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Random matrix theory and acoustic resonances in plates with an approximate symmetry
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We discuss a random matrix model of systems with an approximate symmetry and present the spectral
fluctuation statistics and eigenvector characteristics for the model. An acoustic resonator like, e.g., an alumi-
num plate may have an approximate symmetry. We have measured the frequency spectrum and the widths for
acoustic resonances in thin aluminum plates, cut in the shape of the so-called three-leaf clover. Due to the
mirror symmetry through the middle plane of the plate, each resonance of the plate belongs to one of two mode
classes and we show how to separate the modes into these two classes using their measured widths. We
compare the spectral statistics of each mode class with results for the Gaussian orthogonal ensemble. By
cutting a slit of increasing depth on one face of the plate, we gradually break the mirror symmetry and study
the transition that takes place as the two classes are mixed. Presenting the spectral fluctuation statistics and the
distribution of widths for the resonances, we find that this transition is well described by the random matrix
model.
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[. INTRODUCTION have a characteristic dependence of their widths on the
damping by the air surrounding the plate. One class of modes
Random matrix theory has been used with success in Bas widths that are almost independent of the air pressure,
variety of physical systems for the description of certain ge-and the other class has widths with a strong dependence on
neric features of spectral correlators which are determined bthe air pressure. We argue that these modes are in-plane and
the underlying symmetries of the Hamiltonifty. In Sec. I flexural modes, respectively. In the first experiment, we mea-
of this paper we discuss a random matrix model of Sys»[em_gur_e_the spectral ﬂuctuat|on_ statistics for both mode types
with an approximate symmetry. A problem like this is found, mdmdgally and compare with well—knowr] results for the
e.g., in nuclear physics where isospin symmetry, charactefaussian orthogonal ensemb@OE). Then, in a second ex-
istic of the strong interactions, is only approximate due toP€riment, we mix the two mode classes by gradually cutting
Coulomb effectd2]. Isospin mixing was analyzed by Guhr @ slit on one face of the plate. We thus observe the transition
and Weidenriiler in 1990 using a random matrix approach from two separate classes of modes to one class of modes.
[3]. They used a random matrix model to describe the exd his transition is studied by comparing the data to the ran-
perimental data and to estimate the average symmetnyd0m matrix model for systems with an approximate symme-
breaking matrix element, i.e., the average Coulomb matri¥"y for both the spectral fluctuation statistics and the width
element. The random matrix model discussed here differdistribution. The latter is described using eigenvector infor-
from the one considered if8], and we comment on this Mation from the model.
difference. In addition to the spectral fluctuation statistics for

the model we consider a measure of the asymmetry of the  Il. RANDOM MATRICES AND APPROXIMATE
eigenvectors and describe it using simple analytical argu- SYMMETRIES
ments.

. . A. The random matrix model
In Sec. Il we present two experimental studies of acous-

tic resonances in thin aluminum plates. The plates have the LetH be a random real symmetri¢X N matrix with the
shape of the so-called three-leaf clover, see Sec. Il B. Frefollowing block structure:
guency spectra of acoustic resonators were first compared
DA+A O 0 C
+ , 1

0 Dg+B

with random matrix results by Weaver in 19849|. Further
experimental studies of the fluctuation properties of acoustic
resonance spectra in blocks of aluminum and quartz were
made by Ellegaard and co-workgBs6]. In Ref.[7] the level ~ whereD , andA are randonN; X N; matrices, andg andB
spacing distribution measured [ii] was compared with the are randomN,X N, matrices. The random matri€ is N,
random matrix model of3]. In this paper we focus on XN,, and the coupling strength is a real parameter. Note
acoustic plates that in many respects are simpler than tHéatN=N;+ N,. The elements of the diagonal matrideg
three-dimensional resonators mentioned before. AcoustiandDg are drawn uniformly on the intervit 0.5,0.5 and
resonances in plates were investigated by Bertedsah [8]. ordered in increasing order for each block. This choice of
We present a short review of the theory of acoustic waves iprobability distribution leads to level spectra b, andDg

thin isotropic plates and discuss the characteristics of thahich, except for small end-point corrections, are described
different types of resonances. We find experimentally thaby the Poisson statistics appropriate for a sequence of uncor-
modes can be separated into two different classes that eacblated energy levels. The elementsfoB, andC are Gauss-

H=
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ian distributed with zero mean. The varianeé of the dis- 0.8 0.8
tribution of the diagonal elements #fandB scales as N2. ] 7 2GOE (a)
The variance of the distribution of the off-diagonal elements — 9=00
of the matricesA andB and the elements o is set to half ~ © 04
the value ofo?. 02

