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Abstract. We investigate the time-dependent flow of water around a solid triangular profile oscillating
horizontally in a narrow rectangular container. The flow is quasi two-dimensional and using particle image
velocimetry we measure 20 snapshots of the entire velocity field during a period of oscillation. From the
velocity measurements we obtain the circulation of the vortices and study the vortex dynamics. The time-
dependence of the flow gives rise to the formation of a jet-like flow structure which enhances the vorticity
production compared to the time-independent case. We introduce a simple phenomenological model to
describe the important dynamical parameters of the flow, i.e., the vortex circulation and the jet velocity.
We solve the model analytically without viscous damping and find good agreement between the model
predictions and our measurements. Our work adds to the recent effort to understand more complicated
flows past sand-ripples and insect wings.

PACS. 47.32.Cc Vortex dynamics – 47.32.Ff Separated flows

1 Introduction

The formation and dynamics of vortices formed behind
solid obstacles in a flow is of great importance in fluid dy-
namics and has been the subject of many classical stud-
ies. The vortex generation in a two-dimensional flow over
a solid wedge was investigated by Pullin and Perry [1].
They visualized the formation and motion of the center
of the starting vortex formed when accelerating initially
motionless water over the wedge. In the present paper we
investigate the vortex dynamics in an oscillatory flow over
a solid triangle, where vortices of alternating vorticity are
formed periodically. The vortex formation always takes
place on the lee side of the triangle, and the formation
process is enhanced by the presence of the “old” vortex
which is advected away from the up-wind side. Thus the
system is strongly “non-adiabatic” in the sense that re-
sults from steady state models are inapplicable. The un-
derstanding of time-dependent flows of this type is essen-
tial in connection with problems as diverse as, e.g., the
formation of sand ripples under oscillatory flows [2–5] and
insect flight [6–8]. In fact, this study is inspired by re-
cent work on instabilities in oscillatory “vortex-ripples” in
sand. Vortex sand ripples are roughly triangular [2–4], and
the dynamics of the separation bubble (the vortex forming
on the lee side) is crucial for understanding the changes in
sand ripple morphology [5]. The surprisingly sharp crests
characteristic of vortex sand ripples arise from the sand
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transport caused by the water flow in the recirculation
zone, which in turn is intensified by the sharpness of the
crests.

Vortex sand ripples are basically two-dimensional since
they consist of parallel rows or ridges with a triangular
cross section. Thus we have measured the flow around a
single “solid” ripple in a geometry which makes the flow
approximately two-dimensional. Such a geometry is ideal
for measurements by particle image velocimetry (PIV),
where snapshots of the entire time-dependent velocity
field can be obtained. Measurements using PIV of oscil-
latory flows over a rippled solid bed have previously been
made by Earnshaw and coworkers [9,10]. They obtained
the position of the vortex center and the vortex circula-
tion as function of time, and compared the measurements
with numerical simulations of a discrete vortex model [10].
The present study is in a completely different parameter
regime and we provide detailed measurements of the flow
around a single ripple. Furthermore we introduce a new
phenomenological model for the vortex dynamics, which
we believe will be of interest for future work.

In the following we first describe our experimental
technique and discuss the qualitative features of the mea-
sured velocity fields. From the measurements we extract
the size and strength of the vortex patches (vortices or
separation bubbles) forming on the lee side as well as
the distribution of the vorticity within them. In addi-
tion we obtain the strength of the “jet” which advects
the old vortex away and assists in the creation of the new
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Fig. 1. The experimental setup (not to scale). A solid trian-
gle (black) is oscillated horizontally by a motor (not shown).
The hatched area is illuminated by a laser sheet used for PIV-
measurement. The movable bar (1) supports the triangle and
the two small aluminum sheets (2) are designed to minimize
the creation of secondary vortices at the container boundary.
The surface of the water (3) is always above the flat plate.

vortex. We then introduce a phenomenological model, in
the form of a set of coupled ordinary differential equa-
tions for the strengths of the vortices and the jet velocity.
Finally, we compare the theoretical results with the ex-
perimental data and present our conclusions.

