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We study the stationary, ideal flow on a free fluid surface with a prescribed shape.
It is demonstrated that the flow is governed by a self-contained set of equations for
the surface flow field without any reference to the bulk flow. To write down these
equations for arbitrary surfaces, we apply a covariant formulation using Riemannian
geometry and we show how to include surface tension and velocity-dependent forces
such as the Coriolis force. We write down explicitly the equations for cases where the
surface elevation can be written as function of either Cartesian or polar coordinates in
the plane, and we obtain solutions for the important case of rotational symmetry and
the perturbed flow when this symmetry is slightly broken. To understand the general
character and solubility of the equations, we introduce the associated dynamical
system describing the motion along the streamlines. The existence of orbits with
transversal intersections, as well as quasi-periodic and chaotic solutions, show that
not all boundary value problems are well-posed. In the particular case of unforced
motion the streamlines are geodesic curves and in this case the existence of a non-
trivial surface velocity field requires that the surface can be foliated by a family of
non-intersecting geodesic curves.
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1. Introduction
The close connection between surface flow and surface deformation is well known

from everyday experiences as well as from laboratory experiments in fluid dynamics.
For example, the localized surface deformation behind an oar is closely linked to the
swirling motion on the surface of the vortices in the wake. One might then ask how
strong this link is: Is it possible from knowledge of the shape of the surface to infer
the surface flow? In this paper we shall show that the answer is to a large extent
affirmative.

In § 2 we present a simple observation, which to our knowledge has not been stated
clearly before: that the stationary flow of an ideal incompressible fluid on a stationary
free surface is governed by self-contained dynamical equations that do not involve
the flow outside the free surface. These equations are the projection of the Euler
equation onto the local surface tangent plane. Note that this does not imply that we
can necessarily solve a given hydrodynamical problem by this method. The fact that
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the surface is ‘free’, means that it is free to move to the position where the appropriate
boundary conditions are satisfied, and to compute this position, i.e. the height profile,
we have to solve the equations in the entire bulk domain. However, once this surface
shape is known (e.g. from observations) one can compute the flow on the surface
without worrying about the bulk flow.

To write these equations in a transparent way and connect them to the geometry
of the surface, we use a covariant description where the free surface is described
as a two-dimensional Riemannian manifold equipped with a metric tensor. With this
formalism, which is reviewed in § 3, one can readily write the surface flow equations
on an arbitrary smooth free surface. This is done in § 4. The equations can be made
to account for surface tension and velocity-dependent forces, such as the Coriolis
acceleration in a non-inertial reference frame.

In § 5, we move on to describe a situation where the flow and surface shape
possess invariance under rotations about a fixed axis, a case that has been discussed
in Bergmann et al. (2011). In this case the equations simplify a great deal and
it is straightforward to find solutions. The types of solutions demonstrate a crucial
property of the surface flow equations: that they may be singular on lines separating
regions with different behaviour of the flow. The ramifications for general surface
flows with rotational invariance is discussed. We next study flows in which the circular
symmetry is broken, and as an example we look at the perturbation expansion for a
line vortex on a slightly asymmetric surface. We obtain expressions for the streamlines
and discuss the conditions for the absence of drift.

In § 6 we show that the surface flow equations can be interpreted as a dynamical
system, where particles of the dynamical system move along the characteristics for
the field equations. With no external forcing (like gravity) the orbits are geodesics
corresponding to the given surface deformation. We give general expressions for the
Lagrangian and the Hamiltonian controlling the dynamics, and we relate the Bernoulli
integral to the conserved energy along the orbit.

Finally, in § 7 we discuss the general solubility of the surface flow equations. In the
example treated in § 5, we gave explicit formulae for flow velocities and streamlines
for a slightly perturbed line vortex. On the other hand, the dynamical orbits introduced
in § 6, will, since they are projections from the energy surface of a four-dimensional
phase space, generally intersect, and the existence of a well-defined velocity field on
the surface thus depends crucially on the structure of the domain and the boundary
conditions imposed on it. As an example, we treat an anisotropic quadratic surface
elevation and show that the perturbation expansion breaks down.

2. Decoupling of the free-surface Euler equations from the bulk flow
Consider the stationary flow of an inviscid, incompressible fluid of constant density

ρ0. The velocity vector is denoted by v and the vorticity vector is ω = ∇ × v.
Conservation of momentum for time-independent flow is expressed by the Euler
equation,

(v ·∇)v=− 1
ρ0
∇p+ f . (2.1)

External body forces are represented by the acceleration vector f . Note that p is the
pressure divided by the constant fluid density.

On a smooth free surface, inviscid flow governed by (2.1) is subject to: (a) the
kinematic boundary condition, that v · n = 0, where n is any normal vector to the
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surface; and (b) the dynamic boundary condition, that the pressure (neglecting an
immaterial constant term) is p = 2γH. This is the Young–Laplace pressure associated
with constant surface tension γ on a surface of mean curvature H, which is well-
defined at every point on the free surface and differentiable in terms of any smooth
surface parametrization.

We use the identity (v · ∇)v = ∇ ‖v‖2 /2 + ω × v and project (2.1) along a tangent
vector t to the surface by taking the dot product of t and the vector quantities on either
side. The resulting equation, valid in the surface, is

(t ·∇)
‖v‖2

2
+ t · (ω × v)=−2

γ

ρ0
(t ·∇)H + t · f . (2.2)

Aside from the triple product term t · (ω × v), all the terms in (2.2) are explicitly in
the tangent plane since t · ∇ is the derivative along a tangent vector in the surface,
and since the kinematic boundary condition ensures that the normal component of v
vanishes in the surface. To show that the triple product is also in the tangent plane,
we use the invariance of a triple product under cyclic permutations of the factors:
t · (ω × v) = ω · (v × t). Now, v × t (a cross-product of tangent vectors) is clearly
normal to the surface, so (2.2) refers only to the normal component of the vorticity
field, which in turn is defined by velocity gradients only in the tangent plane.

