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Hydraulic jumps in a channel
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We present a study of hydraulic jumps with flow predominantly in one direction,
created either by confining the flow to a narrow channel with parallel walls or by
providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear
height profile upstream of the jump as expected for a supercritical one-dimensional
boundary layer flow, but we find that the surface slope is up to an order of magnitude
larger than expected and independent of flow rate. We explain this as an effect of
turbulent fluctuations creating an enhanced eddy viscosity, and we model the results
in terms of Prandtl’s mixing-length theory with a mixing length that is proportional
to the height of the fluid layer. Using averaged boundary-layer equations, taking
into account the friction with the channel walls and the eddy viscosity, the flow
both upstream and downstream of the jump can be understood. For the downstream
subcritical flow, we assume that the critical height is attained close to the channel
outlet. We use mass and momentum conservation to determine the position of the
jump and obtain an estimate which is in rough agreement with our experiment. We
show that the averaging method with a varying velocity profile allows for computation
of the flow-structure through the jump and predicts a separation vortex behind the
jump, something which is not clearly seen experimentally, probably owing to turbu-
lence. In the sheet flow, we find that the jump has the shape of a rhombus with sharply
defined oblique shocks. The experiment shows that the variation of the opening angle
of the rhombus with flow rate is determined by the condition that the normal velocity
at the jump is constant.

1. Introduction
The hydraulic jump is what appears in a kitchen sink when opening the water tap:

the water jet impacts the sink, the jet spreads radially in a shallow fluid layer, and
after some distance the layer thickens abruptly and forms a circular jump (Rayleigh
1914; Tani 1949; Watson 1964; Olsson & Turkdogan 1966). Most recent studies of hy-
draulic jumps are concerned with circular jumps (Higuera 1994; Hornung, Willert &
Turner 1995; Svendsen et al. 2000; Holland et al. 2002; Defina & Susin 2003).

The hydraulic jump was originally explained by Rayleigh (1914) as a shock. At
the jump, the flow speed, v, decreases abruptly from ‘supersonic’ to ‘subsonic’ with
respect to the local surface wave speed. In a shallow layer of height h, the speed
of gravity waves is given by

√
g0h, where g0 is the acceleration due to gravity. The
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corresponding dimensionless number is the Froude number, Fr = v/
√

g0h. The flow
upstream of the jump, being more rapid than the surface waves, is referred to as
supercritical with Fr > 1, while the flow downstream of the jump is referred to as
subcritical with Fr < 1. The supercritical flow depends only on upstream conditions,
whereas the subcritical flow depends on both upstream and downstream conditions.
In shallow layers, the hydraulic jump is usually connected with separation (Tani
1949; Bohr, Dimon & Putkaradze 1993) and thus viscous friction is essential. For
the circular jump, mass conservation naturally leads to a decrease of the height of
the supercritical fluid layer and thus to large viscous stresses. The one-dimensional
case is different: we observe experimentally that the flow upstream of the jump has
a linearly increasing height profile, but that it still leads to an abrupt hydraulic
jump (Watson 1964; Bohr, Putkaradze & Watanabe 1997; Ruschak, Weinstein & Ng
2001; Watanabe, Putkaradze & Bohr 2003; Singha, Bhattacharjee & Ray 2005). In
rivers, where viscous effects are less important, stationary hydraulic jumps occur only
because of inhomogeneities in the river bed, whereas the so-called river bores are
travelling jumps with a complicated wave structure (Chow 1959; Simpson 1997).

In this paper, we analyse quasi one-dimensional hydraulic jumps under steady flow
conditions. We do this both for flows in narrow channels and flows in a wide sheet.
In the narrow channels the influence of the inlet and the channel walls leads to
turbulence even at moderate Reynolds numbers. We argue that this is the reason for
the strongly enhanced slope of the supercritical height profile, which turns out to be
independent of flow rate. We model this by introducing an eddy viscosity derived from
a mixing length proportional to the local height of the fluid layer. The position of the
jump is determined by the boundary conditions at the channel inlet and outlet, and
not necessarily by a local instability of the flow. In the sheet case, the hydraulic jump
emerges at the edges of the sheet and creates a triangular oblique shock. The variation
of the opening angle with flow rate shows that the normal velocity is approximately
independent of flow rate.

