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In plants, osmotically driven flows are believed to be responsible for translocation of
sugar in the pipe-like phloem cell network, spanning the entire length of the plant – the
so-called Münch mechanism. In this paper, we present an experimental and theoretical
study of transient osmotically driven flows through pipes with semi-permeable walls.
Our aim is to understand the dynamics and structure of a ‘sugar front’, i.e. the
transport and decay of a sudden loading of sugar in a water-filled pipe which is
closed in both ends. In the limit of low axial resistance (valid in our experiments
as well as in many cases in plants) we show that the equations of motion for the
sugar concentration and the water velocity can be solved exactly by the method of
characteristics, yielding the entire flow and concentration profile along the tube. The
concentration front decays exponentially in agreement with the results of Eschrich,
Evert & Young (Planta (Berl.), vol. 107, 1972, p. 279). In the opposite case of very
narrow channels, we obtain an asymptotic solution for intermediate times showing
a decay of the front velocity as M−1/3t−2/3 with time t and dimensionless number
M ∼ ηκL2r−3 for tubes of length L, radius r , permeability κ and fluid viscosity η. The
experiments (which are in the small M regime) are in good quantitative agreement
with the theory. The applicability of our results to plants is discussed and it is shown
that it is probable that the Münch mechanism can account only for the short distance
transport of sugar in plants.

1. Introduction
The translocation of sugar in plants, which takes place in the phloem sieve tubes, is

not well understood on the quantitative level. The current belief, called the pressure-
flow hypothesis (Nobel 1999), is based on the pioneering work of Ernst Münch in the
1920s (Münch 1930). It states, that the motion in the phloem is purely passive, due to
the osmotic pressures that build up relative to the neighbouring xylem in response to
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Figure 1. In plants, two separate pipe-like systems are responsible for the transport of water
and sugar. The xylem conducts water from the roots to the shoot while the phloem conducts
sugar and other nutrients from places of production to places of growth and storage. The
mechanism believed to be responsible for sugar translocation in the phloem, called the Münch
mechanism or the pressure-flow hypothesis (Nobel 1999), states the following: As sugar is
produced via photosynthesis in sources it is actively loaded into the tubular phloem cells. As
it enters the phloem, the chemical potential of the water inside is lowered compared to the
surrounding tissue, thereby creating a net flux of water into the phloem cells. This influx of
water in turn creates a bulk flow of sugar and water towards the sugar sink shown in (b),
where active unloading takes place. As the sugar is removed, the chemical potential of the
water inside the phloem is raised resulting in a flow of water out of the sieve element.

loading and unloading of sugar in different parts of the plant, as shown in figure 1.
This mechanism is much more effective than diffusion, since the osmotic pressure
differences caused by different sugar concentrations in the phloem create a bulk flow
directed from large concentrations to small concentrations, in accordance with the
basic need of the plant. Such flows are often called osmotically driven pressure flows
(Thompson & Holbrook 2003), or osmotically driven volume flows (Eschrich, Evert &
Young 1972).

To study the osmotically driven flows, Eschrich et al. (1972) conducted simple model
experiments. Their set-up consisted of a semi-permeable membrane tube submerged
in a water reservoir, modelling a phloem sieve element and the surrounding water-
filled tissue. At one end of the tube a solution of sugar, water and dye was introduced
to mimic the sudden loading of sugar into a phloem sieve element. In the case of
the closed tube, they found that the sugar front velocity decayed exponentially in
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time as it approached the far end of the tube. Also, they found the initial velocity of
the sugar front to be proportional to concentration of the sugar solution. Through
simple conservation arguments, they showed that for a flow driven according to the
pressure-flow hypothesis, the velocity of the sugar front is given by

uf =
L

t0
exp

(
− t

t0

)
where t0 =

r

2κΠ
, (1.1)

where t is time, L is the length of the sieve element and r its radius, κ is the
permeability of the membrane and Π is the osmotic pressure of the sugar solution.
For dilute solutions, Π ≈ RT c (Landau & Lifshitz 1980), where R is the gas constant,
T the absolute temperature and c the concentration in moles per volume. The
conservation argument for (1.1) is the following: for incompressible flow in a wide
rigid semi-permeable tube of length L imbedded in water, we imagine part of the tube
initially filled with sugar solution and the rest with pure water. For a wide tube with
slow flow, viscous effects and thus the pressure gradient along the tube is negligible
and the pressure is simply equal to the osmotic pressure Π averaged over the tube,
i.e. RT c̄ where c̄ is the constant average sugar concentration. The water (volume)
flux through the part of the tube ahead of the sugar front xf (where there is no
osmosis) is −2πrκRT c̄(L − xf ), where κ is the permeability of the tube and the flow
is negative since water flows out. This will be equal to the rate of change of volume
ahead of xf and thus, due to incompressibility, is equal to −πr2dxf /dt . Putting these
two expressions together we get

dxf

dt
=

2LpRT c̄

r
(L − xf ) =

1

t0
(L − xf ) (1.2)

leading to uf = dxf /dt given by (1.1).
In the experiments performed by Eschrich et al. (1972) good qualitative agreement

with (1.1) was obtained, but on the quantitative level the agreement was rather poor.
We thus chose to perform independent experiments along the same lines. Eschrich et
al. (1972) used dye to track the sugar, and in one of our set-ups we can check this
method by directly following the sugar without using dye. Also, we make independent
measurements of the membrane properties, which then allow detailed comparison with
the predictions showing good quantitative agreement.