2 Experimental technique

2.1 Experimental setup

Our setup consists of a narrow rectangular Plexiglas con-
tainer (internal dimensions: 2 cm wide, 35 cm high, and
75 cm long) filled with water, see Figure 1. A Plexiglas
triangle (baseline 10 cm and height 5 cm) mounted on a
flat rectangular bar is immersed in the water such that it
is completely covered. A rail system connects to the bar
which is oscillated horizontally with frequency f = 0.5 Hz,
i.e., angular frequency ω = 2πf = π s−1. The method for
creating the oscillatory motion resembles the one used for
creating sand-ripples in [5] and the motion is very close to
sinusoidal. To ensure minimal disturbance from exposed
corners or edges of the moving bar, the bar rests on a
3 mm wide platform milled into the container 3 cm from
the top. Two thin aluminum sheets are glued on to ex-
tend the platform in the ends. The width of the triangle
fits perfectly to the container and water flow between the
triangle and the container is negligible.

We present measurements at two different amplitudes
of oscillation, dS = 2.5 cm and dL = 4.6 cm, which corre-
spond to maximum oscillatory velocities of 7.9 cm s−1 and
14.5 cm s−1, respectively. The Reynolds number for the
flow is Re = d2 ω/ν, where ν is the kinematic viscosity of
water. With ν = 0.0089 cm2 s−1 we have ReS = 2206 and
ReL = 7469, and for both the small and the large ampli-
tude the Reynolds number is therefore intermediate.

The narrow geometry of the container forces the flow
to be almost two-dimensional and thus well-suited for PIV

measurements [11]. The PIV laser-sheet is placed verti-
cally as illustrated in Figure 1. The PIV measurement is
triggered at a desired phase in the period of oscillation
by an optical coupling to the driving mechanism. In the
present study the PIV setup was as follows: The two pic-
tures were taken with 10 ms intervals for the large am-
plitude and with 25 ms intervals for the small amplitude.
The images were processed by PIV cross-correlation soft-
ware employing a 75% overlap of the subfields giving a raw
velocity field of 60 by 60 vectors with a spatial resolution
of 0.29 cm × 0.29 cm.

2.2 Data analysis

2.2.1 Validation and averaging of the velocity fields

The raw PIV data were validated in two steps. First we
used a global size validation scheme in which very long
velocity vectors (|u| > 20 cms−1) attributed to erroneous
particle tracking were rejected and replaced by an average
of their eight neighboring velocity vectors. Secondly we
used a moving average algorithm. For each vector ui in the
field we calculated the average Mi of its eight neighbors
and the difference ∆i = |Mi − ui|. If ∆i > α maxi(∆i)
we replaced ui by Mi. For the parameter α we used the
value 0.8. The procedure was repeated three times. Finally
an average was made of 10 to 20 velocity fields from the
same phase of oscillation. The resulting velocity fields are
smooth and the turbulent fluctuations have been averaged
out leaving only the large coherent structures.

Figures 2 and 3 show the velocity fields in the 1st half
period of the oscillation at the large amplitude. The phase
indicated in each panel is chosen such that 0◦ corresponds
to the triangle being at rest furthest to the right and 90◦
to it moving with maximum velocity toward the left.

2.2.2 Calculation of the vorticity field

In a two-dimensional flow u = (u, v) in the xy-plane the
only non-zero component of the vorticity ω = ∇× u is in
the z-direction

ωz =
∂v

∂x
− ∂u

∂y
. (1)

We calculate the vorticity fields by differentiating the
discrete velocity fields using the least squares difference
scheme for the points having the four necessary neighbors
in the given direction and the center difference scheme
for points near the triangle or edges of the velocity field
where only two neighbors are available. For the line of
points closest to the triangle no reliable calculation could
be made with this method. These points are shown in gray
in the vorticity plots.