2. Experimental methods
2.1. Channel experiment

We formed a stationary hydraulic jump in a channel with a horizontal bottom by
confining a water jet between two parallel vertical walls. The walls and the bottom of
the channel were made of polymethylmethacrylate (PMMA). Water on PMMA has
a contact angle of approximately 90◦, and effects of wetting films on the walls were
therefore negligible. The channel width was 0.4 cm, 0.8 cm and 1.2 cm, respectively,
in three different experimental set-ups, and the total channel length was 100 cm in
all three experiments. The channel ends abruptly, and the fluid flows freely out of the
channel over the vertical end faces. Water was pumped at constant flow rate, measured
using a flow-meter, into the channel through a nozzle placed a few millimetres above
the channel bottom, as shown in the sketch of the central part of the channel in
figure 1. The rectangular nozzle filled the entire width of the channel, and the nozzle
was placed at the midpoint of the channel. Water exited the nozzle symmetrically
toward both left and right, thereby forming hydraulic jumps both to the left and to the
right of the nozzle. We used the left–right symmetry of the flow to check the precise
alignment of the nozzle and the channel. We measured the height of the fluid layer
using either a depth micrometre mounted vertically above the water surface or by
identifying the surface and the channel bottom in high-resolution digital photographs
taken through the transparent channel walls. The dotted curves in figure 2 show the
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Figure 1. Schematic illustration of the experimental apparatus for the channel flow. We use
x to denote the lengthwise direction, y for the lateral direction, and z for the vertical direction.
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Figure 2. Measured height profile for the hydraulic jump in the 0.8 cm channel with the flow
rate per unit transverse length q = 10.0 cm2 s−1. The dotted curves show the upper and the
lower surface height, and the solid curve shows the average of the two dotted curves.

surface height at the channel walls and in the middle of the channel identified in
the digital photographs of the hydraulic jump in the 0.8 cm channel with the flow
rate per unit transverse length q = 10.0 cm2 s−1. The surface profile in figure 2 is a
representative example of the measured height profiles in the three channels. We use
the average surface height in the following analysis.

2.2. Sheet experiment

A second experiment was carried out with the focus on the jump condition for the
one-dimensional hydraulic jump. For this, instead of a jet, a thin sheet of water was
made to impact a horizontal plate (figure 3). Again, water was used, and the flow rate
was held constant and measured with a flow-meter. For quantitative measurements,
a set-up was used in which the sheet emanated from a 3.0 cm × 0.1 cm orifice made
of PMMA. Since the lateral extension of the sheet (3.0 cm) was much larger than its
width (0.1 cm) the film expanded only in one direction. The orifice was positioned a
few millimetres above the PMMA plate on which the sheet impacted, allowing for a
direct visualization of the hydraulic jump from below through the transparent plate.
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Figure 3. Hydraulic jump with the shape of a rhombus formed by a sheet of water emerging
from a slit and impacting on a flat and horizontal plate. Two different experimental set-ups
were used. The first set-up which is shown in the figure gave a particularly clear demonstration
of the effect, but it did not allow for good quantitative measurements since the sheet thickness
was fluctuating. A second set-up was therefore machined in PMMA to give a 3.0 cm × 0.1 cm
sheet and allow for measurements of the opening angle as a function of the flow rate.

The height of the fluid layer was measured with a depth micrometre attached to a
translation table whose displacement could be read off to an accuracy of 1/100 mm.

3. Height profiles in the channel experiment
3.1. Height profiles before the jump

Figure 4 shows the height of the fluid layer, h, as a function of the horizontal distance
from the nozzle centre, x, for different flow rates per unit transverse length, q , in the
channel experiment with wall separation d = 0.8 cm. For the channels with d = 0.4 cm
and d =1.2 cm, we measured qualitatively similar profiles. The position of the abrupt
hydraulic jump xJ is displaced downstream when q is increased, and with the largest
value of q (black) we do not observe a jump in the channel. The most obvious and
surprising feature of the flow is that the height of the supercritical flow upstream of
the jump increases linearly with x from the nozzle to the jump position. This can be
understood easily by noting that the flow is predominantly horizontal and strongly
sheared in the vertical direction. The important terms in the Navier–Stokes equation
are therefore

u
∂u

∂x
= ν

∂2u

∂z2
, (3.1)

where u is the velocity in the x-direction, ν is the kinematic viscosity of the fluid,
and where we have neglected the hydrostatic pressure and used h � d . Using mass
conservation, which in terms of the average velocity v = 〈u〉 can be written q = hv,
we find the following estimate of the slope of the surface height

−q2

h3

dh

dx
∼ − ν

q

h3
or

dh

dx
∼ ν

q
. (3.2)
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Figure 4. Measured height profiles for hydraulic jumps in the 0.8 cm channel. The flow rate
per unit transverse length was q = 4.6 cm2 s−1 (red), q = 6.5 cm2 s−1 (green), q = 7.8 cm2 s−1

(magenta), q =10.0 cm2 s−1 (blue), q = 11.6 cm2 s−1 (cyan) and q = 17.2 cm2 s−1 (black).

