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Abstract
The main and most productive project I have undertaken during my Phd involves the study and
characterization of magnetic monolayers from first-principle calculations. In the following pages are
presented methods developed during this time and the results that followed.

The motivation for this kind of research lies in the undeniable increasing interest that scientific
community is showing towards materials design for novel technological applications. Two-dimensional
(2D) materials, characterized by a thickness of just few atoms, have always been deemed an optimal
compromise between extension and lightness. The isolation of the first 2D material, graphene, hit the
ground running in 2004, exhibiting as well strength and electric proprieties out of the ordinary. Since
then, thanks to advancement in both theoretical and experimental expertise, many others have been
successfully synthesised.

But until very recently, magnetism has eluded researchers in Flatland. Only in 2017 it was demon-
strated that a single monolayer of CrI3 exhibits intrinsic out-of-plane ferromagnetic order up to a
temperature of 45 K, and just few others examples are nowadays known to do the same. This may
sounds quite surprising looking at the fair variety of available bulk systems which display a robust
magnetism even at high temperatures. Furthermore, many of these crystals are in a multilayered
form, meaning they could be mechanically exfoliated into free standing nano-sheets. But magnetic
proprieties result to changes dramatically when the dimensionality of the system is reduced and better
insights are required to predict new promising candidates.

The interactions between magnetic moments inside a crystal contribute in outlining its magnetic
proprieties, such as the critical temperature. This is defined as the temperature above which thermal
fluctuations prevent any magnetic order in a sample and sets the conditions for its usability in real
devices. Magnetic anisotropy, originating from to the geometry of the system, also plays a crucial role,
in particular for 2D materials. In a microscopic model, these interactions are typically reproduced by
the Heisenberg model and in this work we investigate the role of some of its most relevant terms.

We also suggest the spin-wave gap as a main descriptor for the critical temperature of ferromagnetic
order in 2D systems, which can be easily obtained from first-principle methods, such as Density
Functional Theory calculations.

Combining the results of classical Monte Carlo simulations, we further simplified and generalized
our method in order to perform high-throughput computational search of 2D materials with high
critical temperature. Our results are in good agreement with available data in literature and provide
a list of new promising candidates for further experimental investigations.

The screening has been run over the Computational 2D Materials Database, the Crystal Structure
Database and the Crystallographic Open Database, and can be used as a future reference for bench-
marking.

The thesis consists of a brief introduction to the established theory in the field followed by the list
of publications produced by the submitter, each introduced by a short commentary and a summary
of the original contents presented.
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Resumè
Det vigtigste og mest produktive projoekt jeg har arbejdet på, på min PhD, involverer studiet og
karakteriseringen af magnetsk enkeltlag fra ab-inito beregningers På de følgende sider præsenteres
metoder udviklet på min PhD og de resultater der fulgte deraf.

Motivationen for denne form for forskning ligger i den unægteligt øgede interesse, som det viden-
skabelige samfund viser omkring materialedesign for nye teknologiske applikationer. To-dimensionale
(2D) materialer, karakteriseret ved en tykkelse på få atomer, har altid været anset for et optimalt kom-
promis mellem udvidelse og lethed. Isoleringen af det første 2D materiale, graphen i 2004, viste sig at
have ekstraordinære egenskaber omkring styrke og elektriske egenskaber. Siden dengang, takke være
fremskridt i både teoretsk og eksperimentel ekspertise, er mange andre blevet syntetiseret sidenhen.

Men indtil for nyligt, magnetisme har undgået forskerne i fladland. Kun i 2017 blev det demonstr-
eret at et enkelt enkeltlag af CrI3 har en intrinsisk ferromagnetisk orden ud-af-planen for temperature
op til 45 K, og kun få andre eksempler er i dag kendt for at have det samme. Deyte lyder måske over-
raskende, når man kigger på brede vifte af tilgængelige bulk systemer, som udviser en magnetisme
selv ved høje temperature. Ud over dette, er mange af disse systemer i multilagsform, hvilket betyder
den kan blive mekanisk eksfolieret til fritstående nano lag. Men magnetiske egenskaber reagerer på
ændringer drastisk når dimensionaliteten af systemet bliver reduceret og bedre indsigt er nødvendig
for at forudsige nye lovende kandidater.

Interaktonerne mellem magnetiske momenter inden i en krystal bidrager med at vise dets mag-
netiske egenskaber, såsom den kritiske temperatur. Denne er defineret som den temperatur over
hvilken, termiske fuktuationer forhindre nogen magnetisk orden i en prøve og sætter betingelserne
for dets brugbarhed i virkelige apparater. Magnetisk anisotropi stammer fra geometrien af systemet,
spiller også en afgørende rolle, specielt for 2D materialer. I en mikroskopisk model, vil sådanne in-
teraktoner typisk være reproduceret af Heisenberg modellen og i dette studie undersøger vi rollen af
nogle det vigtgste led.

Vi foreslår også at spin-bølge gappet som en hoveddeskriptor for den kritiske temperature af
ferromagnetisk orden i 2D systemer, som nemt kan fås fra ab-inito metoder, som Densitets Funktional
Teoretiske beregninger.

Ved at kombinere resultaterne med klassiske Monte Carlo simuleringer, simplificerer og generalis-
erer vi vores metode så vi kan udføre high-throughput udregninger af 2D materialer med høo kritisk
temperatur. Vores resultater er i god overenstemmelse med tilgængelig data i litteraturen og giver en
liste af nye lovende kandidater for fremtidig eksperimentel undersøgelse.

Screeningen er blevet kørt oier databaserne: ”The Computatonal 2D Materials Database”, The
Crystal Structure Database” og ”The Crystallographich Open Database”, og kan blive benyttet som
en fremtidig reference for sammenligning.

Denne afhandling består af en kort introduktion til at etablere teorien for dette felt, efterfulgt af
en liste af publikationer lavet af forfatteren, hver især introduceret af en kort kommentar og et resumé
af det originale indhold af publikationerne.
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CHAPTER 1
Introduction

1.1 Quest for new materials
Technological progress has always been driven by big leaps in materials capabilities. Any device’s
performance hinges on the suitability, efficiency and quality of the materials chosen to fabricate it and,
conceivably, Leonardo Da Vinci’s intuitions about flying machines would have been realised centuries
ago if only lighter and stronger materials were available all along. In the same way, discovery of new
materials is deemed to play a central role for any major challenge we will have to face over the next
decades, from efficient data storage to clean energy production. For this reason a big deal of theoretical
and experimental research has been directed toward it.

In particular, ultra-thin or two-dimensional (2D) materials exhibit many promising features for
advancement in almost any technological issue. Moreover, the development of new synthesis methods
allows for a control and accuracy never obtained before.

An ideal class of candidates for 2D materials is represented by multi-layered Van der Waals crystals:
the weak couplings between the atomic planes facilitate the mechanical exfoliation into atomically-thin
monolayers. In 2004, the discovery and isolation of graphene[1], a densely packed single layer of carbon
atoms, has been extremely encouraging and demonstrated that physical proprieties of materials can
change quite drastically when a reduced dimensionality is considered. Before that, it was theoretically
predicted that 2D materials could not even exist because of the structural instability that thermal
fluctuations would have triggered[2]. On the contrary, lightness and mechanical strength[3], tunable
optical proprieties[4] and high charge conductivity are only some of the greatest features that make
graphene one of the most remarkable material available today.

However, magnetism is not among these proprieties, and many strategies have been pursued in
order to induce magnetism in intrinsically non-magnetic materials. Most commonly, the introduction
of point defects like vacancies[5, 6] or adatoms[7, 8, 9], or extended defects as zig-zag termination[10]
provide the polarization inequality needed for a non-vanishing net magnetization. Neverhteless, pas-
sivation effects may spoil the effort and reduce control in realistic environment. A different route
is represented by the exploitation of the proximity effect. In this case, an atomically flat magnetic
substrate, as YIG[11] or EuS[12] is coupled to the nano-sheet of graphene and, enhancing a strong
interfacial exchange field, it induces a magnetic response onto the non-magnetic layer, in the form of
Quantum Anomalous Hall effect (QAHE). However, while interfacial couplings proved to be a versa-
tile and promising approach to enrich magnetic phases[13], these results cannot be conclusive, since
QAHE may arises from spurious magnetic defects or spin-dependent scattering at the interface[14,
15].

On the other hand, intrinsically magnetic monolayers turned out to be a great challenge as well.
The Mermin-Wagner theorem[16] is known to prevent any long-range magnetic order arising from
short-range interactions at any finite temperature in 1D and 2D systems with a continuous symmetry.
In realistic samples, however, the symmetry can be spontaneously broken by magnetic anisotropies
which introduce a finite energy gap between the ordered ground state and the first thermally excited
states. Nevertheless, only in 2017 the first 2D magnetic monolayers were successfully synthesized
and experimentally confirmed, namely CrI3[17] and Cr3GeTe2[18]. Since then, 2D magnetic materials
especially in the ferromagnetic phases gained a lot of interest. In the last couple of years, an increasing
number of papers reported theoretical predictions for new candidates, in few cases confirmed by
experimental observations. In particular, evidence for room temperature magnetism has been reported
for MnSe2[19] and VSe2[20, 21]. However, the number of Van der Walls magnetic structures is very
large and many of the 2D counterparts still unexplored.
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A new and fascinating approach to enhance and control magnetic phases is by means of interfacial
engineering. Layered 2D materials have the ability to form heterostructure by stacking different
monolayers one on top of the other[22]. The possibility of an -at least in theory- seamlessly integration
of one or more (non-)magnetic monolayers offers a vast opportunity for the realization and control
of novel functionalities. Some examples are shown in Fig. 1.1. In addition, twisting of one layer
with respect to the other is an extra degreee of freedom that proved to be very powerful in bilayer
graphene. At certain magic angles, Moire patterns emerge inducing magnetism[23] and most notably
superconductivity[24].

2D magnetic materials are a unique platform for investigating fundamentals models of magnetism
and their phase transitions, but most importantly they may provide the ideal functionalities for future
application. The study and the assembly of new devices are still at an early stage but in rapid
progress. Most of them hinge on the control and manipulation of magnetic states when coupled to
external perturbations like light, electrical bias or mechanical strain. Among the most promising
application for magnetic 2D materials is in spintronics devices. Spintronics utilizes the extra spin
degree freedom of electrons for novel transport electronics. In particular, if we stack a ferromagnetic
material on top of a non-magnetic material, the heterostructure exhibits different electronic states for
the different spin channels[25]. This may lead to a novel version of electronic, based on the spin rather
than on the charge. Among the most important consequence are spin-transfer torque[26, 27] and
tunneling magneto-resistence effects[28], utilized for magnetic sensors and next generation magnetic
random access memory devices[29].

1.2 High-throughput methods
A rough count estimates in 80,000 the number od different materials in the world[30]. This number
includes a broad variety of traditional materials, from the ones that can be find in nature, like miner-
als and woods, to artificially synthesized ceramics and plastics. But for a more and more demanding
society, new classes of materials need to be realized and new methods to be developed. Even limiting
ourselves to elements in the periodic table that are non-toxic and abundant, the number of hypothet-
ical new materials we can imagine is massive. Despite the increasing interest in materials science,

Figure 1.1: Interfacial engineering of 2D magnets. The presence of a long range magnetic order
in a material can affect adjacent dissimilar layers when these are intarcting in heterostructure system.
Some of the possible interactions are (a) a hole/electron transfer between the two layers, (b) inter-
facial hybridization between the orbitals of two different layers, (c) strain effects, (d) superexchange
interactions between magnetic ions (red arrows), mediated by non-magnetic ions (orange circles), (e)
structural perturbation, (f) electronic, magnonic or phononic dispersion engineering, (g) dielectric
screening of exchange fields generated by coupled electrons (red arrows), (h) spin-orbit coupling en-
hancement due to proximity effects with heavy elements atoms. From [15]
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these possibilities has to remain for the most part experimentally unexplored. The immense progress
in computer power over the last decades and the development of more and more accurate theoretical
models, generated a new research field. Computational materials design hinges on the possibility to
simulate proprieties of materials with great accuracy starting from just their molecular structure. In-
deed, materials can be defined by their chemical compositions and their location in a phase diagram.
It must have been very hard for chemists before the development of molecular theory to find suitable
and unique definitions for even simple medium. For example, one could try to describe water as being
wet, transparent, odorless and tasteless but many other liquids may have the same sensible proprieties.
It took several centuries and brilliant scientists to link the physical proprieties of water to a specific
arrangement of atoms, and today we know it as a molecule of H2O with a well defined geometry and
in a certain range of temperature and pressure. Materials scientists, following Francis Crick’s adage
”if you want to study function, study structure[31]”, nowadays are adopting an approach which is in
same sense inverse and much faster. Starting from the disposition of atoms, they are able to track
back the more tangible physical proprieties of extended samples. These can be analyzed in depth
and under stress conditions, and new materials with sought-after characteristics can be suggested for
experimental investigations. Efficient methods must be deployed to computationally analyse the prop-
erties of atomic structure in voluminous database and high-throughput-based screening approaches
are in great expansion.

Moreover, the development and refinement of methods and big data management, can be beneficial
for others approaches in the quest for new materials. Most notably machine learning is becoming very
popular and successful in materials science problems[32, 33]. One of the purpose of this approach is
to facilitate machine learning and to enable artificial intelligence to aid the search for new materials,
by looking at correlation trends in the vaster and vaster ocean of available data.

1.3 Outline
This first chapter served as review of the status of the research in magnetic condensed matter physics
and in particular on the potential future applications based on 2D magnetic materials. The rest of
thesis is organized as follows:

• In Chapter 2 we introduce the background information and terminology needed to understand
the rest of the thesis. Magnetism and magnetic materials will be presented in the microscopic
quantum framework and the most relevant spin-lattice models used in literature to describe them
will be shortly derived.

• Chapter 3 is focused on the fundamentals behind Density Functional Theory (DFT), a powerful
tool widely used in computational chemistry and physics to investigate proprieties of many-
body quantum systems without the full resolution of Schrodinger’s equations. Energy Mapping
analysis, which connects the models introduced in Chapter 2 with the output results of DFT
calculations is shortly presented.

• In Chapter 4 we introduce classical Monte Carlo simulations, an auxiliary method used through-
out the project in sinergy with ab-initio calculations. The model, the implementation and tests
results performed during the project are also showed.

• In Chapter 5, a summary of the motivations, methods and main results for each scientific pub-
lication is given.

• Finally, in Chapter 6 we recap the key points of the project and possible outlook for future
research, comparing the results with similar works in the field.

Chapters 2,3,4 are short introductions to the theoretical frameworks and tools used in the project,
and are not intended to be encyclopedic nor in-depth expositions. To avoid overlaps, additional
informations and main results can be found in Chapter 5 and particularly in Chapter 7 at the end of
the thesis. Here are shown the papers published in scientific journals during the Ph. D[34, 35, 36, 37]
and a draft of those submitted or still in preparation.
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CHAPTER 2
Magnetic systems and How

to Model Them
Proprieties of magnetic materials, like attracting or repelling each others, or freely align relative to
Earth’s axis, have fascinated humankind since the very ancient times. Magnetism, with its invisible
forces, is one of the first natural phenomenon human minds really had to struggle with and, over more
than two millennia, many explanations spanning from the magic realm to quantum mechanics have
been proposed. In the mean time, tangible applications like compasses for navigation and permanent
magnets in synchrotrons, always played a central role in advancement of knowledge and technological
progress.

Early scientific experiments and speculations about it date back to Middle Ages, but it is only
since the 19th century that some light had been shed on the fundamental mechanisms, thanks to
the contribution of, among many others, Oersted, Ampere, Faraday, Weiss and Curie. Few decades
later, quantum mechanics and research inspired by Maxwell, Langevin, Dirac, Pauli and Heisenberg
provided most of the missing pieces.

Today we can try to summarize almost two centuries of science in this field stating that magnetisa-
tion is an emergent quantum many-body phenomenon originating from electromagnetic interactions
taking place in a material. In particular, unpaired electrons in atomic sub-shells are key players and
spin is a fundamental part of their wave functions.

An exhaustive introduction to magnetism goes beyond the intention and definitely the extent of
this chapter1. Here we briefly introduce relevant terminology and the theoretical background present
in the rest of the thesis. Heisenberg model and spin-wave theory in particular, can be used to evaluate
low-energy magnetic excited states. They are outlined along with the prominent applications and
limitations.

2.1 Magnetic materials
The various theories of magnetism available nowadays are validated on the basis of the length or
energy scale of the phenomenon they want to describe, but they all hinge on the concept of a vector
magnetic moment m sensitive to magnetic fields. In a material, when the direction of the magnetic
moments vary slowly or on a distance scale larger than the atomic structure of the material (1-1000
nm), the magnetization is defined in terms of a continuous field m(r). This micromagnetic model,
which integrates quantum mechanical effects with a mainly semi-classical approach, is vastly used
to derive responsive proprieties in large systems, or the inner structure of domain walls and their
dynamics [41, 42, 43].

The atomistic spin-lattice model has a discrete perspective (on a lenght scale < 1 nm) and assigns to
the elementary building blocks of matter, like electrons and nucleons, a distinct magnetic moment m.
In classical physics, m is directly linked to the motion of the particle, like its angular momentum. For
example, an electron orbiting around a nucleus generates a magnetic moment (called orbital magnetic
moment) proportional to the electric current and the area of the closed loop. Quantum particles posses
also an intrinsic magnetic moment, called spin, since in a classical picture (wrong but powerful) they

1Excellent examples can be find at [38, 39, 40], which inspired some of the derivations showed in the following
sections.
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act as tiny spheres spinning on themselves. Then, the ”eastward” or ”westward” motion differentiates
the only two possible states (also called spin up or down, with opposite sign).

The proprieties of a permanent magnet can be typically explained as a cooperative effect of orbital
and spin moments of unpaired electrons sitting at atomic sites in a crystal and interacting with each
others. Unless specified, local magnetic moments and spins will be used as synonyms from now on and
indicate the resulting vector at each atomic site. In most of the systems considered here, the orbital
magnetic moments is anyway quenched because of geometrical arguments, thus the magnetization is
a consequence of the imbalance of electrons with opposite spin. The arrangement of localized spins in
a crystal outlines a magnetic spin lattice.

The validity of localized-spin models with short-range interactions is often a topic of scientific
debate since some of its assumptions are not always fully satisfied. For example, magnetic interactions
are typically long-range and co-participate in many phenomena across the entire lattice. Moreover, in
particular for metals, because of non-localized itinerant electrons, it’s not always possible to assign an
integer value to the size of magnetic moments, or a well defined geometry to the lattice. In general, the
range of its validity depends crucially on the electronic proprieties of the system under investigation.
However, microscopic models form the basis of very reliable tools to qualitatively predict the proprieties
of extended materials.

At larger scale (> 0.1 mm) magnetic materials are classified in terms of their phases, the dominant
response to the application of an external magnetic field, called susceptibility. In materials with a
diamagnetic response, a weak internal magnetic field is generated in the opposing direction, while
paramagnetic effects are explained in terms of local magnetic moments aligning with it and enhancing
it at some degrees. At some extent, all condensed matter exhibits a magnetic response which promotes
the development of more magnetic order, along the direction of the external magnetic field. In a related
classifications, some materials under certain conditions, exhibit spontaneous magnetic order even when
the external magnetic field is removed. When this is not the case, paramagnetic response dominates,
and thus the system is said to have a paramagnetic (PM) phase. Ferromagnetism (FM) is one example
of magnetic order, where local spins point all in the same direction and with the same magnitude.
Other collinear magnetic phases (where spins are parallel to each other but not necessarily pointing in
the same direction) are the antiferromagnetic (AFM) and ferrimagnetic (where neighbouring parallel
spins -or groups of- point in opposite direction with the same or different magnitude respectively).
Among the non-collinear magnetic phase, some examples are the conical and helicoidal spin-density

(a) (b) (c)

Figure 2.1: Magnetic phases. (a) Examples of 1D collinear magnetic phases (from top to bottom):
ferromagnetism, antiferromagnetism and ferrimagnetism, which is a superposition of nonequivalent
anti-ferromagnetic sublattices. (b) Examples of non-collinear magnetic phases (from top to bottom):
helical, conical and skyrmion (figure from [44]). (c) Magnetic phase diagram of cubic MnSi (graphical
re-elaborations of data points taken from [45], where the skyrmion-phase is called A-phase).
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wave phases, where spins are characterized by an out-of-phase precession around the same axis and a
fixed wave vector. Examples of these magnetic phases for a one-dimensional spin chains are shown in
Fig. 2.1(a) and (b). The last example of non-collinear phase is a skyrmion, a topologically protected
pseudo-vortexes with a trivial FM phase away from the center. Experimentally observed for the
first time in MnSi[45] and later on in other systems with a strong spin-orbit coupling and a syymetry
group without inversion symmetry, are envisioned to be used as binary bits in next generation magnetic
memory devices.

The magnetization M = (Mx, My, Mz) is defined as the sum of all the magnetic moments mi of
the lattice normalized by the number of spins N (or the volume V of the sample in the micromagnetic
model)

M =
∑

i mi

N
(2.1)

and quantitatively evaluated along an arbitrary direction, generally the z-axis. For each system,
the maximal value Ms of its modulus is reached in the FM configuration (saturation). For AFM
phases, the contributions from the two opposite sub-lattices cancel out and M = 0. This would
be the same output for a measurement in PM phase but for a very different reason. In the latter,
the randomized spin orientations average out to a vanishing net magnetic moment. Experimentally,
these cases are discriminated applying an external magnetic field and measuring the susceptibility.
Generally more than one magnetic configurations is allowed in the magnetic phase diagram of a
material, depending on externally tunable parameters such as temperature, pressure and magnitude
of the applied magnetic field B. The magnetic ground state of a system stems out of a complex
interplay between its geometrical and chemical properties. In real samples, grain boundaries and
defects affects the magnetic response as well. The phase diagram of MnSi is showed in Fig. 2.1(c) as
example.

Temperature in particular causes random fluctuations in the alignment of magnetic moments and
effectively lowers the net magnetization of the sample in a non trivial way. An example is showed in
Fig. 2.2: starting from a FM ground state (along z-axis) at T=0, the saturated magnetization slowly
decreases when higher temperatures are reached, since some spins are thermally excited and allowed
to diverge from their ground state direction. At a critical temperature called Curie temperature TC ,
the systems swiftly becomes PM and the M continuously drops to zero in a phase transition of second
order. Simultaneously, the heat capacity of the system CV = ∂U

∂T reaches a peak. While the local
magnetic moments still exist, they all point in random directions and without an external magnetic
field, no magnetic order is possible above TC . A second-order magnetic phase transition around TC

is characterized by a set of critical exponents for the order parameter, in this case Mz. For example,
the shape of the magnetization curves as a function of T and of a vanishing external field B can be
written as

C
V

0 1
0

1

T/TC

M
z
/M

s

Figure 2.2: Magnetic transition. A phase transition from ferromagnetic and paramagnetic order
occurs at critical temperature TC when the order parameter of the system, as i.e. Mz in a magnetization
curve, drops to zero or equivalently when the heat capacity CV exhibits a peak.
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Mz(T, B = 0) =
{

Ms|ϵ|β, if T < TC

0, if T > TC

(2.2)

where ϵ = T −TC
TC

is the reduced temperature and β the critical exponent. These behaviours do
not dependent on the particular material, and not even even on the nature of the transition. For
this reason are said to fall into the same universality class, which is characterized by underlying
symmetries. However, theoretical models and numerical methods not always succeed in capturing
most of the features present in experimental results. This is mainly due to the oversimplification of
models, that don’t take into account i.e. coexistence of different phases in real samples and most
fundamentally, convoluted behaviour in the low-temperature regime and near the critical temperature.
While a more accurate description of the shape of 2.2 is still an active field of research[46, 47] and
beyond the scope of this work, numerical methods proved to be a correct approach for the evaluation
of TC . Anyway, for fully reliable methods, a quantum-mechanical framework is necessary and more
insights about fundamentals origin of magnetism in materials are required, especially in systems with
a reduced dimensionality.

2.2 Quantum magnetism: the Heisenberg model
According to classical physics, magnetism should be possible only at temperature near absolute zero.
While this may naively explain why we stick magnets mainly on refrigerators, a deeper understanding
of magnetism requires a quantum treatment. To show that, we consider the magnetic field produced
by a dipole m1 in spherical coordinate

B1(r = rr̂) = µ0
4πr3 [3(m1 · r̂)r̂ − m1] (2.3)

where µ0 is permeability of free space. In such a field, a second magnetic moment m2 at a distance
r12 has a magnetic potential energy U = −m2 ·B1(r12), which reaches its maximum when m1||m2||r12.
Assuming the magnitude of the atomic magnetic moments m1 and m2 to be a Bohr magneton µB and
the distance between them twice the Bohr radius a0, we obtain U ≈ 0.1meV ≈ 1K.

This analysis is valid for any material and shows that the energy of the classical dipole-dipole
interactions between atoms, which should justify the alignment of magnetic moments, is very low. In
comparison, thermal energy per molecule scales with temperature as 3T/2. Randomness introduced
by thermal fluctuations dominates already at low energy destroying any magnetic order.

A stronger interaction is required to explain the experimentally observed high-temperature mag-
netic order, i.e. up to 1043 K for iron. In 1926, Heisenberg[48] and Dirac[49] independently realized
that this interaction is a consequence of Coulomb repulsion between electrons in concert with the
antisymmetric nature of the many-body wave functions of electrons. The spin selectivity is thus a con-
sequence of the Pauli principle, namely the requirement that no two same-spin electrons can occupy
the same state.

Magnetism in solid state physics is mainly due to electrons, who carry spin S = 1/2. In the
quantum-mechanical framework, the physical observables of a quantum spin s = 1/2 are given by the
the spin operators Sx, Sy and Sz, which satisfy the commutation rules[

Sα
i , Sβ

i

]
= iϵαβγSγ

i (2.4)

with (α, β, γ) = (x, y, z) and ϵ the Levi-Civita tensor. Rules 2.4 are known to define the special
unitary group SU(2) of rotation and Sα are the (2s + 1) × (2s + 1) generators of the group. We
explicitly comment that in this context x, y, z are ”internal coordinates” of a point-like particle and
not directions in real space. A suitable representation is given by Sα = ℏ/2σα, where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.5)

are the Pauli matrices. The eigenvectors of Sz read
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χ↑ =
(

1
0

)
, χ↓ =

(
0
1

)
(2.6)

and are also called spinors ”up” and ”down” (|↑⟩ and |↓⟩ in bra-ket notation) with eigenvalues ±1
2

respectively. These are the projections Sz along the z-direction but commonly referred as just ”spin”.
This formalism comes in handy when spins states need to be made explicit. For example the Coulomb
interaction is written as

HC = 1
2

∫
ρ(r1)ρ(r2)
|r1 − r2|

dr3
1dr3

2 (2.7)

where ρ(r) is the operator for the charge density and in second-quantized notation reads

ρ(r) = −e
∑

σ

Ψ†
σ(r)Ψσ(r) (2.8)

In Eq. 2.8, σ =↑, ↓ is the possible spin orientation and Ψσ(r) is the fermionic field operator.
It is convenient to expand the operator Ψσ(r) into orthonormal Wannier functions ϕRm marked

by ionic position R and a collection m of quantum numbers. We explicitly introduce spins and the
expansion then reads

Ψσ(r) =
∑
Rm

cRmϕRm(r)χσ (2.9)

where cRm are fermionic annihilation operators, obeying anti-commutation relations {cRmσ, c†
R′m′σ′} =

δRR′δmm′δσσ′ and {cRmσ, cR′m′σ′} = {c†
Rmσ, c†

R′m′σ′} = 0.
Eq. 2.7 becomes

HC = 1
2
∑

R1m1

...
∑

R4m4

∫
dr3

1dr3
2ϕ∗

R1m1(r1)ϕ∗
R2m2(r2) e2

4πϵ0|r1 − r2|
ϕR3m3(r2)ϕR4m4(r1)

×
∑
σ1σ2

χ†
σ1χ†

σ2χσ2χσ1c†
R1m1σ1

c†
R2m2σ2

cR3m3σ2cR4m4σ1

(2.10)

Exploiting orthogonality in spinors and using bra-ket notation for the integral expressions, we
obtain

HC = 1
2
∑

R1m1

...
∑

R4m4

⟨R1m1, R2m2| e2

4πϵ0|r1 − r2|
|R3m3, R4m4⟩

×
∑
σ1σ2

c†
R1m1σ1

c†
R2m2σ2

cR3m3σ2cR4m4σ1

(2.11)

Let’s first consider the on-site interaction, meaning R1 = R2 = R3 = R4 := R. If we assume that
the spatial states are localised enough, then the contributions from integrals in m are non-zero only
when the bra and the ket states have some overlap, namely when (i) m1 = m4 and m2 = m3 or (ii)
m1 = m3 and m2 = m4. In the first case, we define the direct integrals

Km1m2 := ⟨m1, m2| e2

4πϵ0|r1 − r2|
|m2, m1⟩

=
∫

d3r1d3r2|ϕm1(r1)|2 e2

4πϵ0|r1 − r2|
|ϕm2(r2)|2

(2.12)

while in the second case, the exchange integrals
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Jm1m2 := ⟨m1, m2| e2

4πϵ0|r1 − r2|
|m1, m2⟩

=
∫

d3r1d3r2ϕ∗
m1(r1)ϕ∗

m2(r2) e2

4πϵ0|r1 − r2|
ϕm1(r2)ϕm2(r1)

(2.13)

The Coulomb interaction becomes

HC = 1
2
∑
R

∑
m1m2

∑
σ1σ2

{
Km1m2c†

Rm1σ1
c†

Rm2σ2
cRm2σ2cRm1σ1 + Jm1m2c†

Rm1σ1
c†

Rm2σ2
cRm1σ2cRm2σ1

}
= 1

2
∑
R

∑
m1m2

∑
σ1σ2

{
Km1m2c†

Rm1σ1
cRm1σ1c†

Rm2σ2
cRm2σ2 − Jm1m2c†

Rm1σ1
cRm1σ2c†

Rm2σ2
cRm2σ1

}
(2.14)

where we have used anti-commutation proprieties of fermionic operators. We can now define the
number and spin operators at site R as

nRm :=
∑

σ

c†
RmσcRmσ

Sα
Rm :=

∑
σσ′

c†
Rmσ (σα

σσ′/2) cRmσ′
(2.15)

where σα (with α = x, y, z) is the Pauli vector, defined by matrices 2.5.
By setting SRm = (Sx

Rm, Sy
Rm, Sz

Rm), we have can evaluate∑
σ1σ2

c†
Rm1σ1

cRm1σ2c†
Rm2σ2

cRm2σ1 = nRm1nRm2

2
+ 2SRm1 · SRm2 (2.16)

which finally leads to

HC(on-site) =
∑
R

1
2
∑

m1m2

{(
Km1m2 − 1

2
Jm1m2

)
nRm1nRm2 − 2Jm1m2SRm1 · SRm2

}
(2.17)

The first term inside parenthesis is the on-site Coulomb interaction. It can be shown that Km1m2 ≥
Jm1m2 ≥ 0 and that in particular Km1m2 − 1/2Jm1m2 > 0. The ”classical” contribution Km1m2 is thus
effectively lowered in the quantum treatment by Jm1m2 , but it still is repulsive. The second term
instead has a full quantum-mechanical origin and favours a ferromagnetic alignment (qualitatively
expressed by the Hund’s first rule). In particular, for a single relevant orbital with σ =↑, ↓ from Eq.
2.14 we obtain

HC(on-site) = 1
2
∑
R

∫
d3r1d3r2ϕ∗(r1)ϕ∗(r2) e2

4πϵ0|r1 − r2|
ϕ(r2)ϕ(r1)

∑
σ1σ2

c†
Rσ1

c†
Rσ2

cRσ2cRσ1

= 1
2
∑
R

∫
d3r1d3r2ϕ∗(r1)ϕ∗(r2) e2

4πϵ0|r1 − r2|
ϕ(r2)ϕ(r1)

(
c†

R↑c†
R↓cR↓cR↑ + c†

R↓c†
R↑cR↑cR↓

)
=
∑
R

∫
d3r1d3r2ϕ∗(r1)ϕ∗(r2) e2

4πϵ0|r1 − r2|
ϕ(r2)ϕ(r1)c†

R↑c†
R↓cR↓cR↑

=
∑
R

U ′c†
R↑c†

R↓cR↓cR↑ =
∑
R

U ′c†
R↑cR↑c†

R↓cR↓ =
∑
R

U ′nR↑nR↓

(2.18)

where U ′ > 0 is called Hubbard term and will be discussed further in section 3.3.1.
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For inter-ion interactions, we can consider Ri as an extra quantum number. From Eq. 2.11 we
have non-zero first order perturbation if R1 = R4 and R2 = R3 or if R1 = R3 and R2 = R4. This
leads, adopting the notation Ri = i in subscripts, to the analogous of Eq. 2.17

HCinter = 1
2
∑

R1R2

{(
K12 − 1

2
J12

)
n1n2 − 2J12S1 · S2

}
(2.19)

In the case of half-filling, meaning that only one electron is present at each orbital (ni = 1), the
interaction is simply

HH = −
∑

R1R2

J12S1 · S2 (2.20)

As before, J12 > 0, meaning that the Coulomb repulsion between electrons in different orbitals
favours spin-parallel configurations.

The model 2.20 with only the dominant two-particles interaction is called Heisenberg model and
typically written as

HH = −1
2
∑
ij

JijSi · Sj = −
∑
⟨ij⟩

JijSi · Sj (2.21)

where in the first expression the sum runs over all lattice sites i and j while the sum in the second,
equivalent, expression runs over all the couples of neighbouring lattice sites.

The model 2.21 is defined by quantum spin operators Si = (Sx
i , Sy

i , Sz
i ). From Eq. 2.5, sums and

products of spin operators reduce to sum and products of the corresponding matrices:

HH = −
∑
⟨ij⟩

Jij

[
Sx

i Sx
i + Sy

i Sy
j + Sz

i Sz
i

]
(2.22)

However, interactions may also contain only one or two components, as in the case of Ising model

HI = −
∑
⟨ij⟩

JijSz
i Sz

j (2.23)

and XY models

HXY = −
∑
⟨ij⟩

Jij

[
Sx

i Sx
i + Sy

i Sy
j

]
(2.24)

respectively.

2.3 Holstein-Primakoff representation
Eq. 2.4 shows that the commutator of two spin operators is a spin operator itself. When analytical
approaches are involved, as in this case, it might make derivations cumbersome to carry on and more
convenient representation are used instead. The Holsetein-Primakoff (HP) representation expresses
spin operators in terms of canonical bosonic creation and annihilation operators a†

i and ai at each site
as

S+
i =

√
2S − a†

i aiai =
√

2S − niai

S−
i = a†

i

√
2S − a†

i ai = a†
i

√
2S − ni

Sz
i = S − a†

i ai = S − ni

(2.25)

In HP notation we can write
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HH = −J
∑
⟨ij⟩

Si · Sj = −J
∑
⟨ij⟩

[
Sz

i Sz
j + 1

2

(
S+

i S−
j + S−

i S+
j

)]
(2.26)

The new spin operators are called raising and lowering operators S±
i = Sx

i ± iSy
i and we also

introduce the number operator ni = a†
i ai which simply counts the number of bosons ⟨ni⟩ at each site.

The reason why HP representation is more advantageous lies in the fact that relevant commutators
now are just complex numbers but also because the vacuum of ai corresponds to fully polarized state
(the eigenvalue of Sz

i reaches its maximum S). This becomes useful when studying the ferromagnetic
ground state and its excitations as we will see in the next sections.

2.4 Spin-wave theory
If all the exchange interactions Jij = J are non-negative, the fully polarized states are ground states
and we are in the ferromagnetic configuration. It is easy to convince that the ground state corresponds
to a state where all spins are aligned and point to the same ordering direction. This is conventionally
chosen to be the positive z-direction. If we consider for simplicity a 1D spin-1/2 chain it can be written
as

Ψ0 = |↑, ..., ↑, ↑, ↑, ..., ↑⟩ = |S, ..., S, S, S, ...S⟩ (2.27)

where |↑, .., ↑⟩ = |↑⟩ ⊗ ... ⊗ |↑⟩.
The first excited state is less trivial. A naive candidate is the state where only one spin is flipped

S → −S (in general, for non spin-half system it is reduced by 1: S → S − 1 ), namely

Ψ1 = |↑, ..., ↑, ↓, ↑, ..., ↑⟩ = |S, ..., S, −S, S, ...S⟩ (2.28)

Eq. 2.28 doesn’t define an eigenstate of HH , since the terms with S+
j S−

j would shift the flipped
spin to neighbouring site and change the state. Moreover, if we evaluate its expectation energy we
obtain a fairly large energy gap relative to the ground state

∆1 = E1 − EGSF M

= ⟨Ψ1|HH |Ψ1⟩ − ⟨ΨGSF M
|HH |ΨGSF M

⟩

= −J
∑
j ̸=0

⟨Ψ1|
S+

0 S−
j + S−

0 S+
j

2
+ Sz

0Sz
j |Ψ1⟩ + J

∑
j ̸=0

⟨ΨGSF M
|
S+

0 S−
j + S−

0 S+
j

2
+ Sz

0Sz
j |ΨGSF M

⟩

= −J
∑
j ̸=0

⟨Ψ1|Sz
0Sz

j |Ψ1⟩ + J
∑
j ̸=0

⟨ΨGSF M
|Sz

0Sz
j |ΨGSF M

⟩

= −J
∑
j ̸=0

S(S − 1) + J
∑
j ̸=0

S2 = SJ

(2.29)

A better guess for low-energy excited states is guided by exploiting all the possible orientation of
a vector free to rotate in a 3D space. Heisenberg model can be interpreted as

HH = −J
∑

<ij>

Si · Sj → H i
H = −Si ·

J
∑

j

Sj

 (2.30)

The last equation is the interaction between a spin Si and an effective exchange magnetic field
arising from the interaction with the surroundging spins Sj .

In Heisenberg picture, the equation of motion for a spin Si reads
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dSi

dt
= i

ℏ
[H i

H , Si] = −1
ℏ

J
∑

j

Sj

× Si (2.31)

Since we are in the low-energy regime, we can assume the first excited state to be close to the fully
polarized ground state, and thus writing the spins in the form Si = (Sx

i , Sy
i , Sz

i ) ≈ (Sx
i , Sy

i , S) and
S

x(y)
i S

x(y)
i ≈ 0. This brings, for the different components, to

ℏ
dSx

i

dt
= −

∑
j

J [Sy
j Sz

i − Sz
j Sy

i ] ≈ −
∑

j

JS[Sy
j − Sy

i ]

ℏ
dSy

i

dt
= −

∑
j

J [Sz
j Sx

i − Sx
j Sz

i ] ≈
∑

j

JS[Sx
j − Sx

i ]

ℏ
dSz

i

dt
=
∑

j

J [Sx
j Sy

i − Sy
j Sx

i ] ≈ 0

(2.32)

These equations have been derived in a pure classic picture and describe a precession of spins
around z-axis with a constant phase shift between neighbouring spins. Collectively, they are slightly
perturbed states by means of small oscillations of spins around the z-direction (see Fig. 2.3).

For a more formal description, being N the number of spins and z the coordination number of a
system (i.e. z = 4 for a square 2D lattice), we write the Hamiltonian 2.21 using HP operators

HH = −J
∑
⟨ij⟩

Si · Sj

= −J
∑
⟨ij⟩

[
Sz

i Sz
j + 1

2

(
S+

i S−
j + S−

i S+
j

)]

= −JNS2z

2
− JS

∑
⟨ij⟩

[
a†

i aj + a†
jai − a†

i ai − a†
jaj

]
+ O(S0)

(2.33)

In the last passage we truncated the square root expansion in 1/S at the first order, meaning that
terms containing four or more bosonic operators are neglected. This can be regarded as a semi-classical
approximation, since the limit S → ∞ corresponds to a classical picture where the eigenvalue of S2

i

converge to the squared lenght of a classical spin vector S2 and we will come back to this.
The quadratic terms left in 2.33 can be diagonalized introducing Fourier transformed operators

ak = 1√
N

∑
i

exp−ik·ri ai

a†
k = 1√

N

∑
i

exp−ik·ri a†
i

(2.34)

which preserves the bosonic commutations relations. Inserting them into 2.33 and using∑
i

exp i(k − k′) · ri =

Nδkk′ we obtain

HH = −JNS2z

2
+
∑

k
ωka†

kak (2.35)

with
ωk = 2JS

∑
δ

(1 − cos k · δ) = JSz(1 − γk) (2.36)
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Figure 2.3: Spin waves. (top) Representation of out-of-phase spin wave on a 1D chain viewed in
perspective at a freezed time t0. (bottom) Evolution in time of a spin wave on a 2D square lattice
seen from above. Red arrows indicate the spin orientation, while the grey cones are a visual guide for
the spin precession. Dashed line outlines the spin wave, drawn through the ends of the vectors.

and

γk = 2/z
∑

δ

cos k · δ = 2/z
d∑

ν=1
cos kνδν (2.37)

Here δ is defined as the vector connecting interacting sites, as in j = i + δ.
Eq. 2.35 describes a system of independent harmonic oscillators labelled by wavevector k with

energy ωk. One quantum of spin wave is a pseudo-particle called magnon and is created by the
operator a†

k. Truncation in Eq.2.33 is thus equivalent to neglect magnong-magnon interactions terms,
as a†

i aia
†
jaj .

Thermal fluctuations, instead of acting on individual spins, are shared by the entire lattice in the
shape of a spin wave. In the limit k → 0 the dispersion is quadratic,

ωk ≈ JS|k|2 (2.38)

as shown in Fig. 2.4.
We note that the k = 0 magnon, called Goldstone mode, corresponds to a uniform spin rotation

and does not cost any energy. This results from the fact that the Hamiltonian 2.33 is invariant under
rotation. Magnons are introduced and removed from the system by the operators 2.34 and one can
show that a†

k |ΨGSF M
⟩ is indeed an eigenstate of HH . Conversely, this is not true for a†

ka†
k′ |ΨGSF M

⟩
since in our approximation we neglected interactions.

Being non-interacting bosons, their behaviour is controlled by Bose-Einstein statistic, according
to which the mean number of magnons with momentum k depends on the temperature T = β/kB as
in

⟨nk⟩ =
⟨
a†

kak
⟩

= 1
eβωk − 1

(2.39)
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−π 0 π

k

ωk

Figure 2.4: Spin-wave dispersion relation. Magnon dispersion for a system with FM isotropic (in
blue), FM anisotropic (in orange) and AFM isotropic (in red) interactions.

2.4.1 Honenberg-Mermin-Wagner theorem
At T = 0, it easy to see that the ground state has no magnons and the magnetization M reaches
its maximal value. As we increase the temperature, we introduce more energy in the system and
thermally excite new magnons, each of which undermines the global magnetic order. Eventually, it
reaches a critical mass and is so large that it is not possible to talk of magnetic order anymore. The
system undergoes a phase transition into paramagnetism and the order parameter M drops to 0. We
can look at how M depends on T evaluating

M = S − ∆M(T ) (2.40)

where ∆M(T ) =
∑
k

⟨nk⟩ counts the total number of magnons present in the system at temperature T .
Since the Heisenberg model allows for continuous rotation of spins, the very low-frequency oscillations
are the first to appear and we can pass to the integral version. The bosonic density of states depends
on the dimensionality d of the system and expanding Eq. 2.39 to first order we obtain

∆M ∝
∫

dkkd−1 kBT

Sk2 ∝ kBT

JS

{
1/k + ..., d = 1
− log k + ..., d = 2

(2.41)

While it can be shown that for d = 3 the value of ∆M is always finite and obeys the Bloch law
∆M ≈ T 3/2 at low energy, for d = 1 and d = 2 it diverges at any non-zero T . The result M → −∞
means that infinitely many magnons can be excited with minimal energies and thus no long range
mangetic order is possible. This is generalized by the Hohenberg-Mermin-Wagner (MW) theorem[16]
which states that no magnetic order is possible at any finite temperature in 1D or 2D systems with a
continuous symmetry and short-range interactions, as is the case for the isotropic Heisenberg model.

2.5 Anisotropic terms
In section 2.4.1 we derived the MW theorem, according to which in 1D and 2D Heisenberg systems,
no long-range magnetic order is possible at any finite temperature. This is in striking contrast with
experimental observations[17]. The reason lies in the fact that Eq. 2.21 has a full SU(2) spin rota-
tion symmetry. The model is isotropic and all full-polarized configurations are degenerate in energy.
An elementary cell in a realistic ionic environment generally lacks this rotational symmetry. The
Heisenberg model is thus generalized

H = −
3∑

α,β=1

∑
<ij>

Jαβ
ij Sα

i Sβ
j (2.42)
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where the tensor Jαβ
ij couples the α, β-components of the spin operators at site i, j. Crystal symmetry

reduces number of non-zero elements and typically for 2D system the out-of-plane component has a
peculiar nature compared to the in-plane directions. This commonly yields to a uni-axial anisotropic
exchange

H = −
∑

<ij>

[
Jx

ijSx
i Sx

j + Jy
ijSy

i Sy
j + Jz

ijSz
i Sz

j

]
= −

∑
<ij>

Jij

[
Sx

i Sx
j + Sy

i Sy
j + (1 + ϵ)Sz

i Sz
j

]
= −

∑
<ij>

[
JijSi · Sj + BSz

i Sz
j

] (2.43)

where additional term ϵ (absorbed by A in the last equation) favoured out-of-plane (B > 0) or in-
plane (B < 0) magnetization, introducing magnetic anisotropy (MA). As it is clear from Eq. 2.43,
MA means that the energy depends on the orientation of the magnetization as measured with respect
to the crystallographic axes, and at same extent or in same form, it is always present in real samples.
Moreover, without it, magnetism would be fairly useless, since almost all applications hinge on the
fact that same directions (easy axis) are easier to magnetize than others (hard axis) with an external
magnetic field. Super − exchangeinteractions [50] between spins mediated by non-magnetic ions in
non-planar geometries, are typically modelled in simulations as an effective anisotropic term as in Eq.
2.43.

Another source of anisotropy arises from spin-orbit coupling (SOC). This terms is a consequence
of relativistic corrections in the electronic Hamiltonian. From a classical picture (again, wrong but
powerful), it arises from the interaction between the vector spin S of a charged particle with its own
orbital motion, thus the orbital angular momentum L = r×p (see Fig. 2.5). A proper derivation starts
from the time independent Dirac equation[51], which accounts for the relativistic effect neglected in the
Pauli equation for fermionic particles[52]. After algebraic manipulation and a semi-classical expansion
in power of the 1/mc2, one obtain a series of terms in the Hamiltonian of the Dirac equation:

H = HNR + HSI + ℏ2

2m2
ec2

∂V

r∂r
S · L (2.44)

Here HNR is the non-relativistic part, HSI do not depend on spin and is the Darwin term and a
corrections to the kinetic energy, while

HSOC = ℏ2

2m2
ec2

∂V

r∂r
S · L = λS · L (2.45)

is the SOC coupling. For an electron in a crystal lattice, the orbital motion that defines L is
strongly affected by the atomic potential landscape. Consequently, some direction will be privileged the
magnetization. The anisotropy that arises from SOC is generally called magneto-crystalline anisotropy
since is a measure of how strong the spin is locked to a specific crystal direction. Assuming a quenching
of angular momentum, only the spin degree of freedom remains. For transition metal elements, where
the SOC is much smaller than exchange couplings, it is common to treat it in perturbative theory. Eq.
2.45 has non-zero corrections only at second (or higher) order, namely

HSOC = |λ|2
∑

n

⟨0|Lµ|n⟩⟨n|Lν |0⟩
E0 − En

SµSν = −SµΛµνSν (2.46)

where the indices µ, ν run over the crystallographic axes. Rotating the tensor Λµν in the same basis
and writing A ∝ |λ|2, we obtain the uniaxial anisotropy for the system

HSOC =
∑

i

Ax(Sx
i )2 + Ay(Sy

i )2 + Az(Sz
i )2 (2.47)

As before, the strongest contributions arises from the last term, generally of the order of 1 meV.
The general anisotropic Heisenberg model can thus be written as
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H = −1
2
∑
ij

JijSi · Sj −
∑

i

Ai (Sz
i )2 − 1

2
∑
ij

BijSz
i Sz

j (2.48)

where generally the couplings are kept only for nearest neighbours’ sites and the Heisenberg parameters
Jij ≡ J , Ai ≡ A, Bij ≡ B are symmetric and constant.

The dispersion relation for a FM system described by 2.48 can be obtained in way similar to the
isotropic case, though additional approximations are needed in case of magnonic interactions. More
information can be found in sections 5.1, 5.4, 5.6 and the referred publications. The magnon dispersion
relation is in general shifted upwards by a constant proportional to MA (see Fig. 2.4). This yields to
a finite energy gap that protects the ordered ground state and defines a privileged axis that breaks the
spherical symmetry. The Mermin-Wagner theorem is thus evaded, but not when i.e. A < 0 and B < 0.
In this case, an easy-plane is defined instead and rotational symmetry preserved on the xy-plane. It
is easy to see that for A → ∞ the Heisenberg model becomes a binary state system equivalent to an
Ising model. The opposite limit is the already mentioned XY model.

2.6 Other interactions
One can derive other exchange interactions beyond the Heisenberg model expanding localized models
as the Hubbard model (see sec.(3.3.1)) in a perturbative approach. Some examples are the four-spin
exchange interaction

H4−spin =
∑
ijkl

Kijkl[(SiSj)(SkSl) + (SjSk)(SlSi) − (SiSk)(SjSl)] (2.49)

which describe four consecutive hops of electrons, and a biquadratic exchange

Hbiq =
∑
ij

Qij (SiSj)2 (2.50)

Since these terms scale with the magnetic moments to 4th order, they are usually neglected and
we show them here only for completeness. However, they may play an important role in lifting
degeneracies of the Heisenberg model and in frustrated magnets.

