
chede,

PHYSICAL REVIEW E 67, 046207 ~2003!
Influence of solitons on the transition to spatiotemporal chaos in coupled map lattices
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We study the transition from laminar to chaotic behavior in deterministic chaotic coupled map lattices and
in an extension of the stochastic Domany-Kinzel cellular automaton@E. Domany and W. Kinzel, Phys. Rev.
Lett. 53, 311 ~1984!#. For the deterministic coupled map lattices, we find evidence that ‘‘solitons’’ can change
thenatureof the transition: for short soliton lifetimes it is of second order, while for longer butfinite lifetimes,
it is more reminiscent of a first-order transition. In the second-order regime, the deterministic model behaves
like directed percolation with infinitely many absorbing states; we present evidence obtained from the study of
bulk properties and the spreading of chaotic seeds in a laminar background. To study the influence of the
solitons more specifically, we introduce a soliton including variant of the stochastic Domany-Kinzel cellular
automaton. Similar to the deterministic model, we find a transition from second- to first-order behavior due to
the solitons, both in a mean-field analysis and in a numerical study of the statistical properties of this stochastic
model. Our study illustrates that under the appropriate mapping some deterministic chaotic systems behave like
stochastic models; but it is hard to know precisely which degrees of freedom need to be included in such
description.

DOI: 10.1103/PhysRevE.67.046207 PACS number~s!: 05.45.Jn, 05.70.Jk, 47.27.Cn, 05.45.Ra
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I. INTRODUCTION

Spatiotemporal chaos occurs in many spatially exten
deterministic systems and remains notoriously difficult
characterize@2#. Therefore, one may attempt to map su
deterministic chaotic systems onto stochastic models
which many more analytical methods are available. It is th
tacitly assumed that, after sufficient coarse graining of
deterministic model, the role of deterministic chaos can
taken over by the noise in the stochastic system. A crit
test of the validity of such mappings are the predictions
the transitions between qualitatively different states that
tended chaotic systems display. The key question is the
follows: Are transitions in deterministic chaotic systems go
erned by the universality classes of stochastic systems?

As is known for a variety of spatiotemporal chaotic sy
tems@2,3# and as we will show below for the determinist
system at hand, chaotic states in extended systems often
play a mixture of rather regularly propagating structures a
more disordered behavior. When the propagating structu
that we will refer to as ‘‘solitons’’~following Ref. @4#! have a
finite lifetime, it may seem that they can be ignored af
sufficient coarse graining. We will find strong indication
that this isnot always the case, and we will give an examp
where their influence may even be so strong as to change
nature of the transition. We will also show that extendi
simple stochastic models with the appropriate solitonic
grees of freedom can mimic this behavior quite accurat
not only can we change the order of the transition, we
also get transient nonuniversal scaling of the type obser
in coupled map lattices@5#. Therefore, we conclude that, i
many cases, deterministic chaotic systemscan indeedbe
mapped to stochastic models. A short account of our w
1063-651X/2003/67~4!/046207~13!/$20.00 67 0462
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has already been published@6#.

A. Historical background

Chaté and Manneville@7,8# introduced the notion of a
universal transition to extended chaos via ‘‘spatiotempo
intermittency’’ ~STI! in a study of thedeterministicdamped
Kuramoto-Sivashinsky partial differential equation@9#. STI
states are composed of ‘‘turbulent’’~chaotic! and ‘‘laminar’’
~ordered! patches, and the laminar patches remain so exc
for contamination by turbulence at their boundaries. Th
states are conjectured to occur quite generally when, loc
laminar and turbulent dynamics are separated by a subcri
bifurcation, and indeed a large number of different expe
mental systems and theoretical models display STI@10#.

