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Abstract

Acoustofluidics is the interdisciplinary combined field of ultrasound acoustics and microfluidics.
The interplay between acoustic standing pressure- and velocity waves and the laminar channel
flows in microchips enable reproducible and controllable manipulation of the position of sus-
pended cells and particles as small as on the nanometer-scale.

Acoustofluidics is an emerging field and the bulk of the theoretical foundation experimental-
ists rely on when designing new devices is based on idealized systems and approximated two-
dimensional numerical models. These create a good understanding of systems and can explain
most experimentally observed phenomena.

As the acoustofluidic community grows the channel designs grow in amount and complexity.
Hence, a move away from idealized and approximated systems towards more complete, three-
dimensional numerical models may be necessary. That is the topic of this thesis.

In this thesis we document the gradual development of a numerical model intended to accu-
rately model complex acoustofluidic microdevices. The model grows from a simpel two-dimensional
model containing few elements to a three-dimensional model capable of modeling microdevices
to scale.

Along the development we verify the model predictions using analytical and experimental re-
sults. Additionally, we use it to draw out knowledge about the rapidly oscillating acoustic fields
that are not readily measured experimentally, thus gaining insight in the physical phenomena hap-
pening in the devices. Finally, we use the predictive powers of the model as a design tool to
improve on existing microdevices and even creating an entirely new one.

v





Resumé

Akustofluidik er det videnskabelige krydsfelt mellem ultralydsakustik og mikrofluidik. Sam-
spillet mellem stående tryk- og hastighedsbølger fra akustikken og mikrofluidikkens laminare
strømninger i kanaler i mikrochips, gør det muligt at reproducerbart og kontrollerbart manipulere
med positionen af partikler og celler, i nogle tilfælde helt ned på nanoskala.

Med et udspring i 1990’erne er akustofluidik stadig et ungt felt, og en stor del af det primære
teoretiske grundlag eksperimentalister læner sig op ad, når de designer nye mikrochips, bygger
i høj grad på idealiserede systemer og tilnærmede todimensionelle numeriske modeller. Disse
skaber en god forståelse for systemer og kan forklare de fleste fænomener der bliver observeret
eksperimentelt.

I takt med at akustofluidik bliver mere populært vokser mængden af forskellige typer kanaler,
samtidig med at kompleksiteten af mange chipdesign øges. Her kan det blive nødvendigt at bevæge
sig væk fra idealiserede systemer og tilnærmelser i retning mod mere komplette, tredimensionelle
numeriske modeller, hvilket er emnet for denne afhandling.

I denne afhandling dokumenterer vi den gradvise udvikling af en numerisk model, med henblik
på retvisende at kunne modellere komplekse akustofluidiske mikrosystemer. Modellen går fra at
være en simpel todimensionel model med få kompenter til at være en tredimensionel model, der
kan modellere mikrochips i størrelsesforholdet én-til-én.

Undervejs i udviklingen verificerer vi modellens forudsigelser ved hjælp af analytiske og
eksperimentelle resultater. Vi bruger den i tillæg til at trække informationer ud fra systemer om de
hurtigt oscillerende akustiske felter, hvilket svært lader sig gøre eksperimentelt. Vi bruger dette
til at få mere indsigt i de fysiske fænomener der foregår i de modellerede systemer. Slutteligt
bruger vi modellens forudsigende kræfter som et designværktøj til at forbedre på eksisterende
mikrochipdesign og endda skabe en helt ny.
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Chapter 1

Introduction

To put this thesis and its contribution to the scientific community in perspective, we here bring a
cursory introduction to the scientific field of acoustofluidics in terms of its comparable fields and
its over these advantages. We describe the driving forces of so-called acoustophoresis, which is
particle migration due to acoustics. We then discuss examples of devices in which acoustophoresis
is achieved. This leads us to the concept and benefits of numeric modeling in acoustofluidics,
which is the topic of this thesis.

1.1 Acoustofluidics

Acoustofluidics is a branch of the greater field of microfluidics; a field dealing with fluid flows
on the micro-scale, typically achieved in microchannels where one or more dimensions are on
the sub-millimeter scale. Microfluidics is a multidisciplinary field. The design and manufacture
of devices contains elements of solid and fluid mechanics, surface chemistry, materials science,
microfabrication and electrical engineering. The applications on the other hand are most com-
monly biological or biotechnological, with examples being tissue engineering [5], rare cell iso-
lation [6, 7, 8] and diagnostics [9, 10, 11]. The small dimensions of microfluidic devices cause
inertial effects to diminish compared to surface effects, which is illustrated by the low Reynolds
numbers found in most microfluidic devices. Therefore the fluid flows in microfluidic devices are
often laminar and thus highly deterministic.

In the absence of turbulence in a fluid, suspended particles or cells can be manipulated with
a high precision and repeatability in a multitude of manners. This may be done passively using
sedimentation or the buoyancy of particles [12], effects of fluid inertia [13, 14], cell deformability
[15], or actively by applying an external field. Examples of this include, uniform [16, 17] and
non-uniform [18, 19] electric fields, magnetic fields [20], laser beams [21], and thermal gradients
[22]. In the present work, however, we exclusively deal with acoustophoresis, which is the motion
of particles in suspension due to externally applied harmonic acoustic fields establishing traveling
and standing ultrasonic fields in fluids.

1



2 INTRODUCTION

1.2 Acoustophoresis

Particle manipulation using acoustophoresis is particularly suitable for biological applications as
ultrasound does not impair the viability or proliferation of cells [23, 24]. Furthermore, acoustophore-
sis requires no labeling of cells because it relies on the contrast in acoustic properties of suspen-
sions and suspended matter giving it inherent selectivity.

The driving mechanism behind acoustophoresis is the interaction of harmonically oscillating
acoustic fields giving rise to two forces acting on particles, namely the directly induced acoustic
radiation force F rad

i , and the indirect streaming drag force F drag
i caused by acoustically induced,

circulating, streaming flow rolls.

1.2.1 The acoustic radiation force

A wave with wavelength λ propagating through a continuum will scatter at any non-uniformity it
encounters. In acoustics the non-uniformity is in the mass density or compressibility and may be
due to inhomogeneities in the fluid properties [25]. More often though the scatterers are particles or
cells with radius a suspended in the propagation medium, which due to their small size compared
to the acoustic wavelength (a� λ) act as point scatterers.

When scattering, waves impart momentum to the scatterers and exert a net force over an os-
cillation period due to the interplay of the time-harmonic acoustic fields. The force is exerted over
the entire volume of the scatterer and accordingly scales with the particle radius cubed a3. This
effect was described already in 1934 by King [26]

1.2.2 The streaming drag force

In acoustofluidic devices driven under resonance conditions the fluid velocity is far greater than
the wall velocity. To connect the two, the fluid must transition over a thin region called the viscous
boundary layer. In devices driven at MHz this layer has a thickness on or below the micrometer-
scale, which leads to large velocity gradients and thus shear stresses.

These stresses will over a few thousands of cycles [27]1 build up a steady boundary-driven
streaming velocity field, as sketched in in Fig. 1.1(a). The phenomenon was described for circu-
lating rolls in air over Chladni plates by Lord Rayleigh in 1884 [28].

An additional mechanism driving streaming fields is the dissipation of traveling acoustic
waves. As they propagate, they impart momentum into the propagation medium in a steady fash-
ion, as described by Eckart in 1948 [29]. We illustrate the principle in Fig. 1.1(c).

Regardless of the driving force, the induced circulating streaming fields have low Reynolds
numbers. Therefore, a particle suspended in such a flow will experience a drag following Stokes’
law, scaling with the particle radius a and streaming velocity vi,2.

1Note, that a few thousand cycles occurs within a single millisecond when the applied acoustic field is in the MHz-
regime.



1.3. Acoustofluidic devices 3

1.2.3 Force balance

The a2 scaling of the ratio between the radiation force and the streaming drag force creates three
regimes of particle motion with no sharp division, as sketched in Fig. 1.1(b). The regimes are based
on particle radius, with a device-geometry- and material-dependent critical radius indicating the
tipping point from radiation dominated to streaming dominated as theoretically predicted [30] and
experimentally observed [31].

(i) Sufficiently large particles experience negligible drag, and migrate almost exclusively due
to the radiation force. As the radiation force is time-invariant, all particles will come rest at some
point, based on their initial position.

(ii) Intermediate particles experience radiation and drag forces on the same order of magnitude,
and the governing cause of migration can be very specific to certain parts of a device. These
particles, may end up in a region with a dominant radiation force and be captured or may follow
along distorted versions of streaming rolls indefinitely. Again, this is dependent of the initial
position of the particle.

(iii) Very small particles will exclusively follow the patterns of the streaming rolls. As the rolls
form closed loops, particles mainly undergoing streaming acoustophoresis will follow their loops
indefinitely.

Figure 1.1: Streaming driving mechanisms and acoustophoresis. (a) Classical boundary-driven
streaming rolls induced by the shear stress in the thin viscous boundary layer in a hard-walled
systems actuated at resonance. (b) The balance of forces for three particle sizes; (i) A large
particle with radius a, dominated by the acoustic radiation force F rad

i and negligible drag force.
(ii) A particle of radius a

2 . F rad
i here is 8 times lower than for (i), and of even magnitude as the

drag force F drag
i . The two forces even out, and the motion is a mixture of the two forces. (ii) A

particle of radius a
4 . F rad

i here is 64 times lower than for (i), and only 1
16 of F drag

i . The motion here
is completely dominated by the drag force. (c) Streaming induced by inhomogeneous dissipation
in the bulk fluid domain. Waves emitted from a surface and absorbed on another cause a local
upwards energy flux dissipating into the fluid, establishing a circulating flow.

1.3 Acoustofluidic devices

All acoustofluidic devices rely on the aforementioned balance of forces. In some devices the
rolling motion caused by streaming fields may be desired as in mixing [32, 33], which is a hurdle
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in laminar flows as it is governed solely by diffusion.
In this thesis we focus mainly on devices with a focus on trapping and concentrating particles

or cells. The majority of these consist of some combination of an electrode-patterned piezoelec-
tric transducer – in which alternating potentials create mechanical waves – a fluid microchannel
or cavity with suspended cells or particles, and an encasing material, usually glass, silicon or a
polymer. In these the streaming drag often counteracts the focusing of the radiation force. Hence,
it is of interest to find means of either suppressing the streaming [25], or creating streaming com-
bined force landscapes where streaming does not counteract the radiation force, as experimentally
realized in [3].

Depending on the actuation method of the piezoelectric material, devices can be categorized
into bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices, an example of which is
shown in Fig. 1.2. To achieve good separation of particles and high energies for moderate power
inputs, the bulk of acoustofluidic devices rely on acoustic fluid resonances, although designing for
whole-system resonances is also a viable approach [34]. In either case, the working frequency
of acoustofluidic devices are usually well above the highest audible frequency of 20 kHz. BAW
devices typically have working frequencies of a few to several MHz to excite fluid cavities on the
order of a few hundred micrometers, while SAW devices can have actuation frequencies in the
tens of MHz to excite resonances in the piezoelectric substrate.

BAW devices are actuated through a grounded and a charged electrode attached to either side
of a slab of piezoelectric ceramic, causing waves to travel through the entirety of the transducer.
As the microchannels in BAW are often capillary tubes or a hard material with a cavity, and
transducers can be bought ready-made, BAW microchips require simpler facilities to fabricate and
are cheap relative to SAW devices.

In SAW microchips, actuation is achieved through a set of interdigitated, alternating charged
and grounded electrodes etched onto a piezoelectric wafer. Therefore, waves are formed at the
surface of the piezoelectric substrate and propagate along the it while being evanescent in the depth
of the material, effectively localizing up to 95 % of the energy on the substrate surface [35]. This is
reflected in device designs, as the microchannel is more frequently in contact with the piezoelectric
material in SAW devices than in their BAW counterparts. Because SAW devices rely on patterning
electrodes onto a piezoelectric substrate using soft lithography rather than purchasing ready-made
transducers, SAW devices can have more intricate designs. This comes, however, at a cost as
SAW devices require a more expensive class of piezoelectric ceramics and have more cumbersome
fabrication processes.

For both categories of devices designs come in a range of complexities, both in terms of pro-
duction and interaction of elements. While the majority of focusing devices feature long straight
extrusions of a two-dimensional cross-section [36, 37, 38, 39, 40] more complex three-dimensional
designs are also abundant in the literature [41, 42, 43, 44, 45].

1.4 Numeric modeling and motivation

To paraphrase Muller et al.[46], experimental work, theoretical analysis, and numeric models are
symbiotic in understanding and improving acoustofluidic devices. In this work we primarily focus
on the numerical modeling part of acoustofluidics, but collaborate closely with experimentalists



1.4. Numeric modeling and motivation 5

and employ analytical solutions whenever possible.

Figure 1.2: Physical device and numerical model. (a) The physical surface acoustic wave device
used in Chapter 6. Image courtesy of P. Sehgal. (b) Exploded view of a numerical counterpart to
the device in (a), rotated 90 ◦. The device is too heavy to compute in its entirety and the numerical
model is therefore scaled down representing only portion of the blue box marked in (a) and slightly
idealized, but the main components remain. The blue arrows in (a) and (b) show the flow direction
of the microchannel.

A great advantage of numerical modeling is the probing and measuring possibilities. The
acoustic pressure for instance is impossible to experimentally measure directly in a non-interfering
way, due to the high frequencies and large gradients often involved. In numerical models, however,
the temporal and spatial dependence of the acoustic pressure is fully resolved. This is also one
of the challenges in verifying models experimentally, as this is typically done through secondary
effects such as comparison between the calculated and observed acoustophoretic motion.

The good resolution of the acoustic fields in numeric models make them incredibly useful in
building understanding of the inner workings of a system. As a consequence the literature has a
multitude of numeric models with different layers of complexity; equivalent circuit modeling of
piezos with fluid force coupling [47, 47], fluid-only 2D simulations [30, 48, 49, 50, 51], fluid-
only 3D simulations [52, 53, 45], 2D and 3D models of fluid-solid systems with solids modeled
as fluids [54, 55], 2D fluid-solid models [56], 2D fluid-solid-piezo models [57], 3D fluid-solid
models [58], and most complex of all 3D fluid-solid-piezo models with [59] and without damping
[40]. All of these approaches have merit, and a good rule of thumb is to use the simplest possible
model for whatever task is at hand, as it will often be the quickest and easiest to use. In Fig. 1.2(a)
we exemplify a physical device, that only requires a highly complex numerical model to model its
inner workings due to its intricate geometry and anisotropic materials.

An other less used, but equally useful application of numerical models is the optimization of
acoustophoretic devices. Numerical models enable the examination of device designs for a vast
parameter-space that cannot feasibly be tested by repeated manufacture and experimentation on
devices [60, 58].

In the present work we aim to create a model encompassing all effects of an isothermal
acoustofluidic device, capable of modeling any design regardless of choice of materials, actua-
tion scheme, and geometry. We do this by iteratively improving upon a model, adding complexity
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with each step.
We verify the model as a reliable tool through handshakes with experimental work and com-

parisons to known analytical solutions whenever possible. Concurrently, we use the model to gain
insights into the mechanisms of actual devices, improve upon the design of an existing device and
guide the design of an entirely new device.

1.5 Structure of the thesis

The main chapters of the thesis are outlined below. The bulk of the work done for this dissertation
amounted in the two published papers [1, 2], an manuscript in review [3] and an ongoing project
[4].

In chapters 4-6 we provide a ’reader’s digest’ of papers [1, 2, 3]. We go through the work
carried out for each manuscript and present the main results with emphasis on the qualitative
parts, and refer readers to the papers for quantitative results. Additionally we include some results
that were either omitted from the manuscripts or have been carried out in retrospect. At the end of
each of the chapters the manuscripts are included in their entirety, as a reference work for details
we do not discuss in the main text.

In chapter 7 we present the current state of the numeric model, present some ongoing work,
and discuss future work, and include an abstract submitted to the Acoustofluidics 2019 conference.

Chapter 1 Introduction — Introduction to the field of acoustofluidics and cursory review of the
current state of the art with regards to numeric modeling.

Chapter 2 Acoustofluidics background — The governing equations used in full and effective
modeling of isothermal, anisotropic, piezo-driven acoustofluidic devices.

Chapter 3 Finite element modeling background — Implementation the of governing equations
in weak form using COMSOL Multiphysics. Numerical toolkit to work on large-scale systems
and description of the DTU High Performance Cluster (HPC).

Chapter 4 2D model studies of approximative boundary condition validity. The initial foray
into modeling in a 2D fluid-solid system using approximated boundary conditions for the piezo-
electric actuation. A study of widely used approximated boundary conditions for use in future
work.

Chapter 5 Full 3D simulation of a presented bulk acoustic wave device — The expansion of
the numeric model by inclusion of additional physical phenomena. We numerically reproduce pre-
viously published experimental results and provide an explanation of observed in-plane streaming
rolls.

Chapter 6 Full 3D model studies of a surface acoustic wave device. — A study of an acoustoflu-
idic device driven by surface acoustic waves. Reasoning for the design improvements made to a
device based on our numeric model predictions. Remarks on acoustophoretic motion reminiscent
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of that in bulk acoustic wave devices.

Chapter 7 Chladni-plate-like motion of piezoelectric substrates. Description of a novel ap-
proach to designing acoustofluidic devices. Reasoning for computational savings based on reduced-
domain models.

Chapter 8 Conclusion and outlook — Conclusion of the thesis and outlook with suggestions for
future research with emphasis on the ongoing research project of Chapter 7.





Chapter 2

Governing equations of acoustofluidics

In this chapter we define the governing equations for the fields of fluid dynamics, solid mechanics
and electrostatics. This order is chosen to reflect the importance of the fields in calculating device
acoustofluidics, and the order in which the fields were implemented in our numeric models. Ad-
ditionally, we present linearizations of the governing equations derived using perturbation theory.
Regarding the notation, we make a distinction between pure physics and numeric implementa-
tion. We mark this by using index notation when describing the governing equations. When we
linearize the equations using perturbation theory we present the resulting equations in both index
and vector notation, as the latter serves as a basis for the numerical implementation described in
Chapter 3.

2.1 Fluid dynamics

The governing equations in a fluid with mass density ρf , dynamic viscosity η, bulk viscosity ηb

are the conservation of mass, Eq. (2.1), and the balance of momentum, Eq. (2.2).

2.1.1 Mass conservation

The total mass of a system must stay constant assuming no relativistic effects or nuclear reactions.
Conservation of mass is described by the continuity equation,

∂tρf = −∂i(ρfvi). (2.1)

Physically this means that the local rate of change of mass density increases where momentum
density converges and decreases where it diverges. While water can be assumed to be incompress-
ible for many fluid mechanics problems that is not the case in acoustofluidics as compressional
waves are the very essence of acoustics.

2.1.2 Momentum conservation

For a fluid volume fixed in space, fluid particles within can be accelerated by two effects; By forces
acting on the surfaces of the volume and due to the convection of momentum. This is described

9
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by the Navier-Stokes equations,

ρf∂tvi = ∂k(σ
f
ik − ρfvkvi). (2.2a)

Here we have assumed the fluid to be Netwtonian with the viscous stress tensor,

σf
ik = 2η(γik)− pfδik +

(
ηb

η
− 2/3

)
ηγjjδik, (2.2b)

describing the force in direction k per unit area of surface i, with i, k = 1, 2, 3. Here, δik is the
Kronecker delta, and γik is the strain rate tensor,

γik =
1

2
(∂ivk + ∂kvi). (2.2c)

Strains and stresses can be divided into two categories; (i) normal strains acting parallel to the
normal of a surface, (i = j) and (ii) shear strains acting within the plane of a surface (i 6= j) In
words, Eq. (2.2a) states the rate of change of momentum in a fixed point is equal to the sum of
locally acting forces and the local influx of momentum.

2.2 Solid mechanics

The displacement field us in a linearly elastic solid material with mass density ρs is governed by
the conservation of momentum and a linear strain-stress constitutive relation.

2.2.1 Cauchy momentum equation

The governing equation for solid mechanics is the Cauchy momentum equation, from which the
Navier-Stokes equations are also derived. As there is no convection in solid materials the non-
linear term disappears leaving,

ρs∂
2
t ui = ∂kσ

s
ik. (2.3a)

The stress tensor σs
ik for small displacements in solids is defined by the linear constitutive relation,

σs
ik = Ciklmεlm, (2.3b)

where εik is the strain tensor,

εik =
1

2
(∂iuk + ∂kui), (2.3c)

and Ciklm is the 81-components elasticity tensor. Due to symmetries 60 of these are redundant1

and thus the highest number of elastic constants in any material is 21. This number is further de-
creased in varying degrees by materials exhibiting symmetries in their microstructure as discussed
in Section 2.2.2, and shown in Fig. 2.3. In words, Eq. (2.3a) states that the product of the mass
and acceleration of a solid volume element is equal to the forces acting on its surfaces.

1See Section B.1
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In isotropic, linearly elastic materials the stress state for a given strain can be uniquely defined
using just two elastic constants. In acoustics we typically opt for a definition intuitive for wave
propagation problems,

σs
ik = 2ρc2

Tεik + (ρc2
L − 2ρc2

T)εjjδik, (2.3d)

where cT and cL are the transverse and longitudinal speeds of sound respectively. In this form
there is a clear analogue to the fluid stress definition Eq. (2.2b), with ρc2

T and ρc2
L being the solid

counterpart to the dynamic and bulk viscosities of a fluid.

2.2.2 Isotropic and anisotropic materials

Depending on their material class and their microstructure solid materials are either isotropic or
anisotropic. Isotropic materials are polycrystalline media, such as cast metals and amorphous ma-
terials including glass and some polymers. The disorder in these media lead to material properties
that may be directionally dependent on the grain scale, but on the macroscopic scale even out and
negate any directional dependence.

In Fig. 2.1(a) isotropy is illustrated by displacement waves propagation outward from a point
actuation in O all having the same wavelength, like surface waves emitted from an object dropped
in water. This makes isotropic media easier to work with analytically and numerically, as the
physics that take place within them are more intuitive than those in anisotropic materials and
material parameters need not be given with respect to a certain coordinate system.

Anisotropic media on the other hand, are crystalline media that have long-range order in their
structure. Examples include the commonly used bulk acoustic wave actuator lead zirconate ti-
tanate and lithium niobate commonly used in surface acoustic wave devices. The order in these
media will favor for instance deformation of the material in one direction over others or a certain
direction might have higher electrical conductivity. In Fig. 2.1(b) this is illustrated by the direc-
tional dependence of wavelengths of the waves propagation outwards from a point actuation in O.
For θ = 0 the wavelength and hence propagation velocity is twice that for θ = π/2. While this
is a greatly exaggerated example for illustrative purposes, the difference in normal elasticities2 for
anisotropic materials commonly used in acoustofluidics range from 5 to 35 percent.

The degree, directionality, and the material properties affected by anisotropy in a solid are
determined by the crystalline structure. Silicon for instance is mechanically isotropic when poly-
crystalline due to the random order of grains. In its single-crystalline form, however, it is thermally
and optically isotropic but shows directional dependence in its elasticity.

Because of the direction dependence of material parameters, table values for anisotropic media
are always given in some orientation relative to the crystalline coordinate system. In Section 2.2.2
we go through the steps necessary to transform known properties from one basis to an other and
in Chapter 5 we illustrate the directional dependence of wave propagation velocities in monocrys-
talline silicon.

2The proportionality factors between normal strains and stresses, i.e. Ciikk
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Figure 2.1: Illustration of wave propagation in isotropic versus anisotropic media from a point-
source emitter. (a) Color plot of displacement waves propagation out from a harmonic point
actuation uz = u0e

−iωt atO = (0, 0) in an isotropic medium. (b) Color plot of waves propagation
out in an anisotropic medium actuated as in (a).

Material directionality

When modeling the physics of anisotropic media, we distinguish between two frames of reference
that do not necessarily coincide. the material coordinate systemX,Y, Z - for which table values of
material properties are given - and the global coordinate system x, y, z in which the independent
variables are defined.

The global coordinate system is arbitrary but usually defined to be convenient to work with,
for instance aligned to match the width, depth and height of a device. Fig. 2.2 illustrates a set of
non-coinciding material and global coordinate systems for a slab of anisotropic material. Here the
material system is defined from the crystalline structure and the global system is defined by the
slab’s geometry.

A first-order tensor such as the position ri is transformed from one coordinate system rk =
(x, y, z) to another r′j = (X,Y, Z) through the transformation tensor Rjk

r′j = Rjkrk, (2.4)

where the components Rjk are the directional cosines between axis x′k and axis xi. In general,
an n-order tensor is transformed using n rotation tensors transforming one index at a time, for
instance the elasticity tensor transforms as

C ′iklm = RinRkoRlpRmqCnopq. (2.5)

This is, however, quite tedious numerically. In Section 3.6 we discuss an alternative approach,
using the Voigt notation described in the following section.

2.2.3 Voigt Notation

When calculating the motion of anisotropic materials it is useful to introduce the Voigt notation.
In this notation, the stress and strain tensors defined in Eqs. (2.3d) and (2.3c) are compacted
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Figure 2.2: Sketch illustrating a set of non-coinciding material (X,Y, Z) and global (x, y, z)
coordinate systems. A slice of an anisotropic material is aligned along the global coordinate
system, which is at an angle θ to the material coordinate system rotated positively around the
x-axis. The X- and the x-axes overlap, as do the Y,Z- and the y, z-planes. Adapted from [3]

into the vectors εα and σα, α = 1, 2, ..., 6 by employing the symmetric nature of these tensors
σik = σki, εik = εki. For the stress defined in Voigt notation the first three components are the
normal stresses and the last three are the shear elements in the order, �123, 1�23, 12�3.

εα =




ε1
ε2
ε3
ε4
ε5
ε6




=




ε11

ε22

ε33

2 ε23

2 ε31

2 ε12



, σα =




σ1

σ2

σ3

σ4

σ5

σ6




=




σ11

σ22

σ33

σ23

σ31

σ12



. (2.6)

Notice that Voigt shear strain elements are twice the value of those in index notation, ε4 = 2ε23,
etc. This is by convention to keep the strain energy density U ≡ 1

2σαεα = 1
2σikεik invariant of

notation3, keeping the Voigt notation isometric. One benefit of Voigt notation is the highly compact
constitutive relation with no loss of generality,

σα = Cαβεβ, (2.7)

where Cαβ is the symmetric 6x6 Voigt elasticity tensor. Note that the symmetry of this tensor
leaves at most 21 independent components, which fits with the highest possible elastic moduli in
anisotropic media. Another benefit is the relative ease of transforming material parameters such as

3See Section B
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the elasticity tensor from one frame of reference to another. We discuss this further in Section 3.6.
With the introduction of σα the Cauchy momentum equation in Eq. (2.3a) can be rewritten to

ρ∂2
t ui = Viασα, (2.8)

where we have introduced the Voigt index divergence operator,

Viα = δikδkα∂k + |εijm|∂m with j = α− 3, (2.9)

where εijm is the Levi-Civita symbol taking on values of 1 for even permutations of i, j,m, -1 for
odd permutations and 0 if any index is repeated.

2.3 Electrostatics

The electric potential φ in a linear, anisotropic dielectric material with relative permittivity ε̃ik and
no free charges ρf = 0 is governed by Gauss’s law and the constitutive relation of electric fields.

2.3.1 Gauss’s Law

Due to the absence of free charges in a piezoelectric ceramic Gauss’ law simplifies to

∂iDi = 0, (2.10)

stating that the ingoing and outgoing electric flux are balanced in all points. This is in a sense an
electric counterpart of the continuity equation for incompressible fluids. Here, we have defined
the electric flux density Di,

Di ≡ ε0Ei + P e
i = ε0ε̃ikEk, (2.11)

where ε0 is the vacuum permittivity and Ek is the electric field,

Ei = −∂iφ, (2.12)

and P e
i is the induced polarization density as described below.

2.3.2 Electric dipoles

An electric dipole is a pair of equal and opposite charges ±q with displacement vectors di. Such
a pair has a dipole moment of pi = qdi. On the macroscopic scale a distribution of dipoles lead to
a polarization density Pi,

Pi =
dpi
dV

. (2.13)

When an dielectric is subjected to an electric field Ei any pre-existing dipoles will experience
a torque tending to align them with the field. Concurrently new dipoles will be induced parallel to
the field due to the shift of the positively charged nuclei relative to the electrically charged electron
clouds. The resulting electrically induced polarization density is

P e
i = ε0χikEk. (2.14)

As we shall see in Section 2.4 an additional polarization can arise from due to electro-mechanical
effects.
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2.4 Piezoelectric coupling

In some anisotropic media the negative and positive ions in the lattice structure move relative to
each other when the structure deforms causing dipole moments to appear. On the macroscopic
scale this manifests as an added polarization density Pm

i in the electric flux density due to an ap-
plied strain εα due to the so-called piezoelectric effect. In the inverse piezoelectric effect dipoles
shift relative to each other when subjected to an external electric field, Ei, causing a stress contri-
bution σe

α.
In the limit of small electric fields and small mechanical strains, the polarization and stress

states in piezoelectric materials are superpositions of the mechanically (superscript m) and elec-
trically induced fields (superscript e). Mathematically, this is represented by adding an electrome-
chanical term to each of the auxiliary fields in Eqs. (2.7) and (2.11). The coupling can be expressed
in one of several ways. Here we opt to use the so-called stress-charge form,

Di = ε0Ei + P e
i + Pm

i = ε0ε̃ikEk + eiαεα, (2.15a)

σα = σm
α + σe

α = Cαβεβ − eαiEi. (2.15b)

Here we have introduced the coupling tensor eiα which is the proportionality factor between the
mechanically induced polarization in direction i and strain component α in the direct piezoelectric
effect, whereas eαi is the ditto between the electrically induced stress component α and the electric
field in direction i in the inverse piezoelectric effect.

The resulting constitutive relations for the most general piezoelectric materials can be written
on the compact form,




σ1

σ2

σ3

σ4

σ5

σ6

Dx

Dy

Dz




=




C11 C12 C13 C14 C15 C16 -e11 -e21 -e31

C22 C23 C24 C25 C26 -e12 -e22 -e32

C33 C34 C35 C36 -e13 -e23 -e33

C44 C45 C46 -e14 -e24 -e34

C55 C56 -e15 -e25 -e35

C66 -e16 -e26 -e36

Symmetric ε11 0 0
ε22 ε23

ε33







ε1
ε2
ε3
ε4
ε5
ε6
Ex
Ey
Ez




. (2.16)

In Fig. 2.3 the amount of non-zero, independent coefficients for the elastic and piezoelectric
solids used in this thesis is illustrated.

2.5 Perturbation theory

The driving force of the acoustofluidic devices we investigate is an ac potential of frequency f and
angular frequency ω = 2πf applied across a piezoelectric material through a set of a grounded
and a charged electrode. For small potentials the linear response to the actuation are electric and
acoustic fields that are directly proportional to the driving voltage and inherit its harmonically
oscillating characteristic. Accordingly, the acoustic fields within the device are complex-valued
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Figure 2.3: Visualization of the upper-right, non-zero coefficient in the constitutive relations, of
the materials used in this thesis, as shown in Eq. (2.16). Full lines indicate equalities whereas
dashed lines indicate relations. and colored circles indicate linear combinations of other coeffi-
cients. The numbers indicate the amount of linearly independent elastic, coupling and dielectric
coefficients, respectively.

functions g(ri, t) = g0(ri)e
−iωt, where g0(ri) is the field amplitude at ri and the physical value

of the field at time t can be evaluated as the real part gphys(ri, t) = Re
[
ĝ(ri)e

−iωt
]
. The harmon-

ically oscillatory nature of the fields simplifies the temporal derivative to ∂t = −iω.

The fields described above are all small perturbations around a quiescent state, and we employ
standard perturbation theory up to second order to linearize the governing equations Eqs. (2.2a),
(2.3a), and (2.10). The harmonic fields make up the first-order fields in this perturbation series,
which takes on the form

ui(ri, t) = 0 + ui,1(ri)e
−iωt + 0, (2.17a)

vi(ri, t) = 0 + vi,1(ri)e
−iωt + vi,2(ri), (2.17b)

p(ri, t) = p0(ri) + p1(ri)e
−iωt + p2(ri), (2.17c)

ρ(ri, t) = ρ0(ri) + ρ1(ri)e
−iωt + ρ2(ri), (2.17d)

φ(ri, t) = 0 + φ1(ri)e
−iωt + 0. (2.17e)

The second-order fields in the fluid arise from products of first-order fields in the nonlinear govern-
ing equations. We are only interested in the steady part of these and let the subscript ”2” implicitly
mean the time-average of a field, g2(ri) =

〈
g2(ri, t)

〉
= 1

T

∫ T
0 g2(ri, t) dt, where T = 2π/ω is the

period of the harmonic oscillation. We are also only interested in the time-average of second-order
products of first-order fields, and let it be implicit that

〈
g1(ri), h1(ri)

〉
= 1

2Re
[
g1(ri)h1(ri)

∗],
where the asterisk operator “*” denotes the conjugate of a complex value.

For brevity we omit the implicit position dependence of all fields and harmonic nature of
first-order fields.
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2.5.1 Full fluid acoustic fields

We introduce the isentropic linear constitutive relation p1 = c2
0ρ1 – where c0 = (∂p/∂ρ)

−1 is the
isentropic compressional wave speed – and the isentropic compressibility κf = (ρ0c

2
0)−1. Using

these, we insert the perturbation series Eq. (2.17) in the governing fluid equations and collect only
first-order terms,

−iωκfp1 = ∂ivi,1 or ∇ · v1 + iωκfp1 = 0, (2.18)

−iωρ0vi,1 = ∂jσ
f
ij,1 or ∇ · σf

1 + iωρ0v1 = 0. (2.19)

Here and in the following, the subscript “1” in an auxiliary field (σf
ij,1, εα,1, Ei,1, ...) is used to

indicate that it is calculated with first-order dependent values.

2.5.2 The Helmholtz equation

Using the stress definition Eq. (2.2b) it can be shown that Eqs. (2.18) and (2.19) can be rewritten
to the Helmholtz equation,

∂2
i p1 = −k2p1 or ∇ · (∇ p1) + k2p1 = 0. (2.20)

where we have introduced the complex wavenumber k = (1 + iΓ)ω/c0 with the dimensionless
viscous loss factor Γ = (4/3ηf + ηb

f )ωκf . Using the Helmholtz equation reduces the number of
unknowns and equations to solve to 1, providing a simpler framework for calculating the acoustic
pressure fields in the bulk of a fluid domain. The acoustic velocity is, however, still of interest in
acoustic pressure modeling and can be calculated as,

vi,1 = −i
1− iΓf

ωρf
∂ip1, Γf =

(
4

3
ηf + ηb

f

)
ωκf . (2.21)

Near boundaries the fluid velocity must transition from the bulk solution to the values at the walls,
which at resonance is much lower than in the bulk. This occurs over a thin region in the so-called
viscous boundary layer of size,

δvisc =

√
2η

ρω
≈ 0.5 µm at 2 MHz and 25 ◦C. (2.22)

For devices with dimensions much larger than δvisc, Eq. (2.20) remains a reasonable approxi-
mation, when applying the set of boundary conditions developed by Bach and Bruus [61] that
analytically accounts for the losses in the boundary layers, see Section 2.6.1.

2.5.3 Second-order fields and acoustophoresis

The products of first-order fields in the governing equations give rise to the second-order fields
vi,2 and p2. These are governed by the time-averaged continuity and Navier-Stokes equations,

∂ivi,2 = 0 or ∇ · v2 = 0, (2.23)

ρ0∂i(vi,1vj,1) = ∂iσ
f
ik,2 or ∇ ·

(
σf

2 − ρ0v1v1

)
= 0. (2.24)

Here, the subscript ”2” denotes the stress tensor calculated using the second-order velocities and
pressure.
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2.5.4 Solid acoustic fields

The governing equations of the solid are completely linear, and the first-order equations are equal
to Eq. (2.3a) with ui = ui,1,

− ω2ρsui = ∂kσ
s
ik,1 or ∇ · σs

1 + ω2ρsu1 = 0. (2.25)

Note that second-order fields are present in Eq. (2.17a), as a steady displacement field in the solid
would correspond to a permanent deformation.

Acoustic damping in solids

So far we have discussed idealized solids. However, in real devices propagating waves are damped
in both fluids and solids. We implement this by the introduction of damping coefficients Γ. Fol-
lowing the analysis by Hahn and Dual [60] we introduce this in the forcing term of Eq. (2.25)

∂t → −iωt(1 + iΓs), (2.26)

where Γs is the material-dependent damping coefficient. Ideally one would introduce an imaginary
part to each stiffness coefficient Cαβ = C ′αβ +iC ′αβ . These coefficients are, however, exceedingly
difficult to measure experimentally and thus we settle with the broadly dampening approach.

2.5.5 Gauss’s law to first order

As in the solid, no second-order products appear in the governing equations, and the electric
potential field is fully described by the harmonically oscillating first-order part.

∂iDi,1 = ρel or ∇ ·D1 − ρel = 0. (2.27)

The potential couples together with the acoustic displacement ui due to the interconnectivity be-
tween mechanical motion and electric charge in piezoelectric devices.