The diagonal contribution® , andDg in H are intended ;
to mimic the effects of the kinetic energy operator, and the ““¢ 1 2 3 2 00
Gaussian distributed elementsAfindB simulate “interac- s s
tions” due to boundary conditions. Since the elementb f
andDg are “sufficiently” small compared with the Gaussian
distributed elements, the short-range spectral fluctuation sta
tistics are identical to the statistics obtained for two superim-p
posed GOE spectr@ GOE) wheng=0 and to GOE statis-
tics wheng=1. (See Sec. Il B for a more detailed discussion
of the spectral fluctuation statistitsThe average distance
between neighboring levels scales adl decause of the
presence of the diagonal matrix elements. With a finite value
of g both the root mean squafBMS) symmetry-preserving FIG. 1. The level spacing distribution for different valuesgof
matrix element and the RMS symmetry-breaking matrix el-The two diagonal blocks are uncoupled whgr0, and when
ement also scale like M/ and the transition from 2 GOE g=1 all the basis states are coupled.
statistics to GOE statistics takes place as a functiory of
independent of the value &f.

This is not the case if the kinetic energy terms are no
present as in a random matrix model, like the one used i
REfS'[3'7]’ \.N'th two GOE'.I'ke diagonal blocks coupled by tion to more Poisson-like behavior sets in is referred to as the
Gaussian-distributed matrix elements. For such a model the, - o energy. Fag=1 ando?=16N2 we find a Thou-

ratio between the .RMS symmetry-brgaklng .matrlx elemen]ess energy of about 35. A different choice of the variance,
and the average distance between neighboring levels for the,

. S o<, leads to a picture for the spectral fluctuation statistics
unperturbed problem scales l'wﬁ' The _transmon from 2 similar to the one shown in Figs. 1 and 2 as lond.as less
GOE to GOE spectral fluctuation statistics takes place as g4 the Thouless energy
function of this ratio. Ifg is independent oR, it follows that '

the ratio scales like/N, and in particular that it goes to
infinity in the largeN limit for any finite value ofg. To )
observe a smooth transition from 2 GOE statistics to GOE AS @ measure of the asymmetry of the eigenvectord of
statistics independent ¥, it is thus necessary that the ratio We define a quantity that we denote the asymmetry num-
between the RMS symmetry-breaking matrix element and®€’- Consider a N=N,;+N, dimensional vector

0.6
P oa

0.2 |

is well known thatA;(L) for a model with diagonal terms
like D, andDg deviates from the corresponding GOE result
Bor large values of. [10]. The value ofL where this transi-

C. Eigenvector information

the RMS symmetry-preserving matrix element scales likdv1:v2, - .. .vn) of unit length, and let be defined by
1/JYN in a random matrix model without kinetic energy
terms. 0.5 T T T
©g=0.0
B. Spectral fluctuation statistics 0g=0.1
04 | +g=0.2 o 9
To describe the short-range spectral fluctuation statistics 0g=1.0 oo "
we consider the standard level spacing distribution, and as i -- GOE ;8" + * 71
measure of the long-range spectral fluctuation statistics we o5 | — 2GOE 8 Lt o
choose to look at thd 5 statistic[9]. Numerical calculations a "ot ;_0_0—‘0"0—
of the level spacing distribution and the, statistic forN, ’ oo g &0
—2N,=200 with o2=16/N? are shown in Figs. 1 and 2 g2} Lo |
together with the exact results for the GOE and two super- E,a’
imposed GOE spectra with fractional densities 1/3 and 2/3, &
respectively. The ensembles in the simulations consisted 0 o1 4 4 i
500 matrices, and 150 eigenvalues from the “middle” of the g
spectrum for each matrix were considered. Figur@s and
1(d) show that the level spacing distribution for the random ¢4 s . s

matrix model is identical to the 2 GOE result whgs 0 and 0 5 10 15 20
to the GOE result wheig=1. Similarly Fig. 2 shows that L
this is also the case fax3(L) for L<20. It is clear from Fig. FIG. 2. TheA, statistics for different values @f. The numerical

1 that the level spacing distribution looks very much like thesimulations forg=0 andg=1 agree with the 2 GOE and the GOE
level spacing distribution for the GOE even whgs0.1. It result, respectively.
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o ) FIG. 4. The asymmetry distributidR,(a) obtained numerically
FIG. 3. The as_,ymmetry distributio 5 for the eigenvectors. for random matrix ensembles with, = N,. The valueP 4(0) grows
Wheng=0 each eigenvector belongs to one of the two parts of thqinearly with g, see the blow-up oxd), as predicted in the simple

vector space. Ag increases the eigenvectors get components b nalytical model of the eigenvector mixing, see E8)
both of the two parts of the vector space. '

