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Abstract

Quantum key distribution (QKD) is a cryptographic technique which utilizes
quantum phenomena, such as superposition and entanglement, to enable the
sharing of a secret random key for encrypted communication. Continuous
variable QKD (CV-QKD) offers a practical way for performing a secure
key exchange by means of broadband modulation of laser light, where the
information is encoded in the light field quadratures.

We focus on building a real-time high-rate CV-QKD transmitter using
flexible field programmable gate array (FPGA) chip technology. Compos-
able security for CV-QKD has been proven only for Gaussian modulated
quantum states. We implement a high-rate Gaussian sampler using cumu-
lative distribution table (CDT) method. Important security parameters are
calculated and the algorithms are realized with respect to maintaining the
overall security of the CV-QKD system. Furthermore, digital signal pro-
cessing (DSP) blocks are implemented in order to support fast (50 MBd/s)
exchange of quantum states.

A necessary resource in any QKD protocol is a supply of uniformly dis-
tributed random numbers. Such a resource is particularly facilitated by
quantum processes, which can be used to generate provably secure random
numbers. We employ a high-rate vacuum fluctuation-based quantum ran-
dom number generator (QRNG) with 8 Gb/s random number output. Our
standalone QRNG system includes a real-time entropy testing based on mon-
itoring the power spectral density according to a rigorous security model,
instead of using common statistical tests that do not prove security. We ad-
dress the issue of traditionally slow post-processing with a fast randomness
extraction method based on Toeplitz hashing. To our knowledge, this is cur-
rently the fastest real-time QRNG implementation. A consequence of this is
the fastest implementation of the Gaussian sampler used in CV-QKD. The
thesis concludes with the evaluation of the transmitter as a part of our CV-
QKD setup. It demonstrates for the first time an all-in-one implementation
of transmitter functions for high-rate CV-QKD links. We recognize the po-
tential for wide adoption of CV-QKD in near-future secure communication
networks.

Keywords Quantum cryptography, CV-QKD, QRNG, FPGA, Gaussian
modulation, Toeplitz hashing, Entropy testing
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Resumé

Kvantenøglefordeling (QKD) er en teknik hvor en delt, hemmelig tilfældighed
bliver skabt ved brug af kvantefænomener som superpositioner eller sam-
menfiltring. I særdeleshed tilbyder kvantenøglefordeling med kontinuerte
variable (CV-QKD) en praktisk metode til at udveksle en hemmelig nøgle
ved at gøre brug af bredb̊andet modulation af laser lys, hvor informationen
bliver indkodet i lysfeltets kvadraturer.

Vi fokuserer p̊a at bygge en realtid, højrate CV-QKD udsender ved
at bruge fleksible felt-programmerbare-port-tabel-chip (FPGA) teknologi.
Kombinerbar sikkerhed for CV-QKD er blevet bevist for kun Gaussisk mod-
ulerede kvantetilstande. Vi implementerer en højrate Gaussisk sampler
ved at gøre brug af den kumulative-fordelings-tabel-metode (CDT). Vigtige
sikkerhedsparametre bliver udregnet, og algoritmerne bliver realiseret i forhold
til at bevare den overordnede sikkerhed CV-QKD-systemet. Ydermere,
bliver digital-signal-behandlings-blokke (DSP) implementeret for at undersøtte
hurtig (50 MBd/s) fordeling af kvantetilstande.

En nødvendig ressource i enhver QKD protokol er jævnt fordelte til-
fældige tal i særdeleshed beviseligt sikre tilfældige tal genereret af kvan-
teprocessor. Vi anvender en højrate vakuum fluktuations-baseret QRNG
der kan generere tilfældige tal med 8 Gb/s. Vores alene-st̊aende QRNG sys-
tem inkluderer realtids entropi testning baseret p̊a effekt-spektraltætheds-
overv̊agning ifølge en stringent sikkerhedsmodel i stedet for at benytte almin-
delige (men ikke informations-teoretisk-sikre) statistiske test. Indtil videre
er en flaskehals i tilfældighedsgenereringen efterbehandlingen. Vi adresserer
dette problem med en hurtig tilfældigheds-udtræknings-metode baseret p̊a
Toeplitz hashing. Efter vores bedste overbevisning, er dette p̊a nuværende
tidspunkt den hurtigste realtids QRNG implementering. En konsekvens
af dette er den hurtigste implementering af den Gaussiske sampler brugt i
QKD.

Denne afhandling afsluttes ved at evaluere udsenderen som en del af
vores CV-QKD setup. Den demonstrerer brugbarheden af FPGA-baseret
teknologi inden for kvantekryptografi. Vi anerkender potentialet for bred
adoption af CV-QKD in nærfremtids sikker-kommunikationsnetværk.
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Chapter 1

Introduction

The quantum revolution started more than 100 years ago at the begin-
ning of the 20th century with Planck’s explanation of black body radiation.
Planck’s idea involved fundamental discrete units of electromagnetic radia-
tion, energy quanta – photons. The discovery helped Einstein to develop a
theory of the photoelectric effect not long after. It was soon realized that the
new discoveries open the door to a new physics. In the following decades
a completely new mathematical formalism was developed to describe the
strange phenomena observed mostly in the tiny world of particles at small
scales and short time frames. The famous double slit experiment revealed
that photons1 can still behave as a wave. This wave-particle duality is the
consequence of the superposition. Superposition is one of the basic prin-
ciples of quantum mechanics. It is without a classical analog and it leads
to many other non-intuitive phenomena. The superposition principle was
exemplified by Erwin Schrodinger with his famous thought experiment with
a cat being dead and alive at the same time in a sealed box.

Another quantum mechanical effect first discovered by Einstein, Podolsky
and Rosen [1], known as EPR paradox, deals with quantum systems of (at
least) two particles. In their gedanken experiment two interacting particles
with indeterminate momentum were to be sent far away from each other,
for instance to separate ends of the galaxy. Then a measurement of one
of the particles would instantly give information about the momentum of
the other, because of the conservation of momentum. This would not be
strange if in quantum mechanics the initial momentum of each of the par-
ticles is fundamentally without an exact value. Einstein referred to this
phenomenon as a spooky action at a distance. It illustrates the non-local
nature of quantum mechanics and the effect is called quantum entanglement.

In 1927 Werner Heisenberg derived his famous uncertainty principle [2] that

1This effect is not exclusive to photons however.
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CHAPTER 1. INTRODUCTION

asserts a fundamental limit to the precision with which certain pairs of
physical properties of a particle, known as canonically conjugate variables,
such as position and momentum, can be known. The principle stems from
the same mathematical formalism as superposition and entanglement and
is closely related to no-cloning theorem [3]. The theorem states that it is
impossible to create an identical copy of an arbitrary unknown quantum
state. This has big implications to quantum information theory.

Classical information theory deals with efficient coding of information for
storage or for transmitting through a noisy channel. It started the informa-
tion technology revolution that made huge impact in the world especially
in the last several decades. Information is quantified through entropy and
the basic unit is bit that takes values 0 or 1. First ideas of connecting the
information theory and quantum mechanics arose in the 70s. A quantum
generalization of the basic unit of information is called quantum bit or qubit.
In 1984 Bennett and Brassard invented the first quantum key distribution
(QKD) protocol [4] using qubits, now called BB84, after which the field saw
explosive growth.

Fast forward to today, we are in the midst of the second quantum rev-
olution [5]. The first quantum revolution gave us new rules that govern
physical reality and helped shape 20th century, while the second one will
take the rules and develop new technologies that should shape 21st century.
The world has seen a huge increase of investments in quantum technologies
in the last several years.

This work focuses on quantum communication and the most mature tech-
nologies in the field – quantum key distribution and quantum random num-
ber generation. QKD is a subfield of quantum cryptography. In a typical
QKD setup, there is a transmitter (Alice) who prepares a quantum state
and sends it to a receiver (Bob). The goal of such communication is gen-
eration of a classical bit-string that is a shared secret between Alice and
Bob, such that there is almost no leaked information about the string val-
ues to anybody else. In a typical model, an adversary (Eve) is in control
of the channel and can perform physical operations allowed by quantum
mechanics. No-cloning theorem is a core principle in QKD. It assures that
Eve cannot perfectly copy a quantum state generated by Alice. This means
that Alice and Bob, after Bob’s measurement of the state, can detect the
noise introduced by Eve’s snooping as she inevitably introduces the noise
due to the no-cloning theorem. QKD is seen to be a (partial) replacement
to the current public key distribution protocols. Today’s public key infras-
tructure is not only completely broken by the future quantum computers
[6], but the non-existence of an efficient classical algorithm that breaks the
schemes has not been proved. Considering ever rising cyber security threats
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from hackers and governments, the increasing computational power and the
fact that the world economy depends on secure cryptography, it is not hard
to find motivation for developing information theoretic secure QKD systems.

Along with quantum key distribution there is another subfield of quantum
cryptography that has significant impact to both technology and fundamen-
tal science and philosophy. Quantum random number generation is a process
of obtaining true random numbers. Classical physics is seen as a determin-
istic theory. Only quantum mechanics allows true stochastic behaviour,
assuming the validity of known laws of physics. Measurements of quantum
states in principle give random results that cannot be predicted by anybody
in the universe. This is therefore the only way of generating information
theoretic secure random numbers. Random numbers are necessary in most
cryptographic protocols, including QKD. Since quantum-generated random-
ness is the only information-theoretic true randomness, it is a mandatory
part of every QKD setup. Devices that generate quantum randomness are
quantum random number generators (QRNGs).

Field programmable gate array (FPGA) is a programmable chip technology
that has seen an incredible growth for the past two decades. The applica-
tions range from telecommunications to medicine. The affordability paired
with incredible processing power for some purposes makes this technology
very attractive for QKD and QRNG. We use a high-end FPGA to perform
research in one flavour of quantum cryptography that uses continuous vari-
ables (CV). It was shown twenty years ago that quantum continues variables
can be used for quantum cryptography [7]. Continuous variable quantum
key distribution (CV-QKD) and continuous variable quantum random gen-
erators (CV-QRNG) are still young technologies where proof-of-principle ex-
periments were demonstrated only recently. CV technology promises lower
cost and high data rates, therefore it is a perfect place where FPGAs can
show their potential.

This thesis aims to be a tiny step forward towards building a widely used
technology. Its nature is inherently interdisciplinary. Building a quantum
cryptography system requires knowledge in quantum optics, telecommunica-
tions, electronics and security proofs. We hope we captured the important
concepts from the relevant fields, so that the thesis could be read by re-
searchers in both fundamental science and engineering.

Thesis structure

This thesis consists of three main parts. The introductory chapters (1, 2
and 3) include condensed information about topics that are prerequisite for

3



CHAPTER 1. INTRODUCTION

systematic approach to QKD and QRNG. In a sense they represent the au-
thor’s journey of acquiring knowledge necessary for research and technology
development in the field of CV quantum cryptography. The other two parts
are dedicated to the QRNG and QKD implementations in more detail.

There are six chapters in total:

• Chapter 1 is a general introduction with a brief historical overview
of quantum technologies.

• Chapter 2 introduces general theoretical concepts. It consists of the
basic theory of Gaussian quantum optics, following by a brief intro-
duction to classical and quantum information theory.

• Chapter 3 is more specific and is introducing topics in CV-QKD,
from the basic security model, through a description of important
experimental elements, to the CV-QKD setup used as a testbed in
this thesis.

• Chapter 4 is dedicated to high-rate randomness extraction and real-
time entropy tests developed for our implementation of quantum ran-
dom number generator. The chapter also describes a standalone im-
plementation of the QRNG.

• Chapter 5 focuses on the FPGA implementation of the QKD trans-
mitter. QRNG described in Chapter 4 is used as a randomness source
here. Test results of the transmitter performance are presented at the
end of this chapter.

• Chapter 6 gives a conclusion of the work and the outlook for the
future research.

4



Chapter 2

Gaussian quantum optics
and information theory

The first section of this chapter introduces basic knowledge of quantum
theory of light that lays foundation for understanding continuous variable
quantum cryptography. It begins with the quantization the electromagnetic
field. Illustrative notions such as Wigner representation and phase space
are presented. Furthermore there is a brief overview of the Gaussian states
and transformations. Finally, the last section gives a short introduction to
entropy and Holevo information.

2.1 Introduction to Gaussian quantum optics

2.1.1 Quantization of the electromagnetic field and Fock space

We start by establishing a connection between a light wave and a (quantum)
harmonic oscillator [8]. Let us consider a light field confined within a cavity
of length L along the z-axis and polarized along x-axis:

Ex(z, t) =

√
2ω2

V ε0
q(t) sin kz, (2.1.1)

where ω is the angular frequency of the light, k = ω
c is the wave number,

V is the cavity volume, ε0 is vacuum permittivity and c is the speed of
light in vacuum. q(t) is a time dependent amplitude which is recognized as
canonical position. Using Maxwell equations in vacuum the corresponding
magnetic field is found:

By(z, t) =
µ0ε0

k

√
2ω2

V ε0
q̇(t) cos kz, (2.1.2)

5
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THEORY

where p(t) = q̇(t) is canonical momentum and µ0 is vacuum permeability.
The energy of this field is given by its Hamiltonian (in units where the speed
of light is c = 1)

H =
1

2
(p2 + ω2q2). (2.1.3)

Hamiltonian of the same form is found in a harmonic oscillator with the
unit mass. Quantization of the harmonic oscillator is known procedure, so
generalized position and momentum operators, and the ladder operators,
are defined [9]. Quantum Hamiltonian of the field is

Ĥk = ~ωk(â†kâk +
1

2
) =

1

2
(p̂2
k + ω2

kq̂
2
k), (2.1.4)

where ~ is the reduced Planck constant and â†k and âk are creation and
annihilation operators respectively

â†k =
1√
2~ω

(ωq̂k − ip̂k), (2.1.5)

âk =
1√
2~ω

(ωq̂k + ip̂k). (2.1.6)

Here an index k is introduced which denotes a mode of the electromagnetic
field. The notion of mode is found in different contexts and it is good to
point out the right meaning for a particular case. Modes are orthogonal
solutions for the propagation equations of light [10]. Two types of modes
can be distinguished: spatial modes define a pattern of the field in the plane
orthogonal to the polarization, and temporal modes which relate to time and
frequency. When light is interfering, polarization is important, so sometimes
polarization modes are also defined. In the case of this analysis, the index k
denotes a frequency of the harmonic oscillator, or in other words, frequency
mode of the light wave in the cavity described by equations 2.1.1 and 2.1.2.

The number operator of a mode is defined as n̂k = â†kâk. Eigenstates of
the number operator are states with exact number of photons. These states
span a Fock space |nk〉. The ladder operators could also be defined by their
action on a Fock state [12, 25]

â†k |nk〉 =
√
nk + 1 |nk + 1〉 , (2.1.7)

âk |nk〉 =
√
nk |nk − 1〉 , âk |0〉 = 0, (2.1.8)

â†kâk |nk〉 = nk |nk〉 . (2.1.9)

6



2.1. INTRODUCTION TO GAUSSIAN QUANTUM OPTICS

Canonical position and momentum can be conversely defined using the lad-
der operators:

q̂k =

√
~

2ωk
(âk + â†k), (2.1.10)

p̂k = −i
√

~ωk
2

(âk − â†k). (2.1.11)

For these operators, the following commutations relations hold:

[q̂k, p̂k′ ] = i~δkk′ , [âk, â
†
k′ ] = δkk′ , [âk, âk′ ] = 0, (2.1.12)

where δkk′ is Kronecker delta. One can see that the position and momen-
tum are real and imaginary part of the annihilation operator respectively.
Dimensionless counterparts of the position and momentum are defined

Q̂k ≡
√
ωk
2~
q̂k, P̂k ≡

1√
2ωk~

p̂k. (2.1.13)

Measuring these variables one gets classical quadratures of the mode k, i.e.
they represent real and imaginary parts of the complex amplitude [9]. The
commutation relation for these operators is:

[Q̂k, P̂k′ ] =
i

2
δkk′ (2.1.14)

This is the same as if condition ~ = 1/2 is put to the commutation rela-
tion in equation 2.1.12. Since the two variables are not commuting, the
uncertainties of measurements of both quadratures at the same time obey
Heisenberg’s relation:

〈(∆Q̂k)2〉〈(∆P̂k)2〉 ≥ 1

4
|〈[Q̂k, P̂k]〉|2 =

1

16
, (2.1.15)

where 〈(∆Q̂k)2〉 is the variance of operator Q̂k. This means that measuring
both quadratures at the same time with perfect precision is not possible and
this fact has a profound impact to continuous variable quantum protocols.

For the purpose of connecting the mean number of photons in a mode with
the measured quadratures, it is useful to define the number operator using
quadrature operators:

n̂k = â†kâk = Q̂2
k + P̂ 2

k −
1

2
. (2.1.16)

Quadrature operators are observables with continuous eigenspectra. Their
eigenvalues are continuous and real, Q,P ∈ R and their eigenstates |Q〉 and
|P 〉 identify two bases which are connected with Fourier transform (for mode
k):

7
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Q̂k |Qk〉 = Qk |Qk〉 , P̂k |Pk〉 = Pk |Pk〉 , (2.1.17)

|Qk〉 =
1

2
√
π

∫
dPke

−iQkPk/2 |Pk〉, |Pk〉 =
1

2
√
π

∫
dQke

iQkPk/2 |Qk〉.

(2.1.18)
The vectors in the bases are orthogonal and complete:

〈Qk|Q′k〉 = δ(Qk −Q′k), 〈Pk|P ′k〉 = δ(Pk − P ′k), (2.1.19)

∫ ∞
−∞
|Qk〉 〈Qk| dQk = 1,

∫ ∞
−∞
|Pk〉 〈Pk| dPk = 1. (2.1.20)

It is worth noting that quadrature eigenstates are not square-integrable
and are unphysical. 1

2.1.2 Phase space representation

Information about a physical system is contained in its quantum state de-
fined by its density operator ρ̂. The density operator is a positive operator
with the unit trace. The operator can be defined for N -mode system and it
represents the mapping ρ̂ : H⊗N → H⊗N . An equivalent representation of
quantum states that lies in phase space (also called quadrature or symplec-
tic space) is Wigner function. It is a quasi-probability distribution defined
over phase space and it mostly behaves as a normal probability distribution,
though it can have negative values. It was first proposed in a paper from
1932 by Wigner [11].

Definition 2.1.1. (Wigner function)

W (x) =
1

(2
√
π)2N

∫
R2N

d2Nξe−ixΩξ/2χ(ξ), (2.1.21)

where χ(ξ) is Wigner characteristic function that is defined as χ(ξ) =
Tr[ρ̂D(ξ)] where D(ξ) = exp(ixΩξ) is Weyl operator[12]. The vector x
is the vector of quadrature operators of N modes, and Ω is the matrix that
defines commutation relations [xi,xj ] = i2Ωij .

Let W (Q,P ) be a Wigner function of a one-mode state (here we drop
index k for simplicity). Even though the function is not a real probability

1It is impossible to produce a light field with state |Qk〉 or |Pk〉 for some Qk, Pk ∈ R.
This would mean infinite squeezing (see the following section).

8



2.1. INTRODUCTION TO GAUSSIAN QUANTUM OPTICS

distribution, it resembles it in some properties and is very convenient for
depicting different bosonic states. The function is normalized:∫

W (Q,P )dQdP = 1. (2.1.22)

By integrating over a quadrature, one gets the probability distribution for
the other one∫

W (Q,P )dQ = 〈P | ρ̂ |P 〉 ,
∫
W (Q,P )dP = 〈Q| ρ̂ |Q〉 . (2.1.23)

Wigner function W (Q,P ) can also be defined as a function of a complex
variable W (α), where α = Q + iP . This variable is called the complex
amplitude. It can be seen from 2.1.16 that n̂ = α2 (again we dropped the
index k denoting a mode). Given the fact Wigner function behaves like a
probability distribution, important parameters of a quantum state are the
statistical moments. The first moment, also called the displacement vector
is the mean value of the vector (x):

x̄ = 〈x〉 = Tr(xρ̂) (2.1.24)

The second moment is in matrix form and is called the covariance matrix
V whose elements are defined as:

V κ
ij =

1

2
〈{∆x̂κi ,∆x̂κj }〉, (2.1.25)

where ∆x̂κi ≡ x̂κi −〈x̂κi 〉. Here x̂i
κ is an element of x where κ counts the two

quadratures. {, } is the anti-commutator. Clearly, the diagonal elements of
the covariance matrix are the variances of the quadratures:

V κ
ii = V (x̂κi ) = 〈x̂κi 2〉 − 〈x̂κi 〉2, (2.1.26)

The most important class of states for our work are the states that are fully
described by the first two moments. They are called Gaussian states since
the Wigner function for these states has a Gaussian shape:

W (x) =
1

(2π)N
√

detV
e−

1
2

(x−x̄)TV −1(x−x̄). (2.1.27)

2.1.3 Gaussian states

A state with zero photons |0〉 or the vacuum state is a Gaussian state. An-
nihilating a photon from the vacuum state gives the same state, hence the
vacuum state is an eigenstate of the annihilation operator with zero eigen-
value â |0〉 = 0. The covariance matrix of such state is identity V = 1,
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α
Q

P

Q

P

Figure 2.1: Vacuum state and displaced state (coherent state) in phase space

therefore the variances of the quadratures are 1. This state is symmetri-
cal and the variances are a consequence of the uncertainty principle. This
uncertainty causes a noise when measuring the quadratures. This noise is
called shot noise or vacuum noise. Shot noise is one of the central concepts
in continuous variable quantum key distribution and quantum random num-
ber generation.

The displacement operator is a Weyl operator for the complex variable α.
This operator ’displaces’ the vacuum state in the phase space. Fig. 2.1
shows the Wigner function of the vacuum state and a displaced state in the
phase space. Displaced vacuum state is called the coherent state and is char-
acterized by its complex amplitude |α〉 = D(α) |0〉. The covariance matrix
of the coherent state stays identity, but the mean values of the quadratures
are now x̄ = (Q,P )T .

Coherent states [13] were discovered by Scroedinger in 1926 when he was
solving his equation with the aim of finding a solution for quantum harmonic
oscillator that is asymptotically close to classical states. They are the states
with the smallest possible uncertainty. Intuitively, they are the closest to
perfectly noiseless classical states.

Coherent states are the eigenstates of the annihilation operator:

â |α〉 = α |α〉 . (2.1.28)

In the number basis, coherent states are expanded as:

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉 . (2.1.29)
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The mean energy of a coherent state is

〈H〉 = 〈α|H |α〉 = ~ω 〈α| â†a+ 1
2 |α〉 = ~ω(|α|2 + 1

2). (2.1.30)

As we have seen, the number states |n〉 form an orthogonal basis. This is
not the case with coherent states as they are not mutually orthogonal and
form an overcomplete basis. The overlap between two coherent states is

|〈β|α〉|2 = e−|β−α|
2

. (2.1.31)

It was shown that coherent states are symmetrical in the phase space as
the variances of the both quadratures are the same. The uncertainty prin-
ciple does not forbid a quadrature variance to be smaller than 1 (in natural
units) as long as the other quadrature variance increases. Such states exist
and they are called squeezed states. They can be produced by pumping a
nonlinear crystals with a bright laser. Even though there are quantum cryp-
tography protocols using the squeezed states [14], they are not the focus of
this thesis, and due to experimental complexities, this field is yet to be ex-
plored in more depth [15, 16].

Thermal state is a mixture of eigenstates of a Fock space. This state is
Gaussian and in Fock space it is represented with the density operator

ρ̂(n̄) =
+∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n| , (2.1.32)

where n̄ = Tr(ρ̂n̂)is the mean number of photons in the bosonic mode.
It can be shown that thermal states maximize the von Neumann entropy
S = −Tr(ρ̂ log ρ̂).2 Their Wigner function is Gaussian with zero mean and
covariance matrix V = (2n̄+ 1)1.

2.2 Classical information theory

Classical information theory was born in 1948 with the work of Claude Shan-
non [17]. There is a vast number of resources on the topic. Definitions in
the following paragraphs can be found in [18].

The starting point is Shannon entropy:

Definition 2.2.1. (Shannon entropy). Let there be a random variable A,
with alphabet A that is distributed according to the probability distribution

2Von Neumann entropy is defined in Section 2.3.
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PA(a), a ∈ A. Shannon entropy of the random variable is defined as

H(A) = −
∑
a∈A

PA(a) logPA(a). (2.2.1)

Entropy quantifies the average uncertainty about a stochastic source. If
the variable is continuous, the sum becomes an integral

H(A) = −
∫
S
PA(a) logPA(a)da, (2.2.2)

where S is the support of the random variable A, i.e. it is the subset of A
for which P (a) > 0.