We have then achieved a decoupling between the surface flow and the bulk flow in
the sense that (2.2) involves only velocity components and derivatives in the surface.
Note that the continuity equation, which involves the normal derivative of the normal
component of v is left indeterminate, but since the pressure has disappeared as a
variable, the surface flow equations, being basically two coupled equations for two
independent surface velocity components, are sufficient for a solution. This will be
discussed in greater detail later. Note at this point, that knowledge of the surface flow
allows the determination of the normal derivative ∂vn/∂n of the normal velocity by the
continuity equation,

∇ ·v= ∂vn

∂n
+∇s ·v= 0, (2.3)

where ∇s ·v is the divergence in the tangent plane.
Let us briefly discuss the case of a viscous flow. The dynamical boundary condition

requires the viscous stress tensor to vanish on the free surface. However, the
divergence of the stress tensor, which gives the viscous force density, need not vanish.
The uncoupling cannot take place for the viscous Navier–Stokes equation as one can
immediately realize by considering the Poiseuille flow of a uniform film of liquid
flowing steadily down an inclined plate. At the free surface, the force of gravity is
balanced by the viscous force, a necessary condition for steady flow. In many cases,
however, it is useful to approximate the dynamics of a given flow by neglecting
viscous stresses. This would require that the Reynolds number be small, i.e. that the
viscous force term is small compared to the terms included in (2.1). Even though
the flow of a real flow is often dramatically different from a solution to the Euler
equation, this difference is typically localized to strong vorticity in boundary layers
near solid boundaries, and regions where such boundary layer vorticity is advected by
the flow. For extended regions of the fluid, viscosity plays a negligible role in the local
dynamics.

Note that we could easily have considered a time-dependent velocity field. The
inclusion of the term ∂v/∂t in (2.2) would still allow us to proceed with the projection
to the tangent plane. We have not pursued this further here since in applications this
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would typically imply that the surface shape is time dependent too, and this would
introduce severe complications.

3. Covariant formulation of the three-dimensional Euler equations
In the previous section we showed that the Euler equation, when projected along

the free surface, decouples from the bulk flow. This was done locally, with reference
to vectors defined in the tangent plane associated with a specific point on the free
surface. Now, in order to assemble this point-wise information into a useful set of
partial differential equations we shall proceed to develop a framework based on tensor
notation and the description of the free surface as a two-dimensional Riemannian
manifold. In many cases, the dynamical equations can be derived and analysed
without reference to the physical three-dimensional space, into which this manifold
is embedded. However, inclusion of magnetic or Coriolis forces, and the effect of
surface tension, require us to refer to the details of the embedding.

Conventionally, the equations of fluid mechanics are written in terms of orthogonal
coordinates. When dealing with the flow on a (generally curved) surface, it is generally
practical to use non-orthogonal coordinates. Even though orthogonal coordinate
systems do exist for any two-dimensional smooth manifold, cf. Stoker (1969), their
relation to typical laboratory coordinates can be complicated, and their very definition
may involve the solution of differential equations. Riemannian geometry, on the other
hand, provides a straightforward procedure for describing the flow on any smooth
surface using non-orthogonal coordinates. For example, a wavy surface given in
Cartesian coordinates (x, y, h(x, y)), where h is the surface height, can immediately
be described as a manifold parameterized by the coordinates (x, y), which are non-
orthogonal when the surface has a height gradient at an angle to the coordinate
axes. In the following, we shall develop a procedure for writing the projected Euler
equations governing free-surface flows on such (and more general) surfaces. For a
physicist’s introduction to Riemannian geometry, see Carroll (2003) or, specifically
applied to fluid mechanics, see Aris (1962). We start by writing the full three-
dimensional stationary Euler equation in covariant form. Covariance means that the
equations keep their meaning when the coordinate system is transformed. The essential
point is that we write our equations in terms of tensors, defined as objects that
transform according to specific rules, implying covariance. If the equations hold in one
coordinate system, they will hold in another, due to the tensor property. So we need
simply write the Euler equation in tensor form, such that it reduces to the well-known
expression in orthogonal coordinates.

First we introduce an orthogonal ‘laboratory’ coordinate system yα = (y1, y2, y3).
The corresponding metric tensor is δαβ , the Kronecker delta. Let the fluid domain be
described by a set of coordinates xµ, µ= 1, 2, 3, given a transformation

xµ→ yα(xµ), (3.1)

and a metric tensor

gµν = ∂yα

∂xµ
∂yβ

∂xν
δαβ . (3.2)

By convention, summation over repeated indices is implied. In the following, we shall
use Greek letters to denote indices over three-dimensional space and Latin letters to
denote indices over the two-dimensional manifold describing the free surface. The
inverse metric gµν is defined as the matrix inverse of gµν , i.e. gµλgλν = δνµ.
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A vector is a quantity with one upper index, e.g. the fluid flow velocity
Vµ = dxµ/dt, where xµ are the coordinates of a fluid particle. A dual vector is a
quantity with a lower index, e.g. the gradient ∂νΦ ≡ ∂Φ/∂xν of a scalar Φ. Both are
tensors and transform accordingly, cf. Carroll (2003). The rules of tensor manipulation
ensure that contractions, e.g. aµ ≡ gµνVν , or products, e.g. bµν ≡ Vµ∂νΦ, are tensors.
We can raise and lower indices by the metric tensor, i.e. we can define a dual velocity
vector by Vµ ≡ gµνVν or a vector gradient by ∂µΦ ≡ gµν∂νΦ. The physical velocity
vector v is given in terms of Vµ by v = eµVµ, where eµ = ∂y/∂xµ are the dual basis
vectors. Note that eµ need not be either unit vectors nor mutually orthogonal.