2.5.6 Numerical impedance analysis

The electrical current, I , running through a piezoelectric device can also be a useful comparison
parameter, as we shall see in Chapter 6. In the absence of free charges electrical currents only
polarization currents exist. These are attributed to the polarization density Pi,

Pi = Di − ε0Ei, (2.28)

the temporal derivative of which is the polarization density current Ji,pol

Ji,pol = −iωPi. (2.29)

The flux of this into the device over the electrode surface ∂Ωel yields the electrical current I ,

I =

∫

∂Ωel

Jpol · n dA, (2.30)
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From the current the electrical impedance Zel of the equivalent circuit of a device actuated
with a potential V0 can be calculated,

Zel =
V0

I
. (2.31)

2.6 Boundary conditions

We complete the boundary value problem defined by the bulk domain equations by introducing a
set of restraints at select boundaries of the domains.

2.6.1 Fluid-solid interfaces

The fluid velocity field couples with the solid displacement field through continuity of the normal
velocity, Eq. (2.32a), and stress, Eq. (2.32b). The two-way coupling is achieved by fixing the fluid
velocity to the time derivative of the solid displacement, and fixing the solid stress normal to the
interface to the ditto of the fluid.

ni · vi,1 = ni · vs
i,1, (2.32a)

nk · σs
ik,1 = nj · σf

ik,1, (2.32b)

where we have defined the velocity of the wall, vs
i,1 = −iωui,1.

The same approach can be used when using the Helmholtz equation,

σs
ik,1 · nk = −p1 ni + iksηv

δ
i,1, (2.33a)

vi,1 · ni = −iωu1 · ni +
i

ks
∂‖ · vδi,1,‖. (2.33b)

Here, the boundary layer velocity vδi,1 = (vs
i,1 − vi,1) is introduced to account for the shearing

effects in the viscous boundary layer. The subscript ”‖” denotes parallel components.

2.6.2 Solid-air interfaces

At interfaces between a solid material and the surrounding air a zero-stress condition is applied
due to the large impedance ratio between solids and air,

nk · σs
ik,1 = 0. (2.34)

Even PDMS, which is one of the softest polymers, has an acoustic impedance 3500 times larger
than that of air due to the much higher mass density, making the no-stress condition a good ap-
proximation for any solid-air interface.

2.6.3 Electrode conditions

We assume metal electrodes to be ideal conductors giving them a fixed, homogeneous potential
across their entire surface.

φch
1 = V0 , φgr

1 = 0, (2.35)
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We model floating electrodes as having an unknown homogeneous potentials across their surface,

∂‖φ
fe
1 = 0, (2.36)

The condition fixes the value across the surface to some value φfe
1 , which connected electrodes

must take on.

2.6.4 Second-order fluid conditions

The boundary conditions of the second-order fields when using effective pressure modeling are
derived and described in detail by Bach and Bruus [61]. We will not go into detail here, but
merely reiterate them

vi,2 = (Ai · eξ,i)eξ,i + (Ai · eυ,i)eυ,i + (Bi · eζ,i)eζ,i, (2.37a)

Ak =
1

2ω
Re
{
vδ0∗i,1 ∂k

(
1

2
vδ0i,1 − ivs

i,1

)
− ivs∗

i,1∂kvi,1 (2.37b)

+

[
2− i

2
∂iv

δ0
i,1 + i

(
∂kv

s
i,1 − ∂ζv∗ζ,1

)]
vδ0i,1

}
, (2.37c)

Bk =
1

2ω
Re
{

iv0∗
i,1∂kvi,1

}
. (2.37d)

Here eξ,i and eυ,i are unit vectors parallel to the surface, eζ,i is the normal vector, and superscript
”0” indicates the value defined at the surface, having only a perpendicular component.

2.6.5 Solid approximation conditions

As an alternative to including solid domains surrounding the fluid domain, the fluid-solid interac-
tion can be approximated by one of three boundary conditions depending on the material of the
interfacing solid. The soft-wall condition Eq. (2.38b) represents an interface to an infinitely soft
materials which cannot sustain stresses, as it states the inviscid stress is zero at the interface. It is
typically used to represent fluid-air interfaces.

The hard-wall condition Eq. (2.38a) represents an infinitely hard and dense surface which
cannot yield, stating the velocity - and thus displacement - of the wall and the contacting fluid is
zero.

Finally the lossy-wall condition Eq. (2.38c) represents an interface reflecting a portion of in-
coming wave proportional to the acoustic impedance of the interface.

ni · vi =0, (2.38a)

p1 =0, (2.38b)

ni · ∂ip1 =ik
Zac,f

Zac,in
p1 = ik0Z̃

ac p1. (2.38c)

Here we have defined the specific acoustic impedances of water Zac,f = c0ρ0 and the interfacing
domain Zac,in = cinρin, and the impedance ratio Z̃ = Zac,f/Zac,in. Notice that as vi,1 ∝ ∂ip1

Eqs. (2.38a) and (2.38b) are the limiting cases of Eq. (2.38c) for Z̃ → 0 and Z̃ →∞ respectively.
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Each of the conditions Eq. (2.38) is coupled with a no-slip condition fixing the fluid tangential
velocity to zero.

vi,1,‖ = 0. (2.39)

In Chapter 4 we investigate how well Eqs. (2.38a) and (2.38c) approximate various cases of
surrounding materials.

2.6.6 Surface acoustic wave approximation

The horizontal and vertical displacements of two surface acoustic waves (SAW) traveling towards
each other along the y-axis on an piezoelectric substrate lying in the (x, y)-plane can be approxi-
mated by an analytical solution [62],

uy,pz = 0.6u0e
−Cdy

[
sin

(−2π(y −W/2)

λSAW
+ ωt

)
+ sin

(−2π(W/2− y)

λSAW
+ ωt

)]
, (2.40a)

uz,pz = −u0e
−Cdy

[
cos

(−2π(y −W/2)

λSAW
+ ωt

)
+ cos

(−2π(W/2− y)

λSAW
+ ωt

)]
, (2.40b)

where u0 is the max z-displacement of the substrate, Cd is a damping coefficient due to contacting
solids or liquids, W is the width of the fluid-domain, and λSAW is the SAW wavelength.
To eliminate the piezoelectric substrate in numeric models Eq. (2.40) may be used to approximate
the motion of the substrate in a SAW acoustofluidic device.

2.7 Acoustophoretic motion and energy measures

We here introduce the concept of particle motion induced by acoustic fields coined acoustophore-
sis, which is typically aim in acoustofluidic device. We also present three quantities that can be
used to measure the energy distribution in a device.

The motion is the superposition of two forces. One is a volume force caused directly by
the acoustic waves scattering of particles called the acoustic radiation force F rad

i . The other is
the streaming drag force F drag

i induced indirectly by the circulating streaming field the acoustics
build up over a few thousand cycles.

Acoustic radiation force

The radiation force is the time-averaged force exerted by the scattering of acoustic waves on a
particle with radius a, density ρp and compressibility κp, derived using a multipole expansion
[63]. For long wavelengths λf � a, and small thermoviscous boundary layers δvisc < a [64] and
express it as the gradient of products of acoustic first-order fields,

F rad
i = −∂iU rad , where U rad =

4π

3
a3

(
f0

1

4
κf |p1|2 − f1

3

8
ρf |vj,1vj,1|

)
. (2.41a)

The monopole and dipole coefficients for polystyrene beads, which are among the most commonly
used test particles, are

f0 = 1− κps

κf
= 0.468, f1 =

2(ρps − ρf)

2ρps + ρf
= 0.034. (2.41b)
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Streaming drag

The field vi,2 which by our definition is a steady field, is called the streaming field. A particle with
diameter a suspended in a fluid with a streaming field vi,2 will experience a Stokes drag force,

F drag
i = 6πηa

(
vi,2 − vp

)
, (2.42)

where vi,ps is the position-dependent particle velocity.

Acoustophoretic motion

The motion of particles is simply determined by Newton’s second law,

4

3
πa3ρp

d

dt
vp = F rad

i + F drag
i . (2.43)

To predict the acoustophoretic motion of particles in an acoustofluidic device, we solve Eq. (2.43)
using a time-stepping algorithm.

Notice that for biological samples, the monopole and dipole coefficients are often lower than
for polystyrene beads as they are acoustically more similar to water than most solids. Accordingly,
the radiation force decreases, whereas the streaming drag does not depend on the particle proper-
ties only its size. This shifts the balance between the forces, and is part of what makes it difficult
to focus biological samples with acoustophoresis.

Acoustic energy density

As a measure of the energy in the fluid domain we introduce the acoustic energy density,

Efl
ac =

1

4
ρf

∣∣vi,1vi,1
∣∣+

1

4
κf

∣∣p1

∣∣2, (2.44)

which is the time-averaged mechanical energy over a single oscillation period T . When examining
the resonant behavior of devices, we plot this as a function of a sweeping parameter - usually the
frequency or one or more of the device dimensions. Peaks in such plots indicate fluid resonance
conditions, which are the conditions that we typically study the acoustophoresis at.

2.7.1 Strain energy density

In linear elastics the the strain energy density indicates the strain energy stored per volume,

Um =
1

2
σs
ik,1 : εmik,1, (2.45)

where the ”:”-operator indicates the inner product of two tensors. We use this similarly to the
fluid acoustic energy Efl

ac as an indicator of resonances of a system. This additional indicator of
resonance behavior is useful to determine whether a resonance peak observed for the fluid is also
present in the surrounding solid, in which case we call it a system resonance. If not, we call the
peak a pure-fluid resonance.
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2.7.2 Electric energy density

In a linear dielectric the electric energy density is defined as

Ue =
1

2
Di,1 · Ei,1, (2.46)

For piezoelectric materials the total energy density within is defined as the sum of the strain energy
density Eq. (2.45) and the negative electric energy,

U = Um − Ue, (2.47)

The energy density in the piezoelectric element and in the solid are both secondary to the acoustic
fluid density as acoustophoresis only is determined by the latter. However, the acoustic energies
in the surrounding solids and the piezoelectric element remain useful to provide an overview the
distribution of energy within a system.

While we do not explicitly show resonance plots, we always use them to make sure we inves-
tigate the proper frequencies.

2.8 Hard-wall fluid acoustic eigenmodes

For a fluid cavity of width w, length l and height h surrounded by hard walls we define the three-
index eigenmodes [65] with the pressure distributions

p(x, y, z) = pa cos
(

nx
π

l

)
cos
(

ny
π

w

)
cos
(

nz
π

h

)
, (2.48)

where pa is the pressure magnitude and nx,ny, nz = 0, 1, 2, ... are the number of half wavelengths
in directions x, y, z.

In an ideal hard-wall system these eigenmodes are found at the frequencies,

fnx,ny ,nz
=
c0

2

√
n2
x

w2 +
n2
y

l2
+

n2
z

h2 . (2.49)

In actual systems with hard walls, however, the eigenmodes of Eq. (2.48) are typically ob-
served at slightly lower frequencies than the idealized one, both experimentally and numerically.
The mismatch between the frequencies estimated with Eq. (2.49) and the observed ones is due to
the walls moving slightly. Thus the do not satisfy the conditions for the ideal case, from which the
Eq. (2.49) is derived.

The total pressure field building up near a resonance is in fact a superposition of the pressure
field caused by the moving walls and a much larger contribution from idealized pressure field
obeying the hard-wall condition. The closer the walls are to the ideal case, the larger the ratio is
between the moving-wall contribution and the hard-wall contribution, and vice versa.
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2.9 List of assumptions

In Table 2.1 we sum up the assumptions made in deriving the governing equations.

Table 2.1: List of assumptions made in the numeric model

Assumption Applied in
Newtonian fluids Eq. (2.2b)
Negligble body forces Eq. (2.3a)
Small Linear displacements Eq. (2.3b)
Negligible free charges in piezoelectric ceramics Eq. (2.10)
Small acoustic perturbations Eq. (2.17)
Negligible higher-order fields in perturbation series Eq. (2.17)
Inviscid bulk fluid Eq. (2.20)
λf � a > δvisc Eq. (2.41)
Spherical particles Eq. (2.41)
Isotropic solid attenuation Eq. (2.26)
Zac,s � Zac,air Eq. (2.34)
Ideal metal conductors Eqs. (2.35) and (2.36)
Unyielding walls Eq. (2.38a)
Partially yielding walls Eq. (2.38c)
No-slip condition on walls Eq. (2.38)
Approximated surface acoustic waves Eq. (2.40)

2.10 Concluding remarks

Now that we have defined the governing equations and their linearizations, the boundary condi-
tions and the auxiliary fields the complexity of non-idealized acoustofluidic devices is clear. At
the boundary between a piezoelectric domain and a fluid domain, the pressure couples with the
solid displacement, which in turn couples with the electric potential. All of these may vary in each
of the three dimensions, making an analytical approach very difficult.

Therefore, we now move on to describing a numerical approach to solving the vast boundary
value problem formed by the equations of this chapter using the finite element method in the
modeling software COMSOL Multiphysics.



Chapter 3

Numerical modeling in COMSOL

In this chapter we go through the numerical implementation of the governing equations from the
previous chapter. We describe the weak formulations of the governing equations, their implemen-
tation in the modeling software COMSOL Multiphysics, and briefly discuss the possibilities of
calculating models using high performance cluster (HPC) computing. We then discuss a method
for verifying numeric convergence of models, and introduce the concept of Bond matrices. We
finish with an overview of possible tools to reduce the computational footprint of models while
keeping them true to the physical devices they represent.

In Chapter 2 we used index notation over vector notation for the sake of brevity. As we move
away from pure physics and into numerics we use vector notation in this chapter, as it offers a
more compact and clearly defined scheme for the purposes described in this chapter, particularly
Section 3.6.

3.1 Weak form of a general linear differential equation

The weak formulation is a discretized form of the governing equations that only need to be obeyed
locally. We consider a general, linear differential equation for the generic scalar field g(r) of the
domain Ω with the known source term F (r),

T {g(r)} = F (r). (3.1)

The field g(r) that satisfies the Eq. (3.1) at every point of the domain Ω is called the strong
solution. We define the defect d(r) as a measure of how well Eq. (3.1) is satisfied at point r,

d(r) ≡ T {g(r)} − F (r). (3.2)

For the strong solution the defect is by definition zero. To create a linear system of equations we
introduce the concept of test functions ĝ, by dividing the domain Ω into N slightly overlapping
sub-domains each with a corresponding test function ĝn for n ∈ [1, N ]. The field g(r) can thus be
approximated as a linear combination of test functions ĝm, each weighted with a corresponding,
scalar field coefficient cn

g(r) ≈
N∑

n=1

cnĝn(r). (3.3)

25
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A test function ĝm has compact support in sub-domain n, and takes on values between 0 and
1 determined by a piecewise polynomial of order p, whereas cn make up the unknown weight
functions. This resolution of the numeric domain into small elements is called the finite element
method.

As a slightly weaker requirement than the strong solution, we demand the defect Eq. (3.2) to
be zero within each domain n. The set of weight functions cn satisfying this demand is called the
weak solution. It can be seen that the limit of the weak solution for infinite domains, M → ∞,
is the strong solution, as each sub-domain becomes a point in the domain Ω. We state the weak
formulation demand by taking the inner product of the field Eq. (3.3) with the defect Eq. (3.2)

〈ĝm(r), d(r)〉 = 0∀m, (3.4)

where the inner product of two functions is defined as

〈a(r), b(r)〉 ≡
∫

Ω
a(r)b(r)dV. (3.5)

Writing out Eq. (3.4), by using the defect definition Eq. (3.2) and the weak field approximation
Eq. (3.3) yields

M∑

m=1

〈
ĝm(r),


T





N∑

n=1

cnĝn(r)



− F (r)



〉

= 0 ∀m. (3.6)

We use that T is a linear operator, preserving additivity T
{∑N

n=1 cnĝn(r))
}

=
∑N

n=1 T {cnĝn(r))}
M∑

m=1

N∑

n=1

〈
ĝm(r), T {ĝn(r)}

〉 N∑

n=1

cn −
M∑

m=1

〈
ĝm(r), F (r)

〉
= 0 ∀m. (3.7)

We recognize Eq. (3.7) as a matrix equation

Kc− F = 0, (3.8)

with the stiffness matrix K =
∑M

m=1

∑N
n=1

〈
ĝm(r), T {ĝn(r)}

〉
derived from the governing

equations, field coefficients vector c =
∑N

n=1 cn, and forcing term vectorF =
∑M

m=1

〈
ĝm(r), F (r)

〉
.

By solving Eq. (3.8) through straightforward matrix inversions for c the weak solution is found;

c = K−1F , (3.9)

3.2 Continuity equations in weak form

We introduced the weak form for a general linear differential equation, but in the following we
will assume that the modeled equations can be rewritten to continuity form, Eq. (3.10);

∇ ·Σ− F = 0. (3.10)
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Table 3.1: Generalized fluxes and source terms of the governing equations of Chapter 2.

Domain Equation name Number Field Generalized flux Σ Source term F

Fluid - full 1st order Fluid mass conservation (2.18) ρ1 v1 −iωκp1

Fluid - full 1st order Navier-Stokes (2.19) v1 σ
f
1 −iωρ0v1

Fluid - effective Helmholtz’ equation (2.20) p1 ∇p1 k
2
p1

Fluid - full 2nd order Fluid mass conservation (2.23) ρ2 ρ0v2 + ρ1v1 0

Fluid - full 2nd order Navier-Stokes (2.24) v2 σ
f
2 − ρ0v1v1 0

Solid Cauchy momentum equation (2.25) u1 σ
s
1 ρ∂

2
tu1

Piezo Cauchy momentum equation (2.25) u1 σ
pz
1 ρ∂

2
tu1

Piezo Gauss’ Law (2.27) φ1 D1 ρel

This holds for each of the governing equations outlined in Chapter 2, with generalized flux Σ and
source term F defined as shown in table Table 3.1.

We let the summations over and spatial dependence of test functions ĝ be implicit for brevity,
and insert the continuity form Eq. (3.10) in the defect requirement Eq. (3.4)

∫

Ω
ĝ∇ ·Σ− ĝF dV = 0. (3.11)

We employ the vector calculus identity for products of a scalar and a vector

∇ · (ĝΣ) = Σ ·∇ĝ + ĝ∇ ·Σ, (3.12)

and Gauss’ theorem, ∫

Ω
∇ · F dV =

∫

δΩ
F · ndA, (3.13)

to rewrite Eq. (3.11) to
∮

∂Ω
ĝn ·Σ dA+

∫

Ω
−Σ ·∇ĝ − ĝF dV = 0. (3.14)

This moves the spatial derivative from the generalized flux to the piecewise-polynomial test func-
tion, for which the derivatives are analytically known. Inserting the appropriate generalized flux
and source terms written in Table 3.1 in Eq. (3.14), all the governing equations can be written in
weak form.

3.2.1 Boundary conditions in weak form

Neumann boundary conditions are used when the flux n · Σ over a boundary δΩ is a known
function h(r). Implementing them in the weak form is merely a question of inserting the known
function in the surface integral of Eq. (3.14).

∮

∂Ω
ĝn ·Σ dA =

∮

∂Ω
h(r) dA. (3.15)

When no boundary condition is explicitly defined on a surface, the flux is assumed to be zero∮
∂Ω ĝn ·Σ = 0.
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In Dirichlet conditions, the field value g along a boundary δΩ is known to be some value j. To
implement them we introduce the Lagrange multiplier λ that also has a set of test functions, which
in the following is implied to be the sum over N ,

λ =
N∑

n=1

bnλ̂n, (3.16)

and introduce the constraint R
R = g − j = 0. (3.17)

For the Dirichlet condition to hold, we demand the inner product of the two to be zero
∮

δΩ
λ̂nR dA = 0, (3.18)

which is the weak formulation of the Dirichlet condition. We add this to Eq. (3.14) and insert the
freely varying Lagrange multiplier λ as the flux

∮

δΩ
ĝλ+ λ̂n(g − j) dA+

∫

Ω
−Σ ·∇ĝ − ĝFdV = 0. (3.19)

Because the test function λ̂ only appears in the surface integral Eq. (3.18) is enforced by Eq. (3.19),
while the Lagrange multiplier λ takes on the role of the flux n · Σ and settles to the value that
satisfies the weak Dirichlet condition. Eqs. (3.15) and (3.19) are for the cases of Neumann or
Dirichlet conditions on all surfaces δΩ. However, most problems consist of a combination of the
two, and the full weak expression for combined problems is

∮

δΩD

ĝλ+ λ̂n(g − j) dA+

∮

δΩN

ĝh(r) dA+

∫

Ω
−Σ ·∇ĝ − ĝFdV = 0, (3.20)

where δΩD are all surfaces with Dirichlet conditions and δΩN are all free surfaces and surfaces
with Neumann conditions.

3.3 COMSOL Multiphysics

When creating numeric models in COMSOL Multiphysics we manually take care of some parts
while the software automatically takes care of the rest:

We draw the devices we wish to model and designate each drawn domain to be one of the
four categories listed in Table 3.1, with the corresponding fields. We then define the types and
the allowable dimensions of mesh elements for domains, boundaries and points. COMSOL then
automatically builds a mesh that meets these the conditions.

We designate a material to each domain, determining the viscosities, mass densities, elastici-
ties, and so on. We then input boundary value problems of the type shown in Eq. (3.20), with the
generalized fluxes and source terms of Table 3.1 using the Weak form PDE module in COMSOL,
and define the order of test functions for each field value. These definitions along with the meshed
geometry are used by COMSOL to define the test functions.
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Finally, we define the parameters for COMSOL to solve. Typically, this would be a range
of frequencies to investigate the resonance behavior of a system. During solving we track this
behavior with probes measuring the acoustic energies of the fluid, Eq. (2.44), and the solids,
Eq. (2.45), and the electric energies of the piezoelectric element, Eq. (2.46). COMSOL then
sets up the system matrix, solves the matrix equation, Eq. (3.8), and outputs the weak solutions
gweak =

∑N
n cnĝn, which we post-process to study the system.

In Fig. 3.1 we illustrate the numerical process in COMSOL with a flow-chart including partic-
ular steps in the process, the user input, and the final output.

Figure 3.1: Flow-chart of the steps involved in creating and studying a numerical model. The
hexagons show the principal steps that COMSOL takes care of, while user inputs are shown above
the hexagons and the final output is shown below.

3.3.1 Model meshing

When meshing devices we obey a rule of thumb stating each wavelength should be resolved by 6
nodes. This helps avoid the masking of spatial frequencies as lower frequencies due to insufficient
resolution, known as aliasing.

In acoustic pressure modeling of fluids we apply this rule of thumb to the compressional
wavelength not the minute transverse wavelength. In solids, however, we must resolve the shortest
of the transverse wavelengths in a system. Hence, a stiff material such as silicon with high speeds
of sound and long wavelengths are have far less degrees of freedom than a soft material such as
PDMS.

In Fig. 3.2 we illustrate the vast difference in the number of mesh elements required to model
the acoustic fields at of a 2× 2× 2 mm3 cube for a selection of materials. Note that the numbers
listed are the mesh elements needed if using second-order test functions.

The cubes meshed in Fig. 3.2 are all meshed a tetrahedral mesh. This is the default mesh
of COMSOL and many other meshing programs as the unevenly spaced distribution of the mesh
nodes helps avoid solutions that artificially take the shape of the mesh. Other meshes may be
advantageous to use, but require more thought given to the meshing process. In Chapter 6 we use
a swept mesh which enables an even spatial mesh resolution.
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Figure 3.2: Triangular meshes needed to resolve the shortest relevant acoustic wavelength at 2
MHz in materials of increasing acoustic impedance. The resolved wavelength and the resulting
number of mesh elements is shown is shown for each material. To render it visible the mesh size in
PDMS has been increased by a factor of five in the sketch. Also, the resolved wavelength in water
is the compressional one corresponding to the mesh required for effective pressure modeling.

3.3.2 Number of degrees of freedom

A crucial determinant of the feasibility of calculating a numeric model is the amount of degrees
of freedom (DOF) in the system. The DOF is the total amount of computational points COMSOL
must define necessary to define all the test functions given the number of domains N and order p.

The number of DOF is proportional to the numbers of mesh elements shown in Fig. 3.2, but
depends on the acoustic fields present in a material. Water for instance is completely acoustically
defined by the scalar pressure field, whereas solids need the velocity vector field to be completely
defined. Piezoelectric materials such as lead zirconium titanate (PZT) additionally require the
electric potential field adding to the DOF. Thus, the PZT cube of Fig. 3.2 ends up adding more
DOF to a problem than the water cube, despite being having fewer mesh elements, as shown in
Table 3.2. The table also illustrates why the lossy wall is a popular alternative to modeling PDMS.

Table 3.2: Acoustic wavelengths, mesh elements and degrees of freedom required to resolve the
acoustics - and in PZT the electric potential - of some of the materials used in this thesis.

PDMS Water PZT Pyrex Silicon
Resolved wavelength 50 µm 748 µm 966 µm 1621 µm 2618 µm
Triangular elements 29 × 106 8 × 103 4 × 103 8 × 102 2 × 102

number of kDOF 109 (estimated) 12.2 24.1 4.2 1.3

The number of degrees of freedom determines the size of the stiffness matrix K that must be
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inverted to solve the matrix equation Eq. (3.8), and thus the memory required to solve a given
problem. The scaling between the amount of DOF n and the time to solve tsolve a problem is
unfortunately a power law. In Fig. 3.3 we show the time tsolve as a function of the number n, for
an early version of the numeric model described in Chapter 6.

Figure 3.3: Line plot of the solution time tsolve as a function of the amount of degrees of freedom,
n, in the system in millions of degrees of freedom (MDOF), for an early iteration of the model
described in Chapter 6. The dotted line is a fitted power function.

Note that the relation plotted in Fig. 3.3 is particular to this device design. This relation is
mainly useful for indicate the approximate time requirement if scaling up this particular design.
Among other things this has to do with the amount of non-zero elements in the stiffness matrix K
but a further discussion of this is beyond the scope of this thesis.

3.4 High performance cluster computing

We typically aim to keep models solvable on a powerful desktop workstation with 128 GB RAM
and 2 3.46 GHz processors. However, some devices are too complex to be represented well by
models of this scale. The device in Chapter 6 is a good example of a problem with such a device
. It is inherently asymmetric, has large dimensions for an acoustofluidic device, and is run at
a high frequency leading to small wavelengths that must be resolved. To compute such models
we use the High Performance Cluster (HPC) at DTU [66] that accommodates 100 cores with
25 GB RAM each for computations. The many computational cores enable us to model much
larger systems, as the physical memory available to the solver is the limiting factor when running
numerical simulations. Using the HPC, we have done simulations on a mm3-sized device run at
49 MHz. This resulted in a model with 4.6 million degrees of freedom, which was solved across
80 nodes of 25 GB RAM in the course of 14 hours. While this is numerically costly and very
time-consuming, the simulations illustrated an in-plane streaming pattern that a 2D model could
not reproduce. The use of a HPC thus provided otherwise unobtainable, although costly, insight.
The device in question is described in Chapter 6.
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3.5 Convergence analysis

Each combination of a number of sub-domains N and an order p of the test functions ĝn, gives
a unique solution g to the weak form equation Eq. (3.20). Ideally, the solutions should converge
toward the strong solution for increasingN and p, as test function ĝn approximates the actual field
g increasingly well. To test how well the hypothesis holds we plot the average relative variances
C(g) of calculated fields ĝn, as functions of increasing number of elements,

C(g) ≡
∫

Ω(|ĝn| − |g|)2 dA
∫

Ω |g|
2 dA

. (3.21)

Here, g is ideally the analytically known strong solution, but as that is seldom known, we instead
use a reference solution, with the largest number N we can model. If we find that the solutions
largely converge to this reference solution, we can conclude that they in general converge well.
Fig. 3.4 is an example of what the average relative variance plots as function of mesh generally
looks like, for one of the models described in Chapter 4.

Figure 3.4: Line plots of the average relative variance C(g) for the acoustic fields in a series of
simulations with increasing normalized number of sub-domainsN , referenced against the solution
with N = 1. The dotted line indicates an average relative variance of less than 1× 10−3. Adapted
from [1]

The trend shown in Fig. 3.4 with values of C(g) well down in the low orders of magnitude
and the slopes of the graphs gradually leveling out indicate that the solution has converged. Hence
further increases inN are not warranted as this only adds computational cost without the benefit of
better precision. A similar analysis can be carried out, to find orders p that are good compromises
between numeric precision and footprint. Convergence analyses are carried out for the mesh sizes
for each of the models in Chapters 4 to 7, but not shown as they are trivial checks.
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3.6 Material parameters and Bond matrices

In Section 2.2.2 we mention the directional dependence of anisotropic materials, and discuss the
transformation of n-order tensors, using n transformation matrices Ri. Numerically this is tedious
to implement, so we wish to obtain expressions with fewer terms formulated in vector notation.
For a first-order tensor or vector, the transition from index notation to vector notation is straight-
forward

r′ = Rr, (3.22)

where R = Rik is the transformation matrix. For the 6-component Voigt stress vector σV = σα,
we introduce the 6× 6 Bond matricesMσ andMε, transforming stress and strain

σ′V = MσσV, (3.23)

ε′V = MεεV, (3.24)

Unlike R, Bond Matrices are not symmetric, and the inverse of the matrix does not equal the
transpose. Also, stress and strain are not transformed using the same matrix, due to the factor 2 in
shear elements of the Voigt strain. To derive the form of the Bond-stress-transformation matrix,
we consider the transformation of the stress tensor in index notation,

σ′ik = RilRkmσlm. (3.25)

By elementwise inspection of Eq. (3.25) we can deduce each element of Mαβ in terms of the
rotation matrix Rik

Mσ =



R2
1,1 R2

1,2 R2
1,3 2R1,2R1,3 2R1,1R1,3 2R1,1R1,2

R2
2,1 R2

2,2 R2
2,3 2R2,2R2,3 2R2,1R2,3 2R2,1R2,2

R2
3,1 R2

3,2 R2
3,3 2R3,2R3,3 2R3,1R3,3 2R3,1R3,2

R2,1R3,1 R2,2R3,2 R2,3R3,3 R2,2R3,3 +R2,3R3,2 R2,3R3,1 +R2,1R3,3 R2,1R3,2 +R2,2R3,1

R1,1R3,1 R1,2R3,2 R1,3R3,3 R1,2R3,3 +R1,3R3,2 R1,3R3,1 +R1,1R3,3 R1,1R3,2 +R1,2R3,1

R1,1R2,1 R1,2R2,2 R1,3R2,3 R1,2R2,3 +R1,3R2,2 R1,3R2,1 +R1,1R2,3 R1,1R2,2 +R1,2R2,1



.

(3.26)

With the Bond-stress-transformation matrix known, the stress state can be found for any ro-
tated coordinate system, where the rotation matrix Ri is known. Furthermore, we can determine
the elasticity, coupling and permittivity tensors of anisotropic materials, using the Mσ

1, leading
to the following three transformation relations;

C ′ = MσCM
−T
σ , (3.27)

e′ = ReMT
σ , (3.28)

ε′ = RεRT . (3.29)

1The derivations of these are listed in the appendix in Section B.
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3.7 Model reductions

As mentioned before, numerical modeling is a balance between accurately representing a phys-
ical problem and keeping the numerical footprint of the model within a reasonable range. Here
we go through some tools that in some cases can reduce model size without compromising the
representability of the model, and make note of when they should not be applied.

3.7.1 Translational invariance

The bulk of acoustofluidic devices are ideally translationally invariant along the length of the
channel. Such devices can be studied in detail using only two-dimensional (2D) models of the
cross-section, reducing the footprint enormously. Of course, in physical devices there will always
be some variance along the channel due to imperfections in materials or fabrication methods and
one often finds that the 2D model is only representative for a portion of the channel [55]. As these
imperfections are impossible to fully include in models, cross-sectional 2D studies remain a viable
tool for studying channels with long, straight geometries.

3.7.2 Symmetries

Many devices inherently contain symmetries or anti-symmetries around points, lines or planes.
These can be used to partition the numeric model accordingly while inserting boundary conditions
on the cut-lines or planes, reducing the number of degrees of freedom to a fraction of the entire
model. For highly symmetric devices, the reduction can be as much as 3/4 of the model, [27, 58].
The conditions should only be used with absolute certainty that the model system is symmetric,
as the conditions will introduce always yield a symmetric result. One can thus easily induce
unwanted artificial symmetries in numerical simulations by accident.

3.7.3 Perfectly matched layers

In computations with inert regions that do not reflect waves traveling into them, perfectly matched
layers (PMLs) can reduce the model footprint by absorbing all waves traveling through them. In
numeric models they replace part of a domain, usually of larger size than the PML region itself.
Mathematically a PML is a region ΩPML with the same material properties as the one it replaces,
but with a complex coordinate transformation of spatial derivatives and integral measures inserted
in the auxiliary fields, boundary conditions, and the weak formulation governing equations,

∂xi → ∂x̃i =
1

1 + is(r)
∂xi, (3.30a)

dxi → dx̃i = [1 + is(r)] dxi. (3.30b)

Here s(r) is a continuous function that has compact support in the PML regions, attains some
maximum damping parameter kPML at the far perimeter of the PML, is differentiable, and has
no slope at the boundary between the PML and the remainder of the model. A second-order
polynomial defined only in the PML region fits this well, here shown for the 1D case

s(x) =
(x− xPML)2

L2
PML

kPML for x ∈ ΩPML. (3.30c)
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The parameter kPML must be tuned to the specific problem; Too high values of kPML cause reflec-
tions at the interfaces between the physical domains and the PML domains. Too low values on the
other hand only partially dampens waves, causing reflections from the PMLs’s outer perimeters.

3.8 Concluding remarks

We have now described both the boundary value problem that defines the physics of an acoustoflu-
idic device and how to implement it as a finite element problem in weak form in COMSOL Mul-
tiphysics. We are thus ready to create the first iteration of the numerical model that makes up
the main result of this thesis. We introduce the first iteration and use it to study the boundary
conditions mentioned in Section 2.6.5.





Chapter 4

2D Model of a bounded fluid domain

In this chapter we present the initial stage of the numeric model that will be expanded further in
terms of included materials and physical effects in the course of the following chapters. We also
present a study of the validity of a set of approximative boundary conditions often used to simplify
numeric modeling of acoustofluidic devices, carried out using the model at this point. Specifically
we compare how well the fluid acoustics of devices driven by surface acoustic waves with either
glass and silicone rubber lids can be modeled using approximate conditions. The majority of the
results presented in this paper can also be found in the article journal Modeling of microdevices
for SAW-based acoustophoresis - a study of boundary conditions by N. R. Skov and H. Bruus [1]
(PDF, DOI:10.3390/mi7100182), which is enclosed in full at the end of this chapter. However, the
text of this chapter is a reformulation and in some parts extends beyond the paper.

4.1 Motivation

To recapitulate Section 1.4 numeric models are a great tool to complement experimental work.
Therefore, we wish to establish a numeric model capable of predicting the acoustophoretic be-
havior of a device with any degree of complexity. To achieve this we start from a simple two-
dimensional (2D) model which we iteratively improve upon and compare to current and past ex-
periments as well as to analytical expressions when available to check its validity, as described
in this and the following chapters. To ensure the leanest possible model going forward we here
investigate whether a particular set of boundary conditions can be used to save on computational
costs.

4.1.1 Study of reduced-model system

When making a numeric model it is necessary to strike a balance between confinement and repre-
sentativity. On one hand the computational cost and complexity of the model must be kept down
by using approximations and idealizations whenever possible. On the other hand it is vital that the
simplifications do not change the defining characteristics of a problem lest the model no longer
be applicable to that certain problem. Here we wish to examine two approximate boundary con-
ditions defined in [65] that are commonly used in acoustofluidics [30, 52, 53, 67, 27, 48, 68, 69]
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instead of modeling the solids surrounding the fluid. The boundary conditions in question are the
hard-wall and the lossy-wall conditions that are used in reduced models. In these the interactions
between the fluid chamber and the surrounding medium is approximated by the boundary condi-
tions without including said medium in the calculations, as described in Section 2.6.5. The hard
wall condition emulates the presence of infinitely hard walls reflecting all incoming waves while
the lossy wall conditions emulates a partially absorbing material that reflects a portion of incident
waves proportional to the acoustic impedance ratio between the fluid and the medium.