This result was shown by Watson (1964) to follow from the boundary-layer equations
in the one-dimensional case. Assuming gravity to be negligible, which is reasonable
for the supercritical flow, we find a self-similar velocity profile

u(x, z) = v(x)f (z/h(x)), (3.3)

and the linearly increasing free surface height

h(x) =
πν√
3 q

(x − x0) ≈ 1.81
ν

q
(x − x0). (3.4)

The slopes of the measured height profiles are up to an order of magnitude larger
than those predicted by the laminar theory as shown by the dashed line in figure 5
in a representative case. Furthermore, the inverse proportionality of the slope with
the flow rate in (3.4) is not observed in the experiments, and within the experimental
accuracy, we find that the slope is independent of flow rate as figure 4 shows.

3.2. Mixing-length model

We suggest the following interpretation of the observed height profiles: the appearance
of a turbulent eddy viscosity. The Reynolds number for a channel flow with
characteristic velocity v and length scale h is Re =hv/ν = q/ν. Here we have chosen
the height h as the characteristic length scale, since h is the smallest length scale
in the supercritical regime and significantly smaller than the channel width d . Note
that Re is independent of x with this definition. In the present experiment, Re ≈ 103.
More precisely, for the flows shown in figure 4 from the 0.8 cm channel, we have
460 � Re � 1720. Although these Reynolds numbers are not very large, turbulence
occurs owing to the strong mixing created by reflections from the sidewalls and,
indeed, adding particles that visualize the flow field, shows irregular motion indicative
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Figure 5. Measured height profile (solid curve) for the flow in the 0.8 cm channel with
q = 10.0 cm2 s−1. The dashed line shows the prediction of the laminar model (3.4) and the
dotted line the result of the mixing length model of the eddy viscosity (3.5) with κ =0.07.

of turbulence (figure 6). In the simplest model, the mixing-length theory of Prandtl
(Pope 2000; White 2006), turbulence is modelled in the spirit of kinetic theory
as causing fluid particles to make random jumps transverse to the flow and thus
enhancing momentum transfer. Assuming that the typical jump has a size lm – the
mixing length – we find an enhanced eddy viscosity νε which is proportional to lm
multiplied by the typical velocity fluctuation �u ≈ lm∂u/∂z, where z is the vertical
coordinate, transverse to the flow and where ∂u/∂z is the shear rate of the mean
flow. Thus, νε ≈ (lm)2|∂u/∂z|. The crucial assumption is now that the mixing length
must be proportional to the height of the fluid layer. This is reasonable as long as
h is the smallest length scale, which is true in the supercritical region. In turbulent
boundary layers, a standard choice is similarly a mixing length proportional to the
boundary-layer thickness, δ, as discussed by White (2006). Letting lm = κh, we can
now estimate the eddy viscosity:

νε ≈ κ2q. (3.5)

Thus, νε is proportional to q , and when replacing ν with νε in (3.4) we therefore
obtain a linear height profile with a slope that is independent of q . Figure 5 shows
the best fit of the model (dotted line) to the supercritical part of the measured height
profile with q = 10.0 cm2 s−1. This fit and similar fits of the other measured height
profiles in the 0.8 cm channel gave the average κ = 0.07. For the 0.4 cm channel, we
obtained κ = 0.07 and for the 1.2 cm channel we found κ = 0.06. We thus find that
the slopes of the measured height profiles decrease slightly when the channel width
is increased. The corresponding eddy viscosities are up to an order of magnitude
larger than the kinematic viscosity of water. We note that for a boundary layer on a
flat plate without a free surface, a typical choice is lm ≈ 0.09δ as described by White
(2006).