As a function of their parameters, STI systems displa
transition from states where the turbulence eventually d
out to states where the turbulence spreads and domin
Pomeau proposed@11# an analogy between this transitio
and the phase transition of the stochastic process know
directed percolation~DP!; for an introduction to DP, see
e.g., Refs.@12,13#. In directed percolation, one considers t
spreading of ‘‘activity’’ in an absorbing, inactive back
ground. Earlier, Grassberger@14# and Janssen@15# had con-
jectured that anystochasticprocess with an unique absorbin
state should be in the same directed percolation univers
class.

Relating laminar to inactive and turbulent to active sta
appears to map spatiotemporal intermittency to directed
colation. To verify whetherdeterministic chaotic models
with an absorbing state would be in the DP universality cla
Chatéand Manneville introduced a very simple coupled m
lattice ~CML! that displays STI and numerically obtained th
©2003 The American Physical Society07-1
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MIKKELSEN, van HECKE, AND BOHR PHYSICAL REVIEW E67, 046207 ~2003!
critical exponents that characterize the transition from in
tive to active states. Surprisingly, these critical expone
appear to vary with the parameters and are in general di
ent from the DP values. Therefore, the Chate´-Manneville
model appears to benot in the DP universality class and no
even universal.

Grassberger and Schreiber@4# pointed out that the pres
ence of long lived traveling structures, which they call so
tons in the Chate´-Manneville model, may lead to large cros
over times, and conjectured that in the long-time limit t
behavior of the Chate´-Manneville model would be in the DP
universality class.

Recently, the Chate´-Manneville model with an asynchro
nous update rule was studied@16#. Here random sites ar
chosen to be iterated forward while keeping the others u
tered. For this model, the solitons observed for the stand
synchronous update rule are suppressed and the critica
ponents are universal with DP values, implying that t
Chaté-Manneville model with asynchronous updating b
longs to the DP universality class. However, the asynch
nous updating introduces an element of stochasticity into
model, thus ruining the deterministic character of the origi
model.

B. Outline

In this paper, we will study adeterministicextension of
the Chate´-Manneville CML that facilitates the tuning of th
soliton properties. We will demonstrate that the influence
solitons may be much more profound than setting a cro
over time, since they appear to be able to change the typ
transition from second to first order. The role of the solito
is further illustrated in an extension of thestochastic
Domany-Kinzel cellular automaton. In its standard form,
sites of this model can be either active or inactive, but
will add a ‘‘solitonic’’ degree of freedom that mimics th
behavior of the solitons in the CMLs. The mean-field equ
tions of this stochastic model show a transition from seco
order DP-like behavior to a first-order transition when t
soliton lifetimes are increased. Numerical studies of this s
chastic model also find evidence for such a crossover to fi
order behavior, although it is very difficult to asses t
asymptotic behavior for our model. In any case, we pres
strong numerical evidence that the transition is not an o
nary second-order transition and that there is no asymp
scaling regime, although there are appears to be a tran
that displays nonuniversal scaling behavior.

Our study illustrates that for extended systems, it is
difficult task to faithfully map a deterministic system to
stochastic counterpart. In this particular case, locali
propagating structures can be identified as responsible fo
breakdown of DP universality, but one can imagine that l
easily identified properties of the deterministic dynam
could be responsible for such a breakdown in other syste

The outline of this paper is as follows. In Sec. II, w
discuss the coupled map lattices. Starting from a brief d
cussion of the classic Chate´-Manneville model, we introduce
our extension to lattices of two-dimensional maps in S
II A. We show that the new parameter, that is introduced,
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a profound effect on the importance of ‘‘solitons,’’ and th
long living solitons change the transition from inactive
active states from a second- to a first-order transition in S
II B. In the second-order regime, we estimate the bulk cr
cal exponents using finite size scaling techniques in S
II C, and measure spreading exponents in Sec. II D. All t
data is consistent with the coupled map lattice being in
universality class of directed percolation with infinitely man
absorbing states, provided that soliton lifetimes are short
Sec. III, we discuss the extension of the standard Doma
Kinzel cellular automata which includes new degrees of fr
dom that mimic the solitons of the coupled map lattices. T
mean-field equations for this model are studied in Sec. III
and these show a transition from second- to first-order
havior as a function of the soliton lifetimes. We study t
phenomenology and its statistical bulk properties of the
model in the soliton rich regime in Sec. III C. The behavi
of the model in the soliton rich regime is quite distinct fro
an ordinary second-order transition.