The Euler equation in covariant form reads

Vν∇νVµ =−gµν
∂Φ

∂xν
+ f µ. (3.3)

The left-hand side of (3.3) is the covariant expression of the conventional advective
derivative and contains the covariant derivative

∇νVµ = ∂Vµ

∂xν
+ Γ µ

νλV
λ. (3.4)

The last term of (3.4) is a curvature term that accounts for the change of coordinate
directions over space. They contain the Christoffel connection coefficients, defined in
terms of the metric by

Γ λ
µν[gαβ] =

1
2

gλσ
(
∂gνσ
∂xµ
+ ∂gµσ
∂xν
− ∂gµν
∂xσ

)
, (3.5)

where we have explicitly written the dependence on the metric gαβ . The connection
coefficients are not tensors, but the covariant derivative defined by (3.4) is. On the
right-hand side of (3.3) we have the scalar potential field Φ and the applied force f µ.
In Φ we can e.g. include gravity forces (a linear term in h in a constant gravitational
field), centrifugal forces, and surface tension (a term proportional to the surface mean
curvature). The covariant formulation of the Euler and Navier–Stokes equations has
been discussed earlier, e.g. by Ilin (1991).

To see that (3.3) are indeed the stationary Euler equations, we inspect their form
in Cartesian coordinates, where gµν = δµν . Then Γ λ

µν = 0, and the equations read
(v ·∇)v=−∇Φ + f , which we recognize.

4. Covariant formulation of the surface flow equations
In order to project (3.3) onto the free surface, we shall now introduce a particular

set of surface-adapted coordinates. We denote the free surface by S . We assume that
S is described by a smooth regular parameterized surface, i.e. a map f0 : xi→ yα

xi→ yα ≡ f α0 (x
i). (4.1)

Here and below we use Greek letters to denote indices over three-dimensional space,
so xµ = (x1, x2, x3), and Latin letters for indices over S , so xi = (x1, x2). The
regularity of the parameterization (4.1) means that at any point, the vectors ∂f α0 /∂x1

and ∂f α0 /∂x2 are linearly independent, and so they span the local tangent plane. The
smoothness condition means that the tangent plane varies smoothly with (x1, x2). As
sketched in figure 1, we introduce the dual vectors, defined on S ,

e1(x
i)= ∂f α0

∂x1
, e2(x

i)= ∂f α0
∂x2

, e3(x
i)= e1 × e2

‖e1 × e2‖ . (4.2)



Stationary ideal flow on a free surface of a given shape 33

FIGURE 1. Sketch of the coordinates: yα are the Cartesian laboratory coordinates; xµ are non-
orthogonal coordinates attached to the free surface S and defined by the map yα = f α(xµ)
given in (4.3). The basis dual vectors ei, (4.2), associated with a point xµ = x̄µ define the local
coordinate directions, in the sense that f α(x̄µ + dxµ) = f α(x̄0) + dxµeµ(x

µ

0 ). The dashed line
tangent to e1 is obtained by varying x1 while keeping x2 and x3 fixed. Equation (4.3) defines a
valid coordinate system close to S , i.e. for small values of x3.

Then the map f : xµ→ yα,

f α(x1, x2, x3)= f α0 (x
i)+ x3e3(x

i), (4.3)

defines a coordinate system on and near the surface S . It defines a coordinate system
for small values of |x3| because f is a regular invertible map between a neighbourhood
in R3 of any point (x1, x2, 0) and a neighbourhood in physical space of the point
f α0 (x

1, x2). This can be seen by computing the Jacobian matrix of f and using the
inverse function theorem and this argument extends to the case where S is described
by overlapping charts. We find the corresponding metric tensor from (3.2),

gµν = eµ · eν + x3

(
eµ ·

∂e3

∂xν
+ eν ·

∂e3

∂xµ

)
. (4.4)

Now, (4.4) allows us to compute the first derivatives of the metric on S and so the
Christoffel symbols in (3.5). Due to the property ei · e3 = 0, (4.4) takes a special form
on S , essentially decomposing the part pertaining to x1, x2:

gµν =

 [gij] 0
0

0 0 1

 , (4.5)

where gij is the two-dimensional metric tensor of the surface submanifold:

gij = ∂f α0
∂xi

∂f β0
∂xj

δαβ, i, j= 1, 2. (4.6)

Similarly, we introduce submanifold connection coefficients Γ i
jk[glm] by restricting the

summation indices in (3.5) to 1, 2. We note that these new connection coefficients are
identical to the corresponding ones defined from the full metric Γ i

jk[glm] = Γ i
jk[gµν], but

we want to stress that they can be computed without reference to the x3 coordinate.
The block form of gµν in (4.5) implies that the inverse metric gµν takes a similar block
form, with gij in (4.5) replaced by its inverse, gij.
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We shall now show that, in accordance with § 2, the equations of (3.3) for µ = 1, 2,
refer only to the physical fields directly on the free surface, and furthermore, that one
can determine the coordinate form of these equations without bothering to even define
the third coordinate, x3. We assume for now that the force and potential fields f i and
Φ are known on the surface as functions of the parameterizing coordinates xi.

The kinematic boundary condition, v · n= 0, means that the physical velocity vector
v lies in the plane spanned by e1, e2. Since the linearly independent dual basis vectors
eµ admit a unique linear combination forming v, this implies V3 = 0.

Looking at the terms of (3.3) with µ = 1, 2, we note that the partial derivatives
∂/∂xi refer only to surface quantities. Equation (4.5) implies giν∂Φ/∂xν = gij∂Φ/∂xj so
the potential term depends only on the potential defined on the free surface. As for
the convective derivative Vν∇νV i = V j∇jV i, it contains only surface-directed velocity
derivatives ∂V i/∂xj and the connection coefficients Γ i

jk, which may be computed
directly from the surface metric (4.6).

Let us return to the question of the potential and force fields, which must be defined
using the full map xi→ yα. A crucial feature of the surface equations is, in contrast to
the three-dimensional Euler equations (3.3), that the pressure drops out of the potential,
since it is constant on the surface, except for the Laplace pressure due to surface
tension. We thus assume that the surface potential has the form

Φ = φ(yα)+ 2γH, (4.7)

where φ could include gravity, centrifugal forces and electrostatic forces and where H
is the surface mean curvature defined on the surface. H is positive when the surface
curves in the direction of the normal vector e3. Physically, this corresponds to e3

pointing out of the fluid. For example yα = (x1, x2, h(x1, x2)) corresponds to the typical
situation where the fluid is below the interface.