The vorticity fields corresponding to each of the mea-
sured velocity fields at the large amplitude are shown in
Figures 2 and 3 as contour plots of ωz with blue attributed
to positive and red to negative vorticity. The same color
scale is used for all the plots with the brightest red at-
tributed to points with ωz ≤ −16 s−1, and points with
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Fig. 2. Velocity fields (left) and vorticity fields (right) in the 1st quarter of the period at the large amplitude. The phase in
degrees is shown in the lower left corner of each field and in the vorticity plots blue is attributed to positive vorticity and red
to negative vorticity. Phase 7◦–26◦: The strong clockwise vortex to the left is moving down along the triangle, while a large jet,
the right part of the vortex, is beginning to move past the crest. Phase 42◦–77◦: A large anti-clockwise vortex is forming to the
right of the triangle. The initial formation and growth is strengthened by the jet originating from the left vortex. This jet is
shooting over the tip of the triangle and is so wide that it reaches some way into the fluid below the triangle.
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Fig. 3. Velocity fields (left) and vorticity fields (right) in the 2nd quarter of the period at the large amplitude. The phase in
degrees is shown in the lower left corner of each field and in the vorticity plots blue is attributed to positive vorticity and red
to negative vorticity. Phase 95◦–166◦: The right vortex grows in size and its center moves upward and away from the triangle.
A large jet is formed in the part of the separation zone between the vortex center and the triangle. This jet will generate the
growth of the next vortex. The lower part of the separation zone is bounded by an almost horizontal flow starting at the crest.
The strength of this flow is determined by the velocity of the triangle, and therefore slows down at the end of the 1st half-period.
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ωz ≥ 16 s−1 being the brightest shade of blue. For clar-
ity, areas with vorticity around 0 s−1 are kept white. The
plotting routine finds the best continuous contour curves
fitting the discrete data. The fields therefore seem con-
tinuous, but for all subsequent calculations involving the
vorticity we use the underlying discrete field.

2.2.3 Calculation of the divergence

In order to check our expectation of a two-dimensional
flow, we have calculated the two-dimensional divergence
of the velocity field

∇ · u =
∂u

∂x
+

∂v

∂y
. (2)

Since the flow is incompressible the two-dimensional diver-
gence is a measure of the flow velocity in the z-direction.
The sign of the two-dimensional divergence (not shown)
varies randomly throughout the flow field without any cor-
relation to the position of the vortices. We thus conclude
that there is no systematic error due to flow out of the
plane of the laser sheet.

3 Quantitative measures

We now discuss certain quantitative measures of the vor-
tices which we determine from the velocity fields. Note
that in computing these measures we have used directly
the velocity fields shown in Figures 2 and 3 with no ad-
ditional averaging. Thus the fluctuations in Figures 4–8
are evident. We have not attempted to put in error-bars,
but by including an entire period we have made it possi-
ble to estimate the fluctuations in most of the images by
comparing the two half-strokes which should be identical
after sufficient averaging. The quantitative measures will
be used to test the validity of the model in Section 4.

3.1 Definition of the vortex

In describing the flow it is crucial to have a definition of
the vortex. There are two vortices of opposite sign in each
field and we define the vortex in the following way: A point
in the field belongs to a vortex if the vorticity is larger
(smaller) than 20% of the extreme positive (negative) vor-
ticity value in the appropriate field. The cut-off value 20%
is chosen as the smallest value which excludes the random
vorticity fluctuations in the mean flow from the vortex.
With this definition, the vortices coincide nicely with the
shaded regions of Figures 2 and 3 except at the very end of
the life of the vortex where the vorticity distribution of the
vortex flattens, resulting in vortices slightly larger than
the regions colored within the color scale chosen for the
figures. When this situation occurs the vortex is ill-defined
and excluded from further analysis. With this method of
identifying the vortices we can now calculate the vortex
strength, position, and size.
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Fig. 4. The vortex strength Γ as function of phase Φ. (a) the
large amplitude and (b) the small amplitude. The three last
data points for the small amplitude have been set to zero.

3.2 The vortex strength

A numerical integration of the vorticity within the vortex
yields the total circulation of the vortex

Γ = A
∑

i∈vortex

ωi, (3)

where A is the area of a grid cell. Since the two vortices
in a field can be considered as the same vortex shifted by
a phase of 180◦ and with the opposite sign we have data
from two full vortex life cycles. By flipping the sign of
the negative vortex and shifting the phase appropriately
we calculate the average circulation of the two vortices
yielding our best estimate of the vortex strength Γ . The
results for both oscillation amplitudes as function of the
phase, Φ ≡ ωt, are shown in Figure 4. We first consider
the results for the large amplitude. The vorticity increases
rapidly from 0 cm2 s−1 when the triangle is at rest to
Γ ≈ 15 cm2 s−1 at ωt = 110◦. From ωt ≈ 110◦ until the
triangle reverses its direction at ωt = 180◦ the vorticity is
almost constant in the range 15−16 cm2 s−1, and not until
the flow is reversed at ≈ 180◦–270◦ do we see a significant
decrease of Γ . Care must be taken when considering the
last 3–4 data points since the values are strongly depen-
dent on the definition of the vortex. The vortex is strongest
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at ωt ≈ 155◦ with a value of Γ L
max ≈ 16.0 cm2 s−1. When

we compare the data from the two amplitudes we see a
similar qualitative picture although the plateau is less ap-
parent at the small amplitude. The maximum Γ for the
small oscillation amplitude is Γ S

max ≈ 3.5 cm2 s−1.