Simultaneously with the experiments, we develop the theory for osmotic flows. The
above derivation of the front propagation is simplified by the lack of viscosity and
diffusion and, indeed, by the very assumption that a well-defined sugar front exists. To
go beyond this we must use the coupled equations for the velocity and concentration
fields as they vary along the tubes and in time. Here we follow the footsteps of a large
number of authors, as discussed later. Our main contribution is the analysis of the
decay of an initially localized sugar concentration in a channel closed in both ends
described by (4.9) and (4.10). Here we point out that the main dimensionless number
(termed as Münch number) can be chosen as

M =
16ηL2κ

r3
, (1.3)

where η is the fluid viscosity. We show how to simplify the equations and obtain exact
solutions in the regimes M � 1 (the regime of the experiments in this paper and of
those of Eschrich et al.) and asymptotic solutions for M � 1. Both regimes are found
in plants and we propose an effective way for numerical integration of the equations
in the general case using Green’s functions. In the regime M � 1 the solubility of the
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Quantity Magnitude Reference

Radius (μm) 4.5 (Fava bean), 4 (Winter Knoblauch & van Bel (1998),
squash), 6–25 Taiz & Zeiger (2002),

Nobel (1999)
Length (mm) 0.09 (Fava bean), 0.1–3 Knoblauch & van Bel (1998),

Nobel (1999)
Flow velocity (m h−1) 0.5–1, 0.2–2 Knoblauch & van Bel (1998),

Nobel (1999)
Elastic modulus (MPa) 17, 5.6–7.4 (Ash) Thompson & Holbrook (2003a),

Niklas (1992)
Permeability (10−11 m s−1 Pa−1) 5,1.1 (Zitella translucence) Thompson & Holbrook (2003a),

Eschrich et al. (1972)
Sucrose concentration (M)] 0.3–0.9 Taiz & Zeiger (2002)

Table 1. Characteristic properties of phloem sieve elements.

equations is shown by mapping them to a damped Burgers equation (5.6), which can
be solved by the method of characteristics. An analogous relation was pointed out
earlier by Frisch (1976), but for a different boundary condition (open in one end)
where the damping term disappears. Some results for M � 1 were also given by Weir
(1981), but the lack of generality of his approach to the time-dependent problem
makes his results hard to extend.

In table 1 we show characteristic data for single sieve elements, which build up the
phloem conducts in plants. If one naively applies these results to the flow inside such
sieve elements, taking L =1 mm, r =10 μm, κ = 10−11 m s−1 Pa−1 and concentration
c̄ =0.5 M, one gets a characteristic velocity from (1.1) of 9 mh−1, almost an order
of magnitude larger than the range of velocities given in the table. Here one has
to remember that the characteristic velocity from (1.1) is valid for a transient flow
caused by an initial sudden sugar loading, whereas the velocities quoted in the
table are characteristic for the normal steady-state operation of the plants. For large
distances (e.g. those occurring in tall trees), the viscous effects embodied in (1.3)
become large. Thus the value of M for the single sieve element considered above
is M ≈ 1.6 × 10−4 whereas the value for a phloem tube spanning a distance of 10 m
would be greater by a factor 108, i.e. M ≈ 1.6 × 104 (see also table 3 for characteristic
values for M). In this regime (1.1) is no longer valid and, in fact, as seen in § 5.2 (5.46),
the characteristic velocity will be reduced by a factor M−1/3, now making it an order
of magnitude smaller than the velocities quoted in the table. This seems to indicate
that large distance transport in trees cannot rely solely on the Münch mechanism
and indeed the sieve elements are living cells and active transport may play a key role
(see, e.g. Taiz & Zeiger 2002). For future studies in this direction it is important to
be able to separate these effects clearly and thus to understand the passive osmotic
component as clearly and simply as possible, which is the aim of the present paper.

The layout of the paper is as follows: §§ 2 and 3 describe our experimental set-ups
and the experimental results obtained. In § 4, the flow equations are developed and
in § 5 we present solutions for the cases M � 1 and M � 1. Finally, § 6 contains
a detailed comparison between theory and experiments. After the conclusions (§ 7),
two appendices follow. Appendix A provides information about the experimental
materials used and appendix B discusses the numerical methods (based on Green’s
functions) used for solving the flow equations in the general case.
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Figure 2. Set-up I used to observe the movement of a sugar–dye solution (ss) inside a
semi-permeable membrane tube (spm). L: length of membrane tube; l: initial sugar front
height; ds: disposable syringe; gt: glass tube; rs: rubber stopper; sc: stopcock; wr: water
reservoir; bc: brass cylinder; pt: pressure transducer.

2. First experimental set-up
2.1. Set-up and methods

Set-up I is presented in figure 2. It is based on the design by Eschrich et al. with
the addition of a pressure transducer that allows us to measure the gauge pressure
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1 2 3 4 5

Mean sugar concentration, c̄ (mM) 1.5 ± 0.3 2.10 ± 0.03 2.4 ± 0.2 4.2 ± 0.7 6.8 ± 0.1
Osmotic pressure, Π (bar) 0.14 ± 0.02 0.15 ± 0.01 0.31 ± 0.03 0.39 ± 0.01 0.68 ± 0.02
Membrane tube length, L (cm) 28.5 20.8 28.5 28.5 20.6
Initial front height, l (cm) 4.9 3.7 6.6 6.5 4.8

Table 2. Data for the experimental runs shown in figure 3.

(which is what we from now on will refer to as ‘pressure’) inside the membrane tube
continuously. More precisely, it consisted of a 30 cm long, 30 mm wide glass tube in
which a semi-permeable membrane tube of equal length and a diameter of 10 mm was
inserted. At one end, the membrane tube was fitted over a glass stopcock equipped
with a rubber stopper. On the other end, the membrane tube was fitted over a brass
cylinder equipped with a holder to accommodate a pressure transducer for measuring
the pressure inside the membrane tube.