Ny N simple analytical model and arguments from perturbation
a=> 12— > 2 2 theory. Figure 4 shows numerical calculations of the distri-
= DR o T bution of the asymmetry numbers fily = N, = 150 for three

values ofg. We considered ensembles of 500 random matri-

For two decoupled systems described by the subspacegs, and, as in the numerical simulations described in Sec.
spanned by the firdtl; and the laslN, basis vectors, respec- |1 B, we focused on the 150 eigenvalues in the “middle” of
tively, the distribution P5(a) has a é-function peak at the spectrum. The distributioR,(a) increases linearly as a
a=—1 and one aa=1. For the GOE it has a single peak at function of g close toa=0 as shown in Fig. &l).
a=(N;—N,)/N. These features are obvious in Fig. 3, which  The small fraction of the eigenvectors for which the
showsP, calculated numerically for the ensembles consid-asymmetry number is close to zero are most likely superpo-
ered in Sec. Il B. Notice that the smaller of the two peakssitions of an eigenvector dd,+ A and an eigenvector of
present wheng=0 has almost vanished wheg=0.1, Dg+ B with eigenvalues lying close in the unperturbed spec-
whereas the strength of the largest peak is reduced to half @fum whereg=0. Let the unperturbed spacing between the
its original value. two eigenvalues be denoted and consider the matrix that

Imagine that two uncoupled classes of resonances haugnnects the two states when the symmetry-breaking pertur-
width distributionsPg and P, , respectively. The width dis- bation is introduced:
tribution of all the resonance®(I"), is the sum ofP: and
P, when the two classes are uncoupled. The width distribu- 0 ¢
tion P(I') changes if the two classes are coupled, and in our HC:( )
random matrix approach we mode(I’) using the asymme- c A
try distribution:

4

The distributionP of the matrix elementg is Gaussian

N * * with zero mean and varianceg€)?/2. In the numerical
P(I')= fo dXJ_mdFFJ mdl“ﬁ(l“—xl“,:—[l—x]l“,) simulation shown in Fig. 4 the eigenvectors come from the
“middle” of the eigenvalue spectrum where the level den-

X2PA(1—=2X)P(T'g)Py(T') sity is almost constant, and we thus assume that the level
1 2p.(1-2 . [T density for each diagonal block is equal to a constant that we
:f dxA(—_X)f dFFpF(FF)pI(l)_ denoteR;. In this case the spaciny comes from the distri-
0 1-x — 1-x bution
()
_ _ _ 1 A2
Notice that the integral reduces to the weighted suni ef Pa(A)= exp — | (5)
and P, if P, is the sum of twos functions as in the case V2mho 245

g=0 shown in Fig. 8), and thatP is expressed in terms of

P, if Pe andP, are § functions. where the variancaézll(ZWRf). In the two-dimensional
We now consider the casé; =N, and describe the char- approximation the eigenvectors have the asymmetry num-

acteristic properties of the asymmetry distribution using abers
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1
a=tf——— (6)

“Lracha?

and thus the distribution of the asymmetry numbers becomes

1 0 )
Pa(a)= Ef_xdcf_mdA Pc(C)PA(A)

X| 6| a

1 1
- |t At ———
\/1+402/A2> ( \/1+4c2/A2)
V20g

mAoV1-a[1—-a2+(V2aog/Ag)?] "
Whena=0 the expression reduces to FIG. 5. Sketch of the three-leaf clovénot to scal¢ (a) The
construction of the three-leaf clovéthick solid line with mirror
20R symmetries indicated by dashed lines. The geometry is defined by
PA(0)= _19, (8) the two radii,r andR. (b) The plates used in the experiments were
\/; one sixth of the three-leaf clover.

which is in perfect agreement with the numerical simulationcritical frequency, i.e., when one half of a transverse wave-
shown in Fig. 4 for whicho=4/300 andR;=140. length is larger than the thickness of the plate. Tlegural

The majority of the eigenvectors, which have values ofmodes have displacement mainly normal to the plane of the
|a]~1, can be described using perturbation theory. The shifplate, but they also have a small in-plane component. These
in the position of the peak of the distribution away fran modes are antisymmetric with respect to reflection through
=1 is to the first order proportional 17, since the average the middle plane of the platéIn the literature the flexural
correction to a given state from a state from the other blocknodes are sometimes callé&ndingmodes) The in-plane

is proportional tog. modes are symmetric with respect to reflection through the
middle plane of the plate and consist of two mode types. The
IIl. THE ACOUSTIC EXPERIMENT in-planetransversemodes have displacement exactly in the
plane of the plate, and the in-platengitudinal modes have
A. Acoustic resonances in thin plates displacement mainly in the plane of the plate, but they also

