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Introduction

Electrocatalytic reduction of carbon dioxide (CO2ER): manage intermittent renewable electricity,
produce valuable molecules, recycle climate change-inducing CO2.

nCO2 + m(H+ + e – ) −−⇀↽−− Products + xH2O

CO and HCOO – : 2 CPET products with relatively low overpotentials, high faradaic efficiencies.

Ag catalysts: balance of performance with low cost electrodes.
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CO Ag(111) UL=-1.19 V CO Ag(211) UL=-0.92 V CO Ag(110) UL=-0.79 V
HCOO– Ag(111) UL=-0.24 V HCOO– Ag(211) UL=-0.43 V HCOO– Ag(110) UL=-0.54 V

H2 Ag(111) UL=-0.62 V H2 Ag(211) UL=-0.54 V H2 Ag(110) UL=-0.44 V

Experimental observation: CO(g) > H2(g) >> HCOO – (aq)

Reaction Pathways

• LUMO of a bent CO2: highly
localized at the C.

•HOMO: highly localized at the O.

• ∗COOH: nucleophile and elec-
trophile interaction combination.

• ∗OCHO: ∗Hδ− acts as nucle-
ophile for Cδ+ of CO2.

•Volmer-Heyrovsky and Volmer-
Tafel for H2: ∗Hδ− is 1st CPET.

Competition I (bare catalyst site):
∗COOH vs. ∗H

Competition II (post ∗H):
∗OCHO vs. H2

HCOO – vs. H2 inherently more
challenging than CO vs. H2.

Reaction Barriers

∗COOH and H2 via Heyrovsky and Tafel steps: 0.93 eV, 0.79 eV and 0.77 eV respectively.

H2 is the most thermodynamically favorable product.

No kinetic barrier for ∗OCHO: high solvation energy of the TS relative to the IS.
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2 ∗H + 2H2O −−→ H2(g) [Heyrovsky]
CO2 + ∗H + 2H2O −−→ ∗COOH [water – assisted]

2 ∗H −−→ H2(g) [Tafel]
CO2 + ∗H −−→ ∗OCHO

In-situ surface-enhanced Raman Spectroscopy (SERS)

Polycrystalline Ag, during CO2ER, in 0.05 M Li2B4O7
saturated with CO2, bulk pH of 6.1.

Bands at 1436 and 1469 cm−1 assigned to O-bound
bidentate intermediate ∗OCHO.

Absence of νAg−O bands rule out surface oxides and
hydroxides.

>-1.12 V vs. RHE:
Bidentate signal merges into a broader band.
A δC−H vibration band forms at 1298 cm−1.

Interactions of O-bound species appear at low overpo-
tentials.

Lateral Adsorbate Interactions
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CO(g) (UL=-0.79V) CO(g) (+*OCHO) (UL=-0.66V)
HCOO– (aq) (UL=-0.58V) HCOO– (aq) (+*OCHO) (UL=-0.87V)

H2(g) (UL=-0.44V) H2(g) (+*OCHO) (UL=-0.87V)

• ∗OCHO:
Weakens ∗H binding
Strengthens ∗COOH bind-
ing: H-bonding.

•UL for CO ↓
UL for both H2 and
HCOO – ↑.

• ∗OCHO inhibits its own
population by adversely
affecting θ∗H.

Lateral adsorbate interactions can resolve the inconsistency between theoretical and experimental
results for Ag catalysts.

Conclusions

• The fundamentally different nature of an Hδ+ in solution and an Hδ – adsorbed on a catalyst
surface has implications for catalyst selectivity.

• Solvation by surrounding water molecules and lateral adsorbate interactions have a significant
effect on the energy landscape of CO2ER reaction pathways.

• There is strong evidence of the presence of O-bound bidentate species on Ag during CO2ER at
low overpotentials, thereby altering our understanding of the catalyst surface at operational
steady-state.
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