Watson (1964) presents a more elaborate approximate theory for the supercritical
regime of turbulent channel flow. He assumes an eddy viscosity varying through the
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Figure 6. Six snapshots of particle tracks visualizing the turbulence in the supercritical region
in the 0.8 cm channel with q =10.2 cm2 s−1. The field of view was 0.8 cm × 0.5 cm, and the area
was located 4 cm upstream of the jump. We used neutrally buoyant spherical tracer particles
with diameter of 100 μm, and an exposure time of 4×10−3 s. The particle tracks were obtained
using a laser sheet in the mid-plane of the channel. We show the raw particle tracks, and
therefore the intensities of the tracks vary according to their position in the laser sheet. The
channel bottom coincides with the lower edges of the pictures, and the fluctuating free surface
is visible as the blurred horizontal regions in the middle of the pictures.

layer as νε ∝ u6, so as to agree with the Blasius boundary-layer solution near the
bottom. The similarity solution then has the form h(x) = constant (ν/q)1/4(x − x0).
Although we cannot convincingly distinguish between our claim that the slope of h

is independent of q and a very weak dependence like q−1/4, we also cannot verify the
more detailed assumptions made by Watson, nor the values of the constants given.
Thus, we believe that our simplistic mixing-length approach is more appropriate,
being based only on the characteristic length scale and thus also applicable to the
subcritical regime.

In the one-dimensional hydraulic jump experiment by Singha, Bhattacharjee & Ray
(2005) for flows at similar Reynolds numbers in a wide channel, the measured slope
of the free-surface height before the jump was also an order of magnitude larger than
the slope predicted by the laminar height profile (3.4), again suggesting that the flow
is turbulent. Based on the measurements by Singha, Bhattacharjee & Ray (2005), we
estimate the value of κ ≈ 0.08, although we do not have sufficient information from
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Figure 7. Measured jump position as a function of flow rate per unit transverse length for
the three different channel widths 0.4 cm (�), 0.8 cm (+), and 1.2 cm (�).

the paper to test the dependence on flow rate, since measured surface heights are only
presented for two different flow rates.

3.3. Jump position and effect of surface tension

The position of the hydraulic jump xJ moves downstream when q is increased as
mentioned briefly in § 3.1. Figure 7 shows xJ as a function of q for the three different
channels. We notice that xJ increases faster with q as the channel width is increased,
and we observe that xJ increases linearly with q in the d = 0.4 cm channel, whereas xJ

increases faster than linearly with q in the channels with d = 0.8 cm and d = 1.2 cm.
We speculate that these differences arise since the channel width for the 0.4 cm
channel is smaller than the height of the fluid layer in the subcritical region by a
factor of 2 to 4, whereas the channel width is comparable to the height of the fluid
layer in the subcritical region in the two wider channels.

Our channel is designed primarily for intermediate flow rates, where capillarity plays
a minor role. For the lowest flow rates this is, however, not true, and the precise shape
of the outlet influences the height of the subcritical layer. We observe that in the limit
of zero flow rate, a finite layer of fluid remains in the channel of height 0.2 − 0.4 cm,
somewhat dependent on how the flow rate is decreased. The height of this layer is of
the order of the capillary length lc =

√
σ/g0ρ, where σ is the surface tension and ρ is

the density of the fluid. More precisely, the largest remaining heights are close to the
maximal height of a large drop with a contact angle close to 90◦,

√
2 lc ≈ 0.38 cm in

water. This means also that the position of the jump is slightly dependent on surface
tension for the low flow rates. For larger flow rates, the influence of surface tension is
negligible, as we verified by carrying out the channel experiment by adding surfactant
in the form of sodium lauryl sulfate to the water. This should be contrasted with the
circular hydraulic jump, where the radius of the jump is significantly influenced by
capillarity owing to the curvature of the circle forming the jump (Bush & Aristoff
2003). In the channel experiment, the curvature of the free surface in a cross-section
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takes both positive and negative values, and thus surface tension has no significant
direct effect on the shape and location of the jump.

4. Averaging method for the entire flow
4.1. Averaged boundary-layer equation

For a description of the entire flow, we use the boundary-layer approximation and
vertical averaging as the starting point. In the region downstream of the jump, the
slowness of the flow and the large height of the fluid layer make the boundary-
layer approximation doubtful. However, as in earlier work (Tani 1949; Watanabe,
Putkaradze & Bohr 2003; Singha, Bhattacharjee & Ray 2005), we shall still use this
approach and combine it with lateral averaging. In our case, the small separation
between the channel walls introduces additional friction and the turbulence introduces
an eddy viscosity, as discussed in § 3.2. The boundary-layer approximation for a time-
independent and incompressible flow with a free surface of height h and hydrostatic
pressure is

u
∂u

∂x
+ w

∂u

∂z
= −g0

∂h

∂x
+ νε

(
∂2u

∂y2
+

∂2u

∂z2

)
, (4.1)

together with the continuity equation

∂u

∂x
+

∂w

∂z
= 0, (4.2)

and mass conservation

q =

∫ h

0

dz

∫ d

0

dy u(x, y, z), (4.3)

where u and w are the horizontal and vertical velocity components, respectively, and
y is in the lateral direction spanning the space between the walls (see the coordinate
system in figure 1). We assume that there is no flow in the lateral direction, and we
neglect the dependence of the height of the fluid layer on the lateral direction. At
the solid surfaces, we assume no-slip, and on the free surface, we approximate the
boundary condition by