The mean curvature is given by

H(xi)=−1
2

gµν∇νnµ =−1
4

gµν
∂gµν
∂x3

, (4.8)

where nµ = δ3
µ is the dual normal vector field. In (4.8), we have used the extrinsic

curvature tensor ∇µnν associated with the surface, a generalization of the second
fundamental form of the surface, cf. Carroll (2003). The tensor gµλ∇λnν generalizes
the Weingarten matrix, the trace of which is associated with the mean curvature, cf.
do Carmo (1976). Note that H is an extrinsic quantity, i.e. it depends on the metric
outside the free surface by the tensor ∂gµν/∂x3 given in (4.4). The definitions in
(4.1)–(4.2) and (4.5) allow H to be computed as a function of xi.

Now, using (4.1) again, we can define the potential (4.7) as a function of the surface
coordinates by

Φ(xi)= φ(yα(xi))+ 2γH(xi). (4.9)

Similarly, we compute the Coriolis acceleration term, f µ in (3.3). The cross-product
A= B× C in terms of covariant coordinates is

Aµ = gµν
√

gενρσBρCσ , (4.10)

where
√

g= |gµν|1/2 is the determinant of the Jacobian matrix ∂yα/∂xµ, and ενρσ is the
Levi-Civita symbol, equal to the sign of the permutation of the numbers νρσ and zero
if any number is repeated. Equation (4.10) can be derived using elementary techniques
by considering a linear invertible map to Cartesian coordinates and comparing to the
well-known formula. For a more conventional differential geometry derivation in terms
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of dyadics, cf. Lebedev, Cloud & Eremeyev (2010). Note that Aµ is a pseudovector,
i.e. it switches sign in a left-handed coordinate system. Using (4.5) and the kinematic
boundary condition, we see that the components f i of (4.10) applied to f = −2Ω × v
refer only to the third component Ω3 = e3 ·Ω of Ω , and we have

f i(xk)= 2|gij|1/2Ω3(gi1V2 − gi2V1). (4.11)

With all this in place, we are ready to define the flow equations in terms of the
manifold coordinates xi.

In summary, the ideal flow on a stationary free surface parametrized by (x1, x2)→
(y1, y2, y3) is governed by the momentum balance equations

V j∇jV
i = V j ∂V i

∂xj
+ Γ i

jkV
jVk =−gij ∂Φ

∂xj
+ f i, (4.12)

where i, j = 1, 2, and the metric is defined by (4.6). The left-hand side can be
computed from the metric alone, using (3.4) and Γ i

jk[glm] defined by (3.5). The terms
on the right-hand side depend on the embedding xi → yα and the dual basis (4.2).
Expressions for the potential Φ(xi) and the Coriolis acceleration f i(xj) are given in
(4.9) and (4.11). In the Appendix we give the coordinate expression for (4.12) in two
important cases, where the horizontal position is described by the coordinates (x1, x2),
which are either Cartesian or polar, and the vertical height is given by y3 = h(x1, x2).

We shall later see that (4.12) has a first integral generalizing the Bernoulli field, see
(6.7a) below.

As for the possibility of specifying the normal derivative ∂vn/∂n of the normal
velocity by the continuity equation, cf. § 2, we note that the covariant formulation of
the continuity equation (2.3) is

∇µVµ = 0. (4.13)

On the free surface, where V3 = 0, the only quantities referring to fields outside the
surface (4.13) are ∂V3/∂x3 and Γ 3

3i = 0, where the last equality follows from the
coordinate definition (4.4). So we are left with the following expression for the normal
derivative:

∂vn

∂n
= ∂V3

∂x3
=−∂V i

∂xi
− Γ i

ijV
j, (4.14)

where the last term is the curvature correction to (2.3).

5. Solutions to the surface flow equations in symmetric and nearly symmetric
situations

We have seen how to write the surface flow equation (4.12) on a general curved
surface with a general potential field, but to solve these equations, or even write them
in coordinate form, is not an easy task. We shall therefore start by looking at a couple
of simple special cases.

First we consider the special case when both the free-surface height and the
flow field are invariant under rotations about the y3-axis. In this case, (4.12)
reduces to a simple set of two ordinary differential equations, and the solution is
straightforward. The free surface is parameterized by the coordinates (x1, x2) = (ρ, θ).
The corresponding (contravariant) velocity vector components are (V1,V2) ≡ (U,V).
Note that the vector component V has the dimensions of an angular velocity. The
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position in space is given in terms of Cartesian coordinates yα by

(y1, y2, y3)= (ρ cos θ, ρ sin θ, h(ρ)). (5.1)

The potential field is Φ = Φ(ρ). We do not include the possibility of a rotating
reference frame at this stage, since any steady rotation about the symmetry axis may
be included in the flow field. In the simplest case the potential includes only gravity
and Φ(ρ) = φ(ρ) = ρ0gh(ρ), but the analysis below remains valid in the general case.
Now, (4.12) written for polar base coordinates, see (A 10), yields

UUρ + 1
1+ h2

ρ

(hρhρρU2 − ρV2)=− 1
1+ h2

ρ

Φρ, (5.2a)

UVρ + 2
1
ρ

UV = 0, (5.2b)

for the ρ- and θ -directions, respectively. We use a subscript to denote differentiation,
i.e. Uρ = dU/dρ. We can make sense of (5.2) by introducing the ‘physical’ velocity
components u, v, along the dual basis eρ , eθ , so that the velocity vector is
v = ueρ/‖eρ‖ + veθ/‖eθ‖. In the symmetric situation, the coordinates are orthogonal,
eρ · eθ = 0, so we have

u= ‖eρ‖U =√gρρU =
√

1+ h2
ρU, (5.3a)

v = ‖eθ‖V =√gθθV = ρV, (5.3b)

in terms of which (5.2) are equivalent to

d
dρ

(
u2

2
+Φ

)
− v

2

ρ
= 0, (5.4a)

u

ρ2

d
dρ
(ρv)= 0. (5.4b)

An equivalent set of equations was derived in Bergmann et al. (2011) using a more
pedestrian approach in line with our § 2.