Anti-symmetric exchange, like the Dzyaloshinskii−Moriyainteraction, results from second-order
perturbative theory of the spin-orbit coupling interaction. They are generlly written as

HDMI =
∑
ij

Dij (Si × Sj) (2.51)

where

2.6.1 AFM quantum corrections
In previous sections we analyzed the ground-state of a system with dominant ferromagnetic interac-
tions. When J < 0 the interactions are anti-ferromagnetic and spins privilege anti-parallel alignment.
The ground state is generally more complex even in the classical picture (see sec. 3.4) and we will
shortly outline the most important features of the AFM ground state and first excited states.

One might naively guess that the so-called Néel state

ΨNéel = |..., ↑, ↓, ↑, ↓, ...⟩ = |.., S, −S, S, −S, ...⟩ (2.52)

having spins on neighbouring sites pointing in opposite directions, represents the quintessential
expression of anti-ferromagnetism and thus being the ground state. Conversely, it is easy to show that
it is not even an eigenstate of the Heisenberg model 2.33 since the ladder operators would flip pairs of
adjacent spins. While in the ferromagnetic case the raising and lowering operators always destroy the
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Proton’s point of view Electron’s point of view

Figure 2.5: Spin-orbit coupling. SOC is the interaction of the spin S (black arrow) of an electron
(negatively charged yellow sphere) with its own orbital angular momentum L, mainly affected by the
geometry of the system. In a classical picture, this can be seen as an effective magnetic field (red
arrow) generated by the positively charged nucleus orbiting around the electron in the electron’s rest
frame.

ferromagnetic ground state, leaving only the contribution from the Sz
i Sz

j terms of the Hamiltonian,
here their action changes the state so that HHΨNéel is not proportional to solely ΨNéel anymore.

The Néel state is still a good starting point though. We can split the entire lattices with N spin
into two sublattices with N/2 spins each. For bipartite lattices the nearest neighbours of a spin on the
lattice A are all of the sublattice B, as i.e. in a chessboard configuration. The true ground state would
probably have spins pointing predominantly in i.e. +S direction for sublattice A and spins pointing
predominantly in the opposite direction for sublattice B. At first, we define convenient bosonic HP
operators. Equations in 2.25 are still valid for the sublattice A with spin projection +S, while for B,
the opposite direction for the spin projection is reflected as

S+
j = b†

j

√
2S − b†

jbj

S−
j =

√
2S − b†

jbjbj

Sz
j = −S + b†

jbj

(2.53)

where i ∈ A and j ∈ B for Eqs. 2.25 and 2.53. If we insert these expressions in the Hamiltonian, we
can expand the square roots and keeping only the quadratic terms to order S (thus neglecting the
interaction terms) leads to

H = NzJS2

2
− JS

∑
<ij>

[
a†

i ai + b†
jbj + aibj + b†

ja†
i

]
(2.54)

where z is the coordination number, i.e., 4 for square lattice. As we did for the FM case, we then
introduce the Fourier-transformed operators, of the type

ai = 1√
N/2

∑
eik·Riak

bj = 1√
N/2

∑
e−ik·Ribk

(2.55)

Using the standard bosonic commutation relations, the substitution leads to:

H = NzJS2

2
− JSz

∑
k

[
a†

kak + b†
kbk + γk(akbk + a†

kb†
k)
]

(2.56)

where γk is defined as in 2.37. The first two terms in Eq. 2.56 are in diagonal form, but unlike the
FM case, the last two terms required an additional canonical Bogliubov-Valatin transformation that
maps
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ak = cosh(ϕk)αk − sinh(ϕk)β†
k

bk = −sinh(ϕk)α†
k + cosh(ϕk)βk

(2.57)

The new operators αk and βk are still bosonic operators and inserting them into 2.56 reads, after
algebraic manipulation,

H = NzJS(S + 1)
2

+
∑

k
ℏωk

[
α†

kαk + β†
kβk + 1

]
(2.58)

where ℏωk = −JSz
√

1 − γ2
k. This Hamiltonian is now in a diagonal form: operators α†

k and β†
k create

non-interacting magnons with energy ωk. Without losing generality we assume a spin chain (d=1 and
z=2) and it is easy to see that at small k we have a linear dispersion relation (see Fig. 2.4):

ℏωk = −2JS
√

1 − γ2
k ≃ −2JS

√
1 − (cos kδ)2 ∼ −2JSδk (2.59)

The ground state in the approximation of no magnon-magno interactions |ΨNIM ⟩ is defined as the
vacuum of the annihilation operators, namely

αk |ΨNIM ⟩ = 0
βk |ΨNIM ⟩ = 0

(2.60)

For any k, and the energy is obtained as

ENIM = NzJS(S + 1)
2

− zJS
∑

k

√
1 − γ2

k (2.61)

The last term is evaluated numerically[38] on a grid in the reciprocal space and depends on its
dimensionality d:

ENIM = dNJS2


(1 + 0.363/S) for d = 1 ,

(1 + 0.158/S) for d = 2,

(1 + 0.097/S) for d = 3
(2.62)

ENIM is always lower than the energy of Néel state ENéel = zNJS2

2 . The corrections is thus more
significant for systems with low spin S (as we except for quantum fluctuations corrections) and low d.
Moreover, the expectation value of the magnetization in one sublattice is also affected:

MNIM |A = ⟨ΨNIM |S − a†
i ai|ΨNIM ⟩ = S − 2

N

∑
k

⟨ΨNIM |S − a†
kak|ΨNIM ⟩ (2.63)

Adopting the Bogoliubov-Valatin operators one gets

∆M |A = S − MNIM |A = −1
2

+ 2
N

∑
k

(
nk + 1

2

) 1√
1 − γ2

k

(2.64)

Passing to the continuum limit, at T = 0 (nk = 0) and d = 1, the last sum becomes

1
N

∑
k

1√
1 − γ2

k

∝ lim
k0→π

∫ π

k0
(1 − cos2 k)−1/2dk (2.65)
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which diverges when k0 → −∞. The sub-lattice magnetization has zero expectation value, meaning
that the ground state is not stable due to quantum fluctuations for any value of S and T (also the
ground state is unstable). For 2D and 3D systems the average spin is evaluated numerically[38] and
reduced by

MNIM |A = NS

2

{
(1 − 0.197/S) for d = 2
(1 − 0.078/S) for d = 3

(2.66)



CHAPTER 3
Density Functional Theory

and Energy Mapping Analysis
Quantum mechanics is certainly one of the most successful theories ever produced. Being concerned
with the nature of the most elementary building blocks of the universe, it is considered to be a
fundamental description of nature. Many phenomena and laws of physics, not only expressions of the
microscopic world, can be derived from quantum mechanics.

Louis de Broglie first proposed the wave nature of matter in 1924. This idea was later combined
with work done on quantisation by, among others, Planck and Einstein about two decades earlier. This
revolution in thinking eventually lead to a new theory of matter, replacing the idea of particles with
definite positions in space, with waves and positional uncertainty. The theory, which became known as
quantum mechanics, quickly established itself within physics by describing nature with unprecedented
accuracy, but ceaselessly poses new challenges.

While in the previous chapter we already introduced some concepts and formulation of quantum
mechanics, in this one we first describe the funding principles of many-body quantum mechanics and
discuss the unavoidable approximations made to describe complex systems. We thus introduce Density
Functional Theory (DFT), one of the most powerful and widely used tool for calculating ground state
observables of many-body systems. All DFT results have been obtained with the electronic structure
software package GPAW[53, 54] based on the Projector AugmentedWave method (PAW) formalism[55]
using plane wave (PW) basis sets and combined with the Atomic Simulation Environment (ASE)[56].
The specific settings for DFT calculations are not discussed here but can be found in the Method
sections in each publication listed in chapter 7. Relaxation of geometrical structures and convergence
tests with respect to PW cut-off energy and k-point grids density are implied for the rest of the thesis.

In the last part of the chapter, we present the Energy Mapping analysis, a method that maps
results from DFT calculations to spin-lattice models, in order to extract relevant parameters.

3.1 Electronic structure
In a simplified picture and at a convenient scale, matter is made of atoms with a central nucleus
and electrons (de-)localised all around. The primary concern with nowadays solid state physics and
quantum chemistry is the calculation of the ground state proprieties of such a collection of atoms.
This challenging task is entrust to the Schrödinger equation (SE). For a system with M nuclei and N
electrons, in the time-independent version it reads

ĤΨ({ri}N , {Rk}M ) = EΨ({ri}N , {Rk}M ) (3.1)

where E is the energy eigenvalue of Hamiltonian operator Ĥ corresponding to the many-body wave
function Ψ({ri}N , {Rk}M ), with Rk and ri being the space coordinates of the k-th nucleus and of the i-
th electron respectively. The general Hamiltonian comprises kinetic energies of electrons (nuclei) T̂e(n)
and all the possible combinative interactions V̂ between each other and with the external environment

Ĥ = T̂e + T̂n + V̂nn + V̂ee + V̂ne + V̂ext (3.2)
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An early approximation to Eqs. 3.1 and 3.2 is the Born-Oppenheimer approximation, which states
that the motion of nuclei and their mutual interactions are negligible when compared to the ones of
the electrons, because of the much larger mass. The Hamiltonian for a system with N interacting
electrons with mass m and electric charge −e, moving in an external potential v(r), is thus written as

Ĥ =
N∑
i

(
−ℏ2∇2

i

2m
−

M∑
k

Zke2

|Rk − ri|
+ v(ri)

)
+

N∑
i

N∑
j ̸=i

1
2

e2

|rj − ri|
(3.3)

The first term is the sum of all the single particle kinetic energies, of the Coulomb attractions
between negatively charge electrons and M positively charged (with atomic number Zk) nuclei and
the coupling with an external potential. The second sum describes the electron-electron interaction.
It makes solving Eq.3.3 a computational problem that intimidatingly scales exponentially with the
number of electrons. In order for quantum mechanics to be a practical theory and provide an accurate
description of the electronic proprieties of a system, an approach different than the exact solution of
Eq.3.3 is required. Once the external potential is set, solving the SE defines the wave functions from
which we obtain the value of the observables as expectation values of corresponding operators.

For example, the total electron density is defined as the integral over all but one of the spatial
coordinates:

n(r) = N

∫
...

∫
Ψ∗(r1, r2, ..., rN )Ψ(r1, r2, ..., rN )dr2...drN (3.4)

This formulation derives from the fact that the wave function is written as Slater determinant
(Hartree-Fock approximation[57, 58]). It is thus anti-symmetrized (in order to satisfy the Pauli exclu-
sion principle) and reflects the indiscernibility of particles. The function n(r) determines the probabil-
ity of finding any of the N electrons within the volume element dr but necessitates the knowledge of Ψ
and thus the resolution of Eq.3.3, which in turn depends on electronic density. While , the standard
approach to describe electronic proprieties is then self-consistent.

3.2 Density Functional theory
Density Functional Theory (DFT) is based on a different approach. It is a formally exact reformulation
of the many-body quantum mechanics but its fundamental concept is that any propriety of a system
with many interacting electrons can be mapped to a functional1 of the ground state electronic density
n0(r). This in principle determines all the information stored in the many-body wave function for the
ground state.

The first work on the field dates back to 1927, when Thomas[59] and Fermi[60] derived the kinetic
energy of an electronic system as an explicit functional of the density ET F [n0]. They consider ho-
mogeneous gas of non-interacting electrons with density equal to the local density at any given point
obtaining for an external potential v(r), usually the one originating from static nuclei plus any other
that can be controlled from outside the system i.e. electric field. The Hamiltonian in Eq. 3.2 is thus
generally reduced to the sum of electron kinetic energies, electron-electron interactions and external
potential

Ĥ = T̂ + V̂ee + V̂ext (3.5)

Notwithstanding the simplicity of the approximation and the lack of relevant physical features,
the functional-based method makes its point in a numerical context, since it drastically reduce the
dimensionality of the problem.

1A functional F [ϕ] assigns to a function ϕ a real or complex number.
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3.2.1 Hohenberg-Kohn theorems
DFT as it is meant nowadays has been theoretically developed by Hohenberg and Kohn in 1964 [61],
who formulated it as an exact theory of the static electronic many-body problem. The method lies on
the following theorems:

Theorem 3.2.1 For a non-degenerate system subject only to a time-independent scalar potential,
all physical quantities, including the many-body wave function Ψ and the external potential v(r) are
uniquely determined by the charge density n(r).

Theorem 3.2.2 For a given external potential, the ground state density n0(r) is that which minimises
the energy of the system.

The first theorem means that we can establish a unique mapping between the electronic density
n(r) of a particular system and the external potential v(r) acting on it.Any effective potential is then
written as a functional of the density

V (r) = V [n](r) (3.6)
and since the ground state wave function Ψ0 is determined by the external potential, we can also
establish the one-to-one relationship

Ψ0 = Ψ[n0] (3.7)

All other physical observables can thus be derived, at least in principle, from the charge density.
Most notably, the total energy reads

E[n] = F [n] + Vext[n] (3.8)
where F [n] = T̂ [n] + V̂ee[n] is an universal functional of the density defined as the sum of the kinetic
and interaction energies and independent of the external potential.

With these considerations in mind, the second theorem is then a variational procedure to find the
ground-state charge density n0(r) of a given external potential v(r). It follows from the fact that
any arbitrary exchange-antisymmetric N-electron state |Ψ⟩ (which leads to any other different density
n(r)) must obey

E[n0] = F [n0] + V [n0] = min⟨Ψ|T̂ + V̂ee|Ψ⟩ +
∫

n0(r)v(r)dr (3.9)

where E0 = E[n0] = ⟨Ψ0|Ĥ|Ψ0⟩ is the total ground state energy.
A schematic representation of HK theorems is the following:

v(r) n0(r)

Ψ0({r})Ψi({r})

HK

A normal arrow stands for the usual resolution of the Schrödinger equation: from Vext(r) we obtain
all the states of the system Ψi({r}) (including the ground-state Ψ0({r})) and the ground-state density
n0(r). The arrow labelled with HK indicate the direction of HK theorems and completes the circle.

To sum up, the ground state wave function is the one which minimises an universal functional F [n]
of the density, whilst reproducing the ground state density. In the non-degenerate case, this definition
uniquely determines the ground state wave function in terms of n0, without explicitly specifying any
external potential. Hence, it is the density, rather than the many-body wave function, that can be used
to obtain the ground state energy of the system, i.e. from δE[n]

δn = 0. Anyway, this task still requires
the troublesome computation of the many-body wave function (see Eq. 3.9) since no expressions of
F [n] depending explicitly on the density (and not via wave functions) is known at date.
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3.2.2 Kohn-Sham equations
DFT would remain a minor technical curiosity if it were not for the ansatz made by Kohn and Sham[62],
which provided the first practicable procedure to exploit the abstract framework advanced by the HK
theorems. The key of Kohn-Sham (KS) scheme is to treat electrons as non-interacting particles, so
to bypass the exponential scaling factor due to the interacting terms in Eq. 3.3. Then, HK theorems
guarantee that any charge density can be reproduce by an unique effective, external potential. The
SE equations for a system of N interacting electrons is thus replaced by a set of N SE equations (called
KS equations) for non-interacting electrons:

[
− ℏ2

2m
∇2 + vKS(r)

]
ϕi(r) =[

− ℏ2

2m
∇2 + vext(r) + vH(r) + vxc(r)

]
ϕi(r) =[

− ℏ2

2m
∇2 + vext(r) +

∫
n(r′)

|r − r′|
dr′ + δExc

δn(r)

]
ϕi(r) = ϵiϕi(r)

(3.10)

The interactions are replaced by a single-particle potential, called KS potential VKS , which retains
the electron density of the original system with interacting particles (see Fig. 3.1). It includes the
”harmless” single-particle interactions with the external perturbations, the Hartee Coulomb repulsion
vH and the exchange-correlation (XC) potential vxc. The latter is an umbrella term that accounts for
the effects of dealing with anti-symmetric wave functions (exchange) and for balancing the overesti-
mation of repulsive Hartree energy between any electron pair (correlation)2. Essentially it stands for
whatever has been missed out when moving into the KS scheme. It is also the only unknown term and
despite being a widely explored research area, no exact general expression, explicitly in terms of the
electron density, is available. Luckily, vxc is small compared to the whole vKS and approximations
made to it yields to reasonably accurate results, but often only work for specific problems.

3.2.3 Exchange-correlation functionals
Since the advent of modern computers and the opportunity to perform high-demanding calculations,
there has been a growing interest in DFT methods[63] and for its time-dependent version[64]. Nowa-
days it is one of the most active field in physics and the number of XC functionals available is huge and

2The correlation effects generally also account for the difference between the non-interacting and interacting kinetic
energies.

(a) (b)

Figure 3.1: KS ansantz. A way to visualize the idea behind KS method and how it substitutes (a)
a system of interacting electrons introducing an (b) auxiliary system of non-interacting electrons but
with an effective potential VKS so that the electronic density (cartoonized in yellow) is the same.
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for every taste[65, 66]. Here we will give just a brief overview of the most used classes of functionals
in material science and throughout this project. The first and simplest approximation is the Local
Density Approximation LDA which acquires the local XC energy at a position r assuming the entire
system to be an infinite, homogeneous electron gas with density equal to n(r). While being still vastly
used for systems having relatively homogeneous electronic densities (like metals), it is well-known to
fail in predicting optical proprieties of materials (as an underestimation of the optical band gaps in
insulators and semiconductors[67]), among others drawbacks. More advanced functionals are the semi-
local Generalized Gradient Approximation GGAs, which expand from LDA making the XC energy a
functional of the spatial variation of the density as well. The functional employed in this project is
the GGA functional PBE[68] (by Perdew, Burke and Ernzerhof) and it is one of the most used in the
field.

3.3 Spin-dependent DFT
In principle, it should be possible to extract from the electronic density also all the magnetic proprieties
of the system, such as magnitude and alignment of magnetic moments. In practice, it is easier to
redefine DFT so to explicitly include the spin-density matrix, replacing the scalar density n(r) by
an Hermitian 2x2 spin-density matrix ñ(r), composed of a scalar (charge) n(r) and vectorial (spin
density) s(r) part. As we did in 2.2, we define the spin density in terms of the two-component
spinorial wavefunction ϕ(r) as

s(r) = ⟨ϕ(r)|σ|ϕ(r)⟩, Φ(r) =
(

ϕ↑(r)
ϕ↓(r)

)
(3.11)

with σ being the Pauli vector in Eq. 2.5.
With the 2x2 unit matrix as I, the density matrix can be expanded into the scalar and vectorial

part,

ñ(r) = 1
2

[n(r)I + σ · s(r)] = 1
2

(
n(r) + sz(r) sx(r) − isy(r)

sx(r) + isy(r) n(r) − sz(r)

)
(3.12)

Here the charge density n(r) = Tr[ñ(r)] and magnetization density s(r) =
∑
αβ

ñαβ(r)σαβ (with α,

β =↑, ↓). The matrix components are given by ñαβ(r) = ϕα∗
i (r)ϕβ

i (r)
Likewise, potential matrices are decomposed into a scalar and a magnetic field

ṽ(r) = v(r)I + µBσ · B(r)
ṽxc(r) = vxc(r)I + µBσ · Bxc(r)

(3.13)

with Bohr magneton µB = eℏ
2m .

Then Eqs. 3.10 are written in the form

[(
−ℏ2∇2

2m

∫
n(r′)

|r − r′|
dr′
)

I + ṽ(r) +
∫

n(r′)
|r − r′|

dr′ + δExc

δñ(r)

](
ϕ↑

i (r)
ϕ↓

i (r)

)
= ϵi

(
ϕ↑

i (r)
ϕ↓

i (r)

)
(3.14)

As in Eq. 3.10, one generally expands ϕi into a linear combinations of a suitable basis, then
Eq. 3.14 becomes an eigenvalue problem and the eigenvectors give the coefficients of the expansion.
The computational effort scales in the most general case with the third power of the dimension of
the chosen basis. Compared to the non-magnetic case, now this number is doubled. Therefore the
computational effort increases by a factor eight. Additional factors may comes from the fact that
non-collinear magnetism reduces symmetry and larger irreducible part of the Brillouin zone is needed
to be sampled. Moreover, computations of quantities relative to magnetic structures are often more
demanding since higher accuracy is needed.
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If we can write the potential matrices in diagonal form, we can also decouple Eq. 3.14 into two
equations, one for each spin component, equivalent to Eq. 3.10

[
− ℏ2

2m
∇2 + vC(r) + v(r) + Bz(r) + v↑

xc(r)
]

ϕ↑
i (r) = ϵ↑

i ϕ↑
i (r)[

− ℏ2

2m
∇2 + vC(r) + v(r) + Bz(r) + v↓

xc(r)
]

ϕ↓
i (r) = ϵ↓

i ϕ↓
i (r)

(3.15)

As for traditional DFT, the accuracy of results depends crucially on the approximation for vxc,
which are generally the spin-selective versions of LDA or GGA functionals.

Eqs. 3.13 however, have no spin-dependent terms. This means that while magnetization can emerge
as a net inequality between the two spin-channels, the magnetic moment has no privileged direction in
the space. The Magnetic Anisotropy (MA) is introduced evaluating the Spin-Orbit Coupling (SOC)
expectation value (see sec. 2.45) in a basis of scalar-relativistic Kohn-Sham eigenstates[69].

3.3.1 DFT+U
Local and semi-local XC functionals tend to underestimate the strong on-site Coulomb repulsion
between strongly correlated electrons. An example is a system with not fully occupied shells of localized
electrons such as d and f orbitals. These are often the responsible for magnetism in transition metal
elements and one of the most despicable consequence is the incorrect description of experimentally
characterized AFM Mott insulators as FM metals. In the previous chapter we have seen the on-site
Coulomb repulsion can be easily written in terms of the product of the occupation numbers (Eq. 2.18).
Being U ′ > 0, the interaction is AFM and justifies the second Hund’s rule. The Hubbard model is
based on the following Hamiltonian for particles interacting on a lattice

HU = −t
∑

RR′σ

[
c†

RσcR′σ + c†
R′σcRσ

]
+ U ′∑

R
nR↑nR↓ (3.16)

where cR,σ, c†
R,σ are fermionic creation and annhilation operators at site R and for a particle with spin

σ =↑, ↓. The relative amplitude of the ”hopping” parameter t between (mainly nearest neighbouring)
sites and of the on-site R repulsion between opposite sign spins, determines the proprieties of the
system. In the case of half-filling, (when the number of electrons is the same of sites), standard DFT
is a reliable method when t >> U ′: single-particles terms dominate and the system is characterized
by many itinerant particles (as the case of metals). Conversely, for large value of U , particles can’t
overcome the repulsive potential of other electrons. These correlation effects are not taken into account
in DFT, which is based on non-interacting KS particles. DFT+U method is developed to improve the
description of highly correlated system, by treating the on-site Coulomb interaction with an additional
Hubbard-like term for the correlated states alone.

In the Dudarev[70] derivation, the correction for the total energy is in terms of an effective Hubbard
value U and it reads

EDF T +U = EDF T + U

2
∑

σ

[∑
a

Tr(na,σ − na,σna,σ)
]

(3.17)

for a relevant atomic orbital a, with occupation matrix na,σ.
In theory the value of U corresponds to a well-defined physical propriety, namely the strength

of a screened Coulomb interactions between spins, thus should be determined from first principles
arguments. Several solutions have been proposed in this sense[71, 72]. However, these derivations
typically cannot be generalize (i.e. they strongly depends on the implementation of the basis set
embedded in the code) and require very demanding calculations. Furthermore, they are not guaranteed
to provide more accurate results[73]. In general, a straightforward method for obtaining accurate value
from ab-initio is still under investigation.
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On the other hand, an often accepted procedure is to tune the Hubbard value to the one that fits
well-defined properties of the system, i.e. the one yielding to good agreement with experimental unit
cell or measured optical band gap. It should be emphasized that there is no reason to believe that
a semi-empirical fit would work for the same element in a different material. However, in most cases
(including this project) an ”exact” value of U is not required. As long as it prevents, at some extent,
unwanted de-localization and does not over-localized the states (when U is too high), reasonable
values (i.e. the one commonly used in literature) can still be used to suggest qualitative assessment
of electronic correlations and outline trends in specific systems.

3.4 Energy mapping analysis
The evaluation of Heisenberg parameters such as J , A and B is based on a mapping of the ground
state energies provided by spin-dependent DFT calculations over the atomistic spin-lattice model[74].
A trivial example is the extraction of exchange coupling J for an isolated spin dimer |··⟩ = |Si, Szi⟩ ⊗
|Sj , Szj⟩ where for a single state |S, Sz⟩ = |1

2 , ±1
2⟩ for spin up and down respectively. We rewrite the

spin Hamiltonian for the dimer as

H = JSz
i Sz

j + (J/2)
[
S+

i S−
j + S−

1 S+
j

]
(3.18)

and with

Ŝz |S, Sz⟩ = Sz |S, Sz⟩

Ŝ+ |S, Sz⟩ =
√

S(S + 1) − Sz(Sz + 1)Sz |S, Sz + 1⟩

Ŝ− |S, Sz⟩ =
√

S(S + 1) − Sz(Sz − 1)Sz |S, Sz − 1⟩

(3.19)

we can evaluate the energy of the possible configurations. The tensor product of two spin-1/2 particles
can be decomposed into the triplet representation and singlet state representation respectively

|T ⟩ = |↑↑⟩ , 1√
2 (|↑↓⟩ + |↓↑⟩) , |↓↓⟩

|S⟩ = 1√
2 (|↑↓⟩ − |↓↑⟩)

(3.20)

It easily follows that the energy difference, or splitting, between the triplet and singlet is exactly
the exchange coupling J :

E(|T ⟩) − E(|S⟩) = J (3.21)
The ground state configuration depends on the sign of the interaction J (ferromagnetic with J > 0

and anti-ferromagnetic with J < 0). The same technique can be apply to more complex systems and
with more convoluted Hamiltonian. In particular, if energies are obtained from DFT calculations,
quantum mechanical effects are at same extent embedded in the Kohn-Sham method and the classical
Heisenberg model should be avoided (see Paper V). However, the Energy Mapping analysis scheme is
vastly used also on top of a classical Heisenberg model[75, 76]. In this case, spin operators S are treated
as vector with spin component along the x, y and z directions. Moreover, often only configurations
with a collinear magnetism are considered and thus the mapping is effectively on a re-scaled Ising
model.

As example, we can compare the energies of the FM and AFM-chessboard configuration of a square
lattice (Fig.3.2(a)-(b)). For a single atom inside the unit cell

EF M = −41
2

JS2 = −2JS2

EAF Mc = 41
2

JS2 = 2JS2
(3.22)

from which J = EAF Mc−EF M
4JS2 is easily derived. For triangular lattices in Fig. 3.3(c)-(d)
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Figure 3.2: Magnetic configurations for energy mapping analysis. Spin states are at equivalent
lattice sites and are distinguished by a sign (+ or −), arrow (↑ or ↓) and color (red or blue) for better
clarity. Examples for square lattice ((a) ferromagnetism FM and (b) chessboard anti-ferromagnetism
AFMc) and triangular lattice ((c) ferromagnetism FM, (d) striped anti-ferromagnetism AFMs and (e)
non-collinear AFM, assuming easy-plane anisotropy) are shown. Dashed lines delimit the geometrical
unit cell, for a better understanding of Eq. 3.22-3.23 in the text. The magnetic unit cell (the one used
in calculations) is in repeated for AFM configurations.
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Figure 3.3: Magnetic configurations for energy mapping analysis 2. Spin states are at equiv-
alent lattice sites and are distinguished by a sign (+ or −), arrow (↑ or ↓) and color (red or blue)
for better clarity. Examples for honeycomb lattice in the (a) ferromagnetic FM (b) complete anti-
ferromagnetic AFMc and (c) striped anti-ferromagnetic AFMs configuration.

EF M = −61
2

JS2 = −6JS2

EAF Ms = −21
2

JS2 + 41
2

JS2 = 2JS2
(3.23)

from which J = EAF Ms−EF M
8JS2 .

The square AFMc configurations is an example of a total anti-ferromagnetic configuration, which
occurs when each spin state has only anti-ferromagnetic interactions with neighbouring sites. For
geometrical reasons it’s not always possible to have a total anti-ferromagnetic configuration. The
most notable example is the triangular lattice. While for the square lattice (including only first nearest
neighbours) the sign of J1 is always well defined, this is not true for a triangular anti-ferromagnetic
lattice. The atom in the unit cell in Fig.3.2(d) is surrounded by equivalent site atoms but with
a different interaction signs. These interplays generally leads to magnetic frustration or geometrical
Jahn-Teller distorsion. The real anti-ferromagnetic ground state becomes a non-collinear configuration
where all spins are rotated of 120◦ with respect to each others (Fig.3.2(d)).

In general, to extract N parameters, N + 1 independent configurations are required . An example
is given in Fig. 3.3 for an honeycomb lattice with two exchange paths J1 and J2. Energy mapping
analysis is in fact equivalent to the resolution of a system of equations
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a11 . . . aM1
a12 . . . aM2
...

...
...

a1N . . . aMN




J1
J2
...

JN

 =


E1
E2
...

EN


for the set {Jn}N of unknown parameters. Each row n represents a different magnetic configuration

with magnetic contribution to the total energy equal to En. The matrix is quadratic and ideally
invertible. Anyway from DFT calculations we compute the total energy E′

n = E0 + En and not just
En. The part that does not depend on the spin, namely E0, is thus an extra unknown variable.

The anisotropy parameters A and B and exchange coupling J can be extracted by comparing the
energy differences of magnetic configurations with in-plane/out-of-plane and FM/AFM configurations.
The contribution from anistropic terms can be attain in GPAW computing the spin-orbit coupling
(SOC) correction on top of a converged calculations. In practice, only the SOC contribution to the
total energy are calculated, as expectation value of the SOC Hamiltonian (Eq. 2.45), via non self-
consistent diagonalization in the Kohn-Sham eiegenstate basis[69]. Still, at least four configurations
are required since the magnetic configurations are not all independent (all in-plane configurations are
linear combination of each others) and the contributions from the isotropic part of the Hamiltonian
are still unknown. In Fig. 3.4 are shown some examples of collinear magnetic configurations used
for computational screening in Paper IV. If NAF M is the number of nearest neighbour with AFM
coupling and NF M is the number of of nearest neighbour with FM coupling in the anti-ferromagnetic
configuration (i.e. 4 and 2 respectively for system in Fig.3.2(d)), it is easy to see that Heisenberg
parameters can be extracted as (see Paper IV):

A =
∆EF M

(
1 − NF M

NAF M

)
+ ∆EAF M

(
1 + NF M

NAF M

)
2S2

B = ∆EF M − ∆EAF M

NAF M S2

J = E
∥
AF M − E

∥
F M

NAF M S2

(3.24)

with ∆EF M(AF M) = E
∥
F M(AF M) − E⊥

F M(AF M) being the energy differences between in-plane and
out-of-plane spin configurations.

b)

c) d)

a)

Figure 3.4: Collinear magnetic configurations. Examples of spin configurations for the calculation
of Heisenberg parameters A, B and J : (a) out-of-plane anti-ferromagnetism, (b) out-of-plane ferro-
magnetism, (c) in-plane anti-ferromagnetism, (d) in-plane anti-ferromagnetism. Figure from Paper
IV.
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CHAPTER 4
Monte Carlo methods

Monte Carlo methods are a class of powerful and widely used tools in computational analysis. Origi-
nally developed in the beginning of last century for estimating integrals over poorly-behaving functions
and high-dimensional domains, they rapidly spread and been successfully applied to a broad variety of
problems, including simulation of physical phenomena and the proprieties of ensembles[77, 78]. The
name is inspired by a famous Casino in Monaco, but the older name of ”statisical sampling” coined
by Nicolas Metropolis in the early 50s is more revelatory: the method consists in repeated random
sampling in order to solve numerical estimations of unkonwn parameters. A famous example is the
approximation of π by tossing N number of times a needle of lenght d to the floor, ruled with parallel
lines at a distance d apart. If M is the number of times the needle lands on one of those line, from
geometrical argument it follows that π = limN→∞

2Nl
Md . With the advent of modern computers, nu-

merical methods took a big leap forward and they are still effectively used, sometimes being the only
tractable approach. For example, while the Ising model is exactly solvable in 1D and 2D, no exact
solution is available in 3D and numerical simulations are required.

In this chapter we introduce the theory behind the Monte Carlo methods generally used to solve
statistical physics problems. We then describe the implementation of the Metropolis algorithm for
systems based on the Ising/Heisenberg model and some test results we run to optimize our calculations
time and accuracy-wise. The code has been written in language Python[79].

4.1 Principles of Monte Carlo simulations
In statistical physics, the goal is typically to calculate the expectation value ⟨Q⟩ of some observable
Q of a system. This is done by averaging the values Qµ over all the possible states µ with energy Eµ,
weighted by the Boltzmann distribution:

⟨Q⟩ =
∑

µ Qµe−βEµ∑
µ e−βEµ

(4.1)

where β = 1
kBT is the thermodynamic beta (kB being the Boltzmann constant) at temperature T . The

denominator is the partition function Z of the system. When dealing with very big systems or when
statistical proprieties are relevant, the number of states increases rapidly and a complete analytical
solution is often unreasonable to obtain. A 3D Ising model system with just 10×10×10 binary states
counts 21000 ∼ 10301 states to evaluate. Monte Carlo methods operate by randomly sampling only a
subset of states M from some probability distribution pµ. The expectation value is then rather called
estimator QM and, even if it inherently introduces inaccuracy, it becomes more and more accurate as
the chosen subset is extended or qualitatively improved. Eq. 4.1 then becomes

QM =
∑M

i=1 Qµip
−1
µi

e−βEµi∑M
j=1 p−1

µj e−βEµj
(4.2)

and QM → ⟨Q⟩ for M → ∞. In Eq. 4.2, pµi are the probability distribution from which we randomly
choose the subset {µ1, ..., µM } of states. The Monte Carlo method proves to be particular efficient
when the system is spending the majority of its time in a small number of states since it provides a
technique for picking those dominating states which contribute the most to the averages and ignoring
the others (importance sampling). A natural choice for p is the Boltzmann distribution

pµ = Z−1e−βEµ (4.3)
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for all states, so that

QM = 1
M

M∑
i=1

Qµi (4.4)

This solution simplifies the expression for the estimator since the knowledge of the partition func-
tion Z (and thus an overview of all the possible states) is not necessary anymore, but it doesn’t provide
any suggestions on how to efficiently generate the trial states. A common strategy is to consider small
energy fluctuations, meaning that trial states should differ from the present state only by a small
random perturbation.

Indeed, the application of Monte Carlo simulations on a system hinges on the idea of repeatedly
choose new random trial states, which differ from the initial one by small random changes, and then
accepting or rejecting them according to some criteria. The sequence of accepted states forms a Markov
chain in the phase space of the system since the transition probability P (µ → ν) of moving from one
state µ to following state ν is invariant in time and depends only on the proprieties of the current
state and not on any prior events.

The choice of P should fulfill the condition of ergodicity, which is the requirement that any state
ν is accessible starting from any other state µ in a finite number of steps, as long as their Boltzmann
weights are non-zero. This allows the system to fully explore all the possible states, at least in theory.
In most cases, another requirement is also the condition of detailed balance, that assures that the
system, once it reaches the equilibrium, is indeed represented by the chosen distribution (in this case
Boltzmann distribution). It is mathematically expressed as the condition:

pµP (µ → ν) = pνP (ν → µ) (4.5)

Left-hand side is the probability of being in a state µ multiplied by the transition probability of moving
from initial state µ to final state ν, thus Eq. 4.5 also shows how the rate at which the system makes
transition into and out any state is equal. This generally prohibits the generation of limit cycles, that
occurs when the probability of a subset of states changes in a cyclic pattern.

If we require that the final distribution must be a Boltzmann distribution, we obtain from Eqs.4.5
and 4.3 that P should fulfill

P (µ → ν)
P (ν → µ)

= pν

pµ
= e−β(Eν−Eµ) (4.6)

Another constrain on P is the sum rule∑
ν

P (µ → ν) = 1 (4.7)

which simply assures the process to actually generate some state ν (which in theory can still be the
initial state µ).

In any Monte Carlo method is possible to split the transition probability P (µ → ν) into two
functions:

• selection probability g(µ → ν), which gives the probability of generating the new state ν to
evaluate

• acceptance ratio A(µ → ν), the probability of accepting the new state ν once it has been
generated.

In the next section we show one of the most popular solution, with a very simple but powerful
algorithm.

4.2 Metropolis algorithm
The constraints outlined in Eqs. 4.6, 4.7 and the requirements of ergodicity, guarantee that the equi-
librium distribution of states is the Boltzmann distribution but leave enough room in choosing the
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transition probabilities. The most famous and widely applied Monte Carlo algorithm is the Metropo-
lis algorithm, introduced in 1953 by Nicolas Metropolis on simulation of rigid-sphere gases[80]. In
a Metropolis algorithm the selection probabilities are set to be all equal. For an Ising system with N
spins then

g(µ → ν) = 1
N

(4.8)

meaning that, assuming a single-spin-flip dynamics, starting from an initial state µ there are N possible
trial states ν we can reach (where a single spin is flipped). To fulfill the condition of detailed balance,
we write

P (µ → ν)
P (ν → µ)

= A(µ → ν)
A(ν → µ)

= e−β(Eν−Eµ) (4.9)

If A is too low, we will hardly move to any new states. To make the model as efficient as possible,
we need to maximise the acceptance ratio. This can be done by setting to 1 the largest of the two
acceptance ratios in the mid part of Eq. 4.9 (i.e. the denominator if Eµ ≤ Eν ) and adjust the other
so that the last equality holds. This finally leads to the Metropolis algorithm

A(µ → ν) =
{

e−β∆E , if ∆E ≥ 0
1, otherwise

(4.10)

where ∆E = Eν − Eµ. Once the temperature T is set, the sequence of instructions implemented
is summarize in the following box

Metropolis algorithm

1. Initialize the system with a random spin configuration.

2. Flip a spin at random site i into a new random spin orientation.

3. Calculate the energy difference ∆E between the old and the new configuration.

4. Generate a random number 0 < k < 1.

5. Accept the new configuration only if exp − ∆E
kBT > r.

6. Go back to 2.

Despite the spread use of the word ”random”, results are very meaningful. However, the choice of
parameters in actual simulations is crucial in order to optimize the efficiency, speed and accuracy of
the algorithm.

4.3 Implementation
To actually perform simulation of spin models, we first define a lattice of spins. In this work we focus
on 2D spin lattice with a triangular (also called hexagonal), honeycomb and square geometry (see Fig.
4.1), which mimic the most common 2D magnetic lattice in of real samples. The exact positions of
the magnetic ions are not important since the number of nearest neighbours is enough to define the
geometry of the systems. The nominal value of the spin S is usually calculated from first principles
calculations of the ground state. In the same way Heisenberg parameters such as exchange coupling
J and anisotropic terms can be extracted from Energy Mapping analysis, as explained in previous
chapters. The setting for a Monte Carlo simulations requires

• initial spin configuration: typically a random spin orientation (with vectors free to rotate around
the unit sphere) or ferromagnetic orientation.
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(a) (b) (c)

Figure 4.1: 2D lattices. Two-dimensional lattices used in this work for Monte Carlo calculations: (a)
triangular (also called hexagonal), (b) honeycomb and (c) square lattice.

• size of the system: defined as the number of spins in the lattice (NxN). Periodic boundary
conditions are implemented, meaning that spins at the edge of the lattice are neighbours and
thus interact with the corresponding spins on the opposite edge of the system. This also means
that the system is completely translationally invariant, but may trigger spurious finite size effect
for systems smaller than spins’ correlation lenghts. Finite size effects are inevitable in any
simulations. However, they become negligible in most cases when N is chosen to be big enough.

• number of steps: the algorithm should run for a period long enough for the system to reach
equilibrium: it critically depends on size of the system and complexity of the model.

• final averaging: at the end of the simulation, a certain number of final steps in the Markov chain
are averaged to yield smoother results.

The choice of the starting state shouldn’t be of particular importance since, thanks to the ergodicity
condition and assumed a sufficient number of steps, all initial states would eventually lead to the same
ground state. However, a not uncommon problem when the system is initialized with a random spin
configuration is the formation of nonphysical spins clusters, each pointing in opposite directions. In
Fig. 4.2 is shown an example for ferromagnetic Ising model with square geometry. Spin up and down
are represent by white and black boxes. At finite temperatures T < TC , only spin flips at the edge
of clusters are generally accepted (i.e the spin inside the red box labeled with 2) since the energy
fluctuation is lower: ∆E = −2J − (2J). Conversely, flipping a spin inside the cluster (as the spin
labeled with 1) leads to a bigger energy fluctuation ∆E = −8J − (8J). With temperature T > 0 at
which N anti-ferromagnetic couplings are ”tolerated”, a phase separation may occur and splits the
system in half. The simulation is stuck around a local minimum and the order parameter, typically
the average magnetization∑

i
si/N2 drops to zero at T ̸= TC . A remedy designed for Ising model is the

1

2

(a) (b)

Figure 4.2: Ising model. Example of phase splitting in Ising model: the two systems have a similar
energy since the number of AFM interactions is roughly the same and connected to the temperature
T . However the magnetization M is close to zero for the first one and has a finite value for the second.
For T < TC , a MC simulations may be stuck with a phase splitting configuration, since only spins at
the edge boundaries are likely to be flipped.
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Wolff algorithm[81], in which a cluster of neighbouring spins pointing in the same directions is flipped
as a whole instead. An analogous version for Heisenberg and other continuous models is given, but a
simpler and effective solution is starting with an ferromagnetic configuration at T = 0. Alternatively,
a small anisotropy in one direction (simulating a Zeeman interaction with an external magnetic field)
breaks the out-of-plane symmetry, defining a privileged direction and shrinking clusters pointing in the
opposite one. For temperature scans simulations, temperature annealing has also been implemented,
where the final equilibrium configuration for a certain temperature is used as starting configuration
for the successive temperature, simulating real experiments.

4.3.1 Code testing
In practical, along the real system X under investigation, another twin system X ′ with the same size
is initialized. In the algorithm 4.2, steps (2)-(6) loop over all spins X ′(i′) of the auxiliary system. At
each loop, it picks a random site i of the primary system and applies the spin flip X(i) → X ′(i′).
This is often called a MC move. It then evaluates the energy difference, keep the new configuration
according to step (5) and repeat for site i′ + 1 of the auxiliary system. To guarantee that each spin
has a chance to be flipped, a complete MC step is to be considered as a complete swept of all sites in
auxiliary system (meaning a number if MC moves equal to the size NxN).

In Fig. 4.3 some equilibrium configurations are shown from a test on a 12x12 Heisenberg square
systems. Color code is for the out-of-plane component of each spin while the in-plane arrows are the
projected x and y components. As expected, systems with higher anisotropy A/J have higher critical
temperatures and support magnetic order for longer.

We tested the code against a simple case where analytical evaluation is easily obtainable, namely
when the exchange coupling is the only non zero parameter in the model. For a system with only two
spins S1 and S2, then the energy depends only on their relative orientation. The partition function is
written as

T = 5 K T = 15.0 K T = 30.0 K

A/J = 1.0

A/J = 10.0

Figure 4.3: MC on Heisenberg Model. MC equilibrium configurations for square Heisenberg
systems with different degree of anisotropy A/J at different temperature. At each site, the color
indicates the z-component of the spin while the arrows are the normalized in-plane components.
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Figure 4.4: Testing MC against analytical results.(a) The energy of isotropic Heisenberg model
depends only on the coordinated of one spin S2 respect to another S1. (b) Results from MC calculation
(scatter plot) over the predicted behavior of energy as a function of temperature (dashed line).

Z = 4π

∫ π

0
dθ sin θ

∫ 2π

0
dϕ exp−Jβ cos θ (4.11)

where (θ, ϕ) are angles of S2 in spherical coordinate system (as in Fig. 4.4(a)) and β = 1
kBT is the

thermodynamic beta. The integral over ϕ brings another factor 2π while for the integral over θ we
can substitute the variable x = cos θ:

Z = 16π2 sinh Jβ

Jβ
(4.12)

The energy is then found as

E = − ∂

∂β
ln Z = J

( 1
Jβ

− coth Jβ

)
(4.13)

For a square lattice with periodic boundary conditions, each coupling has an extra factor 4 which
leads to

E = zJ

[ 1
4Jβ

− coth zJβ

]
(4.14)

where z is the coordination number of the system. Renormalized energies at different temperatures
from MC simulation are shown in Fig. 4.4 and show good agreement with the analytical results.

Finally in Fig. 4.5 are shown additional tests that asses what already commented in previous
pages.
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Figure 4.5: Monte Carlo testing. Magnetization curves obtained for MC simulations on square
systems, varying (a) the number of last steps to average over, (b) the total number of MC steps, (c)
the size of the system and (d) initial configuration for each value of T . The value of critical temperature
is generally not affected, but smoother and best results are obtained increasing the number of MC
steps, overaging over a large number of final steps, larger systems and a thermal annealing approach.
The Heisenberg parameters are J = 1 meV, S = 1, B = 0.0 meV and A = 1.0 meV (for (a) and
(c)) or A = 0.1 meV (for (b) and (d)). Magnetization curves obtained for MC simulations on 25x25
square systems, varying (e) A/J and (f) B/J . The stronger influence of anisotropic exchange B on
the robustness of the magnetic order is due to the coordinate number z that prevent flip-back when
the order is reached. Furthermore, over a certain value it behaves as a effective Ising model which is
known to pose an upper bound for the persistence of magnetic order in spin lattices.
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CHAPTER 5
Summary of the results

5.1 Paper I: Calculating critical temperatures for
ferromagnetic order in two-dimensional materials

In this paper we test our methods, using tools of chapter 3 and 4. The main idea is to evaluate the
predictive power for critical temperature in magnetic systems, based on the descriptor spin-wave gap
∆ and classical Monte Carlo calculations. We then benchmark it with the available experimental data,
in particular critical temperature for monolayer CrI3. In particular, the Curie temperature of the bulk
crystal decreases from 61 K to 45 K when the monolayer limit is reached[17, 82].

The spin-wave gap ∆ of a system is the energy gap between the ferromagnetically ordered ground
state and the first excited state. As we have seen in the second chapter, this is a collective out-of-
phase precession of spins around the ground state privileged direction. The emergent phenomenon
is a spin-wave and the associate bosonic pseudo-particle is called magnon. The starting point is the
anisotropic Heisenberg Hamiltonian

H = −J
∑

<ij>

JSi · Sj − A
∑

i

(Sz
i )2 − B

∑
<ij>

Sz
i Sz

j (5.1)

The isotropic part can be written in terms of HP operators as

H = −2J
∑

<ij>

(S − b†
i bi)(S − b†

jbj) + Sb†
i

(
1 − b†

i bi

2S

)1/21 −
b†

jbj

2S

1/2

bj+

+Sb†
i

(
1 − b†

i bi

2S

)1/2

bib
†
j

1 −
b†

jbj

2S

1/2


(5.2)

If we expand the square roots in terms of 1/S it reads

H = −NzJS2+2JS
∑

<ij>

(a†
i ai + a†

jaj − b†
i aj − aia

†
j)

−2J
∑

<ij>

[
a†

i aia
†
jaj − 1

4
(a†

i a
†
i aiaj + a†

i a
†
jajaj)

+a†
i aiaia

†
j + aia

†
ja†

jaj)
]

+ ...

(5.3)

which in Paper 1 is rewritten as

H = E0 + SH̃0 + H̃1 + 1
S

H̃2 + ... (5.4)

The contributions of anisotropic terms are only in E0, H̃0, and H̃1:
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−A
∑

i

(Sz
i )2 = −A

∑
i

(
S − a†

i ai

) (
S − a†

i ai

)
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with z being the number of nearest neighbours for each lattice site.
After Fourier transformation, and assuming non-interacting magnons (neglecting H̃1 and any

higher order terms), the spin-wave gap ∆ can be obtained as the energy difference between the fully-
polarized FM ground state (nk = 0 for any k > 0) and the energy of the system with one magnon
shared by the entire lattice (nk = 1). The Mermin-Wagner theorem states that no energy-gap is open
by isotropic part, while terms 5.5 contribute with

∆ = A(2S − 1) + SBz (5.6)

Eq. 5.6 can be seen as a generalization of the measure of out-of-plane MA in the system, when
both single-ion anisotropy A and anisotropic exchange coupling B parameters are non-vanishing. For
the Marmin-Wagner theorem, we thus expect long range ferromagnetic order at finite temperature
only when ∆ > 0. Having set Jx

ij = Jy
ij = 0 in Eq. 2.43, we are assuming zero in-plane anisotropy

(or negligible). For 2D systems this is often a good approximation but for some geometries, i.e. when
magnetic ions do not form a flat lattice, this is not always true (see section 5.4 and section 3.8 in
Paper IV).

The term (2S −1) reduces to 2S if a full quantum renormalization of the anisotropic interactions is
derived in spin-wave theory[18, 83]. In the limit S → ∞ they both converge to the result. However, we
decided to be consistent with the classical treatment of Heisenberg model in Energy mapping analysis
( sec.3.4), where S are considered as simple vectors. It follows that for S = 1

2 systems, the spin-wave
gap can be opened only by anisotropic exchange interactions. For a specific system, Energy Mapping
analysis allows to calculate all the Heisenberg parameters in Eq. 5.1 by a comparison of the energies
of different magnetic configurations obtained with DFT calculations, as described in sec. 3.4. We
stress the importance of comparing energies between magnetic configurations with the same relaxed
structures, so to address any energy difference to magnetic interactions only. The value of S can be
obtained from DFT calculations, integrating the spin-polarized charge density over the entire unit cell
of the ferromagnetic ground state

2S =
∫

F M
|m↑(dr) − m↓(dr)|dr (5.7)

where k is the number of magnetic ions. The integral gives the number of unpaired electrons in the
unit cell, each of whom carrying s=1/2 intrinsic angular momentum. Thus dividing by 2 we obtain
the total spin sitting at each magnetic ions. As already mentioned, this is true for insulating systems,
where electrons are bound to the atomic site and S has an integer or semi-integer value. In case the
density of states is not zero at the Fermi surface, i.e. in metals, electrons are free to move around the
lattice and the number of localized interacting particles is not well defined.