After filling the 30 mm wide glass tube with water, water was pressed into the
semi-permeable tube with a syringe. Care was taken so that no air bubbles were
stuck inside the tube. For introducing the sugar solution into the tube, a syringe was
filled with the solution and then attached to the lower end of the stopcock which was
kept closed. After fitting the syringe, the stopcock was opened and the syringe piston
was very slowly pressed in, until a suitable part of the tube had been filled with the
solution. Care was also taken to avoid any mixing between the sugar solution and
the water already present in the semi-permeable tube. The physical characteristics of
the membranes and of the sugar we used are discussed in appendix A. To track the
movement of the sugar solution it was mixed with a red dye and data was recorded
by taking pictures of the membrane tube at intervals of 15 min using a digital
camera.

2.2. Experimental results obtained with set-up I

An example of a set of data is shown in figure 3. In figure 3(a) are the raw images,
which after processing give figure 3(b) showing the position of the sugar front, xf ,
as a function of time. The error bars on xf are estimated to be ±1 mm, but are too
small to be seen. Finally, figure 3(c) shows the pressure inside the tube as a function
of time. At first, a linear motion of the front is observed with a front velocity of
∼ 1 cmh−1. This is then followed by a decrease in the front velocity as the front
approaches the end of the tube. The pressure is seen to rise rapidly during the first
hour before settling to a constant value, indicated by the dashed line. This constant
value is taken to be the osmotic pressure Π of the sugar solution. Looking at figure
3(a), one observes that diffusion has the effect of dispersing the front slightly as
time passes. Below the front, the concentration seems to be uniform throughout the
cross-section of the tube, and there is no indication of large boundary layers forming
near the membrane walls.

Similar experiments with different sugar concentrations were made and a plot of the
results can be seen in figure 3(d,e). The experimental conditions for the five different
sets of experiments are given in table 2. Qualitatively the motion of the front and the
pressure increase follows the same pattern. One notices that the speed with which the
fronts move is related to the mean sugar concentration inside the membrane tube,
with the high-concentration solutions moving faster than the low-concentration ones.
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Figure 3. Experimental results from set-up I. (a) Time series of pictures taken in experiment
5. Time increases from left to right in steps of 30 min. See details of the sugar solutions used
in table 2. (b) Plot of the front position versus time obtained from the images above. (c) Plot
of the gauge pressure inside the tube versus time. The dashed line is the osmotic pressure of
the solution, taken to be the average value of the pressure from t = 2 h until the end of the
experiment. (d ) Plots of the sugar front position versus time for different sugar concentrations,
as indicated in table 2. (e) Plots of the pressure inside the membrane tube for different sugar
concentrations.
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Figure 4. Set-up II dedicated to the tracking of the sugar front via index of refraction changes.
It consists of a hollow isosceles glass prism and a Plexiglas cuboid in osmotic contact through
a membrane. A pressure transducer was attached to the top of the glass prism to measure the
pressure inside.

The reason why 2 is moving slower than 1 is that experiment 2 was conducted in a
slightly shorter membrane tube than the one used in experiment 1, thereby decreasing
the characteristic velocity as we shall see later.

3. Second experimental set-up
3.1. Set-up and methods

Set-up II is presented in figure 4. This set-up allows us to track the real front location,
without the use of colorant, directly via the variation of the index of refraction.
It consisted of a hollow isosceles glass prism and a Plexiglas cuboid in osmotic
contact through a membrane. To track the time evolution of the sugar front inside
the prism, we used the refraction of a laser sheet passing through it. The laser sheet
was generated by shining a laser beam, generated by a Melles Griot 3.1 mW laser,
through a glass rod. When passing through the prism, light would deviate depending
on the local index of refraction, producing a typical S shape as shown in figure 4.
The index of refraction varies linearly with sugar concentration and thus by looking
at the refracted laser sheet projected onto a screen, we were able to reconstruct the
concentration profile inside the prism. A camera recorded images of the screen at
regular intervals to track the moving concentration profile.
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Figure 5. Results from set-up II. In (a) the raw data images are shown. In (b) the
concentration profile extracted from (a) is shown. (c) shows the front position extracted
from (b) by finding the maximum of the concentration gradient, shown in (d ). Finally, (e, f )
show the pressure inside the prism.

3.2. Experimental results obtained with set-up II

3.2.1. Effect of osmosis

Figure 5 shows the data collected using set-up II. In figure 5(a), a time series of
pictures is depicted showing the refracted laser-light projected onto a screen, the time
gap between each image being 1 day. Comparing the upper and lower parts of each
picture, one generally observes a deflection to the right at the bottom, corresponding
to a high sugar concentration at the bottom of the prism. In the intermediate region
one sees a dip in the refracted light, corresponding to a strong concentration gradient.
The dip gradually flattens while it advances upwards, representing a sugar front
which advances while it broadens. This process can be seen directly in figure 5(b),
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Figure 6. Results from a control experiment with set-up II, where concentration varies only
due to diffusion. (a) Time evolution of the concentration profile, (b) time evolution of the
profile of concentration gradient and (c) time evolution of the sugar front location.

which shows the time evolution of the sugar concentration obtained from the images.
Starting from a steep concentration profile, we see that the front moves upwards
while it flattens. In figure 5(d ) the time evolution of the concentration gradient is
depicted, clearly showing a peak which broadens while it moves forward. Finally, in
figure 5(e, f ), the position of the sugar front and the pressure inside the prism is
plotted as a function of time. The error bars on xf are ±1 mm, as discussed below.

3.2.2. Effect of diffusion

To study the effect of diffusion on the dynamics of the sugar front separately, an
experiment was made with set-up II, in which the water reservoir was not filled. The
experiment was then conducted in the usual way, and the motion of the front was
recorded. The results of this are shown in figure 6. Starting from a steep concentration
gradient, we observe that the front flattens but otherwise does not move much.

Comparing figures 5 and 6 we observe, that while the front moves 2 cm due to
osmosis in 6 days, it does not seem to move at all in 6 days due to diffusion. Thus,
while diffusion has a flattening effect, it plays little role in the forward motion of the
front.