II. COUPLED MAP LATTICES

The model introduced by Chate´ and Manneville consists
of coupled maps, each of which either performs ‘‘lamina
or chaotic motion. The model was motivated by the fact t
studies of the deterministic partial differential equation
such as the damped Kuramoto-Sivashinsky equation, are
merically quite demanding and had not provided enough p
cision to allow a definitive comparison to DP@5,7#. In one
spatial dimension, their coupled map lattice was defined
cording to

ui~n11!5 f „ui~n!…1
«

2
D fui~n!, ~1!

where the subscriptsi denote the spatial position,n is the
discrete time and D fui(n)5 f „ui 21(n)…22 f „ui(n)…
1 f „ui 11(n)…. This expression is a discrete approximation
diffusive coupling in one dimension and introduces spa
correlations in the system; the parameter« is a measure of
the coupling strength between a sitei and its two neares
neighbors at sites (i 21) and (i 11).

The mapf is chosen such that locally the scalar fieldui
can be in either of two states: the absorbing~laminar! or the
chaotic~turbulent! one. Whenu,1, f is a standard tent map

of the form f (u)5r ( 1
2 2uu2 1

2 u) that displays chaotic behav
ior, while in the region whereu.1, f is simply the identity
and leads to a laminar state. The sharp discontinuityf
ensures that the two states are distinguishable at each
The parameterr .2 determines the steepness of the tent m
as well as the transition ratio from the chaotic to the lamin
regime in the absence of coupling.

The form of the diffusive coupling ensures that turbule
sites cannot be spontaneously generated in a backgroun
laminar sites: states where all sites are laminar remain
and the laminar state is truly absorbing. The laminar stat
not unique: Updating a state where all sites are in the lam
regime (ui.1) leads, via the diffusion operator, to a sta
where all variables are equal to the global average valueū.
7-2
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INFLUENCE OF SOLITONS ON THE TRANSITION TO . . . PHYSICAL REVIEW E67, 046207 ~2003!
Once initiated, turbulent activity can spread through t
CML by infecting laminar patches from their boundarie
The effectiveness of the resulting spreading of the chaos
pends on the values ofr and «. Suppose we study the be
havior of this system by keepingr fixed while varying the
coupling strength«. Completely analogous to DP, a critic
value«5«c(r ) exists, such that for«,«c an absorbing state
is reached with unit probability, while sustained chaotic b
havior~in the thermodynamic limit! is found for«.«c . Tak-
ing the density of chaotic sites or ‘‘activity’’m as an order
parameter, transitions from a ‘‘laminar’’ state~wherem de-
cays to zero! to a ‘‘turbulent’’ state~wherem reaches a finite
value in an infinite system! can be studied.

A. Extensions to two-dimensional maps

Coupled map lattices can, in principle, be related to c
tinuous time physical systems of weakly coupled eleme
by interpreting the mapf as a return map on a Poinca´
section. The time spent by two different sites between s
cessive returns would in general be different for syste
without periodic external forcing, and this was precisely t
motivation for the asynchronous update rule in Ref.@16#.
However, here we wish to mimic the variations in retu
times in adeterministicfashion. This motivated us to intro
duce a second field in the CML. Note that the simplest c
otic oscillator would be a system of three phase space dim
sions like the Lorenz equations. Applying a Poincare´ section
reduces such a system to a two-dimensional map. This is
the case in systems with external periodic forcing. Here
simplest realization would be systems like a damped non
ear pendulum or Duffing oscillator with a time-periodic for
ing. A Poincare´ section again reduces the system to a tw
dimensional map and after the synchronous iteration
respective units are still at equal time.