With these parameters we run classical MC simulations at different temperatures and identified the
critical one (see Fig. 5.1(a)). In Fig. 5.1(b), critical temperatures for three different lattices (square,
honeycomb and hexagonal) are plotted and fitted in function of the A/J in systems with B = 0 meV.
It is easy to see that the limit for high degree of anisotropy is the Ising limit (dashed lines at T Ising

C

for any specific geometry), which provides a tabulated[84] upper bound for TC .
On the other hand, the limit for B → ∞ (assuming A = 0 meV) is an Ising model with increasing

effective exchange B+J
2 (not shown here). This is straightforward for S = 1/2 systems, where Sz can

only assume one of the two values Sz = 1/2, Sz = −1/2. In case of S > 1/2, the effective values of S
is re-scaled to take into account the presence of in-between states, i.e. neutral states Sz = 0. Fittings
of critical temperatures leads to the semi-empirical equation for TC
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TC = T Ising
C f

( ∆
J(2S − 1)

)
(5.8)

As long as Heisenberg parameters are known, Eq. 5.8 allows to calculate the critical temperature
of any 2D systems with simple magnetic lattice. However, when S = 1/2, function f is not well
defined and custom-built MC simulations are required. Another drawback is that for metallic systems,
the Heisenberg model is not a suited theoretical framework and we expected less reliable predictions.
However, Eq. 5.8 is a major improvement than mean-field theory derivations [38](typically used for
bulk systems and neglecting MA). Moreover, it is based on MC simulations of Heisenberg model, which
seems to soundly embed magnon-magnon interactions effects, neglected in the derivation of ∆.

Indeed, while being a good guess at low energies, they should be taken into account when we the
system is in the nearby of a finite TC . To benchmark MC results, we tested it against a well-known
approach. The Random Phase Approximation[38] provides an approximation of the magnon-magnon
interactions present in H̃1. When anisotropy is included in the system, a mean-field treatment of
the 4-operators terms leads to a temperature-dependent reduction of the dispersion relation at small
k, that needs to be calculated self-consistently. This is reflected in the derivation of the effective
magnetization as well, from which we can extract the critical temperature. However, due to the
mean-field approximation effects, it fails to reproduce Ising-like models with high degree of out-of-
plane anisotropy. We thus expect the MC-based method to be accurate and reliable when the system
is a ferromagnetic insulator, and with the right awareness, to yield reasonably sensitive predictions
for metals. We test our model investigating monolayer CrI3. Since the recent synthesis and the
observation of out-of-plane Ising-like intralayer ferromagnetism and interlayer anti-ferromagnetism, it
attracted a lot interest. Many theoretical works contributed in elucidating the origin of its magnetism,
commonly attributed to an interplay between SOC-enhanced single-ion anisotropy and super-exchange
interactions mediated by iodine atoms [83, 85, 86, 87, 88]. Magnetic moment of 3µB are localized
at Cr atoms, arranged on a honeycomb lattice, are the only ones contributing to the total magnetic
moment. In addition, it is also an insulator, having an optical band gap of ≈ 1 meV both in the FM
and AFM ground state.

In the second part of the paper we calculated its critical temperature and investigated the effects
of Hubbard corrections which we briefly summarize.
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Figure 5.1: Critical temperature from MC calculations on anisotropic systems. (a) Mag-
netization and heat capacity as a function of temperature for the square lattice with three different
values of A/J . The critical temperatures are indicate by dashed vertical lines. (b) Critical tempera-
ture as a function of scaled anisotropy A/J calculated with classical Monte Carlo simulations for the
honeycomb, square, and hexagonal lattices with ferromagnetic exchange. The solid lines are obtained
from the empirical fitting. The Ising limit is indicated by dashed lines for the three lattices. Figures
from Paper I.
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If we extend Eq. 5.1 to higher neighbouring orders, we get
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where Jn is the exchange coupling between lattice coupled of n-nearest neighbouring sites, for honey-
comb lattice showed in Fig. 5.5(a). In order to calculate N parameters, N+1 independent magnetic
configurations are needed, and typically bigger unit cells. Here we evaluated 6 magnetic configurations
(1 FM and 5 AFM) on a 2x2 unit cell. The evaluation critically depends on the choice of magnetic
configurations, as showed in Fig. 5.2. A sensible choice for converged results is to include the FM
and fully AFM configurations when possible. Results can be found in section 3.3 of Paper I. Energy
mapping analysis on Eq. 5.9 leads to J1 = 2.3 eV, J2 = 0.4 eV, J3 = −0.1 eV, while for a Eq. 5.1
we obtain J1 = 2.2 eV. Anisotropic terms are of the order of 0.1 meV, which bring to a fairly robust
∆ ≈ 1 meV and a critical temperature of 32 K. An Hubbard correction increases the value of ∆ and
fot U = 2 eV we obtain TC = 42 K, in good agreement with experimental value of 45 K[17]. In
general we expect that the inclusion of higher order exchange coupling may yield to more realistic MC
simulations, but in this case J2 and J3 are much smaller than J1 and, although they influence the
shape of the simulated magnetization curve, they provide comparable TC (Fig.5.5).
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Figure 5.2: Exchange couplings dependence on Hubbard terms. Each graph represents eval-
uation of exchange parameters from DFT+U (U = 0, 2, 4 eV). In a graph, each circle stands for
the calculation of an exchange coupling parameter (blue for nearest neighbours coupling J1, orange
and green for second and third order couplings J2 and J3) for an Heisenberg model including only
nearest neighbour J1 (top row), next-nearest neighbour J2 and next-to-the-next-nearest neighbour J3
coupling. Red circles indicate J1 couplings from FM and fully AFM configurations.
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Figure 5.5: Effect of J2 and J3. (a) Nearest J1, next-nearest J2 and next-to-the-next neearest
neighbours path in honeycomb magnetic lattice. Each site has 3 J1 paths, 6 J2 paths and 3 J3
paths. (b) Magnetization curves and heat capacity obtained from MC simulations with (red) only
nearest neighbour interactions and (blue) including next and next-to-the-next nearest neighbours
with parameter for monolayer CrI3 obtained from Energy Mapping analysis.

5.2 Paper II: The Computational 2D Materials Database:
high-throughput modeling and discovery of atomically
thin crystals

This paper is the result of the collective effort of many researchers at CAMD and an on-going project
which aims to extend the tools developed, also at one and three-dimensional systems. In this section I
will only shortly comment the key concepts behind it and some results relative to magnetic proprieties.
Additional information can be found in Paper II and [89, 90].

The main purpose of the Computational 2D Materials Database (C2DB) is to gather in a single
and freely accessible online depository[90], data as accurate as possible about 2D materials calculated
from first-principle methods. Thus, C2DB is an encyclopedia of 2D systems[89] which lists geometrical,
thermodynamic, elastic, electronic, magnetic and optical proprieties, aiming mostly at accuracy and
consistency of results rather than volume. Over time it evolved into the creation of an efficient and
stable computational workflow which runs in a mostly automated routine, also thanks to the creation
and integration of myqueue[91], a Linux command-line interface for the handling of computational
tasks and collection of data.

This permitted a relative fast gathering of data for almost 2000 materials primarily classified by
their prototype, namely in terms of the Wickoff sites of the atoms within the unit cell, and the magnetic
phase. Prototypes are inspired by experimentally known and stable monolayers, such as graphene, or
layered Van der Walls materials which has not been exfoliated yet. In Paper II they are generally
referred and named after the most iconic or academically relevant representative.

Nowadays, roughly 50 2D materials are experimentally available but many more are expected to
be stable once deposited or mechanically exfoliated from their bulk version. The process which gen-
erates novel hypothetical 2D structures and thus may the next ones to be synthesized is showed in
Fig. 5.6(a). The bare prototypical atomic arrangements are decorated with a new set of elements,
chosen among similar ones to maximise the change of having similar proprieties, i.e. a dynamical and
thermodynamical stable ground state. In Fig. 5.6(a) is showed the example of MoS2, a vastly studied
2D material that can be obtained by Chemical Vapor Deposition (CVD)[92, 93] or mechanical exfoli-
ation[94]. Among others, it gained a lot of interest for application due to its semiconducting optical
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Figure 5.6: C2DB apparatus. (a) The main process providing data into C2DB: it starts with the
identification of bare prototypical 2D structures (from experimentally known examples or designed by
intuition), which are subsequently decorated by combinatorial methods. Finally the (c) computational
workflow calculates, analyses and gathers relevant data into a (local or online) depository. Pictures
from Paper 2.
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direct-gap[95] and strong spin-orbit coupling[96]. The ”combinatorial lattice decoration” generates a
number of novel 2D structures based on the geometry and stechiometry of MoS2. In particular, we
can assume that substituting Mo with another transition metal M and S with another chalcogen X,
we have good chances of finding a novel stable 2D crystal. This class of materials is called Transition
Metal Dichalcogenides (TMD) MX2 and indeed it counts many experimentally known compounds[97].
An improved approach for the decoration step is based on chemical similarity between elements [98,
99].

Once a crystal structure is defined, the workflow showed in Fig. 5.6(b) calculates with almost no
input from the user the structure and stability proprieties. The workflow is inspired mainly by the need
of robustness (it should works across very different classes of materials without failing) and simplicity,
with a tunable accuracy. The first step is the geometrical relaxation of the unit cell and internal
coordinates of the non-magnetic and for the ferromagnetic configuration (initializing the magnetic
moments of each atoms with a magnetic moment equal to 1 µB). If two metallic atoms are present in
the unit cell, an anti-ferromagnetic relaxation is run as well. The thermodynamic (calculation of heat
of formation) and dynamical stability tests (phonon analysis at Γ of the 2x2 repeated unit cell) are
crucial, since they assess whether or not the monolayer under investigation is likely to be synthesised
as free-standing nano-sheets. However, in real 2D system stability is often attained after coupling to
a suitable substrate. The calculations of optical, electronic and magnetic proprieties is thus extended
to any candidates that do not disintegrate during the relaxation process.

Since the publication of Paper II, the number of entries in C2DB increased from roughly 1900 to
over 3700, with more than 680 highly stable materials. Among these, nearly 150 (50) are expected
to be stable in a FM (AFM) configuration, with a MA (note that in C2DB, a negative value of MA
corresponds to out-of-plane anisotropy) that ranges from -26 meV (ReCl3) to 41 meV (ReBr3) per
magnetic ion.

The proprieties of 2D materials obtained from high-throughput screening can serve as be a useful
guide for experimental research and for inspiring data-driven approaches to study and exploit trends
and correlations. For example, in Fig. 5.7 are shown the magnitude of magnetic anisotropy (in red)
and magnetic moments (in blue) per magnetic atom in the unit cell, averaged over all materials in
C2DB with the same composition (at the time of the publication, around 350 magnetic materials). One
can notice that high value of MA are mainly determined by the non-magnetic atom (like the halides
I, Br, Cl) rather than by the magnetic atom. This confirms the crucial role of the super-exchange
interactions (mediated by non-magnetic ion) at at the origin of magnetism in 2D and ultra-thin
materials[50, 100, 83]. Finally, in Fig. 5.8 we shows that metals tend to exhibit a wider range of
value for magnetic anisotropy, both in-plane and out-of-plane (though we note once again that the
assumptions at the basis of Energy Mapping analysis and Heisenberg model are not well defined for
itinerant ferromagnets). However, the recent discovery of atomically-thick Ising-like FM CrI3[17], with
an out-of-plane MA of just 0.85 meV per Cr atom, proved that robust intrinsic ferromagnetism is a
prospect within reach for many insulators in the database, which display comparable or stronger MA.

Figure 5.7: Magnetic proprieties of materials in C2DB. Absolute MA (red triangles) and mag-
netic moments (blue triangles) of magnetic materials in C2DB. The two red boxes highlight halides
and 3d metal. From Paper II.
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Figure 5.8: Magnetic anisotropy and optical band-gap of materials in C2DB. Overview of
MA and optical band gap values for 2D materials in C2DB with a triangular and honeycomb magnetic
lattice.

5.3 Paper III: Discovering two-dimensional topological
insulators from high-throughput computations

This paper is included for completeness but the contribution of the submitter is minor.
The project involved the screening of C2DB in search of two-dimensional topological insulators.

In particular, an high-throughput screening of C2DB (see Paper II and [90]) has been performed for
a systematic search of insulators with a non-trivial topology. In a nutshell, a 2D topological insulator
exhibits conducting edge states with a spin selectivity locked to the direction of propagation[101,
102]. This can be a consequence of the intrinsic magnetization of the system and spin-orbit coupling
(SOC) in Quantum Anomalous Hall Insulators (QAHI) or just a strong SOC in Quantum Spin Hall
Insulators (QSHI). The conducting states are explained in terms of the non-trivial topology of their
bandstructure, which is protected by Time Reversal (TR) symmetry and labeled by the Z2 invariant
ν. This is strictly linked to the Berry phase in the momentum space and can be investigated by ab-
initio methods. QSH effects have been predicted and observed in many systems, both 3D[103, 104] and
2D[105, 106, 69], but no intrinsically ferromagnetic QAHI has been experimentally reported at present.
Although ferromagnetism can be induced into topological materials through substitutional doping[107],
only few candidates in their pristine form have been proposed based on Density Functional Theory
(DFT) calculations. Among them, the 2D materials graphene[108], OsCl3[109] and CoBr2[110].

Here a list of new promising materials is showed, including six dynamically stable QAHIs. Among
them, FeBr3 and CoBr3 are predicted to have low heat of formation, which is a strong evidence for
thermodynamical stability (see sections 2.3 and 2.4 in Paper II) and an exciting likeability to be
synthesised in future. Respectively, critical temperatures of 2 K and 274 K have been obtained from
a method based on classical Monte Carlo simulations and Energy Mapping analysis (see sec. 5.1).
However, this procedure maps ground state energies obtained from DFT calculations to spin-lattice
Heisenberg model configurations with highly localized electrons and may be unfitting for the very weak
insulating nature of the materials here considered. In addition, DFT calculations turned out to be
highly sensitive to the choice of exchange-correlation functional and U value for Hubbard corrections.
Still, the paper lists 48 QSHI and 21 crystalline topological insulators[111, 112], only a third of which
previously known, proving once again the potentiality of a screening-based approach in materials
design for future applications.
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5.4 Paper IV: High throughput computational screening for
2D ferromagnetic materials: the critical role of
anisotropy and local correlations

In this paper, the computational workflow for the calculation of Heisenberg parameters in magnetic 2D
materials exposed in sec. 5.1 has been applied to C2DB database. In particular, the search focused on
robust intrinsic ferromagnets with an out-of-plane magnetic anisotropy (MA). The Curie temperature
above which a long-range ordered system loses its net magnetization is a crucial feature for the design
of future ultra-thin devices, based i.e. on spintronic technology.

In Paper I we showed that a reliable method to calculate it, is based on classical Monte Carlo
simulations of spin-lattice systems with material-specific parameters obtained from first principles
calculations. However, for trustworthy results, simulations on very large systems and numerous MC
steps are required. With the algorithm presented in section 4.2, assuming a system with 50x50 spins
and roughly half a million of MC steps, a full MC simulation requires at least one day of computational
effort for the evaluation of the residual magnetization for just one temperature T . This is not very
practical for high-throughput screening of a database with several hundreds of entries. We thus
employed the workflow designed in Paper I based on semi-empirical fitting of MC simulations for the
calculation of Curie temperatures in square, honeycomb and triangular 2D magnetic lattices. Relevant
Heisenberg parameters J , A and B are obtained as in Sec. 3.4.

At the time of the screening, C2DB comprises 3712 materials with structural, optical, electronic
and magnetic proprieties obtained from first principle calculations. However, many of these entries
are actually the same material with a different magnetic (meta-)stable ground state. The number of
unique structures with either a square, honeycomb or triangular magnetic lattice is 570 and forms
the initial group of candidates. In a preliminary and rough screening, the class of Transition Metal
Halogen Chalcogen (TMHC) materials can be included among the triangular prototypes although
metals are arranged in a distorted triangular lattice organized over two distinct layers (see Fig. 3
in Paper IV). In 276 cases we obtained a ferromagnetic ground state (J > 0), comparing energies
with the non-magnetic and anti-ferromagnetic configurations. We emphasize that only one of the few
possible anti-ferromagnetic configuration has been considered for each prototype. The total number
of structures with one of the mentioned geometry is 357, and 270 have a finite optical band gap in the
ground state configuration.

In 2D materials, MA is crucial to escape Mermin-Wagner (MW) theorem, which prevents any long-
range magnetic order at any finite temperature in systems with continuous spin rotational symmetry.
As mentioned in sec. 5.1, the main descriptor for MA and thus for a finite critical temperature is given
by the sign of the spin wave gap ∆ = A(2S − 1) + BSz where z is the coordination number of the
lattice. The final number of materials with positive J and ∆ is 79, but only 48 of them are predicted
to be thermodynamically and dynamically stable.

The workflow is summarized in Fig. 5.9. The final step is the calculation of TC based on Eq. 5.8.
As mentioned in sec. 5.1, the fitting is not well defined for S = 1/2 systems, for which dedicated MC
simulations are needed. The list of insulating materials and discussion of each of them can be found
in sec. 3 of Paper IV.

However, recent calculations highlighted an error in the paper, which will be shortly communicated
to the editor after a more extensive investigation. Exchange couplings and spin-wave gaps, and thus
critical temperatures have been obtained comparing results from different versions of the code GPAW.
In particular, FM ground state energies have been obtained using GPAW 1.4.0, while the AFM
configurations run with GPAW 1.4.0[113]. Even keeping all settings unaltered, it is not a good idea
to compare energies from different versions of the code. Corrected values of Tab. 2 in Paper IV are
showed in Tab. 5.1 in this section. The corrections are minimal and in general yield to higher value
of critical temperatures. The only exceptions are MnO2 (with a TC that is reduced from 63 K to 19
K) and CoCl2 (from 55 to 31 K, in ever better agreement with the experimental results of 24 K on
bulk systems[114]). Discussions in section 3 of Paper IV are thus qualitatively still valid. Any other
calculations in the paper have been obtained running the same version of GPAW and thus do not
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required any errata corrige.

For TMHC materials we found non-negligible in-plane anisotropies and thus we performed a deeper
analysis. Eq. 2.48 can be generalized including anisotropic terms Ax(y) and Bx(y) along the in-plane
axis and next-nearest neighbours coupling J2. MC calculations revealed that the in-plane magnetic
order is possible. In particular, we predict 5 materials with in-plane anisotropy and TC > 100. Easy-
plane order in 2D is a relatively unexplored field since according to the MW theorem, the rotational
symmetry of spins inhibits any long-range order. The resulting XY Heisenberg model is rather char-
acterized by Kosterlitz-Thouless (KT) transition at critical temperature TKT [115]. The system moves
from an high-temperature disordered phase to a quasi long-range ordered phase, defined by a slower
algebraic decay in spins’ correlation (instead of exponential decay). Inevitable finite size effects, both
in real samples and simulated systems, induce however a spurious net magnetization[116]. In our case
the magnetization arises from in-plane anisotropy and thus from a physically sound propriety of the
system, which breaks the the continuous symmetry and circumvent MW theorem .

All results showed so far have been obtained adopting the GGA-PBE approximation to the
exchange-correlation functional[68]. In this work we also vastly investigated the role of an Hubbard
correction PBE+U. The entire workflow, including geometrical relaxation, has been re-run for every
materials with at least one element with a partially filled d-shell (roughly half of them). As we dis-
cussed in section 3.3.1, the correct value of U is very system-specific. An ab − initio derivation would
require high-demanding re-calculations for each type of material, magnetic configuration, and even
GPAW setting. It should be clear that for a screening study this is an unpractical path. Here, a set
of typically accepted U values for transition metals have been chosen and kept for the entire study.
In particular we choose the same U values adopted by the Open Quantum Materials Database [117,
118]. The inclusion of Hubbard correction has a rather dramatic effect on the ground state proprieties
of magnetic materials: no general trend is observed and only few examples can be compared. Most
notably we note that for CrI3 the critical temperatures increases linearly and match the experimental
value[17] for U ≈ 2.5 eV.
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Spin wave
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Figure 5.9: Screening funnel. Workflow used for screening of C2DB database
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Formula Prototype J [meV] ∆[meV ] S[µB] TC [K]
FeCl2 MoS2 15.15 0.056 2.0 208
CuCl3 BiI3 15.26 0.058 1.0 37
CrI3 BiI3 2.31 0.961 1.5 35
CoCl2 CdI2 1.99 0.058 1.5 31
CrBr3 BiI3 1.98 0.232 1.5 23
MnO2 CdI2 0.54 0.305 1.5 19
NiCl2 CdI2 7.17 0.001 1.0 14
CrCl3 BiI3 1.4 0.033 1.5 13
RuCl2 MoS2 18.70 2.263 2.0 606
RuBr2 MoS2 16.11 1.766 2.0 509

Table 5.1: Correction to Tab.2 in Paper IV.

5.5 Paper V: First Principles Heisenberg Models of 2D
magnetic materials: The Importance of Quantum
Corrections to the Exchange Coupling

Insulating magnetic materials are described by the Heisenberg model, in which the interactions between
localized spin are quantified by the exchange coupling J as in 2.21. This parameter is crucial for
defining magnetic proprieties of the system and can be extracted by Energy Mapping analysis. The
procedure is simply to compare the ground state energy of a fully polarized ferromagnetic (FM)
configuration and an anti-ferromagnetic (AFM) configuration, typically the AFM Néel state

J = ∆E

z2S2 (5.10)

where ∆E is the difference between the FM and AFM ground state energy.
These are attainable from DFT calculations.
In a quantum-mechanical framework however, the resolution of the AFM bipartite lattice, even

neglecting magnon-magnon interactions, yields to a different ground state with a lower energy then the
Néel state. In 1D system the latter is even unstable at any T . The fork is particularly significant for
lower dimensions and low value of spin S. The correction can be evaluated numerically and inserted in
the Energy Mapping analysis scheme. This is expected to provide a better description of the energies
at play and thus their modeling.

In this short letter we show that at some extent, these corrections β are embedded in DFT methods,
which in theory are an exact resolution of many-body Schrodinger equations. In sec. 2.6.1 we provided
all the theoretical background. In particular, assuming Eqs. 2.62 to describe the true AFM ground
state (in the approximation of no magnon-magnon interactions) ENIM , the exchange coupling is
readily written as

J = ∆E

zS2(1 + β/2S)
(5.11)

with ∆E = ENIM − EF M . If DFT is indeed returning ENIM as the AFM energy even in collinear
DFT calculations, the correct equation for J is 5.11 and not 5.10.

An evaluation as accurate as possible of J is very important since it is naturally linked to the
robustness of magnetic order in the system. In particular the Curie temperature can be computed by
a fitting of MC simulations, as showed in sec. 5.4. Since the new AFM ground state is lower in energy,
the ”corrected” FM J are revised downwards, as well as TC by a factor ∼ 5 − 10% . Additionally,
Eqs. 2.66 indicate that the magnetization of the AFM ground state is reduced as well. In Fig. 5.10
are shown the ratio mAF M /mF M for 51 insulating materials from C2DB, with different geometry. A
trend is clear, with quantum corrections decreasing for higher value of S. A significant deviation from
the predicted behaviour (dashed lines) is also clear, in particular for the square lattice. However, it is
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a solid evidence that DFT, and specifically GGA functional PBE, is able to catch, at some extent, the
re-normalization of magnetic moments predicted in quantum mechanical derivation of AFM ground
state in lower dimensional systems.

5.6 Paper VI: High throughput computational screening for
two-dimensional magnetic materials based on
experimental databases of three-dimensional
compounds

This section refers to Paper VI, which is still in preparation. I will briefly comment on the preliminary
work and early results.

Low dimensional materials are characterized by weak Van der Walls (vdW) interactions holding
the material together. For example, multi-layered bulk systems have a natural tendency to organize
into a layered structure where strong covalent bonds guarantee the in-plane cohesion and the vdW
forces weakly stabilize the material along the out-of-plane direction. This kind of materials, called
vdW structures, can be easily exfoliated into free-standing nano-sheets. Ideally, they may also be
combined into heterostructures by stacking one on top of the other like tower of LEGO to create
novel systems with unprecedented functionalities. A famous example is the cleavage of graphene from
graphite[1] and its recombination in new heterostructures[119, 120]. Being able to identify natural
vdW structures is the fastest route to the discovery of novel stable monolayers.

Here we employed a computational technique to identify low-dimensional materials, based on a
geometrical analysis of the atomic distances in the unit cell[121]. In short, we can assign a scoring
parameters sd (with d = 1, 2, 3) to each material quantifying the degree of relevance of a particular
dimensionality. Value of sd ranges from 0 to 1 according to the likeability of finding dimension d sub-
structures in the system and fulfills ∑d sd = 1. The method has been implemented, tested and run
over the Inorganic Structure Database (ICSD)[122] and Crystallographic Open Database (COD)[123]
by a previuos Ph. D. student[121] . Results can be freely browsed online at [124]. The technique
allows to classify bulk experimentally analyzed systems in terms of the dominant dimensionality:

• point-like clusters 0D,

• rod-like isolated 1D chains,
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Figure 5.10: AFM correction in DFT-derived parameter m. Ratio of average magnetic moments
in ferromagnetic configurations insulating materials. The dashed lines show the results obtained from
a spin-wave analysis of the Heisenberg model with square and honeycomb lattices. From Paper V.
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• multi-layered 2D structure,

• 3D bulk material with isotropic atomic expansion,

• mixed-dimensionality (i.e. sd < 0.5 for every d=0,1,2,3).

Some examples of low-dimensional materials from COD are given in Fig. 5.11 and an overview
of the distribution in COD and ICSD are shown in Fig.5.12 where 0D and 3D materials dominate,
respectively. ICSD and COD databases combined count more than 500.000 materials, but roughly
two-third are corrupted, incomplete entries or duplicates. We thus obtained a starting set of 167767
bulk materials[121]. We then selected the 4264 entries with a dominant 2D nature (s2>0.5), isolated
and exfoliated the 2D component with a computational function integrated in ASE[56]. Finally, we
restricted to unit cell with less than 20 atoms, less than 5 different elements and at least one transition
metal to increase the chance of having a magnetic ground state. The number of final structures on
which we run the same method presented in sec. 5.4 is in total 651. Results are showed in Tab. 5.2
and 5.3 for FM and AFM ground states respectively. Note that ”corrected” values Jcorr and TC,corr

are defined in sec. 5.5.
In general, we obtain a good agreement with previously reported results. Small fluctuations may

arises from numerical noises when almost zero Heisenberg parameters are found (i.e. ∆ for NiCl2).
CrI3 monolayer has been reported to be an Ising-like ferromagnet with robust out-of-plane magnetiza-
tion. The experimental critical temperature is 45 K, in good agreement with our prediction. SQUID
(Superconducting Quantum Interference Device) measurements on MnSe2 films in the MoS2 proto-
type, grown by molecular beam epitaxy (MBE), has been found to host out-of-plane magnetism up
to room temperature[19]. Although we expect it to be a metal, we predict TC = 62K. One of the
experimentally known material that we failed to predict is Cr2Ge2Te6 [18]. A recent experimental
investigations showed that low-dimensional systems exhibit a small out-of-plane magnetization. The
bulk system is known to exhibits ferromagnetism up to a critical temperature of 61 K[125, 126], that
decreases continuously down to nearly 20 K when the bilayer limit is reached, since monolayer samples
were found to degrade rapidly and became invisible under the optical microscope[18]. According to our
calculations, the ferromagnetic ground state is metallic an has a negative spin-wave ∆ ≈ −0.02meV .
A more extensive analysis, including the influence of Hubbard correction or strain test may leads to
better agreement and unveil the origin of magnetism in Cr2Ge2Te6.

(a) (b) (c)

Figure 5.11: Low-dimensional materials. Examples of (a) 0D material (C4H4O8, #5900034COD,
s0=0.994), (b) rod-like 1D material (Nb6Cl14Se10, #1525157COD, s1=0.900) and (c) 2D layered ma-
terial (B2N2, #1010602COD, s2=0.983).

Finally, combinatorial lattice decoration (see sec. 5.2) of prototypes NiRe2O8, MgMnGe and
CrGa2Se2 (not yet present in C2DB) is a promising path to take in order to find novel 2D materials.
However, further investigations regarding thermodynamic and dynamic stability is required, as well
as the influence of Hubbard corrections and the possible presence of in-plane magnetic anisotropy.
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Figure 5.12: Distribution of structures in COD and ICSD. Distribution of 0D,1D,2D,3D and
mixed structures in (a) COD (139052 total entries) (b) and ICSD (28715 total entries),

Table 5.2: Screening FM materials. List of 2D ferromagnetic materials obtained from screening
ICSD+COD. Critical temperatures with * are calculated from MC simulations for square, honeycomb
and triangular lattice (for other geometries the result is not listed). The id number indicates the unique
identification number in the online database[124, 121] and the structure respects the stechiometry of
the bulk system to avoid confusion. The spin S is expressed in term of Bohr magneton µB, J and ∆
in meV, EGAP in eV and temperature in K. Highlighted entries are robust insulating system (optical
band gap EGAP,F M(AF M) > 0.1 eV)

.

id Struct S Jcorr ∆ EGAP,F M EGAP,AF M TC,corr

39427 Ti6Cl18 1/2 0.784 -0.144 0.0 0.15 -
1535681 Fe6Cl18 1/2 0.947 2.773 0.01 0.27 10.0*
9009099 CoBr2 3/2 1.221 -0.37 0.27 0.23
20566 CoO2 1/2 17.103 0.446 <0.001 0.0 5.0*
2310380 Ni3Cl6 1 6.629 0.0 1.22 1.11 11.0
1010575 Cr6Cl18 3/2 1.309 0.032 1.74 1.9 13.0
76421 Fe6Br18 1/2 28.439 2.553 0.0 0.25 5*
251655 Cr6I18 3/2 2.199 0.936 0.9 1.01 34.0
151400 Fe2Cl6 1/2 85.511 -0.588 0.01 0.0 -
4344519 Y6Cl6 1/2 5.851 -0.032 0.0 0.39 -
20717 Ru6Cl18 1/2 0.07 -0.009 0.0 0.0 -
29035 Ti2Cl6 1/2 8.28 -0.015 0.0 0.18 -
9008030 CoCl2 3/2 1.755 0.046 0.37 0.41 28.0
246907 VI2 3/2 0.366 -0.095 1.21 1.15 -
9009128 Fe3Cl6 2 4.828 -0.108 0.0 0.0 -
1010151 Cr6Br18 3/2 1.909 0.23 1.51 1.65 23.0
9011538 Ni3I6 1 7.592 0.356 0.0 0.33 68.0
8101148 FeBr2 2 3.239 -0.198 0.0 0.0 -
44753 Fe2Te2 1 37.36 2.426 0.0 0.0 238.0
1538289 VSe2 1/2 18.261 -0.419 0.0 0.0 -
4343683 Sc6Cl6 1/2 35.851 -0.002 0.0 0.07 -
86519 VS2 1/2 10.944 0.033 0.0 0.0 45.0*
151974 Y2I2 1/2 32.795 -0.029 0.0 0.0 -
9009131 Ni3Br6 1 6.736 -0.175 0.76 0.8 -
9009111 MnO2 3/2 0.509 0.305 1.13 1.29 19.0
1536707 V6Cl18 1 42.957 -0.346 0.0 0.0 -
1539696 Mg2Mn2Ge2 1 11.524 0.604 0.0 0.0 73.0
9012135 Cr3H3O6 3/2 2.348 0.147 0.46 0.65 44.0
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51016 NiRe2O8 1 2.016 1.294 1.57 1.57 36.0
2106381 Fe2Cl2O2 1/2 8.498 0.38 0.0 0.0 -
1539705 Ca2Mn2Si2 1 3.344 0.415 0.0 0.0 29.0
1534386 Cr2Br2O2 3/2 0.349 -0.049 0.5 0.95 -
1527676 Mn4O16Se4 3/2 12.129 -0.178 0.02 0.12 -
626810 Cr6Si6Te18 3/2 3.416 0.307 0.26 0.46 36.0
641335 K3Ti3S6 1/2 10.314 -0.017 0.0 0.0 -
2106692 V2Cl2O2 1 5.08 0.077 0.0 0.0 26.0
24381 V2Br4O2 1/2 19.485 0.536 0.0 0.18 -
32551 Fe6Ga6S15 1 0.0 -0.095 0.0 0.0 -
77990 Rb3Ti3S6 1/2 18.64 0.063 0.0 0.0 75.0*
643239 Mn6P6Se18 1 0.715 -0.18 0.0 0.0 -
33288 Co3Cl6O24 3/2 0.243 0.419 0.72 0.8 13.0
1537583 V2Br2O2 1 6.641 0.301 0.0 0.0 42.0
28318 Cr2Cl2O2 3/2 1.036 0.069 0.65 1.13 16.0
1531759 Ca4Co2O6 3/2 4.494 3.527 0.04 0.06 103.0
631804 Fe2Ga2S5 1 0.001 -0.113 0.0 0.0 -
2002027 Fe2Ta2Te6 1 42.478 -0.627 0.0 0.0 -
33289 Ni3Cl6O24 1 0.476 -0.075 1.54 1.55 -
1543733 Cr6Ge6Te18 3/2 5.935 -0.02 0.0 0.23 -
626052 CrGa2S4 2 1.828 0.086 0.0 0.0 51.0
1001053 Cr2Ta4O12 1 35.544 -0.619 0.22 0.21 -
1541091 Li2Ni2P4S12 1/2 8.122 -0.292 0.0 0.12 -
2014296 V2C8F2H8O12 1 21.586 0.487 0.0 0.0 -
7227895 NiC6Cl2H4N2 1 8.499 -0.063 0.85 0.82 -

Table 5.3: Screening AFM materials. List of 2D anti-ferromagnetic materials obtained from screen-
ing ICSD+COD. The id number indicates the unique identification number in the online database[124,
121] and the structure respects the stechiometry of the bulk system to avoid confusion. The spin S
is expressed in terms of Bohr magneton µB, while energies are reported in meV and eV for Heisen-
berg parameters and optical band gap respectively. Highlighted entries are robust insulating system
(optical band gap EGAP,F M(AF M) > 0.1 eV).

id Struct S Jcorr ∆ EGAP,F M EGAP,AF M

2241796 Nb2F8 1/2 -57.689 1.306 0.0 0.19
9009110 MnI2 5/2 -0.532 0.017 0.88 1.36
9009109 MnBr2 5/2 -0.535 0.036 1.48 1.83
246906 VBr2 3/2 -2.695 0.031 1.26 1.26
9009100 CoI2 1/2 -19.577 -0.304 0.0 0.0
1535971 TiBr2 1 -4.341 0.428 0.0 0.0
165398 Ru2F8 1 -0.409 -6.69 0.59 0.7
9009130 Mn3Cl6 5/2 -0.569 0.014 1.79 2.05
1539645 V2F8 1/2 -11.881 -0.053 0.45 0.77
626718 CrSe2 1 -1.186 -1.047 0.0 0.0
603582 VTe2 1/2 -0.655 0.223 0.0 0.0
67500 Mn3Br6 5/2 -0.539 0.036 1.48 1.83

1528165 VCl2 3/2 -4.773 0.028 1.36 1.36
9009104 FeO2 1 -0.076 -1.247 0.0 0.0
162900 Mn2Se2 1/2 -53.032 1.094 0.0 0.0
1509332 AgSnF6 1/2 -0.778 0.003 0.52 0.6
2104863 Ni2As2O7 1 -3.287 0.078 0.78 0.9
608511 Al6Mn3S12 5/2 -10.181 0.116 0.0 0.0
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1539711 Ca2Mn2Ge2 1 -26.673 0.846 0.0 0.0
634664 Ga2Mn2S5 5/2 -3.578 0.065 0.0 0.15
24380 V2Cl4O2 1/2 -2.929 -0.009 0.0 0.0

7210230 Bi6Mn3Te12 5/2 -0.515 1.146 0.14 0.16
1539720 Mn2Sr2Ge2 1 -29.763 0.854 0.0 0.0
634670 Ga6Mn3S12 2 -11.497 0.102 0.0 0.0
634901 Ga2NiS4 1 -10.886 -0.251 0.16 0.15
1539717 Ca2Mn2Sn2 2 -14.406 0.185 0.0 0.06
639980 In6Mn3Se12 5/2 -2.856 0.062 0.0 0.0
74810 Mn4H8O16S4 5/2 -0.671 0.006 2.04 2.5
109965 Cu2C4H4O8 1/2 -0.044 -1.359 1.07 1.55
408099 Co4H8O16Se4 3/2 -1.589 0.208 0.48 0.64
1529142 Fe4Sr6Br4O10 2 -20.388 0.072 0.0 0.0
7112837 Mn2C12N8Se4 1 -21.216 0.171 0.0 0.0
418858 Co2Br4O6Sb4 3/2 -4.703 -0.704 0.65 0.82
7221295 Fe2Sr4Br2O6 2 -0.136 0.171 0.0 0.0
7016115 Co2C8Cl4H8N4 1/2 -14.67 0.031 0.31 0.48
1528341 Co4C4H12O16P4 3/2 -0.949 0.482 0.56 0.76
4509073 Ni2C8H16N4O8 1 -12.899 0.1 1.35 1.78



CHAPTER 6
Conclusions and Outlook

In this thesis, we showed how we can employ ab-initio methods and statistical simulations to extract
relevant parameters of magnetic 2D materials.

Many other topics, like topological insulator, Kosterlitz-Thouless transitions for in-plane magneti-
zation, intra-layer anti-ferromagnetic and Dzialoshinky-Morya interactions from first-principles have
been taken into consideration and investigated as well during the last three years. However, at the
moment, didn’t yield conclusive and publishable results. For this reason they are not showed in this
thesis. The project also involved original code writing in Python and a significant amount of time has
been spent in relative debugging, testing and optimization of the code. Specifically, we conducted a
a systematic search for out-of-plane ferromagnetic monolayers with high critical temperature.

Since the recent synthesis of the 2D systems with intrinsic long range order, the field has received
a lot of interest and a search for novel candidates is expanding. High-throughput methods are still
among the fastest and most accurate routes. Some of them are based on a pool of 2D or 3D materials
computationally generated with hypothetical structure[127, 128, 90], other from databases of experi-
mentally known compounds[129, 122, 123]. In literature there are other examples of screening for 2D
magnetic materials analogous to the one presented here. For example, in [130], a similar approach
using a DFT+U functonal lead to the identification of 8 ferromagnetic mono-layers, obtained after
geometrical and chemical screening of ICSD database. However, no relaxation of the structure has
been carried out after the structural exfoliation and critical temperatures have been extrapolated with
Monte Carlo simulations based on 2D Ising model, and thus highly overestimated. In [131] a screening
of magnetic materials from existing 3D compounds [129] has been carried out with GGA+U function-
als. Classical Monte Carlo simulations based on Ising Hamiltonian with nearest and next-nearest
neighboring coupling of on-site spins have been used to predict high critical temperatures. Among the
8 ferromagnetic materials individuated, they found TMDH crystals, namely CrSBr with TC > 200K,
and CrSI, CrSCl, CrSeBr with TC > 500K. However, as noticed before, the Ising model tends to
overestimate and according to our calculations based on Heisenberg model, the critical temperatures
are remarkably lower (≈ 150K, see Paper IV). In addition, in Paper IV we report non negligible
in-plane anisotropies for these structures, which are not taken into account in the Ising model.

Inevitably, in any screening-based method, one needs to find a compromise between target accu-
racy and manageability of calculations. In most cases the outputs are only qualitative and serve as
suggestion for a further investigations. For this reason, most works in literature, focus on the investi-
gation of a small subset of materials, generally only one prototype and few atomic substitution, but
with deeper insights. For the discussion of individual materials, the reader can find more references
and a more exhaustive analysis in section 3 of Paper III, but in general, we notice a good agreement
with other similar works in literature based on the same models.

With this thesis we hope to have provided a fast and reliable method to characterized 2D magnetic
materials based on classical Monte Carlo results. It can be applied on top of the DFT + Eergy Mapping
scheme and despite its simplicity, it is able to account for many quantum-mechanical effects occurring
when strongly correlated systems are investigated at low temperature and low dimensionality.

Our systematic search, as the same time, cannot be considered exhaustive as well. The number
of hypothetical prototypes considered in this study is just a subset of the number one can imagine.
Furthermore, we tried to keep manageable the computational workload of the screening by adopting
restrictions on the number and on the nature of atoms in the unit cells. In particular we focus
on transition metals but others element as rare earth, can host magnetism. Moreover, only one
AFM configuration has been taken into consideration when predicting the magnetic ground state,
namely the total AFM configurations when this was possible (for square and honeycomb lattices,
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while for the triangular lattice the striped AFM has been compared to the FM configuration). While
being a good guess, since it minimises the energy for AFM exchanges, frustrations and geometrical
deformation (Jahn-Teller distortion) could fix a different ground state reachable only adopting a
bigger unit cell. The work focused only on square, triangular and honeycomb lattice, being the most
common magnetic lattice and those for which numerical results are more accessible. Finally, adopting
a simple Hamiltonian with only few free parameters to describe 2D systems is often necessary because
of the heavy computational tasks these kind of simulations require and to avoid spurious overfitting.
However, some systems may require specific analysis and the inclusion of new relevant interactions,
such as anti-symmetric exchange interactions, or framework, like XY model.

We think that in future a similar workflow-based method can be easily implemented and employed
for ab − initio screening of new parameters, so to provide a clear picture of the mechanisms that orig-
inate and prevent magnetic phase, and guide experimental investigations toward the next revolution
in material science.
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1. Introduction

In 2017 it was demonstrated that a monolayer of CrI3 
exhibits ferromagnetic order with a Curie temperature 
of 45 K [1]. The discovery comprises the first example 
of magnetism in a two-dimensional (2D) material 
and it was subsequently shown that the magnetic 
properties of few layers of CrI3 can be controlled with 
an electric field [2–5] and act as spin-filters [6, 7]. The 
observation has initiated a vast amount of interest 
in the subject [8–14] and a few other 2D materials 
have been shown to exhibit promising magnetic 
properties as well. For example, it has been shown that 
ferromagnetic order persists down to the bilayer limit 
in Cr2Ge2Te6 [15] and room temperature magnetic 
order has been observed for monolayers of VSe2 on a 
van der Waals substrate [16]. However, the description 
of magnetic order in 2D is more demanding than in 
three dimensions and it is currently a difficult task to 
predict the critical temperature of a given material. 
While it is well-known that magnetic order in 2D is 
driven by magnetic anisotropy (MA) there is no simple 
descriptor for the critical temperature and one has to 

rely on complex simulations in order to obtain reliable 
estimates.

Magnetic order in crystalline solids is an inher-
ently correlated effect that arises as a consequence of 
Pauli exclusion and electron–electron interactions. 
The theor etical description thus comprises a highly 
challenging topic and a series of approximations are 
required in order to derive various quantities related to 
the magnetic properties of solids. Typically, the problem 
is mapped onto a Heisenberg model of the form [17]

H = −1

2

∑
ij

JijSi · Sj, (1)

where Si is the spin operator at site j and Jij is the 
magnetic coupling between spins at site i and j, that 
account for both direct exchange and superexchange 
[18, 19]. Still, a quantum mechanical treatment of 
equation (1) is non-trivial and the eigenstates cannot 
be obtained by analytical means in general. A direct 
numerical treatment is also out of the question due to 
the vast Hilbert space required for solids.

If one is interested in the critical temperature, a 
simple expression can be obtained from mean field 
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theory, where it is assumed that each spin only couples 
to the average magnetic field of the crystal. In the fer-
romagnetic case where all sites carry the same spin one 
obtains [17]

TMF
c =

S(S + 1)

3kB
J0, (2)

where kB is Boltzmanns constant, S is the maximum 
eigenvalue of Sz and J0 =

∑
j Jij. Correlation effects 

are completely neglected in mean field theory and 
the present expression does not in general yield 
quantitative agreement with experiments. However, 
for three-dimensional materials it does provide a 
rough estimate of Tc and has been widely applied to 
predict critical temperature and to extract exchange 
coupling constants from measured values of Tc 
[20–23]. In contrast, the Mermin–Wagner theorem 
implies that magnetic order in a 2D material cannot 
persist at finite temperatures unless MA is present. 
Since the derivation of equation (2) does not make 
any assumptions of dimensionality of the problem, a 
direct consequence of the Mermin–Wagner theorem 
is that mean field theory cannot be applied in 2D. The 
main purpose of the present work is to obtain a simple 
equivalent of equation (2) that can be applied to obtain 
the Curie temperature of 2D ferromagnetic materials 
for a given set of anisotropy and exchange parameters.

Another approach to analyzing the Heisenberg 
model is based on a Holstein–Primakoff transfor-
mation of the spin operators. In that case the Ham-
iltonian can be written as power series in bosonic 
field operators and the leading quadratic part is then 
straightforward to diagonalize. The excitations can be 
interpreted as non-interacting spin-waves and pro-
vide a good approximation for the spectrum at low 
temperatures. The remaining terms in the Hamilto-
nian represent spin-wave interactions and need to be 
taken into account at finite temperatures where many 
spin-waves are typically present. This is not a trivial 
task, however, but one can include the quartic term in a 
Hartree–Fock type of approximation, which gives rise 
to a temperature dependent renormalization of the 
spin-waves. In the present work we will refer to this as 
the random phase approximation (RPA) [17], but we 
note that this terminology is also sometimes used for 
the time-dependent susceptibility in the Hartree–Fock 
approximation. For 3D materials Curie temperatures 
obtained from RPA provide a more accurate estimate 
than those obtained from mean field theory and tend 
to provide a lower bound for the exact value, whereas 
mean field theory provides an upper bound [24, 25]. 
More importantly, RPA respects the Mermin–Wagner 
theorem and gives rise to vanishing critical temper-
atures in the absence of magnetic anisotropy. RPA thus 
appears to comprise the simplest method that can pro-
vide quantitative agreement with experiment. How-
ever, as will be shown in the present work, the RPA fails 
dramatically in systems with large anisotropy. For 2D 
materials it is expected that large anisotropy is exactly 

the property needed if one is searching for materials 
with high critical temperatures and RPA is not a suit-
able approximation in such cases.

A third approach to the problem is based on the 
fact that at large temperatures quantum effects tends 
to be quenched by thermal fluctuations and one can 
consider a classical approximation for the model. 
Critical temperatures can then be obtained by per-
forming Monte Carlo simulations of the model at 
different temperatures and identify the point where 
the average magnetization vanishes. While such an 
approach includes all correlation in the model, it is 
in general difficult to assess the importance of the 
neglected quant um effects. In particular, for systems 
with S = 1/2 quantum effects are likely to be impor-
tant even at elevated temperatures. Nevertheless, clas-
sical Monte Carlo simulations have been shown to 
provide excellent agreement with experimental criti-
cal temper atures for diluted magnetic semiconductors 
[25] and Heusler alloys [24]. Moreover, the classical 
treatment has the important property that it correctly 
approaches the Ising limit for large anisotropies.

The classical simulations are, however, rather 
demanding in terms of computational load and it 
would be highly desirable to have an analytical expres-
sion that replaces equation (2) for two-dimensional 
materials with anisotropy. In the present paper we 
obtain such an expression by fitting the results of 
Monte Carlo simulations in anisotropic two-dimen-
sional systems to an analytical expression. We per-
form the simulations for honeycomb, quadratic, and 
hexagonal lattices and provide a universal expression 
that only depends on the number of nearest neigh-
bors and the critical temperature of the corre sponding 
Ising model. We then consider a monolayer of CrI3 as 
a test example and obtain good agreement with the 
experimental value of Tc using Heisenberg parameters 
obtained from first principles calculations.

2. Theory

The starting point of our calculations is the Heisenberg 
model with nearest neighbor exchange interactions 
J, single ion anisotropy A, and nearest neighbor 
anisotropic exchange B. Typically, 2D materials are 
isotropic in-plane and magnetic order is therefore only 
possible if the easy axis (here chosen as the z-axis) is 
perpendicular to the plane of the material. We thus 
consider the model Hamiltonian

H = −1

2

∑
ij

JijSi · Sj − A
∑

i

(Sz
i )

2 − 1

2

∑
ij

BijS
z
i Sz

j ,

 (3)

with Jij, A, Bij > 0. The sums run over all magnetic sites 
and Jij = J , Bij = B if i and j are nearest neighbors and 
zero otherwise. The maximum value of Sz

i  is denoted 
by S. Without MA, all eigenenergies are proportional 
to J  and the model does not contain any fundamental 
interaction parameters. This implies that the amount 
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of correlation only depends on the lattice and the value 
of S. In contrast, when MA is present, the last terms in 
equation (3) introduces additional correlations, which 
is quantified by the dimensionless coupling constants 
A/J  and B/J . Importantly, it should be noted that in 
the limit of A/J → ∞, all excitations will have spins 
aligned along the easy axis and the model becomes 
equivalent to the Ising model with coupling parameter 
JIsing = J + B.