In a homogeneous and isotropic three-dimensional mebave a small out-of-plane component.
dium, sound waves obey the elastomechanical wave equation NOw consider a finite plate. As mentioned above, the

for the vectorial displacement fielat boundaries introduce mode conversion. For a finite plate
there is thus the possibility of a coupling between the differ-
24 ent mode classes. In R¢B] it was concluded, first, that the
pF=(?\+M)V(V~U)+MV2U, (9)  flexural modes are uncoupled from the in-plane modes and,

second, that the in-plane longitudinal modes couple to the
in-plane transverse modes. The densities of flexural modes
and in-plane modes were calculated theoretically and found
to be of the same ordé8]. These results explain the spectral
‘fluctuation statistics measured in RE8] where resonances,
d d the lonaitudinal d ¢ I di.e., both flexural and in-plane modes, of a quarter of a thin
g:essifjcr’g o?%g:]narty)e L%r;%}tlt dlir:%l n\:\?aveess a;?wg;(santr;?/e? Sin.ai stadium plate were investigated_. In Sec. 1l C we ex-
: lain how to separate the flexural and in-plane modes experi-

f‘_ijter. thtﬁ_n transvetrﬁe ;\_/fa;ves. For alumlnu_m, ;Nlh'ChfW(i CO'-Enentally using their measured widths. This technique allows
siderin this paper, the difierence IS approximately a 1aclor 0j,q 1 measure the number of modes of the two types sepa-

2. In the bulk, the two types .Of waves propagate Ind("\penfately and to compare these numbers to the theoretical pre-
dently. However, upon reflection at a boundary, mode con

ion tak lace: incident that | v lonait dictions of Ref.[8]. It also enables us to study the spectral
Version takes place. an incident wave that Is purely 10ngituqsistics and the width distributions for the two classes of
dinal or transverse will, in general, give risettoo reflected

o modes independently and to find out if the flexural modes are
waves, one longitudinal and one transverse. Moreover, the

angles of reflection will be different due to their different Ih fact uncoupled from the other modes.
velocities, as dictated by Snell’s law.

We now briefly present some facts about elastic waves in
thin infinite plates, see, e.d.11] and the recent studies in For the experiments, we use two aluminum plates of dif-
Refs.[8,12]. Three types of modes exist in an infinite isotro- ferent thickness cut in the shape of the three-leaf clover
pic plate, when considered at frequencies below the firsshown in Fig. 5. This billiard, which was first considered in

where\ and u are the Lamecoefficients,p is the density,
and we have assumed no external forces. Equ&8pallows
for two types of wave motion: longitudinal and transverse
(In the literature the transverse modes have nameshkar

B. Acoustic systems and experimental technique
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Ref.[13], was chosen because it is known to be classicallyelectric component, the diamond stylus undergoes a wiggling
chaotic and, wherR=r, it has no continuous families of motion that deforms the piezoelectric component in a com-
periodic orbits[14]. Thus, we have chosen=70 mm and plicated way, including compression along thaxis. There-
R=80 mm. The area of the plates was 82500 mnf, and  fore both in-plane and flexural modes are detected. This ex-
the circumference was 398 mm. The plates were 1.5 mm planation does, however, not exclude that modes with small
and 2 mm thick. out-of-plane components could be harder to detect than
The choices of andR and the thickness are important for modes with large out-of-plane components.

the experiment in so far as they determine the relative den- In both of the experiments the temperature was room tem-
sities of the two mode classes and also the total number gferature, i.e., it was not kept constant but could fluctuate by
modes. In our case, these parameters were chosen to gigefew degrees. Obviously, the temperature is important in
many modes for the purpose of producing significant statisthese measurements, since both the size of the plate and the
tics while keeping the density of in-plane modes approxi-elastic constants depend on the temperature, and changes in
mately equal to the density of flexural modes in the fre-these parameters affect the eigenfrequencies. In this paper
quency rangé300 kHz—600 kHxwhere our transducers are e consider spectral fluctuation statistics that involve a num-
most effective. o ber of consecutive eigenfrequencies no higher than 40. It

_ Aluminum was chosen for the plates because it is iSOtrOg a5 only a few minutes for the analyzer to sweep through a
pic ar.1d very easy to machine, while maintaining a high frequency range that contains 40 resonances. When the plate
value; at 500 kHz th€ value measured in vacuum is around is in vacuum its temperature changes very slowly and the

10". There are isotropic materials with much h'g@“"ﬂ.ﬂ' resulting shifts in the eigenfrequencies within a few minutes
ues, such as fused quartz. However, fused quartz is mor,

es ; : &re negligible.
difficult to machine and thus not suitable for the symmetry- Thegp%te is placed in a vacuum chamber, which allows
?hrgakll;tg ?gﬁ”?ﬁgg ;/xh:rsoz;g”rggs\:/;emove material fronaontrol of the pressure of the air surrounding the plate. At
P Any Y- _pressures lower than 16 Torr air damping is insignificant

The elastic constants for the two plates cannot be found i ompared to intrinsic losses and losses to the supports

standard tables of matenal properties, since they.are not pu erefore, we shall refer to such low pressure as “vacuum.” '

a'“m'!"“m but a special allgy. However, t.he elagtlc constant%hen the pressure is increased, the flexural modes, that have

for this alloy were determined by experiment in REE5].

large out-of-plane oscillations, are strongly affected, since
We shall use the values from R¢15] for Young’s modulus - . :
E—70+1 GPa and Poisson's ratio—0.330+0.005. The the plate then functions like a loudspeaker generating sound

density is 2.698 g/cfn[16]. The corresponding bulk sound waves in the air. As a result, the amplitudes of the flexural

2 odes decrease with increasing pressure, and the widths of
velocme_s are 3123 ms for transverse waves and 6200 m’%e resonance peaks increase. This is demonstrated in Fig. 6,
for longitudinal waves.