We will now briefly reiterate some analysis of Bergmann et al. (2011) and move on
to some general considerations about the possible solutions to (5.4). First we note that
(5.4b) is singular when u= 0. Hence, the solutions to (5.4) fall into two categories:

(a) A regime where u = 0, so (5.4b) is satisfied independently of v, and (5.4a)
reduces to

v2

ρ
=Φρ . (5.5)

If the function Φ(ρ) is known, (5.5) directly expresses the possible forms v(ρ). If on
the other hand v(ρ) is known, an expression for Φ(ρ) can easily be established by
integrating (5.5).

(b) A regime where u 6= 0, and (5.4b) leads to

v = Γ
ρ
, (5.6a)
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where Γ is a constant, and the circulation along a streamline ρ = constant is 2πΓ .
Using (5.6a), (5.4a) integrates to

1
2(u

2 + v2)+Φ = constant, (5.6b)

which is the well-known Bernoulli equation connecting points along the same
streamline in Euler flows, cf. (6.7a) below. This was to be expected, because in
the symmetric case any finite region with u 6= 0 is connected by streamlines.

The splitting of the solutions to (5.4) presented above can be interpreted as follows.
In regime (a), different radii are not connected by streamlines, and (5.4b) is exhausted
by u = 0. That condition, however, allows us to directly solve (5.4a) either in terms
of the velocity field or the potential field. In regime (b), different radii are connected
by streamlines, and (5.4) lead to conditions for the conservation of angular momentum
(5.6a) and energy (5.6b).

Given a solution of either of the above types, we can compute the divergence of the
surface flow from (4.14), which simplifies to

∇jV
j =−∂vn

∂n
= 1√

1+ h2
ρ

(
u

ρ
+ ∂u

∂ρ

)
. (5.7)

Solutions of type (a) are not associated with a surface divergence, but solutions of type
(b) are, except in the case ρu= constant.

We now discuss the possible solutions to a flow problem, i.e. how to find functions
u(ρ) and v(ρ) for a given function Φ(ρ). This can be tricky, as seen by the
example in Bergmann et al. (2011), where physical arguments about the bulk flow
have important implications for the surface flow.

For a given h(ρ), and thus a given Φ(ρ), we can always find a solution of type
(a) (with u = 0) as long as Φρ > 0, simply by taking v(ρ) =√ρΦρ from (5.5).
Furthermore, if Φ(ρ) is analytic in a domain including ρ = 0, this is the only possible
solution in the domain.

If for physical reasons we look for flows with a finite radial component, we must
search for solutions of type (b). This implies a line vortex flow, (5.6a). This solution
cannot remain valid down to ρ = 0, where it would blow up. One possibility is that
there is a ρ0 > 0, where the flow switches to a flow of type (a) with u= 0. If the flow
should remain analytic at ρ = 0, the potential at small ρ should have an expansion of
the form

Φ =Φ0 + 1
2 Aρ2 + · · · (5.8)

where we assume A 6= 0. In a constant gravitational field this would imply that the
height has an extremum at ρ = 0. Correspondingly, the velocity will be

v = 1
2 A1/2ρ + · · · (5.9)

which shows that A> 0 (i.e. the surface has a minimum) and that the flow approaches
a rigid rotation near ρ = 0.

Such behaviour is observed in Bergmann et al. (2011), where the flow is known
to have a finite secondary (radial) component due to Ekman transport, a viscous
effect in the bulk flow. In this case the flow changes from a line vortex flow for
ρ > ρ0 to a rigid rotation for ρ < ρ0. On the singular locus, ρ = ρ0, the velocity
remains continuous, but the vorticity jumps discontinuously – at least in our somewhat
idealized limit of zero viscosity. We speculate that such singular lines separating
distinct flow types might not be uncommon in free surface flows.
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The results above can be used as a starting point for the investigation of flows
where the free surface and the potential are nearly symmetric under rotations.
Examples of such flows are bathtub vortices disturbed by waves travelling in the
azimuthal direction, and the rotating polygon flows discussed by Bergmann et al.
(2011). Proceeding from (A 10), one can introduce a nearly symmetric height profile
h→ H(ρ)+ εh(ρ, θ), where h(ρ, θ) is a periodic function of θ , and look for perturbed
flow velocities U(ρ, θ) and V(ρ, θ) near the symmetric solutions (5.4). We shall
not write down the perturbation expansion in this paper, but merely note that it is
straightforward. As a new feature, one should, in general, expect drift in the solutions.
Thus the streamlines satisfy

dρ
dθ
= U(ρ, θ)

V(ρ, θ)
, (5.10)

and if
∫ 2π

0 U(ρ, θ)/V(ρ, θ) dθ 6= 0, the streamline ρ is not a periodic function of θ , but
contains a ‘secular’ term allowing a slow change in each revolution.

6. The surface flow equations as a dynamical system
We now discuss the possibility of solving the surface flow equation (4.12) and the

difficulties that may arise. Unlike the ordinary Euler flow equation, (4.12) form a
closed system, with no need for a continuity equation relating to either a condition of
incompressibility or knowledge of the pressure field response to fluid compression, e.g.
by an equation of state.

For a particle, whose position on the surface xi and velocity V i are functions of the
time t, (4.12) can be viewed as a dynamical system, since by the chain rule

ẍi ≡ dV i

dt
= ∂V i

∂t
+ V j ∂V i

∂xj
, (6.1)

and V i does not depend explicitly on time, i.e. ∂V i/∂t = 0. So (4.12) implies that
on the streamlines, the motion is governed by the two-degree-of-freedom dynamical
system,

V̇ i =−Γ i
jkV

jVk − gij ∂Φ

∂xj
+ f i, (6.2a)

ẋi = V i. (6.2b)

The dynamical system (6.2) is fundamentally different from the field equation (4.12).
Given a solution to (4.12), i.e. a field V i(xj), we could solve the two-dimensional ODE

ẋi = V i(xj), (6.3)

where the unique velocity at a given point implies that there is a unique streamline
passing through the point. On the contrary, (6.2) is a two-degree-of-freedom
Hamiltonian system (a four-dimensional ODE), which has a much richer dynamics
than (6.3), and it can for example have chaotic solutions. The trajectories xi = xi(t) to
(6.2) may intersect each other or even themselves, in violation of the condition that
each point on the surface should have a unique velocity. So it is not straightforward to
construct solutions to (4.12) from (6.2), and in some cases it is even impossible. We
shall return to this discussion below, in § 7.