The critical temperature is defined as the temper-
ature at which the magnetic order vanishes. For a fer-
romagnetic system it can be determined by calculating 
the magnetization as

M(T) =
1

Z

∑
{s}

Mse
−Es/kBT , (4)

where Z  is the partition function, s  denotes eigenstates 
of equation (3), and Ms are the corresponding 
magnetic moments. From equation (3) it is clear Tc/J  
must be a function of A/J , B/J , and S as well as the 
lattice. A common approach to obtain approximate 
solutions to equation (3) is the Holstein–Primakoff 
transformation that replaces the spin operators by 
bosonic raising and lowering operators [17, 26]. The 
Hamiltonian can then be written as

H = E0 + SH̃0 + H̃1 +
1

S
H̃2 + . . . (5)

where E0 is the ground state energy. SH̃0 is quadratic in 
raising and lowering operators, H̃1 is quartic in raising 
and lowering operators, H̃2 contains sixth order terms 
and so forth. The terms beyond H̃0 thus introduce 
interactions between the Holstein–Primakoff bosons. 
We note that the anisotropy constants A and B only 
enters in E0, H̃0 and H̃1. With periodic boundary 
conditions, all excitations can be labeled by a Bloch 
momentum q and all terms in the Hamiltonian 
can be written in terms of a†νq and aνq, which create 
and annihilate Holstein–Primakoff bosons for the 
sublattice ν  at wavevector q. Since the bosons carry 
spin-1, the magnetization per site can be written as

M(T) = M0 −
1

nNq

∑
nq

nB(Enq, T), (6)

where M0 is the ground state magnetization per site, 
Nq is the number of unit cells, n is a band index, nB  is 
the Bose distribution, and Enq are the eigenenergies of 
the Hamiltonian.

For simplicity we will restrict ourselves to a single 
site per unit cell in the following. If one neglects the 
interactions, the dispersion is readily obtained yielding

εq = ε0
q + A(2S − 1) + SBNnn, (7)

where Nnn is the number of nearest neighbors and 

ε0
q is the dispersion of spinwaves without anisotropy, 

which satisfies ε0
0 = 0. Magnetic order at finite 

temperature in 2D is only possible if the spectrum is 
gapped and thus depends on the presence of MA. The 
expression becomes exact in the limit of vanishing 

temperature and we see that the single-ion anisotropy 
will introduce a gap in the spectrum if S > 1/2. For 
S = 1/2 the single-ion anisotropy alone does not 
introduce a gap and finite critical temperatures are 
only possible with non-vanishing anisotropic 
exchange. In general magnetic order will be possible 
if A(2S − 1) + SBNnn > 0. The interacting part of 
the anisotropy terms in the Hamiltonian (5) to fourth 
order in the field operators becomes

H̃Ani
1 = − 1

2Nq

∑
qq′q′′

[2A + B̃(q′′ − q)]a†q′a
†
q′′aqaq+q′−q′′

 (8)

with

B̃(q) = B
∑

j

cos(q · Rj), (9)

where the sum runs over the set of smallest lattice 
vectors. The single-ion anisotropy thus introduces 
attractive interactions between the Holstein–
Primakoff bosons, whereas the sign of the anisotropic 
exchange interaction depends on the value of q.

Whereas H̃0 is readily diagonalized, the interac-
tion terms require some level of approximation. Tak-
ing the Hartree–Fock approximation for H̃1 leads to 
the random phase approximation (RPA), which has 
previously been shown to provide good estimates 
of the Curie temperatures in 3D where the MA is 
usually neglected. The temperature dependent cor-
rections to the spectrum without anisotropy ∆εq is 
well-known and can be found in [17]. In the pres-
ence of anisotropy the RPA spectrum (for a single 
site per unit cell) acquires the additional temper-
ature dependent terms

∆εAni
q = − 1

Nq

∑
q′

[
4A + B̃(q − q′) + B̃(0)

]
nB(E

RPA
q′ , T)

 (10)

with ERPA
q = εq +∆εq +∆εAni

q . The RPA dispersion 
and resulting magnetization at a given temperature 
thus have to be calculated self-consistently. It should 
be mentioned that the procedure of calculating the 
critical temperature as the point where equation (6) 
vanishes appears to be ill-defined in the RPA, since 
the renormalized spin gap approached zero before 
the magnetization vanishes. In particular, if we take 
B = 0 it can be seen from equations (7) and (10) that 
the gap should close when 〈n〉 = (2S − 1)/4, which 
is always smaller than M0 = S. However, the average 
number of bosons in the system diverges as the gap 
approaches zero, and the magnetization is not well-
defined at this point. Nevertheless, since the average 
number of bosons diverge as the gap closes we have 
that dM(T)/dT → −∞ as ∆ε0 +∆εAni

0 → 0. We 
can thus calculate the magnetization up to arbitrarily 
small values of the spin gap, where the magnetization 
acquires a large negative slope as a function of 
temperature and we may simply identify the critical 
temperature as the point where the renormalized spin 
wave gap closes.
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Figure 1. Magnetization and heat capacity C = dE/dT as a function of temperature for the square lattice with three different values 
of A/J . The critical temperatures are indicate by dashed vertical lines.

In the case of large MA the RPA provides qualita-
tively wrong results since the Hartree–Fock level of 
theory cannot correctly capture the strong correlation 
introduced by the additional interaction term. This is 
inherited from the non-interacting spin-wave theory, 
where the breakdown can be seen as follows: assuming 
a quadratic dispersion of the form εq = aq2 +∆ the 
magnetization becomes

M(T) =M0 −
L2

(2π)2

∫
d2q

e(aq2+∆)/kBT − 1

=M0 − kBT
L2

πa

∫

∆/kbT

dx

ex − 1

=M0 + kBT
L2

πa
log(1 − e−∆/kBT).

 

(11)

At the critical temperature the magnetization vanishes, 
which implies

1 − e−∆/kbTc = e−α/kBTc , (12)

where α = πaM0/L2. This equation allows for 
arbitrarily large solutions for Tc if ∆ is taken large 
enough (high anisotropy). In RPA one obtains a similar 
picture, since the average treatment of interactions 
simply introduces a temperature dependent rescaling 
of ∆. The fact that Tc diverges for large values of the 
anisotropy signals a breakdown of the RPA, since 
for a fixed value of B the critical temperature has to 
approach the Ising limit asymptotically as we take 
A → ∞.

3. Results

3.1. Single-ion anisotropy
We now turn to the Monte Carlo simulations of the 
classical Heisenberg model at different temperatures. 
We start by considering only single-ion anisotropy and 
thus set B = 0. It is expected that the classical treatment 
is unreliable at low temperature where quantum 
fluctuations may dominate but at large temperatures 
the quantum fluctuation will be quenched by thermal 

fluctuations. A major advantage of this approach 
is the fact that the Ising limit is naturally satisfied 
and the classical approximation will thus become 
asymptotically exact when A/J → ∞ and S �= 1/2. 
In figure 1 we show examples of the MC simulations 
for the square lattice using three different values of 
A/J . The critical temperature can be extracted as 
the point where the magnetization vanishes or as the 
temperature where the heat capacity C = dE/dT 
diverges. The two-approaches gives identical results 
for the critical temperature.

In figure 2 we compare the critical temperature 
obtained from the RPA with classical MC simulations 
on a quadratic lattice. For the classical model the criti-
cal temperature can be written as kBTCl

c = S2JfCl(A/J), 
where f  is a universal function that do not depend on S. 
For the RPA one has kBTRPA

c = S2JfRPA(S, A/J), but it is 
clear from figure 2 that fRPA(S, A/J) is nearly independ-
ent of S. The RPA clearly violates the Ising limit as noted 
above and we expect that TRPA

c  becomes unreliable 
when A ∼ J . The MC simulations reveal that the Ising 
limit is approached rather slowly as A/J  is increased 
and we can conclude that the materials with large aniso-
tropies that will typically be referred to as Ising type fer-
romagnets are poorly described by the Ising model.

We can fit the classical simulations to an analytical 
function of the form.

Tc = TIsing
c f (A/J), (13)

with

f (x) = tanh1/4
[ 6

Nnn
log

(
1 + γx

)]
 (14)

where Nnn is the number of nearest neighbors and 
γ = 0.033. TIsing

c  is the critical temperatures for the 
corresponding Ising model, which can be written as 

TIsing
c = S2JT̃c/kB, where T̃c is a dimensionless critical 

temperature with values of 1.52, 2.27, 2.27, and 3.64 
for the honeycomb, quadratic, Kagomé, and hexagonal 
lattices respectively [27]. The fit was obtained by 
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noting that the critical temperature has a logarithmic 
dependence on the anisotropy at low temperature. It 
is thus natural to base the fit on the tanh(x) function, 
which Taylor expands to its arguments for x � 1 
and approaches unity for x → ∞. The exponent of 
1/4, γ  and the factor of 6 in front of the log function 
were obtained by fitting. The comparison of the fit 
and classical MC simulations for the honeycomb, 
quadratic, and hexagonal lattices are shown in figure 3. 
It should be noted that the fit gives slightly lower values 
than the simulations at low values of A/J . However, 
for low values of A/J  the classical simulations 
overestimate the critical temperatures compared with 
RPA and we expect that RPA is more accurate in this 
limit. Equations (13) and (14) are the main result of 
the present work and comprises a simple analytical 
approximation for Curie temperatures of 2D materials 
with single-ion anisotropy.

3.2. Anisotropic exchange
The situation become slightly more complicated 
when anisotropic exchange is also present 
(B �= 0). To exemplify the qualitative differences 
between anisotropic exchange and single-ion 
anisotropy we start by considering the case of A = 0 for 
a quadratic lattice. The critical temperatures obtained 
with RPA and MC simulations are shown in figure 4 
as a function of the anisotropic exchange parameter 

B. In the case of B � J  one obtains H ≈ B+J
2

∑
Sz

i Sz
j , 

which is equivalent to the Ising model when S = 1/2. 

However, for S � 1, the critical temperature is lowered 
compared to the Ising model due to the non-binary 
nature of Sz. In the limit of B � J , it may be argued 
that the values of ±Sz are favored for all sites, but 
when the critical temperature is approached the 
magnetization vanishes in a manner that is quite 

Figure 2. Critical temperature for a quadratic lattice as a function of rescaled single-ion anisotropy A/J  calculated for S = 1, 
S = 3/2, and S = 2 with ferromagnetic exchange coupling using the RPA. The Ising critical temperature comprises an exact upper 
limit and is indicated by dashed line.

Figure 3. Critical temperature as a function of scaled anisotropy A/J  calculated with classical Monte Carlo simulations for the 
honeycomb, square, and hexagonal lattices with ferromagnetic exchange. The solid lines are obtained from the empirical fitting 
function equations (13) and (14). The Ising limit is indicated by dashed lines for the three lattices.
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different from the Ising model, since the magnetization 
per site is allowed to decrease in addition to the effect 
of domain formation. From figure 4, it can be seen 
that RPA overestimates the asymptotic behavior of 
Tc as B/J → ∞ due to the mean-field approximation 
for correlation effects. However, the classical limit of 
S → ∞ is accurately captured by RPA, which agrees 
well with classical MC simulations. This is in sharp 
contrast to the case of single-ion anisotropy, where 
RPA fails completely in the classical limit.

The fact that the model becomes asymptotically 
equivalent to an Ising type model with continuous 
spin variables indicate that the asymptotic criti-
cal temperatures should resemble those of the Ising 
model but with an effective value of S that is smaller 
than the maximum value that enters in the Heisen-
berg model. For example, taking a spherical aver-
age of Sz such that S2 → 〈S2

z〉Ω = S2/3 one obtains 
a decrease in in the critical temperature by a factor 

of three compared to the corresponding Ising model. 
By inspection of the classical simulations we find that 
S2 → S2/2.5 provides good agreement with our sim-
ulations. This is shown in figure 5 for the honeycomb, 
square, and hexagonal lattices. However, we note that 
this is a strictly classical result and for S = 1/2 one 
should reproduce the Ising limit without any res-
caling. For finite values of S, we expect a rescaling 
between unity and 2.5.

In order to include the anisotropic exchange in the 
one-parameter expression (13), we note that for B = 0, 
one can express the single-ion anisotropy in terms of 
the zero-temperature gap ∆ as A = ∆/(2S − 1) (see 
equation (7)). For B �= 0 the situation is more compli-
cated due to the additional dispersion introduced by 
the anisotropic exchange. Nevertheless, if we choose 
to regard the zero temperature gap as the primary 
descriptor for the critical temperature we can write the 
critical temperature for S �= 1/2 as

Figure 4. Critical temperature for a quadratic lattice as a function of rescaled anisotropic exchange B/J  calculated for S = 1/2, 
S = 1, S = 3/2, and S = 2 with ferromagnetic exchange coupling obtained from RPA and MC simulations. The asymptotic Ising 
limit kBTc = 2.27S2(J + B) is indicated by a dashed line.

Figure 5. Critical temperature as a function of anisotropy exchange B/J  calculated with classical Monte Carlo simulations for 

the honeycomb, square, and hexagonal lattices with ferromagnetic exchange. The dashed lines indicate the asymptotic Ising limit 

TIsing
c (1 + B/J) divided by 2.5.
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Tc = TIsing
c f

( ∆

J(2S − 1)

)
, (15)

with

∆ = A(2S − 1) + BSNnn (16)

and f (x) given by equation (14).

3.3. Application to CrI3

As a test example for the derived expression we 
consider a monolayer of CrI3, which has recently been 
shown to exhibit ferromagnetic order below 45 K [1]. 
We have extracted the Heisenberg model parameters 
from first principles in the framework of density 
functional theory. All calculations were performed 
using the GPAW code [28, 29] and the Perdew–
Burke–Ernzerhof (PBE) functional [30] for exchange-
correlation energies. We have included a Hubbard U 
correction to properly account for the localization of 
Cr d-orbitals. A cut-off energy of 800 eV for the plane 

wave basis and a Γ-centered Monkhorst–Pack k-point 

grid with a density of 6 ̊A
−1

 have been used to ensure 
converged results. Monolayers were separated by 15 
Å vacuum and the atomic structure relaxed until all 
forces declined below 0.01 eV ̊A

−1
.

Magnetic moments of 3 µB are localized on the Cr 
atoms and each Cr atom has three nearest neighbors. 
The exchange coupling constant can be extracted from 

the energy differences between various spin configu-
rations of the monolayer [31–36]. In order to calcu-
late the nearest neighbor coupling constant J1, two 
configurations are required. However, it is important 
to check that the results are independent of, which 
configurations are used. We have thus considered 
a 2 × 2 unit cell and considered a total of 6 different 
spin configurations. Taking different combinations 
of these produce values of J1 that range from 1 to 5 
meV. Including the next nearest neighbor interaction 
J2 reduces the spread somewhat and give values of J1 
in the range 3.1–3.3 meV. Finally including the third 
nearest neighbor interaction J3 produces converged 
results that are independent of which spin configura-
tions that we use. Five different combinations of the 
six spin configurations (four structures are needed to 
extract three parameters) all produce J1 = 3.24 meV, 
J2 = 0.56 meV and J3 = 0.001 meV. If we simply con-
sider the two possible magnetic configurations in a 
single unit cell we obtain J1 = 3.25 meV (black ring in 
figure 6), which is very close to the converged result. 
Although J2 and J3 are required in order to obtain 
converged results these parameters are much smaller 
than J1 and we expect that they will have small influ-
ence on the critical temperature. We will thus neglect 
the second and third nearest neighbor interaction in 
the following and simply use J = J1 when applying the 
model (15).

AFM1

AFM3 AFM4 AFM5

AFM2FM

Figure 6. Top: spin configurations used for the energy mapping analysis with U = 2 eV. Bottom: values of J1, J2, and J3 obtained 
from different combinations of spin configurations. When both second and third nearest neighbor interactions are included the 
resulting Ji  are independent of which spin configurations we use. The black circle shows the result for J1 based on the ferromagnetic 
and fully antiferromagnetic configurations in a single unit cell.
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The anisotropy parameters can be extracted by a 
calculations with spin–orbit coupling [37] by compar-
ing the energies in-plane and out-of-plane spin con-
figurations [12]. In particular

A =
∆EFM +∆EAFM

2S2
 (17)

B =
∆EFM −∆EAFM

NnnS2
, (18)

where ∆EFM(AFM) = E(x)
FM(AFM) − E(z)

FM(AFM) are the 

energy differences per atom between in-plane and out-
of-plane spin configurations for the ferromagnetic 
and antiferromagnetic structures and Nnn = 3 is the 
number of nearest neighbors. Using U = 2 eV we find

ACrI3 = 0.056 meV, (19)

BCrI3 = 022 meV, (20)

and from equation (16)

∆CrI3 = 1.08 meV, (21)

which yields

TCrI3
c = 42 K, (22)

from equations (14)–(16). This is in excellent 
agreement with the experimental value of 45 K [1]. 
However, the result is somewhat sensitive the the choice 
of U and calculations with U = 0, U = 1, and U = 3 
eV gives Tc = 32, Tc = 37, Tc = 47 K respectively. 
In general we observe that J  and B increases while 
A decreases, when U is increased and the critical 
temperature is largely linear in U  with dTc/dU = 5 
K eV−1. In [12] the authors found A = 0, B = 0.09 
meV, J = 2.2 meV and ∆ = 0.4 meV from GGA  +  U 
calculations, which is in somewhat disagreement with 
the present results. In particular, we find that single-
ion anisotropy and anisotropic exchange contribute 
equal amounts to spin gap whereas in [12] it was found 
that single-ion anisotropy is negligible. The reasons for 
this discrepancy is presently unclear.

4. Discussion

To summarize, we have calculated the critical 
temperatures of various 2D lattices using the RPA and 
classical MC simulations as a function of single-ion 
anisotropy and anisotropic exchange. We find that RPA 
generally tend to overestimate critical temperatures 
and fails dramatically for large single-ion anisotropies. 
In contrast, the MC simulations capture the asymptotic 
Ising limit correctly and agrees reasonably well with 
RPA at small values of the anisotropy. We used the 
calculations to obtain an analytical fit for the critical 
temperature that only depends on the anisotropy 
constants, nearest neighbor exchange parameter and 
the (known) critical temperature of the Ising model for 
the lattices. Since all parameters are easily obtainable 
from first principles calculations, we expect that the 
expression will be highly useful for predicting critical 

temperatures of novel 2D materials as well as verify the 
microscopic mechanism that underlie magnetic order 
in experimentally observed 2D ferromagnets.

It should be noted that other approximations to 
the Heisenberg model, might be better suited than the 
mean field approximation of the Holstein–Primakoff 
bosons considered in here. For example, a mean field 
treatment of the Schwinger bosons approach [38] has 
been successfully applied to describe the properties 
of ferrimagnetic systems [39] and antiferromagnetic 
Kagome lattices [40] and it would be very interesting to 
investigate the performance of such methods in future 
works.

The present results obtained from classical Monte 
Carlo simulations are largely based on classical simu-
lations and are not expected to be valid for the the 
important case of S = 1/2 systems. Even for S = 1 and 
S = 3/2, it is hard to argue that a classical approach is 
reliable and the only evidence for the validity so far is 
the good agreement with the experimentally observed 
Curie temperature for CrI3. To verify the reliability of 
the method it would thus be highly desirable to obtain 
accurate results based on either many-body techniques 
beyond the RPA [41] or quantum Monte Carlo simu-
lations of the anisotropic Heisenberg model. Moreo-
ver, the first principles evaluation of the Heisenberg 
parameters seems to be rather sensitive to the exact 
approach used to calculate them and the exact val-
ues of the parameters are still debated [12]. Whereas 
spin waves [20] and critical exponents [42] have been 
measured in bulk CrI3 there is not yet any direct meas-
urements for a monolayer of CrI3 and it is currently 
not possible to determine the Heisenberg parameters 
experimentally.

Presently, there are very few known purely 2D 
magn etic materials, which severely limits the possibili-
ties of benchmarking ab initio calculations and models 
for magnetism in 2D against experimental observa-
tions. However, with the rapid developments in syn-
thesis, characterization, and prediction of 2D materials  
[43–45], it is likely that several new magnetic 2D mat-
erials will be observed in the near future.
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1. Introduction

Over the past decade, atomically thin two-dimensional 
(2D) materials have made their way to the forefront of 
several research areas including batteries, (electro-)
catalysis, electronics, and photonics [1, 2]. This 
development was prompted by the intriguing and 
easily tunable properties of atomically thin crystals 
and has been fueled by the constant discovery of new 
2D materials and the emergent concepts of lateral 
[3] and vertical [4] 2D heterostructures, which opens 
completely new possibilities for designing materials 
with tailored and superior properties.

So far more than fifty compounds have been syn-
thesised or exfoliated as single layers (see figure 7). 
These include the well known monoelemental crys-
tals (Xenes, e.g. graphene, phosphorene) [5] and 
their ligand functionalised derivatives (Xanes, e.g. CF, 
GeH) [6], transition metal dichalcogenides (TMDCs, 
e.g. MoS2, TaSe2) [7], transition metal carbides and 
-nitrides (MXenes, e.g. Ti2CO2) [8], group III–V 

semiconductors and insulators (e.g. GaN, BN) [9, 10],  
transition metal halides (e.g. CrI3) [11, 12], post-trans-
ition metal chalcogenides (e.g. GaS and GaSe) [13, 14]  
and organic-inorganic hybrid perovskites (e.g. 
Pb(C4H9NH3)2I4) [15]. However, the already known 
monolayers are only the tip of a much larger iceberg. 
Indeed, recent data mining studies indicate that several 
hundred 2D materials could be exfoliated from known 
layered bulk crystals [16–19]. In the present work we 
take a complementary approach to 2D materials dis-
covery based on combinatorial lattice decoration and 
identify another few hundred previously unknown 
and potentially synthesisable monolayers.

In the search for new materials with tailored 
properties or novel functionalities, first-principles 
calcul ations are playing an increasingly important 
role. The continuous increase in computing power 
and significant advancements of theoretical methods 
and numerical algorithms have pushed the field to a 
point where first-principles calculations are compa-
rable to experiments in terms of accuracy and greatly  
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Abstract
We introduce the Computational 2D Materials Database (C2DB), which organises a variety of 
structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 
two-dimensional materials distributed over more than 30 different crystal structures. Material 
properties are systematically calculated by state-of-the-art density functional theory and many-body 
perturbation theory (G0W0 and the Bethe–Salpeter equation for  ∼250 materials) following a semi-
automated workflow for maximal consistency and transparency. The C2DB is fully open and can be 
browsed online (http://c2db.fysik.dtu.dk) or downloaded in its entirety. In this paper, we describe 
the workflow behind the database, present an overview of the properties and materials currently 
available, and explore trends and correlations in the data. Moreover, we identify a large number of 
new potentially synthesisable 2D materials with interesting properties targeting applications within 
spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily 
accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for 
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surpass them in terms of speed and cost. For more 
than a century, experimental databases on e.g. struc-
tural, thermal, and electronic properties, have been a 
cornerstone of materials science, and in the past dec-
ade, the experimental data have been augmented by an 
explosion of computational data obtained from first- 
principles calculations. Strong efforts are currently 
being focused on storing and organising the compu-
tational data in open repositories [20, 21]. Some of 
the larger repositories, together containing millions 
of material entries, are the Materials Project [22], the 
Automatic Flow for Materials Discovery (AFLOW-
LIB) [23], the Open Quantum Materials Database 
(OQMD) [24, 25], and the Novel Materials Discovery 
(NOMAD) Repository [26].

The advantages of computational materials data-
bases are many. Most obviously, they facilitate open 
sharing and comparison of research data whilst reduc-
ing duplication of efforts. In addition, they underpin 
the development and benchmarking of new methods 
by providing easy access to common reference sys-
tems [27]. Finally, the databases enable the applica-
tion of machine learning techniques to identify deep 
and complex correlations in the materials space and 
to use them for designing materials with tailored 
properties and for accelerating the discovery of new  
mat erials [28–30]. Among the challenges facing the 
computational databases is the quality of the stored 
data, which depends both on the numerical precision 
(e.g. the employed k-point grid and basis set size) and 
the accuracy of the employed physical models (e.g. the 
exchange-correlation functional). Most of the existing 
computational databases store results of standard den-
sity functional theory (DFT) calculations. While such 
methods, when properly conducted, are quite reliable 
for ground state properties such as structural and ther-
modynamic properties, they are generally not quantita-
tively accurate for excited state properties such as elec-
tronic band structures and optical absorption spectra.

Compared to databases of bulk materials, data-
bases of 2D materials are still few and less developed. 
Early work used DFT to explore the stability and elec-
tronic structures of monolayers of group III–V honey-
comb lattices [31, 32] and the class of MX2 trans ition 
metal dichalcogenides and oxides [33]. Later, by data- 
filtering the inorganic crystal structure database 
(ICSD), 92 experimentally known layered crystals 
were identified and their electronic band structures 
calculated at the DFT level [34]. Another DFT study, 
also focused on stability and band structures, explored 
around one hundred 2D materials selected from differ-
ent structure classes [35]. To overcome the known limi-
tations of DFT, a database with many-body G0W0 band 
structures for 50 semiconducting TMDCs was estab-
lished [36]. Very recently, data mining of the Materials 
Project and experimental crystal structure databases in 
the spirit of [34], led to the identification of close to 
one thousand experimentally known layered crystals 
from which single layers could potentially be exfoliated  

[16–19]. These works also computed basic energetic, 
structural and electronic properties of the monolayers 
(or at least selected subsets) at the DFT level.

In this paper, we introduce the open Computa-
tional 2D Materials Database (C2DB) which organises 
a variety of ab initio calculated properties for more 
than 1500 different 2D materials. The key characteris-
tics of the C2DB are:

 •  Materials: the database focuses entirely on 2D 
materials, i.e. isolated monolayers, obtained by 
combinatorial lattice decoration of known crystal 
structure prototypes.

 •  Consistency: all properties of all materials are 
calculated using the same code and parameter 
settings following the same workflow for 
maximum transparency, reproducibility, and 
consistency of the data.

 •  Properties: the database contains a large and 
diverse set of properties covering structural, 
thermodynamic, magnetic, elastic, electronic, 
dielectric and optical properties.

 •  Accuracy: Hybrid functionals (HSE06) as well 
as beyond-DFT many-body perturbation theory 
(G0W0) are employed to obtain quantitatively 
accurate band structures, and optical properties are 
obtained from the random phase approximation 
(RPA) and Bethe–Salpeter equation (BSE).

 •  Openness: the database is freely accessible and can 
be directly downloaded and browsed online using 
simple and advanced queries.

The systematic combinatorial approach used to 
generate the structures in the database inevitably pro-
duces many materials that are unstable and thus unre-
alistic and impossible to synthesise in reality. Such 
‘hypothetical’ structures may, however, still be useful in 
a number of contexts, e.g. for method development and 
benchmarking, testing and training of machine learn-
ing algorithms, identification of trends and structure-
property relationships, etc. For this reason we map out 
the properties of all but the most unstable (and thus 
chemically unreasonable) compounds. Nevertheless, 
the reliable assessment of stability and synthesisability 
of the candidate structures is an essential issue. Using 
the 55 materials in the C2DB, which have been exper-
imentally synthesised in monolayer form, as a guide-
line, we set down the criteria that a hypothesised 2D 
material should fulfill in order for it to be ‘likely syn-
thesisable’. On the basis of these criteria, we introduce a 
simple stability scale to quantify a candidate material’s 
dynamic and thermodynamic stability. Out of an ini-
tial set of around 1900 monolayers distributed over 32 
different crystal structures, we find 350 in the most sta-
ble category. In addition to the 55 experimentally syn-
thesised monolayers, this set also includes around 80 
mono layers from experimentally known vdW layered 
bulk materials, and thus around 200 completely new 
and potentially synthesisable 2D materials.
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In section 2, we describe the computational work-
flow behind the database. The structure and properties 
of the materials are calculated using well established 
state-of-the-art methodology. Technical descriptions 
of the different steps in the workflow are accompanied 
by illustrative examples and comparisons with litera-
ture data. Since documentation and validation is the 
main purpose of the section, we deliberately focus on 
well known 2D materials like the Xenes and transition 
metal dichalcogenides where plenty of both compu-
tational and experimental reference data is available. 
It should be clear that the novelty of the present work 
does not lie in the employed methodology nor in the 
type of materials properties that we calculate (we note, 
however, that to the best of our knowledge the present 
compilation of GW and BSE calculations represents 
the largest of its kind reported so far). The significance 
of our work is rather reflected by the fact that when 
large and consistently produced data sets are organised 
and made easily accessible, new scientific opportuni-
ties arise. As outlined below, this paper presents several 
examples of this effect.

In section 3 we give an overview of the materials 
and the data contained in the C2DB and provide some 
specific examples to illustrate its use. Using an exten-
sive set of many-body G0W0 calculations as a refer-
ence, we establish the performance of various DFT xc- 
functionals for predicting band gaps, band edge posi-
tions, and band alignment at hetero-interfaces, and 
we propose an optimal strategy for obtaining accurate 
band energies at low computational cost. Similarly, 

the 250 BSE calculations allow us to explore trends in 
exciton binding energies and perform a statistically 
significant and unbiased assessment of the accuracy 
and limitations of the widely used Mott–Wannier 
model for 2D excitons. From the data on more than 
600 semiconductor monolayers, we present strong 
empirical evidence against an often employed relation 
between effective masses and band gaps derived from 
k · p perturbation theory. Inspired by the potential 
of using 2D materials as building blocks for plasmon-
ics and photonics, we propose a model to predict the 
plasmon dispersion relations in 2D metals from the 
(intraband) plasma frequency and the onset of inter-
band trans itions and use it to identify 2D metals with 
plasmons in the optical frequency regime. We propose 
several new magnetic 2D materials (including both 
metals and semiconductors) with ferromagnetic or 
anti-ferromagnetic ordering and significant out-of-
plane magnetic anisotropy. Finally, we point to new 
high-mobility 2D semiconductors including some 
with band gaps in the range of interest for (opto)elec-
tronic applications.

In section 4 we provide our conclusions together 
with an outlook discussing some opportunities and 
possible future directions for the C2DB.

2. Workflow

The workflow used to generate the data in the C2DB 
is illustrated in figure 1. It consists of two parts: In the 
first part (left panel) the unit cell and atom positions 

Figure 1. The workflow used to calculate the structure and properties of the materials in C2DB. The cross indicates that the material 
is not included in the database at all, while the stop sign indicates that no more of the workflow is performed.
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are optimised for different magnetic configurations: 
non-magnetic (NM), ferro-magnetic (FM) and 
antiferro-magnetic (AFM). Materials satisfying 
certain stability and geometry criteria (indicated 
by green boxes) are subject to the second part (right 
panel) where the different properties are computed 
using DFT and many-body methods. The G0W0 band 
structure and BSE absorbance calculations have been 
performed only for semiconducting materials with up 
to four atoms in the unit cell. Per default, properties 
shown in the online database include spin–orbit 
coupling (SOC); however, to aid comparison with 
other calculations, most properties are also calculated 
and stored without SOC.

All DFT and many-body calculations are per-
formed with the projector augmented wave code 
GPAW [37] using plane wave basis sets and PAW 
potentials version 0.9.2. The workflow is managed 
using the Python based atomic simulation environ-
ment (ASE) [38]. We have developed a library of 
robust and numerically accurate (convergence veri-
fied) ASE-GPAW scripts to perform the various tasks 
of the workflow, and to create the database afterwards. 
The library is freely available, under a GPL license.

Below we describe all steps of the workflow in 
detail. As the main purpose is to document the work-
flow, the focus is on technical aspects, including 
numerical convergence and benchmarking. An over-
view of the most important parameters used for the 
different calculations is provided in table 1.

2.1. Structure relaxation
The workflow is initiated with a crystal structure 
defined by its unit cell (Bravais lattice and atomic 
basis). The crystal lattice is typically that of an 
experimentally known prototype (the ‘seed 
structure’) decorated with atoms picked from a 
subset of the periodic table, see figure 2. We refer 
to materials by the chemical formula of their 
unit cell followed by the crystal structure. The 
latter is indicated by a representative material of 
that prototype, as described in section 3.1. For 
example, monolayer MoS2 in the hexagonal H 
and T phases are denoted MoS2-MoS2 and MoS2-
CdI2, respectively. Now, MoS2 is in fact not stable 
in the T phase, but undergoes a 2 × 1 distortion to 
the so-called T′ phase. Because the T′ phase is the 
thermodynamically stable phase of WTe2, we denote 
MoS2 in the distorted T phase by Mo2S4-WTe2. In the 
following, we shall refer to the unit cell with which 
the workflow is initiated, i.e. the unit cell of the seed 
structure, as the primitive cell or the 1 × 1 cell, even if 
this cell is not dynamically stable for the considered 
material (see section 2.4).

The unit cell and internal coordinates of the atoms 
are relaxed in both a spin-paired (NM), ferromagnetic 
(FM), and anti-ferromagnetic (AFM) configuration. 
Calculations for the AFM configuration are performed 
only for unit cells containing at least two metal atoms. 

The symmetries of the initial seed structure are kept 
during relaxation. All relevant computational details 
are provided in table 1.

After relaxation, we check that the structure has 
remained a covalently connected 2D material and not 
disintegrated into 1D or 0D clusters. This is done by 
defining clusters of atoms using the covalent radius 
[39]  +  30% as a measure for covalent bonds between 
atoms. The dimensionality of a cluster is obtained 
from the scaling of the number of atoms in a cluster 
upon repetition of the unit cell following the method 
described by Ashton et al [16]. Only materials con-
taining exactly one cluster of dimensionality 2 are 
given further consideration (an exception is made for 
the metal-organic perovskites (prototype PbA2I4) for 
which the metal atom inside the octahedron represents 
a 0D cluster embedded in a 2D cluster). To illustrate the 
effect of the covalent radius  +  30% threshold, figure 3 
shows the distribution of the candidate structures in 
the database as a function of the covalent factor needed 
to fully connect the structure. Most materials have a 
critical covalent factor below 1.3 and fall in the green 
shaded region. There is, however, a tail of around 100 
disconnected materials (red region); these materials 
are not included in the database (see first green box in 
figure 1).

We also check that the material is not already con-
tained in the database (second green box in figure 1). 
This is done by measuring the root mean square dis-
tance (RMSD) [40] relative to all other materials in 
the C2DB with the same reduced chemical formula. A 
threshold of 0.01 Å is used for this test.

In case of multiple metastable magnetic configu-
rations (in practice, if both a FM and AFM ground 
state are found), these are regarded as different phases 
of the same material and will be treated separately 
throughout the rest of the workflow. To indicate the 
magnetic phase we add the extensions ‘FM’ or ‘AFM’ 
to the material name. The total energy of the spin-
paired ground state is always stored, even when it 
is not the lowest. If the energy of the non-magnetic 
state is higher than the most stable magnetic state 
by less than 10 meV/atom, the workflow is also per-
formed for the non-magnetic state. This is done in 
recognition of the finite accuracy of DFT for predict-
ing the correct energetic ordering of different magn-
etic states.

We have compared the lattice constants of 29 
monolayers with those reported in [41], which were 
obtained with the VASP code using PBE and very 
similar numerical settings and find a mean absolute 
deviation of 0.024 Å corresponding to 0.4%. The small 
yet finite deviations are ascribed to differences in the 
employed PAW potentials.

2.2. Crystal structure classification
2.2.1. Symmetry
To classify the symmetries of the crystal structure 
the 3D space group is determined using the crystal 
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symmetry library Spglib [42] on the 3D supercell with 
a tolerance of 10−4 Å.

2.2.2. Prototypes
The materials are classified into crystal structure 
prototypes based on the symmetry of the crystals. 
For two materials to belong to the same prototype, 
we require that they have the same space group, the 
same stoichiometry, and comparable thicknesses. The 
last requirement is included to distinguish between 
materials with the same symmetry and stoichiometry 
but with different number of atomic layers, see for 
example monolayer BN and GaS in figure 4. Each 
prototype is labelled by a specific representative 
material. For prototypes which have been previously 

investigated, we comply with the established 
conventions. However, since the field of 2D materials is 
still young and because C2DB contains a large number 
of never-synthesised materials, some of the considered 
crystal structures fall outside the known prototypes. In 
these cases we have chosen the representative material 
to be the one with the lowest energy with respect to the 
convex hull. Some of the crystal structure prototypes 
presently contained in the C2DB are shown in figure 4.

2.3. Thermodynamic stability
The heat of formation, ∆H , is defined as the energy 
of the material with respect to the standard states of 
its constituent elements. For example, the heat of 
formation per atom of a binary compound, AxBy, is

Table 1. Overview of the methods and parameters used for the different steps of the workflow. If a parameter is not specified at a given step, 
its value equals that of the last step where it was specified.

Workflow step(s) Parameters

Structure and energetics (1–4)a vacuum  =  15 Å; k-point density  =  6.0/̊A
−1

; Fermi smearing  =  0.05 eV; PW  

cutoff  =  800 eV; xc functional  =  PBE; maximum force  =  0.01 eV/Å; maximum 

stress  =  0.002 eV/̊A
3
; phonon displacement  =  0.01Å

Elastic constants (5) k-point density  =  12.0/Å
−1

; strain  =  ±1%

Magnetic anisotropy (6) k-point density  =  20.0/Å
−1

; spin–orbit coupling  =  True

PBE electronic properties (7–10 and 12) k-point density  =  12.0/Å
−1

 (36.0/Å
−1

 for step 7)

Effective masses (11) k-point density  =  45.0/Å
−1

; finite difference

Deformation potential (13) k-point density  =  12.0/̊A
−1

; strain  =  ±1%

Plasma frequency (14) k-point density  =  20.0/̊A
−1

; tetrahedral interpolation

HSE band structure (8–12) HSE06@PBE; k-point density  =  12.0/̊A
−1

G0W0 band structure (8, 9) G0W0@PBE; k-point density  =  5.0/Å
−1

; PW cutoff  =  ∞ (extrapolated from 170, 185 and 

200 eV); full frequency integration; analytical treatment of W(q) for small q; truncated 

Coulomb interaction

RPA polarisability (15) RPA@PBE; k-point density  =  20.0/Å
−1

; PW cutoff  =  50 eV; truncated Coulomb  

interaction; tetrahedral interpolation

BSE absorbance (16) BSE@PBE with G0W0 scissors operator; k-point density  =  20.0/Å
−1

; PW cutoff  =  50 eV; 

truncated Coulomb interaction; at least 4 occupied and 4 empty bands

a For the cases with convergence issues, we set a k-point density of 9.0 and a smearing of 0.02 eV.

Figure 2. The materials in the C2DB are initially generated by decorating an experimentally known crystal structure prototype with 
atoms chosen from a (chemically reasonable) subset of the periodic table.
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∆H = (E(AxBy)− xE(A)− yE(B))/(x + y), (1)

where E(AxBy) is the total energy of the material AxBy, 
and E(A) and E(B) are the total energies of the elements 
A and B in their standard state. When assessing the 
stability of a material in the C2DB, it should be kept 
in mind that the accuracy of the PBE functional for 
the heat of formation is only around 0.2 eV/atom 
on average [43]. Other materials databases, e.g. 
OQMD, Materials Project, and AFLOW, employ fitted 
elementary reference energies (FERE) [44] and apply a 
Hubbard U term [45] for  the rare earth and transition 
metal atoms (or a selected subset of them). While 
such correction schemes in general improve ∆H  
they also introduce some ambiguity, e.g. the dataset 
from which the FERE are determined or the exact 
form of the orbitals on which the U term is applied. 
Thus in order not to compromise the transparency 
and reproducibility of the data we use the pure PBE 
energies.

For a material to be thermodynamically stable it is 
necessary but not sufficient that ∆H < 0. Indeed, ther-
modynamic stability requires that ∆H  be negative not 
only relative to its pure elemental phases but relative to 
all other competing phases, i.e. its energy must be below 
the convex hull [46]. We stress, however, that in general, 
but for 2D materials in particular, this definition cannot 
be directly applied as a criterion for stability and syn-
thesisability. The most important reasons for this are 
(i) the intrinsic uncertainty on the DFT energies stem-
ming from the approximate xc-functional (ii) substrate 
interactions or other external effects that can stabilise 
the monolayer (iii) kinetic barriers that separate the 
monolayer from other lower energy phases rendering 
the monolayer (meta)stable for all practical purposes.

We calculate the energy of the 2D material relative 
to the convex hull of competing bulk phases, ∆Hhull. 
The convex hull is currently constructed from the 2836 
most stable binary bulk compounds which were 
obtained from the OQMD [24]. The energies of the 

bulk phases were recalculated with GPAW using the 
PBE xc-functional and the same numerical settings 
as applied for the 2D materials (but the structure was 
not re-optimised). Because the bulk reference struc-
tures from OQMD were optimised with the VASP 
code and with Hubbard U corrections for materials 
containing 3d elements, and because the PBE misses 
attractive vdW interaction, the bulk energies could be 
slightly overestimated relative to the monolayers. As a 
consequence, monolayers that also exist in a layered 
bulk phase could have ∆Hhull < 0, even if the layered 
bulk phase is part of the convex hull and thus should 
be energetically more stable than the monolayer. Com-
paring our ∆Hhull values for 35 compounds with the 
exfoliation energies calculated in [18] employing vdW 
compliant xc-functionals for both bulk and mono-
layer, we estimate the errors in the convex hull energies 
to be below 0.1 eV/atom.

As an example, the convex hull for FexSe1−x is 
shown in figure 5. The convex hull as defined by the 
bulk binaries is indicated by the blue lines. The labels 
for the 2D materials refer to the crystal prototype and 
magnetic order. Clearly, most 2D materials lie above 
the convex hull and are thus predicted to be thermo-
dynamically unstable in freestanding form under 
standard conditions. However, as mentioned above, 
depending on the material, errors on the PBE forma-
tion energies can be sizable and thus the hull diagram 
should only be taken as guideline. Nevertheless, in 
the present example we find that FeSe (which is itself 
a prototype) with anti-ferromagnetic ordering lies 
slightly below the convex hull and is thus predicted to 
be thermodynamically stable. This prediction is con-
sistent with the recent experimental observation that 
monolayer FeSe deposited on SrTiO3 exhibits AFM 
order [47].

2.4. Phonons and dynamic stability
Due to the applied symmetry constraints and/or 
the limited size of the unit cell, there is a risk that the 
structure obtained after relaxation does not represent 
a local minimum of the potential energy surface, but 
only a saddle point. We test for dynamical stability by 
calculating the Γ-point phonons of a 2 × 2 repeated 
cell (without re-optimising the structure) as well as 
the elastic constants (see section 2.5). These quantities 
represent second-order derivatives of the total energy 
with respect to atom displacements and unit cell 
lengths, respectively, and negative values for either 
quantity indicate a structural instability.

The Γ-point phonons of the 2 × 2 supercell are 
obtained using the finite displacement method [48]. 
We displace each atom in the primitive cell by  ±0.01 Å, 
and calculate the forces induced on all the atoms in the 
supercell. From the forces we construct the dynamical 
matrix, which is diagonalised to obtain the Γ-point 
phonons of the 2 × 2 cell (or equivalently the Γ-point 
and zone boundary phonons of the primitive cell). The 
eigenvalues of the dynamical matrix correspond to the 

1.0 1.5 2.0
critical covalent factor

di
st

ri
bu

ti
on

of
m

at
er

ia
ls

2D Disconnected

×10

Figure 3. The distribution of candidate structures for the 
C2DB with respect to the critical covalent factor at which 
they become 2D. Materials in the red region are excluded 
from the database.
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square of the mass-renormalised phonon frequencies, 
ω̃ . Negative eigenvalues are equivalent to imaginary 
frequencies and signal a saddle point.

Our procedure explicitly tests for stability against 
local distortions of periodicities up to 2 × 2 and thus 
provides a necessary, but not sufficient condition for 
dynamic stability. We stress, however, that even in 
cases where a material would spontaneously relax 
into a structure with periodicity larger than 2 × 2, 
the Γ-point dynamical matrix of the 2 × 2 cell could 

exhibit negative eigenvalues. Our test is thus more 
stringent than it might seem at first glance. In principle, 
a rigorous test for dynamic stability would require the 
calculation of the full phonon band structure. Math-
ematically, the instabilities missed by our approach are 
those that result in imaginary phonons in the interior 
of the BZ but not at the zone boundary. Physically, such 
modes could be out of plane buckling or charge den-
sity wave-driven reconstructions with periodicities of 
several unit cells. In general, however, these types of 

Figure 4. Examples of crystal structure prototypes currently included in the C2DB.
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instabilities are typically rather weak (as measured by 
the magnitude of the imaginary frequency) as com-
pared to more local distortions such as the T to T′ dist-
ortion considered below. Moreover, they could well 
be a special property of the isolated monolayer and 
become stabilised by the ubiquitous interactions of the 
2D material with its environment, e.g. substrates. This 
is in fact supported by the full phonon calculations by 
Mounet et al for ∼ 250 isolated monolayers predicted 
to be easily exfoliable from experimentally known lay-
ered bulk phases [18]. Indeed, most of the instabilities 
revealed by their calculations are of the type described 
above and would thus be missed by our test. However, 
these instabilities cannot be too critical as the mono-
layers are known to be stable in the vdW bonded lay-
ered bulk structure.

As an example, figure 6 compares the dynami-
cal stability of a subset of transition metal dichalco-
genides and -oxides in the T and T′ phases (CdI2 and 
WTe2 prototypes). The two upper panels show the 
smallest eigenvalue of the Γ-point dynamical matrix 
of the 2 × 2 cell. Only materials above the dashed line 
are considered dynamically stable (for this example we 
do not consider the sign of the elastic constants which 
could further reduce the set of dynamically stable 
materials). Since the unit cell of the T′ phase contains 
that of the T phase it is likely that a material initially 
set up in the T′ phase relaxes back to the T phase. To 
identify these cases, and thereby avoid the presence of 
duplicates in the database, the third panel shows the 
root mean square distance (RMSD) between the struc-
tures obtained after relaxations starting in the T- and 
T′ phase, respectively. Structures below the dashed 
line are considered identical. The color of each sym-
bol refers to the four different potential energy surfaces 
illustrated at the bottom of the figure.

2.4.1. Stability criteria
To assess the stability of the materials in the C2DB, we 
turn to the set of experimentally synthesised/exfoliated 
monolayers. For these materials, the calculated energy 
above the convex hull and minimum eigenvalue of 
the dynamical matrix are shown on figure 7. It is clear 
that all but five known monolayers have a hull energy 
below 0.2 eV/atom, and three of these have only been 
synthesised on a metal substrate. Turning to the 
dynamical stability, all but one of the experimentally 
known monolayers have a minimum eigenvalue of the 
dynamical matrix above −2 eV Å−2, and 70% have a 
minimum eigenvalue above −1 × 10−5 eV Å−2.

Guided by these considerations, we assign each 
material in the C2DB a stability level (low, medium 
or high) for both dynamical and thermodynamic sta-
bility, as illustrated in table 2. For ease of reference, we 
also define the overall stability level of a given mat erial 
as the lower of the dynamical and thermodynamic 
stability levels. If a material has ‘low’ overall stability 
(marked by bold in the table), we consider it unstable 
and do not carry out the rest of the workflow. Mat erials 

with ‘high’ overall stability are considered likely to be 
stable and thus potentially synthesisable. Mat erials 
in the ‘medium’ stability category, while unlikely to 
be stable as freestanding monolayers, cannot be dis-
carded and might be metastable and possible to syn-
thesise under the right conditions. For example, free-
standing silicene has a heat of formation of 0.66 eV/
atom, but can be grown on a silver substrate. Likewise, 
the T′ phase of MoS2 (WTe2 prototype) has an energy 
of 0.27 eV/atom higher than the thermodynami-
cally stable H phase, but can be stabilised by electron  

doping.

2.5. Elastic constants
The elastic constants of a material are defined by the 
generalised Hooke’s law,

σij = Cijklεkl (2)

where σij , Cijkl and εkl are the stress, stiffness and 
strain tensors, respectively, and where we have 
used the Einstein summation convention. In two 
dimensions, the stress and strain tensors have three 
independent components, namely planar stress/
strain in the x and y directions, as well as shear stress/
strain. The stiffness tensor is a symmetric linear map 
between these two tensors, and therefore has up to 
six independent components. Disregarding shear 
deformations, the relationship between planar strain 
and stress is[

σxx

σyy

]
=

[
C11 C12

C12 C22

] [
εxx

εyy

]
. (3)

For all materials in the C2DB, we calculate the planar 
elastic stiffness coefficients C11, C22, and C12. These are 
calculated using a central difference approximation 
to the derivative of the stress tensor: the material 
is strained along one of the coordinate axes, x or y, 
and the stress tensor is calculated after the ions have 
relaxed. We use strains of ±1% which we have found 
to be sufficiently large to eliminate effects of numerical 
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Figure 5. Convex hull for FexSe1−x. The convex hull as 
defined by the bulk phases is represented by the blue lines. 
Blue squares denote bulk binary reference phases while 
orange triangles represent 2D materials. The labels for the 2D 
materials refer to the crystal prototype and magnetic order.
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noise and sufficiently small to stay within the linear 
response regime.

Table 3 shows the calculated planar stiffness coef-
ficients of a set of 2D materials. As can be seen the val-
ues from the C2DB are in very good agreement with  
previously published PBE results. For the isotropic 
mat erials MoS2, WSe2 and WS2, C11 and C22 should 
be identical, and we see a variation of up to 0.6%. This 
provides a test of how well converged the values are 

with respect to numerical settings.

2.6. Magnetic anisotropy
The energy dependence on the direction of 
magnetisation, or magnetic anisotropy (MA), arises 
from spin–orbit coupling (SOC). According to the 
magnetic force theorem [96] this can be evaluated from 
the eigenvalue differences such that the correction to 
the energy becomes

∆E(n̂) =
∑

kn

f (εn̂
kn)ε

n̂
kn −

∑
kn

f (ε0
kn)ε

0
kn, (4)

where εn̂
kn and f (εn̂

kn) are the eigenenergies and 
occupation numbers, respectively, obtained by 
diagonalising the Kohn–Sham Hamiltonian including 
SOC in a basis of collinear spinors aligned along the 

direction n̂, while ε0
kn and f (ε0

kn) are the bare Kohn–
Sham eigenenergies and occupation numbers without 
SOC.