4.2 Model systems

For each of the boundary conditions we set up two parallel 2D models: the reduced models R1 and
R2 and the full models F1 and F2 shown in Fig. 4.1. The models are considered isothermal and
all fluid parameter values are taken at 25 ◦C. In the reduced models we include a water domain of

Fluid

Fluid

Figure 4.1: The four two-dimensional (2D) numeric models investigated. (a) The reduced model,
R1, consists solely of a w-by-h fluid domain bounded by effective boundary conditions on the
sides and the top wall approximating solid motion. On the bottom surface an analytic expression
for a standing surface acoustic wave field is applied. (b) In the full model, F1, a fluid domain of
the same dimension is bounded on the sides and the top wall by an isotropic solid of width w+H
and height h+H . (c) R2 is like R1 but with the lossy-wall condition. (d) F2 is like F1 but defined
in PDMS, . Adapted from [1]

area w × h governed by the first-order acoustic fluid equations Eqs. (2.18) and (2.19),

∇ · v1 + iωκp1 = 0, (4.1)

∇ · σf
1 + iωρ0v1 = 0. (4.2)
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On the sides and roof of the microchannel approximate boundary conditions are applied. In R1
we use the hard-wall condition Eq. (2.38a)

n · v1 = 0, (4.3a)

and in R2 we use the lossy-wall condition Eq. (2.38c),

n · v1 =
1

Zac
s
p1. (4.3b)

Ideally, R1 and R2 should yield the same results as the full model simulations in F1 and F2
respectively. The model is driven from the bottom surface by a Dirichlet condition fixing the
velocity field vi,1 to the analytical expression of a SAW described in Eq. (2.40),

uy,pz = 0.6u0e
−Cdy

[
sin

(−2π(y − w/2)

λSAW
+ ωt

)
+ sin

(−2π(w/2− y)

λSAW
+ ωt

)]
, (4.4a)

uz,pz = −u0e
−Cdy

[
cos

(−2π(y − w/2)

λSAW
+ ωt

)
+ cos

(−2π(w/2− y)

λSAW
+ ωt

)]
. (4.4b)

In F1 and F2 the water domain is surrounded on the sides and top by an isotropic solid governed
by Cauchy’s momentum equation Eq. (2.25)

∇ · σs
1 + ω2ρsu1 = 0. (4.5)

In the full models the analytical SAW actuation is applied along the bottom of the solid and of the
fluid. The solid has a height of H and a width of 1

2H on either side of the fluid, and the two are
coupled through the normal velocity and stress continuity conditions Eq. (2.32).

n · v1 =− iωn · u1, (4.6a)

n · σs
1 =n · σf

1. (4.6b)

On the interface between the surrounding air and the solid, the no-stress condition Eq. (2.34)

n · σs
1 = 0 (4.7)

is applied. The solid in F1 is borosilicate glass (Pyrex) whereas the solid in F2 is polydimethyl-
siloxane rubber (PDMS). The thicknessesH were chosen to range from the size of a thin capillary
tube (60 µm) through microscope slide thickness (600 µm) up to a bulk slab of glass (1500 µm).

4.2.1 Perfectly matched layers

The thicknesses we’ve used in the full PDMS model F2 in the article are all smaller than the 3
mm damping length of PDMS at 6.65 MHz, as it is not feasible to model such large dimensions of
PDMS, confer Fig. 3.2. Following the publication of our paper [1], we added perfectly matched
layers to F2 as shown in Fig. 4.2, to also represent devices with dimensions larger than the 3-mm
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Table 4.1: Key parameters of the numeric model presented here. Only model-specific parameters
are included. For material parameters we refer to [1].

Quantity Symbol Unit Value
Water width w µm 600
Water height h µm 125
Material thickness H µm 60-1800
SAW wavelength λSAW µm 600
SAW displacement amplitude u0 nm 0.1
On-resonance frequency fres =

2w
c0

MHz 1.24
On-resonance angular frequency ωres = 2πfres Mrad/s 7.79
Off-resonance frequency foff MHz 6.65
Off-resonance angular frequency ωres = 2πfoff Mrad/s 41.76
PML-domain width LPML µm 100
PML damping factor kPML 1 20

damping length. We follow the principle outlined in Section 3.7.3 and add complex transforma-
tions Eq. (3.30) of the partial derivatives and integral measures of the model,

∂xi → ∂x̃i =
1

1 + is(r)
∂xi, dxi → dx̃i = [1 + is(r)] dxi. (4.8)

In this model the function s(r) was chosen to be a sum of two quadratic functions.

s(y, z) =

(
(z − zPML)2

L2
PML

+
(y − yPML)2

L2
PML

)
kPML for (y, z) ∈ ΩPML. (4.9)

Note that the PML was only applied in the model yielding the results shown in Fig. 4.7

Figure 4.2: F2 PML-PDMS model. The full model representing PDMS devices larger than the
3-mm damping length of PDMS at 6.65 MHz. An F2 model with H = 100 µm, with an added
100-µm-thick layer of PML-PDMS.

4.2.2 Model check

We do a convergence analysis and see that the results converge towards a single solution as the
mesh is increased as outlined in Section 3.5. To further study the model we check the linear
elasticity assumption and a compare the calculated acoustic pressure of the fluid in model F1 at
the theoretical horizontal half-wave eigenfrequency with the first analytic eigenmode for hard-wall
systems.
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Linear elasticity check

The constitutive relation used relies on an assumption of the stresses of the solid being below the
elastic limit, which is the cut-off point for the linear relationship between stress and strain. Beyond
this point the relation between the two is non-linear. For PDMS a resulting plastic deformation
will occur beyond this point while Pyrex will most likely experience a sudden, brittle fracture.
PDMS has been reported to exhibit an elastic response up to deformations of 40 %, [70], whereas
borosilicate glass has a reported yield strength in the range 22-32 MPa[71], corresponding to a
strain of 3.1-4.6 ×10−4. The maximum strain in both F1 and F2 is 8 ×10−7, making linear
elasticity a very reasonable assumption under the given actuation conditions.

Validation against analytical solution

We check the model through comparisons with the known analytical solution for the three-index
acoustic eigenmode (0,1,0) with predicted resonance frequency f0,1,0 = 1

2c0/w = 1.25 MHz.
In Fig. 4.3 we show line plots of the first-order horizontal velocity component magnitude |vy,1|
normalized with the actuation velocity −iωu0 along the horizontal centerline for an analytical
expression [65] and for models R1 and F1 with H = 4.8h.

Figure 4.3: Model validation through comparison to analytical solution. Line plots of the vertical
component of the first-order velocity field |vy,1| normalized with the actuation velocity −iωu0 in
the reduced model, two full models with Pyrex and silicon casing respectively and the analytically
predicted one [65] with Γ = δvisc/h = 1.2× 10−2 [72].

From the good agreement of the shapes of the velocity profiles in Fig. 4.3 between both of
the models and the analytic 1D shape prediction, we surmise that the numeric model predicts the
acoustic fields correctly. From the good agreement between models R1 and F1 we also see a
first indication that the hard-wall condition seems to give the same acoustic fields as the modeled
Pyrex.
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4.3 Key results and observations

We compare the first-order acoustic pressure fields predicted by the models R1, F1, R2, and F2,
and study line plots of the displacement along the top wall of the channel. From this we hope
to infer how well the hard-wall condition replicates the acoustic varying thicknesses of glass on
a SAW device, and the lossy-wall for modeling PDMS-bounded fluids. We study the pressure,
rather than a more easily observed field such as the radiation force field, because we mainly wish
to know how well the reduced and full models agree numerically.

4.3.1 Hard-wall condition

In Fig. 4.4 we plot the surface plots of the first-order acoustic pressure for the models R1 and F1 for
three material thicknesses H at the lowest acoustic hard-wall eigenmode of the water f = f0,1,0.
We also show line plots of the displacement magnitude along the top fluid-solid interface in F1 for
three values of H , normalized with the maximum displacement magnitude of the SAW.

Figure 4.4: Hard-wall condition versus Pyrex walls at the lowest hard-wall acoustic eigenmode
f = f0,1,0 = 1.204 MHz. (a) Color plot of the first-order acoustic pressure p1 predicted using
the reduced hard-wall model, from 0 (black) to 80 kPa (white). (b) As in (a) for the full Pyrex
model with thickness H = 4h = 600 µm. (c) As in (b) with H = h = 125 µm. (d) As in (c) with
H = 0.5 = 60 µm. (e) Line plots of the vertical displacement component magnitude |uz(y, h)|
normalized with the actuation displacement u0. at the top wall z = h along half the channel width.
Adapted from [1]

We see a quite good qualitative agreement between the pressure fields of the reduced model
R1 (a) and of the full model F1 for all three thicknesses (b)-(d) shown in Fig. 4.4. The topologies
are very similar with a single nodal line at y = 1

2w, and nearly identical fields in (a) and (b). Quan-
titatively the fields are quite different though, with smaller thicknesses leading to weaker acoustic
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pressure fields. Furthermore, as the thickness is decreased, the node broadens slightly at the top,
but remains very similar to the reduced model even for the smallest value of H . This is despite
line plot (e) showing that the displacements along the top wall are larger than the driving actuation
u0, which indicates resonant behavior in either the Pyrex or the water in the vertical direction.
Interestingely, the fields are nearly impossible to discern from an acoustophoretic perspective for
large particles, as they all predict focusing of particles in the horizontal centre of the device albeit
with differing speeds.

In Fig. 4.5 we show the same plots as in Fig. 4.4 but at the off-resonance frequency foff =
6.65 MHz. We choose this frequency to compare our PDMS simulations to experimental results,
and to examine how well the hard-wall condition approximates solid walls in a more general case.

Figure 4.5: Hard-wall condition versus Pyrex walls at the off-resonance frequency f = foff =
6.65 MHz used by [48]. (a) Color plot of the first-order acoustic pressure p1 predicted using the
reduced hard-wall model, from 0 (black) to 40 kPa (white). (b) As in (a) for the full Pyrex model
with thickness H = 4h = 600 µm. (c) As in (b) with H = 4h = 125 µm. (d) As in (b) with
H = 4h = 60 µm. (e) Line plots of the vertical displacement component magnitude |uz(y, h)|
normalized with the actuation displacement u0 at the top wall z = h along half the channel width.
Adapted from [1]

We see in Fig. 4.5 that there are distinct discrepancies between the fields predicted by model
R1 (a) and for each thickness in model F1 (b)-(d) when moving away from resonance conditions.
For instance the number of pressure anti-nodes in R1 is 6, while it for F1 is 5,4 and 8 respectively
for the heightsH = 12h (b),H = 4h (c) andH = 1

2h (d). The best match is found for the thickest
layer,H = 12h. This is to be expected as thicker layers of material have greater inertia and are less
likely to move, and the hard-wall condition is a stationary wall. With decreasing thickness H in
the full model the discrepancy between the reduced and the full model gradually grows. The only



44 2D MODEL OF A BOUNDED FLUID DOMAIN

feature to remain quite similar across all four models is the nodal line approximately at z = 1
2h For

H = 60 µm the structures in the two pressure fields are markedly different exhibiting the pattern
of the f1,3,0 acoustic eigenmode for hard-wall systems, theoretically found at f1,3,0 = 18.0 MHz.
This is because a vertical resonance builds up in the Pyrex at this combination of thickness and
frequency creating a system resonance. The line plots of (e) attest to this, as the line for H =
60 µm has values exceeding unity indicating a larger displacement at the top of the device than the
input.

4.3.2 Lossy-wall condition

In Fig. 4.6 we plot the same as in Fig. 4.5, but for R2 and F2. We choose to only show the
fields at f = foff as the fields at either frequencyf0,1,0 or foff lead to the same conclusions,
due to the inability of PDMS to sustain large fluid pressures. The only similarity of the fields

Figure 4.6: Lossy-wall condition versus PDMS walls at the frequency foff = 6.65 MHz (a) Color
plot of the first-order acoustic pressure p1 predicted using the reduced hard-wall model, from 0
(black) to 30 kPa (white). (b) As in (a) for the full Pyrex model with thicknessH = 4h = 600 µm.
(c) As in (b) with H = 4h = 125 µm. (d) As in (b) with H = 4h = 60 µm. (e) Line plots of the
vertical displacement component magnitude |uz(y, h)| normalized with the actuation displacement
u0 at the top wall z = h along half the channel width. Adapted from [1]

in Fig. 4.6 is the nodal line in the horizontal center of the channel, which is likely due to the
shape of the SAW actuation. The reduced model yields 2 smooth, elliptic anti-nodes whereas
the fields in the full models are more complex shapes with smaller structures. This is mirrored
by the normalized vertical displacement plot, where the displacement imposed by the lossy-wall
condition is a smooth, half sine wave. The displacements predicted by the full models on the other
hand, are far more muddled with a rippling structure. This length between peaks in the plots equals
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the transverse wavelength of PDMS at the driving frequency, and can be seen along the edges of
the color plots in (b) and (c) as well.

4.3.3 Expanding F2 to represent large PDMS devices

We expanded on the full PDMS model F2 to represent devices larger than the 3-mm damping
length by adding a PDMS-PML layer around the PDMS as described in Section 4.2.1, and shown
in Fig. 4.2.

Figure 4.7: (a) Color plot of the first-order acoustic pressure p1 predicted using the reduced
lossy-wall model, from 0 (black) to 30 kPa (white). (b) As in (a) for the full PDMS model with
an added 100 µm-thick PDMS-PML layer surrounding a 100 µm-thick PDMS layer. (c) Line
plots of the vertical displacement component magnitude |uz(y, h)| normalized with the actuation
displacement u0 at the top wall z = h along half the channel width.

In Fig. 4.7 we see that the validity of the reduced lossy-wall model is vastly better for large
systems as the PML replicates. Qualitatively the two pressure fields in Fig. 4.7(a) and (b) are very
similar with two elliptic pressure nodes evenly spaced around the vertical centerline. However, by
comparing the displacement profile lines in Fig. 4.7(c) the omission of the transverse wavelength
in the lossy-wall condition is clear particularly when moving away from the center of the channel
y = 0. For the full model ripples can be seen along the displacement profile but not in the lossy
wall as there is no way to account for this with the lossy-wall condition. In addition, the fields
quantitative match between the line profiles is only good near the edge y = −w/2 and center
y = 0 of the channel.

4.4 Concluding remarks

From the work presented here, we obtained reduced (R1,R2) and full (F1,F2) numeric model in
2D that represents an idealized version of a long, straight channel actuated by surface acoustic
waves in direct contact with the fluid and solid, which is the archetypal design of a SAW device.
The full model accounts for fluid-solid interactions between the fluid and an isotropic solid, while
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the reduced only approximate it. Both sets of models rely on an analytical approximation for the
SAW actuation.

We find that the hard-wall condition does not approximate the motion of the walls very well,
as the top wall moves approximately as much as the driving wall and is thus quite far from sta-
tionary. However, the resulting pressure fields for all three thicknesses are very similar to the
reduced model all the same. This is because we drive the system at a fluid-hard-wall resonance,
and each field of the full models is a superposition of the hard-wall eigenmode of the system and
a much smaller solution which obeys the velocity boundary conditions applied by the surrounding
Pyrex and the SAW. Thus, the hard-wall condition is a reasonable approximation when qualita-
tively studying the bulk domain of simple eigenmodes of devices with Pyrex walls, but it does not
approximate the actual wall motion well.

When moving away from resonance, the bulk pressure field mainly obeys the boundary con-
ditions, with a small contribution from the nearest resonance mode. This exacerbates the poor
agreement between the hard-wall motion and thin Pyrex walls. Consequently, the thickness of the
surrounding solid becomes the primary cause for differing acoustic fluid fields, since resonances
in the solid may play a part as we see in the case with the smallest thickness.

Regardless of frequency and material thickness, the motion of PDMS walls is not approxi-
mated well by the lossy-wall condition, and neither is the acoustic fields within for devices smaller
than 3 mm. For larger devices, the PML model approximates the acoustic fluid fields relatively
well, but not the motion.

The poor agreement between the calculated and approximated motion is partly due to the fact
that the lossy-wall condition is based on the partial transmission of incoming planar compressional
waves, while completely neglecting the minute transverse wavelength. However, compressional
and transverse waves in solids couple together at interfaces so neither should be excluded in as-
suming the wall motion.

An other aspect that neither approximation takes into account is the actuation of the solid
itself. In SAW devices as we study here, the solid is typically bonded directly to the piezoelectric
substrate. This means the waves entering the fluid domain from the bottom have already passed
under the solid, leaking energy into it and causing motion along the walls.

The takeaway from our comparisons between reduced and full models is that solids should
be included in models for them to be as generally applicable as possible as the reduced models
in general do not agree well with the full models quantitatively. We note that the discrepancies
between reduced (R1) and the full model (F1) in the hard wall case were diminished when the
actuation frequency was close to an acoustic fluid eigenfrequency, and when increasing material
thickness.

Due to the poor general fit between the approximated case and the full case for interactions
between fluids and isotropic solids, we decide to also include the piezoelectric motion in our model
going forward. We do this to ensure that we do not apply conditions that are only applicable
under certain conditions. This is our basis for moving forward with our numeric model into 3D
simulations.
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Abstract: We present a finite-element method modeling of acoustophoretic devices consisting
of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either
borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of
a piezoelectric transducer that actuates the device by surface acoustic waves (SAW). We compare the
resulting acoustic fields in these full solid-fluid models with those obtained in reduced fluid models
comprising of only a water domain with simplified, approximate boundary conditions representing
the surrounding solids. The reduced models are found to only approximate the acoustically hard
pyrex systems to a limited degree for large wall thicknesses and but not very well for acoustically
soft PDMS systems shorter than the PDMS damping length of 3 mm.
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1. Introduction

Separation of particles and cells is important in a wide array of biotechnological applications [1–7].
This has traditionally been carried out by bulk processes including centrifugation, chromatography,
and filtration. However, during the last three decades, microfluidic devices have proven to be
a valuable alternative [1,7,8], as they allow for lower sample sizes and decentralized preparations
of biological samples, increasing the potential for point-of-care testing. Microfluidic methods for
separating particles suspended in a medium include passive methods where particle separation is solely
determined by the flow and the size or density of particles [2,9–12], and active methods where particles
migrate due to the application of various external fields each targeting specific properties for particle
sorting [1,3,4,6,13–16]. Acoustophoresis is an active method, where emphasis is on gentle, label-free,
precise handling of cells based on their density and compressibility relative to the suspension medium
as well as their size [17]. Within biotechnology, acoustophoresis has been used to confine, separate, sort
or probe particles such as microvesicles [6,18], cells [1,16,19–22], bacteria [23,24], and biomolecules [25].
Biomedical applications include early detection of circulating tumor cells in blood [26,27] and diagnosis
of bloodstream infections [28].

The acoustic fields used in acoustophoresis are mainly one of the following two kinds: (1) bulk
acoustic waves (BAW), which are set up in the entire device and used in systems with acoustically
hard walls. BAW depend critically on the high acoustic impedance ratio between the walls and the
water. In addition, (2) surface acoustic waves (SAW), which are defined by interdigital electrodes on
the piezoelectric transducer and propagate along the transducer surface. SAW are nearly independent
of the acoustical impedance ratio of the device walls and the microchannel, and this feature makes the
SAW technique versatile. SAW can be used both with hard- and soft-walled acoustophoretic devices,
often in the generic setup sketched in Figure 1, where the fluid-filled microchannel is encased by a solid

Micromachines 2016, 7, 182; doi:10.3390/mi7100182 www.mdpi.com/journal/micromachines



Micromachines 2016, 7, 182 2 of 14

material and is placed directly on top of the piezoelectric substrate to ensure optimal coupling to the
SAW induced in the substrate.

Fluid

Figure 1. (a) Sketch of the generic acoustophoretic device under study. A fluid flows through a long
straight microchannel defined by a surrounding solid wall (pyrex or polydimethylsiloxane (PDMS),
light brown) and placed on top of a piezoelectric substrate (light blue). By actuating the interdigital
transducers (IDTs, dark brown) placed on either side of the device, surface acoustic waves (SAW)
propagate along the surface of the substrate, and when timed properly they form a standing wave;
(b) Sketch in the transverse yz cross-section of the full 2D model consisting of a solid domain with wall
thickness H and a fluid domain of width w and height h; (c) Similar sketch of the reduced 2D model,
which consists solely of the fluid domain in (b), but with boundary conditions (hard wall or lossy wall)
representing in an approximate manner the surrounding solid.

Because SAW-based acoustophoretic microdevices are very promising as powerful and versatile
tools for manipulation of microparticles and cells, numerical modeling of them is important, both for
improved understanding of the acoustofluidic conditions within the devices and to guide proper
device design. In the literature, such modeling has been performed in numerous ways. For many
common elastic materials, the dynamics of the walls are straightforward to compute fully through
the usual Cauchy model of their displacement fields u and stress tensors σ. The coupling to the
acoustic pressure p and velocity v in the microchannel, described by the Navier–Stokes equation,
is handled by the continuity conditions n · σs = n · σf and ∂tu = v of the stress and velocity fields.
This full model is discussed in detail in Section 4. For acoustically hard walls, such as borosilicate
glass (pyrex) with a high impedance ratio (Z̃ = 8.4) relative to water, the full model is often replaced
by a reduced model (exact for Z̃ = ∞) with less demanding numerics, where only the fluid domain
in the microchannel is treated, and where the elastic walls are replaced by the so-called hard-wall
boundary condition demanding zero acoustic velocity at the boundary of the fluid domain [29–31].
For rubber-like polymers such as the often used PDMS, the full device modeling is more challenging.
For large strains (above 40 %), a representation of the underlying macromolecular network of polymer
chains is necessary [32], while for the moderate strains appearing in typical acoustophoretic devices,
standard linear elasticity suffices [33,34]. Some authors argue that the low ratio of the transverse
to longitudinal speed of sound justifies a fluid-like model of PDMS based on a scalar Helmholtz
equation [30,35]. Furthermore, since the acoustic impedance ratio Z̃ = 0.7 between PDMS and water
is nearly unity, the full model has in the literature been replaced by a reduced model, consisting of
only the fluid domain with the so-called lossy-wall boundary condition condition representing in
an approximate manner the acoustically soft PDMS walls [16,36,37].

The main aim of this paper is to investigate to which extent the numerically less demanding
hard- and lossy-wall reduced models compare with the full models for SAW-based acoustofluidic
devices. In the full models, we study the two generic cases of acoustically hard pyrex walls and
acoustically soft PDMS walls, both treated as linear elastic materials. In the reduced models, the pyrex
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and PDMS walls are represented by hard-wall and lossy-wall boundary conditions, respectively. In all
the models, the fluid (water) is treated as a Newtonian fluid governed by the continuity equation and
the Navier–Stokes equation. Our main result is that, for pyrex walls, the reduced model approximates
the full model reasonably well for sufficiently thick walls, but fails for thin walls, while for PDMS
walls, the lossy-wall boundary condition fails regardless of the wall thickness.

2. Results: Comparing the Full and Reduced 2D Models

In the following, we present our results for the numerical simulations of the acoustic fields in the
reduced and full models with SAW actuation, and we compare the two cases. As the microchannels
are long and straight along the x-direction, we assume translational invariance along x and restrict the
calculational domain to the two-dimensional (2D) cross section in the yz plane. The full model consists
of coupled fluid and solid domains, whereas the reduced model consists of a single fluid domain with
boundary conditions that in an approximate manner represent the walls. The principle of our model
approach is illustrated in Figure 1, while the models are described in detail in Section 4.

2.1. Pyrex Devices: Full Model and Reduced Hard-Wall Model

We consider first the full model of a pyrex microdevice, in which a rectangular water-filled channel
of width w and height h is encased by a pyrex wall of height h + H and width w + H (see Figure 1b).
We simulate the case of actuating the system both at the horizontal standing half-wave resonance in
the water fres = c0/2w = 1.24 MHz often exploited in experiments, and at the off-resonance frequency
foff = 6.65 MHz chosen to facilitate comparisons with the literature [36]. An example of a full-model
result for the velocity field −iωu and relative volume change |∇·us| in the pyrex as well as vf and pf
in the water, is shown in Figure 2a,c.

Figure 2. Examples of full model results for h = 125 µm, w = 600 µm, and H = 60 µm (see Figure 1b).
(a) Color plot from 0 mm/s (black) to 2.0 mm/s (white) of the velocity field

∣∣− iωus
∣∣ in the pyrex and∣∣vf

∣∣ in the water obtained in a full-model simulation of a pyrex SAW device actuated at the on-resonance
frequency fres = 1.24 MHz; (b) The same as in (a) but for a full-model PDMS SAW device. The dashed
magenta line indicates the solid-fluid interface; (c) Color plot from 0 (dark blue) to 8× 10−7 (dark
red) of the amplitude of the the relative volume change |∇·us| in the Pyrex and the rescaled pressure∣∣pf
∣∣/
( 1

5 Kpyrex
)

in the fluid, of the full model from (a), where Kpyrex is the bulk modulus of Pyrex;
(d) The same as (c) but for the full model from (b) and the rescaled pressure

∣∣pf
∣∣/KPDMS using the bulk

modulus KPDMS of PDMS.

We then investigate to which extent the full model can be approximated by the reduced hard-wall
model often used in the literature [29,38], where only the water domain is considered, while the
pyrex walls are represented by the hard-wall condition. In Figure 3, we show for both off-resonance
(left column) and on-resonance (right column) actuation, a qualitative comparison between the reduced
and the full model, with wall thickness H ranging from 60 to 1800 µm. Considering the resulting
amplitudes |pf| of first-order pressure field pf in the water domain, we note that, for off-resonance
actuation at the frequency foff, the full model with thick walls H = 1500 µm has some features in
common with the reduced model.
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Figure 3. Left column: color plots from 0 kPa (black) to 40 kPa (white) at the off-resonance frequency
foff = 6.65 MHz of the amplitude |pf| of the first-order pressure field pf in the fluid domain of the
reduced hard-wall model and the full pyrex model Figure 1a, but with H = 60, 600, and 1500 µm.
The surrounding pyrex is not shown. Right column: the same as to the left, but at the on-resonance
actuation frequency f = 1.24 MHz and with the color plots ranging from 0 kPa (black) to 80 kPa
(white). Bottom row: off- and on-resonance line plots of the amplitude |us,z(y, h)| of the vertical
displacement along the top fluid-solid interface at z = h normalized by the amplitude u0 of the SAW
actuation displacement for wall thickness H = 60, 600, and 1500 µm.

There are pressure anti-nodes in the corners and an almost horizontal pressure node close to the
horizontal centerline. For decreasing wall thickness H in the full model, the pressure field changes
qualitatively, as the pressure anti-nodes detach from the side walls and shift towards the center of
the fluid domain. When actuated on resonance at the frequency fres, for wall thicknesses as low as
H = 120 µm, the full-model pressure is nearly indistinguishable from that of the hard-wall reduced
model, namely a cosine function with vertical pressure anti-nodal lines along the side walls and
a vertical pressure nodal line in the center. For the smallest wall thickness H = 60 µm, the iso-bars
in the full model tilt relative to vertical. In summary, the correspondence between the full and the
reduced model is overall better for on-resonance actuation, but for a large wall thickness, the reduced
hard-wall model describes the full pyrex model reasonably well. Table 1 shows the values of the
thickness-to-wavelength ratios H/λ.

Finally, in the bottom row of Figure 3, we investigate for the full pyrex model model the
displacement at the upper boundary in units of the imposed displacement amplitude u0 at the
SAW-actuated lower boundary. If the hard-wall condition of the reduced model is good, this
displacement should be very small. However, from the figures it is clearly seen that for the thin
wall H = 60 µm, the upper-wall displacement is significant, with an amplitude of 4u0 at foff and 2u0 at
fres. As the wall thickness H increases, the upper-wall displacement amplitudes decreases towards
u0. Again, this reflects that the reduced hard-wall model is in fair agreement with the full model for
a large wall thickness H, and it is better on resonance, where the specific values at the boundaries are
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less important as the pressure field is dominated by the pressure eigenmode that does in fact fulfill the
hard-wall condition (see Section 3.2).

Table 1. The ratio H/λ for various values of the material thickness H and the different acoustic
wavelengths λ present in the system at the two frequencies fres and foff.

f res = 1.24 MHz f off = 6.65 MHz

λ (µm) H (µm) λ (µm) H (µm)

60 600 1500 60 600 1500

λSAW 600 0.100 1.000 2.500 λSAW 600 0.100 1.000 2.500

λwa 1200 0.050 0.500 1.250 λwa 225 0.267 2.667 6.667

λ
pyrex
T 2745 0.022 0.219 0.546 λ

pyrex
T 515 0.117 1.165 2.913

λ
pyrex
L 4483 0.013 0.134 0.335 λ

pyrex
L 841 0.071 0.713 1.784

λPDMS
T 80 0.750 7.500 18.750 λPDMS

T 15 4.000 40.000 100.000

λPDMS
L 826 0.073 0.726 1.816 λPDMS

L 155 0.387 3.871 9.677

Figure 4. Color plot from 0 kPa (black) to 30 kPa (white) at foff = 6.65 MHz of the amplitude |pf| of
the first-order pressure field pf in the fluid domain of (a) the reduced lossy-wall model and (b–d) the
full PDMS model with wall thickness H = 60, 180, and 1500 µm. The surrounding PDMS is not shown;
(e) line plots of the normalized amplitude |us,z(y, h)|/umax of the vertical displacement along the upper
fluid-solid interface at z = h in the full model (full colored lines) with H = 60, 600, and 1500 µm and
in the reduced lossy-wall model (dashed black line). The normalization unit umax is the maximum
amplitude found in the reduced lossy-wall model.

2.2. PDMS Devices: Full Model and Reduced Lossy-Wall Model

We then move on to show the same comparisons, but where the full model has PDMS walls,
and the reduced model has the lossy-wall boundary condition, which takes deformation in the
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normal direction of the wall into account. The reduced lossy-wall model for PDMS, actuated at the
off-resonance frequency foff = 6.65 MHz, is exactly the one used by Nama et al. [36]. Given the low
impedance ratio Z̃ = 0.7 between PDMS and water, there is no resonance. Results for the full PDMS
model are shown in Figure 2b,d at fres = 1.24 MHz, and results at foff = 6.65 MHz for the reduced
lossy-wall model, and the full PDMS model is shown in Figure 4 with plots similar to the ones in the
left column of Figure 3 for the reduced hard-wall model and the full pyrex model.

Initially, we compare in Figure 4a–d the amplitude |pf| of the first-order pressure field pf of the
reduced lossy-wall model with that of the full PDMS model for the wall thickness H varying from 60 to
1500 µm. Due to the lossy-wall boundary condition (Equation (14)), the ellipsoidal pressure anti-nodes
in Figure 4a traverse the fluid domain upwards during one oscillation cycle. This is in stark contrast to
the pressure structures of the full PDMS model in Figure 4b–d, which are stationary due to the free
stress condition (Equation (12)) imposed on the exterior of the PDMS. Moreover, the pressure structure
of the reduced lossy-wall model consists of only two pressure antinodes, which is much simpler than
the multi-node structure of the full PDMS model. In fact, the only common feature in the pressure
fields is the appearance of a well-defined pressure node along the vertical centerline.

The poor qualitative agreement between the pressure field in the reduced lossy-wall model
and in the full PDMS model is further supported in Figure 4e, where the upper-wall displacement
amplitudes of the models are shown. We introduce the unit umax as the maximum displacement
along the upper-wall in the reduced lossy-wall model, and note that the lossy-wall condition imposes
a broad single-node sinusoidal velocity amplitude of unity magnitude, while each of the four full
model cases (H = 60, 600, and 1500 µm) shows a rippled, multi-peaked displacement amplitude of
relative magnitudes ranging from 2 to 6. The ripples are caused by the small wavelength (15 µm) of
the transverse waves in PDMS at the given frequency (see Table 1).

3. Discussion

3.1. Physical Limitations of the Hard-Wall Condition

As illustrated in Figure 3, there are clear discrepancies between the fields obtained by the reduced
hard-wall model and those found using the full pyrex models. This can likely be attributed to
two factors in particular: the finite stiffness and density of pyrex, and the non-local SAW actuation
imposed along the bottom edge in the model.

The hard-wall condition is physically correct for an infinitely stiff and dense wall, which does
not undergo any deformation or motion regardless of the stress exerted by the fluid. A hard wall thus
reflects all acoustic energy incident on it back into the fluid. However, pyrex has a finite stiffness and
density, and it will thus deform and allow for a partial transmittance of acoustic energy from the fluid.
This aspect is part of the full pyrex model, but not of the reduced hard-wall model.

The specific SAW actuation is also different in the full and the reduced model. The microdevice
rests on top of the piezoelectric substrate, so in the full model, the standing SAW along the surface
of the piezoelectric substrate (typically lithium niobate) will transmit significant amounts of acoustic
energy directly into both the pyrex wall and the water, but only the latter is taken into account
in the reduced hard-wall model. The coupling between lithium niobate and pyrex is strong since
the direction-dependent elastic stiffness coefficients of lithium niobate lies in the range from 53 to
200 GPa [39] and the Young’s modulus of pyrex of 64 GPa lies in the same range [40]. Consequently,
the interface between the pyrex wall and the water will move under the combined action of the acoustic
fields loaded into the pyrex and the water, respectively.
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Table 2. List of parameters used for geometry, materials, and surface acoustic waves (SAW) in the
numerical model. The values for the damping paramters Γ are from Reference [41].

Quantity Symbol Unit Pyrex Polydimethylsiloxane (PDMS) Water SAW
[40] [42,43] [44] [36]

Width 1
2 H or w µm 30–900 30–750 600 -

Height H or h µm 60–1800 60–1500 125 -

Density ρf or ρs kg·m−3 2230 1070 997 -
Bulk modulus Kf or Ks GPa 38.46 1.12 2.23 -
Longitudinal sound speed cL or c0 m·s−1 5591 1030 1496 -
Transversal sound speed cT m·s−1 3424 100 - -
Damping coefficient Γf or Γs 1 0.001 0.001 0.002 0
Acoustic impedance ratio Z̃ = ρscL

ρfc0
1 8.4 0.7 1 -

SAW wavelength λSAW µm - - - 600
SAW displacement amplitude u0 nm - - - 0.1
SAW on-resonance frequency fres =

2w
c0

MHz - - - 1.24
SAW off-resonance frequency foff MHz - - - 6.65

3.2. Acoustic Eigenmodes

Due to the high impedance ratio Z̃ = 8.4 for pyrex relative to water (see Table 2), it is possible in
the full pyrex model to excite a resonance in the device at the frequency fres = 2w/c0 = 1.24 MHz,
which is close to the ideal standing half-wave pressure eigenmode of the reduced hard-wall system.
At this resonance frequency, the pressure amplitude

∣∣pf
∣∣ in the water is several times larger than the

pressure amplitude ρfc0 ωu0 set by the imposed SAW displacement, and the resonance field mainly
depends on the frequency and not significantly on the detailed actuation along the boundary [29].
The full pyrex model and the reduced hard-wall model are therefore expected to be in good agreement
at fres, as is verified by the right column in Figure 3.

In contrast, at off-resonance frequencies, such as foff = 6.65 MHz in the left column of Figure 3,
the detailed actuation does matter. The lower left panel of Figure 3 is an example of this, as it highlights
an aspect that restricts the validity of the reduced hard-wall model. For the full model with 60-µm-thick
pyrex walls, the maximum displacement along the top boundary of the water domain is approximately
four times larger than the displacement amplitude u0 of the imposed SAW boundary condition on the
bottom boundary of the water domain. This indicates that the system is actuated close to a structural
acoustic eigenmode of the pyrex. An amplification is also seen in the lower right panel of Figure 3
although to a smaller degree. This amplification of boundary displacements brought about by the
existence of structural eigenmodes is not taken into account in the reduced hard-wall model.

3.3. Physical Limitations of the Lossy-Wall Condition

The comparison between the reduced lossy-wall model and the full PDMS model in Figure 4
shows a clear mismatch. The most important reasons for this are that the lossy-wall model neglects the
actuation of both the solid and fluid domain, and that it neglects the transverse motion of the PDMS
along the PDMS-water interface.

As for the hard-wall model, the lossy-wall model neglects the strong direct transfer of acoustic
energy from the SAW to the PDMS wall, and the implications are the same: the lossy-wall model
underestimates the deformation and motion of the PDMS-water boundaries due to this. Moreover,
due to the low impedance ratio Z̃ = 0.7, there are no strong resonances in the water domain like the
one at fres for which the detailed boundary conditions do not matter.

In contrast to the reduced hard-wall model, some aspects of the deformation and motion of the
PDMS-water boundaries are taken into account in the reduced lossy-wall model, as it includes the
partial reflection and absorption waves from the water domain with perpendicular incidence on the
PDMS wall. While this approach would be a good description of a planar or weakly curving interface
between two fluids, where all the acoustic excitation takes place in one of the fluids, it is of limited



Micromachines 2016, 7, 182 8 of 14

use in the present system, for three reasons: (1) as discussed above, the acoustic energy is injected by
the SAW into both the water and the PDMS domain; (2) the PDMS-water boundary is not planar, but
consists of three linear segments joined at right angles; and (3) PDMS is not a fluid, but supports shear
waves, which are neglected in the reduced lossy-wall model. These three aspects are all part of the full
PDMS model, in which PDMS is described as a linear elastic material supporting both longitudinal
and transverse waves.

3.4. Modeling PDMS as a Linear Elastic

When modeling large strains above 0.4 in PDMS, non-linear effects are commonly included using
hyperelasticity models in the form of a constitutive relation for the stress and strain for which the
elastic moduli depends on the stress instead of being constant. For small strains below 0.4, PDMS
becomes a usual linear elastic material [45–49]. The magnitude of the strain in terms of the relative
volume change |∇·us| is shown for our system in Figure 2c,d for H = 60 µm. The maximum value of
|∇·us| for PDMS is seen to be 5.59× 10−6, which justifies the use of linear elastics as the governing
equations of the PDMS walls in our system. Similarly for pyrex, where the maximum value for |∇·us|
is 8.51× 10−7. The use of linear elasticity is further validated in the literature, where linear elastic
models of PDMS yield results comparable to those found when using more complex approaches, such
as a Mooney–Rivlin constitutive model [33], a neo–Hookian approach [34], and a Maxwell–Wiechert
model [50].

Further simplifications based on neglecting the transverse motion of PDMS, such as modeling it
as a fluid [30,35] and applying the lossy wall conditions [36], are not advised, since PDMS does have
a non-zero transverse bulk modulus and does support transverse sound waves [42,48,49].

As characterization results for PDMS are scarce in the literature, we had to combine the material
parameters found in References [42,43] in our simulations.