Note that (6.2) corresponds to the Lagrangian

L= 1
2 VjV

j + VjA
j −Φ. (6.4)
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The field Aj = Aj(xi) is analogous to the electromagnetic vector potential. Since the
rotation vector is defined as a fixed direction in physical space, we must refer
to the laboratory coordinates yα

′
defined just before (3.1). Here we indicate these

coordinates by primed indices. In yα
′

coordinates, the vector potential is represented by
the physical vector A=Ω × y, whose components are Aα

′
. Aα is obtained through the

vector transformation rule Aα = Aα
′
∂xα/∂yα

′
, where ∂xα/∂yα

′
can be found by inverting

∂yα
′
/∂xα given in (4.3). The Coriolis acceleration vector is related to Aj by

f i = gikV j

(
∂Aj

∂xk
− ∂Ak

∂xj

)
. (6.5)

The Lagrangian, (6.4), corresponds to the generalized momenta

pi ≡ ∂L

∂V i
= Vi + Ai, (6.6)

and the Hamiltonian

H = pjV
j − L

= 1
2 VjV

j +Φ (6.7a)

= 1
2 pjp

j + 1
2 AjA

j − pjA
j +Φ, (6.7b)

where pi ≡ gijpi. Hamilton’s equations of motion are then dxi/dt = ∂H/∂pi and
dpi/dt =−∂H/∂xi.

Note that (6.7a) corresponds to the standard Bernoulli equation, which states that H
is constant along a streamline. This could also be seen from (4.12), which gives the
directional derivative of H along a streamline,

V j ∂H

∂xj
= V j∇jH = Vjf

j = 0, (6.8)

where the last equality follows from the Coriolis acceleration being orthogonal to V i,
cf. (4.11).

6.1. The unforced case: geodesic flows
Consider the nonlinear surface flow equation, (4.12), in the coordinate-independent
form. We shall see that we can in some cases obtain knowledge of the general solution
without even bothering to introduce a coordinate system. A special case occurs when
Φ and f vanish, and (6.2) simplifies to

d2xi

dt2
+ Γ i

jk

dxj

dt

dxk

dt
= 0. (6.9)

This is the equation for a geodesic curve on the surface manifold, cf. Carroll (2003).
So the solutions to (4.12) on a manifold comprise a family of non-intersecting
geodesic curves.

6.2. The nearly planar case
Consider the case when the physical coordinates describing the free surface are
(x, y, h(x, y)) for small heights h. Then the metric tensor for the surface manifold
is given by (A 2), and

gij = δij + O(h2). (6.10)
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The correction term is of second order in h and its gradient, and so are the connection
coefficients Γ i

jk. To lowest order in h and expressed in terms of the physical velocity
components v= (u, v), (4.12) becomes

(v ·∇)v=−f × v−∇Φ, (6.11)

where the potential takes the form Φ = g0h in a uniform gravity field of magnitude
g0. In traditional geophysical notation, we define the Coriolis parameter f as a vector
pointing upwards out of the plane with ‖f ‖ = 2Ω sinφ on the geographical latitude φ.

Now, (6.2) become

v̇=−f × v−∇Φ, (6.12a)
ẋ= v. (6.12b)

These equations of motion correspond to the Lagrangian L and Hamiltonian H,

L = 1
2 ‖ẋ‖2+ 1

2 ẋ · (f × x)−Φ, (6.13)

H = 1
2 ‖p‖2+ 1

8 ‖f ‖2 ‖x‖2− 1
2p · (f × x)+Φ, (6.14)

where the conjugate momenta are pi ≡ ∂L/∂ ẋi = ẋi + εi3kf xk. Hamilton’s equations of
motion are ṗi =−∂H/∂xi, ẋi = ∂H/∂pi.

7. Existence of solutions to the surface flow problem
As we have seen, it is possible to solve the surface flow equations (4.12) for

important special cases with symmetry and – at least perturbatively – when the
symmetry is broken. As we shall now see, however, it is not guaranteed that a solution
of (4.12) for a given surface shape and given boundary conditions exists at all. To
analyse this question for various cases, we shall make frequent use of the dynamical
systems description of the previous section.

As an example, where we can find solutions, consider a planar horizontal free
surface with no vertical forcing. The particle orbits are geodesics, which according
to (6.9) are straight lines. They must also be streamlines, so the only solution in a
connected open subset of the plane is a parallel flow. The flow speeds on distinct
streamlines are not related through (6.9), which contains only the acceleration of fluid
particles along their path of motion, and obviously we can specify any parallel flow on
(part of) the boundary.

Another example is a spherical drop of liquid. Without an external potential, and
even in the presence of surface tension, the right-hand side of (4.12) vanishes, and we
are again left with geodesic flows (6.9). The geodesics on the sphere are great circles.
Any two non-identical great circles intersect each other at two points, and (4.12) has
only one global solution, V i = 0. So the only equilibrium state for a spherical drop
of inviscid liquid without external forcing is a state where the particles on the surface
are at rest. Thus, in order to sustain a non-trivial flow the surface cannot remain
totally flat, which shows the strong connection between surface shape and surface flow
alluded to in the Introduction.