3.3 The vortex size

By counting the number of grid cells in the vortex we find
the vortex area as shown in Figure 5. The vortices are
quite large with widespread vorticity and the vortices are
therefore not intense flow-structures with highly concen-
trated vorticity. Consider first the large amplitude. The
area of the vortex grows concurrently with the buildup
of the vortex strength Γ , but the maximum area of
AL

max ≈ 30 cm2 is not reached until ωt ≈ 200◦ which
is later in the period than what we found for the max-
imum value of Γ . There is an obvious plateau between
ωt ≈ 150◦ and ωt ≈ 225◦ where the area of the vortex is
close to its maximum value. If we compare the data from
the two amplitudes we find the same functional form up
until ωt ≈ 260◦ where the vortex area for the small am-
plitude suddenly increases again. This happens because
the vorticity in the vortex flattens thereby giving an arti-
ficially large area, and this effect is relatively larger with
the small amplitude because of smaller values of vortic-
ity in the vortices but relatively larger noise in the field.
These last data points should be disregarded when con-
sidering the area. With the small amplitude we find that
the maximum area is AS

max ≈ 8 cm2 which is about four
times smaller than AL

max.

3.4 The motion of the vortex center

There are several possible definitions of the center of the
vortex. The geometric center (the point around which the
fluid is rotating) depends on the choice of reference system
(the rest system of the triangle or the laboratory system)
and it is therefore not a good definition. The vorticity is
a differential quantity and does not change when a con-
stant velocity is added and is therefore better suited as
the foundation for a definition. The point of maximum
vorticity is problematic as vortex center, since there are
often more than one peak within the vortex. Therefore,
following [10], we define the center point as a “center of
vorticity” in analogy with the center of mass

rc =
A

Γ

∑
i∈vortex

ωiri, (4)

where A is the area of a grid cell. The origin of the ref-
erence system is taken to be at the tip of the triangle.
Figure 6 shows the paths of the two vortices with respect
to the triangle. The vortex is moving along the side of the
triangle away from the tip as long as the flow is in the same
direction and at some point the direction is reversed and
it moves rapidly along the side of the triangle toward the
tip. When it passes the tip, the trajectory bends around
the new vortex that is being formed on the new lee side
of the triangle.
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Fig. 5. The area of the vortices as defined in Section 3.3.
(a) the large amplitude and (b) the small amplitude.
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Fig. 6. The motion of the vortex center relative to the triangle.
(a) at the large amplitude and (b) at the small amplitude.

The center motion is resolved in Figure 7 where the
coordinates of the vortex center are shown as a function
of phase. For both amplitudes the direction of each center
coordinate rc = (xc, yc) is reversed at the same instant
ωt ≈ 155◦ as the strength Γ begins its decline. The non-
adiabatic effect, that the vortex reverses direction before
the triangle does (at ωt = 0◦), shows that the flow around
the triangle is strongly history dependent. Comparing the
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Fig. 7. The coordinates xc and yc of the vortex center for the vortices formed on the left and the right side of the triangle
as functions of phase. Figures (a) and (b) are for the large amplitude and figures (c) and (d) are for the small amplitude. The
curves for the vortex formed on the left hand side of the triangle are shifted by a phase of 180◦.

results from the two amplitudes we see that the vortex
reaches the same distance in the y-direction but twice the
distance in the x-direction when the amplitude is roughly
doubled.

3.5 Jet velocity

In order to investigate further the increased velocity
around the tip (the jet) due to the presence of the vor-
tices we extract the maximal velocity (with respect to the
triangle) vertically below the tip of the triangle. This ve-
locity is shown in Figure 8 as a function of phase along
with the triangle velocity. For both amplitudes the maxi-
mum value of the velocity is about 1.6 times the maximum
value of the driving velocity of the triangle, and the max-
imum is reached at a phase about 10◦ before the triangle
reaches its maximum velocity.