4. Materials and Methods

Our modeling is based on the generic device design [4,14] illustrated in Figure 1. The device
consists of a long, straight, fluid-filled microchannel surrounded by an elastic solid wall on the
sides and top. The microchannel and walls rest on a piezoelectric substrate, along which a standing
SAW is imposed as a boundary condition. We assume translational invariance along the axial x
direction, and only model the transverse yz plane. We implement 2D numerical models in COMSOL
Multiphysics 5.2 (COMSOL, Stockholm, Sweden) [51] using the parameters listed in Table 2. All
acoustic fields are treated using an Eulerian description, and they have a harmonic time-dependence
of the form us(y, z) e−iωt, such that ∂t becomes −iω, where i =

√
−1, while ω = 2π f is the angular

frequency and f the frequency of the imposed SAW. For simplicity, we often suppress the spatial and
temporal variable and write a field simply as us. Finally, following Hahn and Dual [41], we introduce
damping in the fluid and the solid using the complex-valued frequency (1− iΓm)ω, where Γm is the
damping coefficient in the medium with the values listed in Table 2. For simplicity, we used Γs = 0.001
for both pyrex and PDMS, however this implies a damping length for PDMS longer than the 3 mm
given in [36], so our model is only valid for PDMS devices with walls thinner than 3 mm.

In total, four models are set up, all with the imposed SAW as a boundary condition representing
the actual piezoelectric lithium niobate substrate: (1) the full pyrex model, Figure 5a, where the solid
wall is modeled as a linearly elastic material with the parameters of pyrex, while the fluid is modeled
as water; (2) the reduced hard-wall model, Figure 5b, where only the water is modeled, while hard-wall
boundary conditions replace the pyrex wall; (3) the full PDMS model, Figure 5a, which is the full
pyrex model in which the pyrex parameters are replaced by PDMS parameters; and (4) the reduced
hard-wall model, Figure 5b, where only the water is modeled, while lossy-wall boundary conditions
replace the PDMS wall.



Micromachines 2016, 7, 182 9 of 14

Fluid Fluid

Figure 5. Sketches of the models used in the study. (a) The full model with a solid domain (pyrex or
PDMS) and a fluid domain (water); and (b) the reduced model with only a fluid domain with boundary
conditions (hard or lossy) representing the surrounding solid (pyrex or PDMS, respectively).

4.1. Governing Equations

The unperturbed fluid at constant temperature T = 298 K in the fluid domain is characterized by
its density ρ0, viscosity η0, and speed of sound c0. The governing equations for the acoustic pressure
pf, density ρf, and velocity vf are the usual mass and momentum equations. The constitutive equation
between the acoustic pressure pf and density ρf is the usual linear expression, pf = c2

0 ρf. Neglecting
external body forces on the fluid, while applying perturbation theory [38] and inserting the harmonic
time-dependence, the governing equations and the constitutive equation are linearized to the following
first-order expressions:

i(1− iΓf)ωpf = ρ0c2
0∇ · vf (1)

− ρ0i(1− iΓf)ωvf = ∇ ·σf (2)

σf = −pf I + η0

[
∇vf +

(∇vf)
T
]
+ βη0∇

(∇ · vf
)

I (3)

where we have introduced the Cauchy stress tensor σf, and where superscript ”T” denotes tensor
transpose, β is the bulk-to-shear viscosity ratio, and I is the unit tensor. With appropriate boundary
conditions, the first-order acoustic fields pf, ρf, and vf, can be fully determined by Equations 1–3.
The specific model-dependent boundary conditions are presented and discussed in Sections 1 and 4.2.

The dynamics in the solid of unperturbed density ρs is described by linear elastics through
the momentum equation in terms of the displacement field us and the solid stress tensor σs.
The constitutive equation relating displacement and stress is defined using the longitudinal cL,s

and transverse cT,s speeds of sound of the given solid:

− ρs(1− iΓs)
2ω2us = ∇·σs (4)

σs = ρs

[
c2

T,s(∇us +∇uT
s ) + (c2

L,s − 2c2
T,s)(∇·us)I

]
(5)

4.2. Boundary Conditions

For simplicity, the full dynamics of the piezoelectric substrate is not modeled. Instead, the standing
SAW is implemented by prescribing displacements upz =

(
uy,pz, uz,pz

)
in the y- and z-directions,

respectively, on the bottom boundary of our domain using the following analytical expression from
the literature [36,52], where the damping coefficient of 116 m−1 has been neglected given the small
dimensions (<0.002 m) of the microfluidic device [36]:

uy,pz = 0.6u0

{
sin
[
k
( 1

2 w− y
)
+ωt

]
+ sin

[
k
(
y− 1

2 w
)
+ωt

]}
(6)

uz,pz = −u0

{
cos
[
k
( 1

2 w− y
)
+ωt

]
+ cos

[
k(y− 1

2 w) +ωt
]}

(7)
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vf = −iωupz imposed on the fluid at the fluid-SAW interface, (8)

us = upz imposed on the solid at the solid-SAW interface, (9)

where k = 2π/λ is the wavenumber and u0 the displacement amplitude of the SAW.
In the full models, a no-stress condition for σ is applied along the exterior boundary of the

solid. On the interior fluid-solid boundaries, continuity of the stress is implemented as a boundary
condition on σs in the solid domain imposed by the fluid stress σf, while continuity of the velocity is
implemented as a boundary condition on vf in the fluid domain imposed by the solid velocity −iω us.
Along the free surfaces of the solid, a no-stress condition is applied:

ns ·σs = ns ·σf imposed on the solid at the fluid-solid interface, (10)

vf = −iωus imposed on the fluid at the fluid-solid interface, (11)

ns ·σs = 0 imposed on the solid at exterior boundaries. (12)

We have also performed simulations, where the stress-free condition Equation (12) on the
exterior boundaries is changed into a lossy-wall conditions involving high acoustic impedance ratios
(PDMS/air 3600 and pyrex/air 41000). As expected, the resulting fields are almost unchanged: we
observe the same morphology, and, quantitatively, the average value pressure field in the water domain
exhibits relative changes less than 4× 10−5, hence we employ the simpler Equation (12).

In the reduced models, boundary conditions are imposed on the fluid to represent the surrounding
material. Stiff and heavy materials such as pyrex are represented by the hard-wall (no motion) condition
at the boundary of the fluid domain. Soft and less heavy materials such as PDMS are represented
by the lossy-wall condition for partial acoustic transmittance perpendicular to the boundary of the
fluid domain. For both conditions, a no-slip condition is applied on the tangential velocity component.
The specific expression implemented in COMSOL are:

vf = 0 boundary condition representing hard walls, (13)

vf =
pf

csρs
n boundary condition representing lossy walls. (14)

4.3. Numerical Implementation and Validation

     
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
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
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


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
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
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
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



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Figure 6. (a) The mesh implemented in COMSOL 5.2 (COMSOL, Stockholm, Sweden), here shown in
a coarse version for illustrative purposes with the small value kp = 0.1 for the mesh parameter; (b) For
each of the fields pf, vf, vf,y, and vf,z, the relative mesh convergence parameter C is plotted versus mesh
parameter kp for the reduced lossy-wall model. The dashed line represents C = 0.01; (c) The same as in
(b) but for the water domain in the full PDMS model with the inclusion of the field us.
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We follow our previous work [29,53], and implement the governing equations in weak form in
the commercial software COMSOL Multiphysics 5.2 [51]. To fully resolve the thin acoustic boundary
layer of width δ,

δ =

√
2η0

ρ0ω
= 0.21 µm at ω = 2π× 6.5 MHz (15)

in the water domain near its edges, the maximum mesh size hedge at the solid-fluid boundary is much
smaller than that in the bulk called hbulk. Both of these are controlled by the mesh parameter kp,

hedge =
1
kp
δ hbulk = 50hedge with kp = 1 in the main runs . (16)

The coarse mesh with kp = 0.1 is shown in Figure 6a. In our largest (full) models using kp = 1,
the implementation resulted in 8.1× 106 degrees of freedom and a computational time of 30 min on
a standard PC work station. The implementation of the model in the fluid domain has been validated
both numerically and experimentally in our previous work [29,53]. The solid domain implementation
was validated by calculating resonance modes for a long rectangular cantilever, clamped at one end
and free at the other, and comparing them successfully against analytically known results. Finally,
for both the full and the reduced models, we performed a mesh convergence analysis using the relative
mesh convergence parameter C(g) for a given field g(y, z) as introduced in Reference [29]:

C(g) =

√∫
Ω(g− gref)2 dydz∫

Ω(gref)2 dydz
(17)

Here, gref is the solution obtained with the finest possible mesh resolution, in our case the one
with mesh parameter kp = 5. For all fields, our mesh analysis revealed that satisfactory convergence
was obtained with the mesh parameter set to kp = 1. For this value, the relative mesh convergence
parameter was both small, C ≈ 0.01, and exhibited an exponential asymptotic behavior, C ' e−kp ,
as a function of the mesh parameter kp (for two examples, see Figure 6b,c).

5. Conclusions

A numerical method has been presented for 2D full modeling of a generic SAW microdevice
consisting of a long, straight, fluid-filled microchannel encased in a elastic wall and resting on
a piezoelectric substrate in which a low-MHz-frequency standing SAW is imposed. We have also
presented reduced models consisting only of the fluid domain, where boundary conditions are used as
simplified representations of the elastic wall. An acoustically hard wall, such as pyrex, is represented
by a hard-wall boundary condition, while an acoustically soft wall, such as PDMS, is represented
by a lossy-wall boundary condition. Our results show that the full pyrex model is approximated
fairly well for thick pyrex walls using the hard-wall model, when the SAW is actuated on a frequency
corresponding to a resonance frequency of the water domain, but less well for thinner walls at
resonance and for any wall thickness off resonance. The reduced lossy-wall model was found to
poorly approximate the full PDMS model for walls thinner than the 3-mm PDMS damping length,
especially regarding the resulting running pressure waves in the reduced lossy-wall model in contrast
the standing waves in the full PDMS model.

Modeling of acoustofluidic devices should thus be performed in full to take into account all
effects relating to the elastic walls defining the microchannel. At higher frequencies or higher acoustic
power levels, even the full model presented here must be extended to take into account thermoviscous
effects in the form of increased heating and temperature-depending effects [44,54]. Finally, to obtain
quantitatively better results for the pressure fields driving acoustophoresis in the water domain,
the piezoelectric substrate should be included in future simulations. Hopefully, such an analysis will
be of interest to experimentalists, who in turn may provide improved experimental data to validate the
model. Moreover, with such an extended model including the dynamics of the piezoelectric substrate,
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a study could be carried out for other actuation conditions than the ones studied here, such as bulk
acoustic wave actuation, for which more experimental results exist.
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Abbreviations

The following abbreviations are used in this manuscript:

Pyrex Borosilicate glass
PDMS Polydimethylsiloxane
SAW Surface acoustic wave
BAW Bulk acoustic wave
IDT Interdigital transducer
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Chapter 5

Modeling a full device in 3D

In this chapter we will describe improvements made to the numeric fluid-solid full models F1 & F2
described in Chapter 4, to more accurately represent complex acoustofluidic devices. We check our
implementation of anisotropic materials against analytical solutions, compare the model against
previously published experimental results [54], and comment on the particular steady streaming
field that arises in the device due to its geometry. As in Chapter 4, parts of the improvements and
results presented here are described in more detail in the journal article 3D modeling of acoustoflu-
idics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids,
and a piezoelectric transducer by N. R. Skov, J. S. Bach, B. G. Winckelmann, and H. Bruus [3]
(PDF,DOI:10.3934/Math.2019.1.99), enclosed in full at the end of this chapter. Other parts of this
chapter have not been presented before, and the entirety of the text is a reformulation from the
article.

5.1 Motivation

Based on the conclusion in Section 4.4 we will expand our model to include piezoelectric motion.
Additionally, we wish to make our model more generally applicable by moving beyond isotropic
materials and introducing anisotropic linear elastics and piezoelectric materials to the model. As
a last improvement, we move from 2D to 3D modeling, in an effort to include the entire device in
our numeric model. This requires the implementation of effective pressure modeling, as full fluid
modeling is not feasible in 3D due to the minute thickness of the viscous boundary layer.

5.1.1 Reproducing published experimental results

To verify that the new additions to our model give reliable acoustophoretic predictions we ex-
pand on the fluid-solid model described in Chapter 5, to model the acoustofluidic device used by
Hagsäter et al.[54] sketched in Fig. 5.1(a). In addition to providing an experimental handshake for
our model, it also opens for the possibility of a studying the particular 6×6 streaming velocity pat-
tern observed in this device. This was previously done by Lei et al.[53], using a reduced fluid-only
3D numeric model with which they concluded that the streaming was boundary-driven. Analysis
in [109] of an idealized version of the device however, indicated that this particular streaming may
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be bulk-driven, which we investigate with our model.

Figure 5.1: Sketch and cross-section of the device. (a) Sketch of the device, with the Pyrex lid
rendered invisible. The channel is perfectly centered in the x-direction. (b) Cross-section of the
line marked in magenta.

Table 5.1: The device and numerical model dimensions.

Domain Length (x) [mm] Width (y) [mm] Height (z) [mm]
Pz26 49 15 1.0

Silicon 49 15 0.5
Pyrex 49 15 0.5
Cavity 2 2.02 0.2

Channel 1 11.3 0.4 0.2
Channel 2 11.3 0.4 0.2

5.2 Model system

The device, shown in Fig. 5.1 consists of a microchannel etched into a slab of mono-crystalline
silicon, - hereon implied by ’silicon’. Positioned 0.55mm / 2.3 % off from the middle of the
channel is a fluid cavity with a nearly quadratic cross-section, with the length of the cavity being
0.02mm / 1.0 % longer than its width, possibly due to a manufacturing error. A Pyrex glass lid of
equal surface area as the silicon slab with inlet and outlet holes at the ends of the microchannel
covers the silicon and the fluid domain. The system is actuated by a rectangular piece of lead
zirconium titanate (PZT) glued to the bottom of the silicon. Our numeric model, outlined in
Fig. 5.1(a), is a 1:1 model of the physical device, where we have assumed the PZT to be Pz26 and
to have the same cross-sectional area as the silicon slab and height, since neither the exact type or
the actual dimensions are not reported. See Fig. 5.1 and Table 5.1 for the exact dimensions.

The new additions over the previously described model are, (i) one linearly elastic and one
piezoelectric anisotropic material, (ii) the physics of piezoelectricity, (iii) effective acoustic pres-
sure modeling in the fluid including the streaming field, (iv) particle tracking calculations and (v)
the third dimension in the numeric model.
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5.2.1 Anisotropic materals

The linear elastics used in the device are Pyrex glass, silicon and PZT. Pyrex is an isotropic ma-
terial and was already included in the model from previously, while silicon and PZT both are
anisotropic materials, with general stress constitutive relations.

Silicon is of the cubic crystal class and requires 3 elastic moduli to fully determine the stress
state. PZT is of the tetragonal crystal and has 5 independent elastic moduli, 2 constants of permit-
tivity and 3 coupling constants, as it is also piezoelectric.

We include the new stress definitions in our model, using the Voigt notation described in
Section 2.2.3. For silicons the stress is purely mechanic Eq. (5.1a), while it in the PZT is elec-
tromechanic Eq. (5.1b),

σV =CεV, (5.1a)

σV =CεV − eTE. (5.1b)

The increased complexity also increases the probability of human errors and typos. To verify that
we implement the new materials properly, we make a simple test system that can be compared
with analytical values. We choose to do so for silicon where the speed of sound as a function
of material orientation is analytically known. Hence, we use these as grounds for validating our
implementation of Voigt notation.

Analytical speeds from the Christoffel equation

The propagation speed of a plane wave in a solid depends on the propagation direction expressed
by wavenumber ki. For a given direction the propagation speed c and wave polarizations pi = ui√

ujuj

can be found as the eigenmodes of the Christoffel equation [110]
[
ρsc

2δik − Cijklnjnl
]
uk = 0 (5.2)

We solve Eq. (5.2) for a wave propagating in the x, y-plane with ki = (cos(θ),sin(θ),0), and find
a solution for each of the three principal polarizations. The wave polarized along the propagating
direction is called the longitudinal wave and has the speed cana

L,x . The waves polarized in y and z
are the transverse waves and have propagation speeds cana

T,y and cana
T,z , which we wish to compare to

numerically found values.

Numerical velocities based on a quasi-1D model system

The model we use for comparison is a rod of silicon shown in Fig. 5.2(a). The rod lies along the
x-axis from x = 0 to x = LPML, has a quadratic cross-section of width w. From x = L to x =
LPML is a PML-silicon region with the same cross-section. The crystalX-axis is rotated positively
an angle of θ around the global z-axis, using the Bond matrices described in Section 3.6. Along
the y- and z-facing rod surfaces, symmetry conditions are applied to mimic an infinitely thick
domain, making the model quasi-one-dimensional. Therefore, any actuation applied at the surface
x = 0 propagates unperturbed along the rod until the PML region where it is fully absorbed. This
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allows us to investigate the propagation of traveling waves of any polarization in silicon for any
given rotation about the z-axis.

We make a series of simulations with varying θ in which we apply a wave with one of the three
principal polarizations: the longitudinal x-polarized wave and the transverse y- and z-polarized
waves. For each wave polarization, we measure the wavelength λ and use it to calculate the
corresponding propagation speed from the single-frequency dispersion relation c = λf . The
speeds of sound are cnum

L,x , cnum
T,y and cnum

T,z respectively. In Fig. 5.2(b) we show a velocity surface
of the analytically and numerically obtained values as functions of θ. We see that the analytically

Figure 5.2: (a) The numeric model of a rod, used to measure wavelengths of waves polarized
along principal axes. The blue mesh shows the silicon domain, and the gray mesh shows the
silicon-PML domain. (b) Velocity surface in the x, y-plane, showing speed of sound for the three
principal wave polarizations as a function of rotation angle θ around the z-axis. We plot only a
quarter of the surface diagram, since cubic crystals have symmetry planes in between principal
axes, illustrated by the dashed line at π/4.

and numerically velocity surfaces agree quite well, particularly for the z-polarized wave, where
the two are identical. This is to be expected, as the rotation is about the z-axis. Therefore the
stiffness determining the speed of sound for the z-polarized wave does not change.

For the other two surfaces, the maximum deviations are 1.1% and 2.7% respectively indicating
that we have properly implemented the anisotropic material and Bond matrices in our model. Note
that a rotation about either of the principal axes yields the same result due to silicon being a cubic
crystal. This is not the case for crystal classes with fewer symmetries such as PZT.

5.2.2 Piezoelectricity

We include the piezoelectric effect in the PZT transducer to exactly model the actuation of the fluid
domain. For this we implement Gauss’s law, Eq. (2.27), for a harmonically oscillating potential
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φ1 in our model.
∇ ·D1 = 0. (5.3)

The electric density flux here is calculated in the PZT using Eq. (2.15)

D1 = ε0ε̃E1 + eεV,1, (5.4)

We model the PZT as having a charged top surface and a grounded bottom surface implemented
as described in Eq. (2.35),

φch
1 = V0 at top charged surface , φgr

1 = 0 at bottom grounded surface. (5.5)

5.2.3 Effective acoustic pressure modeling and streaming calculations

We replace the first-order fluid mass and momentum conservation equations with effective acoustic
pressure modeling and compute the pressure using Eq. (2.20)

∇ · (∇ p1)− k2p1 = 0, (5.6)

where the fluid velocity is defined as in Eq. (2.21)

v = −i
1− iΓf

ωρf
∇ p1, Γf =

(
4

3
ηf + ηb

f

)
ωκf . (5.7)

We employ the theory for effective boundary conditions Eq. (2.33) developed by Bach and Bruus
in [61]

σs
1 · n = −p1 n− iksηf(vsl − v1

)
Fluid-controlled stress continuity, (5.8a)

v1 · n = vs · n− i

ks
∇‖ ·

(
vsl − v1

)
‖ Solid-controlled velocity continuity. (5.8b)

We also introduce the streaming field v2 to the model. We calculate this using particular forms of
Eqs. (2.23) and (2.24) that emphasizes the energy-flux density vector

〈
Sac

〉
=
〈
p1v1

〉

∇ · v2 = 0, (5.9)

∇ · [− (p2 −
〈
Lac

〉)
I + ηf∇v2

]
+

Γω

c2
f

〈
Sac

〉
= 0. (5.10)

Here we use a form of the effective boundary conditions on the streaming velocity specifically for
devices driven at resonance [61],

n · vbc
2 = 0, (1− nn) · v2 = − 1

8ω
∇‖
∣∣v1‖

∣∣2 − Re

[(
2− i

4ω
∇‖ ·v∗1‖ +

i

2ω
∂⊥v

∗
1⊥

)
v1‖

]
.

(5.11)

Implementing effective fluid acoustics reduces the number of DOF in the system drastically, as the
vector velocity field and scalar pressure field is reduced by a single scalar pressure field. Addition-
ally, the theory analytically solves the fluid motion within the micrometer-sized viscous boundary
layer that has to be spatially resolved by at least 7 nodes in the full model. Implementing the
effective pressure modeling reduces the number of DOF enough that we can model the device in
its entirety, which would otherwise not be feasible.
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5.2.4 Particle trajectories

To predict the acoustophoretic motion of a set of fictitious particles distributed across the cavity
we iteratively solve Newton’s second law Eq. (2.43)

4/3πa3ρps
d

dt
vps(r, t) = F rad + F drag, (5.12)

with the streaming drag F drag defined as

F drag = 6πηa
(
v2(r)− vps(r, t)

)
(5.13)

and the acoustic radiation force F drag defined as a gradient force

F rad = −∇U rad , where U rad =
4π

3
a3

(
f0

1

4
κf |p1|2 − f1

3

8
ρf |v1|2

)
. (5.14a)

Here the monopole f0 and dipole f1 coefficients are defined for polystyrene beads as

f0 = 1− κps

κf
= 0.468, f1 =

2(ρps − ρf)

2ρps + ρf
= 0.034. (5.14b)

5.2.5 Three-dimensional modeling

Moving from two to three dimensions is trivial with regards to the numerics. It is merely a question
of adding terms for the third dimensions in the auxiliary fields and the governing equations. For
instance the Laplacian of the pressure in Eq. (5.6) has three terms instead of two in 3D simulations.

The most significant factor when adding a dimension is in the meshing, because mesh elements
also gain dimensions and any changes in the mesh element size are lifted to the power of the
dimensions of the model. For instance, reducing a mesh element length to half its original size
results in twice as many elements in a 1D model, four times as many in a 2D model and 8 times
as many in 3D model. Hence, much more care must be taken to reduce the mesh as much as
possible, while obeying the 6-nodes-per-wavelength rule of thumb. To minimize the number of
DOF in the model, we define mesh element sizes for each of the domains PZT, silicon, fluid and
Pyrex, corresponding to 6 elements per wavelength in the material. In the solids, this is chosen to
be the shortest wavelength, while it in the fluid is the compressional wave.

5.3 Key results and observations

We compare our numeric model to the experimental results of Ref. [54], through the observed
and calculated acoustophoretic motion of beads suspended in the fluid cavity, when runing the
device at a frequency near the two hard-wall eigenmodes f3,0,0 ≈ f0,3,0 = 2.45 MHz of the fluid
cavity. Note that the modes are only approximately equal due to the 1.0% deviation in the two side
lengths. Furthermore, we study the cause of the 6 × 6-streaming pattern in the system by tuning
the relative strength of the bulk forcing term to the velocity imposed on the streaming field by the
boundary conditions.
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5.3.1 Handshake with experimental observations

In Fig. 5.3(a1) and (a2), we show experimental particle image velocimetry (PIV) measurements
in the initial stages of acoustophoresis briefly after ultrasound is turned on for large and small
particles plotted on a background of a micrograph of the cavity. In (b1) we compare the traces of
(a1) to the calculated acoustic radiation potential U rad and the acoustic radiation force F rad. In
(b2) on the other hand we compare the acoustic streaming velocity v2 to the motion of (a2).

Figure 5.3: The experimentally observed and numerically predicted second-order fields. (a1)
Arrow plot of particle image velocimetry measurements of 5 µm polystyrene beads, 1 ms after an
ac potential with frequency f = 2.17 MHz is applied across the PZT. The arrow plot’s background
is a micrograph of the cavity after the beads have settled. The silicon chip is gray, while particle
agglomerations are black. (a2) Same as in (a1) but for 1 µm beads. Here the micrograph shows
no particles continuously following closed loops. (b1) Contour of the radiation potential at the
vertical center-plane of the cavity with superimposed arrows showing the direction of the radia-
tion force F rad, for the applied frequency f = 2.166 MHz. (b2) Surface plot of the streaming
velocity v2 magnitude, with superimposed arrows showing the direction, for the applied frequency
f = 2.163 MHz. From Ref. [2]

Given the size of the particles in (a1) we expect the acoustophoretic motion to be purely
dominated by the radiation force F rad that scales with a3. Thus, the acoustic force calculated
in (b1) should correspond to the measured particle tracks in (a1), if our numeric model holds.
Similarly, the small particles in (a2) should be purely dominated by the streaming drag due to the
a2-scaling of the force ratio. Therefore, we expect that our calculated v2 field in (b2) should be
similar to the particle traces in (a2).

In both cases we see that there is a good agreement between the numerically predicted field
and the particle traces and thus between the calculated and experimentally inferred forces. In (a1)
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and (b1) we see a structure of 6 bands in which the radiation force focuses particles. The particular
pattern is due to fluid eigenmodes f0,3,0 and f3,0,0 degenerating slightly due to the quadratic shape
of the cavity. The slight deviation from a purely quadratic cross-section and the channel in- and
outlet break the symmetry, however, leading to two neighboring resonance peaks. Each of these
are a mixtfure of the two modes. The plotted one is dominated by f3,0,0 but contains parts of f0,3,0,
causing the particular pattern observed. The neighboring peak, shows the opposite case, as it is
dominated by the f0,3,0 mode.

Regarding (a2) and (b2) we observe that the observed streaming field is parallel to the trans-
ducer, and has 6 × 6 rolls, rather than the 4 vertical rolls per wavelength one would expect from
classical, boundary-driven, Rayleigh streaming. We also note that the 36 rolls have large varia-
tions in their intensity – a trait shared with the experimental data. Hagsäter et al.[54] make specific
mention of this phenomenon with the statement ”If the frequency is shifted slightly in the vicinity
of 2.17 MHz, the same vortex pattern will still be visible, but the strength distribution between
the vortices will be altered”. We observe this high frequency-sensitivity of the streaming field in
our model simulations, possibly caused by the cavity’s broken symmetry. In Fig. 5.3 we chose
the 2.163 MHz frequency for (b2) as this gave the best agreement with (a2), and it is reasonable
to believe that the frequency was not kept fixed between the experiments with large and small
particles.

Due to the lack of reported values regarding the exact design of the chip and of the driving
voltage quantitative comparisons are difficult to carry out. We merely note that with an estimated
driving voltage of 1 V, and a Pz26 slab covering the entire bottom surface of the silicon, our
predicted particle velocities are very similar to those reported.

5.3.2 Streaming driving force

In Fig. 5.4 we plot sets of particle trajectories calculated using our model. In (a) we show particle
paths and final positions of radiation-force-dominated particles. In (b) we show the initial paths
and instantaneous positions of small particles when using an exaggerated bulk driving force in the
streaming field, while we in (c) plot the same with no bulk force.

In Fig. 5.4(a) we see the large particles forming 6 bands parallel to the inlet, mirroring the field
of Fig. 5.3(a1) as the radiation force completely dominates the motion of particles of this size.
More interestingly, we note in Fig. 5.4(b) that as we amplify the

〈
Sac

〉
-term, the small particles

follow the 6 × 6 pattern in a large portion of the cavity cross-section, as a consequence of the
bulk driving force being larger relative to the driving boundary conditions. When we conversely
eliminate the bulk driving altogether in (c) we see that the particle motion is no longer rotating,
but much more similar to that of the large particles.

5.3.3 Large-particle acoustophoresis for a circular cavity

As an additional verification of the model we reshape the cavity to a 1-mm-radius circle as is also
shown in Ref. [54]. We calculate the radiation potential and plot it against the measured motion
of large particles in Fig. 5.5.

The studied cross-section is circular apart from the connecting channel, so a good approximate
solution to the pressure distribution may be given by the modified Bessel function of the first kind
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Figure 5.4: Particle traces for radiation force and streaming drag. (a) Particle paths (blue) and
positions (red) for a homogeneous 60× 60 initial grid of 5 µm-diameter-polystyrene beads in the
mid-height of the cavity 1.5 s after applying the ac potential with V0 = 1V and f = 2.166 MHz.
(b) The same as in (a) but for 1-µm-diameter beads, f = 2.163 MHz, and with a prefactor of 4 on
the
〈
Sac

〉
term in Eq. (5.10) (c) As in (c) but with a prefactor of 0. From Ref. [2].

p(r, θ) ≈ Jn(r) cos(nθ), where n is an integer. Accordingly, the radiation potential can be ap-
proximated U rad ≈ p(r, θ)2 ≈ Jn(r)2 cos(nθ). To compare this simple analytical estimate to our
calculated one, we overlay the prediction radiation potential with contour lines of Jn(r)2 cos(nθ),
for r = 0 at the center of the cavity and θ = 0 aligned with the y-axis.

We see from Fig. 5.5(a) and (b) that the numeric model once again is in good agreement with
the observed particle motion, and that the relative deviation between the observed and calculated
frequencies is merely 0.5 %. From the overlaid contour plot in Fig. 5.5(b), we see that the acoustic
radiation potential is also quite well approximated by the squared Bessel with a rotational depen-
dence, J1(r)2 cos(θ).

5.4 Concluding remarks

We have expanded on our 2D model from previously with five new features, allowing us to model
the most important aspects of an isothermal acoustofluidic devices. We have modeled a previously
presented device and compared our calculated acoustic fields with their experimental findings.

We found a good agreement between our numerically predicted and their experimentally ob-
served acoustophoretic motion. We have also found that for the circular cross-sections in Ref.
[54], the acoustophoresis of large particles can be approximated even simpler by using Bessel
functions.

By amplifying the
〈
Sac

〉
-term of Eq. (5.10) in Fig. 5.4(b), we are effectively increasing the

amount of energy transferred from the acoustic waves into net motion of the fluid, which is one of
the two driving mechanisms for the streaming field, the other being the shear effects at boundaries.
Vice versa, by nullifying it the streaming is only driven by the boundaries. We thus tip the scales
in favor of the streaming being dominated by bulk forces or boundary driven in Fig. 5.4(b) and (c)
respectively.

Hence, we infer that the driving mechanism of the streaming observed in Ref. [54] must be
bulk-driven, as increasing relative strength of the bulk-term increases the agreement with experi-
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Figure 5.5: (a) Arrow plot of particle image velocimetry measurements of 5 µm polystyrene
beads, 1 ms after an ac potential with frequency f = 1.936 MHz is applied across the PZT. The
nearly-quadratic cavity of the device has here been replaced by a 1-mm-radius circular one. The
arrow plot’s background is a micrograph of the cavity after the beads have settled. The silicon
chip is gray, while particle agglomerations are black. Adapted from Ref. [54]. (b) Contour of the
radiation potential at the vertical center-plane of the cavity with superimposed arrows showing the
direction of the radiation force F rad, for the applied frequency f = 1.925 MHz. The overlaid
contour lines indicate the square of the analytical solution U rad ≈ J1(r)2 cos(θ), centered in the
middle of the circular cavity.

ments, while eliminating it completely decreases it. This is despite the common knowledge that
Eckart-streaming is primarily observed in larger systems.

Lei et al.[53] also noted the possibility of the Eckart bulk force driving the streaming pattern,
but omitted the effect in their work. In their model they did observe the 6× 6 pattern driven by the
boundaries, but only in 2 small regions away from the vertical center of the cavity, in which the
particles are present. We on the other hand observed the reported streaming patterns in 80 % of
the cavity height, with the deviations located at the 10 % each at the floor and ceiling of the cavity.
Note that this was even observed with no prefactor on the

〈
Sac

〉
-term. We merely used it to make

the effect clearer.
With our 3D model including piezoelectric effect, anisotropy and effective pressure acoustics

verified by past experiments, we feel confident in applying it to new areas. Therefore, we now
move on to modeling of the novel device described by Sehgal and Kirby [44] with the intention to
explain the working of the device and improve upon the design.
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Abstract: We present a full 3D numerical simulation of the acoustic streaming observed in full-image
micro-particle velocimetry by Hagsäter et al., Lab Chip 7, 1336 (2007) in a 2 mm by 2 mm by 0.2 mm
microcavity embedded in a 49 mm by 15 mm by 2 mm chip excited by 2-MHz ultrasound. The model
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1. Introduction and definition of the model system

For the past 15 years, ultrasound-based microscale acoustofluidic devices have successfully and in
increasing numbers been used in the fields of biology, environmental and forensic sciences, and clinical
diagnostics [1–5]. However, it remains a challenge to model and optimize a given device including all
relevant acoustofluidic aspects. Steadily, good progress is being made towards this goal. Examples
of recent advances in modeling include work in two dimensions (2D) by Muller and Bruus [6, 7] on
thermoviscous and transient effects of acoustic pressure, radiation force, and streaming in the fluid
domain, and work by Nama et al. [8] on acoustophoresis induced by a given surface acoustic wave in
a fluid domain capped by a PDMS lid. Examples of 3D modeling include work by Lei et al. [9, 10] on
boundary-layer induced streaming in fluid domains with hard wall and outgoing plane-wave boundary
conditions, work by Gralinski et al. [11] on the acoustic pressure fields in circular capillaries including
the fluid and glass domains and excited by a given wall vibration, a model later extended by Ley and
Bruus [12] to take into account absorption and outgoing waves, and work by Hahn and Dual [13] on the
acoustic pressure and acoustic radiation force in the fluid domain including the surrounding transducer,
silicon and glass domains, as well as bulk, boundary-layer, and thermal dissipation.
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Figure 1. (a) Top-view photograph of the original transducer-silicon-glass device studied in
2007 by Hagsäter et al. [16]. (b) A cut-open 3D sketch of the device in the red-dashed area
of panel (a) showing the Pz26 piezo-electric transducer (green), the silicon base (gray), the
water-filled cavity (blue) in the top of the silicon base, and the Pyrex lid (orange).

Table 1. The length, width, and height L×W ×H (in mm) of the six rectangular elements in
the acoustofluidic device model of Figure 1(b): The piezoelectric transducer (pz), the silicon
base (si), the Pyrex lid (py), the main cavity (ca), and the two inlet channels (c1) and (c2).

Pz26 Silicon Pyrex Cavity Channel 1 Channel 2
Lpz×Wpz×Hpz Lsi×Wsi×Hsi Lpy×Wpy×Hpy Lca×Wca×Hca Lc1×Wc1×Hc1 Lc2×Wc2×Hc2

49 × 15 × 1.0 49 × 15 × 0.5 49 × 15 × 0.5 2.02 × 2 × 0.2 11.3 × 0.4 × 0.2 12.4 × 0.4 × 0.2

In this paper, we present a 3D model and its implementation in the commercial software COMSOL
Multiphysics [14] of a prototypical acoustofluidic silicon-glass-based device that takes into account
the following physical aspects: the piezo-electric transducer driving the system, the silicon base that
contains the acoustic cavity, the fluid with bulk- and boundary-layer-driven streaming, the Pyrex lid,
and a dilute microparticle suspension filling the cavity. This work represents a synthesis of our previous
modeling of streaming in 2D [6], acoustic fields in 3D [12], and boundary-layer analysis [15] enabling
effective-model computation of streaming in 3D, and it combines and extends the 3D streaming study
in the fluid domain by Lei et al. [10] and the 3D study of acoustics in the coupled transducer-sold-fluid
system by Hahn and Dual [13]. To test the presented coupled 3D model, we have, as Lei et al. [10],
chosen to model the system studied experimentally by Hagsäter et al. in 2007 [16] and shown in
Figure 1. It consists of a rectangular 0.5-mm high silicon base, into the surface of which is etched a
shallow square-shaped cavity with two inlet channels attached. The cavity is sealed with a 0.5-mm
high Pyrex lid that exactly covers the silicon base. At the bottom of the silicon base is attached a 1-mm
high rectangular Pz26 piezo-electric transducer. All three solid layers are 49 mm long and 15 mm
wide. The nearly-square cavity is 2.02 mm long and 2 mm wide and has attached two inlet channels
both 0.4 mm wide, but of unequal lengths 11.3 mm and 12.4 mm, respectively. The channels and cavity
are 0.2 mm deep. A sketch of the model device is shown in Figure 1, and its geometrical parameters
are summarized in Table 1. The transducer is grounded at the top and driven by an ac voltage ϕ̃ of
amplitude ϕ0 = 1 V and a frequency around 2.2 MHz applied to its bottom surface.

AIMS Mathematics Volume 4, Issue 1, 99–111.
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2. Theoretical background

We summarize the coupled equations of motion for a system driven by a time-harmonic electric
potential, ϕ̃ = ϕ0 e−iωt applied to selected boundaries of a piezo-electric Pz26 ceramic. Here, tilde
denotes a field with harmonic time dependency, ω is the angular frequency in the low MHz range,
and “i” is the imaginary unit. This harmonic boundary condition excites the time-harmonic fields: the
electric potential ϕ̃(r, t) in the Pz26 ceramic, the displacement ũ(r, t) in the solids, and the acoustic
pressure p̃1(r, t) in the water,

ϕ̃(r, t) = ϕ(r) e−iωt, ũ(r, t) = u(r) e−iωt, p̃1(r, t) = p1(r) e−iωt. (2.1)

In our simulation, we first solve the linear equations of the amplitude fields ϕ(r), u(r), and p1(r).
Then, based on time-averaged products (over one oscillation period) of these fields, we compute the
nonlinear acoustic radiation force F rad and the steady-state acoustic streaming velocity v2(r).