For all magnetic materials we have calculated 
the energy difference between out-of-plane and in-
plane magnetisation EMA(i) = ∆E(ẑ)−∆E(i),  
(i = x̂, ŷ). Negative values of EMA(i) thus indicate  
that there is an out-of-plane easy axis of magnet isation.

Calculations for the ground state have been per-
formed with plane-wave cutoff and energetic conv-
ergence threshold set to 800 eV and 0.5 meV/atom 
respectively. For all calculations we have used a 
Γ-centered Monkhorst–Pack k-point with a den-

sity of 20/̊A
−1

. The SOC contribution is introduced 

via a non-self-consistent diagonalisation of the 
Kohn–Sham Hamiltonian evaluated in the projector- 
augmented wave formalism [97].

2.7. Projected density of states
The projected density of states (PDOS) is a useful tool 
for identifying which atomic orbitals comprise a band. 
It is defined as

ρS
l (ε) =

∑
a∈S

∑
kn

∑
m

|〈φa
l,m|ψkn〉|2δ(ε− εkn), (5)

where ψkn are the Kohn–Sham wave functions with 
eigenvalues εkn and φa

l,m are the spin-paired Kohn–
Sham orbitals of atomic species S with angular 
momentum l (s, p, d, f ). We sum over all atoms 
belonging to species S so every atomic species has one 

T
T′

T
T′

T
T′

T
T′

Figure 6. Dynamical stability of a set of transition metal dichalcogenides and -oxides in the T and Tʹ  phases (CdI2 and WTe2 
prototypes), respectively. The first and second panels show the minimum eigenvalue of the Γ-point dynamical matrix of the 2 × 2 
unit cell (containing 12 and 24 atoms for the T and T′ phase, respectively. The lower panel shows the root mean square distance 
(RMSD) between the relaxed structures. The color indicates whether the material is dynamically stable in the T phase (black), the T′ 
phase (blue), both phases (orange) or neither of the phases (green).
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entry per angular momentum channel. In the PAW 
formalism this can be approximated as

ρS
l (ε) =

∑
a∈S

∑
kn

∑
m

|〈p̃a
l,m|ψ̃kn〉|2δ(ε− εkn) (6)

where ψ̃kn are the pseudo wave functions and p̃a
l,m are 

the PAW projectors associated with the atomic orbitals 

φa
l,m. The PDOS is calculated from equation (6) using 

linear tetrahedron interpolation [98] (LTI) of energy 

eigenvalues obtained from a ground state calculation 

with a k-point sampling of 36/Å
−1

. In contrast to other 

techniques for calculating the PDOS using smearing, 

the PDOS yielded by the LTI method returns exactly 

zero at energies with no states. Examples of PDOS 

Figure 7. The calculated energy above the convex hull and minimum eigenvalue of the dynamical matrix (evaluated at the Γ-point 
for the 2 × 2 cell) for the 55 materials in the C2DB that have been synthesised or exfoliated in monolayer form, see [6, 9, 10, 12, 
49–94]. The three materials highlighted in red have only been synthesised on metallic substrates. The black dashed lines indicate the 
thresholds used to categorise the thermodynamic and dynamic stability of materials in the C2DB.
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are shown in figure 9 (right) for respectively the 
ferromagnetic metal VO2 and the semiconductor WS2 
in the H phase (MoS2 prototype).

2.8. Band structures
Electronic band structures are calculated along 
the high symmetry paths shown in figure 8 for the 
five different types of 2D Bravais lattices. The band 
energies are computed within DFT using three 
different xc-functionals, namely PBE, HSE06, and 
GLLBSC. These single-particle approaches are 
complemented by many-body G0W0 calculations 
for materials with a finite gap and up to four atoms 
in the unit cell (currently around 250 materials). For 
all methods, SOC is included by non-selfconsistent 
diagonalisation in the full basis of Kohn–Sham 
eigenstates. Band energies always refer to the 
vacuum level defined as the asymptotic limit of the 
Hartree potential, see figure 12. Below we outline the 
employed methodology while section 3.2.1 provides 
an overview and comparison of the band energies 
obtained with the different methods.

2.8.1. PBE band structure
The electron density is determined self-consistently 

on a uniform k-point grid of density 12.0/̊A
−1

. From 
this density, the PBE band structure is computed 
non-selfconsistently at 400 k-points distributed 
along the band path (see figure 8). Examples of 
PBE band structures are shown in figure 9 for the 
ferromagnetic metal VO2 and the semiconductor 
WS2 both in the MoS2 prototype structure. The 

expectation value of the out-of-plane spin component, 

〈χnkσ|Ŝz|χnkσ〉, is evaluated for each spinorial wave 

function, χnkσ = (ψnk↑,ψnk↓), and is indicated by 
the color of the band. For materials with inversion 
symmetry, the SOC cannot induce band splitting, 

meaning that 〈χnkσ|Ŝz|χnkσ〉 is ill-defined and no 

color coding is used. The band structure without SOC 
is indicated by a dashed grey line. We have compared 
our PBE  +  SOC band gaps of 29 different monolayers 
with those obtained with the VASP code in [41] and 
find a mean absolute deviation of 0.041 eV.

2.8.2. HSE band structure
The band structure is calculated non-selfconsistently 
using the range-separated hybrid functional HSE06 
[99] on top of a PBE calculation with k-point density 

12.0/̊A
−1

 and 800 eV plane wave cutoff. We have 
checked for selected systems that the HSE band 
structure is well converged with these settings. The 
energies along the band path are obtained by spline 
interpolation from the uniform k-point grid. As an 
example, the HSE band structure of WS2 is shown in 
the left panel of figure 10 (black line) together with 
the PBE band structure (grey dashed). The PBE band 
gap increases from 1.52 eV to 2.05 eV with the HSE06 
functional in good agreement with earlier work 
reporting band gaps of 1.50 eV (PBE) and 1.90 eV 
(HSE) [100] and 1.55 eV (PBE) and 1.98 eV (HSE) 
[101], respectively. A more systematic comparison of 
our results with the HSE  +  SOC band gaps obtained 
with the VASP code in [41] for 29 monolayers yield a 
mean absolute deviation of 0.14 eV. We suspect this 
small but non-zero deviation is due to differences in the 
employed PAW potentials and the non-selfconsistent 
treatment of the HSE in our calculations.

Table 2. The materials in the C2DB distributed over the nine stability categories defined by the three levels (high, medium and low) of 
dynamical stability (columns) and thermodynamic stability (rows).  The overall stability of the materials is defined as the lower of the two 
separate stability scales. Materials with low overall stability (bold) are considered unstable.

Thermodynamic stability 

(eV/atom)

Dynamic stability (eVÅ−2)

Total|ω̃2
min| > 2 or Cii  <  0 10−5 < |ω̃2

min| < 2, Cii  >  0 |ω̃2
min| < 10−5, Cii > 0

∆H > 0.2 6.0% 4.2% 1.7% 12.0%

∆H < 0.2 14.9% 10.9% 6.4% 32.2%

∆Hhull < 0.2 11.4% 24.1% 20.3% 55.8%

Total 32.3% 39.2% 28.5%

Table 3. Planar elastic stiffness coefficients (in N m−1) calculated at the PBE level. The results of this work are compared to previous 
calculations from the literature and the mean absolute deviation (MAD) is shown.

C11 (N m−1) C22 (N m−1) C12 (N m−1)

C2DB Literature C2DB Literature C2DB Literature

P (phosphorene) 101.9 105.2 [95] 25.1 26.2 [95] 16.9 18.4 [95]

MoS2 131.4 132.6 [19] 131.3 132.6 [19] 32.6 32.7 [19]

WSe2 120.6 119.5 [19] 121.3 119.5 [19] 22.8 22.7 [19]

WS2 146.3 145.3 [19] 146.7 145.3 [19] 32.2 31.5 [19]

MAD 1.7 — 1.4 — 0.6 —
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2.8.3. GLLBSC fundamental gap
For materials with a finite PBE band gap, the 
fundamental gap (i.e. the difference between the 
ionisation potential and electron affinity) also 
sometimes referred to as the quasiparticle gap, is 
calculated self-consistently using the GLLBSC [102] 
xc-functional with a Monkhorst–Pack k-point grid 
of density 12.0/̊A

−1
. The GLLBSC is an orbital-

dependent exact exchange-based functional, which 
evaluates the fundamental gap as the sum of the 
Kohn–Sham gap and the xc-derivative discontinuity, 

Egap = εKS
gap +∆xc. The method has been shown to 

yield excellent quasiparticle band gaps at very low 

computational cost for both bulk [102, 103] and 2D 
semiconductors [36].

In the exact Kohn–Sham theory, εKS
v  should equal 

the exact ionisation potential and thus ∆xc should be 
used to correct only the conduction band energies 
[104]. Unfortunately, we have found that in prac-
tice this procedure leads to up-shifted band energies 
(compared with the presumably more accurate G0W0 
results, see figure 20). Consequently, we store only the 
fundamental gap and ∆xc in the database. However, as 
will be shown in section 3.2.1 the center of the gap is in 
fact reasonably well described by PBE suggesting that 
efficient and fairly accurate predictions of the absolute 

Figure 8. Overview of the five 2D Bravais lattices and corresponding Brillouin zones. The unit vectors a1 and a2 are shown together 
with the angle between them γ. The primitive unit cell is indicated in gray. High symmetry points of the BZ and the path along which 
the band structure is evaluated, are indicated in blue.
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band edge energies can be obtained by a symmetric 
GLLBSC correction of the PBE band edges.

2.8.4. G0W0 band structure
For materials with finite PBE band gap the quasiparticle 
(QP) band structure is calculated using the G0W0 
approximation on top of PBE following our earlier 
work [105, 106]. Currently, this resource demanding 
step is performed only for materials with up to four 
atoms in the unit cell. The number of plane waves 
and the number of unoccupied bands included in the 
calculation of the non-interacting density response 
function and the GW self-energy are always set equal. 
The individual QP energies are extrapolated to the 
infinite basis set limit from calculations at plane wave 
cutoffs of 170, 185 and 200 eV, following the standard 
1/NG dependence [107, 108], see figure 11 (right). 
The screened Coulomb interaction is represented on 
a non-linear real frequency grid ranging from 0 eV to 

230 eV and includes around 250 frequency points. The 
exchange contribution to the self-energy is calculated 
using a Wigner–Seitz truncation scheme [109] for a 
more efficient treatment of the long range part of the 
exchange potential. For the correlation part of the self-
energy, a 2D truncation of the Coulomb interaction is 
used [110, 111]. We stress that the use of a truncated 
Coulomb interaction is essential to avoid unphysical 
screening from periodically repeated layers which 
otherwise leads to significant band gap reductions.

Importantly, the use of a truncated Coulomb 
interaction leads to much slower k-point conv-
ergence because of the strong q-dependence of the 
2D di electric function around q  =  0. We allevi-
ate this problem by using an analytical expression 
for the screened interaction when performing the 
BZ int egral around q  =  0 [106]. This allows us 

to obtain well converged results with a relatively 

low k-point density of 5.0/Å
−1
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12 × 12 k-points for MoS2). For example, with this 
setting the G0W0 band gap of MoS2 is converged to 
within 0.05 eV, see figure 11 (left). In comparison, 
standard BZ sampling with no special treatment of 
the q  =  0 limit, requires around 40 × 40 k-points to 
reach the same accuracy.

Figure 10 (right) shows the PBE and G0W0 band 
structures of WS2 (including SOC). The G0W0 self-
energy opens the PBE band gap by 1.00 eV and the HSE 
gap by 0.47 eV, in good agreement with previous stud-

ies [112]. We note in passing that our previously pub-
lished G0W0 band gaps for 51 monolayer TMDCs [36] 
are in good agreement with the results obtained using 
the workflow described here. The mean absolute error 
between the two data sets is around 0.1 eV and can be 
ascribed to the use of PBE rather than LDA as start-
ing point and the use of the analytical expression for W 
around q  =  0.

A detailed comparison of our results with previ-
ously published G0W0 data is not meaningful because 
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also shown (grey dashed). Spin–orbit coupling (SOC) is included in all calculations. The band energies refer to the vacuum level. 
The points show the calculated eigenvalues from which the band structure is interpolated. The relatively coarse k-point grid used for 
G0W0 is justified by the analytical treatment of the screened interaction W(q) around q  =  0, see figure 11.
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of the rather large differences in the employed imple-
mentations/parameter settings. In particular, most 
reported calculations do not employ a truncated 
Coulomb interaction and thus suffer from spurious 
screening effects, which are then corrected for in dif-
ferent ways. Moreover, they differ in the amount of 
vacuum included the supercell, the employed k-point 
grids and basis sets, the in-plane lattice constants, and 
the DFT starting points. For example, published val-
ues for the QP band gap of monolayer MoS2 vary from 
from 2.40 to 2.90 eV [113–120] (see [119] for a detailed 
overview). The rather large variation in published GW 
results for 2D materials is a result of the significant 
numerical complexity of such calculations and under-
lines the importance of establishing large and consist-
ently produced benchmark data sets like the present.

For bulk materials, self-consistency in the Green’s 
function part of the self-energy, i.e. the GW0 method, 
has been shown to increase the G0W0 band gaps and 
improve the agreement with experiments [121]. The 
trend of band gap opening is also observed for 2D 
materials [106, 120, 120, 122], however, no system-
atic improvement with respect to experiments has 
been established [122]. For both bulk and 2D mat-
erials, the fully self-consistent GW self-energy system-
atically overestimates the band gap [121, 122] due to 
the neglect of vertex corrections [122, 123]. In G0W0 
the neglect of vertex corrections is partially compen-
sated by the smaller band gap of the non-interacting 
Kohn–Sham Green’s function compared to the true 
interacting Green’s function. In this case, the vertex 
corrections corrections will affect mainly the abso-
lute position of the bands relative to vacuum while the 
effect on the band gap is relatively minor [122].

In table 4 we compare calculated band gaps from 
C2DB with experimental band gaps for three mono-
layer TMDCs and phosphorene. The exper imental 
data has been corrected for substrate interactions [122, 
124], but not for zero-point motion, which is expected 
to be small (<0.1 eV). The G0W0 results are all within 
0.2 eV of the experiments. A further (indirect) test of 
the G0W0 band gaps against exper imental values is 
provided by the comparison of our BSE spectra against 
experimental photoluminescence data in table 7, 
where we have used a G0W0 scissors operator. Finally, 
we stress that the employed PAW potentials are not 
norm-conserving, and this can lead to errors for bands 
with highly localised states (mainly 4f and 3d orbitals), 

as shown in [108]. Inclusion of vertex corrections and 
use of norm conserving potentials will be the focus of 

future work on the C2DB.

2.9. Band extrema
For materials with a finite band gap, the positions of 
the valence band maximum (VBM) and conduction 
band minimum (CBM) within the BZ are identified 
together with their energies relative to the vacuum 
level. The latter is defined as the asymptotic value of 
the electrostatic potential, see figure 12. The PBE 
electrostatic potential is used to define the vacuum level 
in the non-selfconsistent HSE and G0W0 calculations. 
For materials with an out-of-plane dipole moment, a 
dipole correction is applied during the selfconsistent 
DFT calculation, and the vacuum level is defined as the 
average of the asymptotic electrostatic potentials on 
the two sides of the structure. The PBE vacuum level 
shift is also stored in the database.

2.10. Fermi surface
The Fermi surface is calculated using the PBE xc-
functional including SOC for all metallic compounds 
in the database. Based on a ground state calculation 

with a k-point density of at least 20/̊A
−1

, the 
eigenvalues are interpolated with quadratic splines and 
plotted within the first BZ. Figure 13 (left) shows an 
example of the Fermi surface for VO2-MoS2 with color 
code indicating the out-of-plane spin projection 〈Sz〉. 
The band structure refers to the ferromagnetic ground 
state of VO2-MoS2, which has a magnetic moment of 
0.70 µB per unit cell, characterised by alternating spin-
polarised lobes with 〈Sz〉 = ±1.

2.11. Effective masses
For materials with a finite PBE gap, the effective 
electron and hole masses are calculated from the 
PBE eigenvalues; initially these are calculated on 

an ultrafine k-point mesh of density 45.0/Å
−1

 

uniformly distributed inside a circle of radius  

0.015 ̊A
−1

 centered at the VBM and CBM, respectively. 

The radius is chosen to be safely above the noise level of 
the calculated eigenvalues but still within the harmonic 
regime; it corresponds to a spread of eigenvalues of 
about 1 meV within the circle for an effective mass 
of 1 m0. For each band within an energy window of  
100 meV above/below the CBM/VBM, the band 

Table 4. Comparison between calculated and experimental band gaps for four freestanding monolayers. The experimental values have 
been corrected for substrate screening. MAD refers to the mean absolute deviation between the predicted values and the measured values.

Material

Band gap (eV)

PBE HSE06 GLLBSC G0W0 Experiment

MoS2 1.58 2.09 2.21 2.53 2.50 [125]

MoSe2 1.32 1.80 1.88 2.12 2.31 [126]

WS2 1.53 2.05 2.16 2.53 2.72 [127]

P (phosphorene) 0.90 1.51 1.75 2.03 2.20 [124]

MAD w.r.t. experiment 1.10 0.57 0.43 0.15 —
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curvature is obtained by fitting a third order polynomial. 
Even though the masses represent the second derivative 
of the band energies, we have found that the inclusion 
of 3rd order terms stabilises the fitting procedure and 
yields masses that are less sensitive to the details of 
the employed k-point grids. For each band the mass 
tensor is diagonalised to yield heavy and light masses 
in case of anisotropic band curvatures. The masses (in 
two directions) and the energetic splitting of all bands 
within 100 meV of the band extremum are calculated 
both with and without SOC and stored in the database. 
Other approaches exist for calculating effective masses, 
such as k · p perturbation theory (see e.g. [128] and 
references therein); the present scheme was chosen for 
its simplicity and ease of application to a wide range of 
different materials.

In addition to the effective masses at the VBM 
and CBM, the exciton reduced mass is calcu-
lated by applying the above procedure to the direct 
valence-conduction band transition energies, 
εv−c(k) = εc(k)− εv(k). For direct band gap mat-
erials the exciton reduced mass is related to the elec-
tron and hole masses by 1/µex = 1/m∗

e + 1/m∗
h , but in 

the more typical case of indirect band gaps, this rela-
tion does not hold.

As an example, figure 14 shows a zoom of the band 
structure of SnS-GeSe around the VBM and CBM 
(upper and lower panels). The second order fits to 
the band energies (extracted from the fitted 3rd order 
polynomial) are shown by red dashed lines. It can be 
seen that both the conduction and valence bands are 
anisotropic leading to a heavy and light mass direction 
(left and right panels, respectively). The valence band 
is split by the SOC resulting in two bands separated by 
∼ 10 meV and with slightly different curvatures. The 
conduction band exhibits a non-trivial band split-
ting in one of the two directions. The peculiar band  
splitting is due to a Rashba effect arising from the 
combination of spin–orbit coupling and the finite 
perpend icular electric field created by the permanent 
dipole of the SnS structure where Sn and S atoms are 
displaced in the out of plane direction leading to a siz-
able vacuum level difference of 1.13 eV, see figure 12.

Table 5 shows a comparison between selected effec-
tive masses from the C2DB and previously published 
data also obtained with the PBE xc-correlation func-
tional and including SOC. Overall, the agreement is 

very satisfactory.

2.12. Work function
For metallic compounds, the work function is 
obtained as the difference between the Fermi energy 
and the asymptotic value of the electrostatic potential 
in the vacuum region, see figure 12. The work function 
is determined for both PBE and HSE band structures 
(both including SOC) on a uniform k-point grid 

of density 12.0/̊A
−1

. Since the SOC is evaluated 
non-selfconsistently, the Fermi energy is adjusted 
afterwards based on a charge neutrality condition.

2.13. Deformation potentials
For semiconductors, the deformation potentials 
quantify the shift in band edge energies (VBM or 
CBM) upon a linear deformation of the lattice. The 
uniaxial absolute deformation potential along axis i 
(i = x, y) is defined as [129, 130]

Dα
ii =

∆Eα

εii
, α = VBM, CBM (7)

where ∆Eα is the energy shift upon strain and εii are 
the strains in the i-directions.

The deformation potentials are important physical 
quantities as they provide an estimate of the strength 
of the (acoustic) electron-phonon interaction, see sec-
tion 3.2.2. Moreover, they are obviously of interest in 
the context of strain-engineering of band gaps and 
they can be used to can be used to infer an error bar on 
the band gap or band edge positions due to a known or 
estimated error bar on the lattice constant.

The calculation of Dα
ii  is based on a central differ-

ence approximation to the derivative. A strain of ±
1% is applied separately in the x and y directions and 
the ions are allowed to relax while keeping the unit cell 
fixed. Calculations are performed with the PBE xc-
functional, a plane wave cutoff of 800 eV, and a k-point 

density of 12/̊A
−1

.
The change in band energy, ∆Eα, is measured rela-

tive to the vacuum level. In cases with nearly degen-
erate bands, care must be taken to track the correct 
bands as different bands might cross under strain. In 

this case, we use the expectation value 〈Ŝz〉 to follow 
the correct band under strain. Figure 15 shows how 
the band structure of MoS2 changes as a function of 
strain. Both the VBM and the CBM shift down (relative 
to the vacuum level) when tensile strain is applied in 
the x direction, but the conduction band shows a much 
larger shift, leading to an effective band gap closing 
under tensile strain.

Table 6 shows a comparison between the defor-
mation potentials in the C2DB, and literature values 
obtained using similar methods. There is generally 
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Figure 12. Electrostatic potential profile perpendicular to 
monolayer MoSSe (averaged in plane). The position of the 
VBM and CBM are indicated together with the splitting of 
the vacuum levels caused by the out-of-plane dipole moment 
of the MoSSe layer.
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Figure 13. Left: Brillouin zone and Fermi surface calculated with PBE and spin–orbit coupling for VO2 in the MoS2 crystal structure. The 
Fermi surface is colored by the spin projection along the z-axis. Right: Brillouin zone, valence band maximum (VBM) and conduction 
band minimum (CBM) for WS2 in the MoS2 crystal structure. The grey areas in both plots mark the irreducible Brillouin zone.
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−3.76

−3.74

E
−

E
va

c
[e

V
]

CB, direction 1

−0.2 0.0 0.2
∆k [1/Å]
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Figure 14. Zoom of the band structure of SnS in the GeSe crystal structure around the conduction and valence band extrema 
(upper and lower panels). Second order fits used to determine the effective masses are shown by red dashed lines. The peculiar 
band splitting in the conduction band minimum (upper left panel) is caused by a Rashba effect arising from the combination of 
spin–orbit coupling and the finite perpendicular electric field created by the asymmetric SnS structure.

Table 5. Calculated PBE effective masses (in units of m0), for the highest valence band and lowest conduction band, for different 2D 
materials. All C2DB values are calculated including spin–orbit coupling.

Material k-point

Electron mass (m0) Hole mass (m0)

C2DB Literature C2DB Literature

MoS2 K 0.42 0.44 [128] 0.53 0.54 [128]

WSe2 K 0.46 0.40 [128] 0.35 0.36 [128]

Phosphorene (zig-zag) Γ 1.24 1.24 [95] 6.56 6.48 [95]

Phosphorene (armchair) Γ 0.14 0.13 [95] 0.13 0.12 [95]

MAD 0.02 — 0.03 —
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good agreement, and part of the discrepancy can be 
ascribed to the fact that, in contrast to [131], our num-

bers include spin–orbit coupling.

2.14. Plasma frequencies
The dielectric response of a 2D material is described 
by its 2D polarisability, α2D (see section 2.15 
for a general introduction of this quantity). For 
metals, it can be separated into contributions 
from intraband and interband transitions, i.e. 
α2D = α2D,intra + α2D,inter . We have found that local 
field effects (LFEs) are negligible for the intraband 
component, which consequently can be treated 
separately and evaluated as an integral over the Fermi 
surface. Specifically, this leads to the Drude expression 
for the polarisability in the long wave length limit 

α2D,intra(ω) = −ω2
P,2D/(2πω

2) where ωP,2D is the 2D 
plasma frequency, which in atomic units is given by

ω2
P,2D =

4π

A

∑
snk

|q̂ · vsnk|2δ(εsnk − εF), (8)

where vsnk = 〈snk|p̂/m0|snk〉 is a velocity matrix 
element (with m0 the electron mass), q̂ = q/q is the 
polarisation direction, s, n, k denote spin, band and 
momentum indices, and A is the supercell area. The 
2D plasma frequency is related to the conventional 3D 

plasma frequency by ω2
P,2D(ω) = ω2

P,3D(ω)L/2 where L 
is the supercell height.

The plasma frequency defined above determines the 
intraband response of the 2D metal to external fields. 

In particular, it determines the dispersion relation of 
plasmon excitations in the metal. The latter are defined 
by the condition ε2D(ωP) = 1 + 2πqα2D(ωP) = 0, 
where q is the plasmon wave vector. Neglecting inter-
band transitions (the effect of which is considered in 
section 3.2.4), the 2D plasmon dispersion relation 
becomes

ωP(q) = ωP,2D
√

q. (9)

The plasma frequencies, ωP,2D, for polarisation in 
the x and y directions, respectively, are calculated for 
all metals in the C2DB using the linear tetrahedron 
method [98] to interpolate matrix elements and 
eigenvalues based on a PBE band structure calculation 

with a k-point density of 20/Å
−1

.

2.15. Electronic polarisability
The polarisability tensor αij  is defined by

Pi(q,ω) =
∑

j

αij(q,ω)Ej(q,ω),
 (10)

where Pi is the i’th component of the induced 
polarisation averaged over a unit cell and Ej is the j’th 
component of the macroscopic electric field. Using 

that Pi = (Di − Ei)/(4π) =
∑

j(εij − δij)Ej/(4π) 

one observes that αij = (εij − δij)/(4π), where εij is 
the dielectric function. In contrast to the dielectric 
function, whose definition for a 2D material is not 
straightforward [119], the polarisability allows for 
a natural generalisation to 2D by considering the 
induced dipole moment per unit area,
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Figure 15. Left: Valence- and conduction bands of MoS2 for  ±4.5% biaxial strain. Right: Energies of the VBM and CBM at the 
K point as function of strain. The symbols are the results of full DFT calculations, while the dashed lines are obtained from the 
deformation potentials evaluated at ±1% strain.

Table 6. Absolute deformation potentials (in eV) of the VBM and CBM for different materials. All results are based on the PBE xc-
functional.

Material k-point

Valence band Conduction band

C2DB Ref. [131] C2DB Ref. [131]

MoSe2 K −1.43 −1.86 −5.57 −5.62

WS2 K −1.25 −1.59 −6.66 −6.76

WSe2 K −1.21 −1.43 −6.21 −6.35

hBN K −1.57 −1.63 −4.55 −4.62

MAD 0.26 — 0.14 —
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P2D
i (q,ω) =

∑
j

α2D
ij (q,ω)Ej(q,ω).

 (11)

Since the Pi is a full unit cell average and P2D
i  is 

integrated in the direction orthogonal to the slab, we 

have P2D
i = LPi and α2D

ij = Lαij, where L is the length 
of the unit cell in the direction orthogonal to the slab.

In the following, we focus on the longitudinal 
components of the polarisability and dielectric ten-
sors, which are simply denoted by α and ε. These are 
related to the density-density response function, χ, via 
the relations

α2D(q,ω) =
L

4π
(ε(q,ω)− 1), (12)

ε−1(q,ω) = 1 + 〈vc(q)χ(ω)〉q, (13)

where vc  is the Coulomb interaction and

〈vcχ(ω)〉q =
1

V

∫

Cell
drdr′dr′′vc(r, r′)χ(r′, r′′,ω)e−iq(r−r′′),

 (14)

where Cell is the supercell with volume V . The re-  
sponse function, χ, satisfies the Dyson equation [132] 
χ = χirr + χirrvcχ, where χirr is the irreducible 
density-density response function. In the random 
phase approximation (RPA) χirr is replaced by the 
non-interacting response function, χ0, whose plane 
wave representation is given by [133, 134]

χ0
GG′(q,ω) =

1

Ω

∑
k∈BZ

∑
mn

( fnk − fmk+q)

×
〈ψnk|e−i(q+G)·r|ψmk+q〉〈ψmk+q|ei(q+G′)·r|ψnk〉

�ω + εnk − εmk+q + iη
,

 (15)

where G, G′ are reciprocal lattice vectors and Ω is the 
crystal volume.

For all materials in the database, we calculate the 
polarisability within the RPA for both in-plane and 
out-of-plane polarisation in the optical limit q → 0. 
For metals, the interband contribution to the polaris-
ability is obtained from equation (15) while the intra-
band contribution is treated separately as described in 
section 2.14. The single-particle eigenvalues and eigen-
states used in equation (15) are calculated with PBE, a 

k-point density of 20/Å
−1

 (corresponding to a k-point 

grid of 48 × 48 for MoS2 and 60 × 60 for graphene), 
and 800 eV plane wave cutoff. The Dyson equation is 
solved using a truncated Coulomb potential [105, 
111] to avoid spurious interactions from neighboring 
images. We use the tetrahedron method to interpolate 
the eigenvalues and eigenstates and a peak broadening 
of η = 50 meV. Local field effects are accounted for by 
including G-vectors up to 50 eV. For the band sum-
mation we include 5 times as many unoccupied bands 
as occupied bands, which roughly corresponds to an 
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Figure 16. Real and imaginary part of the RPA in-plane polarisability of monolayer MoS2 in the H phase (left) and the metallic 
monolayer NbS2 in the T phase (right). For metals, the real part is shown both with and without the intraband contributions.
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energy cutoff of 50 eV. The calculations are performed 
without spin–orbit coupling.

In figure 16 we show the real and imaginary part of 
α2D for the semiconductor MoS2. The PBE band gap of 
this material is 1.6 eV and we see the onset of dissipa-
tion at that energy. We also see that the initial structure 
of Im α is a constant, which is exactly what would be 
expected from the density of states in a 2D mat erial 
with parabolic dispersion. Finally, we note that the 

static polarisability Re α|ω=0 ≈ 6Å, which can easily 
be read off the figure. The polarisability is also shown 
for the metallic 1T-NbS2 where we display the real part 
with and without the intraband Drude contribution 
ω2

P,2D/(�ω + iη)2.

2.16. Optical absorbance
The power absorbed by a 2D material under 
illumination of a monochromatic light field with 
polarisation ê is quantified by the dimensionless 
absorbance:

Abs(ω) = 4πωα2D(qê → 0,ω)/c, (16)

where c is the speed of light. In section 2.15 we gave a 
prescription for evaluating α2D in the RPA. However, 
absorption spectra of 2D semiconductors often display 
pronounced excitonic effects, which are not captured 
by the RPA. The Bethe–Salpeter equation (BSE) is a 
well-known method capable of describing excitonic 
effects and has been shown to provide good agreement 
with experimental absorption spectra for a wide range 
of materials [135].

For materials with finite band gap and up to four 
atoms per unit cell, we have calculated the RPA and 
the BSE absorption spectra for electric fields polarised 
parallel and perpendicular to the layers. The calcul-
ations are performed on top of PBE eigenstates and 
eigenvalues with spin–orbit coupling included and 
all unoccupied band energies shifted by a constant 
in order to reproduce the G0W0 quasiparticle gap 
(the scissors operator method). If the G0W0 gap is 
not available we use the GLLBSC gap for non-magn-
etic materials and the HSE gap for magnetic mat-
erials (since GLLBSC is not implemented in GPAW 
for spin-polarised systems). The screened interaction 
entering the BSE Hamiltonian is calculated within the 
RPA using a non-interacting response function evalu-
ated from equation (15) with local field effects (i.e. 
G-vectors) included up to 50 eV and 5 times as many 
unoccupied bands as occupied bands for the sum over 
states. We apply a peak broadening of η = 50 meV and 
use a truncated Coulomb interaction. The BSE Ham-
iltonian is constructed from the four highest occu-
pied and four lowest unoccupied bands on a k-point 

grid of density of 20/Å
−1

, and is diagonalised within 

the Tamm–Dancoff approximation. We note that the 
Tamm–Dancoff approximation has been found to 
be very accurate for bulk semiconductors [136]. For 
monolayer MoS2 we have checked that it reproduces 

the full solution of the BSE, but its general validity for 
2D materials, in particular those with small band gaps, 
should be more thoroughly tested.

In figure 17 we show the optical absorption spec-
trum of MoS2 obtained with the electric field polarised 
parallel and perpendicular to the layer, respectively. 
Both RPA and BSE spectra are shown (the in-plane 
RPA absorbance equals the imaginary part of the RPA 
polarisability, see figure 16 (left), apart from the factor 
4πω and the scissors operator shift). The low energy 
part of the in-plane BSE spectrum is dominated by a 
double exciton peak (the so-called A and B excitons) 
and is in excellent agreement with experiments [55].

In general, calculations of electronic excitations 
of 2D materials converge rather slowly with respect 
to k-points due to the non-analytic behavior of the 
dielectric function in the vicinity of q  =  0 [119, 
137, 138]. In figure 18 we show the k-point depend-
ence of the binding energy of the A exciton in MoS2 
obtained as the difference between the direct band 
gap and the position of the first peak in figure 17. We 
observe a strong overestimation of the exciton bind-
ing energy at small k-point samplings, which conv-
erges slowly to a value of  ∼0.5 eV at large k-point 
samplings. For 48 × 48 k-points, corresponding to 
the k-point sampling used for the BSE calculations 
in the database, the exciton binding energy is 0.53 eV, 
whereas a 1/N2

k  extrapolation to infinite k-point sam-
pling gives 0.47 eV (see inset in figure 18). In general, 
the exciton binding energy decreases with increasing 
k-point sampling, and thus the exciton binding ener-
gies reported in the C2DB might be slightly overesti-
mated. However, since G0W0 band gaps also decrease 
when the k-point sampling is increased (see figure 11) 
the two errors tend to cancel such that the absolute 
position of the absorption peak from BSE-G0W0 
conv erges faster than the band gap or exciton binding 
energy alone.

12 18 24 30 36 42 48
N

1/2
k

0.6

0.8

1.0

1.2

ex
ci

to
n

bi
nd

in
g

en
er

gy
[e

V
]

0 1/482 1/362

1/Nk

0.5

0.6

0.7

Figure 18. Convergence of the binding energy of the lowest 
exciton in monolayer MoS2 obtained from a BSE calculation 
as a function of k-point mesh. The quasiparticle energies 
entering the BSE Hamiltonian are obtained from a fully 
converged PBE calculation with a scissors operator applied 
to match the G0W0 band gap. The red point represents the 
k-point sampling applied in the database, which is seen 
to overestimate the extrapolated exciton binding energy 
by  ∼0.06 eV (inset).
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The BSE-G0W0 method has previously been 
shown to provide good agreement with experimental 
photoluminescence and absorption measurements on 
2D semiconductors. In table 7 we show that our calcu-
lated position of the first excitonic peak agree well with 
experimental observations for four different TMDCs 
and phosphorene. Experimentally, the monolayers are 
typically supported by a substrate, which may alter the 
screening of excitons. However the resulting decrease 
in exciton binding energies is largely cancelled by a 
reduced quasiparticle gap such that the positions of 
the excitons are only slightly red-shifted as compared 
with the case of pristine monolayers [139].

3. Database overview

Having described the computational workflow, we 
now turn to the content of the database itself. We first 
present a statistical overview of all the materials in the 
C2DB (i.e. without applying any stability filtering) 
by displaying their distribution over crystal structure 
prototypes and their basic properties. We also provide 
a short list with some of the most stable materials, 
which to our knowledge have not been previously 
studied. Next, the predicted stability of the total set of 
materials is discussed and visualised in terms of the 
descriptors for thermodynamic and dynamic stability 
introduced in section 2.4.1. In section 3.2 we analyse 
selected properties in greater detail focusing on 
band gaps and band alignment, effective masses and 
mobility, magnetic properties, plasmons, and excitons. 
Throughout the sections we explore general trends and 
correlations in the data and identify several promising 
materials with interesting physical properties.

3.1. Materials
In table 8 we list the major classes of materials currently 
included in the database. The materials are grouped 
according to their prototype, see section 2.2.2. For each 
prototype we list the corresponding space group, the 
total number of materials, and the number of materials 
satisfying a range of different conditions. The atomic 
structure of some of the different prototypes were 
shown in figure 4. The vast majority of the 2D materials 
that have been experimentally synthesised in monolayer 

form are contained in the C2DB (the 55 materials in 
figure 7 in addition to seven metal-organic perovskites). 
These materials are marked in the database and a 
literature reference is provided. Additionally, 80 of the 
monolayers in the C2DB could potentially be exfoliated 
from experimentally known layered bulk structures 
[16–19]. These materials are also marked and the ID of 
the bulk compound in the relevant experimental crystal 

structure database is provided.
To illustrate how all the materials are distributed in 

terms of stability, we show the energy above the con-
vex hull plotted against ω̃2

min in figure 19. It can be seen 
that the structures naturally sort themselves into two 
clusters according to the dynamic stability. The points 
have been colored according to the three levels for 
dynamic stability introduced in section 2.4. The lower 
panel shows the distribution of the materials in the 
grey region on a linear scale. While most of the exper-
imentally known materials (red and black dots) have 
high dynamic stability, a significant part of them fall 
into the medium stability category. The marginal dis-
tributions on the plot show that the more dynamically 
stable materials are also more thermodynamically sta-
ble. The mean energy above the convex hull is 0.12 eV 
for the materials with high dynamical stability, while it 
is 0.25 eV for the others.

In table 9 we show the key properties of a selected 
set of stable materials, distributed across a variety of 
different crystal structure prototypes. To our knowl-
edge, these materials are not experimentally known, 
and they are therefore promising candidates further 

study and experimental synthesis.

3.2. Properties: example applications
In the following sections we present a series of case 
studies focusing on different properties of 2D materials 
including band gaps and band alignment, effective 
masses and mobility, magnetic order, plasmons and 
excitons. The purpose is not to provide an in-depth 
nor material specific analysis, but rather to explore 
trends and correlations in the data and showcase some 
potential applications of the C2DB. Along the way, we 
report some of the novel candidate materials revealed 
by this analysis, which could be interesting to explore 
closer in the future.

Table 7. Comparison between calculated and experimental positions of the first excitonic peak for four different transition metal 
dichalcogenide monolayers and phosphorene.

Material

Energy of the first bright exciton (eV)

BSE@PBE-G0W0 Experiment

MoS2 2.00 1.83 [140], 1.86 [141], 1.87 [142]

MoSe2 1.62 1.57 [140], 1.57 [143], 1.58 [144]

WS2 2.07 1.96 [141], 2.02 [144]

WSe2 1.71 1.64 [142], 1.66 [143]

P (phosphorene) 1.45 1.45 [145], 1.75 [146]

MAD w.r.t. experiment 0.066 —
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3.2.1. Band gaps and band alignment
The band gaps and band edge positions of all 
semiconductors and insulators in the C2DB have 
been calculated with the PBE, HSE06, and GLLBSC 
xc-functionals while G0W0 calculations have been 
performed for the  ∼250 simplest materials. The relatively 
large size of these datasets and the high degree of 
consistency in the way they are generated (all calculations 
performed with the same code using same PAW 
potentials and basis set etc) provide a unique opportunity 
to benchmark the performance of the different xc-
functionals against the more accurate G0W0 method.

Figure 20 compares the size and center of the 
band gaps obtained with the density functionals to 
the G0W0 results. Relative to G0W0 the PBE func-
tional underestimates the gaps by 45%, i.e. on average 
the PBE values must be scaled by 1.83 to reproduce 
the G0W0 results. The HSE06 band gaps are closer to 
G0W0 but are nevertheless systematically underesti-

mated by more than 20%. On the other hand, GLLBSC 
shows very good performance with band gaps only 
2% smaller than G0W0 on average. Table 10 shows the 
mean absolute deviations of the DFT methods relative 
to G0W0. We note that although GLLBSC provides an 
excellent description of the G0W0 band gaps on aver-
age the spread is sizable with a mean absolute deviation 

of 0.4 eV.
We note a handful of outliers in figure 20 with large 

HSE band gaps compared to PBE and G0W0. For one 
of these, namely the ferromagnetic CoBr2-CdI2, we 
obtain the band gaps: 0.30 eV (PBE), 3.41 eV (HSE), 
and 0.91 eV (G0W0). For validation, we have per-
formed GPAW and QuantumEspresso calculations 
with the norm-conserving HGH pseudopotentials 
and plane wave cutoff up to 1600 eV. The converged 
band gaps are 0.49 eV (GPAW-HGH-PBE), 0.51 eV 
(QE-HGH-PBE) and 3.69 eV (GPAW-HGH-HSE), 
3.52 eV (QE-HGH-HSE), which are all in reasonable 

Table 8. Overview of the materials currently in the C2DB. The table shows the number of compounds listed by their crystal structure 
prototype and selected properties. Egap > 0 and ‘direct gap’ refer to the PBE values, ‘high stability’ refers to the stability scale defined in 
section 2.4.1, and the last three columns refer to the magnetic state, see section 2.1. In this overview, separate magnetic phases of the same 
structure are considered different materials.

Prototype Symmetry

Number of materials

Total Egap > 0 Direct gap

High 

stability NM FM AFM

C P6/mmm 4 4 3 1 4 0 0

CH P3m1 8 7 6 1 8 0 0

CH2Si P3m1 2 2 2 1 2 0 0

BN P3m2 10 9 5 1 10 0 0

GaS P3m2 125 34 95 8 100 18 7

FeSe P4/nmm 103 13 90 26 74 18 11

GeSe P3m1 20 19 5 6 20 0 0

PbSe P4/mmm 44 6 38 1 33 8 3

P Pmna 9 9 0 1 9 0 0

MoS2 P3m2 241 85 176 53 156 85 0

CdI2 P3m1 315 95 231 90 218 80 17

WTe2 P21/m 75 29 48 34 57 13 5

FeOCl Pmmn 443 92 385 65 328 63 52

MoSSe P3m1 9 6 6 5 8 1 0

C3N P6/mmm 25 1 24 0 25 0 0

YBr3 P6/mmm 57 11 51 0 21 24 12

TiCl3 P32m 69 35 51 2 32 23 14

BiI3 P3m1 123 69 66 15 48 54 21

TiS3 Pmmn 34 8 28 5 31 2 1

MnTe3 P21/m 29 3 27 1 22 4 3

Cr3WS8 Pmm2 35 34 18 8 35 0 0

CrWS4 Pmm2 18 17 7 8 18 0 0

Ti2CO2 P3m1 28 8 20 12 19 6 3

Ti2CH2O2 P3m1 13 3 12 3 10 2 1

Ti3C2 P3m2 12 0 12 0 7 5 0

Ti3C2O2 P3m2 26 0 26 0 20 6 0

Ti3C2H2O2 P3m2 14 0 14 0 10 4 0

PbA2I4 P1 27 27 27 0 27 0 0

Sum 1918 626 151 347 1352 416 150
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agreement with the C2DB results. It should be interest-
ing to explore the reason for the anomalous behavior 
of the HSE band gap in these materials.

Compared to the band gaps, the gap centers pre-
dicted by PBE and HSE06 are in overall better agreement 
with the G0W0 results. This implies that, on average, the 
G0W0 correction of the DFT band energies is symmet-
ric on the valence and conduction band. In contrast, the 
GLLBSC predicts less accurate results for the gap center. 
This suggests that an accurate and efficient prediction 
of absolute band energies is obtained by combining the 
GLLBSC band gap with the PBE band gap center.

Next, we consider the band alignment at the inter-
face between different 2D materials. Assuming that 
the bands line up with a common vacuum level and 
neglecting hybridisation/charge transfer at the inter-
face, the band alignment is directly given by the VBM 
and CBM positions relative to vacuum.

We focus on pairs of 2D semiconductors for which 
the G0W0 band alignment is either Type II (∆E > 0) or 
Type III (∆E < 0), see figure 21 (left). Out of approxi-
mately 10 000 bilayers predicted to have Type II band 
alignment by G0W0, the PBE and HSE06 functionals 

predict qualitatively wrong band alignment (i.e. Type 
III) in 44% and 21% cases, respectively (grey shaded 
areas). In particular, PBE shows a sizable and system-
atic underestimation of ∆E as a direct consequence of 
the underestimation of the band gaps in both mono-
layers.

3.2.2. Effective masses and mobilities
The carrier mobility relates the drift velocity of 
electrons or holes to the strength of an applied electric 
field and is among the most important parameters for 
a semiconductor material. In general, the mobility is a 
sample specific property which is highly dependent on 
the sample purity and geometry, and (for 2D materials) 
interactions with substrate or embedding layers. Here 
we consider the phonon-limited mobility, which can 
be considered as the intrinsic mobility of the material, 
i.e. the mobility that would be measured in the absence 
of any sample specific- or external scattering sources.

The effective masses of the charge carriers have 
been calculated both with and without SOC for  ∼600 
semiconductors. Figure 22 shows the electron mass 
plotted against the hole mass. The data points are scat-
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Figure 19. The dynamic stability of the candidate materials as a function of the energy above the convex hull on a log scale (top), 
and a linear scale (bottom). Experimentally synthesised monolayers are circled in black, while the known layered 3D structures are 
marked in red. The three different dynamic stability levels are indicated both by the horizontal dashed lines and the color of the 
points. The upper panel shows the marginal distribution of the energy over the convex hull for the points in each of the three stability 
levels.
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tered, with no clear correlation between the electron 
and hole masses. Overall, the electron masses are gen-
erally slightly smaller than the hole masses. The mean 
electron mass is 0.9 m0, while the mean hole mass is 1.1 
m0, and 80% of the electron masses are below m0 while 
the fraction is only 65% for the holes. This is not too 
surprising, since, on average, the energetically lower 
valence band states are expected to be more localised 
and thus less dispersive than the conduction band 
states.

The right panel of figure 22 shows the effective 
mass for electrons and holes plotted as a function of 
the inverse band gap. It can be seen that there is no clear 
correlation between the two quantities, which is con-
firmed by calculating the cross-correlation coefficient: 

for both electrons and holes it is less than 0.02. This 
provides empirical evidence against the linear rela-
tion between effective masses and inverse band gaps 
derived from k · p perturbation theory. The relation is 
based on the assumption that the perturbative expan-
sion is dominated by the conduction and valence band 
and that the momentum matrix element between 
these states, 

〈
uc

∣∣p̂∣∣uv

〉
, does not vary too much as 

function of the considered parameter (here the type 
of material). These assumptions clearly do not hold 
across a large set of different semiconductors. If we 
focus on a specific class of materials, e.g. sulfides in the 
MoS2 structure indicated by the highlighted symbols, 
we see a slightly improved trend but still with signifi-
cant fluctuations.

Table 9. Key properties of selected stable materials in the C2DB, which have not been previously synthesised. The calculated properties 
are the magnetic state, formation energy, energy above the convex hull, work function, PBE gap and and the nature of the gap (direct or 
indirect).

Prototype Formula Magnetic state ∆H  (eV) ∆Hhull (eV) Φ (eV) PBE gap (eV) Direct gap

BiI3 VI3 FM −0.51 −0.15 5.3

CoCl3 NM −0.65 −0.21 1.13 No

CoBr3 NM −0.41 −0.16 0.96 No

CoI3 NM −0.14 −0.14 0.53 No

CdI2 FeO2 FM −1.14 −0.36 7.31

MnSe2 FM −0.47 −0.18 5.09

MnS2 FM −0.57 −0.12 5.74

PdO2 NM −0.40 −0.08 1.38 No

CaBr2 NM −2.09 −0.02 4.86 No

FeOCl RhClO NM −0.65 −0.18 5.49

NiClO AFM −0.64 −0.17 6.32

NiBrO AFM −0.52 −0.16 5.78

ScIS NM −1.68 −0.14 1.66 Yes

FeSe CoSe FM −0.27 0.02 4.22

RuS NM −0.38 0.05 4.72

MnSe AFM −0.50 −0.20 0.90 No

MnS AFM −0.64 −0.19 0.78 No

GaS AlSe NM −0.72 −0.02 2.00 No

AlS NM −0.89 0.00 2.09 No

GeSe GeSe NM −0.19 0.04 2.22 No

GeS NM −0.22 0.05 2.45 No

GeTe NM −0.01 0.09 1.47 No

SnSe NM −0.33 0.10 2.15 No

MoS2 VS2 FM −0.88 −0.02 5.95

ScBr2 FM −1.59 −0.40 0.16 No

YBr2 FM −1.73 −0.23 0.34 No

FeCl2 FM −0.67 −0.16 0.35 Yes

TiBr2 NM −1.14 −0.04 0.76 No

ZrBr2 NM −1.34 −0.04 0.83 No

Ti2CO2 Zr2CF2 NM −2.36 −0.08 3.92

Hf2CF2 NM −2.26 0.03 3.62

Y2CF2 NM −2.50 −0.17 1.12 No

WTe2 NbI2 NM −0.37 0.04 3.01

HfBr2 NM −1.16 −0.18 0.85 No

OsSe2 NM −0.17 0.00 0.57 No
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If one assumes energetically isolated and parabolic 
bands, the intrinsic mobility limited only by scattering 
on acoustic phonons can be estimated from the Takagi 
formula [147],

µi =
e�3ρv2

i

kBTm∗
i m∗

dD2
i

. (17)

Here i refers to the transport direction, ρ is the mass 
density, vi  is the speed of sound in the material, m∗

i  is 
the carrier mass, m∗

d is the equivalent isotropic density-
of-state mass defined as m∗

d =
√

m∗
x m∗

y , and Di is the 
deformation potential. We stress that the simple Takagi 
formula is only valid for temperatures high enough 
that the acoustic phonon population can be approxi-
mated by the Rayleigh–Jeans law, n ≈ �ωac/kBT , but 
low enough that scattering on optical phonons can be 
neglected.