4 Phenomenological model

4.1 Motivation of the model

The basic variables are the vortex strengths Γ+ and Γ− on
the two sides of the triangle and the velocity U of the fluid

close to the tip (measured relative to the triangle), which
we shall refer to as the “jet velocity”. Γ+ is always positive
and Γ− is always negative. We only keep track of the vor-
ticity until it is advected across the center line. After that
it remains zero until the new vorticity production starts,
and we can thus only compare with the measured values
from Section 3.2 up to this point. The external drive has
amplitude d and the horizontal displacement of the trian-
gle is x = d cos ωt, so that the unperturbed flow velocity
around the triangle is V0 = dω sin ωt. We assume that
the relevant time scale is ω−1 and that the flow around
the triangle does not depend on the length of the baseline
of the triangle and the triangle height, and thus the only
relevant length scale is d. We model the vortex strengths
using the following bilinear differential equation expressed
in terms of the dimensionless parameters A1, ... A4:

Γ̇+ = A1U
2θ(V0) − A2ωΓ+

+A3dωUθ(−V0)θ(Γ+) (5)

Γ̇− = −A1U
2θ(−V0) − A2ωΓ−

+A3dωUθ(V0)θ(−Γ−) (6)

U = V0

[
1 − A4

ωd2
θ(V0)Γ− +

A4

ωd2
θ(−V0)Γ+

]
, (7)
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where θ is the familiar Heaviside step function θ(x) = 0
for x < 0 and θ(x) = 1 for x > 0. The motivation for
the terms are the following: In equations (5) and (6), the
A1-terms express the vorticity production: Γ+ is only pro-
duced when U > 0 and Γ− only when U < 0 (since the
square parenthesis in equation (7) is always positive these
conditions are equivalent to V0 > 0 and V0 < 0, respec-
tively). Classical estimates of vortex production [12] give
A1 = 1

2 . It is however well-known that the actual vorticity
produced can be far smaller [13–15]. The classical esti-
mate assumes that the velocity close to the solid surface
is near zero, whereas in reality, the vortex which is created
generates a velocity of the same order of magnitude and
direction as the “free stream” there. In addition, it is not
clear which fraction of the available vorticity will actually
be entrained behind the solid triangle and become caught
up in the separation vortex. In the following we shall thus
regard A1 as a phenomenological parameter.

The A2-terms describe exponential damping due to
viscosity or turbulent fluctuations. It is always present.
The A3-terms express the decay of vorticity due to ad-
vection. For the vortex formed on the right with Γ+ ≥ 0
the A3-term in equation (5) is active when the velocity U
around the triangle is negative. The coefficient A3 is itself
positive and since the A3-term is proportional to U it is
negative during the half-period when Γ+ decays. Similarly
for the A3-term in equation (6) which is positive during
the half-period when the negative vortex formed on the
left side of the triangle decays. Thus the A3-term always
acts to reduce the absolute value of the vorticity. The A4-
terms in equation (7) are included since we assume that
vorticity upwind of the tip enhances the jet. We simply
take it to be proportional to the driving velocity and the
vorticity present. In reality this term describes a compli-
cated interaction, which depends on the detailed shape
and motion of the vortices.

4.2 Scaling

We now use dimensionless time τ = ωt, and correspond-
ingly we introduce dimensionless vortex strengths y± such
that Γ± = ωd2by± and a dimensionless velocity u such
that U = ωdau, where a and b are additional dimension-
less scaling parameters to be fixed below. In terms of these
new variables we obtain

ẏ+ =
A1a

2

b
u2θ(V0) − A2y+ +

A3a

b
uθ(−V0)θ(y+) (8)

ẏ− = −A1a
2

b
u2θ(−V0) − A2y− +

A3a

b
uθ(V0)θ(−y−)

(9)

u =
V0

ωda
[1 − A4bθ(V0)y− + A4bθ(−V0)y+] , (10)

where the dot now means derivative with respect to τ ,
which we denote by t in the following, since we shall only
use the scaled variables. It is natural to take a = 1 because
then the driving term has the simple form: V0/ωad = sin t.
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Fig. 8. The solid line shows the velocity of the triangle and
the solid line with circles shows the jet velocity, i.e., the max-
imal x-velocity vertically below the triangle tip. (a) the large
amplitude and (b) the small amplitude.