Th ) tal setun is i h th which shows a section of the transmission spectrum mea-
e experimental setup Is In many ways the same as el for the three-leaf clover in vacuum, at a pressure of 0.5
used for previous experiments as reportefili]. We use an

.atm, and at atmospheric pressure. Note that one can label
HP 3589A spectrum/network analyzer to measure transmisz, (<t of the modes ?nto flegural and in-plane by eye

sion spectra of acoustic resonators via piezoelectric transduc-
ers. The plate rests horizontally, supported by three gramo-
phone diamond styli. This ensures a very small contact area
between the plate and the rest of the world, thus making the The first experiment was designed to separate the modes
vibrations of the plate as close to free as possible. The dianto flexural and in-plane types so that the spectral statistics
mond styli are glued to cylindrical piezo ceramics that arecould be studied separately for each class. To get a statisti-
polarized along the symmetry axig éxis). One such com- cally significant result, many eigenfrequencies are needed,
bination functions as transmitter, the two others as receiveraind it is crucial to find all the levels so that the results are
One may wonder if our experimental technique can reallyfree from missing level effects. For this reason we performed
measure all modes. In particular, one could question if thehe following measurement sequence. The acoustic transmis-
in-plane modes, for which the displacement is maifdy  sion spectrum for the plate of thickness 2 mm was measured
exactly) in the plane of the plate, are detected by our transin the range 300 kHz—540 kHz. The measurement was car-
ducers. This question was answered in R8f, where the ried out first in vacuum, then at a pressure of 0.5 atm, and
same experimental technique was used. The authors fourfhally at 1 atm, see Fig. 6. In each case, the measurement
that all modes were detected. To explain this, one must unaas performed twice, using two independent receivers. This
derstand what happens microscopically when strain is passguocedure gave six resonance spectra. Then, the system was
from the plate to the piezoelectric component through thesubject to a perturbation, when a mass of 14 mg, correspond-
diamond stylus. Obviously, there can be no slip between thang to 314 ppm, was removed from one face of the plate
tip of the stylus and the plate. If there were indeed slip, theraising a piece of fine sandpaper. After this, the above proce-
would also be friction. The diamond would then quickly drill dure was repeated, giving another six resonance spectra.
a hole in the plate, and this is not observed in the experiThen, in the same way, another perturbation was made, this
ments. In fact, after many days of oscillations at frequenciesime removing 43 mg of material, corresponding to 965 ppm.
of several hundred kilohertz, the plate is completely intactAgain, the measurement sequence was carried out, giving a
Since the base of the diamond stylus is fixed to the piezototal of 18 resonance spectra. The perturbations done to the

C. The separation experiment
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FIG. 6. A segment of the resonance spectrum for the 2-mm- T'THz]

thick three-leaf clover at three different pressures: vacuum, 0.5 atm,
and 1 atm. Most resonances are easily recognized to be either i
plane(l) or flexural (F).

~ FIG. 7. The distribution of widths for the acoustic resonances
¥or the three-leaf clover plate of thickness 2 mm, at the same values
of the air pressure as in Fig. 6. One class of ma@eplane have

system are small enough that it is possible to follow ever))NidthS that are almost independent of the pressure and the widths

resonance peak through all 18 spectra, but large enough thfg{ the other class of modé8exura) increase with increasing pres-

near-degeneracies in one set of spectra are destroyed by the

perturbations, giving well-resolved peaks in the next set of

spectra. This technique allows us to find all resonancessider the individual resonance widths as function of pressure,
There are no missing levels. see Fig. 8.

We would like to establish a simple and reliable criterion  The curves for the two resonances in Fig. 8 are typical for
that permits us to separate the spectrum into flexural anthe measured modes and show that the curves are well ap-
in-plane modes. To this end, each resonance peak is fittggroximated by straight lines. Consequently, it makes sense to
using the so-called “skew Lorentzian” approafh8]. This  label them by the slope of the best straight line fit. We then
fit yields a number of parameters of which only the reso-consider the distribution of these slopes, see Fig. 9. The dis-
nance frequency and the widthare of interest. In Fig. 7 we tribution has two well-separated peaks. Large slopes corre-
show the distribution of widths obtained from this fitting spond to flexural modes; small slopes correspond to in-plane
procedure for increasing values of the air pressure. It is evimodes. Based on this information, we choose the “separa-
dent that the widths of one group of modes increases wittion” slope to be 11 Hz/atm.
increasing pressure while the widths of the remaining modes In the range 300 kHz—540 kHz, we find 1537 levels for
is largely unaffected. We interpret these groups as flexurahe 2-mm plate, of which 781 are flexural and 756 are in-
and in-plane modes, respectively. However, even at atmaplane, judging from the separation criterion discussed above.
spheric pressure, it is not possible to separate the modes &teferencd 8] presents an expansion of the exact dispersion
the basis of resonance width alone. relations for an infinite isotropic plate and also gives the