Since the front did not move due to diffusion, the fluctuations in the front position
seen in figure 6(c) gives a measure of the uncertainty of a single measurement of the
front position. Taking the standard deviation of the fluctuations gives an uncertainty
of ±1 mm, shown as error bars in figure 5(c).

More details on this second experiment can be found in Jensen (2007).
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4. Theoretical analysis
4.1. Front propagation via flow equations

The equations of motion for osmotically driven flows have been derived and analysed
thoroughly several times in the literature (Weir 1981) and have been studied carefully
numerically (Henton 2002; Thompson & Holbrook 2003a, b). For the sake of
completeness, we shall include a short derivation of these.

We consider a tube of length L and radius r , as shown in figure 7. The tube
has a constant cross-section of area A= πr2 and circumference S = 2πr and its walls
are made of a semi-permeable membrane with permeability κ . Inside the tube is a
solution of sugar in water with concentration c(x) = c(x, t). Throughout this paper,
we study the transient dynamics generated by an asymmetrical initial concentration
distribution, where the sugar is initially localized to one end of the tube with a
concentration level c0. The tube is surrounded by a water reservoir, modelling the
water surrounding the membrane tube in set-up I.

We shall assume that L � r and that the radial component of the flow velocity
inside the tube is much smaller than the axial component, as is indeed the case
in the experiments. With these assumptions, we will model the flow in the spirit of
lubrication theory and consider only a single average axial velocity component u(x, t).
Also, we will assume that the concentration c is independent of the radial position ρ

an assumption that can be verified experimentally in set-up II.
Let us now consider the equation for volume conservation by looking at a small

section of the tube between xi−1 and xi . The volume flux into the section due to
advection is

A(ui−1 − ui), (4.1)

where the axial flow velocities are taken to be ui−1 and ui at xi−1 and xi , respectively.
The volume flux inwards across the membrane due to osmosis (Schultz 1980) is

S�xκ(RT c(x, t) − p(x, t)), (4.2)

where p is the local difference of pressure across the membrane and c is the local
concentration. For clarity we use the van’t Hoff value Π = RT c for the osmotic
pressure, which is valid only for dilute (ideal) solutions. In appendix A.3, we show that
the linear relation between Π and c is verified experimentally as Π = (0.1 ± 0.01 bar
mM−1)c. Assuming conservation of volume, we get

A(ui−1 − ui) + S�xκ(RT c − p) = 0. (4.3)
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Letting �x → 0 and using that the cross-section to perimeter ratio reduces to r/2, this
becomes

r

2

∂u

∂x
= κ(RT c − p). (4.4)

For these very slow and slowly varying flows, the time dependence of the Navier–
Stokes equation can be neglected and the velocity field is determined by the
instantaneous pressure gradient through the Poiseuille or Darcy relation (for a circular
tube)

u = − r2

8η

∂p

∂x
, (4.5)

where η is the dynamic viscosity of the solution, typically ∼ 1.5 × 10−3 Pa s in our
experiments.

Differentiating (4.4) with respect to x and inserting the result from (4.5) we get for
the conservation of water that

RT
∂c

∂x
=

r

2κ

∂2u

∂x2
− 8η

r2
u. (4.6)

The final equation expresses the conservation of sugar advected with velocity u and
diffusing with molecular diffusivity D

∂c

∂t
+

∂uc

∂x
= D

∂2c

∂x2
. (4.7)

The set of equations (4.6) and (4.7) is equivalent to those of Thompson & Holbrook
(2003b) except for the fact that we have removed the pressure by substitution, and
that we do not consider elastic deformations of the tube.

4.1.1. Non-dimensionalization of the flow equations

To non-dimensionalize (4.6) and (4.7), we introduce the following scaling

c = c0C, u = u0U, x = LX, t = t0τ,

L has been chosen such that the spatial domain is now of the unit interval X ∈ [0, 1],
u0 = L/t0 and c0 is the initial concentration level in one end of the tube. Choosing
further

t0 =
r

2κRT c0

, M =
16ηL2κ

r3
and D̄ =

D

u0L
=

Dr

2RT c0L2κ
, (4.8)

and inserting in (4.6) and (4.7), we get the non-dimensional flow equations

∂2U

∂X2
− MU =

∂C

∂X
, (4.9)

∂C

∂τ
+

∂UC

∂X
= D̄

∂2C

∂X2
. (4.10)

The parameter M corresponds to the ratio of axial to membrane flow resistance,
which we shall refer to as the Münch number. This is identical to the parameter F̂ in
Thompson & Holbrook (2003b). The second parameter D̄ is the Peclet number. Thus,
the longer the tube the less important the diffusion becomes and the more important
the pressure gradient due to viscous effects becomes.

Values of the parameters M and D̄ in different situations can be seen in table 3.
The typical magnitude of the parameters M and D̄ in plants are found from the
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M D̄

Set-up I 2 × 10−8 6 × 10−5

Set-up II 10−9 2 × 10−2

Single sieve element (L= 1 mm) 5 × 10−4 5 × 10−4

Leaf (L= 1 cm) 5 × 10−2 5 × 10−5

Branch (L = 1 m) 5 × 102 5 × 10−7

Small tree (L = 10 m) 5 × 104 5 × 10−8

Table 3. Values of the parameters M and D̄ in various situations.

following values (also given in table 3):

r = 10 μm, η = 1.5 × 10−3 Pa s, u0 = 2 m h−1, κ = 2 × 10−11 m (Pa s)−1.

We observe, that M and D̄ are small in both experiments, and that for short distance
transport in plants this is also the case. However, over length scales comparable to a
branch (L = 1 m) or a small tree (L = 10 m) M is large, so in this case the pressure
gradient is not negligible.