The joint entropy of two discrete random variables A and B with alpha-
bets A and B respectively is

H(AB) = −
∑
a∈A

∑
b∈B

PAB(a, b) logPAB(a, b). (2.2.3)

Conditioning distribution A on the outcomes of distribution B, one gets the
conditional entropy

H(A|B) = H(AB)−H(B) = −
∑
a∈A

∑
b∈B

PAB(a|b) logPAB(a|b). (2.2.4)

Now the mutual information between the two variables can be defined. Mu-
tual information quantifies the amount of information one obtains about a
random variable when observing another.

I(A : B) = H(A)−H(A|B). (2.2.5)

Shannon entropy quantifies the amount of randomness of a randomness
source on average, which means it is asymptotic in nature. A generalization
of Shannon entropy is Rényi entropy :

Definition 2.2.2. Rényi entropy of order α, where α ≥ 0 and α 6= 1 is
defined as

Hα(A) =
1

1− α
log

(∑
a∈A

PA(a)α

)
. (2.2.6)

Shannon entropy is obtained as a special case of Rényi entropy when
α → 1. Another special case of Rényi entropy is min-entropy when the
parameter converges to infinity α→∞:

Definition 2.2.3. (Min-entropy) The min-entropy Hmin(A) (also often
denoted H∞ in literature) of A is

Hmin(A) = mina∈A log
1

PA(a)
. (2.2.7)
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Min-entropy is important quantity in quantum cryptography as it is the
main measure of randomness of a finite bit array. It is used in both quan-
tum key distribution to quantify the amount of secret bits shared by Alice
and Bob [19], and quantum random number generation and randomness ex-
traction [20, 21] to quantify the amount of randomness in a finite QRNG
output. While Shannon entropy tells how many random bits are in a sample
on average, the min-entropy gives the lower bound on the number of random
bits in every sample.

2.3 Quantum information theory

Quantum information theory is an extension of Shannon theory by including
the quantum formalism. A good resource in this field is [22].

The quantum analogy of Shannon entropy is von Neumann entropy, defined
for a quantum state ρ̂.

Definition 2.3.1. (Von Neumann entropy)

S(ρ̂) = −Tr(ρ̂ log ρ̂), (2.3.1)

where Tr is the trace of an operator.

Von Neumann entropy can be seen as a measure of uncertainty after mea-
suring the quantum state ρ̂. For example, if a pure state (where Tr

(
ρ̂2
)

= 1)
is measured in appropriate basis, no uncertainty remains, therefore S(ρ̂) = 0.
The entropy is invariant under unitary operations

S(ρ̂) = S(Û ρ̂Û †). (2.3.2)

This means von Neumann entropy remains unchanged under Gaussian uni-
taries. For separable states (of modes A and B) the entropy is additive

S(ρ̂A ⊗ ρ̂B) = S(ρ̂A) + S(ρ̂B). (2.3.3)

For a two-mode state ρ̂AB one can define the joint entropy

S(ρ̂AB) = −Tr(ρ̂AB log ρ̂AB). (2.3.4)

If the partial trace is defined (over mode B and similarly for A) of the
two-mode state ρ̂A = TrB ρ̂AB, then the marginal entropies are:

S(ρ̂A) = −Tr(ρ̂A log ρ̂A), (2.3.5)

S(ρ̂B) = −Tr(ρ̂B log ρ̂B). (2.3.6)

The conditional von Neumann entropy is defined analogously to its classical
counterpart:

S(A|B) = S(AB)− S(B). (2.3.7)
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Similarly the quantum mutual informationcan be defined. A quantity that
is important in QKD and QRNG security formalism, and does not have a
classical analog, is Holevo information. It is also called Holevo bound and
it establishes the upper bound to the amount of information that can be
known about a quantum state.

Definition 2.3.2. (Holevo information) Let a transmitting party pre-
pare a set of quantum states {ρ̂jB} with probability PA(j), so the receiving

party receives the state ρ̂B =
∑

j PA(j)ρ̂jB. Then the amount of informa-
tion extractable by an optimal measurement of the state ρ̂B is bounded by
Holevo information

χ(A : B) = S(ρ̂B)−
∑
j

PA(j)S(ρ̂jB). (2.3.8)

For example, this quantity is calculated in QKD protocols with respect
to eavesdropper’s quantum system in order to upper bound the accessible
information of the secret key to her.
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Chapter 3

Introduction to continuous
variable quantum key
distribution

3.1 Security of CV-QKD

Even though theoretical security formalism is not the focus of this thesis,
it is important to be aware of security notions as, in the end, the goal
of our work is implementation of secure quntum cryptographic systems.
This section gives an overview of security concepts in CV-QKD systems
with coherent states. The core principle of QKD security is the quantum
no-cloning theorem. The theorem forbids perfect copying of an arbitrary
quantum state with the unit probability. This means that quantum states
sent by Alice (transmitter) will be disturbed (on average) if measured by Eve
(eavesdropper) on their way to Bob (receiver)(Fig. 3.11). As the no-cloning
theorem assumes arbitrary states, Alice needs a source of true randomness
at her disposal. Using CV-QKD protocols based on coherent states, the
information is encoded into the quadrature of the transmitted light. When
Eve tries to eavesdrop by intercepting a portion of the transmitted light,
she inherently introduces noise which is subsequently detected by Bob as he
receives the signal. Eve’s optimal strategies for measuring quantum states,
in order to gain as much information as possible, are known and are subject
of research in quantum cloning [23]. We can put together a standard list of
attacks often found in the literature, that Eve can perform on the quantum
state that Alice is sending. The attacks are listed from the weakest to the
most powerful [19, 24, 25]:

1In this thesis we are working only with prepare-and-measure protocols where Alice
prepares a quantum state and sends it to Bob who measures it. On the other hand there
are entanglement-based protocols where Alice prepares a two-mode state and keeps and
measures one half of the state, while the other is sent to Bob.
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Alice (Tx)

Eve

Bob (Rx)

Figure 3.1: Three parties in a prepare-and-measure QKD protocol: Alice
(transmitter) and Bob (receiver) are trusted, while Eve (eavesdropper) is the
untrusted party who controls the channel. Unidirectional quantum channel
(from Alice to Bob) is designated by the red line and bidirectional authen-
ticated classical channel is designated by the blue line.

• Individual attack Eve performs independent and identically dis-
tributed (i.i.d.) attack on each pulse separately. She measures her
quantum states before Bob performs post-processing steps.

• Collective attack Eve performs an i.i.d. attack and measures her
state collectively after Bob performs post-processing steps.

• Coherent attack Eve couples a pre-entangled multimode ancilla with
all the pulses from Alice. She optimally measures her system after Bob
performs post-processing. This should be the most powerful attack
and notoriously hard to implement in real world.

Fig. 3.2 shows a model of collective attack to a CV-QKD system. This
model is used for proving security to the CV-QKD system used as an ex-
perimental testbed for the QKD transmitter developed for the thesis. The
channel is fully controlled by Eve, so the losses and the noise of the channel
are untrusted. Trusted loss and noise originating from inside Bob’s box are
also defined and are quantified during receiver calibration.

First continuous variable QKD protocols proven to be secure were proto-
cols with squeezed states [26, 27], shortly followed by the first protocol with
coherent states [28]. For all the earlier protocols, security was proven in the
asymptotic regime where Alice sends an infinite number of pulses to Bob,
so the quantum state is exactly defined by obtained average parameters.
The Devetak-Winter formula gives the key rate for asymptotic regime and
collective attacks [29]:

Rasymptotic
coll = βI(A : B)− χ(B : E). (3.1.1)

The key rate is the classical mutual information between Alice’s and Bob’s
symbols reduced by Holevo information between Bob’s and Eve’s quantum
system. β is reconciliation efficiency. These quantities are calculated within
a security model and are a function of trusted and untrusted noise and
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∞
Eve’s pool of entangled modes

Eve

Alice

Bob
Collective attack

t

ηchan detη

det
w

Figure 3.2: QKD model under optimal entangling cloner collective attack.
Eve prepares a pool of entangled Gaussian modes and injects one part of the
entangled state to the channel. ηchan – channel transmittance modelled with
a beamsplitter (untrusted loss). w – the variance of each of the Eve’s modes.
ηdet – detector transmittance (trusted loss). tdet – variance of trusted noise.
The variance of the untrusted noise at the detector is ηdet(1− ηchan)w.

loss. Information reconciliation is a post-processing step where Alice and
Bob use an error correcting code (such as a LDPC code) to match the data
strings obtained after Bob’s measurement. In the equation above the reverse
reconciliation is used, where Alice is changing her data to match Bob’s, after
Bob provides the error correction syndrome through authenticated classical
channel. It has been proven that the reverse reconciliation is better than
the direct reconciliation [30], in which case Holevo information would be
calculated between Alice’s and Eve’s state: χ(A : E). In CV-QKD protocols
with coherent states and Gaussian modulation, Alice and Bob can calculate
the covariance matrix VAB of the bipartite state 2 ρAB. The upper bound on
the Holevo information is a function of the covariance matrix. The matrix
values depend on transmissivity and noise in the system.

There are three main steps in post-processing:

• Parameter estimation After Bob performs the measurement of the
quantum state sent by Alice, the two choose a random set of symbols
for which they calculate the covariance matrix VAB in order to get the
upper bound for χ(B : E).

• Information reconciliation Bob sends the error correction syndrome
to Alice. Some information is leaked to Eve in this step.

2A are the symbols Alice sends, and B are the symbols Bob receives. ρAB is generally
calculated in the entanglement-based scheme where Alice obtains her symbols by measur-
ing one part of two-mode squeezed vacuum state while the other part is sent to Bob. Such
a scheme is proven to be equivalent to prepare-and-measure and it is used due to the fact
it is easier to prove security this way.
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• Privacy amplification After reconciling, Alice and Bob share iden-
tical strings. Eve has some information about it, therefore a privacy
amplification protocol is performed to reduce Eve’s information about
the secret key to a negligible value. Most often, universal hashing is
used for this step, same as with randomness extraction for QRNGs,
however with much larger block lengths.

In the last years there has been a great progress in proving security of
Gaussian modulated CV-QKD for the finite regime (finite key instead of
infinite one) and proving the optimality of Gaussian collective attacks [31,
32].

3.2 Building blocks in CV-QKD experiments

Here we describe telecommunication components used for CV-QKD. Alice’s
system consists of:

• Signal laser – produces coherent light beam which is the carrier of
information.

• Optical modulator – modulates the laser light and therefore encode
information in the carrier.

• Bias controller – an electrical device that applies slow changing bias
volages to the modulator, thus making sure the modulator works at a
desired set point so the signal inputs to the modulator are translated
to proper optical modulation.

• Symbol generator – generates data symbols in the baseband and
is connected to a DSP block that is in turn connected to the input
of the modulator. In the case of our CV-QKD system, the symbols
are generated in field-programmable gate array (FPGA) chips using
random numbers generated by the QRNG.

Bob’s receiver consists of devices that are used to extract transmitted sym-
bols from the optical channel. Bob’s system consists of:

• Local oscillator laser – used as a phase reference to the input optical
signal.

• Homodyne detector – used to optically mix the local oscillator and
the input signal in order to ’filter out’ the optical bandwidth of interest.
It uses photodiodes and transimpedance amplifiers to convert optical
power to voltage.

• Signal processing block – an electrical device that does the electrical
and digital post-processing (phase recovery, demodulation etc.) in

18



3.2. BUILDING BLOCKS IN CV-QKD EXPERIMENTS

order to recover transmitted symbols. CPU, GPU or FPGA-based
processing systems are used for this purpose.

3.2.1 Lasers

Laser is a source of light and therefore the key component in optical ex-
periments. For the purpose of our experiments, we consider laser to be the
source of coherent states of light. It may also be regarded as a source of a
single mode of radiation.

Laser consists of a narrow band optical amplifier which generates a well
defined optical beam in both frequency and spatial domains. We use con-
tinuous wave (CW) (in contrast to pulse lasers) that produce a steady output
beam. Geometrical properties of the beam are matched to spatial modes of
the laser cavity.

There are several parameters that are important for characterizing a laser:
optical power, spatial mode structure, output wavelength, frequency spec-
trum and noise spectrum [33]. Spatial properties of the beam are determined
by the optical resonator. Generally, a single spatial mode that also the sim-
plest one TEM0,0 is of interest. One of the goals of CV-QKD is to use the
off-the-shelf telecommunication equipment [24]. Therefore, the laser wave-
length would generally be in one of the standard telecom windows such as
1550nm or 1310nm [34] .

3.2.2 Beamsplitters and couplers

One of the most common elements in free-space optical experiments is the
beamsplitter. Fiber couplers are equivalent devices in fiber optics. A beam-
splitter3 can be modelled as semi transparent mirror with reflectivity and
transmissivity coefficients r and t. For an input beam with classical com-
plex amplitude E1 there are two output beams, one reflected E3, the other
transmitted E4 as it is shown in Fig. 3.3. Generally, beamsplitters have
two inputs, as another input with amplitude E2, propagating from direction
shown in the Fig. 3.3, will produce at the output a wave in the same place
and propagating in the same direction as E3 and E4 [33]. The reflectivity
and transmissivity coefficients give the ratio of the amplitudes of the input
and output fields (in convenient matrix form):(

E3

E4

)
=

(
r31 t32

t41 r42

)(
E1

E2

)
, (3.2.1)

3Even though we do not perform free-space optical experiments, in the context of
mathematical analysis, it is common to talk about beamsplitters and not fibre couplers.

19



CHAPTER 3. INTRODUCTION TO CONTINUOUS VARIABLE
QUANTUM KEY DISTRIBUTION

Figure 3.3: Representation of a lossless beamsplitter showing the notation
for electric field amplitudes of the input and output beams.

where r31,42 and t32,41 are complex numbers whose values are determined
by using energy conservation law and boundary conditions in the dielectric
mirror materials [35]. In our experiments we use the balanced beamsplitter,
also called 50/50 beamsplitter, where |r31,32|2 = |t41,42|2 = 1/2.

In the expression above, we consider the beamsplitters to be ambiguous
to input beam polarizations. There are however polarizing beamsplitters
(PBSs) that reflect only one polarization and transmit the orthogonal po-
larization [33]. In general, the coefficients for PBS are not trivial, they
depend on the polarization. They are used in polarization diverse receivers
[45]. Such receivers are expected to be used in future CV-QKD designs as
the technology matures.

3.2.3 Modulators

In telecommunications and electronics, modulation is a process of changing
one or more properties of a periodic signal (generally a sine wave) called the
carrier signal. In optical telecommunications the carrier is typically a strong
laser light. Modulator is a device that performs modulation. As an input, it
takes the carrier and the modulating signal, which carries information to be
transmitted. Most often the modulator changes one of the three parameters
of the carrier – amplitude (amplitude modulation -AM), frequency (FM) or
phase (PM).

Historically, in classsical optical telecommunications, there was a period
when both researchers and industry focused mostly on relatively simple am-
plitude modulated, or in this case more often called intensity modulated (IM)
optical systems, with direct detection (DD) [36]. Owing to simplicity these
systems were cheap and also provided high rates. Direct detection means
that the information bit is inferred by directly detecting signal power during
the symbol interval. However, by introducing coherent detection schemes,
one is able to use more complicated and spectral efficient modulation tech-
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Figure 3.4: Electrical QPSK modulator block diagram. LPF: low-pass filter,
BPF: band-pass filter

niques [37].
One such modulation scheme is quadrature phase shift keying (QPSK).

In this scheme two phase shifted carriers are independently modulated by
two independent modulating signals and added at the output. The block
diagram is shown in Fig. 3.4. The two carriers are shifted by π/2, therefore
the two modulating signals are the quadratures of the output signal. The
output signal can be described with the following expression:

αout(t) = α0q(t) cos(ωt) + α0p(t) sin(ωt), (3.2.2)

where α0 is the fixed amplitude and q(t) and p(t) are quadrature digital
signals, which for QPSK take values q(t), p(t) ∈ {−1, 1}. A figure of merit
that is often used to characterize the performance of a system with QPSK
modulation is the error vector magnitude (EVM). The error vector is de-
fined as a vector in phase space (quadrature IQ plane) between the ideal
constellation point and the point received by receiver. EVM is defined as a
percentage

EVM(%) =

√
Perror

Preference
× 100%, (3.2.3)

where Perror is the power of the error vector and Preference is the power of
the reference signal. Fig. 3.5 shows QPSK constellation in the phase space.
It is important to note that QPSK modulator is the general quadrature
modulator, since by changing the modulating signals q and p one is able
to achieve different quadrature modulation schemes including the Gaussian
one used in QKD setup in this thesis. It is common that the modulators
are called the IQ modulators since the two quadratures are denoted as I – ’
the in-phase component’, and Q – ’the quadrature component’. We use this
notation in the following chapters.

Optical IQ modulator

Modulators in optics are realized using crystals with electro-optical charac-
teristics where the refractive index can be manipulated by applying external
electric field [38]. This property leads directly to optical phase modulation.
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π/4 I

Q

Figure 3.5: QPSK constellation in phase space. Here we introduce a notation
that is common in telecommunication where the quadratures are denoted I
and Q instead of Q and P respectively.

Ein Eout

uQ

uI

uPM

Phase modulator

MZM

Figure 3.6: IQ modulator

By putting two phase modulators in parallel while using two optical
couplers for splitting the input beam and combining the two beams at the
output, one gets the Mach-Zehnder modulator (MZM) ( encircled in Fig.
3.6). MZM can be operated in two modes: push-push where MZM behaves
as a pure phase modulator, and push-pull where MZM behaves as a pure
amplitude modulator. The quadrature point is a voltage configuration of
MZM where the transfer characteristics of the modulator can be considered
linear with respect to the input bias voltages. By putting together two
MZMs and a phase modulator one gets the optical IQ modulator shown in
Fig. 3.6. The phase modulator shifts the phase by π/2, therefore creating
two orthogonal carriers in the two arms of the interferometer. Two MZMs
act as amplitude modulators. uI(t) and uQ(t) are bias voltages which are
also input modulating signals for the two quadratures. The transfer function
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of the modulator with linear approximation around the quadrature point is:

Eout(t)

Ein(t)
=

π

4Vπ
uI(t) + i

π

4Vπ
uQ(t) (3.2.4)

A feature of IQ modulators is their ability to create single-sideband modu-
lation (SSB). SSB modulation was used for a long time in radio frequency,
microwave and optical telecommunication. Its primary purpose is to reduce
the bandwidth of transmitted signal by a factor of two, therefore reducing
noise and increasing signal-to-noise (SNR) ratio and bandwidth efficiency.
Furthermore, SSB modulation uses less power to transmit the same amount
of information compared to a two-sided modulation. The reduction of power
can be achieved also by manipulating the carrier, so there is a difference be-
tween SSB with full carrier and SSB with suppressed carrier (SSB-SC).
Sometimes it is favorable that the carrier is present for easier carrier re-
covery and synchronization at the receiver. Single sideband modulation is
graphically depicted in Fig. 3.8.

Given a real signal E(t) with double-sideband (DSB) spectrum, the SSB
version of the signal is obtained by the following operation:

ESSB(t) = E(t)± iÊ(t) (3.2.5)

where plus sign gives the lower sideband (LSB), while minus sign gives the
upper sideband (USB). By Ê(t) is denoted the Hilbert transform of the sig-
nal. A Hilbert transformation is defined in frequency domain as a fixed phase
shift depending on the frequency sign. The modulo of the amplitude char-
acteristics of the Hilbert transform is unity for all frequencies |H(ω)| = 1,
and the phase characteristics is θH(ω) = sgn(ω)π2 as shown in Fig. 3.7[39].
Using the previous analysis and the properties of Fourier transform of rel-
evant signals, one can obtain the formula for SSB signal modulated onto a
carrier of frequency ωc:

ESSB−mod(t) = E(t) cos(ωct)± Ê(t) sin(ωct) (3.2.6)

It is clear from Eq. s 3.2.4 and 3.2.6 that by applying a signal to one of
the inputs of the optical IQ modulator, and its Hilbert transform to another
input, it is possible to achieve single-sideband modulation in optical domain.

Optical IQ modulation is a mature technology [40] and is especially con-
venient when implemented in integrated optics [41–43], therefore enabling
miniaturization and reduction in component cost.
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Figure 3.7: Hilbert transform amplitude and phase characteristics
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Figure 3.8: Comparison between spectra of a baseband signal and their
modulated variants

3.2.4 Automatic bias controller

Controlling bias voltages in an IQ modulator is not a trivial task. In a regu-
lar IQ modulator there are three voltages to be kept under constant control
in order to achieve optimal performance. The situation is complicated even
more if dual polarization (DP-MZM) modulator is employed, where one
needs to control six bias voltages. DP-MZM are two IQ modulators put
in parallel using a polarizing beamsplitter in order to work with both po-
larization degrees of freedom. Automatic bias controllers (ABC) are used
for fine tuning the bias voltages. The optical input provides the necessary
feedback in order to maintain the DC bias voltage at the desired spot. This
kind of ABC generally works well with any litium niobate (LiNbO3) optical
modulator and at any data rates.

3.2.5 Homodyne detection

It was mentioned in Section 3.2.3, there was a period when both research and
industry (in classical telecommunications) were focused on relatively simple
and cheap direct detection schemes for optical communications. Physicists
on the other hand, were interested in phase-sensitive measurements [46–49],
as a complete description of a quantum state of light requires its associated
phase information. For the purpose of having a phase-sensitive measure-
ment, a coherent receiver configuration is employed. Coherent receivers use
a reference coherent beam called the local oscillator (LO) in order to mea-
sure the complex amplitude of the receiving signal, as shown in Fig. 3.9. If
the coupler used in the receiver is 50/50, the receiver is called the balanced
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Figure 3.9: Optical coherent receivers

coherent receiver. Two output beams of the coupler are detected using a pair
of photodiodes. In our work, this kind of device is called the balanced homo-
dyne receiver, or just the homodyne reciver. Note that with the homodyne
receiver, it is possible to perform a homodyne, heterodyne or a phase-diverse
homodyne measurement. The difference between these terms is explained in
the following paragraphs.

The derivation presented below can be found in [36]. Let Es(t) be the
input signal electric field (Fig. 3.9):

Es(t) = αs(t)e
iωst, (3.2.7)

where αs(t) is the complex amplitude and ωs is the frequency of the sig-
nal laser. Similarly, ELO(t) is the local oscillator field with αLO being the
constant complex amplitude

ELO(t) = αLOe
iωLOt. (3.2.8)

Using the complex amplitudes, signal power of the both fields is calculated
as

Ws = k|αs|2/2, (3.2.9)

WLO = k|αLO|2/2, (3.2.10)

where k = Seff/Z0, and Seff is the effective beam area and Z0 is the impedance
of the free space.

The signal field and the LO filed are coupled at the balanced coupler (beam-
splitter). Balanced detection is used in coherent receivers as a tool to sup-
press the DC component and maximize the beat between the signal and the
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LO [36]. Using the beamsplitter transformation covered in Section 3.2.2, the
output fields are calculated as:

E1 =
1√
2

(Es + ELO), (3.2.11)

E2 =
1√
2

(Es − ELO). (3.2.12)

Now the photocurrents on the two photodiodes are calculated as

I1(t) = k
qeη

~ωs

〈
Re

(
αs(t)e

iωst + αLOe
iωLOt

√
2

)2〉
=

qeη

2~ωs
[Ws(t) +WLO + 2

√
Ws(t)WLO cos(ωIFt+ θs(t)− θLO(t))],

(3.2.13)

I2(t) = k
qeη

~ωs

〈
Re

(
αs(t)e

iωst − αLOe
iωLOt

√
2

)2〉
=

qeη

2~ωs
[Ws(t) +WLO − 2

√
Ws(t)WLO cos(ωIF t+ θs(t)− θLO(t))],

(3.2.14)

where ωIF is the difference between the signal and the LO frequencies
ωIF = |ωs − ωLO|, and θs(t) and θLO(t) are the phases of the signal and
the LO respectively. η is the quantum efficiency of the photodiode and qe is
the electron charge.

The output of the homodyne detector is the difference between the two
currents:

I(t) = I1(t)− I2(t) = 2
qeη

~ωs

√
Ws(t)WLO cos(ωIF t+ θs(t)− θLO(t)).

(3.2.15)
Eq. 3.2.15 shows that the output signal is proportional to the square root of
the LO power. This means that by increasing the LO power, the amplitude
of the received signal increases, and even for low input signals Ps there is
a possibility of bringing the output signal level above the electronic noise
of the detector. This is very important for measuring low level signals and
intrinsic quantum noise, which is one of the central concepts in quantum op-
tics. The detector which can bring the intrinsic quantum noise signal above
the electronic noise is called the shot noise limited detector.