For the semiconductors in the C2DB we have 
found that the denominator of equation (17) var-
ies more than the numerator. Consequently, a small 
product of deformation potential and effective mass 
is expected to correlate with high mobility. Figure 23 
shows the deformation potential plotted against the 
carrier mass for the valence and conduction bands, 
respectively. The shaded area corresponds, somewhat 
arbitrarily, to the region for which m∗

i Di < m0(1 eV). 
The 2D semiconductors which have been synthesised 
in monolayer form are indicated with orange symbols 
while those which have been used in field effect tran-
sistors are labeled. Consistent with experimental find-
ings, phosphorene (P) is predicted to be among the 

materials with the highest mobility for both electrons 
and holes.

Interestingly, a number of previously unknown 2D 
materials lie in this shaded region and could be can-
didates for high mobility 2D semiconductors. Table 11 
lists a few selected materials with high intrinsic mobil-
ity according to equation (17), which all have ‘high’ 
overall stability (see section 2.4.1). In the future, it will 
be interesting to explore the transport properties of 

these candidate materials in greater detail.
To put the numbers in table 11 to scale, we consider 

the well studied example of MoS2. For this material we 
obtain an electron mobility of 240 cm2 V−1 s−1 while 
a full ab initio calculation found a phonon-limited 
mobility of 400 cm2 V−1 s−1 (in good agreement with 
experiments on hBN encapsulated MoS2 [148]), with 
the acoustic phonon contribution corre sponding to a 
mobility of 1000 cm2 V−1 s−1. Similarly, for the series 
MX2 (M  =  W, Mo, X  =  S, Se), we calculate room-
temper ature electron mobilities between 200 cm2 V−1 
s−1 and 400 cm2 V−1 s−1, which are all within 50% of 
the ab initio results [149]. Presumably, as in the case 
for MoS2, the good quantitative agreement is partly a 
result of error cancellation between an overestimated 
acoustic phonon scattering and the neglect of optical 
phonon scattering. Importantly, however, the relative 
ordering of the mobilities of the four MX2 mono layers 
is correctly predicted by equation (17) for all but one 
pair (MoS2 and WSe2) out of the six pairs. These results 
illustrate that equation (17) should only be used for 
‘order of magnitude’ estimates of the mobility but  
that relative comparisons of mobilities in different 
materials are probably reliable.

3.2.3. Magnetic properties
Recently, a single layer of CrI3 was reported to exhibit 
ferromagnetic order with a Curie temperature of 
45 K [12]. This comprises the first example of a pure 
2D material exhibiting magnetic order and there is 
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Table 10. The mean absolute deviation (in eV) of the band gap and 
band gap center calculated with three different xc-functionals with 
respect to G0W0.

PBE HSE06 GLLBSC

MAD w.r.t. G0W0 (band gap) 1.49 0.82 0.38

MAD w.r.t. G0W0 (gap center) 0.37 0.32 0.76
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currently an intense search for new 2D materials with 
magnetic order persisting above room temperature 
[150–152].

For 2D materials, magnetic order will only per-
sist at finite temperatures in the presence of magnetic 
anisotropy (MA). Indeed, by virtue of the Mermin–
Wagner theorem, magnetic order is impossible in 2D 
unless the rotational symmetry of the spins is broken 
[153]. A finite MA with an out of plane easy axis breaks 
the assumption behind the Mermin–Wagner theorem 
and makes magnetic order possible at finite temper-
ature. The critical temperature for magnetic order in 
2D materials will thus have a strong dependence on the 
anisotropy.

The MA originates from spin–orbit coupling and 
is here defined as the energy difference between in-
plane and out-of-plane orientation of the magnetic 
moments, see equation (4). With our definition, a 
negative MA corresponds to an out-of-plane easy axis. 
We note that most of the materials in the C2DB are 
nearly isotropic in-plane. Consequently, if the easy 
axis lies in the plane, the spins will exhibit an approxi-
mate in-plane rotational symmetry, which prohibits 
magnetic order at finite temperatures. Since spin–
orbit coupling becomes large for heavy elements, we 
generally expect to find larger MA for materials con-
taining heavier elements. In general the magnitude of 
the MA is small. For example, for a monolayer of CrI3 
with a Curie temper ature of 45 K [12] we find a MA of  
–0.85 meV per Cr atom in agreement with previous 

calculations [154]. Although small, the MA is, how-
ever, crucial for magnetic order to emerge at finite 
temperature.

In figure 24 we show the magnitude of the magn etic 
anisotropy (red triangles) and the magnetic moment per 
metal atom (blue triangles) averaged over all materials 
with a given chemical composition. The plot is based on 
data for around 1200 materials in the medium to high 
stability categories (see table 2) out of which around 
350 are magnetic. It is interesting to note that while the 
magn etic moment is mainly determined by the metal 
atom, the MA depends strongly on the non-metal atom. 
For example, the halides (Cl, Br, I) generally exhibit much 
larger MAs than the chalcogenides (S, Se, Te). Overall, 
iodine (I) stands out as the most significant element for a 
large MA while the 3d metals Cr, Mn, Fe, Co are the most 
important elements for a large magnetic moment. Since 
the MA is driven by spin–orbit coupling (SOC) and the 
spin is mainly located on the metal atom, one would 
expect a large MA to correlate with a heavy metal atom. 
However, it is clear from the figure that it is not essential 
that the spin-carrying metal atom should also host the 
large SOC. For example, we find large MA for several 3d 
metal-iodides despite of the relatively weak SOC on the  
3d metals. This shows that the MA is governed by a rather 
complex interplay between the spins, orbital hybridisa-
tion and crystal field.

A selection of materials predicted to have high 
overall stability (see section 2.4.1) and high out-
of-plane magnetic anisotropy (MA < −0.3 meV/

Table 11. Key transport properties of selected materials with high intrinsic room-temperature mobility according to equation (17). All the 
materials shown have ‘high’ overall stability as defined in section 2.4.1. µhigh is the larger value of the mobilities in the x or y directions, m* 
is the corresponding effective mass, and µhigh/µlow  is the ratio of the mobilities in the two directions.

Carrier Formula Prototype PBE gap (eV) µhigh (cm2 V−1 s−1) m* (m0)
µhigh

µlow

Holes PbS2 MoS2 1.39 30 000 0.62 1.4

OsO2 WTe2 0.17 23 000 0.23 3.0

ZrCl2 MoS2 0.98 12 000 0.43 1.1

WSSe MoSSe 1.40 5500 0.37 1.0

Electrons PtTe2 CdI2 0.30 9600 0.17 1.3

GaO GaS 1.56 7200 0.32 1.0

NiS2 CdI2 0.58 6000 0.29 1.5

RuTe2 WTe2 0.64 4600 1.55 8.5
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magn etic atom) is listed in table 12. We find several 
semiconductors with anisotropies comparable to CrI3 
and some metals with higher values. If we also look at 
materials with medium overall stability, we find semi-
conductors with anisotropies up to 2 meV/atom. It 
is likely that some of these materials will have Curie 

temper atures similar to, or even higher than, CrI3.
In addition to the MA, the critical temperature 

depends sensitively on the magnetic exchange cou-
plings. We are presently developing a workflow for 
systematic calculation of exchange coupling constants, 
which will allow us to estimate the Curie temper-
ature of all the magnetically ordered 2D materials. 
The database contains several 2D materials with anti- 
ferromagnetic order. As a note of caution, we mention 

that the magnetic interactions in AFM materials typi-
cally arise from the super-exchange mechanism, which 
is poorly described by PBE and requires a careful verifi-
cation using a PBE  +  U scheme [155].

3.2.4. Plasmons
The unique optical properties of 2D materials 
make them highly interesting as building blocks for 
nanophotonic applications [156, 157]. Many of these 
applications involve electron rich components which 
can capture, focus, and manipulate light via plasmons 
or plasmon-polaritons. Graphene sheets can host 
plasmons that are long lived, can be easily tuned via 
electrostatic or chemical doping, and can be used 
to confine light to extremely small volumes [158]. 

Table 12. Selection of magnetic materials with a negative MA per magnetic atom. The prototype, the magnetic moment of the 
magnetic atom, the energy gap calculated with PBE xc-functional and the magnetic state are also shown. The experimentally synthesised 
ferromagnetic monolayer CrI3 is highlighted.

Formula Prototype

Magnetic 

moment (µB)

PBE gap 

(eV) MA (meV/atom) Magnetic state

∆Hhull 

(eV/atom)

OsI3 BiI3 0.9 0.0 −3.17 FM 0.18

CrTe FeSe 2.6 0.0 −1.85 AFM 0.15

FeCl3 BiI3 1.0 0.01 −1.84 FM −0.08

FeTe FeSe 1.9 0.0 −1.06 FM 0.08

MnTe2 CdI2 2.7 0.0 −0.94 FM −0.10

FeBr3 BiI3 1.0 0.04 −0.88 FM −0.04

CrI3 BiI3 3.0 0.90 −0.85 FM −0.21

MnTe FeSe 3.8 0.69 −0.75 AFM −0.15

NiO PbSe 1.1 0.0 −0.53 FM 0.05

FeBrO FeOCl 1.1 0.0 −0.47 FM −0.05

CrISe FeOCl 3.0 0.0 −0.45 FM −0.10

MnSe2 CdI2 2.8 0.0 −0.40 FM −0.18

CrIS FeOCl 3.0 0.35 −0.36 FM −0.10

MnO2 CdI2 3.0 1.13 −0.36 FM 0.02

VCl3 BiI3 2.0 0.0 −0.35 FM −0.01

MnSe FeSe 3.7 0.90 −0.31 AFM −0.20

CrSe FeSe 2.0 0.0 −0.31 AFM 0.12
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Figure 25. (left) Plasmon dispersion relations for the unscreened (i.e. intraband) and true plasmons, �ωP and �ωtrue
P , respectively, 

for NbS2 in the H phase (the MoS2 crystal structure prototype). This is compared to the full first principles calculations of 
the plasmons in NbS2 by Andersen et al (data points) [159]. (right) The in-plane averaged true plasmon frequency versus the 
unscreened plasmon frequency for all metals in C2DB at a plasmon wavelength of λP = 50 nm corresponding to q0 in the left panel. 
The data points are colored by the overall stability level as defined in section 2.4.1, and the straight line corresponds to �ωP = �ωtrue

P .
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However, due to the limited charge carrier density 
achievable in graphene, its plasmons are limited to the 
mid-infrared regime. Here we show that some metallic 
monolayers support plasmons with significantly 
higher energies than graphene and could potentially 
push 2D plasmonics into the optical regime.

Figure 25 (left) shows the plasmon dispersion 
for monolayer NbS2 in the MoS2 crystal structure. 
The effect of interband transitions on the plasmon is 
significant as can be seen by comparison to the pure 
intraband plasmon (�ωP). The true plasmon energies 
are obtained from the poles of the (long wave length 
limit) dielectric function including the interband 
transitions, ε = 1 + 2πq(α2D,intra + α2D,inter), yield-
ing ωtrue

P = ωP,2Dq1/2[1 + 2πqα2D,inter(ωtrue
P )]−1/2. For 

simplicity we ignore the frequency dependence of the  
interband polarisability, i.e. we set α2D,inter(ωtrue

P ) ≈ 
α2D,inter(ω = 0), which should be valid for small plas-
mon energies (far from the onset of interband trans-
itions). The validity of this approximation is con-
firmed by comparing to the full ab initio calculations 
of Andersen et al (blue dots) which include the full q- 
and ω-dependence [159]. The figure shows that inter-
band screening generally reduces the plasmon energy 
and becomes increasingly important for larger q.

Figure 25 (right) shows the in-plane averaged true 
plasmon energy of all metals in the C2DB plotted 
against the intraband plasmon energy at a fixed plas-
mon wavelength of λP = 50 nm (corresponding to q0 
at the dashed vertical line in the left panel). For com-
parison, the plasmon energy of freestanding graphene 
at this wavelength and for the highest achievable dop-
ing level (EF = ±0.5 eV relative to the Dirac point) is 
around 0.4 eV. The data points are colored according 
to the overall stability level as defined in section 2.4.1. 
Table 13 shows a selection of the 2D metals with ‘high’ 
overall stability (see section 2.4.1) and large plasmon 
frequencies. We briefly note the interesting band 
structures of the metals in the FeOCl prototype (not 
shown) which exhibits band gaps above or below the 
partially occupied metallic band(s), which is likely to 
lead to reduced losses in plasmonic applications [160]. 

A detailed study of the plasmonic properties of the 
lead candidate materials will be published elsewhere. 
However, from figure 25 (right) it is already clear that 
several of the 2D metals have plasmon energies around 
1 eV at λP = 50 nm, which significantly exceeds the 

plasmon energies in highly doped graphene.

3.2.5. Excitons
Two-dimensional materials generally exhibit 
pronounced many-body effects due to weak screening 
and strong quantum confinement. In particular, 
exciton binding energies in monolayers are typically an 
order of magnitude larger than in the corresponding 
layered bulk phase and it is absolutely crucial to include 
excitonic effects in order to reproduce experimental 
absorption spectra.

The electronic screening is characterised by the 
in-plane 2D polarisability, see equation (12). For a 
strictly 2D insulator, the screened Coulomb poten-
tial can be written as W2D(q) = v2D

c (q)/ε2D(q) with 
ε2D(q) = 1 + 2πα2Dq and v2D

c (q) = 2π/q is the 
2D Fourier transform of the Coulomb interaction. 
The q-dependence of ε2D indicates that the screen-
ing is non-local, i.e. it cannot be represented by a q- 
independent dielectric constant, and that Coulomb 
interactions tend to be weakly screened at large dis-
tances (small q vectors) [119, 161, 162]. This is in 
sharp contrast to the case of 3D semiconductors/
insulators where screening is most effective at large 
distances where its effect can be accounted for by a q- 
independent dielectric constant. For a two-band 
model with isotropic parabolic bands, the excitons 
can be modeled by a 2D Hydrogen-like (Mott–Wan-
nier) Hamiltonian where the Coulomb interaction is 
replaced by W = 1/εr and the electron mass is replaced 
by a reduced excitonic mass µex  derived from the cur-
vature of conduction and valence bands. It has previ-
ously been shown that the excitonic Rydberg series of 
a 2D semiconductor can be accurately reproduced by 
this model if the dielectric constant, ε, is obtained by 
averaging ε2D(q) over the extent of the exciton in recip-
rocal space [163]. For the lowest exciton (n  =  1), the 
binding energy can then be expressed as

EB =
8µex

(1 +
√

1 + 32πα2Dµex/3)2
. (18)

It has furthermore been demonstrated that this 
expression gives excellent agreement with a 
numerical solution of the Mott–Wannier model 
employing the full q-dependent dielectric function, 
ε2D(q) = 1 + 2πα2Dq, for 51 transition metal 
dichalcogenides [163]. We note that the previous 
calculations were based on LDA and we generally find 
that the PBE values for α2D obtained in the present 
work are 10–20% smaller compared with LDA.

In figure 26, we compare the binding energy of the 
lowest exciton obtained from BSE-PBE with G0W0 
scissors operator and the Mott–Wannier model equa-
tion (18), respectively. Results are shown for the 194 

Table 13. Selection of 2D metals with high plasmon energies ωtrue
P  

for a plasmon wavelength of λP = 50 nm. The interband screening 
α2D,inter at ω = 0 and the in-plane averaged 2D plasma frequency 
ωP,2D, which are required to reproduce ωtrue

P , are also reported.

Prototype Formula Magnetic state

ωtrue
P  

(eV)

α2D,inter 

(Å)

ωP,2D  

(eV Å0.5)

TiS3 TaSe3 NM 0.99 12.54 12.48

FeOCl PdClS NM 0.93 4.13 9.52

FeOCl NiClS NM 0.90 5.60 9.66

CdI2 TaS2 NM 0.82 5.59 8.79

FeOCl ZrIS NM 0.75 7.68 8.43

CdI2 NbS2 NM 0.73 8.2 8.42

FeOCl ZrClS NM 0.73 13.6 9.35

TiS3 TaS3 NM 0.73 34.22 12.44

PbSe NiO FM 0.72 2.9 7.16
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non-magnetic semiconductors out of the total set of 
∼ 250 materials for which BSE calculations have been 
performed. We focus on the optically active zero-
momentum excitons and compute the exciton masses 
by evaluating the curvature of the band energies at the 
direct gap, see section 2.11. For anisotropic materials 
we average the heavy and light exciton masses as well 
as the x and y components of the polarisability, α2D, 
to generate input parameters for the isotropic model 
equation (18).

Although a clear correlation with the BSE results 
is observed, it is also evident that the Mott–Wannier 
model can produce significant errors. The mean abso-
lute deviation between BSE and the model is 0.28 eV 
for all materials and 0.20 eV for the subset of trans-
ition metal dichalcogenides (TMDCs). Furthermore, 
the Mott–Wannier model seems to overestimate EB for 
more strongly bound excitons while the opposite trend 
is seen for weakly bound excitons. As explained below 
these trends are a consequence of systematic errors in 
the Mott–Wannier model which can be traced to two 
distinct sources.

 (i)  Weak screening: If α2D is small (on the order of  
1 Å), the exciton becomes strongly localised and 
the orbital character of the states comprising the 
exciton plays a significant role. In general, the 
Mott–Wannier model tends to overestimate the 
exciton binding energy in this case as can be seen 
from the relatively large deviation of points with 
model binding energies  >2.0 eV in figure 26. The 
overestimated binding energy results from the 
homogeneous electron and hole distributions 
implicitly assumed in the Mott–Wannier model. 
In reality, the short range variation of the electron 
and hole distributions is determined by the shape 
of the conduction and valence band states. In 
general these will differ leading to a reduced spatial 
overlap of the electron and hole and thus a lower 
Coulomb interaction. For example, SrCl2 in the 
CdI2 prototype (α2D = 0.68 Å) has a BSE binding 

energy of 2.1 eV and a model binding energy of 
3.4 eV. From the PDOS of this material (see the 
C2DB webpage) it is evident that the electron and 
hole are mainly residing on the Sr and Cl atoms, 
respectively.

 (ii)  Breakdown of the parabolic band approximation: 
Materials with small band gaps often exhibit 
hyperbolic rather than parabolic band structures 
in the vicinity of the band gap. This typically 
happens in materials with small band gaps such 
as BSb in the BN prototype. In figure 26 these 
materials can be identified as the cluster of points 
with model binding energies  <0.25 eV and BSE 
binding energies  >0.25 eV. A similar situation 
occurs if the conduction and valence bands flatten 
out away from the band gap region. In both of 
these cases, the excitons tend to be delocalised over 
a larger area in the Brillouin zone than predicted 
by the parabolic band approximation of the Mott–
Wannier model. Typically, such delocalisation will 
result in larger binding energies than predicted by 
the model. For example, FeI2 in the CdI2 prototype 
exhibits shallow band minima in a ring around the 
Γ-point and has a BSE binding energy of 1.1 eV 
and a model binding energy of 0.5 eV because the 
model assumes that the exciton will be located 
in the vicinity of the shallow minimum (and 
thus more delocalised in real space). A detailed 
inspection reveals that such break down of the 
parabolic band approximation is responsible for 
most of the cases where the model underestimates 
the binding energy.

Other sources of errors come from contributions 
to the exciton from higher/lower lying bands, i.e. break 
down of the two-band approximation, and aniso-
tropic exciton masses not explicitly accounted for by 
equation (18).

Based on this comprehensive and unbiased assess-
ment of the Mott–Wannier model, we conclude 
that while the model can be useful for understand-
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Figure 26. (left) Binding energy of the lowest exciton in 194 semiconducting monolayers calculated from the Bethe–Salpeter 
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ing trends and qualitative properties of excitons, its 
quanti tative accuracy is rather limited when applied to 
a broad set of materials without any parameter tuning. 
For quantitative estimates α2D should not be too small 
(certainly not less than 2 Å) and the the validity of 
the effective mass approximation should be carefully 
checked by inspection of the band structure.

It has been argued that there should exist a robust 
and universal scaling between the exciton binding 
energy and the quasiparticle band gap of 2D semi-
conductors, namely EB ≈ Egap/4 [164]. This scaling 
relation was deduced empirically based on BSE-GW 
calculations for around 20 monolayers and explained 
from equation (18) and the relation α2D ∝ 1/Egap 
from k · p perturbation theory. Another work 
observed a similar trend [165] but explained it from 
the 1/Egap dependence of the exciton effective mass 
expected from k · p perturbation theory. Based on our 
results we can completely refute the latter explanation 
(see figure 22 (right)). In figure 26 (right) we show the 
exciton binding energy plotted versus the direct PBE 
and G0W0 band gaps, respectively. While there is a cor-
relation, it is by no means as clear as found in [164].

4. Conclusions and outlook

The C2DB is an open database with calculated properties 
of two-dimensional materials. It currently contains 
more than 1500 materials distributed over 32 different 
crystal structures. A variety of structural, elastic, 
thermodynamic, electronic, magnetic and optical 
properties are computed following a high-throughput, 
semi-automated workflow employing state of the art 
DFT and many-body methods. The C2DB is growing 
continuously as new structures and properties are being 
added; thus the present paper provides a snapshot of the 
present state of the database. The C2DB can be browsed 
online using simple and advanced queries, and it can be 
downloaded freely at https://c2db.fysik.dtu.dk/ under a 
Creative Commons license.

The materials in the C2DB comprise both exper-
imentally known and not previously synthesised 
structures. They have been generated in a system-
atic fashion by combinatorial decoration of differ-
ent 2D crystal lattices. The full property workflow 
is performed only for structures that are found to be 
dynamically stable and have a negative heat of forma-
tion. We employ a liberal stability criterion in order not 
to exclude potentially interesting materials that could 
be stabilised by external means like substrate interac-
tions or doping even if they are unstable in freestand-
ing form. As an important and rather unique feature, 
the C2DB employs beyond-DFT methods, such as the 
many-body GW approximation, the random phase 
approx imation (RPA) and the Bethe–Salpeter equa-
tion (BSE). Such methods are essential for obtaining 
quantitatively accurate descriptions of key properties 
like band gaps and optical spectra. This is par ticularly 
important for 2D materials due the weak dielectric 

screening in reduced dimensions, which tends to 
enhance many-body effects. For maximal transpar-
ency and reproducibility of the data in the C2DB, all 
relevant parameters have been provided in this paper. 
Additionally, all scripts used to generate the data are 
freely available for download under a GPL license.

Beyond its obvious use as a look-up table, the 
C2DB offers access to numerous well documented, 
high-quality calculations, making it ideally suited for 
benchmarking and comparison of different codes 
and methodologies. The large set of different available 
properties makes the C2DB interesting as a playground 
for exploring structure-property relations and for 
applying and advancing machine learning approaches 
in materials science. Moreover, the C2DB should be 
useful as a stepping stone towards the development 
of theoretical models for more complex 2D structures 
such as van der Waals heterostructures (see below).

As reported in this work, based on the combinato-
rial screening approach, we have identified a number 
of new, potentially synthesisable 2D materials with 
interesting properties including ferromagnets with 
large magnetic anisotropy, semiconductors with high 
intrinsic carrier mobility, and metals with plasmons in 
the visible frequency range. These predictions are all 
based on the computed properties of the perfect crys-
talline materials. While the pristine crystal constitutes 
an important baseline reference it remains an idealised 
model of any real material. In the future, it would be 
interesting to extend the database to monolayers with 
adsorbed species and/or point defects. Not only would 
this allow for a more realistic assessment of the magn-
etic and (opto)electronic properties, it would also 
facilitate the design and discovery of 2D materials for 
e.g. battery electrodes and (electro)catalysis [166, 167].

The C2DB should also be useful as a platform for 
establishing parametrisations of computationally 
less expensive methods such as tight-binding models 
[168] and k · p perturbation theory [128]. Such meth-
ods are required e.g. for device modeling, descrip-
tion of magn etic field effects, and van der Waals het-
erostructures. The database already provides band 
structures, spin orbit-induced band splittings, and 
effective masses, which can be directly used to deter-
mine model parameters. It would be straightforward 
to complement these with momentum matrix ele-
ments at band extrema for modeling of optical prop-
erties and construction of full k · p Hamiltonians. 
Similarly, the spread functional required as input for 
the construction of Wannier functions e.g. by the ASE 
[38] or the Wannier90 [169] packages, could be easily 
and systematically produced. This would enable direct 
construction of minimal basis set Hamiltonians and 
would allow for the calculation of Born charges and 
piezo electric coefficients as well as certain topologi-
cal invariants [170]. A workflow to calculate exchange 
couplings of magnetic 2D materials is currently being 
developed with the aim of predicting magnetic phase 
transitions and critical temperatures.
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Of specific interest is the modeling of the elec-
tronic and optical properties of vdW heterostructures. 
Due to lattice mismatch or rotational misalignment 
between stacked 2D layers, such structures are difficult 
or even impossible to treat by conventional ab initio 
techniques. Different simplified models have been 
proposed to describe the electronic bands, including 
tight-binding Hamiltonians derived from strained lat-
tice configurations [171] and perturbative treatments 
of the interlayer coupling [172]. In both cases, the data 
in the C2DB represents a good starting point for con-
structing such models. The effect of dielectric screen-
ing in vdW heterostructures can be incorporated e.g. 
by the quantum electrostatic heterostructure (QEH) 
model [173] which computes the dielectric function 
of the vdW heterostructure from the polarisabilities of 
the isolated monolayers. The latter are directly avail-
able in the C2DB, at least in the long wavelength limit.

Finally, it would be relevant to supplement the 
current optical absorbance spectra by other types of 
spectra, such as Raman spectra, infrared absorption 
or XPS, in order to assist experimentalists in charac-
terising their synthesised samples. The automatic first-
principles calculation of such spectra is, however, not 
straightforward and will require significant computa-

tional investments.
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We have performed a computational screening of topological two-dimensional (2D) materials from the
Computational 2D Materials Database (C2DB) employing density functional theory. A full ab initio scheme
for calculating hybrid Wannier functions directly from the Kohn-Sham orbitals has been implemented and the
method was used to extract Z2 indices, Chern numbers, and mirror Chern numbers of 3331 2D systems including
both experimentally known and hypothetical 2D materials. We have found a total of 48 quantum spin Hall
insulators, seven quantum anomalous Hall insulators, and 21 crystalline topological insulators. Roughly 75%
are predicted to be dynamically stable and one-third was known prior to the screening. The most interesting of
the topological insulators are investigated in more detail. We show that the calculated topological indices of the
quantum anomalous Hall insulators are highly sensitive to the approximation used for the exchange-correlation
functional and reliable predictions of the topological properties of these materials thus require methods beyond
density functional theory. We also performed GW calculations, which yield a gap of 0.65 eV for the quantum spin
Hall insulator PdSe2 in the MoS2 crystal structure. This is significantly higher than any known 2D topological
insulator and three times larger than the Kohn-Sham gap.

DOI: 10.1103/PhysRevMaterials.3.024005

I. INTRODUCTION

The concept of topological band theory was initially de-
veloped in order to explain the quantum Hall effect, which
was observed experimentally in 1980 [1]. The measurements
were soon interpreted as a topological effect arising from the
phases of Bloch states winding around the boundary of the
magnetic Brillouin zone [2] and is thus closely related to
the k-space Berry phase [3]. In 1988, Haldane proposed a
model system that exhibited the quantum Hall effect with-
out an external magnetic field, but with intrinsically bro-
ken time-reversal symmetry [4]. Such materials are referred
to as quantum anomalous Hall insulators (QAHI) and the
first experimental demonstration of the effect was reported
in 2013—25 years after it was proposed. In the meantime,
Kane and Mele had showed that any time-reversal invariant
two-dimensional (2D) insulator can be characterized by a Z2

topological index ν. Time-reversal invariant materials with
nontrivial topology (ν = 1) are known as quantum spin Hall
insulators (QSHI) and the effect was observed immediately
after a theoretical prediction of the effect in HgTe quantum
wells [5,6]. Subsequently, the concepts have been generalized
to bulk 3D systems [7,8] and several well-known materials
have been shown to comprise examples of topological insu-
lators [9]. Most notably, Sb2Te3, Bi2Se3, and Bi2Te3 [10,11],
but also several 2D materials have been shown to exhibit a
nontrivial band topology. In fact, graphene comprised the first
theoretical prediction for a QSHI and while it is still believed
that graphene has a nontrivial band topology it is practically
impossible to verify experimentally due to the small band

*tolsen@fysik.dtu.dk

gap. However, several other 2D materials have been shown to
comprise examples of QSHIs. For example, the graphene-like
materials silicene [12,13], germanene [14,15], and stanene
[16] are all predicted to be QSHIs [17] and so are several of
the transition metal dichalcogenides in the 1T′ phase [18,19].

While the quantum spin Hall effect has been observed
in a wide range of both 2D and 3D materials, the quantum
anomalous Hall effect has proven more elusive and has so
far only been observed in a few Z2 topological insulators,
where time-reversal symmetry is broken by introducing mag-
netic impurities [20,21]. There have been a few proposals for
pristine 2D materials that are predicted to be intrinsic QAHIs
by first principles calculations [22–26], but the effect has not
yet been confirmed experimentally for any of the materials
and the topological properties seem to be somewhat sensitive
to the details of the calculations. Moreover, first principles
calculations typically only pertain to the case of zero kelvin,
but for 2D materials magnetic order is highly fragile to
finite temperature effects and can only be stabilized in the
presence of magnetic anisotropy [27,28]. Realistic theoretical
predictions of 2D QAHIs thus have to take into account that
the magnetic order must persist at experimentally relevant
temperatures—preferably room temperature.

Since the discovery of topological classifications of solids,
the field has witnessed a tremendous development of the
theoretical concepts, which have been extended to include
topological semimetals [29], topological crystalline insulators
[30,31], and higher order topological effects [32–35]. In ad-
dition to QAHIs and QSHIs we will focus on a particular
class of topological insulators in the present work, namely,
the topological crystalline insulators where the topology is
protected by mirror symmetry in a plane parallel to the 2D
material [36,37]. It is particularly easy to understand the
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topology in this case since the topological index is simply de-
fined as the difference between the quantum anomalous Hall
conductance of the two eigenspaces of the mirror operator.
Moreover, the fact that the mirror plane coincides with the
plane of the materials implies that any edge that conserves
the mirror symmetry will host gapless states that are protected
from eleastic backscattering by the topology.

Although topological properties are in principle derivable
from the ground state of bulk materials, the observable
consequences are very limited in bulk. It is, for example, not
possible to distinguish a nontrivial topological state from a
trivial one by looking at the band structure alone. However,
any interface between materials belonging to different
topological classes is guaranteed to host gapless states that
are localized at the boundary. Since the boundary states are
protected by topology, they are extremely stable and have
been proposed as candidates for dissipationless electronics
circuits. Moreover, since the spin of boundary states are
locked to the direction of propagation in QSHIs, such
materials are promising for spintronics applications [38].

A crucial ingredient for operating topological insulators at
room temperature is a sizable band gap. Typically, the band
gap in topological insulators is determined by the strength of
spin-orbit coupling and common values of the gap are on the
order of 0.1–0.2 eV. With such small band gaps it becomes
hard to maintain full control of the gapless boundary states
and the applicability of the materials becomes questionable.
It would thus be highly desirable to find new topological
insulators with large band gaps. Large-scale screening studies
based on first principles computations have previously been
performed for 3D materials [39,40] and very recently for
2D materials based on experimentally known van der Waals
bonded crystals [41]. The latter study predicted a 2D material
in the Jacutingaite prototype to be a QSHI with a band gap of
0.5 eV [42]. Remarkably, the PBE gap of the material was
only 0.15 eV, but a quasiparticle gap 0.5 eV was obtained
with the G0W0 approximation. It is thus far from obvious that
the simple Kohn-Sham gap provides a good estimate of the
quasiparticle gap in 2D topological insulators.

Finally, we emphasize that it has not yet been possible to
demonstrate the quantum anomalous Hall effect in a pristine
2D material. This is perhaps not so surprising since a magnet-
ically ordered ground state is a minimal requirement for the
effect and until very recently magnetic order had not been ob-
served in 2D [43]. The discovery of the first pristine 2D QAHI,
which exhibits magnetic order at reasonable temperatures,
thus comprises a tremendous challenge and it is highly likely
that theoretical predictions may aid this quest by significantly
decreasing the number of relevant materials to investigate.

In the present work we have screened more than 3000
hypothetical 2D materials using first principles simulations
and identified 61 2D topological insulators. We have focused
on three topological classes. (1) QAHIs, which require a mag-
netically ordered ground state and are characterized by the
Chern number C that may take any integer value. (2) QSHIs,
which require time-reversal symmetry and are classified by
the binary Z2 index. (3) Mirror crystalline topological insula-
tors, where the topology is protected by mirror symmetry and
the ground state is classified according to the mirror Chern
number CM , which may take any integer value. In order to

FIG. 1. Colored area indicate the unit cell in reciprocal space. For
each value of k2, the Berry space is calculated by parallel transporting
the Bloch states along k1 (indicated by dashed lines).

extract the topological properties we have implemented a full
calculation of k-space Berry phases that allow us to extract
the topological indices in a semi-automated way and does not
depend on a mapping to tight binding models through Wannier
functions [44].

The paper is organized as follows. In Sec. II, we describe
the Berry-phase implementation and exemplify how the topo-
logical indices are extracted for the three cases described
above. In Sec. III, we present the computational details and
provide a comprehensive list of all the 2D materials with
nontrivial topology that have been found in the screening. We
then analyze the topological properties of a few representative
materials in more detail and investigate the effect of the
approximations for exchange-correlation energy and G0W0

calculations. In Sec. IV we provide a discussion of the results.

II. BERRY PHASES AND HYBRID WANNIER FUNCTIONS

In this section we will briefly introduce the notion of
parallel transport and show how it can be applied to obtain
the Berry phase matrix of a closed path in k space. We will
closely follow the discussions in Refs. [44–46]. We consider a
minimal unit cell in reciprocal space spanned by the reciprocal
lattice vectors b1 and b2. A generic point in the reciprocal unit
cell can then be written as

k = k1b1 + k2b2, (1)

where 0 � ki < 1 are the reciprocal fractional coordinates.
We wish to calculate the Berry phase obtained by transporting
the occupied Bloch states along k1 through the reciprocal
unit cell at a fixed value of k2 (see Fig. 1). In a numerical
treatment of the Bloch Hamiltonian H (k), one obtains a set
of occupied eigenstates |unk〉 at different k points and each
set of eigenstates come with an arbitrary set of phases. In
fact, any unitary rotation in the space of occupied states leaves
the ground state invariant and in order to evaluate the phases
picked up along a closed path in k space one needs to construct
eigenstates with phases that are smooth along the path. This
can be accomplished by the so-called parallel transport gauge.
For a single occupied state we fix the phase along the path by
requiring that 〈uk|∂k1 uk〉 = 0, which enforces that the change
in the state along the path is orthogonal to the state itself.
When the Bloch states are calculated at a string of N k
points with fixed k2 and k1 = 0, 1/N, 2/N, . . ., the parallel
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transport condition can be implemented by requiring that
〈uk|uk+b1/N 〉 is real at any point along the path. Thus for an
initial state at k on the path we can fix all phases on the path
sequentially by the parallel transport condition, which will
result in a smooth phase along the path. The phase at k1 = 1
can then be obtained by imposing the periodic gauge such that
|uk+b1〉 = e−ir̂·b1 |uk〉 and the Berry phase is obtained as the
phase difference between k1 = 0 and k1 = 1.

In the case of multiple occupied bands, the condi-
tion is generalized by requiring that the matrix Mmnk =
〈umk|unk+b1/N 〉 is Hermitian. This uniquely fixes the unitary
rotation among the occupied states at all points along the path
in terms of an initial set of occupied states at particular point
k on the path. This is due to the fact that a single value
decomposition yields M = V �W † = V �V †VW †, where V
and W are unitary matrices and � is diagonal and real. We
can thus take |unk+b1/N 〉 → WV †|unk+b1/N 〉, which renders M
Hermitian and completely fixes the gauge at k + b1/N . This
procedure is continued along the path until the states at k +
b1 are obtained using the periodic gauge where |unk+b1〉 =
e−ir̂·b1 |unk〉. Finally, the eigenvalues of the unitary matrix
relating the states at k and k + b1 are the Berry phases
acquired by the individual bands.

The method can also be used to obtain the individual states
|ũnk〉 that are parallel transported without mixing and thus
acquire the distinct eigenvalues of the Berry phase matrix
[45]. Since these are smooth, one may construct hybrid Wan-
nier functions (HWFs) localized along the direction parallel
to b1 as

∣∣Wn jk2

〉 =
∫ 1

0
dk1e−ik·(r̂+R̂ j )|ũnk〉. (2)

Writing r = x1a1 + x2a2 with ai · b j = 2πδi j , one can show
that [47]

x1,n(k2) ≡ 〈
Wn0k2

∣∣x̂1

∣∣Wn0k2

〉 = γ1,n(k2)/2π, (3)

with

γ1,n(k2) = i
∫ 1

0
dk1

〈
ũnk

∣∣∂k1 ũnk
〉
. (4)

Except for a factor of 2π , the Berry phases obtained from
the parallel transport gauge are thus the charge centers of
the HWFs. This construction allows one to calculate various
properties associated with the individual phases. For example,
the spin expectation value

S(z)
n (k2) ≡ 〈

Wn0k2

∣∣Ŝ(z)
∣∣Wn0k2

〉
, (5)

which will serve as a useful tool for analyzing the topological
properties of 2D materials below.

The Berry phases will be smooth functions of k2, which
implies that one can track the evolution of the phases while k2

is cycled through the reciprocal space unit cell. The dispersion
of the spectrum of Berry phases gives rise to topological
classifications as explained below. We will provide examples
of ab initio calculations of the Berry phase spectrum for
the three topological classes considered in the present work,
but postpone a compilation of the computational details until
Sec. III.

A. Quantum anomalous Hall insulators

The Hall conductance σxy relates an electric current in
the x direction to a uniform field in the y direction by Jx =
σxyEy. A finite Hall conductance requires broken time-reversal
symmetry and it follows from the Kubo formula that it can be
written in terms of the k-space Berry curvature 	z(k) as [48]

σxy = −e2

h

∫
BZ

d2k

2π
	(k), (6)

with

	(k) = i
∑
i jn

fnkεi j∂ki

〈
unk

∣∣∂k j unk
〉
. (7)

Here i, j runs over x and y, ε is the two-dimensional Levi-
Civita symbol, and fnk are occupation factors.

For insulators, the integral can be shown to yield an integer
known as the Chern number C and the Hall conductance
becomes

σxy = −C
e2

h
, C ∈ Z. (8)

In 2D metals, a gap can be opened due to the Landau levels
emerging when an external magnetic field is introduced and
the value of the Chern number can be controlled by the
magnitude of magnetic field. That is the quantum Hall effect.
Moreover, as shown by Haldane [4], materials with sponta-
neously broken time-reversal symmetry can exhibit intrinsic
quantum Hall effect without an external magnetic field. Such
materials are known as quantum anomalous Hall insulators
(QAHI) (or Chern insulators) and have a finite Chern number
and a nontrivial band topology.

We now briefly discuss how the k-space Berry phase cal-
culations outlined above can be related to the Chern number
in QAHIs. A constant electric field in the y direction of
magnitude E0 can be included in the Bloch Hamiltonian
by the substitution ky → ky − eE0t/h̄. Clearly the physical
properties of the Bloch Hamiltonian are restored after a
period T = 2π h̄/eE0. If E0 is sufficiently small, the system
will evolve adiabatically and the charge transported in the
x direction in the time interval is Q = ∫ T

0 Jxdt = T σxyE0 =
hσxy/e. Expressing the Hall conductance as σxy = −Ce2/h,
we see that the transferred charge is Q = −eC. One can thus
obtain the Chern number as the number of Wannier charge
centers that are transported by a unit cell in the x direction,
while ky is cycled through the reciprocal space unit cell in
the backward direction. This argument comprises a modified
version [7] of the explanation originally provided by Laughlin
to account for the quantum Hall effect [49]. This also explains
the appearance of gapless edge states in QAHIs. For a bulk
system an adiabatic cycling of k2 through a reciprocal unit
vector will return the system to itself by transferring C charges
by one lattice vector. However, in the presence of an edge
charges will pile up at the edge and the argument breaks
down unless there is a different mechanism that can remove
the charges from the edge. One may thus conclude that any
edge has to host chiral gapless states that connect the valence
band with the conduction band, such that C units of charge
are transferred out of the valence bands at the edge while k2 is
cycled by a unit.
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FIG. 2. Top: structure and Brillouin zone of FeBr3 in the BiI3

crystal structure. Middle: band structure of FeBr3 with colors de-
noting the expectation value of Sz. The band PBE gap is 42 meV.
Bottom: Berry phases of the four highest occupied states of FeBr3

calculated as a function of k in the direction of M2.

In Fig. 2 we show the Berry phases of FeBr3 in the BiI3

crystal structure. Due to Eq. (3), the vertical axis in the plot
can be regarded as the unit cell in the x direction and it is clear
that at any horizontal line there will be a total of one state
crossing in the downward direction. We can thus calculate the
Chern number as the total number of chiral crossings—that is,
the number of crossing points with negative slope minus the
number of crossing points with positive slope at any horizontal
line and we conclude that C = 1. We have confirmed this
result by a direct integration of the Berry curvature 	z over
the Brillouin zone.

B. Quantum spin Hall insulators

Materials with time-reversal symmetry must have a vanish-
ing Hall conductance and thus cannot have a nonzero Chern
number. From the Berry phase perspective this is due to the
fact that any phase at k will be accompanied by an equal

phase at −k, which excludes the possibility of having a finite
number of chiral crossings at a horizontal line. Nevertheless,
as shown by Kane and Mele [50,51] all 2D time-reversal
invariant insulators belong to one of two topological classes
and can thus be characterized by a Z2 topological index.
The simplest way to understand the Z2 index is by consid-
ering a system where Sz is a good quantum number. Then
one can calculate the Chern numbers of the two spin states
and obtain C↑ = −C↓, since C = C↑ + C↓ = 0. Due to time-
reversal symmetry all Berry phases have Kramers degenerate
partners at time-reversal invariant points such as M and �.
If one introduces spin-mixing (but time-reversal conserving)
perturbations in the Hamiltonian, the two Chern numbers are
no longer well defined but two distinct ways of connecting
phases between time-reversal invariant points remain, which
gives rise to a Z2 topological classification. In particular, if C↑
is even in the case where Sz is a good quantum number, there
will be an even number of Kramers pairs at � and M that
may hybridize and open a gap in the Berry phase spectrum,
once spin-mixing terms are introduced. In contrast, if C↑ is
odd, there will be an odd number of Kramers pairs at M
and � and the Berry phase spectrum must remain gapless
when spin-mixing terms are included. In general the Z2 index
distinguishes whether there is an odd or even number of
Berry phases crossing any horizontal line in half the Brillouin
zone.

In Fig. 3 we show the band structure and Berry phase
spectrum for stanene (Sn), which comprises an example of
a quantum spin Hall insulator. Due to inversion symmetry
in stanene, all bands are doubly degenerate and cannot be
colored according to spin. However, the degeneracy of the
Berry phases are split due to spin-orbit coupling, which will
allow the spectrum to exhibit a single crossing in half the
Brillouin zone. Qualitatively, the spin-down electrons are
transported upwards, while the spin-up electrons are trans-
ported downwards indicating that one would be able to assign
spin Chern numbers of C↑ = −C↓ = 1 if the Hamiltonian of
the system could be continuously connected to a Hamiltonian
that commutes with Sz without closing the gap.

C. Mirror crystalline topological insulators

As shown by Fu [30], crystal symmetries alone may give
rise to a topologically nontrivial band structure. However, the
consequences (gapless boundary states) are only observable at
edges or surfaces that conserve the crystal symmetry. In this
respect, mirror symmetry comprises a particularly simple type
of crystal symmetry that gives rise to an integer topological
classification. Whenever a material has mirror symmetry all
the occupied states may be labeled according to their mirror
eigenvalues ±i and one can define Chern numbers C± for
these subsets of bands. The total Chern number is then C =
C+ + C−, but we might as well consider the Z × Z classifi-
cation based on C+ and C−. In the case where the total Chern
number vanishes the topology can be specified by the mirror
Chern number CM = (C+ − C−)/2, which is readily verified
to be an integer.

For 2D materials, mirror symmetry in the plane of the ma-
terial plays a special role, since any clean edge of the material
will conserve the symmetry. A 2D material with nonvanishing
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M2 K
M1

FIG. 3. Top: structure and Brillouin zone of stanene. Middle:
band structure of stanene. Bottom: Berry phases of the four highest
occupied states of stanene calculated as a function of k in the
direction of M2 with colors denoting the expectation value of Sz.

mirror Chern number is thus guaranteed to host gapless edge
states and gapless boundary states if the material is interfaced
with a topologically trivial material that exhibits mirror sym-
metry in the plane. Strictly speaking, the interface or edge
itself may break the symmetry by reconstruction of adsorption
of atoms or molecules and as such the gapless edge states are
more fragile than in the case of QSHI where the topology
is defined by time-reversal symmetry. If C = 0 an edge will
host CM edge states of positive chirality and CM edge states of
negative chirality. In Fig. 4 we show the Berry phase spectrum
of SnTe, which is an example of a mirror crystalline topolog-
ical insulator with CM = 2 [36]. We note that the spinorial
part of the mirror operator in the z plane is represented as
iσz and the mirror eigenvalues thus closely follow the spin of
the hybrid Wannier functions. This is evident in Fig. 4, where
the spin up states are largely transported downward (C+ = 2)
and the spin down states (C− = −2) are largely transported

FIG. 4. Top: structure and Brillouin zone of SnTe in the PbSe
crystal structure. Middle: band structure of SnTe. Bottom: Berry
phases of the eight highest occupied states of FeBr3 calculated
as a function of k in the direction of Y with colors denoting the
expectation value of Sz.

upward. This is of course only a qualitative argument, since
the mirror operator also affects the orbital part, but the spin
structure of the hybrid Wannier functions does allow one
to obtain an intuitive picture of the (mirror-resolved) charge
transport.

It is interesting to note that, in the presence of time-reversal
symmetry, the Z2 index can be obtained as CM mod 2. This is
due to the fact that time-reversal symmetry enforces mirror
symmetry on the Berry phase spectrum around the vertical
axis at the � point. In particular, we can represent the time-
reversal symmetry operator as T = σyK , where K denotes
complex conjugation and the mirror symmetry operator by
Mz = iσz. Due to the fact that σy and σz anticommute, it
follows that if |u+〉 is an eigenstate of Mz with eigenvalue
+i then T |u+〉 will be an eigenstate of Mz with eigenvalue
−i. The Berry phase spectrum of the negative eigenvalue
sector can thus be obtained from that of the positive mirror
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eigenvalues by reflection through the vertical line at �. This
results in an odd number of crossings in half the Brillouin zone
if CM is odd and an even number of crossings if CM is even.
Materials with odd mirror Chern number and time-reversal
symmetry thus have a dual topological character such that the
edge states will remain protected if either mirror symmetry or
time-reversal symmetry is broken. This can be regarded as a
2D analog of the dual topological character in Bi2Se3 [52,53].
In that case the strong topological index can be calculated
from the Chern-Simons axion coupling θ , which is restricted
to the values of zero and π in the presence of either mirror
symmetry or time-reversal symmetry.

III. RESULTS

A. Computational details

All the calculations presented in this work were based on
the Computational 2D Materials Database (C2DB), which
currently contains DFT calculations for 3331 2D materials
[54]. The calculations were performed with the electronic
structure software package GPAW [55], which is based on
the projector augmented wave method [56] combined with the
atomic simulation environment (ASE) [57]. All materials have
been fully relaxed with the PBE functional [58] and treated
according to a strict work flow and a wide range of properties
are calculated for materials that are both dynamically and
thermodynamically stable. We refer to Ref. [54] for details on
the calculations. The database can be browsed online or the
full database can be downloaded from the repository.

As a first screening for 2D materials with nontrivial topol-
ogy, we have sorted the C2DB for insulators with direct PBE
band gaps below 0.7 eV. This primary criterion is based on
the fact that the topological gaps are driven by spin-orbit
coupling and we do not expect spin-orbit coupling to open
band gaps by more than 0.7 eV. For all these materials, we
carried out the parallel transport described in Sec. II and
identified topological insulators as the materials with a gapless
Berry phase spectrum. The procedure is highly convenient
for automated screening, because no reference to the type of
topological insulator is needed for the calculations and one
can simply sort out whether a given material is a QAHI, QSHI,
or a crystalline topological insulator (protected by mirror
symmetry) afterwards.

The only nonstandard ingredient in the procedure is the
calculation of the matrix elements

Mmn(k, k + δk) = 〈um(k)|un(k + δk)〉
= 〈ψm(k)|e−iδk·r̂|ψn(k + δk)〉, (9)

which is needed for the parallel transport algorithm. Within
the PAW formalism the all-electron wave functions are
written as

|ψn〉 = |ψ̃n〉 +
∑

ai

〈
p̃a

i

∣∣ψ̃n
〉[∣∣φa

i

〉 − ∣∣φ̃a
i

〉]
, (10)

where |ψ̃n〉 are soft pseudowave functions, |φa
i 〉 are atomic

orbitals of atom a, and | p̃a
i 〉 are projector functions satisfying

〈p̃a
i |φ̃a

j 〉 = δi j . Denoting the position of atom a by ra the

TABLE I. Overview of known topological materials found by
computational screening. The topology is specified by either the
Chern number C, the Z2 index ν, or the mirror Chern number CM .
We also state the calculated Kohn-Sham gap (KS gap).