When deriving the equations for osmotically driven flows, we have assumed that
the concentration inside the tube was a function of x and t only. However, the real
concentration inside the tube will also depend on the radial position ρ in the form
of a concentration boundary layer near the membrane, in the literature called an
unstirred layer (Pedley 1983). Close to the membrane, the concentration cm is lowered
compared to the bulk value cb because sugar is advected away from the membrane
by the influx of water. This, in turn, results in a lower influx of water, ultimately
causing the axial flow inside the tube to be slower than expected. In our experiments
we see no signs of such boundary layers and apparently their width and their effect
on the bulk flow are very small.

5. Solutions of the flow equations
We will now analyse (4.9) and (4.10). We will show that they can be solved quite

generally for M = D̄ = 0 by the method of characteristics. For an arbitrary initial
condition, this method will generally yield an implicit solution.

For arbitrary values of M and D̄, we cannot solve the equations of motion
analytically and thus have to incorporate numerical methods. This topic has been the
focus of much work both in the steady-state case (Thompson & Holbrook 2003a)
and in the transient case (Henton 2002). However, no formulation fully exploiting the
partially linear character of the equations capable of handling all different boundary
conditions has so far been presented. Therefore, we show that using Green’s functions,
the equations of motion can be transformed into a single integro-differential equation,
which can be solved using standard numerical methods with very high precision. This
technical numerical part is detailed in appendix B.

5.1. Results for small Münch number

In the limit M = D̄ =0 the equations become

∂2U

∂X2
=

∂C

∂X
, (5.1)

∂C

∂τ
+

∂UC

∂X
= 0. (5.2)
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By integrating (5.1) with respect to X, we get

∂U

∂X
= C + F (τ ). (5.3)

If we choose U (0) = U (1) = 0, F (τ ) becomes

F (τ ) = −
∫ 1

0

C dX ≡ −C̄(τ ). (5.4)

Using (5.3) in (5.2) gives

∂

∂X

[
∂U

∂τ
+ U

(
∂U

∂X
+ C̄

)]
= −dC̄

dτ
= 0, (5.5)

where the last equality follows from integrating X from 0 to 1, observing that all
terms in the square bracket vanish at the end points due to the boundary condition
u(X =0, τ ) = u(X = 1, τ ) = 0. Thus C̄ is a constant in time since the tube is closed.
Integrating with respect to X and using the boundary conditions on U , this becomes

∂U

∂τ
+ U

∂U

∂X
= −C̄U. (5.6)

Equation (5.6) is a damped Burgers equation (Gurbatov, Malakhov & Saichev 1991),
which can be solved using Riemann’s method of characteristics. The characteristic
equations are

dU

dτ
= −C̄U (5.7)

dX

dτ
= U. (5.8)

Equation (5.7) has the solution

U = U0(ξ ) exp(−C̄τ ), (5.9)

where the parametrization ξ (X, τ ) of the initial velocity has to be found from

X = ξ +
1

C̄
U0(ξ )(1 − exp(−C̄τ )), (5.10)

where ξ = X at τ =0.

5.1.1. Exact solutions for simple initial conditions

An experimental condition close to that of our experiments is to use a Heaviside
step function as initial condition on C, making C initially constant in some interval
[0, λ]

C(X, τ = 0) = CIH (λ − X) =

{
CI for 0 � X � λ.

0 for λ < X � 1.
(5.11)

Equation (5.3) now enables us to find the initial condition on the velocity

U (X, τ = 0) =

∫ X

0

(C(X′, 0) − C̄) dX′ =

∫ X

0

(C(X′, 0) − λCI ) dX′ (5.12)

=

{
(CI − C̄)X for 0 � X � λ.

C̄(1 − X) for λ < X � 1.
(5.13)
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From (5.13), we have

U0(ξ ) =

{
(CI − C̄)ξ for 0 � ξ � λ.

C̄(1 − ξ ) for λ < ξ � 1.
(5.14)

Then, solving for ξ (X, τ ) in (5.10) gives

ξ (X, τ ) =

⎧⎪⎪⎨
⎪⎪⎩

X

1 + (1/λ)(1 − λ)(1 − exp(−C̄τ )
for X ∈ I1,

X − 1 + exp(−C̄τ )

exp(−C̄τ )
for X ∈ I2,

(5.15)

where the intervals I1 and I2 are defined by

I1 = [0, 1 − (1 − λ) exp(−C̄τ )], (5.16)

I2 = [1 − (1 − λ) exp(−C̄τ ), 1]. (5.17)

Finally, U (X, τ ) is calculated from (5.9)

U (X, τ ) =

⎧⎪⎨
⎪⎩

(CI − C̄) exp(−C̄τ )X

(1/λ)(1 − λ)(1 − exp(−C̄τ ))
for X ∈ I1,

C̄(1 − X) for X ∈ I2,

(5.18)

which is equivalent to the result obtained by Weir (1981). The solution is plotted in
figure 8(a, b). We can now calculate the instantaneous sugar front position Xf and
velocity Uf using the right boundary of I1 from (5.16)

Xf (τ ) = 1 − (1 − λ) exp(−C̄τ ), (5.19)

Uf (τ ) =
dXf

dτ
= C̄(1 − λ) exp(−C̄τ ). (5.20)

Similarly, C(X, τ ) is given by

C(X, τ ) =
C̄

1 − (1 − λ) exp(−C̄τ )
H (Xf − X). (5.21)

Going back to dimensional variables, (5.19) and (5.20) become

xf (t) = L − (L − l) exp
(

− t

t 0

)
and (5.22)

uf (t) =
L

t0
exp

(
− t

t0

)
, (5.23)

where L is the length of the membrane tube, l is the initial front position and the
decay time t0 is in accordance with the simple argument given in § 1.

As noted earlier we can use the method of characteristics on arbitrary initial
conditions, including the more realistic case, where the initial jump in concentration
is replaced by a continuous variation, say, a linear decrease from CI to 0 taking place
between λ1 and λ2, i.e.