∂u

∂z

∣∣∣∣
z=h(x)

= 0. (4.4)

To simplify the model, we shall now average in the y-direction and in the z-direction,
and we shall assume that the velocity profile is separable and self-similar, i.e. that it

can be written u(x, y, z) = v(x)g(y/d)f (z/h(x)), where
∫ 1

0
g(ξ )dξ =

∫ 1

0
f (η)dη = 1. By

the continuity equation, u and w must have the same y-dependence g(y/d), and we
obtain by averaging in the y-direction

G

(
u

∂u

∂x
+ w

∂u

∂z

)
= −g0

dh

dx
− νε

(
eu

d2
− ∂2u

∂z2

)
, (4.5)

where G =
∫ 1

0
g2(ξ ) dξ , u and w are now the averages over y and e = − 2 g′(1). For a

parabolic profile g(ξ ) = 6 ξ (1 − ξ ), we obtain e = 12 and G =6/5. We now integrate
the horizontal momentum equation (4.5) with respect to z from 0 to h(x) and use the
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continuity equation and the surface boundary condition (4.4) to obtain the averaged
momentum equation

G
1

h

d

dx

[∫ h

0

u2 dz

]
= −g0

dh

dx
− νε

(
e v

d2
+

1

h
uz|z=0

)
, (4.6)

which, using mass conservation, can be written as

G v(F v)′ = −g0h
′ − νε

(
ev

d2
+

1

h
uz|z=0

)
, (4.7)

where F =
∫ 1

0
f 2(η) dη. We follow Watanabe et al. (2003) and assume a cubic velocity

profile u(x, z) = v(x)(aη+bη2 + cη3), where η = z/h(x) and a, b and c are functions of
x. To satisfy the no-slip condition, u(x, 0) = 0, we exclude the possibility of a constant
term in the velocity profile. The three parameters can be expressed in terms of a single
shape parameter λ as a = λ+ 3, b = − (5λ+ 3)/2 and c = 4λ/3. These relations follow
from the absence of shear stress on the free surface (4.4) and mass conservation. With
the cubic velocity profile we find

F (λ) =
6

5
− λ

15
+

λ2

105
, (4.8)

and

uz|z=0 =
(3 + λ)v

h
. (4.9)

For comparison with the measured height profiles we will use a constant value of λ,
but as we discuss in § 4.4, it is necessary to allow λ to vary with x to model the flow
in the jump region. For constant λ, we can write the governing equation as

q2GF (λ)
h′

h3
= g0h

′ + νε

(
eq

hd2
+

(3 + λ)q

h3

)
. (4.10)

We now rescale the equation in units of the critical height
hc =(GF )1/3q2/3g

−1/3
0 . Using the rescaling, we obtain h = hc H = (GF )1/3q2/3g

−1/3
0 H ,

x = (GFq/νε)hc X = (GF )4/3ν−1
ε q5/3g

−1/3
0 X and es =(hc/d)2e = (GF )2/3q4/3g

−2/3
0 d−2e.

For fixed λ, the averaged boundary-layer equation in rescaled variables thus takes the
form

(1 − H 3)
dH

dX
= A + esH

2, (4.11)

where h = (GF )1/3q2/3g
−1/3
0 H , x =(GF )4/3ν−1

ε q5/3g
−1/3
0 X and A= 3 + λ. We note that

our definition of the critical height hc is different from the conventional definition by
the numerical factor (GF )1/3. In the following, we show how to use (4.11) to model
supercritical and (with slight modification) subcritical channel flows, and we compare
numerical solutions of the averaged equation with the measured height profiles.

4.2. Modelling the channel flows

In the supercritical region we shall assume that the vertical velocity profile is close to
the solution by Watson (1964), which is not far from parabolic (λ= 0). The laminar
solution by Watson has F ≈ 1.26 and f ′(0) = 2.28. In the variable λ approach (see
§ 4.4) we in fact obtain λ≈ − 3/5 with F (λ= − 3/5) ≈ 1.24 and f ′(0) = 3 + λ= 2.4
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for the supercritical flow. Since in this regime, h is the smallest length scale, we shall
also assume that the viscosity is given by the eddy viscosity (3.5), i.e. νε ≈ κ2q , which
changes the rescaling to x = κ−2(GF )4/3q2/3g

−1/3
0 X = κ−2GF hc X, so we shall write

(1 − H 3)
dH

dX
= A + esH

2, (4.12)

with

x = κ−2GFhcX, (4.13)

where A= 2.28. The upstream boundary condition for the flow is H (X0) = 0 at X = X0.
The measured height profiles shown in figure 4 extrapolate to zero somewhere before
the nozzle, and the point X0 was different for the different channel widths, since the
nozzles and the nozzle heights above the channel bottom were different in the three
set-ups.