Material Prototype Topology KS gap (meV)

C2 [51] C2 ν = 1, CM = 1 0.3
Si2 [59] C2 ν = 1 1.6
Ge2 [59] C2 ν = 1 25
Sn2 [59] C2 ν = 1 65
SnF [60] CH ν = 1 316
HgSe [61] GeSe ν = 1 90
HgTe [61] GeSe ν = 1 156
MoS2 [18] WTe2 ν = 1 51
MoSe2 [18] WTe2 ν = 1 41
WSe2 [18] WTe2 ν = 1 32
OsCl3 [24] BiI3 C = 1 64
GeTe2 [62] MnS2 ν = 1 32
SnS [36] PbS CM = 2 67
SnSe [36] PbS CM = 2 84
SnTe [36] PbS CM = 2 28
PbS [36] PbS CM = 2 422
PbSe [36] PbS CM = 2 478
PbTe [36] PbS CM = 2 271

matrix elements can thus be written as

Mmn(k, k + δk) = 〈ψ̃m(k)|e−iδk·r̂|ψ̃n(k + δk)〉
+

∑
ai j

e−iδk·ra〈ψ̃m(k)
∣∣p̃a

i

〉
(11)

× [〈
φa

i

∣∣φa
j

〉 − 〈
φ̃a

i

∣∣φ̃a
j

〉]〈
p̃a

j |ψ̃n(k + δk)
〉
,

where we assumed that 〈φa
i |e−iδk·r̂|φa

j 〉 = e−iδk·ra〈φa
i |φa

j 〉,
since the partial waves |φa

i 〉 are localized at the atom a and
e−iδk·r is a slowly varying function when δk is small. All
quantities entering in Eq. (11) are calculated during standard
DFT calculations with GPAW and are thus readily available
for Berry phase calculations.

B. Overview of topological insulators in C2DB

In Tables I–IV we provide an overview of all the topo-
logical insulators found in the screening. We emphasize
again that all these were simply identified by looking for
materials with a gapless Berry phase spectrum. The topo-
logical indices ν, C, and CM , relevant for QSHIs, QAHIs
and MCTIs respectively, were then assigned to the different
materials afterwards.

Table I contains known topological 2D materials. We
find most of the materials that have previously been pre-
dicted to exhibit a nontrivial band topology. For example,
graphene [51] and its derivatives silicene, germanene, and
stanene [59], as well as the transition metal dichalcogenides
MoS2, MoSe2, and WSe2 in the 1T′ phase (WTe2 crystal
structure) [18]. However, some well-known 2D topological
insulators are missing from this table, for example, WTe2

and WS2 in the 1T′ phase. These materials are present in
C2DB, but are semimetals in the PBE approximation [18]

024005-6

110 7 Papers



DISCOVERING TWO-DIMENSIONAL TOPOLOGICAL … PHYSICAL REVIEW MATERIALS 3, 024005 (2019)

TABLE II. Overview of novel QSHIs without mirror symmetry. All the materials have a Z2 index of ν = 1. We also state the calculated
Kohn-Sham gap (KS gap), the heat of formation (HOF), and the energy above the convex hull (EACH). The dynamically stable materials are
shown in boldface.

Material Prototype Topology KS gap (meV) HOF (eV) EACH (eV)

AuCl FeSe ν = 1 20 0.10 0.30
CrAsBi BiTeI ν = 1 35 0.31 0.46
IrSe GaSe ν = 1 134 0.18 0.45
TiTe GaSe ν = 1 109 − 0.08 0.63
ZrTe GaSe ν = 1 207 − 0.28 0.65
AuI3 BiI3 ν = 1 109 0.10 0.10
TiIN FeOCl ν = 1 62 − 1.18 − 0.26
TlClSe FeOCl ν = 1 27 − 0.36 0.32
TiS CH ν = 1 54 − 1.13 0.31
TiCl CH ν = 1 13 − 0.64 0.45
ZrS CH ν = 1 132 − 1.16 0.26
ZrSe CH ν = 1 20 − 0.91 0.25
ZrCl CH ν = 1 37 − 0.59 0.73
ZrBr CH ν = 1 45 − 0.34 0.68
SbCl CH ν = 1 434 − 0.46 0.13
SbBr CH ν = 1 442 − 0.31 0.10
SbI CH ν = 1 584 − 0.12 0.13
HfS CH ν = 1 158 − 0.89 0.43
HfSe CH ν = 1 42 − 0.64 0.54
ReS CH ν = 1 309 0.10 0.54
HgCl CH ν = 1 129 − 0.37 0.23
HgBr CH ν = 1 188 − 0.25 0.22
PbF CH ν = 1 116 − 1.43 0.45

and are therefore excluded from the present compilation. In
addition CoBr2 in the CdI2 crystal structure has previously
been predicted to be a QAHI based on PBEsol [26], which
we have confirmed but the material is metallic within PBE
and is therefore not included here. On the other hand, we
find both HgSe and HgTe to be QSHIs although these ma-
terials have previously been reported to be trivial insulators
based on calculations with a modified Becke-Johnson LDA
functional [61].

Tables II–IV contain all the topological insulators that to
our knowledge have not been reported prior to this work. The
dynamically stable compounds (shown in boldface) are likely
to be the only ones that are experimentally relevant, but we
include all materials that we have found for completeness.

We find 27 time-reversal invariant topological insulators
that are dynamically stable and have not been reported previ-
ously (Tables II and III). We start by noting that the list is dom-
inated by 15 materials in the CH crystal structure (graphane),

TABLE III. Overview of novel crystalline topological insulators protected by mirror symmetry. The topology is specified the mirror Chern
number CM . All the materials are invariant under time-reversal symmetry and the associated Z2 index thus becomes ν = 1 if CM is odd and
ν = 0 if CM is even. We also state the calculated Kohn-Sham gap (KS gap), the heat of formation (HOF), and the energy above the convex hull
(EACH). The dynamically stable materials are shown in boldface.

Material Prototype Topology KS gap (meV) HOF (eV) EACH (eV)

HgO BN ν = 1,CM = 1 302 −0.15 0.21
PdSe2 MoS2 ν = 1,CM = 1 229 −0.02 0.27
AuTe GaS ν = 1,CM = 1 37 0.03 0.11
WO GaS ν = 1,CM = 1 53 −1.01 0.49
RhO GaS ν = 1,CM = 3 67 −0.38 0.25
IrO GaS ν = 1,CM = 3 122 −0.16 0.51
ReI3 AgBr3 ν = 1,CM = 1 141 0.37 0.43
ReCl3 TiCl33 ν = 1,CM = 1 220 −0.18 0.52
WI3 TiCl33 ν = 1,CM = 1 222 0.19 0.19
GeTe2 MnS2 ν = 1,CM = 1 32 0.27 0.33
RuTe2 MnS2 ν = 1,CM = 1 157 0.34 0.68
OsS2 MnS2 ν = 0,CM = 2 111 0.25 0.63
OsSe2 MnS2 ν = 0,CM = 2 144 0.51 0.68
OsTe2 MnS2 ν = 0,CM = 2 117 0.70 0.77
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TABLE IV. Overview of novel QAHIs found by computational screening. The topology is specified by either the Chern number C. We also
state the calculated Kohn-Sham gap (KS gap), the heat of formation (HOF), and the energy above the convex hull (EACH). The dynamically
stable materials are shown in boldface.

Material Prototype Topology KS gap (meV) HOF (eV) EACH (eV)

PdF2 GeS2 C = −2 27 −0.83 0.38
FeCl3 BiI3 C = 1 13 −0.66 −0.08
FeBr3 BiI3 C = 1 42 −0.38 −0.04
PdI3 BiI3 C = −1 36 −0.13 0.06
CoBr3 AgBr3 C = −2 27 −0.21 −0.16
MoS2 MnS2 C = 2 133 0.10 1.05

the antimony halides exhibiting band gaps exceeding 0.4 eV.
Among the remaining materials, PdSe2 in the MoS2 crystal
structure is the one with the largest band gap of 0.23 eV.
However, it is situated 0.25 eV/atom above the convex hull
with two other materials of the same stoichiometry being more
stable. Nevertheless, the difference in stability is similar to the
difference between MoS2 in the 2H phase and the 1T′ phase,
which are both accessible by modern synthesis techniques. To
test the reliability of the topological gap obtained with PBE,
we have calculated LDA and GW band structures fully includ-
ing spin-orbit coupling in the self-energy [63]. The result is
shown in Fig. 5. The LDA gap is 0.225 eV, which is very sim-
ilar to the PBE value. However, the GW gap is 0.65 eV, which
nearly comprises a threefold increase of the Kohn-Sham gap.
In fact, to our knowledge this is one of the largest gaps re-
ported for a two-dimensional topological insulator. A similar
dramatic increase was recently reported for a Jacutingaite
crystal structure where PBE yielded a gap of 0.15 eV and GW
predicted a gap of 0.5 eV [42]. Such a large increase in band
gap has not been reported for three-dimensional topological
insulators and could be related to the reduced screening in 2D.
In principle, the predicted topology of the materials may de-
pend on the approximation used to obtain the eigenstates. For
example, in Ref. [64] it was that shown that DFT can lead to a
false-positive conclusion for the nontrivial topology of certain
3D materials and GW calculations may reverse the band
inversion leading to the predicted nontrivial topology in DFT.
However, we will not perform full GW calculations (with
spin-orbit coupling) for all the materials in the present work,
but note that false positives could be a caveat for the present
method. We discuss this issue further below in the context
of QAHIs.

In addition to the six well-known mirror crystalline topo-
logical insulators displayed in Table I, we also find three
osmium dichalcogenides in the MnS2 crystal structure with
a mirror Chern number of CM = 2, which are displayed in
Table III. Only one of these—OsO2—is stable though. As
noted previously, any Z2 odd topological insulator with mirror
symmetry must have an odd Chern number. In those cases
the Z2 index does not exhaust the topological properties and
we may distinguish the topological classes corresponding to
CM = 1 and CM = 3, for example, as in the case of RhO
and AuTe in the GaS crystal structure. Again the physical
consequences only emerge when considering an edge where
the difference in Chern numbers would yield the number of
protected gapless edge states. In general, one would not expect

an interface between two Z2 topological insulators (ν = 1)
to exhibit gapless interface modes. However, any interface
between RhO and AuTe that conserves the mirror symmetry
would host four topologically protected gapless edge modes
—two for each mirror sector.

We would also like to emphasize that the screening has
resulted in six candidates for quantum anomalous Hall insu-
lators, which are displayed in Table IV. This is of particular
interest, since an experimental demonstration of the quantum
anomalous Hall effect in a pristine 2D material is still lacking.
Specifically, the materials FeCl3 and FeBr3 are highly stable
and situated less than 0.1 eV/atom above the convex hull.
However, the band structure of FeBr3 shown in Fig. 2 exhibits
rather flat bands and indicates that the electrons in these
materials are strongly correlated. It is thus likely that the PBE
band gap provides a poor estimate of the fundamental gap
of the material and even the topological properties could be
wrong if PBE does not describe the band inversion correctly.
In order to test the reliability of PBE we have tested the
topological properties with various semilocal functionals and
with PBE+U . Using LDA, RPBE, and PBEsol yield a trivial
topology, whereas PBE and revPBE predicts a QAHI with
C = 1. Using PBE+U we obtain a QAHI for values of U
below 0.18 eV and a trivial insulator for U > 0.18 eV. In all
cases the geometry was optimized with the given functional.
The topological properties of FeBr3 are thus highly sensitive
to the method used and with the methodology applied here it
is not possible to determine whether or not the material is a
QAHI.

C. Magnetic anisotropy

The quantum anomalous Hall effect is driven by spin-orbit
mediated band inversion in magnetic materials. Moreover, as a
consequence of the Mermin-Wagner theorem magnetic order
cannot exist without magnetic anisotropy in 2D materials
and spin-orbit effects thus have another crucial role to play
for these materials. In fact, the Curie temperature in a 2D
ferromagnet is strongly dependent on the anisotropy as well
as the exchange coupling constants and the first example of
2D ferromagnetic order was only observed very recently in
the trivial insulator CrI3. Some of the present authors have
shown that the Curie temperatures in 2D can be obtained
from Monte Carlo simulations [28] based on the classical
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FIG. 5. LDA (dashed) and GW (solid) band structures of PdSe2

in the MoS2 prototype. In both cases the energy of the top of the
valence band has been set to zero.

Heisenberg model

H = −1

2
J

∑
〈i j〉
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(Sz
j )

2 − 1

2
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∑
〈i j〉

Sz
i Sz
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where 〈i j〉 denotes the sum over nearest neighbors. The
exchange and anisotropy constants J , A, and B can be obtained
from first principles calculations combined with an energy
mapping scheme that assumes magnetic moments to be lo-
cated on transition metal atoms [28,65]. Since the magnetic
structure is typically isotropic in the plane of the material a
minimal requirement for magnetic order at finite temperatures
is an out-of-plane easy axis. For the magnetic materials in
Table IV we find Tc = 2 K and Tc = 274 K, respectively,
for FeBr3 and CoBr3. The remaining magnetic materials are
predicted to lack magnetic order at any finite temperature due
to an in-plane easy axis or, more precisely, a negative spin-
wave gap [28]. From these calculations CoBr3 appears highly
promising. However, additional calculations show that this
material is more stable in the BiI3 crystal structure (similar
to CrI3), which is nonmagnetic and a trivial insulator. We
note that the materials with an in-plane easy axis that are
excluded here could in general give rise to a finite critical
temperature if there is additional small in-plane anisotropy
such that the rotational symmetry is explicitly broken. It is,
however, rather difficult to predict the critical temperature in
those cases and we expect critical temperatures to be low due
to the approximate in-plane anisotropy. One exception to this
may be provided by OsCl3 [24], which has a rather large
magnetic anisotropy of ∼40 meV per Os atom.

It is interesting to note that small gap magnetic insulators
with large spin-orbit coupling may undergo topological phase
transitions upon a rotation of the spin structure. As an exam-
ple, we take OsO2 in the CdI2 crystal structure, which has
an in-plane easy axis and is not found in Table IV because it

FIG. 6. Band gap as a function of magnetization angle with the
out-of-plane axis in OsO2. The material undergoes a topological
transition for C = 0 to C = −2 when the gap closes in the vicinity
of π/4.

is a trivial insulator. However, if the magnetic moments are
rotated out of plane to align with the axis perpendicular to
the plane of the material it becomes a QAHI with a Chern
number of C = −2. This is only possible if the band gap
closes at some point when the magnetic moments are rotated
from the in-plane to the out-of-plane configuration. In Fig. 6
we show the band gap as a function of the polar angle θ

that the magnetic moments form with the z axis. The band
gap is seen to close in the vicinity of θ = π/4, where the
system undergoes a topological phase transition from C = 0
to C = 2. Such a rotation can be accomplished by applying a
magnetic field and comprises a mechanism under which the
gapless edge states can switched on or off by external means.

IV. DISCUSSION

We have implemented and performed an automated search
for topologically nontrivial 2D materials in the Computational
2D Database. The method is based on a direct evaluation
of Berry phases from the Kohn-Sham states and circum-
vents the common mapping to tight binding models via
Wannier functions [44] that can sometimes make automation
cumbersome.

In addition to several well-known topological insulators
we have found 45 materials of which 18 are predicted to
be stable. Of particular interest are the six magnetic QAHI.
The experimental demonstration of the quantum anomalous
Hall effect in a pristine 2D material would constitute a major
breakthrough in the field of topological materials science.
However, even if any of these materials could be synthesized
the experimental verification of the effect will be highly tricky,
since all of the experimentally relevant QAHIs have band
gaps below 0.1 eV. Moreover, we have shown that the the-
oretical prediction of the topological properties is nontrivial
due to strong correlation and the predictions based on PBE
calculations may not be reliable as we exemplified in the case
of FeBr3. Nevertheless, the PBE predictions for QAHIs pre-
sented here provide indications that some of these materials
could be highly interesting to put under experimental scrutiny.
Most notable CoBr3 in the AgBr3 crystal structure, which we
predict to have a Curie temperature of 274 K, but which is also
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predicted to be less stable compared to the similar BiI3 crystal
structure.

The 10 stable QSHIs found have PBE band gaps between
0.05 and 0.23 eV. We have only performed full spinorial GW
calculations for PdSe2 where we found a threefold increase
of the band gap. It would be highly interesting to perform
carefully converged spinorial GW calculations for all the
topological insulators presented in Tables I–IV, but this is
beyond the scope of the present work. However, based on the
cases of PdSe2 and jacutegaite [42] we believe it is likely that
several of the materials could have significantly larger gaps
than predicted by PBE. None of the materials in Tables II–IV
have been synthesized yet. But considering the rapid pace
at which experimental techniques are currently evolving, we

expect an experimental realization of one or several of the
predicted topological insulators should be within reach in the
near future.
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1. Introduction

The nature of magnetic order in two-dimensional (2D) 
materials is fundamentally different from the three-
dimensional case. In 3D, magnetic order arises from 
spontaneously broken symmetry of the magnetization 
direction and the magnetic anisotropy only plays a 
marginal role. In 2D, however, the Mermin–Wagner 
theorem [1] prohibits a broken symmetry phase at 
finite temperatures and the spin rotational symmetry 
has to be broken explicitly by magnetic anisotropy.

In 2017, two examples of 2D ferromagnetic insu-
lators were discovered experimentally: a monolayer of 
CrI3 that exhibits magnetic order below 45 K [2]and a  
bilayer of Cr2Ge2Te6 with a Curie temperature of 20 K 
[3]. In the case of CrI3 the the magnetic order is driven 
by a strong out-of-plane magnetic anisotropy—a case 
that is often referred to as Ising-type ferromagnet. In 
contrast, Cr2Ge2Te6 has a rather weak magnetic aniso-
tropy and the magnetic order is maintained in bilayer 
structures by interlayer exchange couplings. Subse-
quently, ferromagnetic order at room temperature has 

been reported in monolayers of MnSe2 [4] and VSe2 
[5]. Both of these are itinerant (metallic) ferromag-
nets and the origin of magnetism in these materials 
is still not completely clarified. In particular, VSe2 has 
an easy plane, which implies lack of magnetic order 
by virtue of the Mermin–Wagner theorem. However, 
such a two-dimensional spin system may comprise 
an example of a Kosterlitz–Thouless phase [6], which 
is known to display magnetic order due to finite size 
effects [7]. More recently, Fe3GeTe2 [8] was reported to 
host itinerant ferromagnetic order below 130 K, which 
originates from strong out-of-plane magnetic aniso-
tropy. Several other 2D materials have been predicted 
to exhibit either ferromagnetic or anti-ferromagnetic 
order based on first principles calculations, but in most 
cases the predictions have not yet been confirmed by 
experiments [9] and estimates of the critical temper-
atures are often unjustified or very crude.

Two-dimensional CrI3 has proven to comprise 
a highly versatile material. For example, an applied 
electric field can induce Dzyaloshinskii–Moriya inter-
actions [10], and switch the magnetic state in bilayer 
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samples [11, 12]. In addition, it has been demonstrated 
that one can obtain control of in-plane conductiv-
ity and valley polarization by constructing hetero-
structures of CrI3/graphene [13] and CrI3/WSe2 [14] 
respectively. van der Waals heterostructures of 2D 
materials involving magnetic layers thus constitute 
a highly flexible platform for designing spin tunnel 
junctions and could provide new ways to build nano-
structured spintronics devices [9, 15, 16]. However, in 
order to make 2D magnetism technologically relevant 
there is a pressing need to find new 2D materials that 
exhibit magnetic order at higher temperatures.

A theoretical search for materials with particular 
properties may be based on either experimental data-
bases such as the inorganic crystal structure database 
(ICSD) or computational databases where first prin-
ciples simulations are employed to predict new stable 
materials. The former approach has been applied to 
predict new 2D materials from exfoliation energies of 
3D materials in the ICSD [17–19] and several mat erials 
was found to have a magnetically ordered ground state 
(at T  =  0 K). An example of the latter approach is the 
computational 2D materials database (C2DB) [20, 
21]; presently containing 3712 2D materials of which 
20% are predicted to be stable. One advantage of using 
a theoretical database is that the search is not restricted 
to materials that are experimentally known in a 3D 
parent van der Waals structure. However, materials 
predicted from theoretical databases may pose severe 
challenges with respect to synthetization and exper-
imental characterization; even if they are predicted to 
be stable by first principles calculations.

Regarding the magnetic properties of materials, a 
major difficulty stems from the fact that standard first 
principles methods can only predict whether or not 
magnetic order is present at T  =  0 K. For 2D mat erials 
the Mermin–Wagner theorem implies that magn etic 
order at T  =  0 vanishes at any finite temperature in 
the absence of magnetic anisotropy. A first principles 
prediction of magnetic order at T  =  0 is therefore irrel-
evant unless other properties of the material are taken 
into account. The question then arises: how to calculate 
the critical temperature for magnetic order given a set 
of exchange and anisotropy parameters for a par ticular 
material. It is clear that the Mermin–Wagner theo-
rem disqualifies any standard mean-field approach 
because such methods neglect the fluctuations that are 
responsible for deteriorating magnetic order at finite 
temperatures in the absence of magn etic anisotropy. 
On the other hand, the importance of having magn-
etic anisotropy and an easy axis for the magnetization 
(as opposed to an easy plane) has led many authors to 
derive the magnetic properties from an Ising model 
for which the critical temperatures are known for all 
Archimedian lattices [22, 23]. However, the Ising model 
only provides a good magnetic model in the limit of 
infinite single-ion anisotropy and simply provides an 
upper bound for the critical temper ature in general 
[24]. For example, in the case of CrI3, which is regarded 
as an Ising-type ferromagnet, the Ising model overesti-

mates the critical temperature by a factor of three. The 
effect of finite anisotropy was analyzed in [24], where 
Monte Carlo simulations and renormalized spin-wave 
theory were applied to obtain a simple expression for 
the critical temperature of Ising-type ferromagnets. 
The expression only depends on the number of nearest 
neighbors, the nearest neighbor exchange interactions, 
and two anisotropy param eters. In the present work we 
have applied this expression to search the C2DB for fer-
romagnetic materials with finite critical temperatures. 
For some materials in the C2DB, the magnetic structure 
is not well approximated by an Ising-type ferromagnet 
and we have performed full Monte Carlo simulations to 
obtain the critical temperatures of these materials.

The paper is organized as follows. In section 2 we 
summarize the computational details and discuss the 
Heisenberg model, which forms the basis for calcul-
ations of critical temperatures in the present work. 
In section 3 we present the magnetic materials found 
by searching the C2DB and discuss and compare the 
calculated critical temperatures with previous works. 
Section 4 contains a conclusion and outlook.

2. Method and computational details

The materials in C2DB have been found by performing 
first principles calculations on isolated monolayers 
obtained by combinatorial lattice decoration of known 
2D crystal structure prototypes in the framework of 
density functional theory (DFT). All results have been 
obtained using the Perdew–Burke–Ernzerhof (PBE) 
exchange-correlation functional and the electronic 
structure package GPAW [25, 26]. The geometry of 
all materials are fully optimized and the dynamical 
stability is assessed based on phonon frequencies at 
the center and corners of the Brillouin zone using the 
finite displacement method for a 2 × 2 supercell [20]. 
The heat of formation is calculated with respect to 
standard references [20] and a material is regarded as 
thermodynamically stable if it situated less than 0.2 eV 
above the convex hull defined by the 2807 most stable 
binary bulk compounds from the open quantum 
materials database (OQMD) [27, 28]. We find that 
more than 700 materials in the C2DB are predicted to 
have a ferromagnetic ground state and  ∼150 of these 
are thermodynamically and dynamically stable. The 
DFT calculations show whether or not the materials 
have a ferromagnetic ground state at T  =  0 and 
for insulators the critical temperature can then be 
obtained from the descriptor derived in [24] or Monte 
Carlo simulations. The procedure requires knowledge 
of exchange and anisotropy parameters, which can be 
obtained from an energy mapping analysis including 
spin–orbit coupling [29]. We will briefly outline the 
approach below.

The magnetic properties of a system of localized 
spins are commonly analyzed in terms of the Heisen-
berg model. The most basic ingredient in the model 
is the isotropic exchange interactions arising between 
neighboring spins as a consequence of Coulomb 
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repulsion and Pauli exclusion. In addition, spin–orbit 
coupling may lead to magnetic anisotropy, which 
manifests itself through anisotropic exchange interac-
tions [30] as well as single-ion anisotropy. 2D materials 
often exhibit (nearly) isotropic magnetic interactions 
in the plane of the materials and in the following we 
will restrict ourselves to models of the form

H = −1

2

∑
i �=j

JijSi · Sj −
∑

i

Ai(S
z
i )

2 − 1

2

∑
i �=j

BijS
z
i Sz

j ,

 (1)

where the sums over i and j  run over all magnetic 
sites. Jij denotes the isotropic exchange between spins 
at site i and j , Bij is the anisotropic exchange for spins 
pointing out of the plane (here assumed to be the z-
direction), and Ai is the single-ion anisotropy. We 
will also assume that the model is composed of a 
single kind of magnetic atom (as is the case for all 
the magnetic materials listed in the current version 
of C2DB), which is characterized by a half-integer 
S, yielding the maximum possible eigenvalue of Sz 
for any site. The most general form of the exchange 
interaction between sites i and j  can be written as ∑

αβ Sαi Jαβij Sβj , where Jαβij  is a 3 × 3 tensor for a given 

pair of i and j . This includes the Dzyaloshinkii–Moriya 
interactions as the anti-symmetric part as well as 
symmetric off-diagonal components that give rise 
to Kitaev interactions [30]. Such terms are neglected 
in the present work since, we are mainly interested in 
critical temperatures which is dominated by the terms 
included in equation (1). However, we emphasize that 
the neglect of such terms as well as the assumption of 
in-plane magnetic isotropy is an approximation we 
will make to reduce the set of parameters needed for 
the identification of promising candidates. Below we 
discuss a few important exceptions exemplified by 
materials with large critical temperatures that are not 
well described by the model (1).

In order to obtain the magnetic properties of a 
given material based on the model (1), one needs to 
extract the parameters Jij, Ai and Bij. In the case of a 
single magn etic element we have Ai  =  A and restrict-

ing ourselves to nearest neighbor interactions we 
take Jij  =  J and Bij  =  B if i, j  are nearest neighbors 
and Jij = Bij = 0 otherwise. The parameters can then 
be obtained by mapping the model to first principles 
calcul ations based on density functional theory [31]. 
In particular, the three parameters can be obtained 

from the total energies of the four spin configura-

tions E⊥(‖)
FM  and E⊥(‖)

AFM , where EFM  is the energy of a 

fully ferromagn etic configuration and EAFM is an anti-

ferromagnetic state that involves anti-parallel spin 
alignment. The superscripts ⊥ and ‖ indicates whether 
the spinors are lying in the plane of the materials or 

perpendicular to the plane. A ferromagnetic material 

with E⊥
FM < E‖

FM, will thus have an out-of-plane easy 
axis. The four configurations are illustrated in figure 1. 
All energies are evaluated with the geometry obtained 
from the relaxed ferromagnetic ground state. For 
materials with a single magnetic atom in the unit cell, 
we have doubled the unit cell in order to accommodate 
the anti-ferromagn etic configuration. Comparing 
with equation (1) and approximating the spin opera-
tors by classical vectors we can obtain the parameters 
as

A =
∆EFM(1 − NFM

NAFM
) + ∆EAFM(1 + NFM

NAFM
)

2S2
, (2)

B =
∆EFM −∆EAFM

NAFMS2
, (3)

J =
E‖

AFM − E‖
FM

NAFMS2
, (4)

where ∆EFM(AFM) = E‖
FM(AFM) − E⊥

FM(AFM) are the 

energy differences between in-plane and out-of-
plane spin configurations for ferromagnetic(anti-
ferromagnetic) structures and NFM(AFM) is the number 
of nearest neighbors with aligned(anti-aligned) spins 
in the anti-ferromagnetic configuration. For bipartite 
lattices NFM = 0 and NAFM is simply the number of 
nearest neighbors. In contrast,  the triangular magnetic 
lattices (for example the MoS2 crystal structure) have 

Figure 1. Examples of spin configurations for the calculation of Heisenberg parameters A, B and J: (a) E⊥
AFM, (b) E⊥

FM , (c) E‖
AFM and 

(d) E‖
FM .
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no natural anti-ferromagnetic configurations and 
one has to consider a frustrated configuration where 
each atom has aligned as well as anti-aligned nearest 
neighbors. In the present work we have evaluated the 
exchange coupling constants Eq. (4) from the bare FM 
and AFM DFT energies without spin−orbit coupling, 
since the energy difference entering equation (4) 
can be tricky to converge properly when spin−orbit 
coupling is included.

Once the parameters have been determined the 
Curie temperatures can be calculated from an expres-
sion obtained in [24], which was derived by fitting to 
classical Monte Carlo (MC) simulations of the model 
(1) combined with renormalized spinwave theory. 
This simplifies the procedure significantly compared 
to running MC calculations for all materials and 
still assures a good reliability compared to available 
exper imental data [24]. The expression for the Curie 
temper ature is

TC =
S2JTIsing

C

kB
f

(
∆

J(2S − 1)

)
 (5)

where

f (x) = tanh1/4

[
6

Nnn
log(1 + γx)

]
 (6)

is a fitted function with γ = 0.033 and Nnn the 
number of nearest neighbors. TIsing

C  is the critical 
temperature of the corresponding Ising model (in 
units of JS2/kB), which has been tabulated for all the 
Archimedian lattices [22], and are given by 1.52, 2.27, 
and 3.64 for honeycomb, square and triangular lattices 
respectively.

∆ = A(2S − 1) + BSNnn (7)

is the spinwave gap, which is the smallest energy 
required for a magnetic excitation. It follows from the 
Mermin–Wagner theorem that a positive spinwave gap 
is a minimal requirement for out-of-plane magnetic 
order in 2D, and ∆ thus provides a crucial parameter 
that can be used for a rough screening for materials 
that exhibit magnetic order at finite temperature. The 
spinwave gap was calculated by taking the ground state 
to have an out-of-plane ferromagnetic magnetization 
and compared to an in-plane ferromangetic 
magnetization. A negative spinwave gap thus implies 
that the material can only exhibit in-plane magnetic 
order.

It should be noted that for S  =  1/2, the single-
ion anisotropy alone cannot open a gap in the spin-
wave spectrum and magnetic order thus requires 
anisotropic exchange. We note that the present 
approach can lead to situations where a material with 
an out-of-plane easy axis (∆EFM > 0) has a nega-
tive spinwave gap indicating that the ground state is 
unstable. For example, for a honeycomb lattice with 
Nnn = NAFM = 3 and S  =  1 equations (2)–(4) one 
obtains ∆ < 0 if ∆EAFM > 3∆EFM. This is due to the 
factor of 2S  −  1, which replaces a factor of 2S when 

quantum corrections to the anisotropy terms are taken 
into account in renormalized spinwave theory [3, 24]. 
In principle this is inconsistent with the energy map-
ping approach, which is based on a classical treatment 
of the Heisenberg model. However, a full quantum 
mechanical energy mapping analysis is beyond the 
scope of the present work. In figure 2 we compare the 
magnetization and heat capacity obtained from MC 
calculations of CrI3 as well as the model result from 
equation (5). The critical temperature can be obtained 
from the position of the peak in the heat capacity.

The parameters A, B, and J (equations (2)–(4)) and 
critical temperatures (equations (5)–(7)) have been 
calculated for the nearly 550 materials listed in the 
C2DB database, which display honeycomb, square or 
triangular magnetic lattices, including stable as well as 
unstable materials. The calculations were performed 
with the same plane wave cutoff and k-point sampling 
as used for the magnetic anisotropy calculations in the 
database [20]. Examples of such structures are shown 
in figure 3 and includes the transition metal dichalco-
genides (TMD) in the 1T phase and in the 2H phase 
(triangular magnetic lattice), compounds adopting 
the FeSe crystal structure (square magnetic lattice), 
and transition metal trihalides such as CrI3 (honey-
comb magnetic lattice). In figure 4 we show all the cal-
culated parameters J and ∆ for insulators and metals 
with triangular, square or honeycomb lattice.

The transition metal halogen chalcogen (TMHC) 
comprises another crystal structure that deserves an 
additional comment here. These materials display an 
atomic structure that resembles a distorted hexagonal 
magnetic lattice arranged over two layers. Although at 
least two comparable—but distinct—exchange paths 
are identifiable, MC calculations show that we can 
obtain rough estimates of the critical temperatures 
from the model (5) by treating it as an hexagonal lat-
tice with a single effective nearest neighbour coupling 
obtained from the energy mapping analysis. For exam-
ple, for CrIS we obtain TC = 118 K from the model (5), 
which is in decent agreement with the MC results of 

Figure 2. MC calculations of the magnetic moment per 
atom and heat capacity (dE/dT) calculated as a function of 
temperature for CrI3. The dashed vertical line at T  =  31 K, 
indicates the predicted critical temperature obtained from 
equation (5).
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140 K including both nearest and next-nearest neigh-
bour exchange interactions.

3. Results and discussion

In figure 5 we show the exchange coupling J and 
spinwave gap ∆ for the stable ferromagnetic materials 
with ∆ > 0, grouped by structure prototypes. 
Relevant details about the prototypes and parameters 

used in equations (2)–(4) are listed in table 1.
We have performed the calculations for insulating 

as well as metallic materials. For metals, the value of S 
is ill-defined and here we have simply used the magn-
etic moment localized on the magnetic atoms, which 
is obtained by integrating the magnetization den-
sity over the PAW spheres. Moreover, the Heisenberg 
model is not a reliable starting point for itinerant mag-
nets and to our knowledge there is no simple method 
to obtain critical temperatures for metallic ferromagn-
etic materials. For this reason we will not discuss 
metallic materials any further in the present work, 
but simply note that large anisotropies and exchange 
couplings indicate that metallic compounds such as 
CoBr3, VBr3, NiI3, and NiBr3 could potentially exhibit 
very high critical temperatures. In general we observe 
that most compounds contain transition metal atoms 
with 3d valence electrons. In particular Cr, Mn, Fe, Ni 
and Co, which are all well-known elements in magnetic 
materials. In addition, most of the compounds contain 

halides, albeit with a few important exceptions (for 
example MnO2). In table 2 we show a list of the all the 
insulating ferromagnetic materials and the calculated 
critical temperatures. The top part of the table con-
tains the stable materials and in the lower part we have 
included a few examples of materials that exhibit very 
high critical temperatures but which are predicted to 

be unstable in their pristine form.

3.1. FeCl2

The largest Curie temperature is found for FeCl2 in 
the MoS2 crystal structure where we obtain TC = 202 
K. The main reason for the high value of TC is the 
large magnetic moment of 4 µB per Fe atom and an 
exchange coupling of J  =  15 meV, which is one of the 
largest values found in the present study. Previous 
ab initio calculations have reported that FeCl2 in the 
CdI2 crystal structure (which is metallic) is more 
stable compared to the MoS2 crystal structure [32, 33]  
and the Curie temperature was estimated to 17 K 
based on mean-field theory [32]. Our calculations 
confirm the stability hierarchy and predict an even 
more stable prototype GeS2 (formation energy 
reduced by  ∼30 meV/atom compared to the MoS2 
phase). However, we do not expect out-of-plane 
long-range ferromagnetic order in either the CdI2 
or the GeS2 crystal structures, since the spinwave 
gaps are negative in both cases. Interestingly, FeCl2 
in the CdI2 crystal structure has positive single-
ion anisotropy (A), which could indicate magnetic 
order. However, a negative anisotropic exchange 
coupling (B) yields an overall negative spinwave 
gap and the material thus serves as a good example 
of a case where the single-ion anisotropy is not a 
good indicator of magnetic order. To our knowledge 
there is no experimental reports of isolated 2D 
FeClX compounds. However, FeCl3 in the BiI3 crystal 
structure has been intercalated in bulk graphite 
exhibiting a ferromagnetic transition at temperature 
T  =  8.5 K [34]. Recently it has also been employed 
as functional intercalation in few-layer graphene 
compounds to weaken restacking of graphene 
sheets [35] and bilayer graphene compounds 
[36] to promote magnetic order in graphene [37]. 
Nevertheless, according to our calculations, the FeCl3 

Figure 3. Top and side view of a (a) square, (b) honeycomb, (c) triangular, (d) TMHC crystal structures. Magnetic atoms are in blue.

Figure 4. Distribution of the calculated parameters J and ∆ 
for 87 metallic and 270 insulating materials obtained with 
PBE.
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crystal structure is less stable than the FeCl2 ones and 
is not expected to exhibit ferromagnetic order as free 
standing layers due to a negative value of the spinwave 
gap. In bulk form FeCl2 is known in the CdI2 crystal 
structure with in-plane ferromagnetic order [38], but 
the long range order is stabilized by interlayer anti-
ferromagnetic exchange coupling, which supports 
our assertion that exfoliated layers of this type will 
not exhibit magnetic order. Bulk FeCl3 has also been 
reported to form different stacking polymormphs of 
the BiI3 crystal structure, but the magnetic properties 
of these materials are not known [38].

3.2. MnO2

Monolayers of MnO2 in the CdI2 crystal structure have 
been exfoliated in reference [39], but the magnetic 
properties have not yet been thoroughly investigated 
experimentally. Our calculations confirm a 
ferromagnetic ground state in agreement with previous 
calculations [40], where a critical temperature of 140 
K was predicted. However, that result was obtained 
from energy mapping analysis using PBE  +  U DFT 
(U  =3.9 eV) and MC calculations based on the Ising 
model. From simulations of the Heisenberg model—
explicitly including the finite anisotropy—we obtain a 
TC) of 63 K using Heisenberg parameters from a pure 

PBE calculations. The effect of Hubbard correction will 
be discussed in the next section.

3.3. YCl2

A critical temperature of TC = 55 K is found for YCl2 
in the MoS2 prototype. There is neither experimental 
or theoretical reports on this material and it could 
pose an interesting new 2D magnetic compound. 
Our calculations indicate that it is highly stable in 
the ferromagnetic configuration with a magnetic 
moment of 1 µB per Y atom. However, since the 
material comprises a spin-1/2 system the classical MC 
calculations of the critical temperature may not be 
very accurate.

3.4. CrX3

As reported in a previous study employing the same 
method [24] we predict CrI3 in the BiI3 structure to 
have TC = 31 K, while the similar compounds and 
CrCl3 and CrBr3 have TC of 9 K and 19 K respectively. 
We note that our calculated critical temperature for 
CrI3 is somewhat lower than the experimental value 
of 45 K. This is mainly due to the fact that PBE tends 

Figure 5. PBE calculations of exchange coupling J (triangles) and spinwave gap ∆ (squares) of stable ferromagnetic materials with 
∆ > 0. Green background indicates insulating materials.

Table 1. Prototypical crystal structure, geometry of the magnetic 
lattice and parameters used in equations (2)–(4) for materials 
investigated.

Structure

Magnetic 

lattice NFM NAFM

MoS2 Triangular 2 4

FeOCl

CdI2

MoSSe

WTe2

PdSe2 Square 0 4

GeS2

FeSe

AgBr3 Honeycomb 0 3

BiI3

Table 2. List of 2D magnetic insulating materials with positive 
exchange coupling J and positive spinwave gap ∆. Structure 
denotes the prototypical crystal structure and S is the spin carried 
by each magnetic atom. The critical temperature TC is obtained 
from equation (5). The top part of the table contains dynamically 
and thermodynamically stable materials. The lower part of the 
table contains materials that are not expected to be stable in their 
pristine form but exhibit high critical temperatures.

Formula Structure J (meV) ∆ (meV) S [�]

TC 

(K)

FeCl2 MoS2 15.14 0.053 2.0 202

MnO2 CdI2 3.35 0.305 1.5 63

CoCl2 CdI2 45.81 0.073 1.5 55

YCl2 MoS2 16.45 0.007 0.5 55

CuCl3 BiI3 15.34 0.057 1.0 33

CrI3 BiI3 2.31 0.971 1.5 31

CrBr3 BiI3 1.98 0.234 1.5 19

NiCl2 CdI2 11.08 0.001 1.0 17

CrCl3 BiI3 1.4 0.033 1.5 9

RuCl2 MoS2 18.65 2.196 2.0 598

RuBr2 MoS2 16.10 1.760 2.0 507

2D Mater. 6 (2019) 045018
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to underestimate the exchange coupling and can be 
improved by using a PBE  +  U scheme as discussed 
below. CrCl3 has not previously been described 
in its 2D form, but it is known as ferromagnetic 
bulk compounds in the BiI3 crystal structure 
with out-of-plane magnetization [38]. A recent 
experimental investigation employing ballistic Hall 
micromagnetomoetry on monolayer CrBr3 reports 
a critical temperature of 27 K [41], slightly higher 
thank our prediction of 19 K. The experimental Curie 
temperatures of bulk CrCl3, CrBr3, and CrI3 are 27 
K, 47 K, and 70 K respectively. Our calculated values 
show the same hierarchy, but are reduced compared to 
the bulk values due to the lack of interlayer exchange 
coupling.

3.5. CuCl3

For CuCl3 in the BiI3 crystal structure we find a 
critical temperature of 33 K, which is similar to the 
calculated value of CrI3. The material does, however, 
lie above the convex hull by 0.15 eV per atom, which 
could complicate experimental synthesis and 
characterization.

3.6. XCl2

Bulk CoCl2 and NiCl2 are both known to display 
anti-ferromagnetic interlayer coupling and in-plane 
ferromagnetic order [38]. As seen in table 2, our 
calculations predict the materials to exhibit out-
of-plane order. For NiCl2, however, one should be a 
bit cautious due to the extremely small value of the 
spinwave gap ∆ and more accurate calculations could 
lead to a ground state with in-plane magnetic order. 
Experimental measurements on bulk samples indicate 
anomalies in the heat capacity related to magnetic 
phase transitions at 24 K and 52 K. While the first result 
is in good agreement with our predicted properties, the 
second one is significantly higher and could be related 
to an additional phase transition in the 3D structure.

3.7. Metastable high-TC compounds
The lower part of table 2 shows two materials that 
we do not predict to be stable, but may be of interest 
due to the large predicted critical temperatures. Here 

we comment briefly on the case of RuCl2 in the MoS2 
crystal structure, which we predict to be a dynamically 
stable insulator with a critical temperature of 598 K. It 
is, however, situated 0.5 eV above the convex hull, which 
will mostly likely pose an obstacle to experimental 
synthesis. Nevertheless, the calculations show that very 
high values of critical temperatures are indeed possible 
in 2D materials with realistic atomic-scale parameters. 
It should be mentioned that monolayers of RuCl3 in 
the BiI3 crystal structure have been exfoliated and 
characterized experimentally [42]. Moreover, in a 
recent study [43] the critical temperature of monolayer 
RuCl3 was calculated using DFT and MC simulations 
based on the Heisenberg model and found TC = 14.21 
K [43]. However, a Hubbard term is required to open 
a gap and RuCl3 in the BiI3 crystal structure is metallic 
within PBE [44, 45], which is why we do not include it 
in table 2.

3.8. In-plane anisotropy
As mentioned above, materials with the TMDH crystal 
structure have been considered as effective triangular 
magnetic lattices with a single nearest-neighbour 
coupling. However, this model can only be used for 
a rough screening of materials. For example, CrBrS 
exhibits a strong in-plane anisotropy and the axis 
of magnetization are ordered (from the hardest axis 
to the easiest) as: x, y  and z. In equation (1), in-plane 
anisotropy is not considered and we thus extend the 
model with the full set of anisotropy parameters Ax, 
Ay , Bx, and By  that measures the single-ion anisotropy 
and anisotropic exchange with respect to both x 
and y  directions (relative to the z-direction). These 
parameters can be found by generalizing the energy 
mapping analysis equations (2) and (3) to include 
different in-plane directions. We then run MC 
calculations using the full set of parameters to find 
the critical temperatures, including nearest and next-
nearest neighbours couplings J1 and J2. We find several 
insulating materials in this crystal structure that shows 
ferromagnetic order. The results are shown in table 3. 
In particular, CrBrS and CrBrSe are predicted to have 
a critical temperature of 160 K and 140 K respectively, 
in good agreement with recent theoretical calculations 

Table 3. Ferromagnetic materials in the TMDH crystal structure. The first two columns show nearest neighbour and next-nearest 
neighbour exchange coupling constants in meV. Columns three to six display anisotropy parameters calculated with respect to the two in-
plane directions x and y  in meV. In the second last column we state the crystallographic directions of magnetization listed from the hardest 
to the easiest axis. The last column shows the critical temperature in K obtained from MC calculations with these parameters.

J1 J2 Ax Ay Bx By Easy axis TC

CrBrS 6.41 4.01 0.051 0.027 −0.004 −0.0 z, y, x 160

CrIS 5.71 4.85 0.084 −0.223 0.025 0.033 x, z, y 140

CrBrSe 7.10 5.97 −0.018 −0.042 0.022 0.028 z, y, x 140

CrClSe 7.05 5.81 −0.038 −0.0 0.021 0.017 z, x, y 130

CrClS 6.52 3.99 0.026 −0.003 −0.005 0.003 z, y, x 130

MnClN 2.66 5.76 0.023 0.044 0.022 0.012 x, y, z 75

CrBrO 0.42 0.11 0.012 0.039 −0.0 −0.003 z, x, y 15

CrClO 1.08 0.74 −0.010 0.034 0.004 0.001 y, x, z 15
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[46] and for CrIS we calculate a critical temperature of 
140 K. We expect in-plane magnetization with similar 
critical temperature for CrClS(Se) as well, while for 
MnClN the easy axis is along the out-of-plane direction 
up to 75 K. Finally we obtain a Curie temperature of 
15 K for CrBrO and CrClO, which has previously 
been predicted to have a Curie temperature of 160 K 
based on an Ising model approach [47]. Again, this 
comparison emphasizes that the magnetic anisotropy 
cannot simply be regarded as a mechanism that fixes 
the magnetization to the out-of-plane direction: 
approximating magnetic properties by the Ising model 
may yield a critical temperature that is wrong by an 

order of magnitude.

3.9. Hubbard U
Almost half of the materials present in C2DB contain 
at least one element with a partially filled d-shell. 
Local and semi-local xc-functionals such as PBE are 
known to overestimate delocalization of correlated 
electrons, due to the uncompensated Coulomb 
self-interaction of the electron. In the Hubbard 
model a term is introduced that acts as an effective 
electronic on-site repulsion and provides a penalty to 
delocalization. In order to determine the influence of 
the Hubbard correction we have recalculated exchange 
and anisotropy parameters for CrI3 for a range of U 
values in the PBE  +  U scheme. The structure was fully 
relaxed for each value of U and the results are shown in 
figure 6. We observe that an increasing value of U leads 
to an overall increase of both ∆ and J, which result in 
higher critical temperatures. The dependence of TC on 
U is roughly linear with TC increasing by 5 K per eV 
that U is increased.

In order to gain more insight into the general influ-
ence of U for the calculations of magnetic properties, 
we have recalculated the magnetic parameters and 
critical temperature for all magnetic materials in the 

C2DB containing 3d valence electrons. We used the 
optimal values determined in [48] and listed in table 4. 
For each material the structure was relaxed with the 
given value of U, but the stability analysis was based on 

bare PBE.
The inclusion of U can have a rather dramatic effect 

on the results. For example, the magnetic configura-
tion of the ground state or the magnetic moment local-
ized on the transition metal ion may change. The results 
for the stable materials are shown in figure 7, while the 
insulating systems are listed in table 5. Including a Hub-
bard term in the entire workflow (from the relaxation 
step onward) affects quantitatively and in some cases 
also qualitatively the ground-state. This means that the 
magnetic moment, the energy gap or the sign of ∆ may 
change, making the comparison with table 2 meaningful 
only for a subset of materials. Compounds that are also 

present in table 2 are shown in bold face for comparison.

3.9.1. Effect of U on TC

For MnO2, the main effect of adding a Hubbard 
correction is to increase the exchange parameter 
J by a factor of two. Interestingly the anisotropy 
parameters A and B decrease and the spinwave gap ∆ 
becomes less than half the value obtained with PBE. 
Nevertheless, the overall effect is an increase of the 
critical temperature from 63 K to 82 K. This number 
can be compared to the result in [40] where a critical 
temperature of 140 K was estimated from the Ising 
model.

For CrI3 we predict a critical temperature of 50 K 
with PBE  +  U and similarly TC increases from 19 K 

Figure 6. Calculated magnetic parameters of CrI3 as a function of U. J, A and B, ∆ are in units of meV and critical temperatures TC 
are in units of K.

Table 4. Hubbard parameters employed in the PBE  +  U 
calculations.

Element Fe Mn Cr Co Ni V Cu

U (eV) 4.0 3.8 3.5 3.3 6.4 3.1 4.0

2D Mater. 6 (2019) 045018

124 7 Papers



9

D Torelli et al

to 24 K for CrBr3. These are significantly closer to the 
experimental value (45 K and 27 K respectively) than 
the values obtained with bare PBE. The critical temper-
atures of CoCl2 and CrCl3 are almost unaffected. These 
results indicate that it is non-trivial to predict how the 
inclusion of a Hubbard U influences the calculated 
critical temperatures in general.

For the compounds MnI2, MnBr2, and FeBr3, 
which all have large magnetic moment of 5µB per 
magn etic atom we obtain rather low critical temper-
atures of 21, 16 and 2 K respectively. This is mainly due 
to small values of exchange coupling J for these mat-
erials. The inclusion of U in MnI2 and MnBr2 increases 
the electronic gap as well as the spinwave gap. But most 
importantly, it yields a ferromagnetic ground state, 
while the ground state is anti-ferromagnetic without 
the inclusion of U [49]. For MnI2 The result appears 
to be in qualitative agreement with neutron scat-
tering experiments on the bulk compounds, which 
reports a helical magnetic structure below a critical 
temperature of 3.4 K, with the moments being aligned 
in the individual planes [38, 50]. This could indicate 
that PBE  +  U provides a more accurate description 
than PBE, which does not predict magnetic order for 
MnI2. For MnBr2 in the CdI2 crystal structure, neutron 
scattering experiments on the bulk parent structure 
revealed an anti-ferromagnetic order below T  =  2.16 
K with magnetic moments lying in-plane [51]. How-
ever, this is not necessarily in contradiction with our 
calculations since the observed anti-ferromagnetic 
configuration is ‘double-striped’, a configuration that 
has not been considered in the present study. For FeBr3 
the Hubbard term makes the spin jump from 1/2 to 
5/2 per  Fe atom and opens a spinwave gap. A previ-
ous investigation of this material showed that it is pre-
dicted to be a quantum spin Hall insulator with PBE 
while PBE  +  U predicts a trivial insulator above a criti-
cal value of U  =0.18 eV [21].