C(X, τ = 0) =

⎧⎪⎪⎨
⎪⎪⎩

CI for 0 � X � λ1.

CI

λ2 − X

λ2 − λ1

for λ1 � X � λ2.

0 for λ2 < X � 1.

(5.24)
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Figure 8. (a, b) Plot of the analytical solution for a piecewise constant initial concentration.
λ=0.1, CI = 1 and C̄ = 0.1. (c, d) Plot of the analytical solution for a piecewise linear initial
concentration. λ1 = 0.05, λ2 = 0.15, CI = 1 and C̄ = 0.1. Time increases from black to gray in
steps of one unit of time.

Using (5.3) yields the initial velocity

U (X, τ = 0) =

⎧⎪⎨
⎪⎩

(CI − C̄)X for 0 � X � λ1,

A1X
2 + B1X + C1 for λ1 � X � λ2,

C̄(1 − X) for λ2 < X � 1,

(5.25)

where C̄ = CI (λ1 + λ2)/2, and the constants are given by

A1 = − CI

2(λ2 − λ1)
, B1 =

CIλ2

λ2 − λ1

− C̄, C1 = CIλ1 +
CI

λ2 − λ1

(
λ1λ2 + λ2

1/2
)
. (5.26)

Finding ξ (X, τ ) from (5.10) now gives

ξ (X, τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X

1 + (1/λ)(1 − λ)(1 − exp(−C̄τ )
for X ∈ I1,

A2ξ
2
2 + B2ξ

2
2 + C2 for X ∈ I2,

X − 1 + exp(−C̄τ )

exp(−C̄τ )
for X ∈ I3,

(5.27)

where

A2 =
A1

C̄
(1 − exp(−C̄τ )), B2 = 1 +

B1

C̄
(1 − exp(−C̄τ )), C2 =

C1

C̄
(1 − exp(−C̄τ )).

(5.28)
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Here

ξ2 =
−B2 +

√
B2

2 − 4A2(C2 − X)

2A2

, (5.29)

where the plus solution has been chosen to ensure that ξ → X as τ → 0. Finally,

I1 =

[
0, λ1 +

λ1

C̄
(CI − C̄)(1 − exp(−C̄τ ))

]
, (5.30)

I2 =

[
λ1 +

λ1

C̄
(CI − C̄)(1 − exp(−C̄τ )), 1 + (λ2 − 1) exp(−C̄τ )

]
, (5.31)

I3 =
[
1 + (λ2 − 1) exp(−C̄τ ), 1

]
. (5.32)

Plugging into (5.9) gives U (X, τ ) as

U (X, τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(CI − C̄) exp(−C̄)X

1 + (1/λ)(1 − λ)(1 − exp(−C̄τ )
for X ∈ I1,(

A1ξ
2
2 + B1ξ

2
2 + C1

)
exp(−C̄τ ) for X ∈ I2,

C̄ (1 − X) for X ∈ I3,

(5.33)

as shown in figure 8 along with C found from (5.3), i.e.

C =
∂U

∂X
+ C̄. (5.34)

Note that the interval I2 does not shrink to 0 in time (I2 → [λ1C1/C̄, 1] for τ → ∞),
but the curvature around the right-hand end point grows without bound so that the
limiting shape of the concentration profile again becomes a discontinuous Heaviside
function.

5.2. Results for large Münch number

In the limit of large M � 1 we cannot neglect the pressure gradient along the channel
and this term dominates the advective term in (4.9), i.e. the second derivative in U .
Thus

∂C

∂X
= −MU (5.35)

∂C

∂τ
+

∂CU

∂X
= D̄

∂2C

∂X2
(5.36)

giving the nonlinear diffusion equation

∂C

∂τ
= M−1 ∂

∂X

[
C

∂C

∂X

]
+ D̄

∂2C

∂X2
. (5.37)

If we neglect molecular diffusion the resulting universal nonlinear diffusion equation
can be written as

∂C

∂τ
= M−1 ∂

∂X

[
C

∂C

∂X

]
. (5.38)

This can be done as long as M−1C � D̄ ≈ 10−5. If M becomes even larger normal
diffusion will take over. Equation (5.38) belongs to a class of equations which have
been studied, e.g. in the context of intense thermal waves by Zeldovich et al. and flow
through porous media by Barenblatt (1996) in the 1950s. The Münch number M can
be removed by rescaling the time according to τ = Mt , so when M is large we get
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very slow motion with a time scale growing linearly with M . Equation (5.38) admits
scaling solutions of the form

C(X, τ ) =
( τ

M

)α

Φ(ξ ) with ξ = X
( τ

M

)β

(5.39)

as long as α + 2β + 1 = 0. The total amount of sugar is, however, conserved. In our
rescaled units ∫ 1

0

C(X, τ ) dX = λ, (5.40)

where, as before, λ is the fraction of the tube initially containing the sugar. We can
only hope to find a scaling solution in the intermediate time regime, where the precise
initial condition has been forgotten, but the far end (X = 1) is not yet felt. Thus we
can replace integral (5.40) with ∫ ∞

0

C(X, τ ) dX = λ (5.41)

which implies that α = β = − 1/3 and

C(X, τ ) =
( τ

M

)−1/3

Φ(ξ ) with ξ = X
( τ

M

)−1/3

. (5.42)

Inserting this form into (5.38), we obtain the differential equation for Φ

1

2

d2Φ2

dξ 2
+

1

3

d(ξΦ)

dξ
= 0 (5.43)

which can be integrated once to

Φ
dΦ

dξ
+

1

3
ξΦ = constant. (5.44)

Due to the boundary condition ∂C/∂X = 0 in the origin, the constant has to vanish
and we find the solution

Φ(ξ ) =
1

6
(b2 − ξ 2) (5.45)

which is valid only for ξ smaller than the constant b. For ξ > b, Φ is identically 0.
The fact that the solution – in contrast to the linear diffusion equation – has compact
support, is an interesting characteristic of a large class of nonlinear diffusion equations
(Barenblatt 1996). The value of b is determined by conservation integral (5.41) giving∫ ∞

0
Φ dξ = 1, and thus b = (9λ)1/3.