In the subcritical region, h is typically larger than d , and we shall assume that
the mixing length now becomes proportional to d and not to h, i.e. lm = κyd . Then
νε ≈ l2m|∂u/∂y| ≈ l2mu/d = κ2

y d u = κ2
y dq/h. If κy = κ (which we assume in the following),

we find νouter
ε ≈ (d/h)ν inner

ε , which even for the narrow 0.4 cm channel remains of a size
similar to the eddy viscosity ν inner

ε = κ2q . Thus, the rescaled boundary-layer equation
in the subcritical region becomes

(1 − H 3)
dH

dX
=

1

H
(A + esH

2), (4.14)

now with

x = κ−2(GF )4/3q4/3g
−2/3
0 d−1X = κ−2GF (hc/d)hcX, (4.15)

and assuming in this case simply a parabolic velocity profile A= 3. Again, as above,
we might obtain other factors when averaging powers of u coming from the eddy
viscosity, but this will in effect only change the value of κ .

The equations (4.12) and (4.14) can be solved exactly for the inverse function X(H ).
Letting Y = AX and a = es/A, the solution of (4.12) is

Y (H ) = − 1
2
a−1H 2 + a−1/2 tan−1

(
a1/2H

)
+ 1

2
a−2 log(1 + aH 2) + C, (4.16)

which in the limit a → 0 gives Y (H ) = H − H 4/4 (Singha et al. 2005). For (4.14), the
solution is

Y (H ) = a−2H − 1
3
a−1H 3 − a5/2 tan−1

(
a1/2H

)
+ 1

2
a−1 log(1 + aH 2) + C. (4.17)

In both cases, the solutions have a single maximum in the physical regime where
both X and H are positive: since the derivative X′(H ) has the sign of 1 − H 3, it is
increasing (with C =0) for 0 < H < 1 and decreasing for 1<H <Hf , where X(Hf ) = 0,
see figure 8(a). The inverse functions H (X) are multiple valued, see figure 8(b), but if
we want to interpret the upper branch of (4.16) as a subcritical solution, we have to
use different values of the constant C in the two regions: for C = 0 (or near zero) the
lower branch of H (X) from (4.16) describes the supercritical state. For the subcritical
state outside the jump, the boundary condition must be set at the outlet (say X = L)
where the height must be critical (H = 1). This means that the upper branch of H (X)
from (4.16) must be translated to the right to fit this condition and the location of
the jump is then determined by a shock condition (here, the Rayleigh condition as
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Figure 8. Structure of the solutions of the averaged boundary-layer equations (4.12) and
(4.14). (a) Implicit solution Y (H ) of (4.12) as given by (4.16) with C = 0 and a =0.5. (b)
Solution H (Y ) obtained by interchanging the axes. (c) Solution with a discontinuity (shock)
obtained by translating the upper part of (b) to satisfy the critical condition (H = 1) at the
outlet. This means that in this regime we choose a different integration constant, here C = 1.
The location of the jump (dashed line) is found from the jump condition (4.20). The structure
of the solutions is similar for flows without sidewalls, i.e. a = es = 0.

discussed in the next section). Figure 8(c) shows the general structure of the solutions
obtained in this way. In our comparison to the experiments we shall use (4.16) for
the supercritical solution and (4.17) for the subcritical solution, but qualitatively the
structure is similar.

Figure 9 shows that there is good overall agreement between the solutions of
the averaged boundary-layer equations (4.12) and (4.14) and the measured height
profile with q = 10.0 cm2 s−1. The height profile in the supercritical region curves
slightly upward in the model owing to friction from the sidewalls, an effect which
is not accounted for in the two-dimensional solution by Watson (1964). The precise
modelling is complicated at the outlet where the flow exits the channel. As in earlier
work (Bohr et al. 1993; Singha et al. 2005), we simply assume that the critical height
H = 1 is reached slightly beyond the outlet. This works well for q = 10.0 cm2 s−1 as
shown in figure 9, but the solution of equation (4.14) underestimates the measured
surface height in the subcritical region for low flow rates as shown by the dotted curve
for q = 4.6 cm2 s−1 in figure 10. The solid line is the solution obtained by adjusting
the value of the outlet height, and we see that this gives a good fit to the data. The
discrepancy in the outlet height is connected with a fact mentioned in § 3.3: that
capillarity strongly influences the outflow at low flow rates, leaving a finite layer of
fluid in the channel even for the smallest flow rates. Thus it will be impossible to
obtain an outlet height smaller than the height of that layer (of the order of the
capillary length) – at least with our outlet condition.