Further, we choose the coefficient A1
a2

b for the vortex pro-
duction term to be unity and thus b = A1. The final form
is then

ẏ+ = u2θ(sin t) − b2y+ + b3uθ(− sin t)θ(y+) (11)

ẏ− = −u2θ(− sin t) − b2y− + b3uθ(sin t)θ(−y−) (12)

u = sin t [1 − b4θ(sin t)y− + b4θ(− sin t)y+] , (13)

where we have

b2 = A2, b3 =
A3

A1
, b4 = A4A1 . (14)

4.3 Numerical solution

Typical numerical solutions are shown in Figure 9. Inter-
esting periodic solutions exist only within a small param-
eter region. If the vorticity production is small U and V0

become almost identical. If, on the other hand, the vortic-
ity production becomes too large, the vorticity cannot be
swept away by the jet and it can increase without bound.
It seems that the interesting states – those that look like
the experiments – are very close to the “critical point”
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Fig. 9. Solution of equations (11–13). Figure (a) initial cy-
cles starting from rest and figure (b) final periodic state.
The parameters are b2 = 0.3/2π ≈ 0.0484, b3 = 1.0 and
b4 = 2.15/2π ≈ 0.34. The circulations y± have been scaled
by 2.968 to give a maximal value of 1.

where the vorticity diverges. In other words, the experi-
mentally relevant states seem to correspond to particular
combinations of the parameters b2...b4. In this sense, it be-
haves like a self-resonating system [16]. In Section 4.4 we
shall find the allowed combinations of parameters in the
undamped case, where the model can be solved exactly.

4.4 Analytic solution for b2 = 0

We now discuss analytically the special case b2 = 0, i.e.,
no damping due to viscosity (there is still damping due to

advection represented by b3). We get

ẏ+ = u2θ(sin t) + b3uθ(− sin t)θ(y+) (15)

ẏ− = −u2θ(− sin t) + b3uθ(sin t)θ(−y−) (16)

u = sin t [1 − b4θ(sin t)y− + b4θ(− sin t)y+] . (17)

4.4.1 General analytic solution

To find the solution for an arbitrary period
[2nπ, 2(n + 1)π], it has to be split into four parts [2nπ, t∗],
[t∗, (2n + 1)π],

[
(2n + 1)π, t̃∗

]
and

[
t̃∗, 2(n + 1)π

]
.

The solution for t ∈ [2nπ, (2n + 1)π] is, first for y−:

y−(t) =

{
1
α (1 − u∗e−β(1−cos t)) for 2nπ < t < t∗

0 for t∗ < t < (2n + 1)π,
(18)

where for convenience α = b4 and β = b3b4. The constant
u∗ = 1 − αy∗, where we define y∗ = y−(2nπ). If y−(t)
becomes zero somewhere in the interval, at t = t∗, it will
remain so. The solution for y− in the remaining interval is

y−(t) =




−(ũ∗)2
∫ t

(2n+1)π
e−2β(1+cos t′) sin2 t′ dt′

for (2n + 1)π < t < t̃∗

y−(t̃∗) − 1
2 (t − t̃∗) + 1

4 (sin 2t − sin 2t̃∗)

for t̃∗ < t < 2(n + 1)π

(19)

where t̃∗ will be defined later.
For u we get

u(t) =




u∗e−β(1−cos t) sin t for 2nπ < t < t∗
sin t for t∗ < t < (2n + 1)π
ũ∗e−β(1+cos t) sin t for (2n + 1)π < t < t̃∗

sin t for t̃∗ < t < 2(n + 1)π.
(20)

Finally, we get for y+:

y+(t) = (u∗)2
∫ t

2nπ

e−2β(1−cos t′) sin2 t′ dt′ , (21)

which is valid for t < t∗. For t ∈ [t∗, (2n + 1)π] we have

y+(t) = y+(t∗) +
∫ t

t∗
sin2 t′dt′

= y+(t∗) +
1
2
(t − t∗) − 1

4
(sin 2t − sin 2t∗). (22)

Similarly we get for t ∈ [(2n + 1)π, 2(n + 1)π]

y+(t) =

{− 1
α (1 − ũ∗e−β(1+cos t)) for (2n + 1)π < t < t̃∗

0 for t̃∗ < t < 2(n + 1)π
(23)

where ũ∗ = 1 + αỹ∗ and ỹ∗ = y+(2nπ + π).
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4.4.2 Integral equation for t∗ in the periodic state

In the periodic state we have ỹ∗ = −y∗, ũ∗ = u∗ and
t̃∗ = t∗ + π. Note the symmetry of the periodic state:

u(t + π) = −u(t) (24)
y−(t + π) = −y+(t). (25)