The final solution thus has the form

C(X, τ ) =

⎧⎨
⎩

M

6τ
((Xf (τ ))2 − X2) for X < Xf (τ ) =

(
9λ

τ

M

)1/3

0 for X > Xf (τ )

(5.46)

which shows that the sugar front moves as Xf (τ ) ∼ τ 1/3 and the concentration at the
origin decays as C(0, τ ) ∼ τ−1/3. To check the validity of this solution, also when the
initial condition has support in a finite region near the origin, we plot (τ/M)1/3C(X, τ )
against ξ =X(τ/M)−1/3 in figure 9(c). The corresponding solution for U is found from
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Figure 9. (a) Numerical simulation of (5.38) compared with (b) scaling solution (5.46) and
(c) (5.45), which is shown as a dashed line. The initial condition has the form C(X, 0) =
1 − [1 + exp(−(X − λ)/ε)]−1, where λ= 0.1 and ε = 2 × 10−2 and the curves are equidistant in
time. When λ controlling the size of the region of non-zero initial sugar concentration becomes
larger, a more accurate scaling solution is found by letting τ → τ + τ0 and treating τ0 as an
unknown parameter. In (c), we have omitted the first curve (the initial condition).

(5.35) as

U (X, τ ) =

⎧⎨
⎩

X

3τ
for X < Xf (τ )

0 for X > Xf (τ )

(5.47)

and ∂2U/∂X2 = 0 justifying the neglect of ∂2U/∂X2 in going from (4.9) to (5.35) for
large M . It is seen that the velocity of the sugar front X′

f (τ ) = (λ/(3M))1/3τ−2/3 is
identical to U (Xf (τ ), τ ) from (5.47).

6. Comparison between theory and experiment
In §§ 2.2 and 3.2, we have presented experiments demonstrating the movement of a

sugar solution inside a membrane tube surrounded by a reservoir of water. We now
wish to consider whether the theory is in agreement with the experimental results.

6.1. Set-up I

The plot in figure 10 shows the relative front position, (L − xf )/(L − l), plotted
against time for five different experiments conducted with set-up I. The numbers 1–5
indicate the sugar concentrations used (cf. table 2). One clearly sees, that the relative
front position approaches zero faster for high concentrations than for low. Typical
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by Eschrich et al. (1972). Data points marked with an ‘a’ represent results from closed tube
experiments and points marked with a ‘b’ represent results from semi-closed experiments taken
from figures 8 and 9 of the original paper.

values of M and D̄ are M ∼ 10−8 and D̄ ∼ 10−5, so it is reasonable to assume that
we are in the domain where the analytical solution for M = D̄ = 0 is valid. To test
the result from (5.19) against the experimental data, the plot in figure 10 shows the
logarithm of the relative front position plotted against time. For long stretches of
time the curves are seen to approximately follow straight lines in good qualitative
agreement with theory. The dashed lines are fits to (5.19), and we interpret the
slopes as − 1

t0
, the different values plotted in figure 11 against the theoretical values.

The theoretically and experimentally obtained values of t0 are in good quantitative
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(black dots) as a function of time. (b) Lin–log plot of the experimental data shown on the left.
The solid line is a fit to (5.22) with t0 = 1.6 × 106 s.

agreement, within 10 %–30 %. Generally, theory predicts somewhat smaller values
of t0 than observed, implying that the observed motion of the sugar front is a little
slower than expected from the pressure-flow hypothesis. Nevertheless, as can be
seen in figure 11 these results are a considerable improvement to the previous results
obtained by Eschrich et al. as we find much better agreement between experiment and
theory.

6.2. Set-up II

The plot in figure 12 shows the relative front position, (L − xf )/(L − l), plotted
against time for the experiment conducted with set-up I. On the semi-logarithmic
plot, the curves are seen to follow straight lines in good qualitative agreement with
the simple theory for M = D̄ = 0. As can be seen in figure 11, we also found very
good quantitative agreement between the experiment and theory for set-up II.

To test how well the motion of the sugar front observed in the experiments with set-
up II was reproduced by our model, we solved the equations of motion numerically
starting with the initial conditions from figure 5. For M = D̄ = 0, the results are shown
in figure 13(b). While the front positions are reproduced relatively well, the shape
of the front is not, so diffusion must play a role. This can be seen in figure 13(c)
which shows the result of simulation with M = 10−9, D = 6.9 × 10−11 m2 s−1. Clearly,
the model which includes diffusion reproduces the experimental data significantly
better.

To study the shape of the front in greater detail, consider the plots in figure 13(d–f ).
Here the gradient of the concentration curves on the left in figure 13 is shown. In
figure 13(d ) we clearly see a peak moving from left to right while it gradually broadens
and flattens. In figure 13(e) also we see the peak advancing, but the flattening and
broadening is much less pronounced. In figure 13(f ) we see that the model which
includes diffusion reproduces the gradual broadening and flattening of the front very
well.

7. Conclusion
In this paper we have studied osmotically driven transient pipe flows. The flows

are generated by concentration differences of sugar in closed tubes, fully or partly
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Figure 13. Results from set-up II showing the experimental data (a, d ) and the numerical
model for M = D = 0 (b, e) and for M = 10−9, D = 6.9 × 10−11 m2 s−1 (c, f ).

enclosed by semi-permeable membranes surrounded by pure water. The flows are
initiated by a large concentration in one end of the tube and we study the approach
to equilibrium, where the sugar is distributed evenly within the tube. Experimentally,
we have used two configurations: the first is an updated version of the set-up of
Eschrich et al. where the flow takes place in a dialysis tube and the sugar is followed
by introducing a dye. The advantage is the relatively rapid motion, due to the large
surface area. The disadvantage is that the sugar concentration cannot be inferred
accurately by this method and for this reason we have introduced our second set-up,
where the sugar concentration can be followed directly by refraction measurements.