4.3. Jump condition

Both the inner and outer equations diverge at the critical height H = 1, and thus we
cannot integrate them across the jump. Instead, we assume that a shock occurs, and
that the flow rate and the average momentum are conserved across the discontinuity.
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Figure 9. Measured height profile (×) and theoretical height profiles in the supercritical and in
the subcritical flow region (solid curves) for the flow in the 0.8 cm channel with q = 10.0 cm2s−1.
For both theoretical curves we used κ = 0.065. The dashed curve and the dash-dot curve show
the height to which the supercritical flow is expected to jump based on the Rayleigh jump
condition (4.21) with two different values of GF as discussed in the text.
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Figure 10. Measured height profile (×) and theoretical height profile in the supercritical flow
region (solid curve) for the flow in the 0.8 cm channel with q = 4.6 cm2s−1. Two theoretical
curves are shown in the subcritical flow region, one with an outer ‘critical height’ of 1.8 times
the one used before the jump (solid curve) and one with the same critical height as before the
jump (dotted curve). For all three theoretical curves we used κ = 0.065.
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Following the standard procedure introduced by Rayleigh (1914), we find

1

ρ

∫ d

0

dy

∫ h1

0

dz p1(y, z) +

∫ d

0

dy

∫ h1

0

dz u2
1(y, z)

=
1

ρ

∫ d

0

dy

∫ h2

0

dz p2(y, z) +

∫ d

0

dy

∫ h2

0

dz u2
2(y, z), (4.18)

where h1 and h2 are the heights of the fluid layer immediately before and after the
jump, respectively, as shown in figure 1. With hydrostatic pressure we obtain the
equation

1
2
g0h

2
1 + GFh1v

2
1 = 1

2
g0h

2
2 + GFh2v

2
2, (4.19)

and using mass conservation, q = h1v1 =h2v2, we can rewrite this as

1
2
g0h

2
1 + GF

q2

h1

=
1

2
g0h

2
2 + GF

q2

h2

. (4.20)

Here, we have for simplicity assumed that the profiles before and after the jump
are similar. This is of course not precisely true, but with the lack of more precise
information, this seems a reasonable choice. The non-trivial solution of the cubic
equation is

h2 = 1
2
h1

(√
1 + 8Fr2

e − 1
)
, (4.21)

where the effective Froude number immediately before the jump is

Fre =

√
GF q

g
1/2
0 h

3/2
1

. (4.22)

The dashed curve and the dash-dot curve in figure 9 show the heights to which the
supercritical flow is expected to jump, based on the Rayleigh jump condition (4.21)
with two different effective Froude numbers, and the intersections between the two
curves and the solid curve showing the solution of (4.14) therefore give theoretical
predictions of the jump position. The velocity profile after the jump, which is required
for an accurate determination of the momentum flux, is not known precisely, and
we therefore assume either that the velocity profiles before and after the jump are
both close to the solution by Watson (dashed) or that the velocity profiles have a
somewhat larger effective flow rate with

√
GF = 1.35 (dash-dot). The prediction with√

GF = 1.35 agrees well with the measurements, whereas the model using the Watson
profile predicts that the jump position should be approximately 5 cm further upstream
than observed experimentally. We speculate that the difficulty in determining the jump
location accurately is due to our lack of knowledge about the precise flow structure
after the jump. We discuss the flow structure and the averaging model further in the
next section.