As can be seen u is not differentiable at t = nπ in the pe-
riodic state. In fact u′(π−) = −1 and u′(π+) = −u∗. The
existence of a t∗ where all the vorticity has been “blown”
away is necessary for attaining a periodic state, since oth-
erwise vorticity will accumulate and lead to divergent so-
lutions. For a t∗ to exist we must have

1 − cos t∗ =
1
β

ln(u∗). (26)

The existence of a periodic state is governed by the
following integral equation for y∗ (or u∗) and t∗ obtained
using equation (25)

u∗ − 1
α

=

(u∗)2e−2β

∫ t∗

0

e2β cos t sin2 t dt +
1
2
(π − t∗) +

1
4

sin 2t∗.

(27)

This equation together with the relation (26) can be com-
bined to give one final equation for t∗:

eβ(1−cos t∗) − 1 =

α

[∫ t∗

0

e2β(cos t−cos t∗) sin2 t dt +
1
2
(π − t∗) +

1
4

sin 2t∗
]

.

(28)

To have physical solutions we must have π/2 < t∗ < π.
The upper limit t∗ = π gives

α+ =
1 − e−2β∫ π

0 e2β cos t sin2 t dt

=
2β

π

(1 − e−2β)
I1(2β)

=
2
π

1 − e−2β

I0(2β) − I2(2β)
, (29)

where I0, I1, and I2 are Bessel functions. The interesting
solutions, in the sense that they are resonant, i.e., give
large amplitudes, have t∗ close to π (at least within the
interval 3π/4 < t∗ < π). Figure 10 shows the two lines
α = α(β) corresponding to, t∗ = π (solid line) and t∗ =
3π/4 (dashed line), respectively. The meaningful solutions
occur between these two curves for β < β∗ ≈ 0.385, where
they cross.

Figure 11 shows a typical numerical solution for the
periodic state at β = 0.25 and α = 0.2387 (and no damp-
ing), which as can be seen in Figure 12 lies in the allowed
region of the phase diagram. It is well represented by the
analytical solution in Section 4.4.
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Fig. 10. Phase diagram in the variables β = b3b4 and α = b4.
The solid line shows t∗ = π and the dashed line t∗ = 3π/4.
The meaningful solutions occur between these curves before
the lines cross at β = β∗.
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Fig. 11. Solution of equations (11–13) with b2 = 0. Final
periodic state with β = 0.25 and α = 0.2387.

4.5 Maximal value of u

Experimentally, the maximal value of u is umax ≈ 1.6.
The maximal value can be found from equation (20). The
function sin(t) exp(β cos t) has a maximum when cos t −
β(sin2 t) = β cos2 t + cos t − β = 0 or

cos t =
1
2β

(
−1 ±

√
1 + 4β2

)
, (30)

which means that the phase φ where u is maximal is

φ = arccos
[

1
2β

(
−1 ±

√
1 + 4β2

)]
, (31)
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Fig. 12. The theoretical and the experimental circulation as
function of time. The experimental data sets have been scaled
as described in the text.

with one solution (choosing the plus sign) φ ∈ [0, π/2].
Then

umax = u∗e−β(1−cosφ) sin φ

=u∗ 1√
2β

√
(
√

1+4β2−1)e(
√

1+4β2−2β−1)/2. (32)

4.6 Comparison with experiment

In the experiment we have ω = π s−1 and the two am-
plitudes dS = 2.5 cm and dL = 4.6 cm. The maximal
measured vortex strengths are Γ S

max = 3.5 cm2 s−1 and
Γ L

max = 16.0 cm2 s−1. In the comparison we use the scaling
from Section 4.2, i.e., Γ± = A1ωd2y±. In the state corre-
sponding to the numerical solution in Figure 9, we have
maximal values of y± around 3 and we find that A1 ≈ 0.07
(see also the discussion of A1 in Sect. 4.1). In Figure 12
we show a comparison between the circulations from the
experiment and the numerical solution corresponding to
Figure 9. We have scaled the theoretical circulation as in
Figure 9 (to make the maximum unity) and we have scaled
the experimental circulations by factors 13.73 cm2 s−1 and
4.06 cm2 s−1 with the ratio (dL/dS)2 according to the scal-
ing assumptions of Section 4.2. It is seen that the general
form and the position of the maximum are well repro-
duced.