On the theoretical side, we first re-derive the governing flow equations and introduce
the dimensionless Münch number M . We then show that analytical solutions can be
obtained in the two important limits of very large and very small M . In the general
case we show how numerical methods based on Green’s functions are very effective.
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Finally, we compare theory and experiment with very good agreement. In particular
the results or the velocity of the front (as proposed by Eschrich et al.) can be verified
rather accurately.

Concerning the application to sap flow, the quantitative study we performed leads
to the following conclusions: for a large tree it seems improbable that sugar transport,
e.g. from leaf to root by this sole passive mechanism would be sufficiently efficient. In
this case active transport processes might play an important role. On the other hand,
transport over short distances, e.g. locally in leaves or from a leaf to a nearby shoot
might be more convincingly described by the pressure-flow hypothesis.

It is a pleasure to thank Francois Charru, Marie-Alice Goudeau-Boudeville, Herv
Cochard, Pierre Cruiziat, Alexander Schulz, N. Michele Holbrook and Vakhtang
Putkaradze for many useful discussions. Much appreciated technical assistance was
provided by Erik Hansen. This work was supported by the Danish National Research
Foundation, Grant No. 74.

Appendix A. Materials: sugar and membrane
A.1. Sugar

The sugar used was a dextran (Sigma-Aldrich, St Louis, MO, USA, type D4624)
with an average molecular weight of 17.5 kDa. The dye used was a red fruit dye
(Flachsmann Scandinavia, Rød Frugtfarve, type 123000) consisting of an aqueous
mixture of the food additives E-124 and E-131 with molecular weights of 539 Da
and 1159 Da, respectively (PubChem-Database 2007). Even though the molecular
weights are below the MWCO of the membrane, the red dye was not observed to
leak through the membrane. This, however, was observed when using another type of
dye, Methylene blue, which has a molecular weight of 320 Da.

A.2. Membrane

The membrane used in both set-ups was a semi-permeable dialysis membrane tube
(Spectra/Por Biotech cellulose ester dialysis membrane) with a radius of 5 mm,
a thickness of 60 μm and a MWCO (molecular weight cut off) of 3.5 kDa. The
permeability Lp was determined by applying a pressure and measuring the flow rate
across the membrane

Lp = (1.8 ± 0.2) × 10−12 m (Pa s)−1. (A 1)

A.3. Osmotic strength of dextran

Figure 14(left) shows the relation between dextran concentration and osmotic pressure
found from the experiments shown in figure 3. A linear fit gives

Π = (0.1 ± 0.01 bar mM−1)c (A 2)

where Π has unit bar, and c is measured in mM. This is in good agreement with
values given by Jonsson (1986).

Appendix B. Numerical methods for non-zero M and D̄

For non-zero values of M and D̄, the equations of motion,

∂2U

∂X2
− MU =

∂C

∂X
(B 1)
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Figure 14. van’t Hoff relation for 17.5 kDa dextran.

and

∂C

∂τ
+

∂CU

∂X
= D̄

∂2C

∂X2
(B 2)

cannot be solved analytically. However, they can be written as a single integro-
differential equation, which is straightforward to solve on a computer. If we choose
a set of linear boundary conditions, BX[U ] = ai , for (B 1), the solution can be written
as

U =

∫ 1

0

G(X, ξ )
∂C

∂ξ
dξ + U2. (B 3)

Here, G(X, ξ ) is the Green’s function for the differential operator ∂2/∂X2 − M with
boundary conditions BX[U ] = 0 and U2 fulfils the homogeneous version of (B 1) with
BX[U ] = ai . Plugging this into (B 2) yields

∂C

∂τ
+

∂

∂X

(
C

(∫ 1

0

G(X, ξ )
∂C

∂ξ
dξ + U2

))
= D̄

∂2C

∂X2
. (B 4)

For the closed tube, i.e. for the boundary conditions U (0, τ ) = U (1, τ ) = 0, G(X, ξ ) is
given by

G(X, ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

−sinh(a(1 − X))

a sinh a
sinh aξ for ξ < X,

−sinh aX

a sinh a
sinh(a(1 − ξ )) for ξ > X,

(B 5)

and U2 = 0. To increase numerical accuracy, it is convenient to transform (B 4) by
defining

∂f

∂X
= C − C̄ (B 6)

and choosing f (0) = f (1) = 0 such that f (X) =
∫ X

0
(C − C̄)dξ . Inserting in (B 4), we

get

∂f

∂t
= D̄

∂2f

∂X2
−

(
f (X) −

∫ 1

0

∂K(X, ξ )

∂ξ
f (ξ )dξ

)(
∂f

∂X
+ C̄

)
, (B 7)
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Figure 15. Results of numerical simulation of (B 4) using the boundary conditions U (0, τ ) =
U (1, τ ) = 0 for different values of M . D̄ is kept constant at 10−5. The initial condition was
C(X, 0) = 1 − 1/(1 + exp(−(X − λ)/ε)) where λ= 0.2 and ε = 2 × 102.

where

∂K(X, ξ )

∂ξ
=

⎧⎪⎨
⎪⎩

−a
sinh(a(1 − X))

sinh a
sinh aξ for ξ < X,

−a
sinh aX

sinh a
sinh(a(1 − ξ )) for ξ > X.

(B 8)

To solve (B 7) we used Matlab’s built-in time solver ode23t which is based on an
explicit Runge–Kutta formula along with standard second-order schemes for the first-
and second-order derivatives. For the spatial integration, the trapezoidal rule was
used (Press 2001). Results of a numerical simulation for different values of M are
shown in figure 15.
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