Ellipsoids can be analysed using a similar argument. A general triaxial ellipsoid
has more complicated geodesics, cf. Arnold (1978, §47). A single geodesic is either a
closed curve, or it is dense in an area between two confocal one-sheet hyperboloids.
This behaviour is incompatible with the idea of a geodesic flow with V i = V i(xj). An
analysis of surface conditions on equilibrium shapes of self-gravitating fluid bodies,
e.g. Dedekind ellipsoids, could be pursued from (4.12) including a non-zero forcing.
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(a) (b)

FIGURE 2. (a) Example of a boundary value problem in (6.11) with no solution. The
parameters are given in (7.1). Any solutions to (6.12) trace ellipses centred at the origin
(shown by the black dot). Impenetrable boundary conditions are applied at the line x = −1.
A particle at a point x0 = (−1, y) at the boundary with velocity v = (0, v) will be advected
according to (6.12) along an ellipse connecting the points x0 and −x0. Clearly, any two such
trajectories emanating from distinct points on the boundary will intersect, and their velocities
at the intersection points will not be identical. This is incompatible with the uniqueness of
streamlines at each point of a stationary flow, and it seems that this boundary value problem
has no solution at all. (b) Position view (x, y) of a trajectory of the dynamical system (6.12)
with the potential given by (7.2) with ω2 = 1.06. The particle starts at the point marked by
the black square, (x0, y0) = (1, 0), with an initial velocity (u0, v0) = (0, 1). The very slightly
eccentric ellipse surrounding the orbit is the region Φ 6 E0 ≡ ((u2

0 + v2
0)+Φ(t0))/2, to which

the particle has sufficient energy to go. In fact, due to the decoupling of (7.3), energy is
conserved separately for the motion in x and y, so the orbit is contained within the rectangle
D . Here ω is irrational, so the orbit will eventually cover D densely. With self-intersections
this orbit clearly cannot be a streamline of a stationary flow.

The existence of solutions is an issue even for the nearly planar case studied in
§ 6.2. As a prelude to considering boundary value problems involving (6.11), let us
make a few remarks on the boundary value problem for ‘ordinary’ stationary inviscid
incompressible flows. Consider the Euler equation and the continuity equation in a
compact domain in the plane with boundary conditions giving the normal flow velocity
through the boundary. Assuming irrotational flow, the problem reduces to solving the
Laplace equation on the domain with Neumann boundary conditions, which is possible
under rather general conditions, for example the total influx to the domain must be
zero. For a mathematical discussion, see Courant & Hilbert (1989, vol. II ch. IV).
While this irrotational flow may not be the only solution to the flow problem, we know
at least that a solution exists.

Boundary value problems for (6.11) are somewhat different. We now give an
example of a boundary value problem which apparently has no solution at all.
Consider (6.11) on the half-plane x>−1 with the boundary condition u= 0 at x=−1,
see figure 2(a). We take the potential to describe a circular harmonic well centred at
the origin,

f = 0, Φ = 1
2(x

2 + y2). (7.1)
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Note that while we now consider general (asymmetric) solutions and are working in
the limit of a nearly planar surface, this potential is analogous to those considered
in § 5. Each component of (6.12) is simply an unforced harmonic oscillator of unit
angular velocity, i.e ẍi + xi = 0. So any solution to (6.12) describes a particle moving
on an ellipse centred at the origin. As shown in figure 2, the trajectories of any two
particles starting at distinct points on the boundary will intersect and have different
velocities at the points of intersection, in conflict with the condition that the velocity
depends on the position alone. So it appears that this boundary value problem has no
solutions at all. Note that other choices of boundaries of prescribed normal velocities
may yield a well-posed boundary value problem. For example, applying no-penetration
boundary conditions to one of the elliptic trajectories from (6.12), we can find a
solution, with streamlines consisting of smaller versions of the boundary curve.

A further complication becomes apparent if we break the symmetry of (7.1) slightly
and take

f = 0, Φ = 1
2(x

2 + ω2y2), (7.2)

where x = x1 and y = x2, and ω = 1 + δ, δ� 1. With (7.2), (6.12) separates into two
harmonic oscillators

ẍ =−x, (7.3a)

ÿ=−ω2y, (7.3b)

and the exact solution is straightforward. With the initial condition x(0)= x0, y(0)= y0,
ẋ(0)= u0 and ẏ(0)= v0 in terms of real numbers x0, y0, u0, v0, the solution is

x(t)= (x0 + iu0)e−it, (7.4a)

y(t)=
(

y0 + i
v0

ω

)
e−iωt, (7.4b)

where the real part of (7.4) is understood as the position. The motion is clearly
bounded to a rectangle D = {(x, y) : |x| 6 xM ∧ |y| 6 yM} with xM =

√
x2

0 + u2
0 and

yM =
√

y2
0 + v2

0/ω
2. If ω is rational and expressed as an irreducible fraction p/q,

the motion (7.4) will be periodic with period 2πq. During one such period, x will
oscillate q times while y will oscillate p times. In the process, the orbit will necessarily
self-intersect several times, if q is large. In the case when ω is irrational, the system
will never return to the initial condition, and the motion is quasi-periodic. The orbit
will then eventually cover D densely.

A set of orbits from (7.3) is shown in figure 2. As the trajectory meanders around
in the rectangle D , it undergoes several self-intersections. Such an orbit is clearly not
a permissible streamline of a time-independent flow. Introducing non-harmonic terms
in Φ in (7.2) only makes the situation worse, since we shall find chaotic orbits with
self-intersections irregularly distributed, and thus it becomes even harder to find a
domain where the streamlines do not intersect.

Apparently, the linearized version of (4.12) with (7.2) has no solution with anything
even resembling closed streamlines. On the other hand, given a potential and a domain
with a given boundary curve, we can construct a well-posed boundary value problem,
if we choose the right boundary condition. For if we inject a particle at the boundary
with a sufficiently large initial speed v0, the potential gradient forcing becomes a small
perturbation, and the trajectories will approach straight lines in the case f = 0 and
segments of circles with radius ‖v0‖/‖f ‖ otherwise. Clearly, we can always foliate the
domain with trajectories of this form. So, while some boundary value problems cannot
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be solved, any particular bounded region does have an associated well-posed boundary
value problem. Finally, we note that the nonlinear equations (4.12) will presumably
retain many of the above properties as long as the surfaces are not too violently
curved. This is ensured by the KAM theorem (see e.g. Ott 1993) which implies that
invariant tori can persist even in non-integrable systems.