After getting the general expression for output current of the homodyne
receiver, one can define different types of measurements. If the frequency
of the LO is not the same as the frequency of the signal |ωIF | > 0, and
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Figure 3.10: The in-phase component measured with the homodyne mea-
surement

specifically if |ωIF | � Bs, where Bs is the measured signal bandwidth, this
is a heterodyne measurement. In the literature, the case where |ωIF | ≈ Bs
is called intradyne scheme [50]. On the other hand, homodyne measurement
is the one where there is the exact match between the frequencies |ωIF | = 0.
In homodyne measurement the output current becomes

I(t) = 2
qeη

~ωs

√
Ws(t)WLO cos(θs(t)− θLO(t)). (3.2.16)

If for now θLO(t) is fixed to be constant and zero, since the time variation
just represents the phase noise of the LO (LO phase is precisely controlled
as it represents the reference), a simple expression is obtained that tells that
the result of the homodyne measurement is nothing else but the in-phase
component of the optical signal as shown in Fig. 3.10.

Homodyne measurement is not able to retrieve the full information about
the complex amplitude. It is however possible to choose whether, during the
symbol period, one wants to measure the in-phase or the quadrature com-
ponent. This is done by fixing the LO phase for the in-phase measurement,
and introducing LO phase shift by π/2 when measuring the quadrature com-
ponent. On the other hand, the heterodyne measurement is able to retrieve
information about both quadratures:

I(t) = 2
qeη

~ωs

√
Ws(t)WLO cos(ωIF t+ θs(t))

= 2
qeη

~ωs

√
Ws(t)WLO(cos(ωIF t) cos(θs(t))− sin(ωIF t) sin(θs(t)))

down+LPF−→ qeη

~ωs

√
Ws(t)WLO cos(θs(t)) or

qeη

~ωs

√
Ws(t)WLO sin(θs(t)).

(3.2.17)

There is a third possibility when it is convenient to immediately get
the baseband signal using a homodyne measurement, but also retreive the
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information about both quadratures. This is called the phase-diversity mea-
surement and it employs two homodyne detectors in parallel, couplers for
the signal and the LO and a π/2 phase shifter for the LO, as shown in Fig.
3.9b. The expression for the output currents is identical to the output of
the heterodyne measurement, with a factor of 1/2, due to the additional 3
dB splitting.

In classical telecommunications, historically there were different reasons for
using homodyning or heterodyning, such as the difficulty of having high
intermediate frequency (IF) or optical phase locked loop (OPLL) [37]. In
quantum communications there is another parameter of interest when de-
ciding about the measurement scheme – the shot noise.

Measurement of quantum states and shot noise

The intrinsic quantum uncertainty between the two quadratures of a light
field is manifested in the inherent noise that is present in the absence of
all other extrinsic noise. Homodyne measurement in a quantum setting is
described in [51]. The setup is the same one as before shown in Fig. 3.9.

Fields are described now using field operators, Ês(t) and ÊLO(t) for the
signal and the local oscillator respectively. The local oscillator is in a
coherent state with a large power. It can be denoted by a ket vector
|
√
WLO/~ωLOe

−iωLOt〉. LO power is much larger than the signal power
WLO � Ws. Considering the homodyne measurement, where the signal
carrier frequency and the LO frequency are equal, the detector output cur-
rent operator is calculated as:

Îhom(t) = 2qeg

√
ηWLO

~ωLO

∫
dτ Re

(
Ês(τ)φLOe

iωLOτ
)
hLP(t− τ), (3.2.18)

where qe is the electron charge, g is preamplifier gain, φLO = eiθLO is the
phase of the local oscillator and hLP is the impulse response of a low-pass
filter. Previously shown, the homodyne detection measures the signal com-
ponent that is in-phase with the LO phase θLO.

For the heterodyne measurement, the same setup is used, however now the
LO frequency differs from the signal carrier by ωIF . The state of the LO is
|
√
WLO/~ωLOe

−i(ωs−ωIF )t〉. Here, one needs to take care of the image band
of the signal mirrored by the LO. The image band lies around ωs−2ωIF and
the modes of this band are not active – they are in the vacuum state. Field
operators associated with the signal and image band are Ês(t) and Êimage(t)
respectfully. In semiclassical theory, the image band does not produce any
current. This is not true in quantum theory for which the output current
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operator can now be written as

Îhet(t) = 2qeg

√
ηWLO

~ωLO
Re
(
(Ês(t) + Êimage(t))φLOe

i(ωs−ωIF )t
)
. (3.2.19)

Here the band-pass filter impulse response is omitted for simplicity.

Eq. 3.2.18 shows that the noise obtained by measuring the output cur-
rent does not come from the local oscillator, but from the measurement of
the field operator Ês. The signal can be in the vacuum state. Since this is
also a coherent state, the homodyne measurement output will be the shot
noise attributed to quantum uncertainty. The power spectral density of the
shot noise is

Sshot(f) =
g2ηq2

eWLO

~ωLO
|HLP (f)|2, (3.2.20)

where HLP (f) is the frequency response of a low-pass filter that models the
response of imperfect system. In CV-QKD and QRNG it is quite convenient
take the shot noise level as a reference, as it is intrinsic and stays constant
for constant LO power, quantum efficiency and detector gain. When this is
the case, the power of the shot noise is called the shot noise unit (SNU).

3.2.6 FPGA chips

This section provides an introduction to field programmable gate array (FPGA)
chips and the motivations for their usage in quantum communications. It
gives an overview of FPGA architecture, basic hardware primitives, and
some designing techniques with FPGAs. There is a large set of textbooks
and other literature about FPGAs and hardware design [52–55]. Note it
is implicitly assumed Xilinx-made FPGAs are used, in particular Kintex
UltraScale, that is used in this thesis. Appendix A provides detailed de-
scription of intellectual property (IP) cores used for our designs and other
FPGA board related topics.

General FPGA architecture

There has been an ever increasing need in technological applications for
more processing power and parallelization. Engineers can chose one of the
several options when implementing a functionality or an algorithm. One
option are single core microprocessors that can be very flexible and cheap,
but may be too slow for some purposes. Another option are multi-core sys-
tems or graphical processing units (GPU) with thousands of cores, still very
flexible, but more expensive and harder to program. On the other end of
this spectrum are application-specific integrated circuits (ASIC), specialized
pieces of hardware built only for one purpose. They are very fast, but ex-
pensive and not flexible. Somewhere in the middle of the processing device
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(a) Basic FPGA architecture (b) Modern FPGA architecture

Figure 3.11: Taken from [54](Xilinx)

spectrum lie FPGAs. It is a chip technology that addresses the cost and
flexibility problem by implementing a large set of multipurpose and pro-
grammable primitives, but also keeping the high performance regarding the
speed and latency compared to CPUs and GPUs. These facts makes FPGAs
an optimal solution for a plethora of applications, especially in research and
development.

FPGAs consist of hardware primitives. Bellow are listed hardware prim-
itives of modern Xilinx chips. Not every design utilizes all of them, however
they all have been an integral part of the firmware designs in this thesis.

• Every FPGA (even the simplest and cheapest ones) is composed of
configurable logic blocks (CLB) and interconnections between them.
There are also external inputs and outputs which are represented as
wires on the edge of the chip in Fig. 3.11a [54]. CLBs contain the
programmable logic for the FPGA and this basic logic was present
in FPGAs from the birth of the technology. One of the primitives
found in CLBs is four-input lookup table (LUT). LUT can implement
any four-input Boolean function and is equivalent to a system of logic
gates. It is basically a truth table where different combinations of the
inputs yield different output values for different functions. The number
of memory locations for N -input LUT is 2N and the total number of
functions which can be implemented is 2N

N
. CLBs also contain Multi-

plexers (MUXs) that are statically programmed. That means the data
paths are defined upon FPGA programming. Furthermore, flip-flops
are the basic storage units within the FPGA fabric. Flip-flops are al-
ways paired with LUTs so they assist in pipelining and data storage.
Flip-flops incorporate data and clock inputs, clock enable input, reset
and data output. The value from the data input is passed to the data
output on every clock pulse. Clock enable pin is used for storing a
value for more than one clock cycle.
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• Modern FPGAs contain, besides typical CLBs, several other special-
ized primitives that can sometimes drastically increase performance
and platform flexibility. Fig. 3.11b shows the typical architecture of
modern FPGAs. Standard CLBs are shown as grey rectangular boxes.
For enabling high-rate multi-gigabit per second serial communications,
modern FPGAs employ high speed serializer/deserializer (serdes)
circuitries in high speed transceivers. The examples are GTX and
GTH transceivers on Xilinx FPGAs.

• Block RAM (BRAM) is a dual-port RAM module instantiated into
the FPGA fabric to provide on-chip storage for a relatively large set of
data. Xilinx devices use two types of BRAM with different capacities,
18kb and 36kb. These elements can be grouped to virtually appear
as a read-only memory (ROM) or a shift registers. They are also
extensively used for implementing first-in-first-out (FIFO) buffers.

• DSP algorithms are vital to modern telecommunications. Imple-
menting computationally intense algorithms, such as fast Fourier trans-
form (FFT), require a large number of arithmetic operations. Doing
that using only LUTs and flip-flops from basic CLBs might be very
complicated and potentially resource-consuming. For the purpose of
tackling this problem, mid-to-high-end FPGAs implement a huge num-
ber of specialized DSP primitives. Structure of a DSP block is shown

Figure 3.12: Architecture of a DSP block. Taken from [54](Xilinx).

in Fig. 3.12. A single block implements add and subtract units, fol-
lowed by a multiplier, followed by another set of add/subtract units
with accumulative capability. Multiplication is an example of an op-
eration where the basic FPGA architecture cannot deliver optimal
performance, so dedicated DSP blocks are essential. Our Kintex Ul-
traScale chip is specifically well-suited for DSP operations with the
large number of these primitives compared to other models.
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• The essential part of any processing unit is their clocking infras-
tructure. FPGAs saw drastic increase in size, complexity and speed
during the last decade. Therefore they require high quality clocking
resources. Even in small FPGA designs, clock signals might be used
by hundreds or even thousands of elements. The number of elements
that use a clock signal is called the fanout of that particular clock. In

Figure 3.13: An example of clock skew. Taken from [56](Xilinx).

Fig. 3.13, a clock is distributed from point A to points B and C. The
clock enters the chip at point A and is passed through a clock buffer
(depicted as a triangle). Output of the buffer is connected to high per-
formance specialized clock lines. This clock is then distributed to all
regions (if it is a global buffer) in the chip, in this example to points B
and C. In general, there will be some phase delay between the original
clock and the one that arrives at B and C. This delay is called the clock
skew. It is always desirable to have as low skew as possible, however
not every skew will cause a timing violation. There are two types of
timing violations: hold violation and setup violation. If the clock trav-
els slower than the data from one register to another, there is a danger
that the data is not held long enough at the destination flip-flop to
be properly clocked through. This is a hold violation. Setup violation
occurs when the destination flip-flop receives the clock earlier than the
source flip-flop because the new data was not set up and stable be-
fore the next clock tick arrived. Hold violations are more severe than
setup violations as they cannot be fixed by increasing the clock period.
FPGAs employ circuits to fight the excess skew and they are called
de-skew circuits. There are two de-skew mechanism, delay line-based
clock de-skew (DLL-based) and phase locked loop-based (PLL-based)
[58].

Another important parameter is the clock jitter. Jitter is the deviation
of the clock frequency. It can be expressed as a phase noise, or in
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time domain in ps (since the frequencies of modern FPGAs are in
the range of hundreds of MHz). It can occur both on the leading
edge and the trailing edge of the signal. Jitter can also be frequency
dependant. Excessive jitter can cause violation of timing margins.
Furthermore, high-rate communication systems and analog-to-digital
(ADC) converters are sensitive to jitter where it can increase the bit
error rate (BER). For this reason FPGAs require a good clock source.
In many applications the source clock is supplied outside FPGA by a
high-quality clock generator (such as Silicon Labs Si5338 [161] that we
are using in our hardware), so the clock can be used even for sensitive
serial transceivers.

In Xilinx FPGAs, de-skew and jitter cleaning functions are imple-
mented in cores such as Mixed-Mode Clock Manager (MMCM).
MMCM is a multifunctional core that can also generate clocks of dif-
ferent frequencies than the frequency of the input clock. It can be also
used as a PLL. Often times the specialized cores are not necessary since
the clock signals are distributed throughout the chip using low skew
clock networks. First of all, there are global clock networks, accessed
by the global buffers (BUFG). Clocks generated like this are used in
most cases and they are available in the whole chip. In addition there
are regional clock networks, accessed by the regional buffers (BUFR).
The clocks generated like this are available only in designated clock
regions and are sometimes used for some smaller time critical designs.

Designing with FPGA

A hardware description language (HDL) is a necessary ingredient for de-
scribing complex digital logic circuits. It enables engineers to describe the
intended design in a precise and formal way, which further allows the cir-
cuits to be simulated. A (high-level) HDL is synthesized to produce a netlist,
which is a specification of electric components and a description of how they
are connected together. The netlist is passed to the next stage of HDL
compiling process called place and route where the exact hardware primi-
tives are assigned, according to the netlist, for a specific hardware device.
HDLs generally look like software programming languages, however they re-
quire a certain paradigm shift in the way of how designer should look at the
problem. This mostly comes from the fact that operations are performed
in parallel and that the events occur at precicely defined discrete clock cy-
cles. The most well known hardware description languages are Verilog and
VHDL. VHDL is used for designs in this thesis.

Two very common and important programming techniques that are widely
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used when designing a firmware4 are parallelizing and pipelining. They are
used in different scenarios, depending on what the particular goal of a de-
sign is. Sometimes the design is optimized for speed. In other words the
hardware is placed such that it enables the highest clock frequencies without
timing fails. In other cases, the resources on the chip are scarce, so the de-
sign is optimized to use the fewest primitives possible. There are also other
design strategies like minimizing power usage etc.

• Parallelizing – If FPGA has enough resources and the algorithm in
question allows it, it is generally a good strategy to parallelize func-
tions as much as possible. Engineer’s task is to recognize tasks that
can run in parallel. The notion of discrete time is paramount. Com-
pared to software programming, it is much easier to estimate, or know
exactly, what is the time (or number of clock cycle) some operation
requires when implementing in hardware. A simple example would
be a calculation of a scalar product of two vectors. This operation
requires a multiplication of the vector elements with addition in the
end. In general-purpose processors each multiplication is done one at
a time. In FPGA there could be many multiplication modules working
in parallel. Furthermore, each module can be designed to have a fixed
latency, so the results are easily forwarded to the adder at the same
time.

• Pipelining – If an algorithm contains operations where there are no
feedback loops, and the operations are done one after another, it is pos-
sible to use pipelining. Pipelining is a digital design technique where
the data processing elements are connected in series using registers and
the output of one of the element is the input to the next one. The top
part of Fig. 3.14 shows an implementation of a function, in this case
for inputs (a, x, b, c) it computes y = a×x+b+c. This design is a com-
binatorial network, where the elements are simple Boolean functions
and are not clocked. The wires and the arithmetic functions each have
some non zero delay. This means that the voltage at the output might
have unstable value for a certain period of time. The solution for the
proper readout of y would be to introduce a register at the output.
However, if the combinatorial logic introduces high enough latency,
there is a danger of setup timing violation described in the previous
subsection. The solution is to introduce fully pipelined design shown
in the bottom part of Fig. 3.14. Each step now has a fixed latency of
one clock cycle. Also the inputs to each of the arithmetic modules do
not depend on the outputs in the ’downstream’. This way the module

4When talking about FPGAs we use the words hardware and firmware, and quite often
they are synonymous. We mostly use the word firmware when talking about a particular
HDL written design that is downloaded to an FPGA.
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Figure 3.14: Pipelining in a digital desing. Taken from [54](Xilinx).

produces a result every clock cycle, however with the initial latency of
(in this case) three clock cycles.

Another important concept in both hardware and software design is the
concept of the finite state machine (FSM) [59, 60]. In automata theory,
FSM lies above combinatorial logic and is more powerful computational tool.
FSM is an abstract machine that can be in exactly one of the finite number of
states at any given time. The state transition is governed by external input
signals. Every transition happens on a logical condition which needs to be
fulfilled. Fig. 3.15 shows a simple example of a two-state state machine of a

Locked
Unlocked

Coin

Push

Coin

Push

Initial state

Figure 3.15: An example of state machine of a turnstile

turnstile. The external signals that influence the state transitions are coin-
inserted and the turnstile-pushed. Therefore, in combinatorial circuits, the
output depends only on the current values of inputs, and in state machines
the output depends on the inputs and the current stored information (state).
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If the output of a state machine depends on the states only, this is Moore
state machine. If the output depends on the states and some external input
signals, this is called Mealy state machine. Both FSM types are used in
FPGA development [61]. The state is saved in a register. This registers
consists of certain number of bits, depending on the number of states and
preferred coding method. There are several coding types, most common
being one-hot, binary and gray. One-hot encoding uses as many bits as there
are states, and is used most often by the synthesis tool. It uses maximum
number of bits, but is also the easiest to decode, as opposed to binary coding
that takes longer to decode.

3.3 CV-QKD protocols

History of continuous variable QKD begins in the early years of 21st century
with squeezed state protocols [26, 27], immediately followed by the first co-
herent state protocol [28]. For all of them, the basic idea is the same, Alice
modulates only one or both quadratures of the signal laser and sends to Bob
through a fiber-optic link5. Bob measures the received signals using homo-
dyne or heterodyne detection6. The original protocol with coherent states
[28] used Gaussian modulation and homodyne detection which meant the
detection of only one quadrature, so Bob needed to perform fast switching
between the quadratures and key sifting post-processing procedure like in
some discrete variable QKD protocols, most notably the original BB84 [4].
It turned out the switching limits the rate of the protocol, so a no-switching
protocol was proposed by Lance et al. [62].

In order to perform a coherent detection of the signal, Bob requires a strong
local oscillator. Earlier CV-QKD protocols required Alice to prepare both
the quantum signal and the LO [63–66]. This way the LO experiences the
same phase drifts in the channel as the quantum signal, leading to lower
noise of the coherent detection. Unfortunately, the transmitted LO has sev-
eral critical drawbacks. Due to losses in the channel, the effective distance
of the protocol is reduced, as the LO needs to have sufficient power for the
shot-noise limited detection. Insufficient power introduces additional noise.
Furthermore, multiplexing the LO can introduce noise in the quantum sig-

5There are experimental implementations of free-space CV-QKD protocols, however
they are not the topic of this thesis.

6There has been a misunderstanding in the QKD community regarding the definitions
of homodyne and heterodyne detection. In classical telecommunications, the heterodyne
detection uses the same hardware as the homodyne, however the LO frequency is detuned
so the signal of interest is observed at some intermediate frequency. Some groups in QKD
community call phase-diverse receiver (simultaneous measurement of both quadratures)
as heterodyne receiver. We stick to the traditional definitions as in classical telecommu-
nications.
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nal bandwidth. The last, and maybe the most important drawback, is that
transmitted LO opens a loophole for attacking the QKD system. These
vulnerabilities were shown for example in [67].

A remedy for the LO loophole is the real local oscillator (RLO). RLO is
located in Bob’s box and is fully controlled by him, i.e. it is trusted. Fig.
3.16 shows the difference between the two setups. Experiments using RLO
appeared relatively recently [68–73]. For establishing a reliable phase ref-
erence in such a configuration, Alice multiplexes pilot tones/pulses in fre-
quency/time that can be detected by Bob with a signal-to-noise ratio sig-
nificantly higher than that for the quantum signal. Bob typically employs
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Alice (TX) Bob (RX)

99/1
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(a)
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oscillator 
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Figure 3.16: (a) CV-QKD with transmitted LO and (b) with real LO

digital signal processing algorithms operating on the pilot signals to com-
pensate for the phase drift between the lasers. This technique has been well
known in classical optical telecommunications.

We note that very recently there has been reported a possible attack on
CV-QKD systems with the pilot tone [74]. The attack only applies for
schemes with trusted phase noise. Obviously one solution could be to treat
the phase noise as it originates from Eve (untrusted). The other approach
to completely mitigate pilot tone attacks is not to use the pilot, but try
to infer the phase at Bob’s side using novel techniques for phase recovery
by employing low-SNR quantum signal only [75]. However, the proposed
technique is in its infancy and only tested with a QPSK modulated signal.

The system implemented in our lab is a pilot-assisted Gaussian modulated
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CV-QKD system with the real local oscillator and untrusted phase noise.
As such it represents a state-of-the-art research setup with a big potential
for practical applications in industry in the following years. To evaluate our
system we also use QPSK modulation. Security of QPSK-modulated CV-
QKD was proven in asymptotyc regime under collective attacks [76]. The
QKD transmitter developed for this thesis evolved along the optical setup
and was tested as a part of this system.

3.4 CV-QKD setup

Automatic bias controller

Signal laser

Homodyne receiver
Real local oscillator laser

PD

PD

50/50 
beamsplitter

Polarization controlVariable attenuator
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FPGA PCIe board
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Digital signal oscilloscope
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DC

ADC
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Figure 3.17: Block diagram of our CV-QKD setup. Red lines – polarization
maintaining optical fiber. Orange line – single mode optical fiber. Black lines
– electrical links. Light pink rectangle – part of the setup this thesis focuses
on (QKD transmitter). RF – radio frequency signal. PD – photodiode.

Fig. 3.17 shows a block diagram of the QKD setup implemented in our
lab. Standard optical equipment is employed, such as off-the-shelf DFB
lasers and IQ modulator. This way the design aims to meet one of the ini-
tial requirements for CV-QKD – lower cost compared to single photon-based
DV-QKD systems.

The thesis focuses on part of the setup designated with the light pink rect-
angle. In this context we call this part the QKD transmitter7. Vacuum

7Even though the whole transmitter consists of all the optical devices in Alice’s box as
well.
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fluctuation-based QRNG is used for feeding random numbers to the sys-
tem. PC821 PCIe-enabled board hosts FMC120 board and Kintex Ultra-
Scale FPGA (see Appendix A.3). Homodyne output from the QRNG is
sampled with an on-board analog-to-digital converter (ADC). The FPGA
performs DSP tasks such as randomness extraction, Gaussian sampling, up-
sampling and upconversion of transmitted symbols. A digital-to-analog con-
verter DAC is used to generate two quadrature RF signals that are fed to the
IQ modulator. When appropriate DC biases along with the RF waveforms
are applied to the IQ modulator, the modulator performs optical carrier
suppression and single sideband modulation (SSB-SC). While carrier sup-
pression may not be strictly necessary, optical SSB has a lot of significance
for CV-QKD as it prevents potential security vulnerabilities. The security
issue can arise if the other sideband is not tracked and freely exploited by
the adversary. SSB modulation also ensures better spectral efficiency. A
commercial bias controller from ID Photonics is employed.

Key devices, such as the lasers, FPGA, QRNG and the oscilloscope, are
computer-controlled via Ethernet or USB interfaces. In order to get the
optimal mean photon number according to the security proof, Alice uses a
variable attenuator (VATT) to reduce the power of the optical signal. Quan-
tum channel consists of a single mode fiber (SMF). Bob’s receiver consists of
a manual polarization controller (PC) used to maximize the mixing between
the received signal and the RLO. Bob performs a heterodyne detection (by
mixing the received signal with his RLO) using home-built wideband bal-
anced receiver. This way the restrictions on the location of the carrier tone
are relaxed, unlike in intradyne receiver configurations [50]. The (RLO) is
detuned with respect to the signal laser. Fig. 3.18 shows the relevant signals
in frequency domain at different stages of the transmission.

3.5 Noise sources in CV-QKD

The eavesdropper’s activity can be quantified by the noise Bob detects that
is above the fundamental shot noise. This is called the excess noise. More
conservative security models attribute all the excess noise to a potential
eavesdropping. This however may lead to modest key rates as Eve’s power
is overestimated in practical sense. It is justified to relax some assumptions
and attribute a part of the noise power to trusted noise sources which are
not in Eve’s control. A proper device calibration can improve key rates and
increase usability of a QKD system.