2.1. Linear acoustics in the fluid

In the fluid (water) of density ρfl, sound speed cfl, dynamic viscosity ηfl, and bulk viscosity ηb
fl, we

model the acoustic pressure p1 as in Ref. [12],

∇2 p1 = −ω
2

c2
fl

(1 + iΓfl) p1, v1 = −i
1 − iΓfl

ωρfl

∇p1, Γfl =

(4
3
ηfl + ηb

fl

)
ωκfl. (2.2)

Here, v1 is the acoustic velocity which is proportional to the pressure gradient ∇p1, while Γfl � 1 is a
weak absorption coefficient, and κfl = (ρflc2

fl)−1 is the isentropic compressibility of the fluid, see Table 2
for parameter values. The time-averaged acoustic energy density Efl

ac in the fluid domain is the sum of
the time-averaged (over one oscillation period) kinetic and compressional energy densities,

Efl
ac =

1
4
ρfl

∣∣∣v1

∣∣∣2 +
1
4
κfl

∣∣∣p1

∣∣∣2. (2.3)

Table 2. Material parameters at 25 ◦C for isotropic Pyrex borosilicate glass [17], cubic-
symmetric silicon [18], and water [6]. Note that c12 = c11 − 2c44 for isotropic solids.

Parameter Pyrex Si Unit Parameter Water Unit

Mass density ρsl 2230 2329 kg m−3 Mass density ρfl 997.05 kg m−3

Elastic modulus c11 69.72 165.7 GPa Sound speed cfl 1496.7 m s−1

Elastic modulus c44 26.15 79.6 GPa Dyn. viscosity ηfl 2.485 mPa s
Elastic modulus c12 17.43 63.9 GPa Bulk viscosity ηb

fl 0.890 mPa s
Damping coeff. Γsl 0.0004 0.0000 1 Damping coeff. Γfl 0.00002 1

– – – – – Compressibility κfl 452 TPa−1

2.2. Linear elastic motion of the solids

In the solid materials, each with a given density ρsl, we model the displacement field u using the
equation of motion given by [12]

− ρslω
2(1 + iΓsl) u = ∇ · σ, (2.4)
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where Γsl � 1 is a weak damping coefficient. Here, σ is the stress tensor, which is coupled to u
through a stress-strain relation depending on the material-dependent elastic moduli. The time-averaged
acoustic energy density in the solids is given by the sum of kinetic and elastic contributions,

Esl
ac =

1
4
ρslω

2|u|2 +
1
4

Re
[
(∇u) : σ∗

]
, (2.5)

where ”Re” denotes the real value and ”*” the complex conjugate of a complex number, respectively.

2.3. Stress-strain coupling in elastic solids

For a crystal with either cubic or isotropic symmetry, the relation between the stress tensor σi j and
strain components 1

2 (∂iu j + ∂ jui) is given in the compact Voigt representation as [19]



σxx

σyy

σzz

σyz

σxz

σxy



=



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0

0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44





∂xux

∂yuy

∂zuz

∂yuz+∂zuy

∂xuz+∂zux

∂xuy+∂yux



, for Pyrex and silicon. (2.6)

Here, ci j are the elastic moduli which are listed for Pyrex and silicon in Table 2.

2.4. Stress-strain coupling in piezoelectric ceramics

Lead-zirconate-titanate (PZT) ceramics are piezoelectric below their Curie temperature, which
typically is 200 − 400 ◦C. Using Cartesian coordinates and the Voigt notation for a PZT ceramic, the
mechanical stress tensor σi j and electric displacement field Di are coupled to the mechanical strain
components 1

2 (∂iu j + ∂ jui) and the electrical potential ϕ through the relation [19]



σxx

σyy

σzz

σyz

σxz

σxy

Dx

Dy

Dz



=



c11 c12 c13 0 0 0 0 0 −e31
c12 c11 c13 0 0 0 0 0 −e31
c13 c13 c33 0 0 0 0 0 −e33
0 0 0 c44 0 0 0 −e15 0
0 0 0 0 c44 0 −e15 0 0
0 0 0 0 0 c66 0 0 0
0 0 0 0 e15 0 ε11 0 0
0 0 0 e15 0 0 0 ε11 0

e31 e31 e33 0 0 0 0 0 ε33





∂xux

∂yuy

∂zuz

∂yuz +∂zuy

∂xuz +∂zux

∂xuy +∂yux

−∂xϕ

−∂yϕ

−∂zϕ



, for Pz26. (2.7)

The values of the material parameters for the PZT ceramic Pz26 are listed in Table 3. Due to the high
electric permittivity of Pz26, we only model the electric potential ϕ in the transducer, and since we
assume no free charges here and only low-MHz frequencies, ϕ must satisfy the quasi-static equation,

∇ ·D = 0, for Pz26. (2.8)
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Table 3. Material parameters of Ferroperm Ceramic Pz26 from Meggitt A/S [20]. Isotropy
in the x-y plane implies c66 = 1

2 (c11 − c12). The damping coefficient is Γsl = 0.02 [13].

Parameter Value Parameter Value Parameter Value
ρsl 7700 kg/m3 ε11 828 ε0 ε33 700 ε0
c11 168 GPa c33 123 GPa e31 −2.8 C/m2

c12 110 GPa c44 30.1 GPa e33 14.7 C/m2

c13 99.9 GPa c66 29.0 GPa e15 9.86 C/m2

2.5. Boundary conditions and boundary layers in the fluid at the fluid-solid interfaces

The applied boundary conditions are the usual ones, namely that (1) the stress and the velocity
fields are continuous across all fluid-solid and solid-solid interfaces, (2) the stress is zero on all outer
boundaries facing the air, (3) the piezoelectric ceramic is driven by a given electric potential at specified
surfaces that represent the presence of infinitely thin, massless electrodes, and (4) there are no free
charges on the surface of the ceramic. The influence (A ← B) on domain A from domain B with the
surface normal n pointing away from A, is given by

Pz26 domain← ground electrode, top: ϕ = 0, (2.9a)
Pz26 domain← phase electrode, bottom: ϕ = ϕ0, (2.9b)

Pz26 and solid domain← air: σ · n = 0 and n ·D = 0, (2.9c)
Solid domain← fluid: σ · n = −p1 n + iksηfl(vsl − v1

)
, (2.9d)

Fluid domain← solid: v1 · n = vsl · n +
i
ks
∇‖ · (vsl − v1

)
‖. (2.9e)

While the overall structure of these boundary conditions is the usual continuity in stress and velocity,
the details of Eqs. (2.9d) and (2.9e) are not conventional. They are the boundary conditions for the
surface stress σ · n of Eq. (2.4) and the acoustic velocity v1 of Eq. (2.2) (proportional to the gradient
of the acoustic pressure p1) derived by Bach and Bruus using their recent effective pressure-acoustics
theory [15]. In this theory, the viscous boundary layer of thickness δ =

√
2ηfl/(ρflω) (≈ 0.35 µm at

2.3 MHz) has been taken into account analytically. As a result, terms appear in Eqs. (2.9d) and (2.9e)
that involve the shear-wave number ks = (1+ i)δ−1 as well as the tangential divergence of the tangential
component of the difference between the solid-wall velocity vsl = −iωu and the acoustic velocity v1
at the fluid-solid interface. This boundary condition also takes into account the large dissipation in the
boundary layers, which leads to an effective damping coefficient Γeff

fl ≈ δ
H ≈ 0.002, the ratio of the

boundary layer width δ to the device height H [6,13,15]. Remarkably, this boundary-layer dissipation
dominates dissipation in the fluid domain, because Γfl � Γeff

fl � 1.

2.6. The acoustic streaming

The acoustic streaming is the time-averaged (over one oscillation period), steady fluid velocity v2
that is induced by the acosutic fields. In our recent analysis [15], we have shown that the governing
equation of v2 corresponds to a steady-state, incompressible Stokes flow with a body force in the bulk
due to the time-averaged acoustic dissipation proportional to Γfl. Further, at fluid-solid interfaces, the
slip velocity vbc

2 takes into account both the motion of the surrounding elastic solid and the Reynolds
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stress induced in viscous boundary layer in the fluid,

∇ · v2 = 0, ηfl∇2v2 = ∇p2 −
Γflω

2c2
fl

Re
[
p∗1v1

]
, v2 = vbc

2 , at fluid-solid interfaces, (2.10a)

n · vbc
2 = 0, (1 − nn) · vbc

2 = − 1
8ω

∇‖
∣∣∣v1‖

∣∣∣2 − Re
[(

2 − i
4ω

∇‖ ·v∗1‖ +
i

2ω
∂⊥v∗1⊥

)
v1‖

]
. (2.10b)

Here, we have used a special case of the slip velocity vbc
2 , which is only valid near acoustic resonance,

where the magnitude |v1| of the acoustic velocity in the bulk is much larger than ω |ubc
sl | of the walls.

2.7. The acoustic radiation force and streaming drag force on suspended microparticles

The response of primary interest in acoustofluidic applications, is the acoustic radiation force F rad

and the Stokes drag from the acoustic streaming v2 acting on suspended microparticles. In this work,
we consider 1- and 5-µm-diameter spherical polystyrene ”Styron 666” (ps) particles with density ρps
and compressibility κps. For such large microparticle suspended in water of density ρfl and
compressibility κfl, thermoviscous boundary layers can be neglected, and the monopole and dipole
acoustic scattering coefficients f0 and f1 are real numbers given by [21],

f0 = 1 − κps

κfl

= 0.468, f1 =
2(ρps − ρfl)

2ρps + ρfl

= 0.034. (2.11a)

Given an acoustic pressure p1 and velocity v1, a single suspended microparticle of radius a, experience
an acoustic radiation force F rad, which, since f0 and f1 are real, is given by the potential U rad [22],

F rad = −∇U rad , where U rad =
4π
3

a3
(

f0
1
4
κfl|p1|2 − f1

3
8
ρfl|v1|2

)
. (2.11b)

The microparticle is also influenced by a Stokes drag forceF drag = 6πηfla
(
v2−vps

)
, where v2 and vps

is the streaming velocity and the polystyrene particle velocity at the particle position rps(t), respectively.
In the experiments, the streaming and particle velocities are smaller than v0 = 1 mm/s, which for a
5-µm-diameter particle corresponds to a small particle-Reynolds number 1

ρfl
ηflav0 = 0.6. Consequently,

we can ignore the inertial effects and express the particle velocity for a particle at position r from the
force balance F rad + F drag = 0, between the acoustic radiation force and streaming drag force,

vps(r) = v2(r) +
1

6πηfla
F rad(r). (2.12)

The particle trajectory rps(t) is then determined by straightforward time integration of d
dtrps = vps(rps).

2.8. Numerical implementation

Following the procedure described in Ref. [12], including mesh convergence tests, the coupled
field equations (2.2) and (2.4) for the fluid pressure p1 and elastic-solid displacement u are
implemented directly in the finite-element-method software Comsol Multiphysics 5.3a [14] using the
weak form interface “PDE Weak Form”. A COMSOL script with a PDE-weak-form implementation
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of acoustofluidics is available as supplemental material in Ref. [7]. Here, we extend the model of
Ref. [12] by including the transducer with the piezoelectric stress-strain coupling Eq. (2.6) and
implementing the governing equation (2.8) for the electric potential ϕ in weak form. Similarly, the
boundary conditions Eq. (2.9) are implemented in weak form. Specifically, the effective-model
boundary conditions are implemented as “Weak Contributions” as follows. The stress
condition Eq. (2.9d) is given by the weak contribution

test(uX) ∗ (−p1 ∗ nX + i ∗ ks ∗ etafl ∗ (vslX − v1X))
+ test(uY) ∗ (−p1 ∗ nY + i ∗ ks ∗ etafl ∗ (vslY − v1Y))
+ test(uZ) ∗ (−p1 ∗ nZ + i ∗ ks ∗ etafl ∗ (vslZ − v1Z)), (2.13)

where n = (nX, nY, nZ) is the normal vector away from the solid domain, and test(uX) is the finite-
element test function corresponding to the x-component ux of the solid displacement field u, and
similar for y and z. The velocity condition Eq. (2.9e) is given by the weak contribution

i ∗ omega ∗ rhofl/(1 − i ∗ Gammafl) ∗ test(p1) ∗ (vslX ∗ nX + vslY ∗ nY + vslZ ∗ nZ
+i/ks ∗ (dtang(vslX − v1X, x) + dtang(vslY − v1Y, y) + dtang(vslZ − v1Z, z)), (2.14)

where n = (nX, nY, nZ) now is the normal vector away from the fluid, test(p1) is the test function for
p1, and dtang is the tangent-plane derivative operator available in COMSOL, see Ref. [15].

In a second step, we implement Eq. (2.10) for the acoustic streaming v2 in weak form. Specifically,
the effective-model slip velocity condition are implemented as a “Dirichlet Boundary Condition” as
follows. We use the outward normal vector (nX, nY, nZ) as before and also the two perpendicular
tangent vectors (t1X, t1Y, t1Z) and (t2X, t2Y, t2Z), and write the x-component v2bcX of vbc

2 as,

v2bcX = (t1X ∗ AX + t1Y ∗ AY + t1Z ∗ AZ) ∗ t1X + (t2X ∗ AX + t2Y ∗ AY + t2Z ∗ AZ) ∗ t2X, (2.15)

and similarly for the y and z components. Here, (AX, AY, AZ) is a vector defined in terms of the tangent-
plane derivative ∇‖ and the parallel velocity v1‖ = (v1parX, v1parY, v1parZ) with the x-component
v1parX = (v1 · t1) t1x + (v1 · t2) t2x, as follows,

AX = −1/8/omega ∗ (dtang(S1, x) + realdot((4 + 2 ∗ i)/4 ∗ S2 − 4 ∗ i ∗ S3, v1parX), (2.16a)
AY = −1/8/omega ∗ (dtang(S1, y) + realdot((4 + 2 ∗ i)/4 ∗ S2 − 4 ∗ i ∗ S3, v1parY), (2.16b)
AZ = −1/8/omega ∗ (dtang(S1, z) + realdot((4 + 2 ∗ i)/4 ∗ S2 − 4 ∗ i ∗ S3, v1parZ), (2.16c)
S1 = abs(v1parX)ˆ2 + abs(v1parY)ˆ2 + abs(v1parZ)ˆ2, (2.16d)
S2 = dtang(v1parX, x) + dtang(v1parY, y) + dtang(v1parZ, z), (2.16e)
S3 = i ∗ omega/rhofl/cflˆ2 ∗ p1 − S2. (2.16f)

Finally, the acoustic radiation force F rad acting on the particles is calculated from Eq. (2.11) using
the acoustic pressure p1 and velocity v1, and subsequently in a third step, following Ref. [23], we
compute the particle trajectories rps(t) from the time-integration of Eq. (2.12).

We optimize the mesh to obtain higher resolution in the water-filled cavity, where we need to
calculate numerical derivatives of the resulting fields to compute the streaming and radiation forces,
and less in the surrounding solids and in the transducer. We ensure having at least six nodal points per
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wave length in all domains, which for the second-order test function we use, corresponds to maximum
mesh sizes of 0.52 mm, 0.59 mm, 0.50 mm, and 0.22 mm in the domains of Pz26, silicon, Pyrex, and
water, respectively. The final implementation of the model contains 1.1 and 0.4 million degrees of
freedom for the first- and second-order fields, repsectively. On our workstation, a Dell Inc Precision
T7500 Intel Xeon CPU X5690 at 3.47 GHz with 128 GB RAM and 2 CPU cores, the model requires
45 GB RAM and takes 18 min per frequency. When running frequency sweeps of up to 70 frequency
values, we used the DTU high-performance computer cluster requiring 464 GB RAM and 11 min per
frequency.

3. Results for the transducer-glass-silicon acoustofluidic device

We apply the 3D model of Section 2 to the transducer-glass-silicon acoustofluidic device by
Hagsäter et al. [16], shown in Figure 1 and using the parameter values listed in Tables 1, 2, and 3. In
Figure 2 we compare the experimental results from Ref. [16] with our model simulations.

Figure 2. (a1) Micro-PIV measurements adapted from Ref. [16] of the particle velocity
vps after 1 ms (yellow arrows, maximum 200 µm/s) superimposed on a micrograph of the
final positions (black curved bands) of 5-µm-diameter polystyrene particles in water with
a standing ultrasound wave at 2.17 MHz. (a2) Same as panel (a1), but for 1-µm-diameter
polystyrene particles moving in a 6-by-6 flow-roll pattern without specific final positions.
(b1) Numerical 3D COMSOL modeling with actuation voltage ϕ0 = 1 V of the acoustic
potential U rad from 0 fJ (black) to 7 fJ (orange) and the velocity (yellow arrows, maximum
170 µm/s) after 1 ms of 5-µm-diameter polystyrene particles in the horizontal center plane
of the water-filled cavity at the resonance f = 2.166 MHz. (b2) Numerical modeling at
the same conditions as in panel (b1), but at the slightly lower frequency 2.163 MHz, of the
particle velocity vps (magenta vectors) and its magnitude vps from 0 (black) to 200 µm/s
(white) of 1-µm-diameter polystyrene particles.
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In Figure 2(a1) we show the measured micro-particle image velocimetry (micro-PIV) results
obtained on a large number of 5-µm-diameter tracer particles at an excitation frequency of 2.17 MHz.
The yellow arrows indicate the velocity of the tracer particles 1 ms after the ultrasound has been
turned on, and the black bands are the tracer particles focused at the minimum of the acoustic
potential U rad after a couple of seconds of ultrasound actuation. A clear pattern of 3 wavelengths in
each direction is observed. Similarly, in Figure 2(a2) is shown the micro-PIV results for the smaller
1-µm-diameter tracer particles. It is seen that these particles, in contrast to the larger particles, are not
focused but keep moving in a 6-by-6 flow-roll pattern. This result from Ref. [16] is remarkable, as the
conventional Rayleigh streaming pattern [6, 7, 23] has four streaming rolls per wavelength oriented in
the vertical plane, but here is only seen two rolls per wavelength, and they are oriented in the
horizontal plane.

In Figure 2(b1) and (b2) we see that our model predicts the observed acoustofluidics response
qualitatively for both the larger and the smaller tracer particles at a resonance frequency slightly below
2.17 MHz. Even the uneven local amplitudes of the particle velocity vps in the 6-by-6 flow-roll pattern,
which shifts around as the frequency is changed a few kHz, is in accordance with the observations. In
Ref. [16] it is mentioned that “If the frequency is shifted slightly in the vicinity of 2.17 MHz, the same
vortex pattern will still be visible, but the strength distribution between the vortices will be altered.”.
We have chosen the 3-kHz lower frequency in Figure 2(b2) compared to (b1) to obtain a streaming
pattern similar to the observed one for the small 5-µm-diameter particles.

Quantitatively, we find the following. The acoustic resonance is located at 2.166 MHz, only 0.2 %
lower than the experimental value of 2.17 MHz. This good agreement should not be over emphasized,
as we had to assume a certain length and width of the Pz26 transducer, because its actual size was
not reported in Ref. [16]. Another source of error is that we have not modeled the coupling gel used
in the experiment between the Pz26 transducer and the silicon base. The actual actuation voltage in
the experiment has not been reported, so we have chosen ϕ0 = 1 V, well within the range of the 20 V
peak-to-peak function generator mentioned in Ref. [16], as it results in velocities vps ≈ 170 µm/s for
the large 5-µm-diameter, in agreement with the 200 µm/s reported in the experiment.

In Figure 3 we show another result that is in agreement with the experimental observations,
namely the particle trajectories rps(t) for suspensions of tracer particles of different size. The larger
5-µm-diameter particles are focused along the bottom of the troughs in the acoustic potential U rad ,
shown in Figure 2(b1), after a short time 1

12 (2 mm)/(170 µm/s) ≈ 1 s, forming the red wavy bands in
Figure 3(a) very similar to the observed black bands in Figure 2(a1). In contrast, the smaller
1-µm-diameter particles are caught by the 6-by-6 streaming vortex pattern and swirl around without
being focused, at least within the first 1.5 s as shown in Figure 3(b), in full agreement with the
experimental observation shown in Figure 2(a2).

4. Discussion

Our full 3D numerical model, which takes into account the piezo-electric transducer, the silicon
base with the water-filled cavity, the viscous boundary layers in the water, and the Pyrex lid, has
been tested qualitatively and quantitatively by comparing the results for the acoustic radiation force,
for the streaming velocity, and for the trajectories of tracer particles of two different sizes with the
decade-old experimental results presented by Hagsäter et al. [16]. Remarkably, as predicted by Bach
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and Bruus [15], we find that the characteristic horizontal 6-by-6 flow-roll pattern of the small 1-µm-
diameter particles is caused by the so-called Eckart bulk force, the term in (2.10a) proportional to the
acoustic energy flux density or intensity Sac = 1

2Re
[
p∗1v1

]
. In our simulations this pattern occupies

80 % of the cavity volume stretching from 0.1 to 0.9 in units of the channel height Hca and looks as
the one in the midplane at 0.5 Hca shown in Figs. 2(b2) and 3(b). Lei et al. [10] also pointed out that
Sac could lead to the horizontal 6-by-6 flow-roll pattern in their 3D-fluid-domain model with hard-
wall and outgoing-plane-wave boundary conditions of the same device. In their model, the Eckart
bulk force was neglected, and the horizontal-flow-roll producing term Sac appears only as part of their
limiting-velocity boundary condition. As the remaining curl-free part of the boundary condition is
dominating, they found the horizontal 6-by-6 flow-roll pattern to be confined to narrow regions around
the two horizontal planes at 0.2 and 0.8 Hca and absent in the center plane at 0.5 Hca, the focal plane
in the experimental studies. As our slip-velocity condition (2.10b) also contains Sac, see Eq. (62a) in
Ref. [15], we do reproduce their findings, when we suppress the Eckart bulk force in Eq. (2.10b). This
is illustrated in Figure 3(c), where we show that the flow-roll behavior is suppressed in the center plane
and replaced by a clear divergent behavior.

Figure 3. Numerical 3D COMSOL modeling of the trajectories rps(t) (blue tracks) of 3600
polystyrene particles of radius a corresponding to the cases shown in Figure 2(b1) and (b2).
The particles start from 60 × 60 regular quadratic grid points in the horizontal center plane
of the cavity at t = 0 s when the ultrasound field is turned on, and their positions after 1.5 s
are represented by red points. (a) a = 2.5 µm at f = 2.166 MHz. (b) a = 0.5 µm at
f = 2.163 MHz with the Eckart bulk force in Eq. (2.10a) increased by a factor 4. (c) Same
as panel (b) but without the Eckart bulk force in Eq. (2.10a).

In agreement with Lei et al. [10], we find that although the determination of the first-order pressure
p1 and the acoustic potential U rad is fairly robust, the computation of the streaming velocity v2 from
the Stokes equation (2.10a) is sensitive to the exact value of the frequency and of the detailed shape
of the fluid solid interface. In Ref. [24] we have shown in a simplified 3D-rectangular-fluid-domain
model that the rotation of the acoustic intensity changes an order of magnitude when the aspect ratio
Lca/Wca changes 1 %. In this study we have increased the Eckart bulk force in Eq. (2.10a) by a
factor of 4 in order to make the rotating 6x6 pattern dominate clearly over the Rayleigh streaming in
the center plane. This amplification may reflect that the chosen aspect ratio Lca/Wca = 1.01 was not
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exactly the one realized in the experiment, an effect which should be studied further in experiments
and simulations.

Our numerical study indicate that although the cavity in the Hagsäter device has a size of only three
acoustic wavelengths, the existence of in-plane flow rolls may be controlled by the Eckart bulk force.
This conclusion runs contrary to the conventional wisdom that the Eckart bulk force is only important
in systems of a size, which greatly exceeds the acoustic wave length. This phenomenon deserves a
much closer study in future work.

While our model takes many of the central aspects of acoustofluidics into account, it can still be
improved. One possible improvement would be to include the influence of heating on the material
parameters as in Ref. [6]. One big challenge in this respect is to determine the material parameters
of the solids, which may be temperature and frequency dependent. Another difficult task is to model
the coupling between the transducer and the chip, which in experiments typically are coupled using
coupling gels or other ill-characterized adhesives. The last point we would like to raise is use of the
simple Stokes drag law on the suspended particles in the cavity. Clearly, this model may be improved
by including particle-wall effects and particle-particle interactions. However, as direct simulations of
both of these effects are very memory consuming their implementation would require effective models.

5. Conclusion

We have described the implementation of a full 3D modeling of an acoustofluidic device taking
into account the viscous boundary layers and acoustic streaming in the fluid, the vibrations of the solid
material, and the piezoelectricity in the transducer. As such, our simulation is in many ways close to
a realistic device, which is also reflected in the agreement between the simulation and the experiment
shown in Figs. 2 and 3. Our model has correctly predicted the unusual streaming pattern observed
in the device at the 2.17-Mz resonance: a horizontal 6-by-6 flow-roll pattern in 80 % of the cavity
volume, a pattern much different form the conventional 12-by-2 Rayleigh streaming pattern in the
vertical plane. Moreover, our model has revealed the surprising importance of the Eckart bulk force in
an acoustic cavity with a size comparable to the acoustic wavelength. In future work, we must analyze
the sensitivity of the streaming velocity and improve our understanding of the amplitude of the Eckart
bulk force.

By introducing the model, we have demonstrated that simulations can be used to obtain detailed
information about the performance of an acoustofluidic device in 3D. Such simulations are likely to be
useful for studies of the basic physics of acoustofluidics as well as for engineering purposes, such as
improving existing microscale acoustofluidic devices. However, To fully exploit such modeling, more
accurate determination is needed of the acoustic parameters of the actual transducers, elastic walls, and
particle suspensions employed in a given experiment.
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Chapter 6

Analysis of a complex 3D SAW system

In this chapter we will describe slight improvements made to the iteration of the numeric model
described in Chapter 5, by adding to the material library and solving it in 3D on DTU’s high
performance cluster [66]. We now apply the model to the SAW device described by Sehgal and
Kirby [44] to study its inner workings and improve upon its design. Once again this chapter has
a large overlap with the enclosed manuscript for a journal article 3D modeling of acoustofluidics
in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a
piezoelectric transducer by N. R. Skov, P. Sehgal, B. J. Kirby, and H. Bruus submitted to Physical
Review Applied [3] (1PDF), enclosed in full at the end of this chapter.

6.1 Motivation

The numeric model is now at a point where it can model a BAW device with dimensions on
the centimeter-scale one-to-one, and give results that agree well with experimentally observed
acoustophoretic motion. To further expand on our model, we move on to model a SAW device
that has shown promise in separating microparticles on the nanometer-scale [44] to understand and
improve upon it. To model the device we add a new material, a new set of boundary conditions, a
virtual impedance measurement, and antisymmetry lines.

6.1.1 Improving on an existing design

As mentioned in Chapter 1 the aim of acoustofluidic devices is almost always the manipulation
of suspended particles or cells in some way. One interesting aspect is the concentration of so-
called exosomes that are sub-micron-sized extracellular vesicles showing potential in diagnostics
[111]. Given their small size in blood they are difficult to isolate even in acoustofluidic devices
due to the force balance tipping in favor of streaming dominated motion. Conventional methods
of separation include bulk centrifuge, which requires large bulk samples, takes several hours to
achieve, and has a yield of 5% to 25 % [77].

Some focusing of small particles has been successful in BAW devices using streaming effects
[112] or seed particles [38] and in SAW devices using vortices [113]. However, these methods

1FiXme: Fix link.
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88 ANALYSIS OF A COMPLEX 3D SAW SYSTEM

have little in the way of selectivity and capture cells of all sizes.
A novel SAW device designed by Collins et al.[114] achieved a good separation of 300 nm

particles from 500 nm particles. Sehgal and Kirby [44] improved upon this design and achieved
separation between 100 nm and 300 nm particles. We reshape our numeric model to study the
device in Ref. [44], and improve upon its design. Based on our analysis a new device was made
showing improved particle focusing.

6.2 Model system

The model system is shown in Fig. 6.1(a). It consists of a lithium niobate substrate with a bi-
directional parallel-finger interdigitated transducer (IDT) electrode patterned on its top. The IDT
has a resonant frequency determined by the electrode periodicity λSAW and the surface wave
velocity vSAW, as fSAW

res = vSAW/λSAW = 49.94 MHz, see Section 6.2.2. When an ac potential
is applied across the IDT electrodes the IDT emits vertically polarized surface waves with a plane
wave front parallel to the finger pairs. On both of the emitting sides of the IDT a set of Bragg
reflector electrodes are patterned to reflect outgoing surface waves back towards the IDT.

Figure 6.1: The model system used. (a) The experimental device of [44]. A microchannel
defined in a slab of PDMS rests on a lithium niobate substrate. The substrate is patterned with an
interdigitated transducer electrode bounded by Bragg reflector electrodes on both emitting sides
Image from Prateek Sehgal. (b) The 2D numeric model initially studied. The outermost Lithium
niobate and PDMS is replaced by PML domains to reduce the computational cost. Additionally,
half of the domain is omitted by using symmetry conditions on the vertical centerline. Image
courtesy of P. Sehgalx

Bonded to the top of the substrate is a large PDMS with a microchannel defined in it. A
portion of the microchannel covers the entirety of the IDT-reflector configuration and makes a
10 % angle with the electrode fingers and a 80 % angle with the outgoing waves of the IDT.
Fluid is fed to the channel through 2 buffer inlets and a particle inlet trifurcating upstream of the
portion of the channel covering the IDT. Downstream of the IDT the water leaves the chip in two
separate outlets. Particles having migrated to one side of the channel is thus collected in one outlet,
whereas particles who have not migrated are collected at the other. See Fig. 6.1(b) and Table 6.1
for dimensions of the models.
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Whereas we have successfully performed full-scale simulations of a device in Chapter 5, we
are now dealing with a computationally much heavier problem. This is due to the high actua-
tion frequency range of the device. We therefore set up a 2D version of the model as shown in
Fig. 6.1(b) for doing frequency sweeps and a 3D model for calculations at select frequencies de-
termined using the 2D models. The 2D model shown in Fig. 6.1 accounts for the piezoelectric
coupling in lithium niobate and the fluid-structure interactions between the fluid and both solids.
The 2D model reintroduces PML from Chapter 4 due to the exceedingly high damping in PDMS
and contains an antisymmetry line as mentioned in Section 3.7.2. Note that the 2D representation
here is not strictly representative for any portion of the channel as the IDT makes a 10% angle with
the channel walls. However, as the device does not rely on setting up a resonance in the width of
the channel, the 2D approximation is still in good agreement with experimental results. The

In addition to the model shown in Fig. 6.1(b) we set up a similar 2D model but encased in
Pyrex instead, as this should intuitively increase the intensity of the acoustic fields in the device
by decreasing the energy dissipating in the solid lid due to two effects; Pyrex has a higher acoustic
impedance ratio with water and thus reflects a larger portion of energy back into the fluid domain.
Additionally it has a lower damping factor Γs. Therefore a portion of the energy that is transmitted
into the Pyrex from the fluid is reflected at the Pyrex-air interface and will be transmitted back into
the fluid. In the following we denote the PDMS-lid model representing the device from Ref. [44]
D1 and the model of the new design with a Pyrex lid D2.

To model the SAW device, we expand further on the numeric model, by including 128 ◦ cut
YX-lithium niobate, antisymmetry conditions, and a virtual probe for numerically calculating the
electrical impedance of the device.

Table 6.1: Dimensions of the numeric 2D and 3D models. Adapted from [3]

Parameter Symbol 2D (D1) 2D (D2) 3D Unit
Device depth (y) Lsl - - 1200 µm
Solid height (z) Hsl 300 500 500 µm
Solid width (x) Wsl 200 200 80 µm
Solid material - PDMS Pyrex Pyrex -
Channel height Hfl 50 50 50 µm
Channel width Wfl 3500 3500 900 µm
Piezo height Hpz 300 300 300 µm
PML length LPML 80 80 80 µm
PML domains ΩPML Piezo and PDMS Piezo Piezo -
No. of electrode pairs nel 24 24 4 -
No. of reflectors nrf 6 6/0 0 -

6.2.1 128◦ Y-X cut lithium niobate

The piezoelectric substrate in the device is the commonly used 128◦ Y-X cut lithium niobate due to
its good piezoelectric coupling [115]. The material parameters for this cut are not measured exper-
imentally so we calculate them from the unrotated values collected by Weis [98]. Tan et al.[116]
did calculate and report values for 128◦ Y-X cut lithium niobate but the values they find are not
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in accordance with ours. Therefore we shortly account for our method for determining the rotated
material properties here.

The wafers are made by slicing mono-crystalline lithium niobate at a 128 ◦ angle relative to
the crystal XY -plane. The outward facing normal to the top surfaces of wafers thus make a 128 ◦

angle with the crystal Y -axis and a 128−90 = 38◦ angle with the crystal Z-axis [115], illustrated
in Fig. 6.2.

Figure 6.2: (a) The material coordinate system of mono-crystalline lithium niobate relative to the
3 mirror planes. The growth direction is the Z-axis. (b) 128 ◦ Y-X cut lithium niobate wafer and
the global coordinate system x, y, z relative to the material coordinate system X,Y, Z. Adapted
from [3]

We define the rotation matrix,

Rx(θ) =




1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)


 , (6.1)

(6.2)

and the resulting Bond-stress-transformation matrix

Mσ =




1 0 0 0 0 0

0 cos(θ)2 sin(θ)2 2 cos(θ) sin(θ) 0 0

0 sin(θ)2 cos(θ)2 −2 cos(θ) sin(θ) 0 0

0 − cos(θ) sin(θ) cos(θ) sin(θ) cos(θ)2 − sin(θ)2 0 0
0 0 0 0 cos(θ) sin(θ)
0 0 0 0 − sin(θ) cos(θ)



, (6.3)

as described in Section 3.6 and use them to calculate the elasticity tensor C ′, coupling tensor e′

and permittivity tensor ε′ of the 128 ◦ Y-X cut lithium niobate using the three relations

C ′ = MσCM
−T
σ , (6.4)

e′ = ReMT
σ , (6.5)

ε′ = RεRT . (6.6)
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In Chapter C the calculated material parameters for 128 ◦ Y-X cut lithium niobate are listed.

6.2.2 IDT -, reflector - and submerged electrodes

The principle of the interdigitated transducer is sketched in Fig. 6.3(a) for an IDT consisting of
2 finger pairs, neighboring a single Bragg reflector array consisting of 4 reflector fingers. By
applying alternating charge and ground on electrodes, waves with a wavelength λSAW are formed
at each finger pair.

By matching the time of flight for formed waves with the periodicity of the actuation potential,
a resonance can be built up over the array of fingers. Ideally this effect should be enhanced by the
Bragg reflector electrodes. Each finger should partially reflect waves back over the IDT array in
phase with the newly formed outgoing waves.

Reflector electrode conditions

The Bragg reflectors are electrically shorted at the ends. This cannot be captured by a 2D model
as we capture the cross-section indicated by the dashed purple line in Fig. 6.3. We work around it
using a constraint and a Dirichlet boundary conditions. The unknown, floating potential φfe

1 of the
reflector finger closest to the IDT is fixed by the condition Eq. (2.36)

∂‖φ
fe
1 = 0. (6.7)

The potential given by Eq. (6.7) is then applied as a Dirichlet condition on the remaining fingers
of the Bragg reflector,

φbr
1 = φfe

1 (6.8)

Submerged electrode modeling

To reduce the numeric inaccuracy caused by the sharp edges and simplify the meshing, we model
the electrodes as being submerged. In the actual device the electrodes protrude Hel = 400 nm
into the fluid as shown in Fig. 6.3(b), but we instead model them as being deposited 400 nm into
the substrate Fig. 6.3(b). This change is negligible with regards to the propagation of SAW in the
substrate and the bulk acoustic pressure in the height, but is crucial in eliminating the numerical
singularities caused by sharp edges.

6.2.3 Virtual impedance analyzer

As an additional measure of numerical agreement with experiments we compare the magnitude
|Zel| and phase ψ of the physically measured complex electrical impedance Zel with our numeri-
cally calculated ones. The electrical impedance is defined as the ratio of the driving voltage V0 to
the current I running through the device

Zel = |Zel|e−iψ =
V0

I
, (6.9)
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Figure 6.3: (a) Top-view sketch of the parallel-finger bi-directional IDT and Bragg reflector de-
signs. (b) Side-view sketch of the actual positions of grounded (black), charged (red) and reflector
(blue) electrodes. (c) Side-view sketch of the modeled positions of electrodes.

