Lateral adsorbate interactions inhibit HCOO⁻ while promoting CO production for CO₂ electrocatalysis on Ag

Divya Bohra, Isis Ledezma-Yanez, Guanna Li, Evgeny A. Pidko, & Wilson A. Smith*

Department of Chemical Engineering, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands

*W.Smith@tudelft.nl

Introduction

Electrocatalytic reduction of carbon dioxide (CO_2ER): manage intermittent renewable electricity, produce valuable molecules, recycle climate change-inducing CO_2 .

$$nCO_2 + m(H^+ + e^-) \Longrightarrow Products + xH_2O$$

CO and HCOO⁻: 2 CPET products with relatively low overpotentials, high faradaic efficiencies. Ag catalysts: balance of performance with low cost electrodes.

Experimental observation: $CO(g) > H_2(g) >> HCOO^{-}(aq)$

Reaction Pathways

- LUMO of a bent CO₂: highly localized at the C.
- HOMO: highly localized at the O.
- *COOH: nucleophile and electrophile interaction combination.
- *OCHO: * H^{δ^-} acts as nucleophile for C^{δ^+} of CO_2 .
- Volmer-Heyrovsky and Volmer-Tafel for H_2 : $*H^{\delta^-}$ is 1^{st} CPET.

Competition I (bare catalyst site): *COOH vs. *H

Competition II (post *H): *OCHO vs. H₂

HCOO⁻ vs. H₂ inherently more challenging than CO vs. H₂.

Reaction Barriers

*COOH and H $_2$ via Heyrovsky and Tafel steps: 0.93 eV, 0.79 eV and 0.77 eV respectively. H $_2$ is the most thermodynamically favorable product.

No kinetic barrier for *OCHO: high solvation energy of the TS relative to the IS.

In-situ surface-enhanced Raman Spectroscopy (SERS)

Polycrystalline Ag, during CO₂ER, in 0.05 M Li₂B₄O₇ saturated with CO₂, bulk pH of 6.1.

Bands at 1436 and 1469 $\rm cm^{-1}$ assigned to O-bound bidentate intermediate *OCHO.

Absence of ν Ag-O bands rule out surface oxides and hydroxides.

>-1.12 V vs. RHE:

Bidentate signal merges into a broader band. A δ C-H vibration band forms at 1298 cm $^{-1}$.

Interactions of O-bound species appear at low overpotentials.

Lateral Adsorbate Interactions

- *OCHO:
 Weakens *H binding
 Strengthens *COOH binding: H-bonding.
- U_L for CO \downarrow U_L for both H₂ and HCOO⁻ \uparrow .
- *OCHO inhibits its own population by adversely affecting θ_{*H} .

Lateral adsorbate interactions can resolve the inconsistency between theoretical and experimental results for Ag catalysts.

Conclusions

- The fundamentally different nature of an $H^{\delta+}$ in solution and an $H^{\delta-}$ adsorbed on a catalyst surface has implications for catalyst selectivity.
- Solvation by surrounding water molecules and lateral adsorbate interactions have a significant effect on the energy landscape of CO₂ER reaction pathways.
- There is strong evidence of the presence of O-bound bidentate species on Ag during CO₂ER at low overpotentials, thereby altering our understanding of the catalyst surface at operational steady-state.

References

- 1. J. T. Feaster, et al. ACS Catalysis 7, 4822 (2017).
- 2. S. Kai, W. Chaozhi, X. Guangzhi, Spectrochimica Acta Part A: Molecular Spectroscopy 45, 1029 (1989).