Different noise sources are identified in order to optimize the performance of
QKD systems. They are classified and quantified in [25, 77]. Large portion
of the total noise comes from the detector, i.e. the electronic noise of the
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Figure 3.18: The data symbols (quantum signal) are generated at the rate
of Rs. They are upsampled and pulse shaped using a RRC filter with roll-off
βRRC. The quantum signal is then upconverted to fup. At this point the
signal has a bandwidth of fq = (1 + βRRC)Rs. A pilot tone is frequency
multiplexed at fpilot. The top right figure shows a spectrum of the RF
signal at IQ modulator input. The optical carrier (Alice’s signal laser) is at
frequency fc. After mixing the optical signal at Bob’s side with his RLO,
the heterodyne output includes the beat between the signal and RLO lasers
at fbeat.

homodyne receiver. We mentioned earlier that in a typical device-dependent
CV-QKD model, Alice’s and Bob’s boxes are trusted and are out of Eve’s
reach. This is a valid assumption as Bob should be able to characterize
his device8. Bob characterizes the electronic noise in the calibration stage
before the quantum communication starts. Some of the other noise sources
include:

• Raman scattering – This noise source is significant in wavelength
multiplexed systems. Currently our system does not have multiplexed
classical channels, however this will be important in future research.

• Phase recovery noise – Comes from imperfect phase recovery at

8Device-independent QKD and QRNG protocols exist [78], where the set of assump-
tions on Alice’s and Bob’s devices are minimal or non-existent. However they all rely on
large Bell inequality violations and are hard to implement with notoriously low key or
randomness rates.
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the receiver’s side. For our system this means imperfect measurement
of the pilot signal which is sent along the quantum signal as a phase
reference. We consider this noise source to be untrusted.

• ADC quantization noise – A consequence of the finite precision of
ADC and non-perfect sampling. We consider this noise source to be
untrusted.

• Other noise sources that contribute less in the total excess noise such
as relative intensity noise (RIN) of the signal laser and the local oscil-
lator, finite common-mode rejection caused noise that is proportional
to the RIN, transmitter induced noise from the IQ modulator and DSP
imprecision etc. All the sources are considered to be untrusted.
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Chapter 4

Quantum random number
generation

Random numbers are ubiquitous in modern society. They have numerous ap-
plications ranging from cryptography, modelling and lottery to fundamental
science. For most of these applications the quality of random numbers is of
utmost importance. The seemingly simple task of producing random num-
bers is far from trivial. (Quantum) random number generators ((Q)RNGs)
are devices which produce streams of (high quality) random numbers. The
field that tries to answer what ’quality randomness’ is, is a fruitful research
field, and it even encourages philosophical thought [79]. This chapter focuses
on two aspects of randomness generation – randomness extraction and on-
line entropy tests. These functionalities were developed as a part of vacuum
fluctuation-based QRNG built in our lab. Security is analyzed for all build-
ing blocks of the system. Even though the results of this chapter represent
a standalone high-speed QRNG system, in the context of this thesis, the
optical setup and the randomness extraction module were optimized to be
part of the CV-QKD transmitter with Gaussian modulation. The chapter
begins with a brief history and motivation for QRNG research. [80, 81]
are good resources where QRNG technology is reviewed and where different
implementations are compared.

4.1 The science of randomness generation

In the beginning it is important to quantify randomness as different ap-
plications require different set of randomness source properties. There are
two important categories of random number sources – sources that produce
numbers that ’look’ random, or in other words mimic the statistics of a
random distribution, and sources of true random numbers generated from
some unpredictable physical event. We are mostly interested in the second
category, however a brief overview of the first kind is welcome. This way we
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have a certain insight and avoid possible dangers of ill-defined randomness
(especially for cryptographic applications). A device that produces random-
looking numbers from a deterministic algorithm is called pseudo-random
number generator (PRNG). PRNGs generally use some initial randomness
(the seed) as the input to the algorithm which further expands the ran-
domness. PRNGs are often easily implemented in software and one of the
advantages is that they are fast. Some of them are based on number theory
using congruence formulas, others are implemented based on linear feedback
shift registers (LFSR).1 PRNGs have a periodic output sequence due to the
deterministic algorithm. The period is one of the most important proper-
ties and the aim is to make it as large as possible. The most widely used
pseudorandom number generator is MT19937 with a period of 219937 − 1
[81]. PRNGs are quite convenient for simulations where there is a need for
repeatability. A methods for characterizing PRNG would be applying some
of the standardized randomness tests. Randomness tests are used to analyze
large chunks of random generator output in order to find possible patterns
that would indicate the stream is recognizable and not (looking) random.
Two most popular statistical tests are NIST suite [82] and Diehard battery
of tests [83].

Though the tests are powerful tools, they are by no means the only valid
metric when evaluating true random numbers, the ones that are a result
of some intrinsically random physical process. A very simple but very il-
lustrative example why statistical tests are not enough is what is called
a the memory stick attack [84]. Let there be a RNG device provided by
some untrusted third party. The customer can test the output and the
data might pass all the tests. However, the manufacturer could just install
a high-capacity flash drive with a random-looking sequence. This means
that from the point of view of the manufacturer, the sequence is completely
predictable, therefore completely broken for cryptographic purposes. This
example shows that randomness should be certified with a formal physical
model of a device with precisely defined assumptions [85].

Generators that generate random numbers from truly random physical pro-
cesses are called true random number generators (TRNG). One can argue
whether this is possible at all. In a super-deterministic model where every-
thing, our whole Universe and its history, is predetermined and known by
some hypothetical external observer, the generation of true randomness is
impossible. Therefore, the first assumption is that the laws of (quantum)
physics are true.2 Generally, a model of a RNG is better if it is based on
fewer assumptions. However, sometimes adding more assumptions increases

1LFSR-based generators are quite convenient for implementing in FPGA chips too.
2At least the interpretations of quantum mechanics where true randomness is possible.
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the usability while not compromising the security for a particular applica-
tion [84]. A formal definition of randomness that goes along the discussion
above can be found in [20]. Before defining true randomness, a definition of
statistical distance of two distributions is necessary.

Definition 4.1.1. (ε-distance) Let there be two random variables A and
B defined over the same domain Ω. Two distributions PA and PB are ε-close
if their statistical distance is less or equal than ε:

1

2
‖PA − PB‖1 =

1

2

∑
x∈Ω

|PA(x)− PB(x)| ≤ ε. (4.1.1)

Definition 4.1.2. True randomness. Let A be a random variable defined
over domain Ω. A is called ε-truly random if it is ε-close to uniform and
uncorrelated to all other space time variables which are not in the future
light cone of A. Denoting this set by ΓA, this can be expressed as

1

2
‖PAΓA − UΩ × PΓA‖1 ≤ ε, (4.1.2)

where UΩ is the uniform distribution

UΩ =
1

|Ω|
, ∀x ∈ Ω. (4.1.3)

It is a good question whether TRNGs can be classical at all. There are
designs that exploit chaotic physical processes such as meteorological phe-
nomena or thermal noise in electronics. These processes are, however, very
hard to precisely model, and may be deterministic in nature (a hypothet-
ical computer might be able to model such systems using laws of classical
physics giving sufficient processing capabilities). Even though TRNGs on
the first glance might seem more desirable than PRNGs, historically there
were several difficulties for wider usage of TRNGs:

1. Limited generation rate. Depending on a physical process, the gener-
ators have a limited speed which was often smaller than deterministic
PRNGs.3

2. Trustworthiness and failure detection. Physical system might be hard
to rigorously characterize. Also the real-time detection of anomalies
in the system itself is a challenge.

3. Necessity for physically adding a new device.

3For example Quantis QRNG by ID Quantique is relying on photon counting technology
and produces 4Mb/s random output. On the other hand some software-based PRNGs
can easily achieve higher rates. Lehmer’s generator uses only two multiplication and one
addition instructions on a x64 processor.
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Figure 4.1: General QRNG block diagram

The work done for this thesis tackles the first two challenges.

Our view and analysis of QRNGs only considers cryptographic applications.
At the end of 19th century, Kerckhoff put out his famous principle regard-
ing cryptographic systems, still used today: a cryptosystem should remain
secure even if everything about the system, except the (random secret) key,
is public knowledge [86]. Security of cryptosystems rely on unpredictability
of the secret key. In information theoretic framework this means the key
should be generated by an ε-random source.

QRNGs can be seen as a set of blocks with well defined tasks. There are
three main units, two of which need to have a quantum mechanical descrip-
tion (Fig. 4.1). These two blocks are collectively known as the entropy
source. The entropy source consists of a physical system and the measure-
ment device. Measurements are typically analog and need to be converted
to digital format with analog-to-digital converters (ADCs). The output bit
stream is called raw bit stream. These raw bits enter into the postprocess-
ing block which is classical. The block removes possible correlations between
the raw bit string and the outside world. Post-processing may have different
phases, but the most important one is randomness extraction. This model
is quite general as there is vast number of options to how each of the blocks
may be constructed, and it can accommodate different security scenarios
and assumptions.

Our first assumption is that the laws of quantum mechanics are true. The
first ’place’ where we look for inherent randomness is the projective mea-
surement. Born rule4 in its simplest form states that when measuring an
observable with discrete eigenspectrum {|λi〉}, on a system in state |ψ〉, will
yield a result λi with probability |〈λi|ψ〉|2. To illustrate better, we start by
the simplest two dimensional quantum system – a qubit, with computational
basis Z = {|0〉 , |1〉} (Fig. 4.2). If the qubit is prepared (in the ’physical sys-

4Formulated in 1926 by German physicist Max Born.

46



4.1. THE SCIENCE OF RANDOMNESS GENERATION

Figure 4.2: Two dimensional Hilbert space of a qubit with Z and X bases

tem’ block of QRNG) in one of the eigenstates of the X = {|+〉 , |−〉} basis,
where |±〉 = 1√

2
(|0〉 ± |1〉) , then when measuring this state in the Z basis

(using the second, mesurement block) one will get one of the two results with
equal probability. Even though this is a very simple idea, there are many
practical and theoretical challenges, such as low rate or non-perfect prepara-
tion and measurement. It should be noted that in order for such a scheme to
be secure, the preparation and measurement devices cannot be controlled by
an adversary. In other words the devices need to be trusted. Such QRNG
schemes are called device-dependent QRNGs (DD-QRNG). On the other
hand, there are QRNG designs where neither preparation nor measurement
has to be trusted [84]. They are called device-independent QRNGs (DI-
QRNGs)[87, 88]. They exploit non-locality, a purely quantum effect. For
such protocols, the user needs two separate measurement devices (this is in
contrast to the framework put forward above) whose task is to show the vio-
lation of Bell inequality. In practice DI-QRNG has very low output bit rate
and technical difficulties regarding loophole free Bell measurements. The
third kind of generators that are in between DI-QRNGs and DD-QRNGs
are called semi-device-independent generators (SDI-QRNGs). Compared to
DI implementations, they introduce more assumptions and try to increase
rates without compromising too much on security. Two main categories
here are source-independent [89, 90], where the source is untrusted, and
measurement-device independent [91, 92], where the measurement device is
untrusted.

Even though DI and SDI QRNGs promise unprecedented security, device-
dependent schemes in practise might be very secure if modelled properly,
promising high rates along the way. DD-QRNG research has been fruitful
in the past decade [80, 81]. Bellow are listed four different technologies.

• Measuring the temporal mode using single photon detectors (SPD).
Laser power can be tuned so on average one photon arrives at a de-
tector in some predetermined time period. Then, the time of arrival
is random and is consequence of a quantum processes inside the laser.
The measurement frequency is limited by the detector dead time, typ-
ically 100ns. The raw bitrate for this system is in the order of magni-
tude of hundreds of Mb/s.
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• Measuring the spatial mode of a photon using an array of SPDs. This
technique offers similar rates as the temporal mode-based QRNG.

• Measuring the number of photons in a coherent state using photon
number-resolving SPD. Coherent states are superposition in photon
number basis as stated by Eq. 2.1.29. Thus, by measuring the photon
number one can get Poissonian distribution.

• Measuring phase or intensity noise of amplified spontaneous emission
(ASE) which is quantum mechanical in nature. For the phase noise
QRNG, there is a coherent signal state with phase oscillating around
some mean value. If this mean value is for example, 0 or π/2, the
phase noise can be probed by measuring one of the two quadratures
of the signal. Some of the experiments with the phase noise achieved
multi-gigabit per second key rates [99].

Photon counting-based QRNGs (first three in the list) inherently have pos-
sess limitations on speed. Phase noise based QRNGs on the other hand have
no such limitations, however it is challenging to build a rigorous model in
terms of describing the preparation and measurement of the quantum state.
Vacuum fluctuation-based QRNGs aim to tackle all the forementioned chal-
lenges.

4.2 Vacuum fluctuation-based QRNG

Probing the vacuum state (shot noise) of the electromagnetic field (see
Chapter 2) can be done using a balanced homodyne receiver (Fig. 4.3a).
Strong local oscillator is split in a 50/50 beamsplitter. Vacuum mode ’en-
ters’ through another input port of the beamsplitter. The two outputs are
measured using two photodiodes.

There are several advantages of vacuum noise-based QRNG:

• The resource of quantum randomness – vacuum state, is easily pre-
pared

• Compared to some SPD-based QRNG designs, this one is insensitive
to detector loss. The loss can be compensated by increasing the local
oscillator power

• The field quadratures are continuous variables, therefore one can ob-
tain more than one bit per measurement, which increases speed

• The speed can be increased by increasing the detector bandwidth.
Building a shot noise-limited high bandwidth detector is a challenge
for itself [93, 94], but the rates are still much higher than with single
photon-based QRNGs.

48



4.2. VACUUM FLUCTUATION-BASED QRNG

-
Strong local oscillator

50/50 
beamsplitter

Subtractor

Vacuum input

PD

PD

(a)

I

Q

(b)

Figure 4.3: (a) A simple homodyne measurement of vacuum fluctuations.
BS: beamsplitter, PD: photodiode. (b) Red circle is the Wigner function
of the vacuum state in phase space. Homodyne output is a Gaussian dis-
tributed discrete signal.

The idea of vacuum noise-based QRNG has been previously investigated
[95–98]. In the experiment implemented in our lab, however, this idea was
extended by taking ’paranoid’ approach to min-entropy calculation and de-
veloping the technology to support such theoretical framework.

The goal of this analysis can be summed up to a single task – how to
calculate the min-entropy of a randomness source. The min-entropy is con-
ditional, which means that we are trying to find out how random is our
output bit sequence conditioned on any information that outside world has
about the system. Traditionally, the outside world is the adversary Eve. An
assumption here is that there is some boundary where Eve might not have
full access to. The model is constrained within device-dependent framework.
Compared to some previous QRNG implementations [95–97, 99–104], where
all the side-information was classical, Eve’s information here is treated as
quantum. Fig. 4.4 shows two trusted devices, the signal source (producing

∞Signal 
source 

(physical 
system)

Purification

Measurement 
device

Figure 4.4: Graphical depiction of quantum side information

the physical system) and the measurement device. The state of the physical
system could be entangled to an adversary’s state E (a purification). It is
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interesting to make parallels with QKD, as the general setup is very similar.
QKD systems could be seen as quantum random generators that produce
shared randomness. Along with Definition 4.1.2, in [20] there is a formal
definition of QRNG:

Definition 4.2.1. A QRNG is defined by a density operator ρS on a system
S together with a projective measurement {Πx

S}x∈X on S. The raw random-
ness is the random variable X obtained by applying this measurement to
state ρS .

The probability distribution of the variable X is then

PX(x) = tr(Πx
SρS). (4.2.1)

This definition translated to a real system implicitly considers two assump-
tions:

• The state of the system is pure

• The measurement of the system is projective

In reality, these assumptions are very strong and neither of them is true,
therefore weaker assumptions should be made. The prepared state is gen-
erally in a mixed state, and the measurements act like a general positive-
operator valued measurement (POVM).This all means that there might be
side information correlated to the measurement results. The task is to prop-
erly model and quantify this side information in order to lower bound the
min-entropy, so the correlations are removed in the act of randomness ex-
traction. Even though the side information is not explicitly mentioned in
the definition, a purification of the input signal state is considered, denoted
by E which is held by Eve as shown in Fig. 4.4.

There is focus on five critical issues in our QRNG. The issues have not
yet been addressed before in a single implementation.

1. Treating the adversary to be quantum-capable as described above.

2. Limited bandwidth and a realistic transfer function inevitably intro-
duce correlations between samples, so the i.i.d. assumption is not
justified.

3. Using metrology-grade characterization of important parameters of the
devices used. Confidence intervals for the parameters are calculated,
so the value for the (lower bounded) min-entropy is trustworthy with
the same level of confidence. This way a higher level of security is
possible within DI-QRNG framework.

4. Information-theoretic secure high-rate randomness extraction.

50



4.2. VACUUM FLUCTUATION-BASED QRNG

5. Real-time monitoring of the min-entropy where the randomness offload
is stopped if the value of the min-entropy goes below a certain limit,
thus retaining security of QRNG users.

Calculating the min-entropy

Detailed security analysis can be found in the supplemental material of the
preprint of our paper [105]. It goes beyond the scope of the thesis so here
we present only final expressions.

First, an i.i.d. scenario is assumed where signals at different times are
independent and identically distributed. Quantum side-information is ac-
counted by assuming the source is emitting thermal light with mean pho-
ton number nth, and the adversary is holding a purification of that ther-
mal state. The purified state can be assumed to be a two-mode squeezed
vacuum state ρ̂XE , without loss of generality. For such a state, the out-
put of the homodyne measurement has the probability density distribution
PX(x) = G(0, g2(1 + 2nth)), where G is Gaussian distribution (with zero
mean and variance g2(1 + 2nth) and g is a gain factor. A lower bound on
min-entropy is obtained and it is a function of the mean photon number,
the gain factor and the ADC parameters Hmin = Hmin(nth, g, ADC).5

After this, a non-i.i.d. scenario is analyzed, where the measured signal
has a finite bandwidth. Similar to QKD, there is a distinction between the
signal and the excess noise that is assigned to Eve. The signal is defined
as a result of the homodyne measurement including all the noise sources,
while the excess noise is obtained by subtracting the vacuum fluctuations
from the signal. Let us assume K samples of the QRNG output X are
captured during a measurement. For estimating the power spectral density
of the captured signal we use Bartlett’s method [106].6The samples are di-
vided into K/M non-overlapping blocks of the same length M . To obtain
the PSD estimate, a periodogram using FFT transformation of length M is
calculated for each block. Let us denote the variance of the measured signal
as σ2. The variance, including the confidence interval for the PSD estimate,
is calculated as

σ2± =

(
1± 4

√
M

K
ln

2M

ε

) M∑
j=0

1

M
SX(fj), (4.2.2)

5We avoid writing the whole formula as it is lengthy and not very insightful. This is
expression (27) in [105].

6Bartlett’s method is a special case of widely used Welch’s method for estimating PSDs
where there is no overlap between periodograms. More on the FPGA implementation of
Bartlett’s method is in Section 4.5.
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where SX(fj) is the PSD estimate and ε is the probability that the value
lies outside the interval. The non-i.i.d. influence is included by modelling
a noise source that is i.i.d. and has the same Shannon entropy as the mea-
sured signal. The variance of this signal is called the conditional variance
(conditioned on i.i.d.) and it is calculated as

σ2
X =

1

2πe
2
∫ 2π
0

df
2π

log(2πeSX(f)), (4.2.3)

or using PSD samples and including the confidence interval

σ2
X
± =

1

2πe
2
∑M
j=1

1
M

log(2πeSX(fj))2
±4 log e

√
M
K

ln 2M
ε . (4.2.4)

A random variable N is assigned to the excess noise, so corresponding power
spectral density is SN (f), with the conditional noise variance being σ2

N :

σ2
N
± =

1

2πe
2
∫ 2π
0

df
2π

log(2πeSN (f))2
±4 log e

√
M
K

ln 2M
ε . (4.2.5)

By definition of the excess noise, we identify σ2
N ≡ 2g2nth. By exploiting

the conditional distributions the non-i.i.d. setting is mapped to the i.i.d.
model with

g2 = σ2
X − σ2

N , (4.2.6)

nth =
1

2

σ2

σ2
X + σ2

N

− 1

2
. (4.2.7)

To obtain the worst-case estimate of the min-entropy we consider the smaller
value for the conditional variance σ2

X
−, and the larger one for the noise σ2

N
+.

In order to get the conditional variance of the excess noise, we make a
conservative estimate of the vacuum noise in the calibration step before the
QRNG is started. Our strategy is to measure the transfer function of the
homodyne detector and calibrate the vacuum fluctuations PSD (Eq. 3.2.20).
The transfer function is measured by injecting a coherent state in form of
a second laser beam and producing a beat signal. The transfer function
is calculated by detuning the two lasers and swiping the frequency range.
For each frequency the beat signal power is recorded. The transfer function
includes imperfections such as optical loss, quantum efficiency of the pho-
todiodes, the analog bandwidth of the ADC etc. For the implementation of
the system, including the calibration, see Section 4.7.

The signal variance and the conditional variance can be measured in real
time as they only depend on the measured samples. With the vacuum
noise PSD calculated in the calibration step we are able to monitor the
min-entropy in real time. Fig. 4.5 shows how min-entropy depends on the
correlations and excess noise power.
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Figure 4.5: Simulated values of the min-entropy for different values of the
ratio of conditional variance of the vacuum fluctuations and the conditional
variance of the excess noise for a 16-bit ADC like the one we use. The
upper and lower boundaries indicate low correlations and high correlations
respectfully.

4.3 Theory of randomness extraction

This section focuses on information-theoretic secure randomness extraction.
It is an overview of important concepts starting with the universal hashing
discovered forty years ago, until the last decade when the classical informa-
tion concepts were applied to quantum cryptography scenarios and proven to
be secure even against quantum adversaries. If we look at parts of QRNG
(QKD) protocol in a sequential manner, the randomness extraction (the
privacy amplification) comes after the measurement of quantum states (and
after the parameter estimation step for the case of QKD). That means the
min-entropy is already estimated. Their task is now to extract as much
information and as efficiently possible from a string of raw bits, where min-
entropy represents an upper bound of extractable secret bits. Note that the
thesis focuses on randomness extraction for QRNG, and even though privacy
amplification is the same concept, it operates with different block lengths
and brings other implementational challenges, so it is one of the topics for
future work.

4.3.1 Universal hashing

Following this philosophy of information-theoretic security, we focus our
interest to classes of hash functions called two-universal (or universal2) that
have desired properties. Universal classes of hash functions were introduced
in 1979 in a seminal paper by Carter and Wegman [107]. In this paper the
authors use universal classes for a storage and retrieval algorithm on keys.
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They showed some of the properties of the classes.

Definition 4.3.1. (Two-universal hash functions) Let H = (hk)k be a
family of functions, the set of functions from A = {0, 1}n into B = {0, 1}m
indexed by a key k ∈ {0, 1}d. It is said that H is a two-universal hash
function family if

for any x, y ∈ A, x 6= y, Prk[hk(x) = hk(y)] ≤ 1

|B|
, |B| = 2m, (4.3.1)

where Pr(·) is the probability of the collision occurring.

In other words, no pair of distinctive messages x and y collide under
more than 1/|B| of the functions. The expression two-universal is intended
to emphasize that the definition constraints the behaviour of H only on pairs
of elements of A. There are other definitions, such as strong universality,
however the authors argue that the defined property is powerful enough for
many purposes. It was shown that this was true, as it is possible to build a
strong randomness extractor using universal hashing.

The existence of universal hashing does not mean much for real life ap-
plications if the calculation algorithms are inefficient. The problem of com-
putational complexity was tackled in [108, 109]. In [109], a proof was given
for the universality of a family of hash functions defined by convolution:

Theorem 4.3.1. (Universality of convolution) Let A = {0, 1}n and
B = {0, 1}m. For x ∈ {0, 1}n and y ∈ {0, 1}n+m−1 we define the convolution
of y and x, y ◦ x, to be the m-bit string z whose i-th bit is given by zi =∑n

j=1 xjyi+j−1(mod 2). For two m-bit strings x and y let x ⊕ y denote
the bitwise exclusive-or of the two strings. Then the following family is a
universal family of hash functions:

H = {(a ◦ x)⊕ b|a ∈ {0, 1}n+m−1, b ∈ {0, 1}m}.

Due to importance of this theorem for this work, a sketch of proof from
the same paper is presented.

Sketch of the proof. One fixes x1 6= x2 and y1, y2 and counts the number
of vectors a and b in order to calculate the probability from the universal
hashing definition. For a single a, there is single b which satisfies the ex-
pression, therefore counting the number of a is sufficient. Let x = x1 ⊕ x2

and y = y1 ⊕ y2, we have that x 6= 0. Consider the set a|a ◦ x = y. It is the
solution space of n equations. Since x 6= 0, the equations are independent,
thus it defines a hyperspace of dimension exactly m− 1 in Zn+m−1

2 .