In Figure 13 we compare the velocities. Here the ex-
perimental velocities (Fig. 8) are scaled by ωd, i.e., by
14.45 cm s−1 and 7.86 cm s−1, respectively. Again the simi-
larity between experiment and theory is surprisingly good,
considering the very simple character of the latter.
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Fig. 13. The theoretical end the experimental curves for the
jet-velocity. The parameters of the model are as in Figure 9.
The experimental data sets have been scaled as described in
the text.

5 Discussion and conclusions

The generation of vortices, or separation zones, around pe-
riodically moving solid structures, is a surprisingly violent
process. In particular, the initiation of a vortex depends
strongly on the localized jet which is formed slightly af-
ter the triangle has reversed its direction of motion. We
have developed a simple phenomenological model for the
generation of the vortices and their interaction with the
jet, which can be solved exactly in the limit of no viscous
damping and which compares favorably with our exper-
imental results. Our results emphasize the non-adiabatic
and history dependent character of the formation of sep-
aration zones in time-dependent flows, which means that
this process can not be captured by steady state calcula-
tions.

The phenomenology described and modeled in this pa-
per is important for the development of quantitative mod-
els of the formation and evolution of “vortex ripples” in
the sand under oscillating water flow. In particular it is
important for understanding the instabilities, which oc-
cur when the oscillatory drive changes [5], leading, e.g., to
the creation of new ripples in the troughs between the old
ones that already exist. Here the strength and size of the
separation vortex determines the position and growth of
the new ripple. In this context, it would be of great inter-
est to extend our model to two dimensions, and include
the instabilities which occur in the transverse direction
and deform the cylindrical separation vortex.

Another problem for which our results might be rele-
vant is insect flight, i.e., the generation of lift and thrust
by flapping wings at intermediate Reynolds numbers [6–8].
Here the nature and strength of the separation vortices
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(so-called leading edge vortices) is of primary importance,
and non-adiabatic effects are known to be large.

We are very thankful to Knud Erik Meyer and Nicolas Pedersen
for making the PIV equipment at the Department of Fluid
Mechanics at the Technical University of Denmark available to
us and for their crucial help in carrying out the experiment. A.
A. acknowledges the support from AFOSR Grant No. F49620-
01-1-0530 and ONR Grant No. N00014-01-1-0688 granted to
Z. Jane Wang.

References

1. D.I. Pullin, A.E. Perry, J. Fluid Mech. 97, 239 (1980)
2. H. Ayrton, Proc. Roy. Soc. A 84, 285 (1910)
3. R.A. Bagnold, Proc. Roy. Soc. A 187, 1 (1946)
4. A. Stegner, J.E. Wesfreid, Phys. Rev. E 60, R3487 (1999)
5. J.L. Hansen, M. van Hecke, A. Haaning, C. Ellegaard,

K.H. Andersen, T. Bohr, T. Sams, Nature 410, 324
(2001); J.L. Hansen, M. van Hecke, C. Ellegaard, K.H.
Andersen, T. Bohr, A. Haaning, T. Sams, Phys. Rev.
Lett. 87, 204301 (2001)

6. C.P. Ellington, C. van den Berg, A.P. Willmott, A.L.R.
Thomas, Nature 384, 626 (1996)

7. M.H. Dickinson, F.-O. Lehmann, S.P. Sane, Science 284,
1954 (1999)

8. Z.J. Wang, Phys. Rev. Lett. 85, 2216 (2000)
9. H.C. Earnshaw, T. Bruce, C.A. Greated, W.J. Easson,

Proc. of the 24th Int. Conf. of Coastal Engineering,
p. 1975 (1994)

10. H.C. Earnshaw, C.A. Greated, Exp. Fluids 25, 265 (1998)
11. M. Raffel, C.E. Willert, J. Kompenhans, Particle Image

Velocimetry (Springer-Verlag, Berlin, Heidelberg, 1998)
12. L. Prandtl, O.G. Tietjens, Fundamentals of Hydro- and

Aeromechanics (Dover, New York, 1957)
13. N. Didden, J. Applied Math. Phys. (ZAMP) 30, 101

(1979)
14. M. Gharib, E. Rambod, K. Shariff, J. Fluid Mech. 360,

121 (1998)
15. M. Rosenfeld, E. Rambod, M. Gharib, J. Fluid Mech.

376, 297 (1998)
16. A. Boudaoud, Y. Couder, M. Ben Amar, Phys. Rev. Lett.

82, 3847 (1999)