8. Conclusion
We have shown that it is possible to write down a self-contained set of equations

for the flow on a stationary free surface of an ideal fluid. It is given by (4.12),
which is the main result of the paper. We have shown how to include surface tension
and velocity-dependent forces such as the Coriolis force, and demonstrated that the
formalism provides a practical tool for determining actual flows on surfaces of simple
shapes. We also showed that it can be used to predict that given surface shapes,
boundary conditions or domains preclude the existence of a single-valued surface
velocity field. Here the analogy to Hamiltonian particle dynamics with two degrees
of freedom is very useful. The latter problem can always be solved with given initial
conditions, and hence the question of existence of a velocity field on the surface
becomes a question of projecting from the energy surface of the four-dimensional
phase space of the dynamical system to the two-dimensional space of the surface,
without intersections. In the present paper, we have given a preliminary analysis of this
problem, and we believe that there are ample possibilities for developing this approach
further in future work.

Finally, we mention that in modelling sea currents one is faced with a problem very
similar to ours. Here satellite measurements of the free-surface elevation (altimetry) on
a grid of points around the globe is used to predict the ocean currents. It is customary
(see e.g. Ray 2001) to work in the linear, geostrophic approximation, where the inertial
term (the left-hand side of (6.11)) is ignored, and the Coriolis term balances the
forcing on the surface flow. If one were to include the nonlinear terms, one might in
principle find that the surface shapes assumed cannot actually support the predicted
flows! In the present state of our theory, however, we cannot perform such an analysis
since we would first have to build in effects like time dependence and wind stresses,
which are important for the ocean currents.

Appendix. The form of the surface flow equations in simple situations
A.1. Cartesian base coordinates

We shall now give an example of the general equations, (4.12), for the surface flow
derived in the main body of the paper. Consider a free surface parameterized by
(x1, x2)≡ (x, y) so the Cartesian laboratory coordinates yα are

(y1, y2, y3)= (x, y, h(x, y)). (A 1)

The two-dimensional metric tensor and its determinant for the surface manifold are
then, by (4.6),

gij =
(

1+ h2
x hxhy

hxhy 1+ h2
y

)
, (A 2)

g≡ |g| = 1+ h2
x + h2

y, (A 3)
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where subscript i denotes differentiation with respect to xi. The yα coordinate
expression of the dual basis vectors (recall that the velocity vector is V iei)
is ex = (1, 0, hx), ey = (0, 1, hy). We denote the velocity vector components by
(V1,V2)≡ (U,V).

The coordinate system is assumed to rotate in the counterclockwise direction about
the y3-axis with a constant angular velocity Ω . In order to compute the Coriolis
force term, we shall need Ω3 in terms of the surface-adapted coordinates defined
at the beginning of § 4, where e3 = 1/

√
g · (−hx,−hy, 1) in yα-coordinates. Thus,

Ω3 = Ωe3 · (0, 0, 1) = Ω/√g. Now, (4.12) becomes, for the x- and y-directions,
respectively:

(UUx + VUy)+ hxM = 1
g
(−(1+ h2

y)Φx + hxhyΦy)

+ 2Ω
1
g
(hxhyU + (1+ h2

y)V), (A 4a)

(UVx + VVy)+ hyM = 1
g
(hxhyΦx − (1+ h2

x)Φy)

− 2Ω
1
g
((1+ h2

x)U + hxhyV), (A 4b)

where

M = 1
g
(hxxU

2 + 2hxyUV + hyyV
2). (A 5)

If we include a centrifugal force, a gravitational potential g0h(x, y) and a surface
tension γ with the associated Young–Laplace pressure on the free surface, and denote
the constant liquid mass density by ρ0, we have

Φ(x, y)=−1
2
Ω2(x2 + y2)+ g0h(x, y)− 2

γ

ρ 0

H(x, y), (A 6)

where H is the mean curvature (positive in the y3-direction) of the free surface and
must be computed from (A 1), for example using (4.8).

A.2. Polar base coordinates

We do the same for polar (ρ, θ) base coordinates, i.e.

(y1, y2, y3)= (ρ cos θ, ρ sin θ, h(ρ, θ)), (A 7)

with the metric

gij =
(

1+ h2
ρ hρhθ

hρhθ ρ2 + h2
θ

)
, (A 8)

g= ρ2 + ρ2h2
ρ + h2

θ . (A 9)

The dual basis expressed in yα-coordinates is eρ = (cos θ, sin θ, hρ), eθ =
(−ρ sin θ, ρ cos θ, hθ). The relevant component of Ωµ, corresponding to a rotation
vector of magnitude Ω in the positive y3-direction, is Ω3 = ρΩ/√g. Now, (4.12)



Stationary ideal flow on a free surface of a given shape 45

becomes, for ρ and θ , respectively:

(UUρ + VUθ)+ 1
g
[ρ2hρhρρU2 + 2ρhρ(ρhρθ − hθ)UV + ρ(ρhρhθθ−ρ2−h2

θ)V
2]

= 1
g
[−(h2

θ + ρ2)Φρ + hρhθΦθ ] + 2Ω
ρ

g
[hρhθU + (ρ2 + h2

θ)V], (A 10a)

(UVρ + VVθ)+ 1
g
[hθhρρU2 + 2(ρ(1+ h2

ρ)+ hθhρθ)UV + hθ(ρhρ + hθθ)V
2]

= 1
g
[hρhθΦρ − (1+ h2

ρ)Φθ ] − 2Ω
ρ

g
[(1+ h2

ρ)U + hρhθV]. (A 10b)

Including the same physical effects as in the previous section, cf. (A 6), we have the
potential

Φ(ρ, θ)=−1
2
Ω2ρ2 + g0h(ρ, θ)− 2

γ

ρ 0

H(ρ, θ). (A 11)
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