Since the width distribution does not allow us to separatecorresponding expansion for the number of modes, i.e., the
the flexural modes from the in-plane modes with certainty staircase functionfor a finite, thin plate. Using this theoret-
we must find a more reliable criterion. Therefore, we con-ical expansion, we expect 782 flexural modes and 753 in-
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FIG. 8. The width of a flexural mode and an in-plane mode for s
the three-leaf clover as function of the pressure of the air in the 0.5 T T T
vacuum chamber. Six curves appear for each resonance peak, b (b) + Flexural
cause six different measurements were made for each of the pres — GOE
sure values: vacuum, 0.5 atm, and 1 atm. 04 4
plane modes. This is in perfect agreement with the measure: + RAEs T
numbers, given the uncertainty in the elastic constants of the 0.3 + .
aluminum alloy and in the dimensions of the plate.
Since we can identify the character of individual modes, it
is possible to consider the level spacing distribution and the o2 | .
A, statistic separately for each of the two classes. Figures 1(
and 11 show the level spacing distribution and hestatis-
tic for each of the two mode classes compared with the GOE g1 | i
statistics. We find that both the level spacing distribution and
the A; statistic for the flexural modes agree with the GOE
statistics. This result confirms numerical calculations by 44 . s .
Bogomolny and Hugues showing that the flexural modes of a 0 10 20 30 40
chaotic billiard have GOE fluctuation statistics, see REZ]. L

The A; statistic for the in-plane modes lies above the GOE G, 10. The level spacing distributio@) and theA, statistic

curve. This is a bit surprising, because mode conversion ig) for the flexural modes compared with the GOE statistics. Both
expected to be a strong effect, see, e.g., RES], which  the level spacing distribution and the; statistic agree very well
should guarantee that all in-plane modes are stronglyith the GOE results.
coupled and obey GOE statistics. We note that the deviation
from the GOE curve seen in thie; statistic does not appear

0.20 . . . in the level spacing distribution; the level spacing distribu-
tion for the in-plane modes looks much like the level spacing
distribution for the GOE. The same feature is seen for the

0.15 1 1 random matrix model for systems with an approximate sym-
a metry, see the results fgr=0.2 on Figs. {c) and 2. If we
2 o010} i think of mode conversion as a mechanism that breaks the
> longitudinal-transverse “symmetry” for in-plane modes, our
results could indicate that this symmetry is not completely
0.05 | I broken.
An issue to consider in this context is the value of the
0.00 ' ' ‘ wavelengthh compared to the sizeof the system. The ratio
-10 0 10 20 30 40

I/\ is a measure of how “semiclassical” our system is.
Roughly, | =100 mm. Random matrix results are only ex-
FIG. 9. The distribution of slopedl'/dp has two well-separated Pected to apply whel/A>1. For flexural modes, the typical

peaks, which makes it possible to separate the flexural and in-plangavelength is 5 mm, sd/\x=20. For traveling in-plane
modes. We choose a “separation” slope of 11 Hz/atm. A few in-waves, the typical transverse wavelength is 7 mm and the
accurate fits give rise to the small number of negative slopes.  typical longitudinal wavelength is 13 mm. Roughly, this

dI'/dp [Hz/atm]
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1.0 T T T a) b)
(a) . EE)pElane
0.8 -
FIG. 12. (a) A sixth of the three-leaf clover with a 2-mm-wide
06 b ] cut indicated(not to scalg (b) Sketch of the plate profile showing
how the cut breaks the mirror symmetry through the middle plane
P 1 I of the plate.
04 1 i mode class. The transition takes place as the mirror symme-
try through the middle plane of the plate is broken. For this
02 | | experiment, we used the three-leaf clover plate of thickness
) 1.5 mm and gradually cut a slit on one side of the plate, as
shown in Fig. 12.
00 . . For the cutting of the slit in the plate we used a computer-
o 1 2 3 4 controlled milling machine and chose steps in the thickness
s of 1/40 mm. In our case, this amounted to about 18 mg of
05 . . . material for each increment of the depth of the slit. The mass
of the intact plate was 32.8870 g. First, the frequency spec-
®) _ Fo-plane trum was measured for the intact plate in vacuum and at
04 b +4 gtmospheric pressure. The procedure of _cutting and measur-
+++ +++++++ + ing the frequency spectrum at atmospheric pressure was then
4 F + 1 repeated nine times. In all measurements the frequency range
03 + | was 456 kHz—533 kHz and only one receiver was used. The
justification for using just one receiver for this experiment is
A, 1 as follows: removal of material from the plate corresponds to
02 | i a small perturbation. One can, therefore, easily follow each
resonance peak through the entire scenario, and although a
resonance peak can sometimes disappear in one spectrum
o4 L i because the receiver is accidentally placed on a nodal line, it
always reappears in subsequent spectra. Thus, the results of
this symmetry-breaking experiment are protected against
0.0 . . . missing level effects.
0 10 20 30 40 As in the previous experiment, the resonance peaks are