This theorem implicitly introduces Toeplitz hashing, since the multipli-
cation of a vector with a Toeplitz matrix can be represented as (part of)

54



4.3. THEORY OF RANDOMNESS EXTRACTION

convolution of the same vector with Toeplitz matrix seed. It should be
noted that the paper [109] deals with algorithm complexity for software im-
plementations. However, Toeplitz constructions are even more convenient
for FPGA implementations which is shown in the following sections of this
chapter.

Definition 4.3.2. (Toeplitz matrix) The original definition of Toeplitz
matrix [110] states that it is a n × n matrix Tn = [ti,j |j = 0, , . . . , n − 1]
where ti,j = ti−j , i.e., a matrix of the form

Tn =


t0 t−1 t−2 . . . t−(n−1)

t1 t0 t−1

t2 t1 t0
...

...
. . .

tn−1 . . . t0

 (4.3.2)

For our applications it is convenient to define a generalization where
Toeplitz matrix is of size n×m with the form:

Tm×n =


t0 t−1 t−2 . . . t−(n−1)

t1 t0 t−1

t2 t1 t0
...

...
. . .

tm−1 . . . t0

 (4.3.3)

Definition shows that Toeplitz matrix is defined by its first column and
first row. This means it is defined by n + m − 1 bits in total. We call this
string Toeplitz matrix seed. Multiplication of an array of length n, with a
Toeplitz matrix of size m×n yields an array of size m. One can easily check
that this array is just a part of a longer array which is the result of the
discrete convolution between the matrix seed array and the original array
of length n: let the seed array be defined as S = [t−(n−1), . . . , t0, . . . , tm−1],
therefore the corresponding Toeplitz matrix is defined with Tm×n = [ti,j |i =
0, . . . ,m − 1; j = 0, . . . , n − 1; ti,j = ti−j ] An array An = a0, . . . , an−1 is
multiplied with the Toeplitz matrix. On the other hand, let the convolution
of A and S be defined as

(A ◦ S)(k) =

n−1∑
i=0

a(i)t(k − i). (4.3.4)

It is obvious that the convolution is the same as the result of matrix
multiplication Tm×nAn. This proves that Toeplitz matrices represent a uni-
versal family of hash functions. Each function is defined with a seed of length
n+m− 1, hence the total number of functions in this family is 2n+m−1.
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4.3.2 Almost universal hashing

Sometimes it is very useful for practical purposes to relax the limit for the
collision probability of a hash function family. This leads to a definition of
almost universal hash functions. Here the maximum collision probability is
higher than 1/|B| [111].

Definition 4.3.3. (ε-almost universality) Let H = (hk)k be a family of
functions in Fn,m, the set of functions from A = {0, 1}n into B = {0, 1}m
indexed by a key k ∈ {0, 1}d. We say that H is an ε-almost universal hash
(ε-AUH) function family if

for any x, y ∈ A, x 6= y, Prk[hk(x) = hk(y)] ≤ 1

|B|
+ ε. (4.3.5)

It is clear that for ε = 0 this becomes universal hash function family. To
illustrate how the almost universal definition helps in practice there is an
example of efficient Toeplitz hashing proposed in 1994 by Krawczyk [108].
It was shown that Toeplitz matrices defined by n+m−1 bits are a universal
family of hash functions. For some applications the key (seed) of this length
is too large, as the key itself is longer than the message length n. By
relaxing the universal hashing requirement one is able to produce a hash
function that is almost as secure as the universal one. The author proceeds
with a proof of LFSR-based Toeplitz hashing. This matrix is defined by its
first column. Each column is built as a state of linear feedback shift register
(LFSR); consecutive columns are consecutive states. The first column is the
initial state of the register. This scheme requires 2m bits – m bits for initial
state and m bits for defining the polynomial (LFSR pads). Matrices built
this way are a subset of m× n Toeplitz matrices. The paper proofs that if
the LFSR represents an irreducible polynomial, the generated matrix is a
member of an almost universal hash function family. The theorem states7:

Theorem 4.3.2. The LFSR-based Toeplitz construction defined above is
ε-almost universal for ε = 2n−1

2m .

Obvious advantage of this scheme is much smaller seed, therefore very
convenient for cryptographic algorithms, such as authentication where the
seed (the secret authentication key) is valuable resource. By manipulating
the message length n, one is able to achieve the right trade-off between
implementation efficiency and ε.

4.3.3 Leftover hash lemma and strong randomness extrac-
tors

As Definition 4.1.2 implies, a random number generator output not only
needs to be uniform, but also independent of other variables. Again, malev-

7The original theorem is formulated a bit differently. Krawczyk uses the term ε-
balanced hashing. This formulation is equivalent to the one from the paper.
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olent adversary Eve is introduced. Eve could be introducing classical noise
to a classical RNG system that could in turn enable her to gain some partial
knowledge of the future RNG outputs. In QRNG systems, the adversary
could gain quantum side information about the physical system. This quan-
tum side information needs to be treated differently than the classical one.
It might also give more power to the adversary. Regardless of the attack
model, randomness extraction is the final step required in order to get uni-
form random numbers. After the raw numbers are obtained from a physical
system, and a security model was made, one needs to process the data so the
(quantum enabled) adversary is left with almost zero information about the
output string. The final result of parameter estimation is the min-entropy
of the measured and discretized entropy source raw output.

Definition 4.3.4. (Extractor) A (h, ε, n, d,m)-extractor is a function

Ext : {0, 1}n × {0, 1}d → {0, 1}m, (4.3.6)

such that for every probability distribution PX on {0, 1}n, with Hmin(PX) ≥
h, the probability distribution Ext(PX , Ud) is ε-close to the uniform distri-
bution on {0, 1}m. Ud denotes uniform distribution on alphabet {0, 1}d.

Definition 4.3.5. (Strong extractor) A (h, ε, n, d,m)-strong extractor
Ext(PX , Ud) is an extractor such that the probability distribution Ext(PX , Ud)◦
Ud is ε-close to the uniform distribution on Um+d = {0, 1}m+d.

The definition of strong extractors points out that the random seed is
not correlated with the extractor output. This means the seed can be reused
for multiple blocks of data and can be chosen only once in the beginning of
the extraction operation [20]. This feature is very convenient for practical
purposes.

Leftover hash lemma (LHL) has a central role in applications of universal
hash functions to randomness extraction:

Theorem 4.3.3. (Leftover Hash Lemma) Let H = {h1, h2, ..., h2d} be a
two-universal hashing family, mapping from {0, 1}n to {0, 1}m, and PX be a
probability distribution on {0, 1}n with Hmin(PX) ≥ h. Then for x ∈ X and
hk ∈ H where k ∈ Ud, the probability distribution formed by Ext(PX , Ud) is
ε = 2(m−h)/2-close to Um+d. This means it forms a (h, 2(m−h)/2, n, d,m)-
strong extractor.

It was proven earlier that the set of Toeplitz matrices is a family of uni-
versal hash functions. According to LHL this means these matrices could be
used as strong extractors. Toeplitz matrices are a well known choice for im-
plementing randomness extraction and privacy amplification used in QKD
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[112, 113]. Here, the seed of a Toeplitz matrix and the one of an extractor
are the same. Note that if the matrices were not universal hash family, the
randomness extraction would not be possible due to the fact that the seed
is longer than the output vector. In other words one would need to spend
more randomness for reseeding than they gain.

The follow-up question is: can almost universal hash functions be used as
strong randomness extractors? Luckily, the answer is yes [111, 120, 121].
The leftover hash lemma with almost universal hash functions (AUH) is
defined:

Theorem 4.3.4. (Leftover Hash Lemma with ε-AUH).
Let H = {h1, h2, ..., h2d} be an ε-almost two-universal hashing family, map-
ping from {0, 1}n to {0, 1}m, and PX be a probability distribution on {0, 1}n
with Hmin(PX) ≥ h. Let e be an integer and m ≤ α − 2e where α =
min(h, log(1/ε)). Then for x ∈ X and hk ∈ H where k ∈ Ud, the probability
distribution formed by Ext(PX , Ud) is ε = 2−e-close to Um+d. This means
it forms a (h, 2e, n, d,m)-strong extractor.

The proof in [111] is the more general than some previous proofs and is
valid for any ε. The usage of almost universal hashing enables the usage of
very practical schemes such as Krawczyk’s LFSR hashing.

So far we considered the choosing of a hash function to be perfect, i.e.
we assumed the seed was chosen from a perfect uniform distribution. Obvi-
ously, this is never the case in real world, and further analysis is required.
The problem of imperfect seed was tackled in [116]. The main theorem in
the paper gives the security parameter for ε-biased sequences. Before stating
the theorem of the paper, there is a definition of ε-biased distributions:

Definition 4.3.6. (ε-biased distributions) Let PX be a distribution on
X = {0, 1}n. Let (χ, x) denote the scalar product modulo 2 of χ ∈ {0, 1}n
and x ∈ {0, 1}n. Then, PX is said to pass the linear test χ with bias ε if
|Pr((χ, x) = 1) − 1

2 | ≤ ε. PX is said to be an ε-biased distribution if it
passes all linear tests χ 6= 0 with bias ε.

Intuitively, the notion of ε-bias distributions is very similar to ε-closeness.
Let us prove the following theorem:

Theorem 4.3.5. If distribution PX , with elements x ∈ {0, 1}n is ε-close to
the uniform one, then it is ε-biased.

Proof. It is easy to see that for any χ 6= 0, the condition Pr((χ,X) = 1 is
satisfied for exactly half of the elements in the set {0, 1}n. Let us denote
with X ′ a subset of {0, 1}n, with exactly half of total elements, and with X̂ ′

its complement. Now we can write a sequence of inequalities starting with
the definition for ε-close distributions to the uniform one:
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ε ≥
∑
i

|PX(xi)−
1

2n
| =

∑
i|xi∈X′

|PX(xi)−
1

2n
| +

∑
i|xi∈X̂′

|PX(xi)−
1

2n
| ≥

∑
i|xi∈X′

|PX(xi)−
1

2n
| ≥ |

∑
i|xi∈X′

PX(xi)−
∑

i|xi∈X′

1

2n
| = |

∑
i|xi∈X′

PX(xi)−
1

2
|.

(4.3.7)

In the first line we split the sum into two over subset X ′ and its com-
plement X̂ ′. X ′ is arbitrary with a constraint of having exactly half of the
elements from {0, 1}n. It is obvious that

∑
i|xi∈X′χ PX(xi) = Pr((χ,X) = 1)

where X ′χ is the subset of elements for which the corresponding scalar prod-
uct is 1.

The main theorem from [116] states:

Theorem 4.3.6. Let PY be a distribution on {0, 1}n+m−1. Let {TY } be
the set of m× n Toeplitz matrices generated by the elements from Y . If the
distribution PY is ε-biased then the family {TY } is a 2−m+ε-balanced family
of hash functions.

In other words such a family is ε-almost universal.

Apart from the extraction application, hash functions are used extensively
for authentication schemes. Universal hash functions are used in construct-
ing information-theoretic secure authentication [115] where the hash output
is XOR-ed with one time pad. In our case ε-otp-security is equivalent to
ε-balanced since Toeplitz hashing is XOR-linear [108].

As the previous analysis showed, engineers need to be aware of the seed
creation problem, and the security parameter related to it. There are two
main requirements: the seed should be independent of raw bits produced
in a particular QRNG and it should be as close as possible to the uniform
distribution. An interesting analysis could be found in [117]. One of the
possibilities is to use several other weak random sources, XOR the outputs
and generate high entropy bit. Before the XOR-ing, on each output one can
use some techniques to minimize the distance to uniform distribution. The
examples are von Neumann de-biasing algorithm and taking non-consecutive
samples in order to minimize correlations.

When the requirements for both universality of the hashing and uniformity
of the seed is relaxed a natural next step is combining everything into one
expression that gives a single security parameter for the randomness extrac-
tion. Intuitively, all error parameters should add up. A proof in [20] shows
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this intuition is justified. It is assumed the hashing is done in blocks of data
using (almost)-universal hash function hk which is chosen according to the
seed. Let the hash function be applied to N blocks of data x1, ..., xN where
each Xi is a random variable with alphabet {0, 1}n. The final distribution
hk(x1), ..., hk(xN ) is the concatenation of the N post-processed blocks. The
distribution corresponding to imperfect seed is denoted with D. The ar-
gument is also described for the case of classical side information C. The
authors note that by replacing all probability distributions by density oper-
ators, the argument is generalised to the case of quantum side information.
Let the statistical distance of the random seed to the uniform distribution
be εseed:

εseed = ‖Px1...xNCD − Px1...xNC × UD‖1. (4.3.8)

Let εhash be the security parameter calculated according to the leftover
hash lemma for (almost) universal hash families. Randomness extractor
is strong hence the seed is fixed. The statistical distance of the extractor
output is then:

‖Phk(X1)...hk(XN )CD − UNn × PC × UD‖1 ≤ Nεhash + εseed. (4.3.9)

Finally we stress that the formulas for randomness extraction are valid
even with quantum side information E held by Eve and correlated to the
measurement outcome X (raw bits obtained from the measurement device),
so the min-entropy Hmin(X|E) is calculated with the regard to the quantum
side information [20, 119, 122].

4.4 FPGA implementation of the randomness ex-
tractor

The two main motives for implementing Toeplitz matrix multiplication are
the universality of such operation and the opportunity for significant par-
allelization in FPGA. Even though Kintex UltraScale is a powerful chip,
Toeplitz module still uses relatively large amount of resources, which leads
to slower compiling and debugging. The final result that is presented is a
product of tuning the design parameters for applications in both the stan-
dalone QRNG setup, and in the CV-QKD transmitter.

For the purpose of implementing Toeplitz extractor we cloned a Capture
star (see Appendix A.4). This was the most convenient solution as the star
already had two AXI-Stream interfaces for data streaming, and AXI-Lite
for read/write operations on memory mapped registers. This was critical
for enabling the software control of the module. The Toeplitz module takes
64-bit input directly from one of the ADCs through the FMC120 star. The
input is streaming four 16-bit samples constantly at the system clock fre-
quency of 250 MHz, which totals to 1 GS/s (16 Gb/s) of constant data
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Figure 4.6: Block diagram of Toeplitz hashing module.Blue – Toeplitz ma-
trix seed is saved in FPGA distributed memory elements and remains con-
stant throughout the hashing procedure. Light pink – finite state machine
for controlling the module. Orange – data vectors and the submatrix.

rate. Our goal was to design a module that can process all the data in real
time. The output of the module is also 64-bit wide. Hashing reduces data
rate, so the output data comes in bursts (since the clock rate stays the same).

Toeplitz matrix hashing algorithm was implemented in a similar fashion
as in [125, 126]. On each clock cycle the module gets 64 bits of raw data for
processing. Since we are aiming for the maximum possible throughput, the
processing of all 64 bits must be done in one clock cycle. For this reason
we employ the submatrix method. Let the full Toeplitz matrix be of size
m × n. This means that one raw data block is n-bit wide. The result is a
m-bit vector of hashed data. The block diagram of the module is shown in
Fig. 4.6.

In the development stage of the module it was realized it would be a good
solution to lower the clock rate for the module, at expense of using more re-
sources, due to a relatively large logic network and possible timing problems.
In the VHDL description of the module we extensively use generic parame-
ters, for easier modification of module parameters such as the matrix size.
The experience showed that it was much harder to achieve a timing closure8

8This refers to a set of techniques a developer can use to make a design where there
are no timing violations.
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Figure 4.7: Toeplitz hashing FSM

with a smaller matrix and 250 MHz clock compared to the system with a
bigger matrix and 125 MHz clock. We build the module to use 125 MHz
clock by isolating it with two clock boundary FIFOs, one for the input and
one for the output. Since we want to preserve the rate, the clock is divided
by two, but the raw word length is multiplied by two. The algorithm takes
128-bit words at 125 MHz. With these parameters we aim for the matrix
dimensions to be multiples of 128. The idea is to split the Toeplitz matrix
into smaller m× 128 submatrices. There are in total n/128 submatrices.

The algorithm works as follows9. The raw data vector is multiplied with
each of m rows of m× 128 submatrix (in one clock cycle), and the resulting
m bits are stored in an accumulator register. Multiplication of the raw vec-
tor and a row is done by employing the bitwise AND and then XOR-ing all
128 bits into a single bit. The whole n-bit block is processed in n/128 clock
cycles. All operations are done with bits and thus in the finite field GF (2).
Therefore, the multiplication translates to AND operation, while the addi-
tion is implemented as XOR gate. By using inherent parallel processing of
FPGAs, we are able to implement the multiplication of a submatrix and a
128 bit raw data vector effectively in a single clock cycle.

For controlling the Toeplitz extractor a finite state machine (FSM) is

9Without worrying too much at this point of what the matrix size should be.
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implemented. Some of the FSM’s input signals are slow software-controlled
signals. Fig. 4.7 shows the states and the transitions. The machine starts
in the Reset state where the seed and all the counters are reset to zero.
From there FSM can only go to the Default state from where a user can
choose to proceed with the hashing (if the matrix is initialized already), or
to switch to Matrix initialization state where the user initializes the Toeplitz
matrix with a new seed. This is all done using reference API and software
that communicates with Toeplitz module (star) through AXI-Lite interface.
After the matrix initialization the FSM goes to the Standby state where
it waits for a signal to start the hashing. After the hashing is started the
module hashes the input data indefinitely until the user stops the operation.

With this basic idea of submatrix multiplication we proceed planning the
optimal solution for the real FPGA implementation. Leftover hash lemma
(LHL) shows how large the Toeplitz matrix should be for a particular se-
curity bound ε. Let us rewrite LHL using the particular Toeplitz hashing
parameters:

m = nHmin − 2 log(1/ε), (4.4.1)

where m and n are matrix dimensions defined above and Hmin is calculated
min-entropy10 for our QRNG. ε is the information-theoretic security bound.
It is defined as a statistical distance between the output sequence and the
perfect uniform sequence. The security bound can also be interpreted as an
advantage11 of the adversary – a probability higher than guessing probability
with which she can differentiate the QRNG output from a perfect uniform
stream. To get a feeling of what the matrix dimension should be, if we
assume ε is less than 10−10, we need the difference nHmin−m to be at least
60 bits. Now we define extraction efficiency as

eff =
m

n×Hmin
, (4.4.2)

which is according to LHL always less than 1. The efficiency can be made
arbitrarily close to 1 with increasing the matrix size. Therefore, there is a
trade-off between the matrix size (the implementation complexity) and the
output rate (the efficiency) on one side, and the security bound on the other.

Due to the submatrices being created on each clock cycle, the seed is re-
quired to be readily available to the rest of the logic. That is why the seed
is not stored in Block RAM (BRAM) cores, as they require sequential read-
ing. It might have been stored in the external DDR4 RAM, however the
RAM is used already for a different purpose in the firmware.12 The seed is

10Here min-entropy is given per bit and not per sample.
11The notion of advantage is often used in classical cryptography.
12In standalone QRNG the RAM is used for buffering the raw sample.
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initialized as a vector and kept in FPGA logic flip-flops. Even though the
FPGA is large enough, it would be incredibly hard, but also unnecessary, to
build a whole Toeplitz matrix at once. Instead, on each clock cycle the logic
takes part of the seed, builds a submatrix and performs the multiplication.

Compiling time for different designs

Parameter
set 1

Parameter
set 2

Parameter
set 3

Rate[Gb/s] 5.3 8 8.8

Matrix dimensions
(m,n)

(256,768) (384,768) (640,1152)

Extraction efficiency
[%]

56 83 93

Security parameter
εhash

2−102 2−38 2−25

Compiling time [h] 7 10 32

Table 4.1: Comparison of three sets of test parameters. Assumed Hmin =
0.6.

Submatrix multiplication with the raw data word implies several hundreds of
multiplications of 128 bit vectors, which produce huge combinatorial network
that might lead to setup timing violations. The bitwise AND is implemented
easily, however XOR-ing of 128 bits is done in three stages. 128 bits are first
XOR-ed in groups of 8 and then two times in groups of 4 (8× 4× 4 = 128).
This introduces latency of three clock cycles, however it does not influence
the rate since the operation is pipelined.

During the development stage we tested several sets of parameters for the
Toeplitz module. Table 4.1 illustrates the trade-off between the output rate
and the complexity by comparing three different parameter sets with differ-
ent output rates. It is interesting to present the compiling time as a figure of
merit to show the practical differences. Note that the reference min-entropy
for all three sets is chosen to be Hmin = 0.6 bits per one bit of the raw
input, and this is an arbitrary chosen value at this point for comparison
purposes. The theoretical maximum for the output rate in this case would
be Hmin × 16, Gb/s = 9.6, Gb/s. Since the submatrix width is kept fixed at
128 bits, the only parameter that is relevant for the size of the design is the
number of rows m. It is obvious how the complexity and the security pa-
rameter grow as the output rate and the extraction efficiency asymptotically
rise to their respective maximum values.
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Final parameter set

Rate[Gb/s] 8

Matrix dimensions
(m,n)

(640,1280)

Extraction efficiency [%] 75

Reference min-entropy
[per bit]

0.669

Security parameter εhash ≈ 2−108 ≈ 10−30

Compiling time [h] 34

Table 4.2: Parameters for the final design used in QRNG and QKD trans-
mitter setups

Toeplitz FPGA implementation resource utilization

FF LUT BRAM FIFO

26943 91540 0 6

Table 4.3

Parameters and performance of the final Toeplitz module de-
sign

The most important requirement for the final working design is to achieve
a proper level of security. According to Eq. 4.3.9, the total security pa-
rameter εQRNG grows linearly with the number of hashed blocks. We make
a requirement that our QRNG should run for 10 years with the security
parameter εQRNG < 10−10. If the number of blocks is N , this condition can
be written as

εQRNG = Nεhash + εseed < 10−10. (4.4.3)

Table 4.2 shows the final parameter set. We aimed for the maximum number
of rows of the Toeplitz matrix m = 640 that we tested before, in order to
achieve a good output rate and decent extraction efficiency for a very small
εhash. The number of hashed blocks in ten years for the output rate of 8
Gb/s is N ≈ 4 × 1015. With εhash ≈ 10−30, the total security parameters
is εQRNG ≈ 10−15 + εseed. Since the seed provided from a completely inde-
pendent system we are free to chose any source that gives n+m− 1 = 1919
bits with εseed < 10−10.

Table 4.3 shows the number of FPGA resource blocks used by the Toeplitz
module. Even though the module is the largest one in the whole FPGA
firmware, it utilizes only 17% of all the LUTs and all the other resources are
used in even smaller percentage.
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4.5 FPGA implementation of the online entropy
test

From the point of view of the firmware there are two modes of QRNG oper-
ation: calibration mode and standard mode. As it was described in Section
4.2, we treat the homodyne detector as a box that is characterized by its
transfer function. During the calibration mode, the firmware supports the
transfer function measurement. In the standard mode of operation, Toeplitz
hashing is activated and random numbers are offloaded.

During the standard mode of operation, QRNG constantly performs the
randomness extraction and is sending random numbers to a user. From the
security point of view it is essential for the user to be sure that the produced
numbers are indeed random for the whole time of operation, and with the
claimed security parameter. For this purpose randomness generators imple-
ment online entropy tests to confirm in real time that the RNG output is in-
deed random. Pseudo-random number generators generally implement sta-
tistical tests on the output to verify that the numbers look random enough.
In order to be secure, our QRNG must include an online test according to
the security proof. Since the PSD of the vacuum noise is calculated in the be-
gining as a result of the detector characterization, the real-time monitoring
of the signal PSD is enough to calculate the min-entropy. The QRNG pro-
duces random numbers until the real-time min-entropy value goes beyond a
threshold value. At that point offloading is stopped and an alarm is asserted.

Fig. 4.8 shows the most important modules (or stars, see Appendix A)
of the QRNG firmware.13 The homodyne detector output is discretize with
a 16-bit ADC. In the calibration stage, only the data path above is active
and the online test module is not used. Star ’64 to 256’ (and the others
similarly named) are basically FIFOs for converting bus width so stars with
different bus width are connected. During the calibration stage DEMUX is
set to route raw sampled data to the PCIe interface (to the host machine).
The DEMUX is controlled by the software. A clock boundary FIFO is in-
troduced to synchronize the data to the host interface clock. Router star is
a standard part of the reference firmware and can be controlled by software.
In this case it just routes the data to the PCIe host interface. The captured
data is later analyzed using software on the host machine for the transfer
function calculation. This operation is not time-critical as it is done only
once before the standard mode of operation where the random numbers are
produced. When the calibration is finished, the host machine passes the
reference values of the noise variances that will be used by the online test
module for comparison.

13Note this is the standalone QRNG firmware not used as a part of the QKD transmitter.
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Figure 4.8: Block diagram of QRNG firmware with the online test logic im-
plemented in FPGA. Light blue – interfaces. Darker yellow – more complex
modules described in more detail in this chapter. Light pink – finite state
machine for firmware control. Light yellow – other modules. The blue (red)
arrow shows the data flow in calibration (standard) mode of operation.