We compute the numerical electrical impedance by combining Eqs. (2.28)-(2.30) of Section 2.5.6
into a single expression which we integrate over the charged electrodes with surface ∂Ωch

I =

∫

∂Ωch

−iω(D − ε0E) · n dA, (6.10)

We use this value to compute the electrical impedance of the equivalent circuit of our device

∣∣∣Zel
∣∣∣ =

∣∣∣∣
V0

I

∣∣∣∣ , ψ = arg

(
V0

I

)
. (6.11)

6.2.4 2D Antisymmetry conditions

In our 2D models, we employ antisymmetry conditions along a vertical line passing the center of
the IDT. The conditions are and their causes are;

∂xux = 0 x-polarized displacement antinode in the middle of electrode fingers, (6.12a)

uz = 0 z-polarized displacement nodes in the middle of electrode fingers, (6.12b)

φ =
1

2
V0 Average potential of a charged and a grounded electrode, (6.12c)

p1 = 0 Pressure nodes in the middle of electrode fingers. (6.12d)

We verify that these conditions hold by running a single simulation for a full 2D device and
compare the resulting fields in the full simulation to those obtained using the symmetry condition.
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To compare the two solutions we define the maximum relative deviation

g =
max(g − gref)

max(gref)
(6.13)

For the first-order fields, using the full solution as reference solution gref we find φ1 = 5.5×10−4,
vx,1 = 1.7 × 10−3, vz,1 = 1.2 × 10−3, and p1 = 6 × 10−3, showing good numerical agreement
between the full-width model and the symmetry-condition model.

Implementing the above conditions in the 2D simulation cut the degrees of freedom from 1.28
million to 0.64 million and reduced the computation time for solving a single frequency from 360
seconds to 48 seconds on a regular work station.

6.2.5 3D modeling using the high performance cluster computing

Relative to the model in Chapter 5 the frequency used here is ∼ 25 times higher, and thus the
wavelength is 25 times smaller. Accordingly a fixed-dimension domain would require 253 =
15625 times as many mesh elements to model at this frequency. Hence, to model the device in 3D
it was necessary to utilize the high performance cluster (HPC) at DTU mentioned in Section 3.4
[66].

Even so it was necessary to scale down the 3D model to feasibly compute it with the cores
available to us, and solely model the Pyrex-lid device. Therefore we created a model with only 4
electrode pairs, and no Bragg reflectors due to their small effect on the acoustic fields. We model
the IDT in an idealized fashion as an array of parallel lines with no connector electrodes. Even
with these reductions the model has 4.4 million degrees of freedom and took 14 hours to compute
across 80 computational nodes of 25 GB RAM each.

6.3 Key results and observations

First off we compare our numeric model to the physical device through the electrical impedance
before moving to acoustic fields. We compare the experimentally observed acoustophoretic mo-
tion in the channel cross-section to the one we predict numerically in our 2D models. We addi-
tionally compare observed the acoustophoretic motion parallel to the substrate to a large-scale 3D
simulation of the improved device design for a single frequency.

6.3.1 Electrical response

We initially study the agreement of the electrical response between the device from [44], and D1.
In Fig. 6.4 we show the magnitude |Zel| and phase ψ of the complex electrical impedance Zel,
measured for the device using an impedance analyzer and calculated as described in Section 6.2.3.

We see in Fig. 6.4 that for both the empty and the filled device our numeric model captures
the relative electrical behavior quite well despite being a 2D approximation of a 3D problem. The
model captures the overall monotony and approximates the resonance peak frequencies quite well
with our calculated resonance frequencies lying within 2.2 % of the measured.
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Figure 6.4: The normalized magnitude |Zel| and phase ψ of the measured (red) and the calculated
(black, dotted) electrical impedances for an empty channel and for a channel filled with deionized
water. From [3]

The relative magnitudes of the peaks are, however, not fully captured in the model. Further-
more, the measured impedance in has additional minor bulges that do not appear in the simulation.
This is to be expected as a 2D approximation of a 3D problem invariably omits some effects.

6.3.2 PDMS and Pyrex reflectors

We now compare the two device designs D1 and D2 in terms of their abilities as acoustic res-
onators. In Fig. 6.5 we plot the z-component of the displacement along a vertical line passing
the center of an IDT electrode finger, at the resonant frequencies of the two devices closest to the
SAW resonance frequency, fSAW

res ; fD1
res = 47.75 MHz and fD2

res = 46.50 MHz. In the fluid the
vertical displacement is given by uz = ivz/ω.

The difference in both acoustic impedance and damping in PDMS and Pyrex are clear from
Fig. 6.5. The former can be seen from the small amplitude of the oscillations of waves in the
water domain in (a), compared to those in (b). These are small as there is no resonance building
up in the system because theoretically only 12 % of the energy of a planar wave impinging the
fluid-solid interface are reflected whereas the rest is transmitted. This is in stark contrast to the
78% theoretical reflection at a fluid-Pyrex interface. It can also be seen from the large magnitude
of the vertical displacement in the PDMS relative to that in the fluid (97%), as the fluid only carries
energy without storing any significant amount. In D2 though, most of the energy is stored in the
fluid due to reflections at the interface, and the displacement of the solid relative to the fluid is
only 45 %.
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Figure 6.5: The acoustic resonator capabilities of PDMS and Pyrex. Line plots of the z-
component of displacement normalized with the maximum value along a vertical line going
through the first electrode finger in D1. (b) The same as in (a) but in D2. (c) Line plots of the mag-
nitude of the solid displacement along the floor (orange) and and ceiling (green) of the microchan-
nel in the cross-sectional domain in D1 and D2, at fD1

res = 47.75 MHz and fD2
res = 46.50 MHz. The

black and red vertical lines indicate the position and periodicity of electrode fingers, (red charged,
black grounded), and the dashed blue line indicates the center of the IDT array. (d) Line plots of
the pressure magnitude |p1| along horizontal lines of the cross-sectional domain in D1 and D2.
The electrode positions and IDT center are again illustrated with vertical lines. From [3]
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The high damping in PDMS is also evident in Fig. 6.5(a) as the waves die out in the PDMS
within 7 times the fluid domain height. The exponential decay in the height of the PDMS lid also
reveals the traveling nature of the waves. In the Pyrex domain in Fig. 6.5(b) on the other hand,
the line plot shows some local minima combined with an overall diminishing absolute value. This
indicates a mixture of traveling and standing waves as Pyrex is not loss-free.

In Fig. 6.5(c) we observe a similar trend in the lateral direction of the device. In PDMS
the displacement amplitudes gradually decrease when moving along the substrate away from the
centerline. This is because each finger pair emits a wave. Accordingly, the outermost finger pair
has 23 pairs emitting traveling waves towards it. At the center of the device on the other hand 12
pairs are emitting from both sides. In D2 waves are reflected much more at the fluid-solid and
solid-air interfaces leading to a more jumbled displacement field.

Again in Fig. 6.5(d) we see the same behavior in the pressure magnitude. Near the center of
the IDT, the wave field appears to be standing and gradually shifts to a traveling wave field away
from the center. In D2 on the other hand, the intensity is more homogeneous in the width of the
channel and also several times higher. An other important note is the similar magnitudes at all
three heights in the fluid in D1, as traveling waves have no pressure nodes. In D2 the pressure
magnitudes are two to three times higher than the other two heights at z = 2/6Hfl showing that
the pressure has large gradients in the height of the channel.

6.3.3 Effect of Bragg reflectors

We study the effects of surrounding the IDT with Bragg reflectors. In telecommunications Bragg
reflectors are used in piezoelectric filters to reflect traveling surface acoustic waves [117]. Ideally
they should reflect waves emitted from IDTs back and create a standing wave field in this device
as well. However, the fluid contacting the piezoelectric substrate in telecommunication devices is
usually air, whereas it is water in acoustofluidic, and the effect may not be the same. We study
this in Fig. 6.6 by comparing the acoustic pressure field magnitudes |p1| for two models with and
without Bragg reflectors.

As seen in Fig. 6.6 the fields with and without Bragg reflectors are very similar hinting that the
reflectors may not have the anticipated effect. Through closer study differences in the two fields
can be seen away from the IDT in Fig. 6.6(c) and (d). However, the region of primary interest with
regards to acoustophoresis is the region over the IDT, so the small differences in the pressure field
in (c) and (d) are of little concern.

The fields are also quantitatively very similar, albeit with a curious detail. The largest pressure
magnitude in the model without reflectors is 1.4 % higher than in the model with. This shows that
the Bragg reflectors may even have a slightly adverse effect by causing destructive interference.
Nevertheless, we keep them in the model as they are present in the physical device.

6.3.4 2D acoustophoresis

From the resonator properties of the two materials we move to investigating the acoustophoretic
motion of both small and large particles suspended in either of the devices, as shown in Fig. 6.7.
We here choose the resonant SAW frequency as it shows the best acoustophoretic motion despite
having lower acoustic energies than the two device resonance fD1

res and fD2
res .
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Figure 6.6: The effect of Bragg reflectors at a single frequency. (a) and (b) Color plot of the
magnitude of the first-order acoustic pressure |p1| from 0 (black) to 200 kPa (white), in the fluid
over half of the IDT from the center x = 0 to the far edge x = 12λSAW, actuated at f = 49.9 MHz
and V0 = 1 V. (a) is for a numeric model without Bragg reflectors and (b) is with. (c) and (d) same
as (a) and (b), but from the edge of the IDT x = 12λSAW to the edge of the channel x = w/2.

In Fig. 6.7(a) and (e), we see a clear difference between the focusing of particles in the two
devices. In D1 particles tend to focus on the sides of the IDT electrodes when viewed from above,
whereas they in In D2 tend to focus on top of electrodes with some outliers lying in between.
Additionally the particles in D2 form incoherent bands of agglomerations making a 45-55◦ angle
with the electrodes that we currently lack an explanation for.

Interestingly, the streaming velocity and radiation force fields in (b) and (f) look quite similar
for the two devices at first glance. Particularly the streaming fields show the same tendency of an
upwards motion over the electrode, and downwards on the sides. This is caused by the energy-flux
density vector

〈
Sac

〉
as in Chapter 5, which points vertically up over electrodes and is zero in

between. Thus we once again observe streaming driven by bulk forces rather than the classical
Rayleigh-streaming in a device with micrometer dimensions.

The radiation force fields, however, are in fact quite different in both shape and intensity. In D1
the regions of low radiation force at z = 1/3Hfl, z = 2/3Hfl are unstable equilibria as the lateral
radiation forces point away from the points. Contrarily D2 has three stable equilibria directly over
the electrode at z = 1/6Hfl, z = 3/6Hfl, z = 5/6Hfl due to the minute lateral forces pointing
inwards. An other interesting difference is the position of field features relative to the elctrode. In
D1 the unstable equilibria are shifted slightly to the side relative to the electrode center, whereas
the stable equilibria in D2 are directly over the electrode center.

The differences in shape and intensity in the radiation force field of the two devices are also
reflected in the acoustophoretic motion of particles shown in Fig. 6.7. In D1 the 100 nm particles
follow the streaming rolls as expected, as the drag force is the dominating term due to the small
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Figure 6.7: Acoustophoresis in the devices D1 and D2, at fSAW
res = 49.94 MHz. (a) Photograph of

the microchannel over a central portion of the IDT in D1. The black lines are electrodes, gray lines
are the lithium niobate substrate and the white spots are particles. (b) Surface plots of computed
acoustic fields in the fluid domain over a unit cell of the IDT. The unit cell of width λSAW consists
of a charged and a grounded electrode of widths 1/4λSAW and spacers in-between. The shown
fields are a color plot of the streaming velocity field magnitude |v2| (left) and a gray-scale plot of
the acoustic radiation force magnitude |F rad| (right). The plots are overlaid with arrow plots of the
direction of fields. The green dashed line shows the center-line of the unit cell. (c) Color point-plot
of particle positions 0.1 after the ultrasound is turned on for small (left) and large (right) particles
initially spaced evenly in a 13 × 19 grid across the unit-cell fluid domain. Tails point towards
the particle position last time-step. The numbers indicate the percentage of particles settling in
each of the 4 shown positions. (d) Color plot of the electric potential in a thin slice of the unit
cell’s lithium niobate. (e)-(h) as in (a)-(d) but for the Pyrex-lid device D2. Numbers in parenthesis
indicate the settling percentages when using the same initial distribution allowed to sediment for
3 minutes before turning on the ultrasound. From [3]
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particle diameter. In D2 this is also true, but the particles follow slightly compressed rolls as the
radiation force is more powerful relative to the streaming in D2 and thus not negligible.

For the 1700 nm particles, the difference in acoustophoretic motion is even more distinct. The
absence of stable equilibria in D1 causes the majority of particles to migrate away from the region
above the electrode into the downward portion of the streaming rolls. Eventually they are dragged
to where the streaming drag force and radiation force are equally strong and opposite and settle
here. The portion of particles that are not pushed out by the radiation force stick to the ceiling of
the channel in the same lateral positions as those at the floor.

As an interesting side note, this device clearly has a focusing limit lower than the critical-2-
mm diameter reported by Muller et al.[30]. Using their formula, we find a critical diameter for
polystyrene of

a =

√
12

Ψ

Φ
δvisc ≈ 130 nm (6.14)

with the geometry-dependent factor calculated to be Ψ = c0|vbc
2 |

|v1|2
≈ 0.4, whereas the material-

dependent contrast factor Φ = 0.165, and the crucial most factor; the viscous-boundary-layer

width is δvisc =
√

2η
ρω = 24 nm.

In a device with classical Rayleigh streaming separation of particles should be possible down
to the critical diameter. However, due to the mostly bulk-driven streaming that is not the case in
this device. It is, however, still able to separate 100 and 300 nm particles, so the estimate remains
reasonable.

On the subject of particle sizes, the entire regime of focusable particle sizes is shifted towards
lower sizes in this device. We bring to mind the two assumptions of the radiation forces, λf �
a > δvisc. In this device, the acoustic wavelength of water is λf = 16 µm. This sets an upper
limit to the validity of the calculation radiation force below the size of red (a ≈ 6 µm) and white
(a ≈ 5− 15 µm) blood cells that make up the majority of the cell constituents in blood.

In D2 the radiation force focuses most particles in their nearest node, while some particles are
pushed to the radiation-inactive region as in D1. Unlike in D1 though, particles that are dragged
down along the streaming force are also pulled in by the radiation force at the lower node, which
causes a slightly higher concentration of particles here. This is even more pronounced when
including that significant sedimentation of particles takes place in the experiments before the ul-
trasound is turned on.

Experimentally, the predictions regarding the lateral positions of the large particles are verified
with particles in D1 focusing on the sides of electrodes and those in D2 in the center of electrode
fingers. Vertically, the predicted final position of particles in D1 at the top and bottom of the chan-
nel is reproduced experimentally, however the distribution between the two is not. For D2 both
the predicted position and distribution are found to be in good agreement with the experimentally
observed one, especially when taking the sedimentation into account.

Note that the acoustophoretic motion described here is observed in each unit cell of the fluid
domain over the IDT. Moving away from the IDTs the fields decrease in magnitude and change
their topology.
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6.3.5 3D acoustophoresis

Having studied the device in the simple 2D model, we conclude with a brief study on the acoustophore-
sis fields in the scaled-down 3D-model shown in Fig. 6.8(a).

Figure 6.8: The used 3D model and 3D acoustophoretic results at f =49.94 MHz and V0 = 1 V.
(a) Color slice plot of the solid displacement magnitude |u1| in the Pyrex, gray-scale slice plots
of the acoustic radiation force magnitude F rad in the fluid. Also plotted are surface plots on the
lithium niobate of the electric potential φ1 on the left side and the solid displacement magnitude
|u1| on the right side. The black frame shows the contours of the entire model and the colored
frames show the domain bounds in the front cross-section. (b) Image of the microchannel over
one corner of the IDT. The white streaks are closely packed particles following streaming vortices,
and the cyan arrows indicate the direction of particle motion. (c) Arrow plot of the numerically
calculated streaming velocity field v2 from 0 (blue) to 66 µm/s (red) in the corner of the IDT
shown with magenta in (a). The color and size of arrows showing the magnitude |v2|, and black
lines show electrode positions. Adapted from [3]

We see in Fig. 6.8(a) that the radiation force field in the 3D model is similar to that found in the
2D simulations in Fig. 6.7(f), despite the inclusion of the IDT angle relative to the microchannel
wall in the 3D model. While the intensity varies along the depth of the electrode in the y-direction,
the structures remain the same. As in the 2D simulations, the 3-node pattern is strongest over the
IDTs and decreases in magnitude away from them.

In (b) we see that at the edges of the IDT streaming rolls in the horizontal plane appear. These
lateral rolls are much larger in size than those we find in the vertical direction near the center of
the IDT, spanning over several unit cells.

Using our numeric model we observe the same streaming pattern in (c) - albeit with a lower
streaming velocity - although the model is scaled down to just 4 pairs and no reflectors, whereas
the physical device has 24 pairs and 8 reflector strips on both sides. We also have a reasonable
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quantitative match between the largest measured (∼ 210 µm s−1) and calculated (v2 ∼ 66 µm s−1)
streaming velocities, when scaling with the ratio of electrode pairs (6) vscaled

2 ∼ 240 µm s−1. Our
experimental values are based on manually tracking a few recognizable features and measuring
the distance they travel in between frames of a known interval in a movie taken through the mi-
croscope.

6.4 Concluding remarks

We have reshaped our numeric model to represent a SAW device in both 2D and 3D. While doing
so we added symmetry conditions, a method to numerically estimate the impedance of the device,
and the possibility of modeling materials of any orientation. We computed the 2D models on a
regular workstation but for the 3D model high performance cluster computations were necessary.

As a first verification of the model we compared the numerically calculated and physically
measured electric response of the device and saw a good qualitative agreement, and a reasonable
quantitative one particularly considering we used our 2D model.

We study the system acoustically and find Pyrex to work better as a resonator particularly with
a fluid domain of height Hfl = 50µm in our 2D model, as this matches the SAW resonance with
the f0,0,3 fluid eigenfrequency. Accordingly we revised the design from Ref. [44].

With the new design we predict the acoustophoresis to be stronger and find the radiation force
to be stronger relative to the streaming drag force. We find that the new design focuses particles
vertically as well as laterally, which is advantageous to avoid particles being trapped at the top or
bottom of the microchannel.

One element we did not capture well was the ratio of particles settling at the floor and ceiling
of the fluid channel in the PDMS device D1. The observed particle clustering was estimated to be
larger at the ceiling rather than the floor of the microchannel. For the Pyrex-lid device, however,
we saw good agreement between the predicted and the observed particle settling positions when
using the sedimented initial distribution. The sedimented distribution was used because there was
a marked delay in experiments between loading the suspension was loaded into the channel and
turning on the ultrasound to achieve a quiescent background flow v0.

In acoustofluidics a distinction is often made between devices driven by bulk and surface
acoustic waves in the piezoelectric element due to the acoustic fields they usually contain. In D2
the fields are very similar to those in classical BAW devices with a acoustic resonance building up
in the fluid due to the partial reflections at the Pyrex-water and piezo-water interfaces. Hence, the
distinction here seems inadequate as it is the walls surrounding the fluid determining the resonance
behavior, rather than the waves actuated in the piezoelectric element.

Using the 3D model we observed a streaming motion parallel to the piezoelectric transducer
that did not appear in 2D simulations. As in Chapter 5 the streaming was driven by the energy
dissipating into the fluid. In this design, however, it is caused by the SAWs in the substrate with
wavefronts parallel to the electrodes. As they travel along the surface energy is transferred into
the fluid and drives the streaming. As waves are not emitted in all directions, the resulting flow
circulates away from the IDT normal to the electrodes.

As a final application of the numeric model we use its predictive power in a device design
process to test a number of different design ideas.
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Surface acoustic wave (SAW) devices form an important class of acoustofluidic devices, in which
the acoustic waves are generated and propagate along the surface of a piezoelectric substrate. De-
spite their wide-spread use, only a few fully three-dimensional (3D) numerical simulations have been
presented in the literature. In this paper, we present a 3D numerical simulation taking into account
the electromechanical fields of the piezoelectric SAW device, the acoustic displacement field in the
attached elastic material, in which the liquid-filled microchannel is embedded, the acoustic fields
inside the microchannel, as well as the resulting acoustic radiation force and streaming-induced drag
force acting on micro- and nanoparticles suspended in the microchannel. A specific device design is
presented, for which the numerical predictions of the acoustic resonances and the acoustophoretic
repsonse of suspended microparticles in 3D are successfully compared with experimental observa-
tions. The simulation provides a physical explanation of the the observed qualitative difference
between devices with an acoustically soft and hard lid in terms of traveling and standing waves,
respectively. The simulations also correctly predict the existence and position of the observed in-
plane streaming flow rolls. The presented simulation model may be useful in the development of
SAW devices optimized for various acoustofluidic tasks.

I. INTRODUCTION

During the past decade, surface acoustic wave (SAW)
devices have been developed for a multitude of differ-
ent types of acoustofluidic handling of micrometer-sized
particles inside closed microchannels. Examples include
acoustic mixing [1], continuous particle or droplet focus-
ing [2, 3] and separation [4, 5], single-particle handling
[6, 7], acoustic tweezing [8–10], two-dimensional single
patterning [11, 12], on-chip studies of microbial organ-
isms [13, 14], and non-trivial electrode shapes to generate
chirped, focused, and rotating acoustic waves [10, 15–17].

The development of effective handling of
submicrometer-sized particles has been less successful.
It remains a challenge to handle this in biotechnology
highly important class of particles including small
bacteria, exosomes, and viruses. Could these particles
be handled in a controlled way, it would be of particular
interest for developing new and more efficient diagnostics
[18]. The first steps towards acoustofluidics handling
of nanometer-sized particles have been taken relying
on acoustic streaming effects with both bulk acoustic
waves (BAW) [19] and SAW [20], or using seed particles
to enhance acoustic trapping in BAW devices [21].

∗
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†
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‡
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However, these methods have a low selectivity. However,
recently SAW devices have been developed to focusing
nanoparticles [22] and separation of nanoparticles
[23, 24]. In particular Sehgal and Kirby [23] demon-
strated separation between 100- and 300-nm-diameter
particles on the proof-of-concept stage. To fully uti-
lize the potential of this and similar devices, further
development is necessary to increase the efficiency and
sorting flow rates. Here, numerical simulations may play
a crucial role, both in improving the understanding of
the underlying physical acoustofluidic processes, and to
ease the cumbersome development cycle consisting of
an iterative series of creating, fabricating, and testing
device designs.

An increasing amount of numerical studies include
piezoelectric dynamics in two-dimensional (2D) models
[25–28], but mostly the piezoelectric transducers are in-
troduced in numeric models in the form of analytic ap-
proximations [29–34], and designs are often based on a
priori knowledge of the piezoelectric effect in the un-
loaded substrates typically applied in telecommunication.
In acoustofluidic devices, the acoustic impedance of the
contacting fluid is much closer to that of the substrate
causing waves to behave much differently from those in
telecommunications devices. It is thus prudent to include
the piezoelectric effect and the coupling between the fluid
and substrate in numeric models to accurately describe
the device behavior. Additionally, three-dimensional
(3D) simulations in the literature are scarce, but they
are essential for making full-device acoustophoresis pre-
dictions as many actual acoustofluidic devices do exhibit
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non-trivial features in 3D due to asymmetric and intri-
cate shapes of electrodes and channels.

In this paper, we present 3D numerical simulations tak-
ing into account the electromechanical fields of the piezo-
electric SAW device, the acoustic displacement field in
the attached elastic material, in which the liquid-filled
microchannel is embedded, the acoustic fields inside the
microchannel, as well as the resulting acoustic radiation
force and streaming-induced drag force acting on mi-
croparticles suspended in the microchannel. The model is
validated experimentally with devices based on the SAW
device described by Sehgal and Kirby [23]. In Section II
we describe the physical model system representing the
SAW device and state the governing equations, and in
Section III we treat the implementation of the model sys-
tem in a weak-form, finite-element model. The results of
the model in reduced 2D and in full 3D are presented in
Sections V and VI, and finally in Sections VII and VIII
we discuss our findings and summarize our conclusions.

II. THE MODEL SAW SYSTEM AND THE
GOVERNING EQUATIONS

The model SAW system is shown in Fig. 1a. Essen-
tially, it consists of a piezoelectric lithium niobate sub-
strate with a specific interdigitated transducer (IDT)
metal-electrode configuration on the surface. On top
of the substrate a microfluidic channel is defined in an
elastic material, either the acoustically soft rubber poly-
dimethylsiloxane polymer (PDMS) or the acoustically
hard borosilicate glass (Pyrex).

We follow Sehgal and Kirby [23] and place the IDT
electrodes directly underneath the microchannel and
choose the periodicity of the electrode pattern to re-
sult in a SAW wavelength λSAW = 80 µm and a (un-
loaded) resonance frequency fSAW = cSAW/λSAW =
(3995 m/s)/(80 µm) = 49.9 MHz. The driving electrodes
are flanked by Bragg-reflector electrodes to (partially) re-
flect the outgoing SAWs traveling along the surface from
the driving electrodes. As described in more detail in
Appendix A, the lattice coordinate system X,Y, Z of the
128◦ YX-cut lithium niobate wafer is rotated the usual
38◦ = 128◦ − 90◦ about the x-axis to obtain an optimal
SAW configuration.

To facilitate separation of nanoparticles, the axis of
the microchannel is tilted 10◦ angle relative to the IDT
electrodes. At both ends, the microchannel branches out
in a number of side channels with vertical openings for
inlet and outlet tubing. In the numerical model, this
inlet/outlet structure is represented by ideally absorbing
boundary conditions.

The SAW device is actuated by a time-harmonic volt-
age difference at frequency f applied to the IDT elec-
trodes. The corresponding angular frequency is ω = 2πf .

The following formulation of the governing equations,
is a further development of our previous work presented
in Refs. [32, 35, 36] to take into account SAW in 3D

FIG. 1. Experimental and numeric testing devices. (a) A
testing device, similar to that of Ref. [23]. A wide lithium
niobate base with a 24-pair interdigitated surface metal elec-
trode (IDT) and contact pads (grounded g or ge, charged c
or ce) supporting a borosilicate glass (Pyrex) slab containing
an etched microchannel above the IDT. (b) 3D sketch of the
numerical model containing only a 3-pair electrode (grounded
g or ge: black, charged c or ce: red), and three floating elec-
trodes (f or fe, blue).

models of lithium-niobate-driven ultrasound acoustics in
liquid-filled microchannels.

A. The Voigt notation for elastic solids

In linear elastodynamics with the elasticity tensor
Ciklm, the stress σik and strain εik tensors with i, k =
1, 2, 3 (or x, y, z) are defined in index notation as

εik =
1

2

(
∂iuk + ∂kui

)
, (1a)

σik = Ciklmεlm (1b)

In the Voigt notation (subscript V) [37], the symmetric
stress and strain double-index tensor components σik =
σki and εik = εki are organized in single-index vectors σα
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and εα with α = 1, 2, . . . , 6, as,

εV =




ε1
ε2
ε3
ε4
ε5
ε6




=




ε11

ε22

ε33

2ε23

2ε13

2ε12



, σV =




σ1

σ2

σ3

σ4

σ5

σ6




=




σ11

σ22

σ33

σ23

σ13

σ12



, (2a)

and the stress-strain relation is written,

σα = Cαβεβ , (3)

where Cαβ is the 6×6 Voigt elasticity matrix. We also
introduce the 3×6 Voigt matrix gradient operator ∇V,

∇V =



∂x 0 0 0 ∂z ∂y
0 ∂y 0 ∂z 0 ∂x
0 0 ∂z ∂y ∂x 0


 . (4)

The equations governing the device are divided into
three sets. One set is the first-order time-harmonic
equations for the acoustic fields, the second set contains
the steady time-averaged second-order fields, and the
third set are the time-dependent equations describing the
acoustophoretic motion of suspended particles.

B. The time-harmonic first-order fields

By construction, all first-order fields are proportional
to the time-harmonic electric potential actuating the
SAW device at angular frequency ω. Consequently, all
first-order fields are time-harmonic acoustic fields of the
form ĝ(r, t) = g(r) e−iωt, where g(r) is the complex-
valued field amplitude. The corresponding physical field
is the real part Re

[
ĝ(r, t)

]
. All terms thus have the same

explicit time dependence e−iωt, so this factor is divided
out, leaving us with the governing equations for the am-
plitude g, where we for brevity suppress the spatial ar-
gument r.

In a linear piezoelectric material with a mass density
ρsl and no free charges, the solid displacement field u and
the electric potential field φ are governed by the Cauchy
equation and Gauss’s law,

∇V · σV = −ρslω
2 u, (5a)

∇ ·D = 0. (5b)

This equation system is closed by the constitutive equa-
tions relating the stress σV and the electrical displace-
ment D to the strain εV and the electric field E, through
the elasticity matrix C, the relative dielectric tensor εr,
and the piezoelectric coupling matrix e,

σV = CεV − eTE, with E = −∇φ, (5c)

D = ε0εrE + eεV. (5d)

Here, ε0 is the vacuum permittivity, εr is the relative
permittivity tensor of the material, and superscript “T”
denotes the transpose of a matrix, see Table I.

TABLE I. Elasticity constants Cαβ , mass density ρsl, piezo-
electric coupling constants eiα and relative dielectric con-
stants εik of materials used in this work. 128

◦
YX-cut lithium

niobate values are defined in the global system x, y, z, for
derivations see Appendix A. Note that C12 = C11 − 2C44 for
isotropic materials (Pyrex and PDMS).

Parameter Value Parameter Value

128
◦

YX-cut lithium niobate [38]
C11 202.89 GPa C12 72.33 GPa
C13 60.17 GPa C14 10.74 GPa
C22 194.23 GPa C23 90.59 GPa
C24 8.97 GPa C33 220.29 GPa
C34 8.14 GPa C44 74.89 GPa
C55 72.79 GPa C56 −8.51 GPa

ρsl 4628 kg m
−3

C66 59.51 GPa

e15 1.56 C m
−2

e16 -4.23 C m
−2

e21 −1.73 C m
−2

e22 4.48 C m
−2

e23 −1.67 C m
−2

e24 0.14 C m
−2

e31 1.64 C m
−2

e32 −2.69 C m
−2

e33 2.44 C m
−2

e34 0.55 C m
−2

ε11 44.30 ε22 38.08
ε23 −7.96 ε33 34.12

Pyrex [39]
C11 69.73 GPa C12 17.45 GPa

ρsl 2230 kg m
−3

C44 26.14 GPa
ε 4.6 Γsl 0.0002

PDMS [40–42]
C11 1.13 GPa C12 1.11 GPa

ρsl 1070 kg m
−3

C44 0.011 GPa
ε 2.5 Γsl 0.0213

For anisotropic lithium niobate, Eqs. (5a) and (5b) are
turned into equations for u and φ by using the explicit
form of Eqs. (5c) and (5d) written as the coupling-matrix,




σ1

σ2

σ3

σ4

σ5

σ6

Dx

Dy

Dz




=




C11 C12 C13 C14 0 0 0 -e21-e31

C12 C22 C23 C24 0 0 0 -e22-e32

C13 C23 C33 C34 0 0 0 -e23-e33

C14 C24 C34 C44 0 0 0 -e24-e34

0 0 0 0 C55C56 -e15 0 0
0 0 0 0 C56C66 -e16 0 0
0 0 0 0 e15 e16 ε11 0 0
e21 e22 e23 e24 0 0 0 ε22 ε23

e31 e32 e33 e34 0 0 0 ε23 ε33







ε1
ε2
ε3

ε4
ε5
ε6
Ex
Ey
Ez




,

(6a)
For isotropic elastic solids with no charges and no

piezoelectric coupling e = 0, only Eq. (5a) is relevant,
and it becomes an equation for u, as Eq. (5c) reduces to




σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44







ε1
ε2
ε3

ε4
ε5
ε6



, (6b)
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TABLE II. Material parameters of water from Ref. [44].

Parameter Symbol Value

Speed of sound cfl 1497 m s
−1

Mass density ρfl 997 kg m
−3

Dynamic viscosity ηfl 0.89 mPa s

Bulk viscosity η
b
fl 2.485 mPa s

Compressibility κfl 452 TPa
−1

with only two independent elastic constants, C11 and
C44, because C12 = C11 − 2C44 for isotropic material.

In a fluid with speed of sound cfl, mass density ρfl,
dynamic viscosity ηfl, viscous boundary layer thickness

δ =
√

2ηfl
ρflω

, viscosity ratio β = η
b
fl

ηfl
+ 1

3 , and effective

damping coefficient Γfl = 1+β
2 (k0δ)

2, the first-order pres-
sure field p1 is governed by the Helmholtz equation, and
the acoustic velocity field v1 is given by the pressure gra-
dient,

∇ · (∇p1

)
= −k2

cp1, with kc =
ω

cfl

(
1 + i

Γfl

2

)
, (7a)

v1 =
−i

ωρfl

(
1− iΓfl

)∇p1, (7b)

where kc is the weakly damped compressional wave-
number[43]. See Table II for parameter values.

Turning to the boundary conditions, we introduce n as
the normal vector for a given surface. The SAW device
in Fig. 1 is actuated by a time-harmonic potential of am-
plitude V0 on the surfaces of the charged electrodes (ce)
and 0 V on the grounded electrodes (ge), respectively,

φce = V0 e−iωt , φge = 0, (8a)

A given floating electrode (fe) is modeled as an ideal
equipotential domain with a vanishing tangential elec-
trical field on its surface,

(I − nn) ·∇φfe = 0, (8b)

where I is the unit tensor, and (I−nn) is the usual tan-
gent projection tensor. Note that this condition is auto-
matically enforced on any surface with a spatially invari-
ant Dirichlet condition applied along it. Note also that
the value of the potential on each floating electrode is a
priori unknown and must be determined self-consistently
from the governing equations and boundary conditions.

At a given fluid-solid interface we impose the usual
continuity conditions [32] with the recently developed
boundary-layer corrections included [43]: the solid stress
σsl is given by the acoustic pressure p1 with the addi-
tion of the boundary-layer stress, and the fluid velocity
v1 is given by the solid-wall velocity vsl = −iωu with the

addition of the boundary-layer velocity vsl − v1,

σsl · n = −p1 n+ iksηfl(vsl − v1

)
, (9a)

n · v1 = n · vsl +
i

ks
∇‖ ·

(
vsl − v1

)
, (9b)

with shear wavenumber ks =
1 + i

δ
. (9c)

The terms containing the shear wavenumber ks represent
the corrections arising from taking the 400-nm wide, vis-
cous boundary layer into account analytically [43].

All exterior solid surfaces facing the air have a stress-
free boundary condition prescribed,

σ · n = 0. (10)

This is a good approximation because the surrounding
air has an acoustic impedance 3 to 4 orders of magnitude
lower than that of the solids causing 99.99 % of incident
acoustic waves from the solid to be reflected. Moreover
the shear stress from the air is negligible.

C. The time-averaged second-order fields

The slow timescale or steady fields in the fluid are the
time-averaged second-order velocity v2 and pressure p2

field. These are governed by the time-averaged momen-
tum and mass-conservation equations,

∇ · σ2 − ρ0∇ ·
〈
v1v1

〉
= 0, (11a)

∇ · (ρ0v2 +
〈
ρ1v1

〉)
= 0, (11b)

where σ2 is the second-order stress tensor of the fluid

σ2 = −p2I + η
[∇v2 + (∇v2)

T ]
+ (β − 1) η (∇ · v2) I.

(11c)
Along a fluid-solid interface with tangential vectors eξ
and eη and the normal vector eζ = n, we use for v2 the
effective boundary condition derived in Ref. [43]. Here,
the viscous boundary layer is taken into account ana-
lytically by introducing the boundary-layer velocity field

vδ0 = vsl−v1 in the fluid along the fluid-solid interface,

v2 =
(
A · eξ

)
eξ +

(
A · eη

)
eη +

(
B · eζ

)
eζ , (12a)

A = − 1

2ω
Re

{
vδ0∗1 ·∇

(1

2
vδ01 − ivsl

)
− iv∗sl ·∇v1 (12b)

+

[
2− i

2
∇·vδ0∗1 + i

(
∇·v∗sl − ∂ζv∗1ζ

)]
vδ01

}
,

B =
1

2ω
Re
{

iv∗1 ·∇v1

}
, (12c)

where the asterisk denotes complex conjugation.

D. Acoustophoresis of suspended particles

To predict the acoustophoretic motion of a dilute sus-
pension of spherical micro- and submicrometer-sized par-
ticles in the fluid of density ρfl, compressibility κfl, and
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viscosity ηfl, we implement a particle tracing routine in
the model. We consider Newton’s second law for a single
spherical particle of radius apt and density ρpt moving
with velocity vpt under the influence of gravity g, the

acoustic radiation force F rad [45], and the Stokes drag

force F drag [46] induced by acoustic streaming of the
fluid,

4π

3
a3

ptρpt

dvpt

dt
= ρptg + F rad + F drag, (13a)

F rad = −4

3
πa3
[
κfl

〈
(f0p1)∇p1

〉
− 3

2
ρfl

〈
(f1v1) ·∇v1

〉]
,

(13b)

F drag = 6πaηfl

(
v2 − vpt

)
. (13c)

Here, f0 = 0.444 and f1 = 0.034 are the monopole and
dipole scattering coefficients of the suspended particles
at 50 MHz, where the values are for polystyrene micro-
and nanoparticles in water [47]. When studying different
particle sizes it is convenient to introduce the radiation

force density f rad as

f rad =
3

4πa3 F
rad. (13d)

By direct time integration of Eq. (13a) applied to a
set of particles initially placed on a square grid, the
acoustophoretic motion of the particles can be pre-
dicted and compared to the experimentally observed
one. We note that gravity effects are negligible as
ρptg � κfl

〈
(f0p1)∇p1

〉
.

III. NUMERICAL IMPLEMENTATION

Inspired by our previous experimental work, Sehgal
and Kirby [23], we study the SAW test system shown

TABLE III. Dimensions of the numeric 2D and 3D models.