3.9.2. Metastable high-TC compounds
The lower part of table 5 lists materials, which are 
not predicted to be completely stable in their pristine 
form according to PBE calculations (we have not 
performed a full stability analysis with PBE  +  U). Bulk 
CoO has an anti-ferromagnetic rock-salt structure 

with a critical temperature of 293 K [52]. According 
to PBE calculations the most stable 2D phase is a 
metallic CdI2 crystal structure (parameters J and ∆ 
are shown in figure 5). In the FeSe crystal structure, 
CoO has a low dynamic stability (0.5 eV/atoms above 
the convex hull) but we report it here due to the very 
high critical temperature of 520 K originating from the 
extraordinarily large exchange coupling predicted by 
PBE  +  U.

FeS in the FeSe crystal structure has a non-magn-
etic ground state with PBE, but is predicted to be highly 
stable and is situated on the convex hull. With PBE  +  U 
the ground state becomes ferromagnetic and we pre-
dict a high critical temperature of 413 K. According to 
previous calculations [53], however, the true ground 
state is a striped anti-ferromagnetic configuration, 
which is not taken into account in this work.

3.9.3. In-plane anisotropy
In table 6 we list Heisenberg parameters and critical 
temperatures for TMHC structures obtained from 
PBE  +  U calculations and MC calculations following 
the same procedure as in the previous section where 
no Hubbard correction was included. Comparing 

Figure 7. PBE  +  U calculations of exchange coupling J (triangles) and spinwave gap ∆ (squares) of stable ferromagnetic materials 
with ∆ > 0. Green background indicates insulating materials.

Table 5. List of 2D non-metal materials with positive exchange 
coupling J and spin wave gap ∆, obtained from PBE  +  U 
calculations. Structure denotes the prototypical crystal structure 
and S is the spin carried by each magnetic atom. The structures in 
bold are present also in 2 for comparison. The top part contains 
stable materials, whereas the lower part contains materials with 
large critical temperatures that may be unstable in their pristine 
form.

Formula Structure J (meV) ∆ (meV) S [�]

TC 

(K)

CoCl2 CdI2 3.21 0.249 1.5 57

CrI3 BiI3 3.95 1.280 1.5 50

CrBr3 BiI3 2.82 0.185 1.5 24

MnI2 CdI2 0.40 0.081 2.5 21

MnBr2 CdI2 0.41 0.024 2.5 16

CrCl3 BiI3 2.19 0.016 1.5 10

NiCl2 CdI2 5.69   ∼  10−4 1.0 7

FeBr3 BiI3 0.04 0.124 2.5 2

CoO FeSe 106.54 0.199 1.5 520

FeS FeSe 28.99 0.591 2.0 413
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the results with table 3, it is noted that MnClN and 
some of the Cr-based compounds, which exhibit 
a high critical temperature with pure PBE are not 
ferromagnetic insulators with PBE  +  U. On the other 
hand, a new material—CrIO—which did not show 
ferromagnetic order with bare PBE is predicted to 
exhibit ferromagnetic order at 25 K by PBE+U.

4. Conclusions

We have presented a high throughput computational 
screening for magnetic insulators based on the 
computational 2D materials database. In contrast to 
several previous studies of magnetism in 2D, we have 
emphasized the crucial role of magnetic anisotropy 
and used the spinwave gap as a basic descriptor that 
must necessarily be positive in order for magnetism to 
persist at finite temperatures. This criterion severely 
reduces the number of relevant candidates and we end 
up with 12 stable candidate materials for which the 
critical temperatures were calculated from classical 
MC simulations. Ten of the materials were predicted 
to have Curie temperatures exceeding that of CrI3 
employing bare PBE calculations. The classical MC 
simulations appear to comprise an accurate method 
for obtaining the critical temperatures for insulating 
materials with S  >  1/2. However, the Heisenberg 
parameters that enter the simulations may be sensitive 
to the approximations used to calculate them. In 
the C2DB all calculations are performed with the 
PBE functional, which may have shortcomings for 
strongly correlated systems. We have thus tested 
how the results are modified if the parameters are 
evaluated with PBE+U instead and we find that the 
predictions do indeed change in a non-systematic 
way. For the hexagonal and honeycomb systems three 
materials that were predicted to be ferromagnetic (at 
finite temperature) are no longer predicted to show 
magnetic order when the PBE+U scheme is employed 
and three materials that were not magnetic with PBE 
become magnetic with PBE+U. For the six materials 
that are magnetic with both PBE and PBE+U the 
critical temperatures are slightly different in the two 
approximations. The biggest difference is seen for CrI3 
where inclusion of U increases the critical temperature 
from 31 K to 50 K, which is closer to the experimental 
value of 45 K.

In the present work we have mainly focused on 
insulators. This restriction is rooted in the simple fact 
that we do not have a reliable way to estimate Curie 

temperatures of metallic 2D magnetic materials. 
Metallic ferromagnetism in 2D is, however, a highly 
interesting subject and we note that room temper ature 
magnetism has recently been reported in the 2D met-
als VSe2 [5] and MnSe2 [4]. Moreover, figures 4 and 
5 indicate that in the C2DB the largest values of both 
spinwave gaps and exchange couplings are found in 
metallic materials. Clearly, there is pressing need for 
theoretical developments of 2D itinerant magnetism 
that can be applied in conjunction with first princi-
ples simulations to provide accurate predictions of the 
magnetic properties of 2D metals.

Finally, we have restricted ourselves to ferromagn-
etic order and the exchange constants calculated in the 
present work will be included in the online version of 
the C2DB. Nevertheless, the C2DB contains 241 anti-
ferromagnetic entries—50 of which are predicted to be 
stable. The prediction of a novel 2D anti-ferromagn-
etic compound would certainly comprise an impor-
tant step forward in the study of 2D magnetism, but the 
theoretical treatment is complicated by the possibility 
of several ordered structures that may coexist at a given 
temperature—in particular for non-bipartite lattice 
such as the triangular one. We will leave the study of 
anti-ferromagnetism in 2D to future work.
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Magnetic materials are typically described in terms of the Heisenberg model, which provides an
accurate account of thermodynamic properties when combined with first principles calculations.
This approach is usually based on an energy mapping between density functional theory and a
classical Heisenberg model. However, for two-dimensional systems the the eigenenergies of the
Heisenberg model may differ significantly from the classical approximation, which leads to modified
expressions for exchange parameters. Here we demonstrate that density functional theory yields local
magnetic moments that are in accordance with strongly correlated anti-ferromagnetic eigenstates
of the Heisenberg Hamiltonian implying that density functional theory provides a description of
these states that conforms with the quantum mechanical eigenstates of the model. We then provide
expressions for exchange parameters based on a proper eigenstate mapping to the Heisenberg model
and find that they are typically reduced by 10 % compared to a classical analysis. Finally, we
calculate the corrections to critical temperature for magnetic ordering for a previously predicted
set of two-dimensional insulators and find that the inclusion of quantum effects may reduce the
predictions of critical temperatures by up to 5 %.

I. INTRODUCTION

The identification of ferromagnetism in a monolayer of
CrI3 in 20171 has initiated a vast interest in the field
of two-dimensional (2D) magnetic materials.2–4 From
a technological point of view, 2D materials comprise
a highly versatile platform for the design of electron-
ics devices with properties tailored to a specific appli-
cations. For example, bilayers of CrI3 exhibit anti-
ferromagnetic interlayer spin alignment, which may be
switched to a ferromagnetic configuration by electro-
static gating. Thus bilayers of CrI3 may act as effi-
cient spin valves that can be controlled by a gate volt-
age and comprises and promising starting point for 2D
spintronics applications.5–8 From a fundamental point of
view the origin of magnetic order in 2D is distinctly
different from its three-dimensional counterpart where
magnetism is typically understood in terms of a spon-
taneously broken symmetry phase. In contrast, the
Mermin-Wagner theorem9 states that continuous sym-
metries cannot be broken spontaneously in 2D at finite
temperatures and magnetic order thus crucially relies on
magnetic anisotropy, which introduces an explicitly bro-
ken spin rotational symmetry. Since the discovery of
magnetic order in monolayers of CrI3, several materi-
als have joined the family of 2D magnetic compounds;
most notably Fe3GeTe2,10 which is metallic (in contrast
to CrI3), FePS3,11 which exhibits anti-ferromagnetic or-
der, and bilayers of CrGeTe3,12 which becomes non-
magnetic in the monolayer limit as a consequence of
(weak) in-plane magnetic anisotropy. These materials
are all characterized by a magnetic structure distinct
from that of CrI3 and have significantly expanded the
range of possibilities for studying 2D magnetism. Con-
sidering the rapid evolution of synthesis techniques for
2D materials13,14 it is expected that several new mag-

netic 2D materials will emerge in the near future. A
wide range new magnetic 2D materials have already been
predicted from first principles calculations15,16 and it re-
mains to be seen whether any of these can be synthe-
sized or exfoliated from bulk materials. However, such
calculations only provide information about the magnetic
ground state and additional modelling is required in order
to predict whether or not magnetic order persist at finite
temperatures17,18. In particular, a general framework for
obtaining critical temperatures for magnetic order in 2D
comprises a major challenge.

The theory of 2D magnetism is still in its infancy
and standard approaches that work reasonably well in
3D is bound to fail in 2D. For magnetic insulators the
thermodynamic properties is expected to be described
accurately by Heisenberg models.19 While such mod-
els are notoriously hard to solve, the thermodynamic
properties at high temperatures are dominated by ther-
mal fluctuations and quantum effects can be safely ne-
glected such that a classical analysis suffices for obtaining
critical temperatures18 and exponents. This approach
can be applied to real materials if the model parame-
ters are obtained by an energy mapping between total
energies obtained from first principles calculations and
the energies obtained from the model in certain spin
configurations.20–25 Due to its simplicity this approach is
always based on classical Heisenberg models, which works
reasonably well for three-dimensional materials. How-
ever, in the case of 2D materials the anti-ferromagnetic
configurations involved in the mapping are strongly cor-
related and are not necessarily well approximated by a
classical configuration of the Heisenberg model.19 In this
paper, we show that density functional theory (DFT) ap-
plied to 2D magnetic insulators predict renormalized lo-
cal magnetic moments that are in agreement with corre-
lated eigenstates of the Heisenberg Hamiltonian and thus
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differ significantly from the classical prediction. This has
two major implications: 1) It justifies the use of Heisen-
berg models for an accurate description of magnetic prop-
erties of insulators. 2) It shows that a proper energy map-
ping analysis should be based on the quantum states of
the Heisenberg model. We will show that the latter point
introduces a significant correction to the Heisenberg pa-
rameters compared with a classical analysis and this has
crucial influence on the prediction thermodynamic prop-
erties such as the critical temperature for magnetic order.

II. THEORY

A. Spin of the anti-ferromagnetic state

We will consider the Heisenberg model with nearest
neighbor interactions given by

H = −J
2

∑
〈ij〉

Si · Sj , (1)

where the sum is over nearest neighbor (magnetic) atoms
and J is the exchange constant. For a bipartite lattice
there is a unique anti-ferromagnetic state where all sites
are anti-aligned with neighboring sites. If J < 0 this
comprises the classical ground state (the Neel state) and
for simplicity we will assume the spins to be aligned along
the z-direction in this state. However, this is not an
eigenstate of the quantum model and standard spinwave
analysis shows that there is a state with lower energy
referred to as the non-interacting magnon (NIM) state,19

which we will regard as an approximate eigenstate of the
Heisenberg Hamiltonian in the following. The NIM state
has the same spin symmetry as the Neel state, but it is
not an eigenstate of Sz

i . Instead the expectation value is
given by

〈Sz〉NIM = S(1− α/S), (2)

where the constant S is the largest eigenvalue of Sz and
α is given by

α =
1

2

[〈
1√

1− |γq|2

〉
BZ

− 1

]
(3)

where

γq =
1

Nnn

∑
∆

e−iq·R∆ . (4)

Here 〈. . .〉BZ denotes a Brillouin zone average over q and
R∆ are the Nnn lattice vectors connecting nearest neigh-
bor sites. The constant α is larger for low-dimensional
models and thus becomes more important for 2D materi-
als than for 3D materials. In the case of the honeycomb
and square lattices the value of α can be evaluated nu-
merically yielding 0.258 and 0.197 respectively.

Although the NIM state is obviously useful to describe
properties of anti-ferromagnets (J < 0), the derivation
does not require that J is negative. In particular, for a
ferromagnetic Heisenberg model (J > 0) the NIM state
can be regarded as the approximate eigenstate of highest
energy. In exact DFT, it is expected such a state should
be represented by a configuration where the spins share
the symmetry of the Neel state. Since the associated
spin densities are accurately described in DFT, the ratio
mAFM/mFM should yield (1 − α/S) provided that the
magnetic moments are strongly localized. However, it is
far from obvious that standard approximations for the
exchange-correlation functional will capture the intricate
correlations in the anti-ferromagnetic state. In Sec. III
we will provide evidence that a proper renormalization
of the spin is captured in the Perdew-Burke-Ernzerhof
(PBE)26 approximation.

B. Evaluating exchange constants

For an N -site periodic bipartite lattice, the expecta-
tion value of the Hamiltonian (1) using the Neel state is
NJS2Nnn/2 where Nnn is the number of nearest neigh-
bors. For an anti-ferromagnetic lattice (J < 0) this com-
prises the classical ground state and for a ferromagnetic
lattice (J > 0) it is the classical state of highest en-
ergy. However, the NIM state has a lower(higher) energy
for anti-ferromagnetic(ferromagnetic) models of the form
(1). It is given by

ENIM =
N

2
(NnnS

2J)
[
1 + β/S

]
, (5)

where

β = 1−
〈√

1− |γq|2
〉

BZ

. (6)

For the honeycomb and square lattices the value of β are
given by 0.202 and 0.158 respectively.

Exchange coupling constants are routinely evaluated
from DFT using ferromagnetic and anti-ferromagnetic
spin configurations in the simulations.20–25 But it is usu-
ally assumed that such configurations can be mapped to
the ferromagnetic state (EFM = −NJS2Nnn/2) as well
as the Neel state (ENeel = NJS2Nnn/2), which always
leads to an overestimation of J . In exact DFT, the total
energy of a given spin configuration should be mapped to
the eigenstate of the Heisenberg model of the same spin
symmetry. In particular, anti-ferromagnetic configura-
tions has to be mapped to the NIM state, which provides
a much better description of the anti-ferromagnetic state
than the Neel state. For bipartite lattices this yields the
expression

J =
∆E

NnnS2(1 + β/2S)
, (7)

where ∆E = ENIM − EFM is the energy difference per
magnetic atom obtained from DFT. Again, we remark
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that the value of β is in general smaller in 3D systems
due to the 3D BZ average and it is often a better ap-
proximation to neglect the correction when evaluating
exchange constants in 3D. However, as we will see below
the inclusion of correlation effects in the energy mapping
analysis can lead to significant corrections to the predic-
tions of exchange constants and critical temperatures in
2D.

C. Curie temperatures in 2D

The model (1) does not allow for magnetic order in
2D due to the Mermin-Wagner theorem9 and one needs
to consider models with terms that explicitly break the
spin-rotational symmetry. Such terms originate from
spin-orbit coupling and here we will assume that the
most important effect on the magnetic order comes from
single-ion anisotropy and nearest neighbor anisotropic
exchange. The Hamiltonian then takes the form

H = −J
2

∑
〈ij〉

Si · Sj −
λ

2

∑
〈ij〉

Sz
i S

z
j −A

∑
i

(Sz
i )2, (8)

where we have assumed isotropy in the xy-plane, which
we take to comprise the atomic plane of the material.
From hereon we assume that J > 0 and that the easy-
axis is along the z-direction. A simple spin-wave analysis
then shows that the magnetic excitation spectrum has a
gap given by

∆ = A(2S − 1) + λSNnn. (9)

A finite gap in the spectrum implies a broken spin-
rotational symmetry and the model is expected to ex-
hibit magnetic order at finite temperatures. It should be
noted that combinations of A and λ that lead to ∆ < 0
implies an instability, which originates from the fact that
the z-axis is not an easy-axis and the spinwave anal-
ysis has not been carried out on the magnetic ground
state. The anisotropy constants λ and A can be evalu-
ated from DFT including spin-orbit coupling by consider-
ing energy differences between in-plane and out-of-plane
spin configurations.16

The Curie temperature of the model (8) may be ob-
tained by either classical Monte Carlo simulations18 or
a renormalized spin-wave analysis.12,17,18 We have previ-
ously shown that renormalized spin-wave theory breaks
down in the case of large single-ion anisotropy and in the
present work we will evaluate Curie temperatures from
classical Monte Carlo simulations. It may seem odd to
rely on a classical analysis since we have argued that
it is crucial to include quantum corrections when map-
ping DFT calculations to Heisenberg models. However,
at temperatures in the vicinity of the critical temperature
quantum fluctuations tend be quenched by thermal fluc-
tuations and a classical analysis becomes reliable even
if they cannot be trusted at low temperatures. How-
ever, the spin-1/2 systems may comprise an important

exception to this, since the single-ion anisotropy term
becomes proportional to the identity in that case. It fol-
lows that magnetic order cannot exist at finite tempera-
tures in spin-1/2 systems unless λ 6= 0, which is in stark
contrast to the predictions of classical Monte Carlo simu-
lations where the value of S simply introduces a rescaling
of the Heisenberg parameters. For S 6= 1/2, Monte Carlo
simulations of the model (8) can be accurately fitted to
a function of the form18

TC =
S2JT Ising

C

kB
f

(
∆

J(2S − 1)

)
(10)

where

f(x) = tanh1/4

[
6

Nnn
log(1 + γx)

]
(11)

and γ = 0.033. T Ising
C is the critical temperature of the

corresponding Ising model (in units of JS2/kB), which
are given by 1.52, 2.27, and 3.64 for honeycomb, square
and hexagonal lattices respectively.

III. RESULTS

In order to assess the performance of semi-local func-
tionals for the correlated anti-ferromagnetic configura-
tion of real materials, we have calculated the absolute
magnetization density

mAbs =

∫
|m↑(r)−m↓(r)|dr (12)

for a wide variety of 2D materials in both the ferromag-
netic and anti-ferromagnetic state. We have included all

1/2 1 3/2 2 5/2
S
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0.9

1.0

m
A
F
M
/
m
F
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Triangular
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FIG. 1. Ratio of average magnetic moments in ferromagnetic
configurations for 51 insulating magnetic materials in C2DB.
The dashed lines show the results obtained from a spin-wave
analysis of the Heisenberg model with square and honeycomb
lattices.
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insulating magnetic materials present in the Computa-
tional 2D Materials Database27 (C2DB) where the mag-
netic atoms form either a honeycomb, square or trian-
gular lattice. In this context, we define an insulator by
a threshold of 0.2 eV for the band gap in both FM and
AFM configurations to ensure that the basic electronic
structure is not altered too much between the different
spin configurations. The computational details can be
found in Ref. 27, but here we just mention that all
calculations were carried out with the electronic struc-
ture code GPAW28–30 using the PBE approximation26

for the exchange-correlation energy. Since the trian-
gular lattice is not bipartite the classical state of low-
est/highest energy is not collinear, but comprises a 120◦

non-collinear structure.31 However, as the far majority
of DFT calculations in the literature (including energy
mapping studies) are based on collinear structures we
choose to base the energy mapping analysis of triangu-
lar lattices on a ”striped” anti-ferromagnetic configura-
tion where each site has two aligned and four anti-aligned
nearest neighbors.16 Since this state does not comprise an
extremum in the classical energy landscape it is not possi-
ble to perform a spinwave analysis to obtain the quantum
corrections to the spin, but due to the four anti-aligned
nearest neighbors the correction is expected to be similar
to the square lattice.

In Fig. 1 we the display the ratio mAFM/mFM per
magnetic atom along with the theoretical predictions
given by Eq. (2). Although the calculations exhibit
clear deviations from the Heisenberg prediction, there
is a significant trend towards increasing quantum cor-
rections with decreasing spin. It may be argued that
a reduction of magnetic moments is expected in the
anti-ferromagnetic state due to incomplete localization of
the magnetic moments, which introduces cancellation of
magnetization densities in the interstitial regions. How-
ever, such cancellation effects are expected to yield a ra-
tio mAFM/mFM , which is independent of spin when av-
eraged over a large class of materials. In contrast, Fig.
1 shows a clear tendency towards decreasing staggered
magnetization with decreasing spin, which is in accor-
dance with the correlated state predicted by the Heisen-
berg model.

The reduction of the ration mAFM/mFM with decreas-
ing spin provides some confidence that DFT is able to
capture (at least partly) the intricate correlations of the
anti-ferromagnetic state at the level of generalized gradi-
ent calculations. This implies that exchange parameters
calculated from energy mapping to the Heisenberg model
should be corrected according to Eq. (7). This in turn
may have a strong influence on the calculation of critical
temperatures from the expression (10). In Fig. III we
show the quantum corrections to the exchange coupling
parameters as well as the corrected critical temperatures
relative to the classical estimates for all ferromagnetic in-
sulators in the C2DB with ∆ > 0. In the case of exchange
parameters the reduction only depends on the value of S,
whereas the corrected critical temperatures also depend
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FIG. 2. Corrections to exchange parameters (top panel) and
Curie temperatures (lower panel) obtained with PBE for all
insulating ferromagnets with positive values of ∆ present in
the C2DB.

Formula Prototype Jcorr [meV] ∆ [meV] S [~/2] TC,corr [K]

AuCl3 BiI3 9.99 1.39 1 58

NiBr2 WTe2 6.76 0.263 1 57

CuCl3 BiI3 14.14 0.058 1 35

CrSiTe3 CdPS3 3.4 0.304 3/2 35

CoCl2 WTe2 1.87 0.098 3/2 34

CrI3 BiI3 2.2 0.961 3/2 34

CoCl2 CdI2 1.89 0.058 3/2 30

CrBr3 BiI3 1.88 0.232 3/2 22

MnO2 CdI2 0.52 0.305 3/2 19

CrClO FeOCl 1.0 0.069 3/2 16

NiCl2 CdI2 6.65 ¡0.001 1 14

CrCl3 BiI3 1.33 0.033 3/2 12

CrGeSe3 CdPS3 0.91 0.018 3/2 9

TABLE I. List of 2D magnetic insulating materials with pos-
itive exchange coupling J and positive spinwave gap ∆ for
PBE calculations.

on the spinwave gap ∆. However, if ∆/J � 1 the change
in critical temperature becomes δTC/TC = 3δJ/4J and
the change in critical temperature thus largely follows the
exchange parameter. In general the reduction in critical
temperatures is on the order of 5 %. The absolute values
of (non-corrected) critical temperatures have been pub-
lished elsewhere and the predicted ferromagnetic materi-
als have been discussed in detail with respect to stability
and experimental results for bulk compounds.16 For com-
pleteness we report the list of materials again In Tab. I ,
but now including the quantum corrections to the critical
temperature.

Although we have argued that PBE (partly) captures
quantum nature of anti-ferromagnetic configurations, a
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correct prediction of ground state energies for magnetic
insulators pose a major challenge for DFT, since these
materials typically involve strongly correlated electrons.
This implies a large uncertainty in the prediction of ex-
change constants and critical temperatures. To quan-
tify this we have repeated the calculations using PBE+U
where we have adopted the values of the Hubbard correc-
tions (U) used in Ref. 32. The corrections to J and Tc are
summarized in Fig. 3 and Tab. II shows a detailed list
of materials obtained with the Hubbard correction. The
overall trend in the corrections shown in Fig. 3 is very
similar to Fig. 2 However the list of ferromagnetic can-
didates in Tab. II is very different from Tab. I. Several
of the materials in Tab. II is lacking from Tab. I and of
the materials present in Tab. II were absent from Tab. I.
Part of the reason is that we only include ferromagnetic
insulators and the inclusion of the Hubbard correction
may open a gap in a material that is predicted to be
metallic without the Hubbard correction. In addition,
the Hubbard correction may change the sign of the spin-
wave gap when U is included in the calculations. In Tab.
II we have highlighted all the materials present in both
cases with bold face. We note that the value of TC = 50
K for CrI3 obtained with PBE+U is in close proximity
to the experimental value of 45 K and seems to provide a
much better prediction than bare PBE. This could, how-
ever, be a matter of luck and the value depends rather
strongly on the choice of functional.33 In particular, the
results of an LDA+U calculation gives a reduction of J
by 20 % and there is no a priori reason to believe that
PBE should be better than LDA for the calculation of
exchange constants. Nevertheless, the inclusion of Hub-
bard corrections typically provides a better description
of the electronic structure in correlated materials and it
is likely that Tab. II comprises a more reliable set of
predictions than Tab. I.

IV. DISCUSSION

We have shown that DFT predicts a renormalization
of localized magnetic moments in anti-ferromagnetic con-
figurations of 2D insulators. The renormalization is in
accordance with the predictions of the Heisenberg model
and implies that energies of stationary states with anti-
ferromagnetic spin alignment should be mapped to the
corresponding correlated anti-ferromagnetic state of the
Heisenberg model. This leads to a reduction in the pre-
dicted values of exchange parameters which in turn leads
to a reduction of predicted Curie temperatures compared
to an analysis based on classical Heisenberg models.

It is interesting to compare the present approach to the
method of infinitesimal rotations of local spin variables
derived by Liechtenstein et al.34,35 In that approach the
magnetic force theorem is utilized to extract the exchange
parameters from the ground state without any reference
to different magnetic configurations. The methodology
has the great advantage that all exchange parameters
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FIG. 3. Corrections to exchange parameters (top panel) and
Curie temperatures (lower panel) obtained with PBE+U for
all insulating ferromagnets with positive values of ∆ present
in the C2DB.

Formula Prototype Jcorr [meV] ∆ [meV] S [~/2] TC,corr [K]

MnO2 WTe2 6.18 0.123 3/2 83

MnO2 CdI2 6.11 0.125 3/2 82

CoCl2 CdI2 3.0 0.249 3/2 54

CrI3 BiI3 3.75 1.28 3/2 50

CrBr3 BiI3 2.68 0.185 3/2 27

MnI2 CdI2 0.38 0.081 5/2 20

MnBr2 CdI2 0.39 0.024 5/2 15

NiI2 WTe2 1.3 0.068 1 15

CrCl3 BiI3 2.07 0.016 3/2 14

FeI3 BiI3 0.21 0.456 5/2 14

MnCl2 CdI2 0.43 0.006 5/2 11

MnI2 WTe2 0.05 0.044 5/2 7

NiBr2 WTe2 1.07 0.001 1 7

FeBr3 BiI3 0.03 0.124 5/2 5

MnBr2 WTe2 0.03 0.006 5/2 5

MnCl2 WTe2 0.02 0.004 5/2 5

VGeSe3 CdPS3 0.13 0.051 1 4

CrSiS3 CdPS3 0.03 0.007 3/2 4

TABLE II. List of 2D magnetic insulating materials with pos-
itive exchange coupling J and positive spinwave gap ∆ for
PBE+U calculations.

can be extracted without relying on magnetic configu-
rations that may or may not comprise stationary states
in DFT. Moreover, it can be argued that the inclusion of
different magnetic configurations (as in the present work)
introduces changes in the electronic structure (andasso-
ciated changes in the energy) that may not be related
to magnetic interactions whereas the Liechtenstein ap-
proach does not suffer from this problem. However, the
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method explicitly relies on the classical Heisenberg model
and cannot include quantum effects at the level of mag-
netic interactions. In contrast, the stationary states of a
given spin symmetry can naturally be regarded as eigen-
states of the Heisenberg model and allows for a direct
mapping to the quantum mechanical Heisenberg model.
Nevertheless, for metallic systems, there is typically a
significant change in the electronic structure between dif-
ferent magnetic configurations and the Liechtenstein ap-
proach seems to be the only viable approach in those
cases.

For 2D ferromagnetic insulators the inclusion of quan-
tum effects leads to corrections of the order of 5-10 %. We
emphasize, however, that the errors originating from in-
accuracies in DFT are likely to be somewhat larger than
this. Nevertheless, the assumption of any first principles
framework for evaluating magnetic interactions must be
that the calculations are reliable and in that case any en-
ergy mapping approach must be based on the quantum
mechanical Heisenberg model. Moreover, the corrections
are easily expressed in an analytical form and can be

included without any additional work. For more compli-
cated lattices and exchange parameters beyond the near-
est neighbor approximation the expression for the quan-
tum corrections must be generalized, but this is straight-
forward to do for any given lattice. It should also be
noted that this approach is not limited to 2D materials,
but the corrections are in general larger compared to 3D
materials.

The energy mapping scheme to obtain first principles
Heisenberg models seems to provide and accurate and
general framework for obtaining critical temperatures in
ferromagnetic 2D insulators provided that DFT can pro-
vide the correct energies of different spin configurations.
It is, however, not obvious that DFT can do that with
present day functionals and there is a strong need for
a systematic assessment of functionals for such calcula-
tions. Perhaps a more important point is the fact that no
framework yet exist for evaluating critical temperatures
in 2D metallic magnets. One possibility could be a gen-
eralization of the spin fluctuation theory developed by
Moriya and Takahashi36,37 to 2D systems with magnetic
anisotropy, but this is left to future work.
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6 E. Suárez Morell, A. León, R. H. Miwa, and P. Vargas,
2D Mater. 6, 025020 (2019).

7 S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Nat.
Nanotechnol. 13, 549 (2018), arXiv:1802.07355.

8 Z. Wang, T. Zhang, M. Ding, B. Dong, Y. Li, M. Chen,
X. Li, J. Huang, H. Wang, X. Zhao, Y. Li, D. Li, C. Jia,
L. Sun, H. Guo, Y. Ye, D. Sun, Y. Chen, T. Yang, J. Zhang,
S. Ono, Z. Han, and Z. Zhang, Nat. Nanotechnol. 13, 554
(2018).

9 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

10 Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song,
J. Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu,
D. H. Cobden, J.-H. Chu, and X. Xu, Nat. Mater. 17, 778
(2018).

11 J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim,
C.-H. Park, J.-G. Park, and H. Cheong, Nano Lett. 16,
7433 (2016).

12 C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao,
W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G.
Louie, J. Xia, and X. Zhang, Nature 546, 265 (2017).

13 J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia,

H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu,
Q. Zeng, C. H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin,
B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, and Z. Liu,
Nature 556, 355 (2018).

14 A. Shivayogimath, J. D. Thomsen, D. M. Macken-
zie, M. Geisler, R. M. Stan, A. J. Holt, M. Bianchi,
A. Crovetto, P. R. Whelan, A. Carvalho, A. H. Neto,
P. Hofmann, N. Stenger, P. Bøggild, and T. J. Booth,
Nat. Commun. 10, 1 (2019), 1805.08002.

15 N. Mounet, M. Gibertini, P. Schwaller, D. Campi,
A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Ce-
pellotti, G. Pizzi, and N. Marzari, Nature Nanotechnology
13, 246 (2018).

16 D. Torelli, K. S. Thygesen, and T. Olsen, 2D Mater. 6,
045018 (2019).

17 J. L. Lado and J. Fernández-Rossier, 2D Mater. 4, 035002
(2017).

18 D. Torelli and T. Olsen, 2D Mater. 6, 015028 (2018).
19 K. Yosida, Theory of magnetism (Springer Berlin, Heidel-

berg, 1996).
20 H. Xiang, C. Lee, H.-J. Koo, X. Gong, and M.-H.

Whangbo, Dalton Trans. 42, 823 (2013).
21 A. Jacobsson, C. Etz, M. Ležaić, B. Sanyal, and S. Blügel,
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We perform a computational screening for two-dimensional magnetic materials based on experi-
mental bulk compounds present in the Inorganic Crystal Structure Database and Crystallographic
Open Database. A recently proposed geometric descriptor is used to extract materials that are
exfoliable into two-dimensional derivatives for which we obtain magnetic exchange and anisotropy
parameters using density functional theory. For the ferromagnetic insulators we then calculate the
Curie temperature from an approximate expression fitted to classical Monte Carlo simulations of
anisotropic Heisenberg models and find XXX two-dimensional ferromagnets that have not been
reported previously.

I. INTRODUCTION

The discovery of two-dimensional ferromagnets (2D)
in 20171,2 has initiated a vast interest in the field of
magnetism in 2D. The origin of magnetic order in 2D
is fundamentally different from the spontaneously bro-
ken continuous symmetry that is responsible for mag-
netism in three-dimensional materials. In particular, the
Mermin-Wagner theorem states that a continuous sym-
metry cannot be broken at finite temperatures in 2D and
magnetic anisotropy is therefore becomes a crucial ingre-
dient for magnetic order in 2D. The first report on 2D
ferromagnetism involved on a monolayer of CrI3,1 which
has a strong easy-axis orthogonal to the plane and has
a Curie temperature of 45 K. At the same time multiple
layers of CrGeTe3 was reported to exhibit ferromagnetic
order down to the bilayer limit, but not in the case of
monolayers due to the presence of an easy-plane, which
comprises a continuous symmetry that cannot be broken
spontaneously. Since then several materials have joined
the family of 2D magnets. Most notably, CrBr3,3 which
have properties very similar to CrI3 but with lower Curie
temperatures of 34 K due to smaller magnetic anisotropy,
Fe3GeTe2, which is metallic and has a Curie tempera-
ture of 130 K4, FePS3

5 which is anti-ferromagnetic with
an ordering temperature of 118 K, and VSe2 where some
evidence have been provided for ferromagnetic order at
room temperature6 although the presence of magnetism
is being debated7. In addition, several studies of mag-
netism in bilayers of various 2D materials have demon-
strated that interlayer magnetic coupling can give rise to
a plethora of new physical properties.8–16

Although the handful of known magnetic 2D materials
exhibit a wide variety of interesting physics that are still
being intensively explored, there is a dire need for dis-
covering new materials with better stability at ambient
conditions and higher critical temperatures for magnetic
order. Such conditions are not only crucial for technolog-
ical applications of 2D magnets, but could also serve as
a boost the experimental progress in the field. In addi-
tion, the theoretical efforts in the field are largely limited

by the few materials that are available for comparison
of measurements and calculations. An important step
towards discovery of novel 2D materials were taken by
Mounet et al.17 where Density Functional Theory (DFT)
was applied to search for potentially exfoliable 2D mate-
rials in the Inorganic Crystal Structure Database (ICSD)
and Crystallographic Open Database (COD). More 1000
potential 2D materials were identified and 56 of these
were predicted to have a magnetically ordered ground
state. Another approach towards 2D materials discov-
ery were based on Computational 2D Materials Database
(C2DB)18–20 where more than 3700 2D materials have
been computationally scrutinized based on lattice deco-
ration of existing prototypes of 2D materials. Of these
there are 152 ferromagnets and 50 anti-ferromagnets that
are predicted to be stable by DFT. In addition to these
high throughput screening studies there are several re-
ports on particular 2D materials that are predicted to
exhibit magnetic order in the ground state by DFT,21–26

as well as a compilation of known van der Waals bonded
magnetic materials that might serve as a good starting
point for discovering new 2D magnets.27

Due to the Mermin-Wagner theorem a magnetically or-
dered ground state does not necessarily imply magnetic
order at finite temperatures and the 2D magnets dis-
covered by high throughput screening studies mentioned
above may not represent materials with observable mag-
netic properties. In three-dimensional bulk compounds
the critical temperature for magnetic order is set by
the magnetic exchange coupling between magnetic mo-
ments in the compound and a rough estimate of critical
temperature can be obtained from mean field theory.28

In 2D materials, however, this is no longer true since
magnetic order cannot exist with magnetic anisotropy
and mean field theory is always bound to fail. The
critical temperature thus has to be evaluated from ei-
ther classical Monte Carlo simulations or renormalized
spin-wave theory of an anisotropic Heisenberg model de-
rived from first principles2,29–31 The former approach ne-
glects quantum effects whereas the latter approximates
interaction-mediated correlation effects at the mean field
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level. Monte Carlo simulations are not well suited to
high-throughput studies, but it has recently been shown
that Monte Carlo simulations can be fitted to an analyti-
cal expression that is easily evaluated for a given material
once the exchange and anisotropy parameters have been
computed. This approach has been applied to the C2DB
resulting in the discovery of 12 new 2D ferromagnetic in-
sulators that are predicted to be stable.32 However, it is
far from obvious that these materials can be synthesised
in the lab even if DFT predicts them to be stable since
they are not derived from experimentally known van der
Waals bonded bulk compounds.

In the present work we have performed a full compu-
tational screening for magnetic 2D materials based on
experimentally known van der Waals bonded materials
present in the ICSD and COD. In contrast to previous
high throughput screening of these databases we evalu-
ate exchange and magnetic anisotropy constants for all
materials with a magnetic ground state and use these to
predict the Curie temperature from an expression fitted
to Monte Carlo simulation of the anisotropic Heisenberg
model. We find XXX Lattice decoration XXX

II. METHODOLOGY

The first step in the computational screening is to
identyfy potentially exfoliable 2D structures from the
bulk materials present in ICSD and COD. In Ref.17

this was accomplished by identifying layered chemi-
cally bonded sub-units and then calculate the exfo-
liation energy from DFT with van der Waals cor-
rections. Here we instead use a recently proposed
purely geometrical method that quantifies the amount
of zero-dimensional (0D), one-dimensional (1D), two-
dimensional and three-dimensional (3D) components
present in a given material.33 The method thus assigns
a 0D, 1D, 2D, and 3D score to all materials and thus
quantifies the 0D, 1D, 2D, and 3D character. The scores
are defined such that they sum to unity and taking the
2D score > 0.5 thus provides a conservative measure of
a material being (mostly) composed of 2D components
that are likely to be exfoliable.

The magnetic properties of possible candidate 2D ma-
terials are then investigated using first principles Heisen-
berg models derived from DFT.2,29–31 In particular, if a
2D candidate material has a magnetic ground state we
model the magnetic properties by the Hamiltonian

H = −J
2

∑
〈ij〉

Si · Sj −
λ

2

∑
〈ij〉

Sz
i S

z
j −A

∑
i

(Sz
i )2, (1)

where J is the nearest neighbor exchange coupling, λ is
the nearest neighbor anisotropic exchange coupling, A
is the single-ion anisotropy, and 〈ij〉 denotes sum over
nearest neighbors. J may be positive(negative) signi-
fying a ferromagnetic(anti-ferromagnetic) ground state
and we have assumed that the z-direction is orthogonal

to the atomic plane and that there is in-plane magnetic
isotropy. This model obviously does not exhaust the pos-
sible magnetic interactions in a material, but has previ-
ously been shown to describe the magnetic properties of
CrI3 accurately.29,30 Most importantly, it is not expected
to provide a good description of itinerant magnets (met-
als) and for insulators the next and third nearest neigh-
bors may be sizable. However, it provides a good starting
point for computational screening studies.

The thermal properties can be investigated from either
renormalized spin-wave calculations28–30,34,35 or classi-
cal Monte Carlo simulations.30,36 Due to the Mermin-
Wagner theorem the magnetic anisotropy constants are
crucial for having magnetic order at finite temperatures.
The amount of anisotropy can be quantified by the fer-
romagnetic spin-wave gap

∆ = A(2S − 1) +NnnSλ (2)

where S is the maximum eigenvalue of Sz
i and Nnn is the

number of nearest neighbors. The gap is calculated by
assuming out-of-plane magnetic order and in the present
context a (unphysical) negative spin-wave gap signals
that the ground state favors in-plane alignment of spins,
which cannot persist at finite temperatures in the model
(1). A positive spin-wave gap is thus required for mag-
netic order in the materials under consideration.

In Ref. 30 it was shown that the critical temperature
for ferromagnetic order (J > 0) of the model (1) with
S > 1/2 can be fitted to the function

TC =
S2JT Ising

C

kB
f

(
∆

J(2S − 1)

)
(3)

where

f(x) = tanh1/4

[
6

Nnn
log(1 + γx)

]
(4)

and γ = 0.033. T Ising
C is the critical temperature of the

corresponding Ising model (in units of JS2/kB). The ex-
pression (3) is readily evaluated for any 2D material with
a ferromagnetic ground state once the Heisenberg param-
eters J , λ and A have been determined. This can be
accomplished with four DFT calculations including spin-
orbit coupling.31,32,37 All DFT calculations were per-
formed with the electronic structure package GPAW38,39

including non-selfconsistent spinorbit coupling40 and the
Perdew-Burke-Ernzerhof41 (PBE) functional.

III. RESULTS

A. Computational screening of COD and ICSD

The ICSD and COD databases combined count more
than 500.000 materials, but removing corrupted or in-
complete entries and duplicates, reduces the number to
167767 bulk materials.33 Of these, a subset of 4264 are
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FIG. 1. Exchange coupling J and spinwave gap calculated
for the magnetic 2D materials obtained from computational
screening of ICSD and COD. Blue marks indicate insulators
and green marks are metals.

predicted to have a 2D score higher than 0.5 and these
materials are the starting point of the present study. We
then perform a computational exfoliation using DFT by
isolating the 2D component and performing a full relax-
ation of the resulting 2D material. We restrict ourselves
to materials that has a 2D component with less than five
different elements and less than a total of 20 atoms in the
minimal unit cell. This reduces the number of candidate
2D materials to 651 compounds. We find 55 materials
with a ferromagnetic ground state and 38 materials with
an anti-ferromagnetic ground state. For all of these we
calculate the exchange coupling J and the spinwave gap
∆ according to the energy mapping approach.31,32,42 The
results are shown in Fig. 1. The spinwave gap is on the
order of 1 meV or less for all materials. The exchange
couplings fall in the range of 0-10 meV for the insula-
tors but can acquire somewhat larger values for the met-
als. However, the energy mapping analysis is somewhat
ill-defined for metals, since the electronic structure may
change significantly when comparing energy differences
between ferromagnetic and anti-ferromagnetic configura-
tions. In particular, for insulators the value of S is a
well-defined integer that can be extracted from the ferro-
magnetic ground state without spin-orbit coupling. But
for metals it is not clear what value to use in the model
(1). In addition the model itself may not be suitable to
describe the magnetic properties of metals.

For the ferromagnetic insulators we calculate the Curie
temperature (TC > 10) according to Eq. (3) and in
Tab. I, we report these along with the values of J and
∆ for materials that have TC > 10 K. It is reassuring
that the well-known Ising type 2D ferromagnets CrBr3

3

and CrI3
1 are reproduced by the screening. In addition,

CrCl3, MnO2, CoCl2, and NiCl2 have previously been
predicted to be ferromagnetic 2D insulators from a com-

Formula J [meV] ∆ [meV] S [~] TC [K]
CrHO2 2.47 0.147 3/2 45
NiRe2O8 2.18 1.294 1 38
CrSiTe3 3.60 0.307 1.5 37
CrI3 2.32 0.936 3/2 35
CoCl2 1.85 0.046 3/2 28
CrBr3 2.01 0.23 3/2 23
MnO2 0.54 0.305 3/2 19
CrClO 1.09 0.069 3/2 16
CoCl2O8 0.26 0.419 3/2 13
CrCl3 1.38 0.032 3/2 13
NiCl2 7.15 <0.001 2 11

TABLE I. List of 2D magnetic insulators with positive ex-
change coupling J and positive spinwave gap ∆ that have a
Curie temperature exceeding 10 K. The Curie temperature
was calculated from Eq. (3).

putational screening study of the C2DB.18,32,42 Multi-
layered system CrSiTe3 is reported to exhibit a large
magnetic anisotropy in the direction perpendicular to the
layers and a ferromagnetic phase transition has been ob-
served at 33 K43. Most importantly, however, the ma-
terials CrHO2, NiRe2O8 and CoCl2O8 are novel ferro-
magnetic insulators that have not been studied prior to
the present work They are predicted to exhibit ferromag-
netic order below 45 K, 38 K, and 13 K respectively. We
stress, however, that the results of a screening study like
the present one should be taken as a preliminary predic-
tion. The magnetic properties may be rather sensitive to
the choice of functional31,32 and a detailed study of func-
tional dependence or inclusion of Hubbard corrections is
required in order to support the theoretical prediction
of these 2D materials being ferromagnetic. In addition
there may be challenges associated with the experimen-
tal exfoliation of these materials that are not taken into
consideration here.

For metallic materials the prediction of thermodynam-
ical properties is more challenging since it is not obvious
that the Heisenberg Hamiltonian (1) comprises a good
starting point for the analysis. Nevertheless, the ex-
change coupling J and spin-wave gap ∆ still provides
a rough measure of the magnetic interactions and mag-
netic anisotropy respectively. Alternatively, one could
specify the energy difference per magnetic atom in ferro-
magnetic and anti-ferromagnetic configurations as well as
the energy cost of rotating the magnetic moments from
the out-of-plane direction to the atomic plane. However,
for the sake of comparison we have chosen to report the
values of J and ∆ resulting from the energy mapping
analysis although it comprises a rather naive approach
for metals. In addition we evaluate the critical temper-
ature that would characterize the model (3) using the
calculated parameters. The results are shown in Tab. II.
Again, we rediscover a few materials (FeTe and NiI2) that
were previously predicted to be ferromagnetic from com-
putational screening of the C2DB. In addition, we find
several materials with exchange couplings on the order of
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Formula J [meV] ∆ [meV] S [~] TC [K]
FeTe 40.31 2.426 1 252
FeCl3 54.05 2.655 1/2 135
Ca2CoO3 4.73 3.527 3/2 107
MgMnGe 12.43 0.604 1 76
RbTiS2 21.37 0.063 1/2 75
NiI2 8.19 0.356 1 71
CrGa2S4 1.97 0.086 2 53

TABLE II. List of 2D magnetic metals with positive exchange
coupling J and positive spinwave gap ∆ that has an estimated
Curie temperature exceeding 50 K. The Curie temperature
was calculated from Eq. (3) except for materials with S = 1/2
where it was obtained from MC simulations

10-50 meV that far exceeds the values found for the in-
sulators. We emphasize again that the comparison is not
exactly fair since the values of J may change significantly
due to large alterations in the electronic structure in the
anti.ferromagnetic state, which do not only originate in
magnetic interactions. Nevertheless, Tab. II provides a
promising starting point for discovering new 2D itiner-
ant ferromagnets, but there is a dire need for a better
theoretical framework that can quantitatively deal with
the thermodynamical properties of itinerant magnetism
in 2D.

We finally note that known that certain known 2D fer-
romagnets like VSe2

6 and CrGeTe3
2 are not present in

Tabs. I-II due to in-plane magnetization, which results
in a negative spinwave gap in the present study. For the
case of CrGeTe3 this is in accordance with the exper-
imentally observed loss of magnetism in the monolayer
limit whereas for VSe2 the origin of magnetic order is
still unresolved.7 In addition we do not find the itinerant
2D ferromagnet Fe3GeTe2,4 which is simply not present
in a bulk parent form in either the COD or ICSD.

B. Combinatorial lattice decoration for new
materials

Several theoretical approaches to materials discovery
are based on the concept of combinatorial lattice deco-
ration. That is, replacing different elements of a known
material with similar elements in the periodic table while
maintaining the stoichiometry and then calculate ther-
modynamic stability and various properties with DFT

or similar metods. For example, CrClO is predicted to
be a stable ferromagnet (see Tab. I) and is likely that
CrBrO or CrIO may also be stable - or perhaps MnClO.
Such an approach is the basis of the C2DB where the
majority of known 2D materials have been subjected to
such combinatorial lattice decoration. Tabs. I and II
contains several materials that do not belong to a known
prototypical 2D material.

In order to extend the computational materials dis-
covery based on the COD and ICSD we haved performed
a computational screening for novel 2D materials based
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FIG. 2. Materials obtained by combinatorial lattice decora-
tion of the MgMnGe and CrGa2Se4 prototypes.

on the prototypes defined by NiRe2O8, MgMnGe and
CrGa2Se2. We perform the lattice decoration according
to the rules defined in Ref. 18 and perform a full re-
laxation of 30, 27, and 24 materials conforming to these
prototypes respectively. Of these 12, 14, and 20 materials
yield a magnetic ground state. For the NiRe2O8 proto-
type only the defining material has J > 0 and ∆ > 0.
From the remaining two prototypes we show the ferro-
magnetic materials with positive spin-wave gap in Fig.
2.

IV. DISCUSSION

1 B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein,
R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A.
McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-
Herrero, and X. Xu, Nature 546, 270 (2017).

2 C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao,
W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G.
Louie, J. Xia, and X. Zhang, Nature 546, 265 (2017).

3 Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao, and

T. Yu, Nano Lett. 19, 3138 (2019).
4 Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song,

J. Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu,
D. H. Cobden, J.-H. Chu, and X. Xu, Nat. Mater. 17, 778
(2018).

5 J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim,
C.-H. Park, J.-G. Park, and H. Cheong, Nano Lett. 16,
7433 (2016).

140 7 Papers



5

6 M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil,
R. Das, T. Eggers, H. R. Gutierrez, M.-H. Phan, and
M. Batzill, Nat. Nanotechnol. 13, 289 (2018).

7 P. M. Coelho, K. Nguyen Cong, M. Bonilla, S. Kolekar,
M.-H. Phan, J. Avila, M. C. Asensio, I. I. Oleynik, and
M. Batzill, J. Phys. Chem. C 123, 14089 (2019).

8 N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao,
Nano Letters 18, 7658 (2018).
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