L fitted and we calculate the distribution of widths, focusing

FIG. 11. The level spacing distributid@a) and theA; statistic first on the intact plate. In the plot for atmospherlc pressure,
(b) for the in-plane modes compared with the GOE statistics. Théh_e modes are separated into two classes: those that have
A, statistic shows that the spectrum of the in-plane modes iwidths smaller than 22 Hz and those that have widths larger

slightly less rigid than the GOE. than 22 Hz, see Fig. 15. This sets the criterion for separation
_ _ of the flexural modes from the in-plane modes. We note that
leads tol/\=10. Thus, in our experiments we have the twofor the 1.5-mm plate it is possible to perform the separation

length scales separated by at least an order of magnitudgurely on the basis of the widths measured at atmospheric
NeVertheIeSS, the factor of 2 betwebin for flexural and pressure. This was not the case for the 2-mm p|ate_

in-plane modes shows that the flexural modes are more |, general, we expect that the widths of the flexural

“semiclassical” than the in-plane modes, which is anotherpygges at some value of the pressure will depend on many
possible explanation for the slight difference observed in thgyarameters. Among these, the thickness of the plate and the
fluctuation properties. typical wavelength play important roles. However, compar-

We emphasize that the main results of this section arqng our two experiments, all of the parameters are the same

first, that the flexural and the in-plane modes can be sepa: : : .
rated and, second, that each of the two mode classes behaa%)écept for the thickness. The average width for the in-plane

as one class of strongly coupled modes. The fact thasthe modes is almost the same in the two cases. At a pressure of

A . . 1 atm, the mean width for the flexural modes for the 2-mm
statistic lies slightly above the GOE curve for the in-plane !
. ! T . “plate is around 35 Hz and for the 1.5-mm plate the mean
modes is a small correction to this picture. In the following

. X v¥idth is 42 Hz. This indicates that damping from the air is
section, we regard the in-plane modes as one class

stronalv coupled modes ?arger for thinner plates.
gy P ‘ We consider first the plate before any material has been

removed and find 600 levels in the frequency range 456

kHz-533 kHz. According to our separation rule, this time
The second experiment was designed for a detailed studyased solely on the width distribution measured at atmo-

of the transition from two independent mode classes to onspheric pressure, 310 modes are flexural and 290 are in-

D. The symmetry-breaking experiment
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1-0 T T T 1 -0 T T T
(a) + Intact plate ) (c) 1 * Cut71.3mg

I '_

9=0.055

1.0 T T T

(b) e Cut37.4 mg ) (d) » Cut 128.8 mg
9=0.02 g=0.08

FIG. 13. The level spacing distribution for all the modes compared to the result of the random matrix (@ctleé plate is intact(b)
A total of 37.4 mg has been removdd) A total of 71.3 mg has been removedd) A total of 128.8 mg has been removed.

plane. Using again the expansion for the number of modegalue obtained from the spectral statistics. For the intact
given in Ref[8], there should be 311 flexural modes and 285plate, see Fig. 1), we fitted the width distribution by mini-
in plane modes, in perfect agreement with our results. As imizing x?, and found the mean valud&’=12.2 Hz and
Sec. Il C we have obtained the level spacing distributionrg=42,o Hz, and the standard deviations=2.8 Hz and

and theA ; statistic for the two mode classes separately. We;.=5.8 Hz. The mean values for the fit agree with the mea-
find the same spectral statistics for the 1.5-mm plate as for

ther—mm p:IL%te. d 14 sh the level ing distributi TABLE I. The first column shows the size of the cut and the
Igures an show e 1evel spacing distributiong,, v, columns the average width. The second and third column

and theA ; statistics for all the modes for increasing depth of gy, estimates af obtained by fitting the level spacing distribution
the symmetry-breaking slit. The experimental data are fitted,,q theA ; statistic, respectively.

with results for the random matrix model of Sec. Il. We have
usedN;=N,=150 anq02:_64/N2- Table | summz.ari-zes the cut(mg g from level spacing g fromA; Mean width(Hz)
results for the theoretical fits to the spectral statistics for the

symmetry breaking experiment. The spectral statistics are 0.0 0.01 0.00 27.1
well described by the model, and the best fits to the level 10.3 0.02 0.00 27.9
spacing distribution and to th&; statistic yield consistent 23.1 0.02 0.005 28.6
values for the coupling strength 37.4 0.02 0.02 29.2