Parameter Symbol 2D 3D Unit
Device depth (y) Lsl - 1200 µm
Solid height (z) Hsl 40-1000 500 µm
Solid width (x) Wsl 200 80 µm
Channel height Hfl 50-200 50 µm
Channel width Wfl 3500 900 µm
Piezo height Hpz 100-500 300 µm
PML length LPML 80 80 µm
Electrode depth (y) Lel - 400 µm
Electrode height (z) Hel 0.4 0.4 µm
Electrode width (x) Wel 20 20 µm
Electrode gap Gel 20 20 µm
SAW wavelength λSAW 80 80 µm
No. of electrode pairs nel 24 4 -
No. of reflectors nrf 0-6 0 -
Actuation frequency f0 30-60 50 MHz
Driving voltage V0 1 1 V

Degrees of freedom nDOF O(10
5
) O(10

6
) -

Memory requirements R O(10) O(10
3
) GB

FIG. 2. The vertical 2D cross section of the numeric model
and illustration of the embedded electrodes used in simula-
tions, with (a) a highly attenuating, low-reflection polymer
PDMS lid as used in Ref. [23], and (b) a stiff, acoustically re-
flecting Pyrex glass lid. (c) The twelve pairs of grounded (g,
black) and charged (c, red) electrodes, as well as the floating
(f, blue) electrodes, are all included in their entire height, but
(d) lowered into the lithium niobate (yellow) to level with the
substrate. Note that λSAW = 2(Wel +Gel).

in Fig. 1 with actuating electrodes and Bragg-reflector
electrodes placed directly underneath the microchannel.
The parameter values used in the numerical simulation
are listed in Table III, and a sketch of the vertical cross
section of the test system is shown in Fig. 2. Note that
the SAW wavelength λSAW is set by the IDT electrode ge-
ometry as λSAW = 2(Wel +Gel). We study microcavities
defined in either acoustically soft PDMS, see Fig. 2(a),
or the acoustically hard borosilicate glass (Pyrex), see
Fig. 2(b), and we perform numerical simulation in both
2D and 3D.

Following the procedure of our previous numerical sim-
ulations [32, 36], the coupled governing equations from
Sections II B-II D are implemented in the finite-element-
method software COMSOL Multiphysics 5.3a [48], us-
ing the weak-form partial differential equation interface
“PDE Weak Form” in the mathematics module. For
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a given driving voltage V0, actuation frequency f , and
angular frequency ω = 2πf specified in the actuation
boundary condition (8a), the numeric model is solved in
three sequential steps: (1) the first-order equations (5)
and (7a) presented in Section II B for the pressure p1,
displacement u, and electric potential φ, together with
the corresponding boundary conditions (8)-(10); (2) the
steady second-order streaming velocity v2 in Section II C
governed by (11) and (12), where time-averaged products
of the first-order fields appear as source terms; and (3)
the acoustophoretic motion of suspended test particles
in Section II D found by time integration of Eq. (13). As
in previous works [32], we have performed convergence
analyses of the model to verify that the model converges
towards a single solution as the mesh size decreases.

Simulations of the full 3D model are time and
computer-memory consuming. Therefore, part of the
analysis has been performed on 2D models to study the
resonance behavior of the device and the acoustic radi-
ation force in the vertical y-z plane normal to the elec-
trodes in the horizontal x-y plane. In these simulations,
presented in Section V, it is possible to model a cross-
section of the device to scale. To investigate effects that
have non-trivial behavior in full 3D, such as the acoustic
streaming and the acoustophoretic motion of suspended
particles presented in Section V, we must perform full 3D
modeling. However, in this case, the extended computer
memory requirements has necessitated a scale down of
the model. The parameters for the 2D and 3D simula-
tions are listed in Table III.

A. Perfectly matched layers

We reduce the numeric footprint of the model by imple-
menting perfectly matched layers (PMLs) in the model as
described by Ley and Bruus [32]: Large passive domains
surrounding the acoustically active region are replaced
by much smaller domains, in which PMLs act as ideal
absorbers of out-going acoustic waves thus completely
removing reflections. In contrast to Ref. [32], the PMLs
in the present model are functions of all three spatial
coordinates.

In the small surrounding domains, the PMLs are im-
plemented in the weak-form governing equations by a
complex-valued coordinate transformation of the spatial
derivatives ∂xi and integral measures dxi appearing,

∂xi → ∂x̃i =
1

1 + i s(r)
∂xi, (14a)

dxi → dx̃i =
[
1 + i s(r)

]
dxi, (14b)

s(r) = kPML

∑

i=x,y,z

(xi − x0i)
2

L2
PML,i

Θ(xi − x0i),

(14c)

where s(r) is a real-valued function of position. Here,
s(r) is given for the specific case shown in Fig. 2 with a

PML of width LPML,i in the three coordinate directions
i = x, y, z placed outside the region x < x0, y < y0,
and z < z0, Θ(x) is the Heaviside step function (= 1
for x > 0, and 0 otherwise), and kPML is an adjustable
parameter for the strength of the PML absorbtion. The
bottom PML in the niobate substrate is used because
SAWs decay exponentially in the depth on the scale of
the wavelength, whereas the top and side PMLs are used
to mimic attenuating in respective materials over large
distances.

B. Symmetry planes

As in previous numeric works [32, 49], we use an an-
tisymmetry line to reduce the numerical cost of our 2D
models. The antisymmetry line is realized by boundary
conditions on the solid displacement, the electric poten-
tial, and the fluid pressure along the line,

∂xux = 0 (15a)

uz = 0 (15b)

φ =
1

2
V0 (15c)

p1 = 0 (15d)

We check these conditions against the values along the
device centerline in a 2D simulation for a fully symmetric
device and observe that they are in good agreement.

In 3D we cannot use symmetry planes, as the device is
manifestly asymmetric due to the 10◦ angle between the
IDT and the walls of the microchannel.

C. Embedded electrodes

In the actual device, the 400-nm thick electrodes pro-
trude into the fluid domain. In our numeric model we
simplify the device by submerging them into the sub-
strate to form a planar solid-fluid interface as shown in
Fig. 2. Thereby the fluid-solid interface has no sharp
corners, at which singularities appear in the numeric gra-
dients. Furthermore, the planar interface mitigates the
need for an enormous number of mesh elements ranging
from nm to µm in the fluid domain, which would either
lower the element quality greatly or add massive com-
putational costs. This reduction in model complexity is
justified by the height of the electrodes being less than
1 % of the channel height and having no influence on the
pressure acoustics of the system. On the other hand, we
cannot completely neglect the electrodes, because jumps
in acoustic impedance between the metal electrodes and
the niobate substrate cause partial reflections of SAWs
running along the substrate. Thus we choose to keep but
submerge the electrodes.
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TABLE IV. The devices D1 and D2, used in the experimental
validation of the numerical model, differs by the choice of lid.
The other parameters of D1 and D2 are listed in Table III.

Device Lid material Lid thickness

D1 PDMS 15 mm
D2, see Fig. 1(a) Pyrex 0.45 mm

IV. EXPERIMENTAL METHODS

To validate the numerical models, we have performed
experiments on two type of devices listed in table IV,
namely microchannels defined in slabs of either PDMS
(D1) or Pyrex (D2) bonded on top of the lithium nio-
bate substrate equipped with the IDT and Bragg re-
flectors. The PDMS device (D1) is fabricated by stan-
dard photolithography techniques listed in our previous
work [23]. The Pyrex device (D2) is fabricated by glass
microfabrication techniques, briefly described in the fol-
lowing. A microchannel of desired dimensions is wet-
etched in a borosilicate glass wafer by 49% hydrofluoric
(HF) acid using a multilayered mask of chrome, gold, and
SPR220 photoresist. The input and output ports of the
microchannel are obtained from the laser cutting of glass.
The bonding between glass microchannel and lithium
niobate substrate is achieved by coating a 5 µm layer
of SU-8 epoxy on the surface of lithium niobate. The mi-
crochannel is gently placed on the uncured SU-8 and the
epoxy is baked following standard steps. The SU-8 out-
side the microchannel region is selectively crosslinked to
achieve bonding and the SU-8 inside the microchannel re-
gion is dissolved away with a developer, thus obtaining a
Pyrex lid microchannel on top of the lithium niobate sub-
strate (D2). The devices are tested with 1.7-µm-diameter
fluorescent polystyrene particles (Polysciences, Inc.) that
are suspended in de-ionized water (18.2 MΩ/cm, Lab-
conco WaterPro PS) containing 0.7% (w/v) Pluronic F-
127 to prevent particle aggregation. The particle solu-
tion is injected into the microchannel after priming the
devices with 70% ethanol solution to avoid the forma-
tion of air bubbles. An ultrasound field is set up in the
devices by applying an RF signal at desired frequency
to the IDT with a HP 8643A signal generator and an
ENI 350L RF power amplifier. The acoustophoretic mo-
tion of the tracer particles are visualized on a fixed-stage,
upright fluorescent microscope (Olympus BX51WI) with
a digital CCD camera (Retiga 1300, Q Imaging). The
images are acquired with Q-Capture Pro 7 software and
post processed in ImageJ. The electrical impedance of the
devices is measured directly from an impedance analyzer
(Agilent 4395A).

V. RESULTS OF THE 2D MODELING

In the following, we compare the results of the 2D mod-
eling in the vertical x-z with experiments carried out on
the two devices D1 and D2 listed in Table IV. Such a
comparison is reasonable because the low channel height
of 50 µm implies an approximate translation invariance
along the y-axis spanning the length (aperture) 2400 µm
of the IDT electrodes, as seen in the 3D geometry of
Fig. 1. Also the variation along the x axis given by the
width 20 µm of the individual electrodes, and the peri-
odicity λSAW = 80 µm the IDT, are much smaller than
IDT aperture along y axis. We can therefore obtain a
reasonable estimate of the electrical and acoustical re-
sponse of the device, by just considering the 2D domain
in the vertical x-z plane shown in Fig. 2.

A. Electrical response

As a first validation of the model, we study the elec-
trical impedance

Zel =
∣∣Zel

∣∣ e−iψ =
V0

I
, (16)

in terms of the driving voltage V0 and the complex-valued
current I through the device, because this quantity is rel-
atively easy to obtain both in simulation and in experi-
ment. We compare model predictions of the magnitude

FIG. 3. Line plots of the normalized magnitude
∣∣Zel

∣∣ and

phase ψ of the electrical impedance Z
el

, as functions of fre-
quency determined by experiment (full red line) and by nu-
merical simulation (dotted black line). The measurements
and simulations are carried out for a microchannel containing
either vacuum or deionized water.
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TABLE V. Measured and simulated values of the frequencies
f near the ideal (unloaded) frequency fSAW = 49.9 MHz,

where |Zel
(f)| and ψ(f) have local minima and maxima in

Pyrex device D2.

Extremum fexp fnum Relative error
[GHz] [GHz] [%]

A 47.35 48.25 1.9
B 48.05 49.00 2.0
C 49.40 50.25 1.7
D 48.65 47.50 1.7
E 50.00 50.75 1.7
F 47.70 48.75 2.2
G 49.10 50.00 1.8
H 45.50 46.00 1.1
I 49.40 48.50 1.8

∣∣Zel
∣∣ and phase ψ of the impedance with the experimen-

tally measured counterparts.

In the model, we compute Zel from the time-harmonic
dielectric polarization density P and the corresponding
polarization current Jpol in the lithium niobate substrate,
which we treat as an ideal dielectric without free charges,

P = D − ε0E, (17a)

Jpol = −iωP . (17b)

The total current I through the device is given by the
surface integral of Jpol, over one of the charged electrodes
with potential φce = V0 and surface ∂Ωce,

I =

∫

∂Ωce

Jpol · ndA. (17c)

The modulus
∣∣Zel

∣∣ and phase angle ψ = arg(Zel) are thus

∣∣Zel
∣∣ =

∣∣∣∣
V0

I

∣∣∣∣ , ψ = arg

(
V0

I

)
. (17d)

In Fig. 3(a) and (b), we compare the values of |Zel|
computed by Eq. (17d) for our 2D model with those mea-
sured on Pyrex device D2 of Fig. 1(a) and Table IV for
microchannels with air or with DI water. The numerical
simulation predicts correctly the value of the resonance
observed near 48 MHz in the experiments. As shown in
Table V, the relative difference between computed and

measured values of the frequencies f , where |Zel(f)| and
ψ(f) have local minima or maxima, is about 2 % or less.
We also see that simulation also predicts the monotoni-

cally decreasing background signal for |Zel(f)| before and
after the resonance relatively well for both an air- and
water-filled microchannel. However, the simulation fails
to predict the correct ratio of the resonance peak heights.

For the phase ψ shown in Fig. 3(c) and (d), the sim-
ulation predicts the resonance frequencies correctly, but
fails to predict the monotonically increasing background

signal. By adding external stray impedances to our 2D
model to simulate the surrounding 3D system, it is how-
ever possible to generate a slant in the phase curves by
fitting the values of these stray impedances. We do not
show these results as they are descriptive and not predic-
tive in nature.

B. Wall material: hard pyrex versus soft PDMS

Our previous device [23] features a soft PDMS polymer
lid, as is commonly used due to the ease of fabrication
and handling. However, the acoustic properties of PDMS
are far from ideal: its impedance is nearly equal to that
of water (20 % lower) and the attenuation is about two
orders of magnitude larger than that of the boundary
layer in water. In the following, we therefore simulate
the acoustic properties of the device D1 with a PDMS lid
and contrast them with those of device D2 with a much
stiffer Pyrex lid, using the two models shown in Fig. 2 and
Table IV. Compared to water, the acoustic impedance of
Pyrex is 8.3 times larger and its attenuation 10 times
smaller.

We study by numerical simulation the acoustic fields
of device D1 and D2 near the ideal (unloaded) frequency
fSAW = 49.9 MHz. By locating the maximum of the av-
erage acoustic energy in the water-filled channel plotted
versus the actuation frequency f (not shown), we deter-
mine the (loaded) resonance frequency fres of the two

devices to be fD1
res = 47.75 MHz and fD2

res = 46.50 MHz,
respectively. In Fig. 4 we show line plots along the height
(z direction) and across the width (x direction) of numer-
ically simulated acoustic fields for these two devices.

In Fig. 4(a) and (b) is shown the magnitude |uz| of
the z component of the acoustic displacement u, which
in water is defined through acoustic velocity Eq. (7b) as
v1 = −iω u, along a vertical cut-line through the entire
device. In D1, |uz| has the characteristics of a traveling
wave emitted from the SAW substrate (maximum ampli-
tude), traversing the water with little reflection (a small
oscillation amplitude), and being absorbed in the PDMS
lid (decaying amplitude). In contrast, |uz| in D2 has the
characteristics of a standing wave localized in the wa-
ter channel with reflections from the surrounding solids:
huge oscillations in the water domain with minima close
to zero and an amplitude exceeding that in the emitting
substrate and the receiving lid. We also notice that in
the stiff Pyrex the attenuation is weak, and that the wave
is reminiscent of a standing wave between the water in-
terface below the lid and the air interface above. The
corresponding acoustic energy flux density Sac =

〈
p1v1

〉

in both systems is non-zero and predominantly vertical,
but with a much larger amplitude in D1 compared to D2.

In Fig. 4(c) is shown the the magnitude |u| of the
acoustic displacement u along horizontal cut-lines fol-
lowing the top (z = Hfl) and the bottom (z = 0) of
the water channel across the region containing the IDT.
In both devices the periodicity of the IDT electrodes is
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FIG. 4. The amplitude of the displacement |u| and the
pressure amplitude |p1| in the PDMS-lid device D1 and in the
Pyrex-lid device D2 at their respective resonance frequencies
f

D1
res = 47.75 MHz and f

D2
res = 46.50 MHz at V0 = 1 V. (a) Line

plot of the z component |uz| along the vertical line x = Wel

(the center of the middle electrode) from the bottom of the
substrate (beige), through the water (blue), to the top of the
PDMS lid (green). (b) As in (a), but for the Pyrex-lid device
D2. (c) Line plot of |u| along the top (z = Hfl) and the bottom
(z = 0) of the channel in D1 (x < 0) and D2 (x > 0). The
dark gray and pink rectangles for −12 < x

λSAW
< 12 represent

the IDT electrodes. (d) As in panel (c), but for |p1| along the
horizontal lines at z/Hfl = 3

6
, 2

6
, 1

6
inside the channel.

clearly seen, but the amplitude in the nearly-standing
wave case of D2 is 2-3 times larger than in the traveling
wave case of D1. Moreover, it is seen that the acous-
tic waves dies out faster in D1 than in D2 away from
the IDT region. The tiny oscillations in the PDMS lid
(green curve) for x < −12λSAW stems from the minute
transverse wavelength ∼ 11 µm = 0.13 λSAW in PDMS.

In Fig. 4(d) is shown the the magnitude |p1| of the
acoustic pressure p1 in the water along the horizontal
cut-lines z/Hfl = 1

6 ,
2
6 ,

3
6 . Here the traveling versus stand-

ing wave nature of the two devices mentioned above,
is prominent: In D1, |p1| is nearly independent of the
height, and its envelope amplitude is steadily decaying
from 90 to 55 kPa from the center to the edge of the IDT
region. In contrast, |p1| has large amplitude fluctuations
as a function of the horizontal position x and for the
three vertical z positions. Moreover, |p1| does not decay

away from the the IDT. Clear, p1 in the water channel of
D2 is dominated by reflections between the solid-water
interfaces. This observation can be quantified by the the
standing wave ratio, SWR = max(|p1|)/min(|p1|) that
describes the ratio of standing to traveling waves in a
given field. In an ideal resonator and an ideally trans-
mitting system, SWR =∞ and 1, respectively. Here, we
find SWR(D2) = 12.7 and SWR(D1) = 1.3. These num-
bers underlines the good acoustic properties of the water-
Pyrex systems compared to the bad one of the PDMS
system. The ratio of the SWR numbers is 9.8, almost
equal to the impedance ratio 10.5, which emphasizes the
nearly perfect vertical energy flux density Sac discussed
above, as the impedance extracted from the properties of
a plane wave with a vertical incident on a planar surface.

C. Acoustophoresis

Whereas we have not made experimental validation
of the above simulation results for the acoustic fields
p1 and u, we compare in the following the experimen-
tally observed acoustophoretic motion at the SAW reso-
nance frequency fSAW of microparticle suspensions in the
water-filled microchannel, with that obtained by numeri-
cal simulation in our 2D model. The central experimental
and numerical results are shown in Fig. 5, in the left col-
umn for the PDMS-lid device D1 and in the right column
for the Pyrex-lid device D2. In the Supplemental Mate-
rial [50] are shown four animations of the acoustophoresis
in Fig. 5(c) and (g) of 0.1- and 1.7-µm-diameter particles
in device D1 and D2.

In Fig. 5(a) and (e) we observe that the suspended
1.7-µm-diameter particles in D1 focus on the edges of
the electrodes, whereas in D2 they mainly focus along
the center line of each electrode. This difference in
acoustophoretic focusing is caused solely by choice of lid
material and its thickness. Already in Fig. 4, we saw how
the change from the PDMS lid to the Pyrex lid led to a
change from a predominantly traveling wave, to a nearly
standing wave in the z direction. As a consequence, both
the pressure and its gradients in device D1 are smaller
than those in D2, and from Eq. (13b) follows that the

acoustic radiation force F rad changes significantly.

This change in F rad per particle volume, named f rad in
Eq. (13d), is shown as the vector and gray-scale plots for
device D1 and D2 in the right half of Fig. 5(b) and (f), re-

spectively. Compared to D2 having |f rad| = 7.4 pN/µm3,

the magnitude |f rad| = 0.4 pN/µm3 is 18 times smaller

in D1, and |f rad| is more smeared out (even smaller gra-
dients). Both force fields have a three-period structure
along the vertical z axis, reflecting that Hfl ≈ 3

2cfl/fSAW.
In D1, the center of the force-field structure is displayed
relative to the center of the electrode, whereas in D2 it

is above the electrode center. Moreover, whereas f rad

has four less-marked, unstable nodal planes in D1 at
z/Hfl = 0, 1

3 ,
2
3 , 1, it has three well-defined, stable ones in
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FIG. 5. Microparticle acoustophoresis in experiments and in simulations for actuation frequency fSAW = 49.9 MHz and
driving voltage V0 = 4.35 V, rescaling the simulation from 1 to 4.35 V. (a) Top-view photograph (x-y plane) of the center
region of the IDT array in device D1, where suspended 1.7-µm-diameter fluorescent polystyrene particles (white) are focused
above the edge of each metal electrode (black). (b) Numerical simulations in the vertical x-z plane over a single electrode
pair (6λSAW < x < 7λSAW, the yellow line in panel (a)) in the fluid domain of device D1 with (to the left) a color plot of the

magnitude |v2| [from 0 (blue) to 66 µm/s (yellow)] of the streaming velocity v2, and (to the right) a gray-scale plot of |f rad|
[from 0 (black) to 0.4 pN/µm

3
(white)] of the acoustic radiation force density f

rad
. Superimposed are colored vector plots of

v2 [from 0 (blue) to 66 µm/s (red)] and of f
rad

[from 0 (blue) to 0.4 pN/µm
3

(red)]. (c) Color-comet-tail plot of the simulated
acoustophoretic motion of 247 0.1-µm-diameter spherical polystyrene particles (to the left), superimposed on the gray-scale plot

of |f rad| from panel (b), 0.5 s after being released from initial positions in a regular 13×19 grid to the left of the green-dashed
centerline. Similarly for 1.7-µm-diameter particles to the right. The comet tail indicates the direction of the velocity with length
and color from 0 (dark blue) to 66 µm/s (orange) representing the speed. The percentages indicate the portion of particles
accumulating in these final positions: the blue set for a homogeneous initial particle distribution, and the purple set for an
inhomogeneous initial particle distribution created by 3 min of sedimentation. (d) Color plot in the vertical x-z plane below a
single electrode pair 5λSAW < x < 6λSAW of the numerically simulated electric potential V from −4.35 (light cyan) to 4.35 V
(purple) in the lithium niobate substrate. The width and x-position of the grounded and charged electrodes in the IDT-pair
are represented by the black (ge) and red (ce) rectangles, respectively. (e-h) Same as in (a-d) but for Pyrex-lid device D2, and

in (f) the gray-scale for |v2| is from 0 (blue) to 76 µm/s (yellow) and |f rad| from 0 (black) to 7.4 pN/µm
3

(white).

D2 at z/Hfl = 1
6 ,

3
6 ,

3
6 .

The corresponding streaming velocity field v2 in D1
and D2 is shown as the vector and color plots in the
left half of Fig. 5(b) and (f). The streaming appears
strikingly equal both in magnitude (66 µm/s for D1 and
76 µm/s for D2), shape and topology, but again with the
center of the pattern in D1 shifted slightly away from the
electrode center. The reason for this resemblance in v2

stems from the energy flux density Sac, which in both de-

vices points (nearly) vertically up along the z axis above
the electrodes, and is weak in between. As the (Eckart)
streaming is proportional to Sac [51], even in microcavi-
ties [36], the streaming moves upward due to Sac above
the electrodes and downward by recirculation between
the electrodes. Sac has nearly the same amplitude in D1
and D2 because, although the acoustic field in D2 is much
larger than in D1, it is mostly a standing wave with zero
energy flux density, and the little part that is a travel-
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ing wave in D2 that carries the energy flux density, is
nearly of the same magnitude as the traveling wave that
constitutes the main part of the weaker acoustic field in
D1.

According to Newton’s second law (13), the above-
mentioned properties of the acoustic radiation force den-

sity f rad and streaming velocity field v2 governs the ob-
servable acoustophoretic motion of suspended particles.
In Fig. 5(c) and (g), as well as in the Supplemental Ma-
terial [50], is shown the results of simulating such motion
for 0.1- and 1.7-µm-diameter polystyrene beads in both
D1 and D2, 0.5 s after starting from an initial homoge-
neous distribution (blue points and percentage numbers).
The motion of the large particles is dominated by the ra-
diation force [52], so the different focusing of these parti-
cles seen in the right half of Fig. 5(c) and (g) is explained

in terms of f rad: Because f rad has no stable nodal planes
in D1, all particles accumulate the floor or the ceiling of
the channel, and most of them (98 %) are pushed to the
regions above the electrode gaps as indicated by the vec-
tor plot in the right half of Fig. 5(c). In contrast, the

stable nodal planes of f rad in D2, Fig. 5(g) right half,
guides 96 % of the particles into the three stable points
above the electrode center, with 41 %, 27 %, and 28 % at
z/Hfl = 1

6 = 0.17, 3
6 = 0.50, and 5

6 = 0.83, respectively.
If we instead, as in the experiments described below, al-
low for a sedimentation time of 3 min before turning on
the acoustics, the distribution of the focused particles
changes to 58 %, 40 %, and 2 % at z/Hfl = 1

6 = 0.17,
3
6 = 0.50, and 5

6 = 0.83, respectively.

The acoustophoretic motion of the small 0.1-µm-
diameter particles are dominated by the Stokes drag from
the streaming field v2, see the left side of Fig. 5(c) and (g)
and the videos in the Supplemental Material [50]. The
simulation shows that the particles do not settle in fixed
positions but follow oblong paths in the vertical plane
similar in shape to the large streaming rolls spanning the
entire height of the channel with an upwards motion over
the electrodes and downwards in between electrodes, see

Fig. 5(b) and (f). In D1, F rad is so small that it plays

essentially no role. In D2, however, F rad is stronger and

superposes with F drag to govern the acoustophoretic mo-
tion. This superposition of forces is similar to the analy-
sis presented by Antfolk et al. [19], but whereas in their
system the nanoparticles spirals towards the point at the
center of a single flow roll, the nanoparticles above a sin-
gle electrode in D2 are focused into the center line of each
of the two flow rolls shown in Fig. 5(f). The location of
these center lines are defined by the vertical and horizon-

tal nodal lines of f rad represented by the black regions at
the electrode gaps x/λSAW = n

2 and at the stable nodal

planes z/Hfl = 1
6 ,

5
6 , respectively, in the gray-scale plot

of Fig. 5(f) and (g).

Most of these theoretical predictions are validated by
experiments. After loading the particle suspension in to
the device, it takes about 3 min for the fluid to come
to rest, during which time the 1.7-µm-diameter particles

sediment slowly. This partial sedimentation shifts the ho-
mogeneous particle distribution downwards, so that the
particle distribution is inhomogeneous when the acoustic
field is turned on. In the experiments on PDMS-lid device
D1, the large 1.7-µm-diameter particles are observed to
accumulate at the floor and the ceiling in the regions be-
tween the electrodes, and the small 0.1-µm-diameter par-
ticles are observed to circulate in broad streaming rolls.
In contrast, in the experiments on the Pyrex-lid device
D2, the large particle are seen to accumulate above the
center of the electrodes near two planes, 36 % of them at
z = (15 ± 5) µm = (0.3 ± 0.1)Hfl and 64 % of them at
z = (30± 5) µm = (0.6± 0.1)Hfl. Here, the uncertainty
is estimated from the optical focal depth in the setup.
These numbers are in fair agreement with the simulation
results mentioned above and shown in Fig. 5(g) (purple
numbers). Finally, the observed acoustophoretic focusing
time of 0.1 s matches the theoretical predictions.

VI. RESULTS OF THE 3D MODELING

In this section we address the more realistic, but also
more cumbersome simulations in 3D for the Pyrex-lid
device D2. Even given our access to the High Perfor-
mance Computing clusters at the DTU Computing Cen-
ter (HPC-DTU) [53], we cannot simulate the entire chip
shown in Fig. 1(a). Whereas we keep the correct dimen-
sions in the height, we scale down the width and length
to both be around 1 mm. The 3D model geometry is
shown in Fig. 6 with the detailed parameter values listed
in Table III. In this reduced geometry, the IDT contains
only 4 electrode pairs and no Bragg reflectors. Although
the model is down-sized in two of the three dimensions,
it still contains all the main components of a acoustoflu-
idic SAW device: A first step, in which the piezo-electric
device, the IDT electrodes, the elastic lid, and the mi-
crochannel with the fluid and its viscous boundary layer,
are combined in the calculation of the electrically induced
acoustic fields. A second step, in which the acoustic radi-
ation force and the acoustic streaming velocity are com-
puted, and used in the governing equation predict the
acoustophoretic motion of suspended spherical particles.

A. The acoustic fields and radiation force

The 3D model shown in Fig. 6 contains 4.6 million de-
grees of freedom. The calculation was distributed across
80 nodes on the HPC-DTU cluster and took 14 hours to
compute. The first result is that the computed pressure
and displacement fields p1 and u in 3D are both qualita-
tively and quantitatively similar to the ones computed in
the 2D model. For vertical slice planes parallel to the x-z
plane and place near the center of the IDT at y = 1

2Lsl,
the agreement is of course better than for those near the
edge of the IDT near y = 1

2 (Lsl±Lel), but in all cases we
find the period-3 structure of |p1| along the z direction
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FIG. 6. A 4.4 MDOF simulation of a mm-sized Pyrex-lid de-
vice D2 in 3D actuated at fSAW = 50 MHz. A surface plot of
the electric potential V [from −4.35 (purple) to 4.35 V (light
cyan), rescaled from V0 = 1 V] in the piezoelectric substrate,
combined with a slice plot at y = 1

2
Lsl of the acoustic pres-

sure magnitude |p1| [from 0 (black) to 566 kPa (yellow)] in
the channel and the magnitude of the displacement |u| [from
0 (blue) to 0.05 nm (red)] in the surrounding Pyrex.

seen in Fig. 4(b). Likewise, for the acoustic radiation

force density, we recover the period-3 structure in |f rad|
seen in Fig. 5(f) and for the particle focusing points in
Fig. 5(g). The experimental observation of this vertical
focusing is thus validating this point in our 3D model.

B. The acoustic streaming rolls

The streaming-dominated, in-plane acoustophoretic
motion of 0.75-µm-diameter particles suspended in the
device is used in Fig. 7 to compare our model predic-
tions to observed particle motion. As shown in Fig. 7(a),
the experimentally observed particle motion in Pyrex-lid
device D2 at the edges of the IDT electrodes is domi-
nated by streaming rolls in the horizontal x-y plane. We
compare this motion with the streaming velocity field v2

calculated using the 3D model and shown in Fig. 7(b).
Although the model only includes a mm-sized sub-region
of the experimental device, the same streaming pattern is
evident in both the model device and in the experimen-
tal device. The agreement in terms of direction, position,
and magnitude is good, albeit with small differences. In
both the simulation and in the experiment, the centers of
the streaming rolls are located at the edges of the elec-
trodes, with clockwise-circulating flows. Similar to the
2D streaming pattern in Fig. 5, the observed horizontal
streaming rolls are a combination of a recirculating flow
and an energy flux density, here perpendicular to and
away from the IDT array. The streaming velocity in D2

FIG. 7. Acoustic streaming in the horizontal x-y plane of
Pyrex-lid device D2. (a) Experimental top view of device
D2 containing suspended 0.75-µm-diameter polystyrene par-
ticles (white), actuated at 50 MHz with V0 = 4.35 V. Arrows
(cyan) indicate the flow direction, and the blue dashed rect-
angle indicates the area shown in (b). (b) Colored arrow plot
of the simulated streaming velocity field v2 [from 0 (blue) to
66 µm/s (red)] in the 3D model actuated as in panel (a). The
black stripes represent the electrodes.

near the right edge of the blue rectangular region shown
in Fig. 7(a) and (b) is measured in the 24-electrode-pair
device to be∼ 200 µm/s and in the simulated 4-electrode-
pair device to be ∼ 20 µm/s, or ∼ 120 µm/s if multiplied
by the ratio of the number of electrode pairs, 24/4.

VII. DISCUSSION

By comparing our model simulations to measurable
quantities, we find that the model can predict the over-
all electrical and acoustophoretic behavior of the two
types of SAW-devices D1 (PDMS lid) and D2 (Pyrex lid)
fairly well. For the electrical response of the device we
see a good agreement between the trends near resonance
of the predicted and measured values of the electrical
impedance, although the predicted values are obtained in
an ideal 2D model neglecting stray impedances. The pre-
dicted acoustophoretic focusing of the 1.7-µm-diameter
polystyrene particles at the ceiling and floor above the
edges of the electrodes in D1, and at 1/6 and 3/6 of the
channel height above the center of the electrodes in D2,
agrees well with experimental observations.
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An interesting feature of the model is the three half-
wave resonance excited vertically in the Pyrex-lid device
D2. It highlights the importance of careful considera-
tion of the material selection for acoustofluidic devices,
to fit with the desired purpose of the device. Because a
PDMS lid is an acoustically soft material with an acous-
tic impedance Zac similar to that of water (Zac

PDMS =
1.19 MRayl, Zac

H2O = 1.49 MRayl), most of the energy in
an acoustic wave in water impinging on the water-PDMS
interface is transmitted into the PDMS, where it dissi-
pates into heat. Only a small fraction of the energy is
reflected back into the fluid. As illustrated in Fig. 4, by
replacing the PDMS lid of the device in Ref. [23] with an
acoustically hard (Zac

Py = 12.47 MRayl) Pyrex lid, 78.6%
of the wave energy is theoretically reflected back into the
fluid domain at the channel lid, compared to the 10.9% in
a PDMS lid. The resonance build-up in the microchannel
is further enhanced, as the height of the channel sustains
three half-waves at the resonant frequency of the IDT,
fres = cSAW

λSAW
= cfl

3λWa
. This resonance behavior is very

similar to the integer-half-wave resonances common in
BAW devices, whereas the beneficial energy localization
at the surface of the SAW is still retained. Thus, the
energy loss and heat generation occurring in the piezo-
electric substrate in BAW devices is mitigated in this
device whereas strong microchannel resonances can be
achieved, when using a Pyrex lid in an IDT-inside SAW
design. Considering this the terms ’BAW’ and ’SAW’
seem inadequate when describing acoustofluidic devices,
as the actuation scheme of the piezo-electric transducer
alone does not suffice to describe the resonance behavior
of a device. A more descriptive feature of a device is the
nature of the wave field in the fluid, because we show the
main factor determining acoustophoresis in the SAW is
the difference between traveling and standing wave fields
in the fluid.

In acoustofluidic focusing devices, a strong streaming
flow is often detrimental to the desired application, as
they tend to counteract the radiation force by pulling
small particles away from the nodes. In the Pyrex-lid de-
vice, however, the vertical part of the streaming enhances
particle focusing, as it pulls particles from areas with
weak radiation force into the lower node of the acoustic
radiation force, increasing the focusing efficiency.

VIII. CONCLUSION

We have presented a 3D model, and implemented it in
the finite-element software COMSOL Multiphysics, for
numerical simulation of SAW-devices taking into account
the piezo-electric substrate, the IDT metal electrodes,
the elastic solid defining the microchannel, the water in
the microchannel as the viscous boundary layer of the
water. With such simulations, we are able to decrease the
gap between the systems that we can model and those
used in actual experiments. This work thus brings us
closer to the point, where numerical simulation can guide

rational design of acoustofluidic devices.

To push acoustofluidic devices closer to medical ap-
plication, the development of novel device designs be-
yond the proof-of-concept stage is vital. We have pre-
sented a close-to-scale numeric model of an acoustofluidic
SAW device by expanding on previous model experiences
[32, 36] and the recently developed effective-boundary-
layer theory [43]. With this we have captured the inner
workings of a non-trivial device. The model includes the
linear elasticity of the defining material, the scalar pres-
sure field of the microchannel fluid and the piezoelectric-
ity of the lithium niobate substrate.

Using the numeric model, we illustrate the impact
that the material selection in acoustofluidic chips has on
acoustophoretic performance. Based on the numerically
predicted acoustic fields, we propose design improve-
ments over the previous design [23], consisting primarily
of substituting the original PMDS lid with a Pyrex lid.
According to our model, the new lid leads to higher en-
ergy densities and more uniform particle focusing. This
causes the chip to build up strong resonances in a stand-
ing wave field, similar to those in a BAW device. Fur-
thermore, we have used our model to predict the elec-
trical response of the a 2D model of the system, the
acoustophoretic focusing of particles suspended over the
IDT area of the device, and the streaming motion within
devices. For each of these comparison parameters we
have found an agreement between predictions and exper-
iments.

Despite our focus on a specific device design in this
manuscript, the model can handle a much wider class of
acoustofluidic devices. We have a developed a model that
can be reshaped to simulate any BAW or SAW device de-
sign of well-characterized piezoelectric transducers, New-
tonian fluids, and isotropic and anisotropic linear solids.

In future work it would be prudent to improve the
model accuracy by including the temperature field to ac-
count for the thermal dependence of material parame-
ters, particularly the fluid bulk and dynamic viscosities.
To implement the temperature field one must account
for the various sources of thermal generation in terms
of mechanical losses and viscous dissipation described in
[54], which requires a good knowledge of the damping
properties of each component of the device.
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FIG. 8. (a) Top-view sketch of the material coordinate sys-
tem X,Y, Z in mono-crystalline, hexagonal lithium niobate
with three mirror planes m. (b) 128

◦
YX-cut lithium nio-

bate chip showing the global coordinate system x, y, z rotated
counter-clockwise θ = 128

◦ − 90
◦

= 38
◦

around the X-axis
relative to the material coordinate system X,Y, Z.