In the standard mode of operation the online test module is activated and
accepts the raw sampled data. The module is pipelined so the real-time
performance is assured, however it has a significant latency. This is why
at this point DDR4 RAM and the FIFOs on the standard mode route (red
arrow in Fig. 4.8) are critical. They need to buffer exactly the amount of
data corresponding to the online test latency, so no data is offloaded before a
sufficient min-entropy is confirmed. The online test provides a test valid/fail
flag for the online test finite state machine that controls the Toeplitz hashing
module. If the min-entropy is above the threshold, the Toeplitz extractor
performs the hashing and offloads the random numbers to SFP+ interface
used by Aurora serial communication protocol. This interface is explained
in more detail in the next section.

Fig. 4.9 shows the detailed block diagram of the online test module. PSD
of the signal is necessary to calculate the signal variance and the conditional
signal variance. The module calculates the PSD, sums up the PSD samples,
and compares the values with the reference threshold values provided by
the software. The input raw data is routed with a DEMUX controlled by
the input FSM. Four parallel channels are necessary as the data comes in
four samples on each clock cycle, and the PSD is estimated with consecu-
tive samples in real time. For calculating the PSD we are using Bartlett’s
method of averaged periodograms. The PSD of a continuous function x(t)
is the Fourier transform of its autocorrelation function:

Sx(f) = F(x(t) ∗ x(−t)) = X(f)X∗(f) = |X(f)|2, (4.5.1)

67



CHAPTER 4. QUANTUM RANDOM NUMBER GENERATION

64 to 16 
FIFO

64 to 16 
FIFO

64 to 16 
FIFO

64 to 16 
FIFO

Window 
function 

ROM

Window 
function 

ROM

Window 
function 

ROM

Window 
function 

ROM

Periodogram 

Periodogram 

Periodogram 

Periodogram 

Log 
function 

ROM

FIFO

ARRAY ADDER

FIFO

ARRAY ADDER

DEMUX

Input 
FSM

Output 
FSM

64 bit

Conditional 
variance

Variance
Test finished 

flag

C
o

m
p

ar
at

o
r

Reference 
values set by
the software

Test 
successful 

flag
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Figure 4.10: Block diagram of the periodogram module. Light pink - finite
state machines for the module control, light yellow - other modules.

where X(f) = F(x(t)). In real systems we can only estimate the PSD of
a sampled signal of finite length by employing the fast Fourier transform
(FFT) algorithm. Let the length of the sample array be K and T is the
runtime of the experiment. The basic periodogram method would be to
calculate FFT of the whole sample array and take the modulo squared to
obtain the PSD. However, one way to improve the estimation of the PSD
is to divide the sample array into smaller segments of length M , calculate
periodograms for each and then average out. This is Bartlett’s method.
Welch’s method on the other hand uses overlapping segments. We decided
to implement Bartlett’s method. Overlapping would be very challenging to
implement at this data rate in FPGA. This is mostly due to the fact that
there are four samples on the input at each clock cycle instead of one.

68



4.6. AURORA PROTOCOL WITH SATA INTERFACE

Fig. 4.10 shows the periodogram module in more detail. It consists of
an FFT core (see Appendix A) with the transform length M (the segment
length) that is created in the pipelined (streaming) mode in order to sup-
port real-time calculations. The core offloads real and imaginary part of a
discrete Fourier transform, that are further squared and summed to get the
value of modulo squared. After that a special circuit is implemented for
summing up K/M segments. The length of the FIFO used for this purpose
is M so it can store all the samples of the segment. We chose M to be a
power of two since the possible FFT transform lengths are also a power of
two. Summation FSM is responsible for counting samples and segments.
When K/M segments are processed, the FSM will assert a control signal so
the FIFO offloads the summed up segments. Since the number of segments
K/M is also chosen to be a power of two, the averaging is done simply by
truncating the least significant bits.

Focusing back to Fig. 4.9, the averaged periodograms are once more av-
eraged between the four parallel data paths. After the final averaging, the
PSD array of length M is provided to two datapaths, the first one immedi-
ately calculates the integral sum, while the second one performs a logarithm
operation. This operation is realized with a simple lookup table (log func-
tion ROM) for 16-bit samples, so the capacity is 2× 216 = 128kB. After the
log operation there is another module for integral sum calculation. The two
results are proportional to the variance and conditional variance respectively
and are compared with reference values provided by the software. After the
comparison, the ’test finished’ flag is asserted and the ’test successful’ flag
is asserted if the variance values are within their limits.

4.6 Aurora protocol with SATA interface

It was shown in Fig. 4.8 that the output of the Toeplitz extractor is con-
nected to Aurora interface module. A test of our QRNG is planned in
collaboration with another group. One of the requirements is the usage of
SATA interface for the QRNG output. Note that only physical SATA layer
is implemented, as the link-layer protocol is Aurora. Aurora is a simple
point-to-point serial protocol developed by Xilinx (Appendix A.2). Aurora
IP core instantiates a GTH multi-gigabit serial transceiver (Section 3.2.6).
SATA interface does not exist on FMC120 board, therefore we decided to use
a commercially available SFP-to-SATA (SFP2SATA) adapter. The adapter
is a simple passive circuit, however with a limited bandwidth. Fig. 4.11
shows the test environment for the SATA interface. A 13 GHz oscilloscope
was used for acquisition and 8b/10b decoding. The maximum data rate
the SFP2SATA adapter can support is 3.125 Gb/s. This translates to 2.5
Gb/s effective useful data rate on the user side (due to 8b10b coding). The
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oscilloscope was able to decode the stream without errors.
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Figure 4.11: SATA output test environment and the eye diagram obtained
from the measurement of the serial data.

4.7 Standalone QRNG: architecture and perfor-
mance

This section provides description of the standalone QNRG setup. Stan-
dalone means the FPGA board is programmed with a full QRNG firmware
with the online entropy tests and Aurora/SATA output interface. The QKD
transmitter firmware contains the Toeplitz extraction module, however due
to lack of additional RAM memory resources we did not implement the on-
line test module there. Even though the focus of this thesis is the QKD
transmitter, the standalone QRNG design is an important result as well,
and we believe it represents a step toward more practical and secure high-
speed QRNG.

Fig. 4.12 shows the experimental setup of the QRNG in the standard mode
of operation. For the local oscillator a 1550 nm laser is used. The beam
is split into two beams by a 3 dB (50/50) fiber coupler. The two beams
are detected by two 120 µm InGaAs photo diodes. The homodyne detector
output is amplified using a microwave MAR-6 amplifier, then filtered with
a 400 MHz low-pass filter. The signal is further digitized with Texas instru-
ments ADS54J60 ADC at 1 GS/s and 16-bit resolution. The ADC is a part
of FMC120 (ADC/DAC) board that is connected to PC821 FPGA board
(see Appendix A.3). The 16 Gbit/s stream is fed to the FPGA where the
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Figure 4.12: Experimental setup of the QRNG in standard mode of opera-
tion. Note in FPGA the RAM memory output is switched to the Toeplitz
extractor for the standard mode of operation where the random numbers
are produced and offloaded. More detailed diagram of this FPGA design is
shown in Fig. 4.8.
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Figure 4.13: Experimental setup for the QRNG calibration mode where the
transfer function of the homodyne detector is measured. Additional laser
and an attenuator are introduced. The data path in the FPGA is switched
to the PCIe interface.

randomness extraction and the online testing is performed.

Fig. 4.13 shows the experimental setup for the calibration step when the
transfer function measurement of the homodyne detector is performed. The
transfer function is measured by injecting a coherent state from the signal
laser to the second port of the 3 dB fiber coupler. Note that the whole setup
is in a box, so the signal laser is always present, however used only during
the calibration. Behind the low-pass filter we introduced a 20 dB electrical
attenuator in order to avoid the ADC saturation. This was needed since
the noise amplitude is optimized for the whole ADC range, and the beat
signal has a much higher amplitude. The attenuator has a flat frequency
response over the bandwidth of interest so the frequency response of the
system is not distorted upon removing the attenuator. The FPGA modules
are programmed to offload raw ADC samples to the PCIe interface so the
vacuum noise PSD estimation could be calculated in software. During the
calibration stage, the signal laser is detuned from the LO so a beat signal is
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Figure 4.14: Power spectral densities obtained during the calibration stage.
Blue trace shows the result of vacuum noise estimation using the measured
transfer function. Red trace is the PSD of the measured signal. Dashed
black trace is the PSD of the excess noise. Inset: Typical power spectrum
during the transfer function measurement.

produced.

Fig. 4.14 shows the obtained vacuum noise PSD (blue trace), which is pro-
portional to the transfer function of the detector. Using the vacuum noise
PSD we are able to calculate the excess noise for the measured signal. After
the calibration we performed 24-hour-long stability measurement where we
monitored the variances, and hence the min-entropy. The results are shown
in Table 4.4. Using the theoretical analysis from Section 4.2 we are able to
estimate the best parameters for the online entropy test, the FFT length M
and the number of averaged periodograms K/M . We immediately fix the
FFT length to M = 2048. This value is not a result of a rigorous analy-
sis, however it seems to represent a good trade-off between the complexity
of the FPGA implementation and the confidence interval size (Eq. s 4.2.2
and 4.2.3). The parameter M fixes the complexity of the online entropy

Mean paramaters from 24h measurement

Signal variance σ2 5.20× 106

Conditional signal variance σ2
X 4.43× 106

Conditional excess noise variance σ2
N 2.04× 106

Min-entropy [bits/symbol] 11.01

Table 4.4: Results for the variances are presented in ADC bin units, where
ADC range is [−32769, 32767].
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Figure 4.15: Measured min-entropy in 24h-long measurement for different
values of K/M .

test module, as it depends only on M and not on K/M . This is because
the summation of an array is performed in a loop using a fixed FIFO size
that depends only on M . However the increase of the averaging number
increases the memory requirement for the buffering of the raw samples. We
set the number of averaged periodograms to K/M = 64. This is a small
value, however it gives us the opportunity to capture the online test results
often and perform the analysis for larger K/M by averaging in the software.
This number should not be set too low in order to avoid a wide confidence
interval that leads to a far too small trusted value of the min-entropy. Fig.
4.15 shows how averaging influences the measured min-entropy. Note the
confidence intervals are not shown here, just the min-entropy values in time.
Fig. 4.16 shows the worse estimate of the min-entropy for different values
of the number of averaged periodograms. Finally, we define the threshold
values for the minimum tolerable min-entropy. We use the same condition
(Eq. 4.4.3) as before, the total security parameter in 10 years of constant
QRNG operation should satisfy εQRNG < 10−10. We set the probability of
the min-entropy being outside the confidence interval ε = 10−10. The min-
entropy thresholds are calculated for two different QRNG output data rates
that were used at some point R1 = 8 Gb/s and R2 = 6.6 Gb/s.14 Using
leftover hash lemma and the 10-year condition, the calculated thresholds are
H−min[8Gb/s] = 10.08 and H−min[6Gb/s] = 8.50. Fig. 4.17 shows the lower
bounds of the min-entropy. For the QRNG output rate of 8 Gb/s, the secu-
rity condition requires K/M = 214 periodograms for averaging. The lower
rate has a higher margin, therefore K/M = 211 averaged periodograms are
enough.

14The rate is changed by changing the parameters of the Toeplitz matrix. Lower rate
gives smaller εhash, thus having broader security margin.
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The results show the stability of the optical setup. The online entropy
test is implemented successfully and it is able to support the maximum pro-
jected rate of 8 Gb/s. It is worth noting the random numbers produced in
this QRNG passed the standard NIST and Diehard statistical tests.
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Figure 4.16: Lower bound of the min-entropy confidence interval as a func-
tion of K/M .
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Chapter 5

Real-time transmitter for
continuous variable quantum
key distribution

In Section 3.4 it is defined what QKD transmitter means in the context of
the thesis. The required signal processing functionalities of the transmitter
are also presented there. This chapter describes the sampler and signal
processing modules in detail.

5.1 QKD transmitter architecture

We defined a few requirements for the QKD transmitter:

• High throughput – the transmitter must be able to process large
number of samples in real time and produce high bandwidth quantum
signal.

• Upsampling and upconversion – flexible pulse shaping and place-
ment of the quantum signal and the pilot in frequency domain.

• Precision – performing operations with minimized numerical errors.

• Gaussian/QPSK – easy switching between the two modulation schemes.

Fig. 5.1 shows a block diagram of the transmitter modules implemented
in FPGA (see also Fig. 3.18 for better understanding of signal processing
requirements). QRNG box is not shown as the same configuration is used
that was already described in the previous chapter. Unprocessed homodyne
RF output from QRNG is sampled with 16-bit ADC. The raw random num-
bers are processed with Toeplitz hashing module so the output is uniform
with 8 Gb/s rate. The random numbers are then used to generate Gaus-
sian or QPSK symbols. The user chooses which of the two is passed to
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Figure 5.1: Block diagram of the QKD transmitter modules implemented in
FPGA. Blue boxes – input and output interfaces. Yellow boxes – firmware
modules described in more detail in the thesis. Light yellow boxes – other
firmware modules. Note the data rate after the upsampling is 2 GS/s since
there are two streams for each quadrature. Corresponding total DAC output
rate is 32 Gb/s. Physically two DACs are used, here represented with a single
box.

the output of the module with a simple software control. Output of the
Gaussian/QPSK sampler is routed to two parallel datapaths. The first dat-
apath runs through a clock boundary FIFO buffer. This buffer is used to
transfer data to the host interface clock domain. Alice’s symbols are this
way saved on the host machine for the post-processing in later stages of the
protocol.1 DDR4 RAM is used here as a high-capacity buffer to mitigate
possible problems with saving (up to 50 MS/s) data in software. The sec-
ond datapath routes data to two DACs for each quadrature. Necessary DSP
operations are performed along the way in the upsampling, pulse shaping
and upconversion modules.

5.2 Security of quantum key distribution with re-
alistic Gaussian source

Current state-of-the-art security proofs for continuous-variable quantum key
distribution assume perfect Gaussian modulation. This means the possible
values for x and y when producing a coherent state |α〉 = |x+ iy〉 are contin-
uous and unbounded. In practice there might be a coherent state centered
at |x′ + iy′〉, where x′ and y′ are close to x and y but still different. One
needs to quantify this difference and analyse the impact to the final key
rate according to a security proof. The real values for the quadratures are
different to theoretical ones due to two reasons: a finite number of bits used
in transmitter’s DAC and a need to limit the input voltage levels to the
IQ modulator. These problems were identified in a paper by Jouguet et

1At this stage Alice and Bob use authenticated classical channel to perform parameter
estimation, error reconciliation and privacy amplification.
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al. [127]. In this paper the low-rate supply of random numbers was also
recognized as a hardware constraint. We address the hardware issue with
our high-rate QRNG solution. The challenges due to imperfect Guassian
modulation are described here and a theoretical analysis is given to quan-
tify the effects on the final key rate.

Generating samples from an arbitrary probability distribution from a uni-
form source can be a challenging task from both technical and security
point of view. Both challenges apply to QKD. A QKD transmitter requires
very high rate of Gaussian sample production in FPGA, which is suitable
for fixed-point arithmetics but not so much for floating-point calculations
[129]. According to the state-of-the-art security proofs, Alice needs to pro-
duce coherent states where the complex amplitude α is sampled from two
dimensional continuous Gaussian distribution with mean µ = 0. In other
words, she is generating a state |x+ iy〉 where x and y are real numbers and
sampled from the same distribution:

Pcont(x) =
1

σ
√

2π
e−

x2

2σ2 , (5.2.1)

where σ is the standard deviation. The challenge here is to find a way to
produce Gaussian samples so it is efficiently implementable in FPGA and
satisfy the security requirements for QKD. We have been exploring a set of
possible solutions to find one that gives the required security, after which it
is implemented as a high-speed solution in FPGA.

There are two approaches to generating Gaussian random numbers. The
first is continuous [133–140], where one is aiming to produce real numbers
according to the standard real Gaussian distribution. The second is discrete
[141–144], where the numbers are produced according to a discrete Gaussian
distribution

Pdis(x) =
1

K
e−

x2

2σ2 , (5.2.2)

where K is normalization parameter and x ∈ Z. The domain is finite and the
maximum (or minimum) x is called the tail-cut and is commonly expressed
in multiples of the standard deviation. Continuous Gaussian algorithms are
used more often as they are mostly implemented in software. In our FPGA-
based system, whatever the algorithm used, we need to somehow map the
values of Gaussian sampler to a fixed number of bits defined by the ADC and
other signal processing blocks. For example, when converting a real number
to a fixed-point number with smaller number of bits, one uses a method
like truncation or rounding, which effectively bins all real numbers from an
interval to a single fixed-point value. Let there be an interval [xi, xi+∆x] and
let xfix

i be a fixed-point value to which all the other values are approximated.
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It follows that the probability of occurrence of this fixed-point value is:

Pc→d(xfix
i ) =

1

σ
√

2π

∫ xi+∆x

xi

e−
x2

2σ2 dx =
1

2

[
erf

(
xi + ∆xi

σ
√

2

)
− erf

(
xi

σ
√

2

)]
,

(5.2.3)
where erf is the error function. This expression and Eq. 5.2.2 define the
candidate distributions for the hardware sampler.

Until new security proofs are potentially developed which will prove security
of QKD system with discrete modulations, we need to operate with modu-
lations ’close’ to the perfect Gaussian. As usual, the relevant quantity is the
trace distance between the quantum state produced with the perfect con-
tinuous Gaussian and the one produced using the approximated Gaussian.
If Eve cannot distinguish the perfect thermal state and the approximated
one sent by Alice, the security is not be compromised. Using the standard
reasoning in composable framework [128], if the trace distance of these two
states is less than εprep, and with the standard protocol being ε-secure2, than
the protocol with the imperfect source is (ε + εprep)-secure. This approach
was taken in [127]. Here the Gaussian sampler and the rest of the protocol
are seen as two black boxes, each with their corresponding security param-
eter, so the sum of the two presents the upper bound to Eve’s advantage.

The state produced according to the perfect Gaussian is thermal state:

ρ̂G =
1

πn̄

∫
d2α e−

|α|2
n̄ |α〉 〈α| , (5.2.4)

where n̄ = 〈n〉 is the mean photon number. Let the (one-dimensional)
distribution that is implemented in practice in the transmitter be P . The
exact domain of the distribution is finite (therefore countable). The size
of domain depends on the output number of bits of the sampler. For a
complex number α, we define P (α) = P (Re(α))P (Im(α)) where the real
and imaginary part of the complex number are from the distribution domain.
Let the quantum state produced by this distribution be:

ρ̂ =
∑
α

P (α) |α〉 〈α| . (5.2.5)

The trace distance between the two quantum states should satisfy

‖ρ̂− ρ̂G‖1 ≤ 2εprep (5.2.6)

so the two average quantum states are indistinguishable up to a probability
smaller than εprep. We need to be able to estimate εprep for the implemented

2Meaning the probability of the adversary discriminating between the protocol and a
perfect one is ε.
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distribution P . In order to do that we consider a computable upper bound
on the trace distance [130, 131]:

‖ρ̂− ρ̂G‖1 ≤
√

Tr[ρ̂ρ̂
−1/2
G ρ̂ρ̂

−1/2
G ]− 1 (5.2.7)

ρ̂G is a thermal state, defined above as a mixture of coherent states. In Fock
space the thermal state ρ̂G is:

ρ̂G =
1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n
|n〉 〈n| (5.2.8)

It follows that

ρ̂
−1/2
G =

√
n̄+ 1

∞∑
n=0

(
n̄+ 1

n̄

)n/2
|n〉 〈n| (5.2.9)

Using

〈α|n〉 = e−|α|
2/2 ᾱ

n

√
n!

(5.2.10)

we obtain

〈α|n〉〈n|β〉 = e−
|α|2+|β|2

2
ᾱnβn

n!
(5.2.11)

where ᾱ and β̄ are the mean photon numbers for some states |α〉 and |β〉
respectively. Let Pα and Pβ be short notation for P (α) and P (β) in the
following derivation. The expressions are combined so we get
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∑
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∑
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Representing coherent state eigenvalues as a complex sum of quadrature
values

α = q + ip, (5.2.13)

β = u+ iv, (5.2.14)

we obtain

|α|2 + |β|2 = q2 + p2 + u2 + v2, (5.2.15)

ᾱβ + αβ̄ = 2(qu+ pv). (5.2.16)

Using these expressions we are able to calculate the upper bound for the trace
distance for a descrete distribution. In case of perfect discrete Gaussian we
have

Pα = K−2e−
q2

n̄ e−
p2

n̄ , (5.2.17)

Pβ = K−2e−
u2

n̄ e−
v2

n̄ , (5.2.18)

where K is the normalization factor and q, p, u and v are unitless numbers
that take value on the same set of points. They are a consequence of pro-
ducing integer numbers in FPGA which are then mapped to voltage levels
in the ADC and in turn mapped to discrete values of quadratures of the
electromagnetic field.

After getting the expression for calculating εprep we are able to quantify
the influence of imperfect Gaussian distribution to the key rate. This is
done by following the approach from [130]. The new method presents an
improvement to the argument from [127] as the imperfection of the Gaus-
sian sampler is directly translated to the key rate formula. We bound the
Holevo information (Eve’s information about Bob’s state3) for the protocol
with imperfect state creation

χ(B : E)ρ̂ ≤ χ(B : E)ρ̂G + f(εprep,W ), (5.2.19)

where W is an upper bound on the energy of the adversary’s share of the
quantum state, and the function f is defined as [132]

f(ε,W ) ≡ 2ε (2t+ rε(t))F

(
W

εt

)
+ 2g (εrε(t)) + 4h2 (εt) , (5.2.20)

for any t ∈
(
0, 1

2ε

]
and

rε(t) ≡
1 + t/2

1− εt
, (5.2.21)

g(x) ≡ (x+ 1) log (x+ 1)− x log x, (5.2.22)

h2(x) ≡ −x log x− (1− x) log (1− x). (5.2.23)

3Reverse reconciliation is assumed.
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The function F
(
W
εt

)
is the entropy of a Gaussian state with mean energy

W
εt . Note that this is the entropy of the state held by the eavesdropper,
therefore to estimate it we need to model the Hamiltonian associated to the
eavesdropper’s share of the quantum system. Here we do that by assuming
a Gaussian attack. This is the attack model presented in Section 3.1 (Fig.
3.2). Within this model the eavesdropper holds two bosonic modes with
mean photon number w and (1 − ηchan)n̄ + ηchanw. Within the model of a
Gaussian attack we identify

F

(
W

εt

)
= g

(
c
w

εt

)
+ g

(
c

(1− ηchan)n̄+ ηchanw

εt

)
, (5.2.24)

where the factor c has been introduced to account for the fact that we
have estimated the channel parameters ηchan and w using the protocol with
a discrete and bounded coherent state distribution, but the energy bound
needs to apply also to the ideal (but unobserved) protocol with the Gaussian
input distribution. This caveat is discussed in more detail in Ref. [130],
where it is shown that the bound is only mildly dependent of c. Here we
work with c = 10. Finally we note that, given the parameters c, n̄, w, ηchan

and εprep, the value of t ∈
(
0, 1

2ε

]
can be optimized to obtain the tightest

bound.

5.3 Generating discrete Gaussian random num-
bers

In order to compare the two distributions defined by equations 5.2.2 and
5.2.3, that are the outputs of two different classes of algorithms, we wrote a
program that calculates εprep. The simulation calculates the trace distance
for the set of four parameters – the number of output bits nx (therefore
the number of elements in the domain is 2nx − 1), the standard deviation
of the distribution σ, the tail-cut Σ, and the mean photon number n̄ of the
quantum state. First three parameters define the distribution, while the last
one can be set optically using a variable attenuator in Alice’s box. Fig. 5.2
shows an example of assigning values to the elements of a distribution. Fig.
5.3 shows the calculated trace distance for the discrete Gaussian distribution
defined by Eq. 5.2.2. It turns out εprep converges much faster to zero with
this distribution than with the one defined in Eq. 5.2.3. Fig. 5.4 shows
higher values of the trace distance. We just show the result for 8 bits as the
other produce even higher εprep.

