Lateral adsorbate interactions inhibit HCOO⁻ while promoting CO production for CO₂ electrocatalysis on Ag Divya Bohra, Isis Ledezma-Yanez, Guanna Li, Evgeny A. Pidko, & Wilson A. Smith* Department of Chemical Engineering, Delft University of Technology, P.O. Box 5045, 2600 GA Delft, The Netherlands *W.Smith@tudelft.nl #### Introduction Electrocatalytic reduction of carbon dioxide (CO_2ER): manage intermittent renewable electricity, produce valuable molecules, recycle climate change-inducing CO_2 . $$nCO_2 + m(H^+ + e^-) \Longrightarrow Products + xH_2O$$ CO and HCOO⁻: 2 CPET products with relatively low overpotentials, high faradaic efficiencies. Ag catalysts: balance of performance with low cost electrodes. Experimental observation: $CO(g) > H_2(g) >> HCOO^{-}(aq)$ ## **Reaction Pathways** - LUMO of a bent CO₂: highly localized at the C. - HOMO: highly localized at the O. - *COOH: nucleophile and electrophile interaction combination. - *OCHO: * H^{δ^-} acts as nucleophile for C^{δ^+} of CO_2 . - Volmer-Heyrovsky and Volmer-Tafel for H_2 : $*H^{\delta^-}$ is 1^{st} CPET. Competition I (bare catalyst site): *COOH vs. *H Competition II (post *H): *OCHO vs. H₂ HCOO⁻ vs. H₂ inherently more challenging than CO vs. H₂. #### **Reaction Barriers** *COOH and H $_2$ via Heyrovsky and Tafel steps: 0.93 eV, 0.79 eV and 0.77 eV respectively. H $_2$ is the most thermodynamically favorable product. No kinetic barrier for *OCHO: high solvation energy of the TS relative to the IS. ### In-situ surface-enhanced Raman Spectroscopy (SERS) Polycrystalline Ag, during CO₂ER, in 0.05 M Li₂B₄O₇ saturated with CO₂, bulk pH of 6.1. Bands at 1436 and 1469 $\rm cm^{-1}$ assigned to O-bound bidentate intermediate *OCHO. Absence of ν Ag-O bands rule out surface oxides and hydroxides. >-1.12 V vs. RHE: Bidentate signal merges into a broader band. A δ C-H vibration band forms at 1298 cm $^{-1}$. Interactions of O-bound species appear at low overpotentials. ## **Lateral Adsorbate Interactions** - *OCHO: Weakens *H binding Strengthens *COOH binding: H-bonding. - U_L for CO \downarrow U_L for both H₂ and HCOO⁻ \uparrow . - *OCHO inhibits its own population by adversely affecting θ_{*H} . Lateral adsorbate interactions can resolve the inconsistency between theoretical and experimental results for Ag catalysts. ## Conclusions - The fundamentally different nature of an $H^{\delta+}$ in solution and an $H^{\delta-}$ adsorbed on a catalyst surface has implications for catalyst selectivity. - Solvation by surrounding water molecules and lateral adsorbate interactions have a significant effect on the energy landscape of CO₂ER reaction pathways. - There is strong evidence of the presence of O-bound bidentate species on Ag during CO₂ER at low overpotentials, thereby altering our understanding of the catalyst surface at operational steady-state. ## References - 1. J. T. Feaster, et al. ACS Catalysis 7, 4822 (2017). - 2. S. Kai, W. Chaozhi, X. Guangzhi, Spectrochimica Acta Part A: Molecular Spectroscopy 45, 1029 (1989).