In Fig. 15 the measured width distributions are compared 55.7 0.05 0.04 29.1
with the distributions calculated numerically using E8). 71.3 0.055 0.055 29.7
To model the width distributiof(I") for all modes, we use 92.5 0.06 0.05 30.0
the asymmetry distribution for the eigenvectors and assume 108.5 0.06 0.06 30.8
that the in-plane modes and the flexural modes have Gauss-128.8 0.09 0.08 30.3
ian width distributionsP, andPg . For each of the different 146.1 0.06 0.07 29.9

cases we fix the value of the coupling strenggh,to the

066204-9



ANDERSEN, ELLEGAARD, JACKSON, AND SCHAADT PHYSICAL REVIEW B3 066204

0-8 T T 0-8 T T
(a) + Intact plate (c) +Cut71.3mg
—— g=0.00 —— g=0.055
|- :F | .
0.6 + 0.6
S T
+ N T
+ +
A 04 + . 8 04 - .
+
7 +
+ T+
02 r k 0.2 - i
O 1 1 O 1 L 1 L
0 10 20 30 0 10 20 30
L L
0-8 T T 0.8 T T
(b) +Cut 37.4 mg (d) +Cut128.8 mg
—— g=0.02 —— g=0.08
06 8 06 - 1
+
+
+ B
A 04| <l 1 A oaf + 1
+
++ +
a ++
0.2 - b 02 r 1
O 1 1 0 1 L 1 L
0 10 20 30 0 10 20 30
L L

FIG. 14. TheAj statistic for all the modes is fitted by minimizing the sum of the squared deviations between the data and the random

matrix result.(a) The plate is intact(b) A total of 37.4 mg has been removed) A total of 71.3 mg has been removed) A total of 128.8
mg has been removed.

sured average width of 27.1 Hz, see Table |. The average IV. DISCUSSION AND CONCLUSIONS
W'dth depends on the slit depth as ShO.W” in Table 1, and We have presented experimental results for acoustic reso-
increases, e.g., by 2.1 Hz when the cut increases from 0 ma

) - nces in two thin aluminum plates of three-leaf clover
to 37.4 mg. To take effects like this into account we have
) . o . shape. For both plates we found that the measured number of
fitted the width distributions by varying the four parameters

.~ “flexural and in-plane resonances were in very good agree-
0 0

F'f rFl’ Uf' , ando . ;I'he only paratr;eter that cha_r(nj?re]:d ?I?h ment with the theoretical Weyl formula. The two classes of
nificantly from caseo 0 cgse was the average Wi O %h0des were separated using their width or the dependence of
flexural resonances, . This seems reasonable since we €X-e yigih on the pressure of the air surrounding the plate.

pect that the damping by the air, which mainly affects therne gpectral statistics for the flexural modes were in perfect
modes with large out-of-plane components, increases as thgyreement with the GOE result in both cases whereas the

surface is perturbed by the cut whereas the intrinsic dampingpectra of the in-plane modes seemed to be slightly less rigid
is almost unaltered. For the width distributions shown inthan the GOE.

Figs. 15b)—(d) we therefore held', oy, and o fixed, The random matrix model of systems with an approxi-
whereasl'? was varied so that the average width equalledmate symmetry modeled the experimental data on the spec-
the measured average shown in Table I. The overall featurdsal statistics and wave function information from the mixing
of the width distribution as function of slit depth are de- experiment well. Both the level spacing distribution, the
scribed by the random matrix model. As the slit depth in-statistic, and the distribution of widths were fitted consis-
creases, the strength of the width distribution between théently by the numerical random matrix results. The qualita-
two peaks increases while the strength of the peaks deive changes in the width distribution as the depth of the cut
creases. Notice that the value B{I') aroundI"=27.5 Hz  was increased could thus be ascribed to the complex mixed
increases linearly witly in agreement with Eq(8). nature of the acoustic wave functions.
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0.08 T
Intact plate
——- g=0.00
0.06 | i
P o004 | .
0.02 R
0
0 80
T'[Hz]
0.08 r
(b) — Cut37.4mg
——- g=0.02
0.06 | E
N
P o004 _
0.02 R
! \
/ N

0 I ~

0 20 40 60 80
T'[Hz]
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0.08 T

(©) —— Cut71.3mg
——- g=0.055

0.06 - i

0.04

0.02

T'[Hz]
0.08 .

—— Cut 128.8 mg
——- g=0.08

0.06 - h

0.04

0.02

80

T [Hz]

FIG. 15. The experimental width distribution for the resonances compared to the distriB¢figrobtained numerically using E@3).
The three plots represent data for the same slit depths and valgessah Figs. 13 and 14a) The plate is intact(b) A total of 37.4 mg
has been removedc) A total of 71.3 mg has been removed) A total of 128.8 mg has been removed.

The successful description of the statistics of the fre-ssimplest random matrix models, like the GOE, to include
guency spectrum and the widths of the thin acoustic plateseveral important features present in real physical systems.
may be extended to include other features. The presence of
both a kinetic energy term and an interaction term in the

random matrix model is natural not only in the modeling of
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