Particular application and required security level determine the param-
eters of a distribution (σ, nb,Σ) and hence the appropriate algorithm. High-
rate and efficient algorithms for generating high-quality Gaussian random
numbers have been developed mostly for lattice-based cryptography which is
a subtype of post-quantum cryptography [145, 146, 149]. To our knowledge,
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Figure 5.2: Black dots represent the values of a discrete Gaussian. Below
are numbers assigned to each probability. In this case the distribution is
symmetric with a tail-cut value of 7 (which is approximately Σ = 3σ in this
example). Numbers in the bottom are two’s complement representation of
the elements.

the work in this thesis is the first implementation of a high-quality hardware
Gaussian sampler for QKD applications. A few notable algorithms used for
discrete Gaussian sampling, some of which were implemented in hardware
are:

• Knuth-Yao sampling. Tree-based algorithm that uses a small num-
ber of bits close to the entropy of a distribution in question, therefore
very useful when the randomness is scarce. It was implemented in
FPGA before [141, 147], however only for small values of σ.

• Discrete ziggurat sampling. This is a discrete version [144] of
the original rejection sampling algorithm proposed by Marsaglia and
Tsang [148]. This algorithm in general could be used for distributions
with larger σ [149], however it is primarily targeted to be efficient
for processor-based systems. This is due to the fact that computa-
tionally intensive calculations are done relatively rarely (a few times
per hundred samples). In contrast to CPU-based systems, all hard-
ware functions must be implemented in FPGA beforehand so it takes
additional resources.

• Cumulative distribution table (CDT) sampling. This is a straight-
forward approach to sampling any probability distribution and it was
implemented in software [150] and hardware [142] before. Since this
algorithm is able to produce Gaussian samples with relatively large
standard deviation (for example σ > 16, compared to σ = 3.33 im-
plemented with Knuth-Yao algorithm) and the required precomputed
tables are not too large for FPGA, it was the obvious choice for our
system.
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Figure 5.3: Top graphs depict the values for εprep as a function of the tail-cut
(x-axis) and the mean photon number (y-axis). For larger number of output
bits nx there is a weak dependancy on the mean photon number. Bottom
graphs show the trace distance for three particular tail-cut values. There is
an interesting effect where the larger tail-cut tends to become better as the
signal power goes up.
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Figure 5.4: Calculated εprep for the binned continuous Gaussian distribution.

5.4 CDT algorithm for Gaussian sampling

CDT sampling algorithm stores a precomputed table of calculated values
of the cumulative distribution function (CDF) of a probability distribu-
tion. CDF is a monotone function, therefore the table values are sorted
0 = T [0] ≤ T [1] ≤ ... ≤ T [X + 1] = 1, where X is the value of the largest
sample and P (x) = T [x + 1] − T [x]. Table entries T [i] are real numbers
represented by a certain number of bits nb. A real number u is drawn ran-
domly from [0, 1). The algorithm performs a table search in order to find
an integer x for which it holds T [x] ≤ u < T [x+ 1], and outputs x.

In general there are a few of challenges that must be addressed for an efficient
implementation – table size and the average time of a single table search.
Table size is simply nb log2X bits where both nb and X are lower bounded
by required level of security. Note that we will be using one-sided Gaussian
distribution in order to cut the table size in half for the same number of
output bits. One-sided distribution can be easily modified to the standard
Gaussian by using an additional random bit to determine the sign, or in the
case of x = 0 to determine whether the sample should be discarded. This
way the zero sample is not taken twice into account. The average time for
a binary table search is ∼ log2X comparisons. However the actual number
of comparisons could take more than log2X clock cycles due to additional
operations in FPGA.

Our CDT sampling solution for FPGA follows the idea from Poppelmann
et. al. [142]. Let’s assume the input to the algorithm is a random number v
represented by nv bits. These bits can be interpreted as the most significant
bits (MSB) of number u, taken from a uniform distribution, that is defined
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by the same nb number of bits as the probabilities in the CDT. Now one can
create a guide table, i.e. a table of search intervals. For each v this table
stores the interval [imax(v), imin(v)] where the number with most significant
bits equal to v is to be found. With the reduction of the search interval in
the first step, the total search time is reduced. By increasing the number of
bits nv, we reduce the interval lengths in the guide table on average, but on
the other hand this increases the complexity of the comparator’s combina-
torial logic in FPGA and increases the size of the guide table. Note that in
a majority of cases, even if nv is relatively low, it will be enough to finish
the search, so we do not need all nb bits of u. The average randomness
consumption depends on several factors and it should be calculated after all
the system parameters are defined.

5.5 FPGA implementation of the Gaussian sam-
pler

Here we state the exact values of all important parameters. Most of them can
be slightly tweaked without the need for a major algorithm implementation
change. The number of output bits is nx = log2X + 1 = 8. The algorithm
itself outputs integers in [0, 127], which are then mapped to [−127, 127] as
a two’s complement signed integer with an additional bit. It was shown in
Section 5.3 that 8 bits provide a high level of security when paired with suf-
ficiently large standard deviation of the implemented Gaussian. In general,
X does not need to be a power of two, however it is good that we use the
whole dynamic range when upconverted samples are later on passed to the
DAC. The number of bits used to represent the probabilities is nb = 96.
Note that we represent real numbers, using fixed point representation. In
the case of the table entries, those 96 bits are all behind the implicit deci-
mal point (probabilities are smaller than 1). Number of bits used to access
the guide table is nv = 8. This is at the same time the width of the uni-
form input to the algorithm. The standard deviation of the distribution is
σ = 32 and hence the tail-cut value is Σ = 8σ. In Section 5.3 we showed
that the security parameter attributed to non-perfect Gaussian modulation,
with the parameters defined here, lies in the interval εprep = [10−9, 10−10].
This might not be low enough if we follow composability argument. How-
ever, the correction to Eve’s Holevo information is still low enough for any
measurable impact to the key rate. We decided to use the 8σ value since
increasing the tail-cut value, assuming constant number of bits, decreases
the overall power of the quantum signal compared to the pilot.4

4Power of the optical signal can be controlled with the variable attenuator, however it
attenuates both the quantum signal and the pilot at the same time. During the experi-
ments we decided to keep a certain level of the quantum signal due to the fact that the
Bob’s receiver (and the whole system in general), was not fully developed.
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Figure 5.5: Simplified state machine of CDT algorithm in FPGA

Due to abundance of memory resources in our Kintex UlstraScale FPGA, we
are storing full CDT with 96 bits for each of the samples, in total 96× 128
bits = 1.5kB. The table is defined as follows: 1 = T [0] ≤ T [1] ≤ ... ≤
T [X + 1] = 0, where P (i) = T [i] − T [i + 1]. Guide table stores two 7-bit
integers per input word v, in total 2× 7× 256 bits = 448B. The algorithm
takes single 8-bit word vk (where k is an index to count the input sequence)
fed from QRNG randomness extractor module. This 8-bit word is used for
the guide table address entry. Now the guide table output interval is checked
– if imax(vk)− imin(vk) > 1 then the binary search state machine is started,
otherwise the search is over and imin in passed to the output. The binary
search state machine works as follows. The middle index is calculated as
i = [(imax(vk) − imin(vk))/2]. Let j be an index which maps 8-bit words
in a 96-bit number, where j = 0 designates MSBs and j = 11 corresponds
to LSBs. Another random 8-bit word vk+1 is drawn from the input and
compared to the second byte of CDT entry T [i, j]. Depending on the result
of comparison, imin and imax are updated and j is reset to 1, or in the case
where T [i, j] = vk+1, another random word vk+2 is fetched and j is increased
by 1 for further comparison. The search is performed until imax − imin < 2.
Implementation experiments in FPGA showed that the comparison between
T [i, j] and vk and subsequent imin and imax updates cannot be done in a sin-
gle clock cycle due to built up logic delay caused by combinatorial logic.
Therefore a single step of the binary search state machine was done in three
clock cycles.
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Algorithm 1 CDF table search with the guide table

initialization: imax, imin, i, j ← 0
v0 ← uniform QRNG
imax, imin, i← guide table [v0]
if imax − imin = 1 then

return imin

else
v1 ← uniform QRNG
while imax − imin > 1 do

if vj+1 > T [i, j] then
imax ← i, i← (imin + i)/2

else if vj+1 < T [i, j] then
imin ← i, i← (imax + i)/2

else
j ← j + 1
vj+1 ← uniform QRNG

end if
end while
return imin

end if

Performance of the Gaussian sampler

In this subsection we provide performance results of implemented CDT al-
gorithm in Kintex UltraScale FPGA. Due to CDT algorithm having condi-
tional commands that depend on the uniformly distributed random input,
there is no deterministic value for the output data rate. In fact, if the input
is not random it is possible that the algorithm is constantly in Interval check
state of the finite state machine shown in Fig. 5.5, where it would act as a
pipeline so the rate would be the same as of the input. On the other hand
there could be an input stream which may cause long search times, there-
fore reducing the rate drastically as the algorithm would spend much time
in Binary search state. Obviously, we are interested in an average output
rate when the input are uniform random numbers from QRNG. The rate
is most easily calculated by measuring the average number of FPGA clock
cycles per one valid output. It turns out a valid output sample comes every
2.7 clock cycles. This has been confirmed both in a VHDL simulation using
pseudo-random input from Matlab and using debugging probes to capture
real signals in FPGA. The stream was observed through 500,000 clock cy-
cles. Number of occurrences of every 8-bit integer number is shown in Fig.
5.6. In principle the x-axis should show all 8-bit signed integers from -128
to 127, however we never observed an integer larger than 85 in its absolute
value due to extremely low probability for the tail region integers to occur.
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Figure 5.6: Histogram of Gaussian sampler output.

Parameters of the discrete Gaussian sampler

Output width [bits] 8

Standard deviation σ 32

Tail-cut Σ[σ units] 8

Probability precision nb [bits] 96

Average entropy consumption per
output sample Hcons [bits]

21

Average output rate (for 8 Gb/s in-
put) [MS/s]

370

Table 5.1

Assuming an input rate of 8 Gb/s from the QRNG, the Gaussian sampler
output rate is 370 MS/s (2.96 Gb/s) on average.

The entropy consumption Hcons of the algorithm is the average number
of uniform bits spent for one output Gaussian sample. Since the algorithm
takes an 8-bit uniform sample on each clock cycle and produces an 8-bit
Gaussian sample every 2.7 clock cycles, the average entropy consumption
is 8 × 2.7 ≈ 21 bits per sample. To put this number in a context one
needs to calculate the entropy of the discrete Gaussian distribution. Using
Eq. 2.2.1 we obtain the entropy of our discrete Gaussian implementation
is H(P ) = 7.0462. The entropy consumption is indeed much higher then
in Knuth-Yao algorithm where it is at most two bits larger than the Gaus-
sian distribution entropy [149]. Despite this disadvantage, CDT algorithm
presents the best trade-offs between the parameters for our QKD applica-
tion.

After confirming the true randomness of the QRNG, we were able to do
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Statistical test

Rate [MS/s] χ2 test p-value Significance
level

Test result

367 0.5227 5% Passed

FPGA implementation resource utilization

FF LUT BRAM FIFO

1745 1712 8 14

Table 5.2: Summarized properties of the Gaussian sampler used in the QKD
transmitter. The implementation includes four CDT modules working in
parallel. FF: flip-flop, LUT: lookup table, BRAM: block RAM, FIFO: first-
in first-out buffer.

statistical tests on the CDT module Gaussian output. First, we confirmed
the functional validity of the algorithm by performing cumulative distribu-
tion table search in Matlab for the same test input uniform samples. The
outputs were identical as in VHDL simulation. Finally, we confirmed the
CDT algorithm output is close enough to the discrete Gaussian distribution
using Pearson’s chi-squared test [151]. We use expression ’close enough’ as
chi-squared test does not tell if a population is sampled from a particular
distribution. The statistical test instead gives a probability of finding the
observed, or more extreme, results when the null hypothesis (H0) is true.
This probability is called p-value of the test. The test also defines the sig-
nificance level α which is used to judge whether a population is significantly
different (p < α) from what we expect it to be under the null hypothesis
(test failed), or the difference is not significant (p > α) (test passed). Typ-
ical values for α are 5% and 1%. We use the standard value of α = 5%.
These results are summarized in Table 5.2.

The CDT algorithm is convenient for FPGA chips where DSP resources
are expensive. The design does not implement arithmetic operations such
as multiplications, therefore no single DSP primitive is used. Instead, the
module uses memory resources such as BRAMs and FIFOs. Table 5.2 sum-
marizes the resource utilization. The results are given for the whole Gaus-
sian sampler, i.e. for the four CDT algorithm modules working in parallel.
We implemented four parallel modules since, on average, four 8-bit uniform
samples are produced after the Toeplitz hashing module on each clock cycle.
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Figure 5.7: Block diagram of the upconversion module implemented in
FPGA. There are four parallel submodules performing upconversion and
pilot multiplexing. Note that 48-bit words are consisted of both I and Q
quadraure samples. Word width is a consequence of bit growth in the up-
sampling module. The output is scaled to 16-bit words per quadrature,
hence 32-bit words at the output.

5.6 FPGA implementation of the upsampling and
upconversion modules

Looking again at Fig. 5.1, one can see the Gaussian distributed samples
are fed to the upsampling and pulse-shaping module. These functions are
performed by the FIR filter IP core (Appendix A.2). The module imple-
ments a root-raised cosine (RRC) filter. At this point the symbol rate Rs
and the bandwidth of the quantum signal fq are determined (see Fig. 3.18).
The RRC filer performs the pulse-shaping so the total bandwidth of the
quantum signal is fq = (1 + βRRC)Rs where βRRC is the roll-off factor.5

Regardless of the symbol rate, the signal is upsampled to the DAC sample
rate of fDAC = 1 GS/s so the upsampling factor is fDAC/Rs. The module is
capable of pipelined processing of multiple samples per clock cycle, therefore
enabling output rates higher than 250 MS/s, since the system frequency is
fsystem = 250 MHz. On top of this, the module supports multiple data paths.
We use two paths for the two quadratures. This way the FPGA resources
are saved as the upsampling and filter parameters are the same for both data
paths and are written only once to the FPGA distributed memory. The pa-
rameters of the RRC filter are chosen as a result of a trade-off between the
precision and complexity. Higher precision requires more resources. There

5Baseband bandwidth is fq/2.
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are three parameters that influence precision and complexity: filter span, co-
efficient width and output rounding mode. Filter span is the number of FIR
delay registers divided by the upsampling factor. The filter coefficient width
is chosen to be 16 bits. Since the filter operation consists of additions and
multiplications, there is a bit growth. For our implementation, the output
is 24 bits wide. Even though the IP core can implement rounding modes,
we decided to let the full precision output so we can manipulate the word
width and tune the precision. The module controls the rate of its input at
the constant rate with AXI stream protocol (Appendix A.1).

Fig. 5.7 shows a block diagram of the upconversion/pilot multiplexing mod-
ule. The data is passed to the upconversion module input from the upsam-
pling module at 4 × 12 Gb/s (as a consequence of the upsampling and the
bit growth). For the purpose of upconverting the signal to fup, four parallel
oscillators are implemented using DDS compiler IP core (Appendix A.2).
DDS compiler provides sine and cosine (sin/cos) samples at the FPGA sys-
tem frequency. The frequency and the phase offset of the sin/cos waveforms
can be tuned. The upconversion has to be performed in complex domain
for the two quadratures. Let the in-phase quadrature samples be desig-
nated with I(t) and the quadrature samples with Q(t). The upconversion
is calculated as

Iup(t) = I(t) cos(ωupt)−Q(t) sin(ωupt), (5.6.1)

Qup(t) = I(t) sin(ωupt) +Q(t) cos(ωupt), (5.6.2)

where ωup = 2πfup. This way the signal is prepared for single sideband mod-
ulation as one quadrature is Hilbert transform of the other (Section 3.2.3).
In order to perform the upconversion operation of four samples in one clock
cycle, the sin/cos generators are phase shifted by ϕ = n∆ϕ = 2πfpilot/fDAC,
where n goes from 0 to 3.

After the upconversion, a pilot tone is frequency multiplexed to the sig-
nal. Another set of four parallel sin/cos generators are employed. The pilot
samples are multiplxed by a simple addition operation. At the output, the
samples are rescaled to 16 bit per quadrature. Quadrature data streams are
passed to two separate 16-bit DACs.

Table 5.3 shows the FPGA resource utilization by bot upsampling and up-
conversion module. Note the significant number of DSP cores used for mul-
tiplication and addition operations. This is still a very small number as only
2.4% of the total number of DSPs is utilized.
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Upsampling and upconversion FPGA implementation resource utilization

FF LUT BRAM FIFO DSP

2660 244 60 0 136

Table 5.3

5.7 Performance of the QKD transmitter

This section presents performance results of the QKD transmitter. As the
transmitter, the CV-QKD optical setup (described in Section 3.4) and the re-
ceiver have been developed in parallel, a commercial arbitrary waveform gen-
erator (AWG) has been used initially for the purpose of generating symbols.
It is shown that our FPGA-based transmitter and the AWG have compara-
ble performances in terms of the parameters that quantify the quality of the
output RF signal. We argue the results obtained during long measurements
(large number of symbols) with the AWG justify the chosen transmitter pa-
rameters and open the door for longer measurements using the FPGA-based
transmitter in the future. Note that the FPGA-based transmitter is capa-
ble of producing symbols and transmitting indefinitely, where the limiting
factor are the host computer memory and the receiver acquisition memory.

Here we evaluate the use of both Guassian and QPSK modulation schemes.
QPSK is convenient for testing purposes as the symbol synchronization at
the receiver is easier due to the four distinct points of the QPSK constel-
lation, which also facilitates easier identification of noise effects when re-
covering the constellation map. We perform three different measurements,
each based on a different transmitter-receiver connection. The first one is
electrical back-to-back (B2B) where RF outputs of the transmitter are di-
rectly connected to the digital signal oscilloscope (DSO) for acquisition. The
second type is optical B2B where the RF outputs are connected to the IQ
modulator, however the quantum channel between Alice and Bob is a short
fibre. Finally, we also perform an optical measurement with a 20 kilometer-
long fibre spool between Alice and Bob.

In Section 3.2.3 we introduced EVM as a figure of merit for quantifying the
quality of received QPSK symbols. We use it in electrical B2B configura-
tion. Similarly, for a Gaussian-modulated electrical B2B setup the relevant
quantity is the minimum variance. We define the minimum variance as

Vmin = ming〈(A− gB)2〉 = 〈A2〉 − 〈AB〉
〈B2〉

, (5.7.1)

where A and B are Alice’s symbols and Bob’s received symbols respectively,
g is a gain parameter over which we minimize the expression in order to get
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QKD transmitter parameters

Symbol rate Rs [MBd] 50

RRC filter roll-off βRRC 0.4

Bandwidth of the upconverted quantum
signal fq [MHz]

70

Upconversion frequency fup [MHz] 62.5

Pilot frequency fpilot [MHz] 125

Table 5.4: We kept these parameters constant during the evaluation mea-
surement of the transmitter. The main reason is that a slight change of some
of the parameters did not cause noticeable changes in the excess noise (at
least during the development stage where the noise is still relatively large),
which is the most important figure of merit. The quantum signal and the
pilot are kept within a reference bandwidth of 200 MHz. As far as the filter
roll-off is concerned, EVM tends to drop as βRRC increases, however the
bandwidth of the quantum signal increases as well thus increasing chances
for unwanted overlaps in the frequency domain. During the initial tests we
fixed the value of βRRC = 0.4 as the optimal one.

the right side of the equation, and 〈AB〉 is the covariance between the two
symbol strings. Note that EVM and minimum variance are convenient for
electrical B2B since there is no shot noise involved. Contrary to that, the
shot noise is inevitably present in the optical measurements, thus causing
the EVM and minimum variance values to be large by default.

Table 5.4 shows the chosen parameters of the transmitter. For initial eval-
uation of the FPGA-based transmitter we compared the RF outputs to a
14-bit AWG. For this purpose we used both QPSK and Gaussian modulation
in the electrical B2B configuration. Fig. 5.8 shows the results from electri-
cal B2B measurement. Looking at the calculated EVM values for each of
the traces, the performance of FPGA DAC is comparable or slightly better
compared to the AWG. For the Gaussian modulation both devices reach the
same minimum variance of Vmin = 0.02. We stress that the AWG just takes
a user-provided floating-point values and offloads them to the output, while
the QKD transmitter does fixed-point calculations, thus making AWGs in-
herently more precise in this regard.

We proceed with the optical measurement using a B2B configuration. The
RF outputs of the transmitter are connected to the IQ modulator. The bias
controller showed 30 dB of carrier suppression and 23 dB for the undesired
sideband during characterization. Bob’s RLO is detuned by approximately
170 MHz. In the optical measurements three distinct phases are recognized
so the relevant parameters according to the security proof can be extracted.
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Figure 5.8: Top: comparison between the QKD transmitter and the AWG
signal spectrum with QPSK modulation in electrical B2B constellation. The
sample rate for the AWG is 0.5 GS/s hence the image band. Note how EVM
grows with decreasing the quantum signal amplitude Aq (given here in ar-
bitrary units). Left: recovered QPSK constellation from the QKD trans-
mitter, with EVM=2.3. Right: Recovered Gaussian constellation from the
QKD transmitter with the minimum variance Vmin = 0.02. AWG signal
shows similar recovered constellations for the same quantum signal ampli-
tude, thus it is not shown.
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Comparing optical B2B and 20 km setups

B2B 20 km

Modulation variance [mSNU] 1.28 0.49

Excess noise [mSNU] 39.1 35.8

Number of captured symbols 100k 100k

Table 5.5: The variances are given in mili shot noise units (mSNU).

First we measure the electronic noise, which is trusted in the security model.
This is done by capturing the homodyne output with the optical input being
closed and RLO disabled. After this the RLO is turned on so the inherent
(and trusted) shot noise is measured.6 Finally, the optical inputs are opened
and the quantum signal is captured. The (untrusted) excess noise is now
calculated as a difference between the measured signal and the shot and
electronic noise. For this configuration we present only the QPSK modula-
tion in Fig. 5.9 as it visually illustrates the effects of the shot noise, that
are manifested as blurred constellation points (much more than in electrical
B2B shown in Fig. 5.8).

A full optical measurement with Gaussian modulation and 20 km long fi-
bre spool is performed. Fig. 5.10 shows the recovered spectrum and the
constellation.7 Note the highly attenuated quantum signal. This time the
constellation is divided in eight regions. The synchronization is successful,
however not obviously visible due to the shot noise masking the low-variance
quantum signal. Table 5.5 is comparing two optical measurements with the
Gaussian modulation, the first one is B2B and the other is with the 20 km
spool. Note that the excess noise is lower in 20 km configuration. This can
be explained with the main source of the excess noise being at the trans-
mitter side. In this case the noise also experiences attenuation through the
channel contrary to what would be expected if the source was located closer
to the receiver. This does not imply that the asymptotic key rate (Eq. 3.1.1)
stays unchanged with varying distance, as the varying attenuation also si-
multaneously varies the mutual information of Alice and Bob.

Finally we present the calculated asymptotic key rate from a measurement
with the AWG and a long sequence of symbols. Table 5.6 shows the re-
sults. We use the same security model as before (Fig. 3.2). This is one
of the latest measurements and it shows a good performance regarding the
low excess noise. This can be attributed to the latest advancements in the

6This measurement also captures the electronic noise, so we must subtract it in order
to get the pure vacuum noise.

7The cross-correlation function is omitted as there is no fundamental difference between
the function in the previous measurement and this one.
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Figure 5.9: Top: Spectrum of the QPSK-modulated quantum signal with
the prominent pilot and the beat. Shot noise-limited characteristics of the
homodyne detector is noticeable as clearance of the shot noise (red trace) to
the electronic noise (black trace). An RF filter (200MHz) is used to decrease
high frequency noise. Left: Cross-correlation function between sent and
received symbols. The prominent peak mean proper symbol synchroniza-
tion. Right: Recovered QPSK constellation. Note how shot noise spreads
the points (shot noise only is represented with black dots). The received
symbols are couloured depending on which quadrant they occupied in the
transmitter. The ordered colours mean good synchronization and relatively
low noise.
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Figure 5.10: Measurement with 20 km optical link and Gaussian modulation.

Channel parameters and key rate

Channel transmittance ηchan 0.2791

Detector transmittance (trusted loss) ηdet 0.6864

Trusted noise tdet [mSNU] 22.3

Excess noise w(1− ηchan)ηdet [mSNU] 3

Assumed reconciliation efficiency β 0.95

Mutual information I(A : B) [bits/symbol] 0.6062

Holevo information χ(E : B) [bits/symbol] 0.4901

Key rate R [bits/symbol] 0.0858

Table 5.6: Channel parameters and calculated key rate from a long mea-
surement using the AWG.

receiver design. To make a better connection of these results to the QKD
transmitter we calculate the Holevo information correction factor caused by
imperfect Gaussian sampling, described in Section 5.2. For the preparation
error εprep that is less than 10−8 for the implemented Gaussian sampler, the
calculated correction is in the order of magnitude of 10−6 bits per symbol.
This is four orders of magnitude smaller than the obtained key rate thus
confirming the security of the sampler.

