
Machine Learning Aided Discovery of High-

Entropy Alloy Catalysts for CO2 Reduction 

Introduction 
 

Descriptor based search 

Using properties of materials that correlate with 

the catalytic activity and are readily measured or 

calculated eases the task of discovering new 

materials that are likely to be suited for the 

catalytic reaction in question as it facilitates a 

screening of many materials without the need for 

experimental testing.  

 

The adsorption energy of reactants, intermediates 

and products of a chemical reaction to surfaces 

are common descriptors that correlate with 

catalytic activity, as established by the Sabatier 

principle, which states that the adsorption strength 

between adsorbates and surface should neither 

be too weak, nor too strong for optimal catalytic 

activity. 

 

Catalyst discovery using high-

entropy alloys 
 

High-entropy alloys (HEAs) 

HEAs are materials made up of 5 or more metals. 

The driving force for stabilizing such an alloy is the 

high configurational entropy associated with 

mixing the elements. 

 

We hypothesize that the many different surface 

site environments made possible by the many 

constituent elements of an HEA will provide a 

near-continuous distribution of adsorption 

energies. The composition of the HEA can then be 

optimized to increase the probability of obtaining 

surface sites with virtually any adsorption energy. 

 

Layout of methodology 

The procedure that we have devised for a rational 

design of new catalysts depends on experimental 

knowledge of catalytic activity or selectivity for a 

range of materials. It is an easy and quick way of 

suggesting new catalyst candidates for 

experimental testing and proceeds as follows: 

 

1) Select a chemical reaction of interest. 

2) Examine experimental data on catalytic activity 

or selectivity for different materials on the 

same type of surface. 

3) Find one or more adsorption energies that 

correlate with the activity or selectivity. 

4) Select 5 or more elements that make up the 

HEA. 

5) Calculate the lattice constant of an equimolar, 

solid solution of the HEA. 

6) Calculate adsorption energies for various and 

numerous surface environments of the HEA. 

7) Use a machine learning algorithm to predict 

the adsorption energies of all possible surface 

environments of the HEA. 

8) Optimize the composition of the HEA using the 

catalogue of all possible surface sites and their 

adsorption energies. 

 

Calculating adsorption energies 
 

Generating data on surface sites and their 

adsorption energies requires many calculations 

and is only time efficient with density functional 

theory (DFT). We use the GPAW code and the 

ASE environment to calculate adsorption energies 

on small 2x2x4 slabs for intermediates CO and H, 

see figure 2, which have been shown to govern 

the selectivity in the CO2 reduction reaction[1], see 

figure 1. The resulting adsorption energies are 

illustrated in the top row histograms of figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Predicting adsorption energies 
 

Given DFT data on adsorption energies for various 

surfaces, a computer is coded to use the information 

from this data to predict adsorption energies of every 

surface site environment. Knowing the adsorption 

energy of every site allows us to favor sites which have 

the desired adsorption energies when optimizing the 

composition of the HEA. 
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In short 

The many surface site environments that emerge from a composite surface made from a high-entropy alloy (HEA) 

(an alloy made up of 5 or more  metals) facilitate a near-continuum of adsorption energies. Using machine learning 

on density functional theory data, adsorption energies can be predicted for any surface site. By tuning the  

composition of the HEA to favor surface sites with the desired adsorption energies, three rational candidates for a 

CO2 reduction catalyst are suggested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Surface site environment 

Teaching a computer to predict the adsorption 

energy of a surface site requires a description of 

the surface environment. We choose a 

representation where the elements of the nearest 

neighbors of the adsorption site are inputted, see 

figure 3.  

 

Machine learning algorithm 

Having established a way for the computer to read 

the adsorption site environment, a machine 

learning algorithm must be selected. After testing 

a few methods we choose Gaussian process 

regression, the results of  which are found in the 

second row of figure 4, with prediction accuracies 

shown in figure 5. This machine learning algorithm 

allows for a fast prediction of the entire span of 

possible surface sites environments, completing a 

multiyear DFT task in a matter of seconds, albeit 

with a loss in accuracy. However, this may be 

justified since  DFT results are also inaccurate. 

 

Optimizing the composition of 

the HEA 
 

For the CO2 reduction reaction, we need an 

optimization that limits the likelihood of adsorption 

energies that are known to produce H2, CO, and 

HCOOH in order to hopefully produce highly 

reduced carbon products (figure 1). In order to 

achieve this, we have devised a penalty function 

BX, X being CO, H fcc, or H hcp, such that CO 

adsorption energies that are too weak and H 

adsorption energies that are too strong will be 

disfavored (figure 1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

where f is the atomic fractions of the HEA; NX the 

number of unique fingerprints of species X, and 

 

 

 

 

 

 

 

 

where nik is the number of element k in fingerprint 

i; mi is the multiplicity of fingerprint i; ΔEi
CO and 

ΔEi
H are the adsorption energies of CO and H for 

fingerprint i. ΔEupper
CO and ΔElower

H , as  can be 

determined from figure 1, are the upper and lower 

boundaries for which adsorption sites are 

penalized. 

 

The composition is optimized by minimizing an 

equally weighted sum of penalty functions with 

respect to the atomic fractions f of the HEA: 

 

 

Running the optimization for the CoCuGaNiZn 

HEA yields pure Zn with a summed penalty of 

1.18 (evidently not a suitable catalyst according to 

figure 1) and three binary alloys shown in figure 6. 

One source of error when the optimized 

composition are no longer HEAs is the lattice 

constant which is fixed during the optimization. 
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Figure 2 

Example of a 2x2x4 slab of the CoCuGaNiZn HEA used for 

calculating adsorption energies. The two bottom layers are 

fixed during relaxation of the structure. 

CO on-top H fcc and hcp slab 

Figure 1 

Calculated adsorption energies for H* and *CO on various 

metal (111) surfaces. These two descriptors clearly classify 

the Cu surface as a catalyst for highly reduced carbon 

products for the CO2 reduction reaction. From [1]. 

Figure 4 

DFT and predicted distributions of adsorption energies on the CoCuGaNiZn HEA for CO on-top sites, and H fcc and hcp sites. 

Predictions have been performed with Gaussian process regression on 891 CO, 668 H fcc, and 282 H hcp adsorption energies 

obtained from DFT calculations. The predictions are done on all possible surface sites using the description in figure 3, i.e. the 

predicted histograms in the second row contain 510, 59, and 57 surface sites for CO on-top, H fcc, and H hcp respectively. 

CO on-top H fcc H hcp 

Figure 3 

Description of the surface site environments for CO on-top and 

H hollow (fcc and hcp) adsorption as inputted to the computer. 

Each adsorption site is assigned a location in the fingerprint (5 

or 35 combinations), and the surface and subsurface neighbor 

elements are counted. These representations produce input 

vectors of lengths 15, 45, and 45 for on-top, fcc, and hcp 

adsorptions respectively. 
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Figure 5 

Predicted vs. DFT adsorption energies for (a) CO on-top, (b) H fcc, and  (c) H hcp adsorption. 80 % of the data has been used for 

training and 20 % for validation. Predictions on a small test set of 3x4x4 slabs have also been performed. Root mean square deviations 

(RMSD) are shown. The dashed lines represent errors of ±0.1 eV. The elements displayed in color in (a) refer to the adsorbing atom. 

(a) (b) (c) 

Co45.9Ga54.1
 

(1.24) Ga60.6Ni39.4 (1.50) Cu64.1Ga35.9 (1.99) 

Figure 6 

Joint distributions of predicted CO and H adsorption energies for the three outputted compositions with penalty given in parenthesis. 
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