4.4. Flow structure in the jump region

As has been shown earlier (Bohr, Putkaradze & Watanabe 1997; Watanabe et al.
2003) for the radial hydraulic jump and for flow down an inclined plane, it is possible
to compute the flow structure through the jump using the averaging method if the
shape parameter λ is allowed to vary with x. The same method can be applied to
the present case of a hydraulic jump in a horizontal channel starting with (4.7) and
the eddy viscosity (3.5). The inclusion of a shape parameter means that an additional
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Figure 11. Streamline pattern obtained by solving the two averaged equations (4.23) through
the jump region. The parameter values were the same as in figure 9. The uppermost streamline
coincides with the free surface. Notice the large separation zone after the hydraulic jump.

equation is required in addition to the average momentum equation. As in earlier
work, we take this as the y-averaged momentum equation evaluated at z = 0 and
obtain the equations:

λ′ =
1

F ′(λ)

(
4λ

H
− F (λ)

5λ + 3

H 4
− esH

)
, H ′ = −5λ + 3

H 3
. (4.23)

As shown in figure 11, we do find solutions going through the jump, where an
inner branch, closely reminiscent of the Watson solution (with λ≈ − 3/5), makes a
continuous, but rapid transition to a subcritical state with λ≈ 0. Continuing to the
right the solution will diverge as expected when the critical condition is met.

In the jump region, the solution has a large separation zone. Hydraulic jumps in
thin layers typically show separation, so this is to be expected. However, our flow
is turbulent and this is modelled only by taking into account an eddy viscosity.
Experimentally, we do not see clear signs of an ordered mean flow in the form
of a separation vortex. The height profile through the jump is also not very well
represented by (4.23). Comparing with the experimental profiles in figure 4, it is clear
that the width of the jump region is overestimated – again presumably due to the
simplistic turbulence modelling.

5. Sheet experiment with rhombic jump region
Figure 3 shows the surprising result that the hydraulic jump takes the form of a

rhombus in the sheet experiment. When we change the flow rate, Q, it is the opening
angle of the rhombus, θ , that changes, reminiscent of the classical Landau–Levich
problem in which a solid plate is withdrawn from a liquid bath (Blake & Ruschak
1979) or the Mach cone formed behind a supersonic projectile (Faber 1995). Our
key observation is that the opening angle (see schematic illustration in figure 12(a)
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Figure 12. (a) Schematic illustration of the sheet experiment and definition of the opening
angle, θ , of the rhombic jump region. (b) Sine of θ as function of the flow rate, Q. The
measurements (×) are compared with the inverse proportionality expected for a constant
normal velocity at the hydraulic jump (solid line).

for definition) is determined by the condition that the fluid velocity normal to the
boundary immediately before the jump is constant. The value of the normal velocity
follows directly from measurements of the flow rate and of the height of the fluid
layer in the interior of the jump region. The height measurements show that the
thickness within the thin film region is constant to within the experimental accuracy –
about 0.01 cm. This is to be expected for this experiment, since the lack of confining
walls should lead to a flow that remains laminar, and indeed we were not able to
detect any turbulence in the experiment, contrary to what we found in the channel
experiment.

Figure 12(b) shows measurements of the opening angle, θ , of the rhombus as a
function of the flow rate, Q. The measurements are compared with the prediction
obtained by assuming that the normal velocity at the jump is constant and equal to
29 ± 6 cm s−1. The rhombic shape of the jump region is typical of ‘oblique standing
waves’ (Ippen & Harleman 1956), which are completely analogous to oblique shock
waves in gases, and typically occur in channel flows because of a sudden contraction
of the width. In the shock approximation (Chow 1959; Ippen & Harleman 1956;
Liepmann & Roshko 1957), the normal velocity jumps, whereas the velocity parallel
to the shock is unchanged. Thus, the jump condition becomes

h2 = 1
2
h1

(√
1 + 8Fr1

2 sin2 θ − 1
)
, (5.1)

where Fr1 = v1/
√

g0h1 is the Froude number before the jump. Thus, the constancy
of the inner height h1 and the normal velocity implies that Fr1 sin θ is constant and
therefore that h2 is constant. We believe that the constancy of h2 is related to capillary
effects, as for the low flow rates in the channel. Indeed, the height of the outer layer
is approximately h2 = 0.35 cm, again close to

√
2 lc = 0.38 cm.

6. Conclusion
We have studied two realizations of one-dimensional hydraulic jumps. In both

cases, our results are consistent with the treatment of the flow in terms of a shock
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connecting a supercritical and a subcritical flow. In the sheet case, the shock becomes
oblique and the jump occurs at a constant normal velocity. In the narrow channel, the
flow is turbulent, and the slope of the linearly increasing height profile upstream of the
jump is strongly enhanced in comparison with the laminar-flow situation. A simple
mixing-length model of the turbulence reproduces the experimental results, and an
averaged boundary-layer model describes the flow both upstream and downstream of
the jump.

T. B. is grateful for the warm hospitality at the Laboratoire de Physique Statistique,
Ecole Normale Supérieure, Paris while this work was initiated. We thank Erik Hansen
for his careful construction of the channel experiment.
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