We recognize the lack of long measurements that would irrefutably con-
firm the projected performance of our QKD transmitter. A measurement
with a large number of symbols is needed for a precise parameter estimation.
The reason it has not been performed yet is not due to the QKD transmit-
ter limitations, as it is capable of constant operation. Furthermore, more
extensive measurements in RF domain are welcome to fine tune parameters
such as RRC filter roll-off factor and signal amplitudes. Therefore, where
we see a potential for improvement to the FPGA firmware is a dynamic soft-
ware control over such parameters. Implementation of an equalization filter

99



CHAPTER 5. REAL-TIME TRANSMITTER FOR CONTINUOUS
VARIABLE QUANTUM KEY DISTRIBUTION

0 2 4 6 8 10
Parameter   t

0

1

2

3

4

 

x 10-5

10-9 10-8 10-7 10-6 10-5 10-4

Preparation error εprep

10-8

10-6

10-4

10-2

100

H
ol

ev
o 

in
fo

rm
at

io
n
 c

or
re

ct
io

n
  f

H
ol

ev
o 

in
fo

rm
at

io
n
 c

or
re

ct
io

n
  
f

0 0.02 0.04 0.06 0.08 0.1
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35
x 10-6

Figure 5.11: Left: For given εprep we calculate the optimized Holevo in-
formation correction f with respect to the optimization parameter t (not
to be confused with the trusted noise variance in the security model). For
εprep = 10−8 the minimum is achieved for t = 0.01. Right: Optimized f as
a function of εprep. In the case of key rate R = 0.08, f is in the same order
of magnitude, thus proving the necessity for a low-εprep Gaussian sampler.

is another option, especially with an increase of the quantum signal band-
width. Nevertheless, we are confident that the solution for FPGA-based
QKD transmitter is a good basis for the future developments.
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Chapter 6

Conclusion and outlook

The work performed for this thesis is a part of larger efforts to build secure
and high speed CV-QKD and CV-QRNG. One of the motives of the CV
technology is a potential to make cheaper devices. Along the same lines,
we used standard off-the-shelf telecommunication equipment. FPGAs are
today widely used in classical telecommunication. The work presented in
this thesis proves that standard electronics and optics can be successfully
used for quantum communications without reducing security levels defined
in information-theoretic framework.

The effort to build a vacuum fluctuation-based QRNG has been a significant
part of this work. We demonstrated a record-braking (real-time) speed of 8
Gb/s. Fast randomness extraction is one of the main reasons we achieved
this goal. This extractor was used for both the standalone QRNG and the
QKD transmitter. For the standalone QRNG implementation we also de-
veloped the online entropy tests. Commercial random number generators
generally implement statistical tests on the output data to determine if the
data looks uniformly random. This method cannot verify the true random-
ness, so we implement a test based on power spectral density calculation.
This was done according to a rigorous security proof in non-i.i.d. setting
and with quantum side information. We also demonstrated interfacing our
QRNG with another device using SATA and Aurora standards.

Further development of the vacuum fluctuation-based QRNG will focus on
hardware miniaturization. Our implementation is packaged in a standard
19” box, with the FPGA hosted in a separate workstation. The next step is
implementing smaller components in a single board with a standard inter-
face such as USB or PCIe. Integrated solutions are also possible, where the
components such as laser , homodyne detector and post-processing mod-
ule can be produced in silicon [124]. Post-processing techniques also have
potential to be improved [123]. Toeplitz hashing has potential for an even
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more efficient implementations that will take less resources. This is espe-
cially important for smaller and lower power devices. The security of the
QRNG can also be improved by introducing the semi-device-independent
framework. This direction is still more in domain of fundamental research
as the security models are conservative and sometimes impractical.

High speed QRNG was used as a base for our QKD transmitter with Gaus-
sian modulation. We built a Gaussian sampler with a peak output rate of
370 MS/s for 8-bit samples. Security parameters for this implementation
were calculated. For all practical purposes it was shown that the imper-
fections do not decrease the key rate. To our knowledge this is the first
high-rate implementation of a Gaussian sampler in QKD. The transmitter
is built to support CV-QKD setups with real local oscillator, which is the
current state-of-the-art. It was tested with a broadband symbol rate of 50
MBd/s.

Further work needs to be done, particularly on the receiver side, in or-
der for our CV-QKD setup to achieve a stable positive key rate, assuming
general attacks and finite regime. Novel security proofs are expected in the
future that might prove security for some easier-to-implement schemes such
as QPSK. Regardless of the modulation, CV-QKD systems need to prove
their reliability in a real environment, especially in the existing telecommu-
nication networks, where the usage of dark fibers and multiplexing with the
classical channels may introduce too much of unwanted noise.
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Appendix A

FPGA and software
framework

A.1 AXI protocol preliminaries

This section of the appendix introduces AXI standard which is extensively
used for communication between modules in the firmware. AXI is part of
ARM AMBA, a family of micro controller buses. We are using AXI4 stan-
dard, the second major version released in 2010. The AXI specifications
describe an interface between a single AXI master and AXI slave, represent-
ing IP cores that exchange information with each other. However, multiple
memory-mapped AXI masters and slaves can be connected using special
modules. There are four types of AXI standard: AXI4, AXI4-Lite and
AXI4-Stream. Our firmware builds upon the last two, Lite standard used
for simple low-throughput memory-mapped communication, and Stream for
high-speed streaming data [153].

• AXI4-Lite – A lightweight, single transaction memory-mapped inter-
face. It has a small logic footprint which is very important for building
efficient FPGA designs. The interface between Lite master and Lite
slave consists of five channels, two for address for read/write, two data
read/write channels and write response channel. Lite standard is used
in our firmware, however we didn’t need to customize Lite interfaces
in our modules.

• AXI4-Stream – The protocol does not use addressing and allows un-
limited data burst size. It relies on a very simple handshaking process.
The handshake is done with two 1-bit signals, TVALID which is the
output of a master, and TREADY which is the output of a slave. The
data is transferred only when both signals are asserted. This two-way
flow control mechanism enables both master and slave to control the
rate at which the data is transmitted across the interface. The master
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is not permitted to wait until TREADY signal is asserted. This sim-
ple handshake is shown on Fig. A.1 as a digital timing diagram [154].
The data bus is denoted as TDATA. Along these three signals Stream
standard defines others optional signals too, mostly for frame control,
however our modules are not using them.

Figure A.1: AXI4-Stream handshaking timing diagram. Taken from [154].

A.2 Intellectual property (IP) cores

In this section we are providing a short description of the important IP cores
for QKD and QRNG FPGA firmwares.

• FIFO – First-in first-out (FIFO) buffers are extensively used in FPGA
designing as they are relatively simple, yet very powerful tool. As the
name suggest, this kind of memory takes data and stores it in an or-
dered fashion, the first piece of data that was written is to be the first
to be read out. In order to generate this core we are using FIFO gen-
erator v13.1 GUI [155]. The GUI gives us different option which we
use in order to customize the core for a particular application. The
first option is Interface type. Here we used the native interface type in
contrast to AXI Memory Mapped or AXI Stream, since it is simpler
and FIFOs are used within AXI-enabled modules and not as a stan-
dalone module. Nevertheless native interface signals are easily used
along the AXI signals of the top-level module. There are three options
for which memory primitives are used to build a FIFO buffer: builtin
FIFO primitives, block memory and distributed memory. Generally
we use builtin FIFO primitives since they are optimized for the task.
The second kind utilizes BRAM primitives, while the least desirable is
the distributed memory, which means using general purpose flip-flops
(this is unnecessary since our FPGA has a lot of BRAM and FIFO
resources). One of the most common usages of FIFOs is when they act
as clock boundary, i.e. read and write clocks are different. This is a
safe way for two clock regions to interact, especially if the clocks are of
similar frequency. Therefore, there is an option for common clock or
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independent clocks. If common clock implementation is selected, that
generally means FIFO is used purely as a memory element to buffer
some data. Read mode of the FIFO can be standard, where the data
is available one clock cycle after the read enable signal is asserted, or
first-word-fall-through where the output data is readily available and
valid even if the read enable signal is deasserted. This feature is some-
times very convenient when latency is important. Write width and
read width can be different, thus enabling the user to change the data
bus width which is useful in AXI protocol.

• AURORA 8b10b – The core implements a simple and scalable link-
layer protocol for high-speed serial communication [156]. The protocol
is used in chip-to-chip links, where serial communication can greatly
reduce complexity of PCB (printed circuit board) or board-to-board
communication, which we are using in our project.

Figure A.2: Top-level architecture of Aurora core. Taken from [156](Xilinx)

In order to transmit and receive serial data, the core instantiates GTH
transceivers. Fig. A.2 shows the top-level architecture of Aurora. On
the user side there is Tx and Rx AXI-Stream logic for a convenient
implementation with other AXI enabled modules. In the middle there
is lane logic to control dataflows. Multiple lanes mean multiple GTH
transceivers. We are focusing on the simplest one-lane Aurora with
maximum throughput of 6.6 Gb/s. For the purpose of DC balanc-
ing, synchronization and clock recovery Aurora employs 8b/10b cod-
ing [157]. This code is widely used in telecommunications. It is a
line code that maps 8-bit words to 10-bit code symbols. Symbols are
made in such a way so the counts of ones and zeros are not different
by more than two in a string of at least 20 bits, thus also relaxing the
lower bandwidth limit requirement in a telecom system. Even if the
user does not provide data to Aurora core, the transmitter will offload
special 8b/10b idle 8b/10b symbols which is also convenient for de-
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bugging the link. In our project we have Tx-only simplex framing link
layer. We chose frames of 512 bytes, and the logic for counting the
bytes is implemented as a separate module.

• Direct digital synthesizer (DDS) DDS core is a source of sinu-
soidal waveforms with many options in order to be used in wide ar-
ray of applications [158]. In contrast to voltage controlled oscillators
(VCOs), in the digital domain there are direct digital synthesizers
(DDSs) and numerically controlled oscillators for the purpose of gen-
erating sinusoidal waveforms used in modulation/demodulation, digi-
tal up/downconversion etc. In our designs we employ DDS IP core in
order to have sinusoidal samples readily available in the code where
they are easily manipulated with. DDS core uses a lookup table which
stores the samples of a sinusoid. A digital integrator is used to gen-
erate a suitable phase argument that is mapped by the lookup table
to the desired output waveform. In the DDS IP core settings we are
focusing on several options. First we set up the system clock frequency
so the core knows what is the relationship between this one and the re-
quired one. The important parameter is spurious free dynamic range
denoted in dB. It tells how large is the clearance between the main
peak of the spectrum of the output signal, and the highest spurious
peak, which is the consequence of the finite precision of the digital
design. In principle one wants the highest possible spurious range,
however it is limited by the output number of bits. It turns out that
16 bits output is enough for 95 dB of spurious free range.

Figure A.3: Simplified schematics of the DDS core. Picture taken from [158]
(Xilinx)

Fig. A.3 shows a simplified block diagram of DDS system. Note that
the samples are written in, what is effectively a ROM, with the depth
of 2BΘ(n) . That means that one full circle, or 2π radians are divided
by an integer which is a power of two. Since the ROM is fixed during
the core run time, it is clear that the generated frequency must be
an integer division of the system frequency, and that integer needs
to be a power of two. It is however possible to use rasterized mode
of operation, where ROM length is some integer other than power of
two. This can produce frequencies fsys

N
M , whereN andM are integers.
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When the requested frequency is not an integer fraction of thy system
frequency, there is no way of getting the exact value. However, there
are two techniques implemented in the core which can help to produce
a frequency very close to the requested one – phase dithering and
Taylor series corrected DDS. The detailed implementation of these
techniques is beyond the scope of this appendix. What is important
is the exact number of FPGA primitives such as BRAMs and DSPs
which are used extra for these techniques.

• Finite impulse response (FIR) filter FIR core enables a user to
generate a highly parameterizable, area-efficient high-performance FIR
filters [159]. The conventional single-rate FIR version of the core com-
putes the convolution sum defined with

y(k) =

N−1∑
n=0

a(n)x(k − n) k = 0, 1, ... (A.2.1)

This sum can be computed with the tapped delay line shown in Fig.
A.4. In FPGA the filter is implemented with one or more time-shared
multiple-accumulate units which are functionally equivalent to the sys-
tem shown in the figure. The core uses AXI-Stream interface. Coef-
ficients of the filter are provided by the user and are saved in the
hardware using a certain number of bits. The number of bits deter-
mines the precision and the number of resources to be used (BRAMs
and DSPs). There are several options for the type of the filter – single
rate, interpolation, decimation, Hilbert and interpolated. In our de-
sign we focused on the interpolation type where the filter introduces
zero-valued samples between consecutive input samples, and further
filters the stream thus performing the pulse shaping. The exact fre-
quency characteristics of the filter depends on the coefficients, so the
filter is basically design beforehand using a tool such as Matlab. Since
the samples experience many operations of multiplication and addition
through the filter, there are options to manage the bit growth. Full
precision leave all the bits intact while other rounding options reduce
the number of bits to some fixed value, using an algorithm such as
rounding up or down.

• Fast Fourier transform (FFT) FFT IP core implements the Cooley-
Tukey FFT algorithm, a computationally efficient method for calcu-
lating the Discrete Fourier Transformation (DFT) [160]. DFT length
is a power of two and it is defined as:

X(k) =
N−1∑
n=0

x(n)e−ink
2π
N k = 0, ..., N − 1 (A.2.2)
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Figure A.4: Conventional tapped delay line FIR filter representation. Pic-
ture taken from [159].(Xilinx)

Here N is the transform size. There are two methods used for two
different architectures, the first is decimation-in-time used for the
burst architecture and the other is decimation-in-frequency used for
the pipelined streaming architecture. Our design required constant
pipelined designed, therefore we only used this option. As a trade-
off to the real-time feature, the design consumes the highest number
of resources. The user can choose a transform length between 8 and
65536. We experimented with the lengths up to 32768, since the de-
signs with highest possible length had never ending compiling time.
As with the other cores described in this appendix, the core is AXI-
Stream enabled. This core enables user to operate with both floating
and fixed point arithmetic. Even though floating point arithmetic is
’unnatural’ for FPGAs, the core is fully capable of using it for the ex-
pense of FPGA resources. Similar to the FIR core, due to the nature
of the algorithm, bit growth is allowed or managed by truncation or
rounding.

A.3 FPGA and ADC/DAC boards

In the experiments for this thesis we used PC821 FPGA board and FMC120
ADC/DAC board by Abaco (former 4DSP). PC821 board is PCIe compliant
card. It communicates with the host computer through PCIe interface. The
board supports two FPGA Mezzanine Card (FMC) interfaces. In our sys-
tem, one of the two FMCs is used for FMC120 ADC/DAC daughter card.
Besides the two boards, we acquired the reference firmware and software
from the vendor. The reference firmware is used to test the basic function-
alities of the ADC/DAC and other features on the board, while the software
is used for sending commands, fetching captured data to the host computer
and similar. The reference software and firmware are described in more de-
tail in the next section of the appendix.

PC821 block diagram is shown in Fig. A.5. The hear of the system is
FPGA, in our case Xilinx Kintex UltraScale XCKU115. This is mid to
high-end FPGA specially optimized for DSP tasks. XCKU115 is the most
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Figure A.5: PC821 block diagram (Abaco)

powerful chip in the UltraScale family. It is built of almost a million and
a half flip-flops, 5500 DSP slices, 75Mb of block RAM (BRAM), in total
of 64 16 Gb/s GTH multi-gigabit serial transceivers etc. For programming
the FPGA, standard JTAG interface is used. For high speed serial com-
munication there are SFP+ and FireFly interfaces. SFP+ nominal speed is
10 Gb/s and we used it to output random numbers in QRNG design. The
board hosts 8 GB DDR4 RAM memory protected with a Faraday cage. We
extensively used RAM memory in our designs for buffering, capturing or
offloading of large chunks of data. The DDR4 interface is fast enough to
capture all four ADC channels at the same time without loss, i.e. 64 Gb/s
of data. The board implements also several general purpose input/output
(GPIO) ports. These were used for low speed monitoring signals in QRNG
project. What is not shown in Fig. A.5 is I2C controller and Si5338 clock
distribution chip [161]. I2C is used for communicating with several slaves,
among which is Si5338 chip. The chip takes a 100 MHz crystal output as the
input and has four output channels. These outputs are used to clock SFP+
transceivers among others. We used the programmable feature to program
the data rate at SFP+ interface.

FMC120 is an eight-channel ADC/DAC (four per each direction) daugh-
ter board. Both ADC and DAC channels are 16-bit at the maximum rate
of 1 GS/s. The board also incorporates an external clock reference input
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and one trigger/sync input. The analog signal inputs and outputs are DC
coupled and are connected to SSMC coax connectors on the front of the
panel. In usual operation the board uses internal 100 MHz oscillator which
is used as an input to LMK04828B clock jitter cleaner which provides clock
multiplication capability for ADCs and DACs.

The DAC suite implemented on the board is DAC39J84 by Texas Instru-
ments [162]. It is convenient for customizing transmitter parameters as it
implements many options which we explored. Its maximum data rate is
1.25 Gb/s. We used the default 1 Gb/s rate. Block diagram of the DAC

Figure A.6: DAC39J84 block diagram. Picture taken from [162]. (Texas
Instruments)

is shown in Fig. A.6. Immediately after the JESD204B interface (through
which the DAC is connected to the data source, in this case FPGA) there is
a programmable interpolator. The maximum sample rate of the DAC is 2.8
GS/s. Since out data rate is fixed to 1 GS/s, the only possible options are
×1 or ×2 interpolation. The default one is ×2 giving the total sample rate
of 2 GS/s. In the experiments with the QKD transmitter we did not see
any difference between the two interpolation options. Our frequency range
was significantly below the Nyqist frequency for the ×1 interpolation (500
MHz), therefore this result makes sense. After the interpolator, the DAC
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implements two complex mixers for two pairs of data channels using numer-
ically controlled oscillators (NCOs). The NCOs are controlled with 48-bit
registers for precise frequency placement and 16-bit registers for the phase.
The NCOs are implemented in a similar manner as DDS core in FPGA.
Due to their nature of being a dedicated hardware compared to DDS soft
core, the NCOs are inherently more precise and easily programmable with
software. However, there is no possibility for the equalization of the signal
after it was brought to the passband. Furthermore, with the upconversion
performed in FPGA, we are able to implement an independent pilot signal,
and use the last two DACs for trigger and sync signals that are used for
synchronizing the oscilloscope. The third option we experimented with is
x/ sin(x) (also called sinc) built-in filter. This FIR filter is implemented with
a positive gain so it flattens out the response for the first Nyqist zone. Ass
with the interpolator, due to our relatively low upconversion frequency and
low bandwidth, the filter does not make a difference in our measurements.

A.4 Abaco (4DSP) framework

Along with the hardware, we acquired the reference firmware and software
from Abaco which we used as a base to build our own designs. The firmware
is built using proprietary Stellar IP software. Stellar IP keeps libraries of
the firmware modules built specifically for PC821/FMC120 system. The
modules are AXI-Lite and AXI-Stream enabled so they are easily connected.
In Stellar IP, the modules are called stars. For building the firmware Stellar
IP shows a GUI where a box diagram can be drawn. Upon finishing the
design Stellar IP generates the corresponding VHDL project in Vivado. In
order to illustrate how the framework works, Fig. A.7 shows a piece of
a firmware involved in transmitting the data from ADC to the host PCIe
interface.

• FMC120 star – used for communicating with FMC120 ADC/DAC
board. It utilizes GTH transceivers for getting the high speed data
from the FMC connector. This high speed data is forwarded to the rest
of the firmware through AXI-Stream interface. It is important that
GTH transceivers of the star recover the 250 MHz clock to which ADC
data is synchronous. This clock is also used in the custom Toeplitz
hashing module. Here, AXI-Stream bus is 64 bit wide, and with this
clock rate, it translates to 16 Gb/s full data throughput.

• 64to256 star – this type of star is commonly used in AXI enabled
firmwares. It’s sole function is to convert a 64 bit AXI-Stream bus to
a 256 bit one, while using the same clock. If the data is constantly
present at the 64-bit bus, it goes in bursts on every fourth clock cycle
on the 256-bit output bus. For this purpose, the star employs a simple
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Figure A.7: Stars included in the typical ADC to memory data flow. The
data is offloaded to Host star which is not shown here. Note the standard
AXI infrastructure.

single-clock FIFO. Due to its simplicity, 64to256 star does not utilize
AXI-Lite interface.

• Capture star – the star uses a FIFO buffer to capture high rate
ADC data. The FIFO is able to capture around 3000 samples. Two
AXI-Stream interfaces are implemented in this star: the first one used
for capturing the ADC data, and the second one used for offloading
the data to Host star. AXI-Lite interface is used for controlling the
capturing and offloading. Note that the star can be used as a clock
boundary module as it implements an independent-clock FIFO.

• Host star (or PCIe star) – the star takes care of important function-
ality of communicating with the host PC. On one side it implements
PCIe protocol, while on the other it communicates with the rest of the
firmware using AXI standards. The star is capable of understanding
software commands encapsulated into PCIe format. It discriminates
between high speed data sent from the host machine (which is for ex-
ample bound to be offloaded to a DAC) and control and command data
distributed by AXI-Lite. Proprietary Abaco (4DSP) API is used by
user applications for this software-firmware low level communication.

• DDR4 star implements an interface to the external DDR4 RAM. The
star is design so it effectively acts as a huge 8GB FIFO from the point
of view of the other Stellar IP stars. We used the feature extensively
in our designs.
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• Repeat star acts as a waveform generator for testing the DACs. It
implements a BRAM which is initialized with some custom waveform
and the data is constantly offloaded in a periodic fashion (hence the
usage of BRAMs and not FIFOs which get empty after one cycle).

The only way of introducing a new star into a Stellar IP design is by cloning
an existing star. This means taking a star which is the most similar to in-
tended design and then modifying it accordingly. Due to relative simplicity
and fully working AXI-Lite interface, we were cloning Capture star for im-
plementing Toeplitz hashing and the other modules. However, the necessary
modifications were done ’at lower level’, directly in VHDL code in Vivado.
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Figure A.8: A full Stellar IP design with AXI-Lite and I2C infrastructure.
DDR4 interface star is also present. This particular firmware design imple-
ments Toeplitz hashing and Gaussian sampler in full streaming mode with
capturing of the data to the RAM memory.
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[65] J. Lodewyck, M. Bloch, R. Garćıa-Patrón, S. Fossier, E. Karpov, E.
Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaugh-
lin, P. Grangier, ”Quantum key distribution over 25km with an all-fiber
continuous-variable system”, Phys. Rev. A 76, 042305 (2007)

[66] D. Huang, P. Huang, D. Lin, G. Zeng, Guihua, ”Long-distance
continuous-variable quantum key distribution by controlling excess noise”,
Scientific Reports. 6. 19201, (2016)

[67] P. Jouguet, S. Kunz-Jacques, E. Diamanti, “Preventing calibration at-
tacks on the local oscillator in continuous-variable quantum key distribu-
tion,” Phys Rev. A87, 062313, (2013)

[68] B. Qi, P. Lougovski, R. Pooser, W. Grice, M. Bobrek, ”Generating the
Local Oscillator “Locally” in Continuous-Variable Quantum Key Distri-
bution Based on Coherent Detection”, Phys. Rev. X 5, 041009, (2015)

[69] D. B.S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho,
J. Urayama, M. Sarovar, ”Self-Referenced Continuous-Variable Quantum
Key Distribution Protocol”, Phys. Rev. X 5, 041010, (2015)

[70] D. Huang, P. Huang, D. Lin, C. Wang, G. Zeng, ”High-speed
continuous-variable quantum key distribution without sending a local os-
cillator,” Opt. Lett. 40, 3695-3698, (2015)

[71] S. Kleis, M. Rueckmann, C. G. Schaeffer, ”Continuous variable quan-
tum key distribution with a real local oscillator using simultaneous pilot
signals,” Opt. Lett. 42, 1588-1591, (2017)

[72] H. H. Brunner, L. C. Comandar, F. Karinou, S. Bettelli, D. Hillerkuss,
F. Fung, D. Wang, S. Mikroulis, M. Kuschnerov, A. Poppe, C. Xie, M.
Peev, “Low-noise, low- complexity CV-QKD architecture,” in QCrypt
2017, Cambridge, pp. 2–4, (2017)

[73] F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C.F. Fung, F.
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