is also a very cold and dark country. Relatively speaking.
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