Appendix A: Bond and rotation matrices

The elasticity, coupling and permittivity properties of
mono-crystalline lithium niobate are listed in Ref. [38]
for a Cartesian material coordinate system X,Y, Z de-
fined as shown in Fig. 8(a). The Z-axis is oriented in
the growth direction, the X-axis is the normal to one of
the three mirror planes, and the Y -axis follows from the
right-hand rule, placing it within the mirror plane the X-
axis is normal to. The device in this manuscript, however,
is manufactured on a wafer of the more commonly used
128◦ YX-cut lithium niobate. These are wafers of lithium
niobate cut from a single crystal so that the positive sur-
face normal forms a 128◦ angle with the material Y -axis.
In our model, we define a coordinate system x, y, z with
the x-axis coinciding with the material X-axis, the z-axis
normal to the wafer surface and the y-axis determined
by the right-hand rule. This global coordinate system
coincides with the material coordinate system rotated an
angle θ = 128◦−90◦ = 38◦ counter-clockwise around the
X-axis, as shown in Fig. 8(b).

In the following, we define the matrix operations nec-
essary to determine the material parameters in the global
system x, y, z from the values known in X,Y, Z.

In the usual Cartesian notation exists a matrix R
transforming a 3×1 vector Pmt expressed in material co-

ordinates X,Y, Z to the vector P gl expressed in terms of
a global coordinate system x, y, z.

P gl = RPmt, (A1)

whereas 3×3 matrices are transformed as

εgl
r = Rεmt

r R
−1. (A2)

For 6×1 vectors in Voigt notation similar matrices
called Bond matrices Ms transform stress vectors σmt

V

expressed in material coordinates into the same stress in

terms of the global coordinate system σgl
V

σgl
V = Mσσ

mt
V , (A3)

and similarly to Eq. (A2) 6×6 matrices are transformed
as

cgl
r = Mσc

mt
r M

T
σ (A4)

It is important to note that Voigt notation stress and
strain vectors do not transform alike and two transforma-
tion matrices exist in Voigt notation Mσ 6= Mε. Hence,
the transformation rules deviate slightly from those in
3×3 matrices.

Finally, 3×6 matrices such as the coupling tensor, e
can be transformed using a rotation matrix and Bond
matrix.

egl
r = Remt

r M
T
σ (A5)

Mathematically, a positive rotation θ degrees about
the material X-axis is obtained by the rotation Rx(θ)
and Bond Mσ,x(θ) matrices

Rx(θ) =




1 0 0
0 C S
0 −S C


 , (A6)

Mσ,x(θ) =




1 0 0 0 0 0

0 C2 S2 2CS 0 0

0 S2 C2 −2CS 0 0

0 −CS CS C2 − S2 0 0
0 0 0 0 C S
0 0 0 0 −S C



, (A7)

using C and S as shorthand for cos(θ) and sin(θ) respec-
tively.
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Chapter 7

A wall-free multiwell system

In this chapter we introduce an ongoing numerical and experimental research project carried out
in collaboration with Postdoc Björn Hammarström from KTH Stockholm, who conducts the ex-
perimental part of the work. We use the numeric model developed over the last few chapters to
create an new device design for biological studies, and verify its predictions experimentally. Un-
like Chapters 5 and 6 we do not add new functionalities to the numeric model in this chapter, but
merely reshape it in search of new device designs. Enclosed in full in the appendix is an abstract
submitted for the Acoustofluidics 2019 conference presenting the state of this research project by
this thesis’s submission.

7.1 Motivation

Biological cell-cell studies are often performed on an average basis, although the study of indi-
vidual cells can provide valuable insight for instance regarding immunology studies [137]. At
KTH Stockholm the 10 × 10 multi-well chip defined in Ref. [41] has been used extensively in
biological studies [138, 139, 140]. The configuration of this chip allows for studying 100 simul-
taneous cell-cell interactions, but its closed nature hamper loading and unloading of cells and cell
media. Additionally the static wells are defined in silicon and must be deep reactive-ion etched in
a clean room. To supplement the studies performed by this chip we create a new design that can
dynamically alter its focusing and is open for flow-through.

A device meeting some of these demands was presented by Neild et al.[141] in a silicon-glass-
piezo device which had two strip electrodes on the piezo that could be turned on independently
of each other giving two distinct particle patterns. However, in their paper they do not discuss if
additional modes can be excited or whether the resonance is caused by the piezoelectric substrate
or the fluid cavity dimensions.

The device by Lilliehorn et al.[142] also showed potential in dynamic focusing as various
focusing patterns could be achieved by changing the frequency, which they attributed to a near
field effect between particles. We have, however, found that the particle patterns they observed
is attributed to the piezoelectric ceramic’s motion directly transferring to the fluid. Based on this
insight, we study the motion of free, unloaded piezoelectric transducers of various designs that
can all be achieved through micro-milling a standard slab.
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7.1.1 Array patterns in piezoelectric transducers

We study the of motion piezoelectric transducers of various designs that can all be achieved using
a standard slab of Pz26 and a micromiller. We discovered that a piezoelectric transducer with a
regular planar configuration of electrodes on the top and bottom give rise to a number of resonance
modes in close proximity in the frequency domain akin to the Chladni figures observed by Hooke
over three centuries ago in elastic plates. Typically, the patterns reflect the structure defining them
similar to the wave-guides shown by Bian et al.[45]. For rectangular plates we find a number of
modes having a diamond pattern similar to the desired arrays of the multi-well.

We find that by removing part of the electrode similar to Neild et al.[141], these patterns can
be altered and in some cases even localized on the surface opposite the removal. Through trial-
and-error we discover that a design featuring a quadratic protrusion leads to particularly useful
focusing patterns, which we show in Section 7.3.2.

Lei [143] carried out an analysis of the acoustophoretic motion of particles suspended in a fluid
in direct contact with a Chladni-disk that bears some similarities to this work. However, his work
involved a linearly elastic material and used analytical Bessel functions to model the displacement
of the disk, while we use a piezoelectric material and model the piezoelectric element completely.

7.2 Model system

The device shown in Fig. 7.1 consists of a 22 × 15 mm2 slab of the piezoelectric ceramic PZ26
poled in the z-direction with two electrodes initially covering the entirety of each of the z-facing
surfaces.

Figure 7.1: Physical device and numeric model. (a) Sketch of the devices as seen from one of the
open-ended side of the fluid domain. A fluid domain is defined by a Pz26 slab below, double-sided
tape on two sides and a microscope slide on top. The Pz26 slab is milled to leave a protrusion of
electroded surface on the bottom. (b) The numeric model seen from below. The dark regions
show the positions of tape on the top surface. We denote the portion of the top surface directly
opposite the electrode the region of interest (ROI). This is the most acoustically active part of the
top surface. (c) The physical device being filled with red particles in suspension by pipette. Image
courtesy of B. Hammarström.
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The majority of the bottom surface is micromilled away to leave a 10 × 10 mm2 electroded
surface protruding 0.1 mm from the remaining milled Pz26 surface, while the top surface is left
intact. Stacks of double-sided tape are adhered on both ends of the 22 mm-long side to define
the side walls of an 15 × 13 × 0.39mm3 open-ended channel and a Pyrex glass microscope slide
placed on top of the tape defines the upper perimeter of the microchannel. Note that the width and
length of the channel are of little consequence as long as it is wider than 10 mm. Fluid is fed to
the channel through either of the open ends using a pipette and fills through capillary forces.

The top electrode is grounded while the bottom one is charged and an ac potential of V0 is
applied across the device with a frequency of f in the range 1.74-1.84 MHz. This is slightly lower
than the half-wavelength resonance in the height of the device of f0,0,1 = 1.91 MHz, but close
enough that a standing half-wave is present in the fluid across all frequencies. Accordingly, the
lateral focusing shown in Fig. 7.3 is always combined with a vertical focusing in the middle of the
fluid domain.

Table 7.1: Dimensions of the final device design.

Domain Length (x) [mm] Width (y) [mm] Height (z) [mm]
Pz26 slab 22 15 0.92

Pz26 protrusion 10 10 0.1
Electrode top surface 22 15 0.001

Electrode bottom protrusion 10 10 0.001
Fluid domain 13 15 0.39
Tape spacers 2 15 0.39

Pyrex lid 75 26 0.5

7.2.1 Full numeric model

We set up a full one-to-one numeric model containing each of the elements of the actual device.
In want of its exact material parameters the acrylic double-sided tape is modeled as polymethyl-
methacrylate (PMMA). The device contains a PML layer in the fluid at the open ends of the
channel and in the Pyrex lid beyond the glue tape pieces. The numeric model consists of roughly
1.6 million degrees of freedom, so finding resonance peaks is a quite cumbersome process a a
single frequency calculation takes 48 minutes.

7.2.2 Reduced model

Based on the results shown in Section 7.3.1 we create a reduced model consisting solely of the
milled Pz26 slab. The reduced model has only 0.7 million degrees of freedom, which reduces
the calculation time for a single frequency to 43 seconds allowing for large calculation sweeps in
frequency.

7.3 Key results and observations

We here go through the results discovered so far in this research project. We first present a rea-
soning for using the reduced model rather than the full one in Fig. 7.2. We then present some of
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the acoustophoretic predictions and results obtained thus far in Fig. 7.3 and in Fig. 7.4 show that
the focusing is largely independent of the cavity dimensions. Lastly, in Fig. 7.5 we investigate
whether a similar effect can be observed in the lead-free piezoelectric ceramic aluminum nitride
(AlN).

7.3.1 Correlation between displacement and radiation potential

In Fig. 7.2 we present the similarity between; (i) the calculated vertical displacement magnitude
|u1,z| for an unloaded Pz26 slab, (ii) ditto for a piezo loaded with water and a Pyrex lid, and (iii)
the acoustic radiation potential U rad in the vertical center of the fluid domain loaded on a piezo.

Figure 7.2: (a) Color plot of the vertical displacement magnitude |u1,z| from 0 (blue) to 3.1 nm
(red) in a 15× 15× 1.02 mm3 slab of Pz26 with electrodes on the entirety of the top and bottom
surfaces, at the resonance frequency f = 1.81 MHz and V0 = 1V. (b) As in (a) but where the slab
is loaded with a 0.39 mm layer of water and a 0.5 mm layer of Pyrex. The resonance frequency
is shifted to f = 1.80 MHz, and the magnitudes are 0 (blue) to 1.6 nm (red). (c) Color plot of
the radiation potential U rad from 0 (black) to 0.6 fJ (orange) in the fluid layer from (b) in the
horizontal plane containing the vertical center z/h = 1

2 of the fluid domain. Adapted from [4]

In Fig. 7.2(a) we see that the predicted displacement magnitude field of the free Pz26 slab at
this frequency is a pattern of dozens of distinct antinodes. In the inner region spanning ∼80 % of
the width and length of the surface, the antinodes all have the approximately same displacement
magnitude and are spaced by primarily straight nodal lines making a 45◦ with the edges of the
surface.

In Fig. 7.2(b) we see the same pattern in the inner region, albeit with slightly more compact
antinodes and unlike in (a) the magnitude of the antinodes decreases with distance from the sur-
face centers. We also note that adding the water and Pyrex domains only shifts the calculated
resonance frequency by 0.6 % while halving the overall displacement magnitude. The small shift
in frequency is important as the modes estimated numerically with the reduced model are still
similar to the experimentally found ones.

Similarly, we see that in Fig. 7.2(c) the same pattern appears, but again the antinodes with the
largest radiation potential is not observed at the antinodes with the highest displacement magni-
tude. As particles settle in regions of low potential, however, it is the position of nodes, not the
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magnitude of antinodes that is of interest when studying the acoustophoretic behavior of a device.
Accordingly, the good agreement between the antinode positions in Figs. 7.2(a), (b), and (c)

show that the possible settling positions of particles in this device design with reasonable certainty
can be approximated from the regions of low vertical displacement magnitude of an unloaded
Pz26 slab. We thus use the reduced model to estimate acoustophoretic motion in the following.

7.3.2 Acoustophoresis comparisons

In Fig. 7.3 we compare experimentally observed particle focusing patterns with normalized verti-
cal displacement magnitudes |u1,z|/max

(
|u1,z|

)
calculated using the reduced model.

Figure 7.3: Particle position observations and predictions. (top row) Images of observed positions
of 3-µm-diameter polystyrene beads (red) 180 s after turning ultrasound on in a device with intially
homogeneous distributed particles for a series of frequencies fexp with fixed voltage V0 = 2.3 Vpp.
The green outline shows the region of interest, which is the area directly opposite the electrode
protrusion on the bottom of the Pz26 slab. (bottom row) Color plots of the calculated normalized
vertical displacement magnitude fields |u1,z|/max

(
|u1,z|

)
from 0 (blue) to 1 (red) at the numerical

local maxima fnum closest in value to the experimentally observed frequencies. The surfaces
correspond to the Pz26 surface within the green insets in the top row. From [4].

We see in the top row in Fig. 7.3 that the strongest particle focusing is at fexp = 1.800 MHz,
where the beads agglomerate in clusters that are connected in the x-direction through thinner
bands of particles. Meanwhile, at the adjacent frequency of fexp = 1.780 MHz the clusters are
connected in bands in the y-direction. At fexp = 1.760 MHz a weak cluster-and-band focusing
can be observed, while the particles form thin lines with no clusters at fexp = 1.820 MHz.

In the bottom row the blue color shows regions of low magnitude and thus expected agglomer-
ation of particles. At fnum = 1.8150 MHz the blue regions show the same cluster-and-connector
structure observed for particles at fexp = 1.800 MHz. Likewise, the cluster-and-band structure of
particles at fexp = 1.780 MHz is to some degree mirrored by the field of fnum = 1.7950 MHz.

However, as one would expect considering the simplicity of the reduced model there are some
discrepancies between the observed particle focusing and the numerical predictions. For instance
the line structure of fexp = 1.820 MHz is more better replicated by the field of fnum = 1.8425
MHz than that at the closest resonance fnum = 1.8275 MHz.
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7.3.3 Focusing robustness to cavity dimensions

In Fig. 7.4 we show particles focusing under two conditions to illustrate the decoupling between
the fluid cavity dimensions and the focusing patterns.

Figure 7.4: Time-evolution images of particles focusing at fexp = 1.800 MHz and V0 =
2.33 Vpp. (top row) The particle agglomeration due the first 5 seconds after turning on the ul-
trasound in a no-flow situation. (bottom row) The particle agglomeration due the first 5 seconds
after turning on the ultrasound when part of the liquid in the channel is gradually displaced by air.
Images courtesy of B. Hammarström

In the top row of Fig. 7.4 we see that the majority of particles focusing at fexp = 1.800 MHz
in Fig. 7.3 are settled after just ∼5 s at V0 = 2.33Vpp. Note that the presence of bubbles does not
affect the pattern as the focusing structures near the bubbles is identical to the structure furthest
from the bubbles. This is in stark contrast to the presence of bubbles in classical BAW devices re-
lying on cavity resonances. In such devices air-fluid interfaces and changes in acoustic impedance
completely alter the acoustic landscape and cause devices to behave unpredictably.

We further illustrate the robustness of the system with regards to the exact dimensions of
the fluid cavity in the bottom row of Fig. 7.4. Here a large portion of the fluid is purposefully
displaced by an air meniscus pushed in by a pipette starting when ultrasound as turned on. The
focusing patterns here are only affected by the advancing meniscus, due to the flow it induces in
the water, and even so the pattern is largely unchanged. This further cements that the focusing
is due to the motion of the Pz26 slab, and that only the height of the fluid cavity influences the
focusing.

7.3.4 Reproducibility in lead-free piezoelectric ceramics

There is an increasing interest in moving away from PZTs in ultrasonics towards lead-free trans-
ducers due to the EU directive 2015/863 [144] prohibiting ”the use of lead [...] in electrical and
electronic equipment placed on the Union market.”

A lead-free alternative to PZTs is the piezoelectric material aluminum nitride (AlN). It has the
same isotropy in the plane normal to the poling direction, although it is slightly less dense but
stiffer and has markedly lower coupling coefficients and far lower dielectric constants. The two
will likely interact similarly with water, however, because the specific acoustic impedances of the
Pz26 and AlN are very similar, at 15.0 MRayl and 18.9 MRayl respectively.
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We do a preliminary study to see if we can reproduce patterns similar to those in Fig. 7.3 in
AlN. In Fig. 7.5 we show a comparison between the reduced model described in Section 7.2.2,
and a similar one with the PZT replaced by AlN. We choose to study a large band of frequencies,
as the fluid domain height can easily be changed in discrete steps, and the eigenmodes shown in
Fig. 7.3, may not necessarily be the best ones.

We have chosen to use AlN as a lead-free alternative as it had material parameters that were
readily available and because it is an other commonly used transducer material in BAW. Typically
it is made in thin films, however. Therefore, we have chosen to study two pieces of AlN with
the same surface area as the Pz26 slab; a 3-mm-thick bulk slab of AlN that may not physically
be realizable and a 200-µm-thick film pushing the limits of the report maximum film thicknesses.
The protrusion heights in the two designs are 100 µmand 10 µm, respectively.

In Fig. 7.3(a) we see that the spectra of the three designs all have many narrow peaks. The
position of peaks do not generally coincide, however. The displacement magnitudes in AlN are all
an order of magnitude lower for the same applied voltage, but this is easily alleviated by increasing
the applied potential.

The strongest modes shown for PZT in Fig. 7.3(b) to (e) and AlN in (f) to (m), are also quite
dissimilar. This is due to the patterns being functions of all the material parameters, and their
relative magnitudes in AlN is markedly different from that in PZT. To generalize, the modes found
for Pz26 have more complex structures, whereas the most powerful modes in AlN are patterns
of lines parallel to either the x or the y axis. This may yet prove useful, as a superposition of
an x-aligned mode and an y-aligned mode will give a regular array and alternating the actuation
frequency is trivial in most modern function generators.

7.4 Concluding remarks

We have presented an on-going project in which we have used our numeric model to create a
design for a new device for biological studies through an iterative trial-and-error process. We
have tested the design experimentally and found its acoustophoretic properties to be as expected.
The computer-aided design process was enabled by the discovery that the vertical displacement
magnitude served in a reduced computational model served as a good predictor of the acoustic
radiation potential in the full model.

The new device is very easy to make and requires no clean room to fabricate as the only non-
assembly process is micromilling a single surface. Additionally, it is made of components that are
commonplace in acoustofluidics labs. The device has a high efficiency, and has been used to focus
and grow organic tissue at an input power of 80 miliwatts with no external cooling. By comparison
the multiwell device we mention is run at decades of watts and requires external cooling. Further-
more, the device has the added advantage of having a focusing that can dynamically be altered by
changing the frequency.

The downside of the current stage of device is the contents of lead in the transducer. However,
with some clever control of the function generator the PZT transducer may possibly be replaced
by aluminum nitride, by combining multiple modes into a single useful pattern. A further study of
alternative materials is necessary.

By comparison between the observed particle focusing in the newly designed device and the
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Figure 7.5: Lead zirconium titanate and aluminum nitride comparison. (a) Line plots of the
average vertical displacement magnitude |vz,1| of the 10× 10 region of interest as functions of the
actuation frequency, f for Pz26 and aluminum nitride. The circles show the positions of the color
plots of (b) to (i) on the spectra. (b) to (e) Color plots of the normalized vertical displacement
magnitude |vz,1|/max(|vz,1|) in the region of interest for the four highest peaks in the spectrum
of Pz26. (f) to (i) As in (b) to (i) but for a 200 µmaluminum nitride film. (j) to (m) as in (f) to (i)
in a 3 mm thick slab of aluminum nitride.



7.4. Concluding remarks 127

qualitative predictions made using the reduced model, particularly for the strongest focusing fre-
quency at fexp = 1.800 MHz, we have shown the reduced model to be a reasonable predictor of
the acoustophoretic performance of the device.





Chapter 8

Conclusion and Outlook

We here sum up the work carried out with our numeric model and the most important discoveries
made using the model. Finally we provide an outlook describing possible numeric and experimen-
tal elements that can be added to the research project described in Chapter 7, and possible future
addition to the numeric model.

8.1 Conclusion

This thesis serves as an introduction to a versatile numerical model that encompasses the primary
aspects involved in acoustophoresis and can be reshaped to represent any isothermal device con-
sisting of a fluid microchannel defined by linear elastic materials and driven by a piezoelectric
transducer.

We have described each step of the gradual improvement and outlined the verification of the
device through comparison with analytical solutions and experimental data. Most importantly, we
used the model to study complex systems where numerics is the only recourse and gained insights
into the experimentally ’invisible ’ acoustic fields of devices.

The four primary research topics of the thesis are; (i) A study of the validity of boundary
conditions that are widely used in the literature. (ii) A full-scale numerical study of a bulk acoustic
wave device with emphasis on the atypical acoustophoretic motion of particles within. (iii) A near-
scale numerical and experimental study of a surface acoustic wave device with the intent to further
improve the acoustophoretic capabilities of the device. (iv) A numerical and experimental design
process resulting in a new device showing promise for biotechnological research.

First, we generate two sets of two-dimensional models of a fluid bounded by a linear elastic to
calculate the acoustic first-order fields in an idealized surface acoustic wave device. The models
are used to determine whether the hard wall and lossy wall boundary conditions approximate the
calculated motion of a borosilicate glass wall and a polydimethylsiloxane rubber wall under such
actuation conditions for a number of material thicknesses.

We find that while there are instances where the hard wall condition does give roughly the
same acoustic fields in the fluid, neither of the two conditions approximate the wall motion well
under any circumstances.

Secondly, we expand on the numeric model to three dimensions while adding more com-
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plex materials, a cost-effective means of calculating the fluid acoustic fields and the physics of
piezoelctric materials. Using the model we study an acoustofluidic device with a nearly quadratic
fluid cavity to verify our numeric model and provide an explanation of the acoustophoretic motion
observed within.

In the cavity the degeneration of acoustic modes gives rise to atypical radiation- and streaming-
induced motion. Particularly the streaming is of interest as we, surprisingly for its small size, find
it to be driven by bulk forces and not by the viscous boundary layer at the edges of the cavity.

Thirdly, we study a promising surface acoustic wave to explain its inner workings and improve
upon the design. In this study the numerical model is a scaled-down version of the real device
requiring a high performance cluster to compute. Still the model captures the interesting streaming
patterns parallel to the piezoelectric substrate.

We find that the device performance can be altered markedly by replacing the polydimethyl-
siloxane rubber lid with a borosilicate glass one. The higher acoustic impedance in the glass
causes the device to act akin to bulk acoustic waves, by building up pressure nodes in the vertical
direction and keeping particles levitated in the fluid, while the rubber lid caused particles to stick
to the bottom or top of the channel.

Fourthly, we move on to using the numeric model as a design tool to test out a multitude of
device designs including a piezoelectric transducer, a fluid microchannel and a borosilicate glass
casing. We find that it is not necessary to include the fluid domain and glass lid when modeling
this particular device, as the radiation field building up in the fluid can be estimated solely by the
displacement field of the piezoelectric transducer’s fluid-contacting surface even without including
the fluid in the simulations.

The new design functions as numerically predicted at resonance, and shows promise in tissue
engineering due to its easy fabrication, inexpensive components, good scalability and dynamic
nature.

8.2 Outlook

Temperature field in the numeric model

Regardless of the application areas the most imminent improvement for the numeric model is the
implementation of thermal effects induced by losses as described by Hahn and Dual [59]. This is
difficult, however, as it requires knowledge of the temperature-dependence of all relevant material
parameters. It also adds markedly to the computational cost of a model by adding a temperature
field to be solved for in all nodes of the model. Accordingly it should only be implemented when
thermal effects are known to be an issue, which has not been the case in the research projects
presented in this thesis.

Chladni-figure motion control

Thus far the experimental localized BAW device of Chapter 7 has primarily been run at a sin-
gle frequency or swept through a consecutive span of frequencies. Zhou et al.[145] described a
method of independently controlling single objects resting on a Chladni-plate. They achieve this
by characterizing a number of displacement modes in terms of the spatial distribution of induced
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motion of particles resting on the plate. Through a feedback loop a piece of software then makes
several particles follow predetermined reference paths independent of each other by actuating an
appropriate sequence of modes. The modes need not be resonant and so the applied actuation
magnitude must be scaled according to the ’transfer function’ of the actuation frequency.

A similar cataloging and programming for the modes observed in Chapter 7 could be of inter-
est to create a tool for independently manipulating single cells in a fluid chamber. The focusing
of particles in the device is very similar that on a Chladni plate and the method just might be
realizable for this very reason. This would require a suitable optical setup, a programmable func-
tion generator and an immense amount of work programming and cataloging the modes, but is
nonetheless feasible.

Ideally, one would want the largest possible library of modes for the method above to be
versatile. For the method described above clearly the accuracy of the method increases with the
number of cataloged modes. Wang et al.[146] found that by applying a dc bias in addition to an
ac potential over a thin plate of PZT the elastic and dielectric properties of the material changes
noticeably. By applying this to the device from Chapter 7 the topologies and shapes of the observed
modes may change as the shapes are dependent on the relative elasticity to permittivity.

The ideas here can be tested out both numerically and experimentally, but do require quite the
amount of both time and effort. If the independent particle can be realized, however, it will be well
worth the investment.

8.2.1 Capacitive micromachined ultrasonic transducer

Typically the ultrasonic displacements in acoustofluidics are generated by an ac potential applied
to a piezoelectric material. While some beneficial motion may be found as in Chapter 7 exact
control of piezoelectric transducers can not be obtained.

As an interesting perspective capacitive micromachined ultrasonic transducers (cMUTs) have
been emerging since the 1990’s, enabled by advances in microfabrication techniques. Rather than
the piezoelectric effect cMUTs rely on a the electrostatic force in a capacitor with a thin membrane
allowing for deflections. By applying an ac potential across the capacitor the thin membrane
vibrates harmonically with the frequency of the potential, similarly to a piezoelectric element.

cMUTs can be collected in arrays of multiple unit cells that can be separately controlled,
providing excellent control of the exact motion of the cMUT surface. To my knowledge this this
has only been used in a acoustofluidic experiment twice, [147, 148] but may likely prove to replace
piezoelectric materials. Implementing of cMUTs in the numeric model along with verification
experiments could prove very interesting, particularly for devices with direct contact between the
fluid and transducer as in Chapter 7.
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Introduction
We study experimentally and numerically a wall-free acoustic multi-well system based on the Chladni-plate-
like motion of a piezoelectric lead-zirconium-titanate (PZT) slab. This system is similar to the multi-well sys-
tems with acoustic particle levitation used extensively for biological research and in biotechnology for nearly
a decade [1,2]. However, the wall-free multi-well system is much simpler to fabricate, and it can be changed
dynamically in situ, because the multi-well trapping is defined solely by the applied acoustic field and not by
solid walls. The idea derives from the particle patterns observed by Lilliehorn et al. [3], which they attributed
to near-field particle effects, but we can confirm that they instead correlate with the piezoelectric resonance
modes of the PZT slab. Our study also bears resemblance to the numerical study of particle handling driven by
a classical, clamped, isotropic, elastic Chladni disk by Lei [4], however, we study piezoelectric slabs and how
their resonance modes drive particle trapping.

Device design
The wall-free acoustic multi-well system consists of a PZT slab, on which double-sided tape is attached to
define the height and the outer perimeter of the water domain. The water domain is capped by a lid in the
form of a standard microscope slide attached to the top-side of the tape. Sketches of the system are shown in
Fig. 1. The original dimension of the PZT slab is 22×15×1.02 mm3, and it is covered by metal electrodes on
the top and bottom surfaces perpendicular to the polarization axes. On its bottom surface, a protrusion of size
10×10×0.1 mm3 is created in the center by milling away the surrounding material to a depth of 0.1 mm. On
the top surface of the PZT in the x-y plane, two parallel pieces of double-sided tape constitute the side walls in
the definition of an open-ended microchannel of length L = 15 mm (along y), width W = 13 mm (along x), and
height H = 0.39 mm (the thickness of the tape). A 0.5-mm-thick Pyrex microscope slide is adhered to the tape
and forms the lid. Thus, the floor of the microchannel is the electrode surface, its walls are the double-sided
tape, and its ceiling is the Pyrex slide. The acoustic trapping of suspended particles in the microchannel is
determined by the displacement field at the top surface of the resonating PZT slab pushing directly on the water
in a near-field effect, and not by acoustic resonances in the water as in conventional bulk-acoustic-wave devices.

Figure 1: Sketches of the device design: (a) Side view with the PZT slab (gray) and its metal electrodes (yellow),
the water-filled microchannel (blue), the tape spacer (brown), and the Pyrex lid (green). (b) Bottom view showing the
10×10 mm2 electrode (yellow) on the 0.1-mm-high protrusion in the center. The shaded rectangles to the left and right
indicate the position of the tape spacers on the top surface. The device consists of inexpensive components commonly
found in acoustofluidics laboratories, and it requires no clean room to manufacture. Besides assembling the device, the
only fabrication step is to make the protrusion on the bottom-surface of the PZT slab by milling.

Numerical simulations of the acoustofluidic system in 3D
Using the COMSOL Multiphysics implementation presented in Ref. [5], we set up a three-dimensional numer-
ical model that includes the piezoelectricity of the PZT slab, the solid mechanics of the tape and the glass lid,
the acoustics in the water including the viscous boundary layer, and the acoustic potential Uac in the water for
trapping of suspended microparticles. In Fig. 2(a) is shown the vertical component utop

z of the displacement at
the top surface of an 15× 15× 1.02 mm3 unloaded PZT slab, and similarly in Fig. 2(b), but now for the full



acoustofluidic system consisting of the same slab with water, tape, and lid mounted on top. In Fig. 2(c) is shown
Uac inside the water, a pattern clearly correlated to that of utop

z in Fig. 2(b). Due to the small added mass and
low impedance of water, Uac even correlates to utop

z in the unloaded PZT slab of Fig. 2(a). The computational
cost reduces significantly going from the full system to the unloaded PZT slab, by going from 1.3 to 0.3 million
degrees of freedom, or 78 %. In the following we therefore make qualitative predictions of the acoustic trapping
of microparticles from the less costly unloaded-PZT simulations.

Figure 2: Numerical simulations of (a) the ver-
tical displacement field utop

z (from 0 to 3.1 nm) at
the top surface of a free PZT slab at the 1.81-MHz
resonance, (b) utop

z (from 0 to 1.6 nm) in a full
acoustofluidic system (slab, water and lid) at the
1.80 MHz resonance, and (c) the acoustic radiation
potential Urad (from 0 to 0.6 fJ) of 3 µm polystyrene
beads in the vertical center plane of the fluid do-
main of the full system driven at 1 V peak-to-peak.

Experimental and numerical results for microparticle trapping in a wall-free acoustic multi-well
In Fig. 3 top row, the experimentally observed trapping positions of suspended 10-µm polystyrene beads (dark
red) are shown at six different resonance modes of the PZT slab. In the bottom row are shown the corresponding
numerically simulated displacement patterns at the top surface of the unloaded PZT slab run at resonance
frequencies determined from resonance peaks in a series of simulations sweeping from 1.74 to 1.84 MHz in
steps of 2.5 kHz. The zero-displacement nodal areas are colored dark blue, and it is expected that suspended
particles should agglomerate there. We note a fair agreement between (a3) and (b3), and between (a4) and (b4),
and we note that the aggregation lines of (a5) also appear to some extent in (b5). The relative error between
corresponding experimental and numerical resonance frequencies is less than 0.8 %.

Figure 3: Experimentally observed positions of trapped particles and numerical predictions of the displacement field
in the PZT slab at corresponding resonance frequencies. (a1)-(a6) Images, each obtained at a given single frequency, of
the agglomeration of suspended 3-µm-diameter polystyrene beads loaded in the water-filled microchannel above the PZT
slab. The green outline indicates the 10×10 mm2 protrusion on the bottom of the PZT slab. (b1)-(b6) Color plots of the
numerically predicted vertical displacement field on the top surface of an unloaded PZT slab with electrode patterning,
from low (blue) to high (red) field magnitude. The scale bar applies for both rows.

Conclusion
We have presented a combined experimental and numerical study of a device design based on Chladni-plate-
like motion of box-shaped PZT slabs driven at resonance. We have shown that this motion when coupled to a
water-fill microchannel may lead to the appearance of a wall-free acoustic multi-well that can trap suspended
microparticles. The specific multi-well configuration can be changed dynamically simply by changing from one
resonance mode of the PZT slab to another. This dynamically defined, wall-free acoustic multi-well system is
potentially useful in biotech applications such as; tissue engineering, formation of cellular organoids, and
drug screening applications, while consisting only of inexpensive components available in most acoustofluidics
laboratories.
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Appendix B

Notes on the governing equations and
notation

Symmetries in the general elasticity tensor

Using the definitions of strain energy density Um and stress in a linear elastic we find

Um = σikεik = Ciklmεlmεik (B.1a)

From this we can derive the following expressions for the elasticity

Ciklm =
∂U

∂εik∂εlm
, Clmik =

∂U

∂εlm∂εik
(B.1b)

As the order of derivatives is inconsequential, we see that the Ciklm = Clmik adding to the degree
of symmetry in the elasticity tensor.

Ciklm = Ckilm = Cikml = Ckiml = Cmlik = Clmik = Cmlki = Clmki (B.1c)

Basis for the factor 2 in Voigt shear element

The strain energy density Um = 1
2σikεik is invariant of notation. In roman letter indices we find

Um =
1

2
(σ11ε11 + σ12ε12 + σ13ε13 + σ12ε12 + σ22ε22 + σ23ε23 + σ31ε31 + σ32ε32 + σ33ε33),

(B.2a)

whereas it in Voigt components is

Um =
1

2
(σ1ε1 + σ2ε2 + σ3ε3 + σ4ε4 + σ5ε5 + σ6ε6). (B.2b)

Equating the two expression and employing the symmetry of the stress, σik = σki, and strain,
εik = εki, tensors we find

σ4ε4 + σ5ε5 + σ6ε6 = 2(σ23ε23 + σ13ε13 + σ21ε12). (B.2c)
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138 NOTES ON THE GOVERNING EQUATIONS AND NOTATION

Thus, the shear elements of either stress or strain in Voigt notation must be twice that in roman
indices. By convention the factor is added to the shear elements, to keep Eq. (2.8) consistent with
Eq. (2.3a)

ε4 = 2ε23, ε5 = 2ε31, ε6 = 2ε12 (B.2d)

Voigt transformation derivations

Rotations using Bond matrices Mε and Mσ must be isometric, i.e.the elastic energy must be
invariant of rotations.

Um = U ′m (B.3a)
1

2
σTVεV =

1

2
σ′TV ε

′
V,

σTVεV = σTVM
T
σMεεV,

MT
σMε = I ⇔Mσ =

(
M−1

ε

)−T
⇔Mε =

(
MT

σ

)−1
.

We use the stress definition σV = CεV to determine the transformation laws for the elasticity
matrix C,

σ′V = C ′ε′V, (B.3b)

MσσV = C ′MεεV,

σV = M−1
σ C ′MεεV,

C = M−1
σ C ′

(
M−T

σ

)−1
⇔ C ′ = MσCM

−T
σ .

Similarly, we use the definition for the mechanically induced polarization densityPm to determine
the transformation of the piezoelectric coupling tensor e,

P ′m = e′ε′V, (B.3c)

RPm = e′
(
MT

σ

)−1
εV,

Pm = R−1e′
(
MT

σ

)−1
εV,

e = R−1e′
(
MT

σ

)−1
⇔ e′ = ReMT

σ .

The transformation of the permittivity tensor is trivial but we include it for good measure.

D′ = ε′E′, (B.3d)

RD = ε′RE,

D = R−1ε′RE,

ε = R−1ε′R⇔ ε′ = Rε′R−1.



Appendix C

Material parameters for 128◦ Y-X cut
LiNbO3




202.89 72.33 60.17 10.74 0 0 0 1.73 −1.64
194.23 90.59 8.97 0 0 0 −4.48 2.69

220.29 8.14 0 0 0 1.67 −2.44
74.89 0 0 0 −0.14 −0.55

72.79 8.51 −0.10 0 0
59.51 6.09 0 0

Symmetric 44.3 0 0
38.08 −7.96

34.12




(C.1)

139





Bibliography

[1] N. R. Skov and H. Bruus, Modeling of Microdevices for SAW-Based Acoustophoresis - A
Study of Boundary Conditions. Micromachines 7(10), 182 (2016).

[2] N. R. Skov, J. S. Bach, B. G. Winckelmann, and H. Bruus, 3D modeling of acoustofluidics
in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids,
and a piezoelectric transducer. AIMS Mathematics 4, 99–111 (2019).

[3] N. R. Skov, P. Sehgal, B. J. Kirby, and H. Bruus, Three-dimensional numerical modeling
of surface acoustic wave devices: Acoustophoresis of microparticles including streaming.
Phys. Rev. Applied Submitted (2019).

[4] N. R. Skov, B. Hammarström, and M. W. H. Bruus, A wall-free acoustic multi-well sys-
tem for particle trapping. In Proceedings of Acoustofluidics 2019, Aug 26-28, Enschede,
Netherlands (2019).

[5] R. D. Pedde, B. Mirani, A. Navaei, T. Styan, S. Wong, M. Mehrali, A. Thakur, N. K.
Mohtaram, A. Bayati, A. Dolatshahi-Pirouz, M. Nikkhah, S. M. Willerth, and M. Akbari,
Emerging biofabrication strategies for engineering complex tissue constructs. Advanced
Materials 29(19), 1606061 (2017).
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