We, therefore, replace the single variable mapf (u), used
in Eq. ~1!, by a new map with an additional variablev:

ui~n11!5 f „ui~n!…1
«

2
D fui~n!1v i~n!, ~2!

v i~n11!5b„ui~n11!2ui~n!…. ~3!

Heref is the same map as before and the new parameterb is
the Jacobian of the full two-dimensional local map; this m
is invertible for any nonzerob and becomes increasingl
two-dimensional withubu. The change in the local map~1! is
analogous to how the two-dimensional~2D! Hénon map@17#
is constructed from the 1D logistic map, except thatb„ui(n
11)2ui(n)… appears here on the right-hand side instead
bui(n). This ensures that the absorbing state fixed po
ui(n)5u* of the old CML ~1! are mapped to the lamina
fixed point „ui(n),v i(n)…5(u* ,0) in the new CML. The
model, Eqs.~2 and 3!, is a completely deterministic system
with no element of stochasticity and is updated synch
nously. The value ofui determines, as in model~1!, whether
a given site is ‘‘active’’ or ‘‘inactive.’’ Starting from the
Chaté-Manneville case (b50), we can follow the transition
between laminar and chaotic states. As we will see below,
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new parameterb actually opens up the possibility to stud
the effect of the solitons on the dynamical states and tra
tions of CMLs; this appears to be a more important iss
than the dimensionality of the local map.

B. Qualitative properties

Our CML now contains three freely adjustable paramet
r ,«, andb, and clearly we will have to focus on a subset
parameters. Our main focus will be on the case wherr
53, although we will also study the transition forr 52.2.
For r 53 andb50, the dynamics shows many solitons~see
Fig. 1! and the critical exponents appear to differ signi
cantly from those of DP.

To get a feeling for the location of the transition as fun
tion of b and«, we show in Fig. 2 the activity~defined as the
average number of active sites! after 1000 iterations in the
ranges20.3<b<0.3 and 0<«<0.4 at r 53.0. The ‘‘tradi-
tional’’ transition is that occurring atb50 and «
50.359 84 . . . . Clearly, for negative values ofb, two addi-
tional transitions emerge. Here we only study points on
two transition branches labeled ‘‘A’’ and ‘‘ B’’ in Fig. 2; be-
low we focus on the behavior along branch A.

FIG. 1. Average profiles of a right~a! and left ~b! moving soli-
ton that occurs in the Chate´-Manneville model at criticality for
r 53.

FIG. 2. Activity in the model, Eqs.~2! and ~3!, at t51000.
White regions correspond to points in the («,b) plane where the
initial activity has decayed into an absorbing configuration and
darker regions to points with a nonvanishing order parame
Clearly the transition curve becomes quite complicated; the
branches discussed in this paper are indicated as ‘‘BranchA’’ and
‘‘Branch B’’ ~see text!. The dashed line indicates the Chat´-
Manneville model (b50).
7-3
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Qualitative changes in behavior along branch A

Figure 2 hints that the sharpness of the transition va
along branch A: the jump in order parameter appears to
come steeper for negative values ofb. The differences in the
nature of the transitions are illustrated more clearly in Fig
by plotting the value of the order parameter as a function
« for b50 andb520.1 averaged over an ensemble of
systems for a number of times. The behavior forb50 is
consistent with a continuous transition, whereas forb
520.1, longer times lead to a marked steepening, consis
with the emergence of a discontinuity.

Soliton regime.Some effects of the parameterb on the
dynamics can also be seen from the evolution of the bin
patterns atr 53 ~Fig. 4!. Forb50, solitons can be seen bot
above and below threshold@Figs. 4~c!–4~d!#. They consist of
pairs of active sites and propagate with velocity one. Th
maximal lifetimes are of order 100@Fig. 4~d!#. When b is
decreased to a value of20.1, the typical lifetimes of solitons
become so long that they typically only vanish when th
collide with other solitons or propagate into turbulent stru
tures. When two solitons collide, they either annihilate
create new turbulent structures. Such creation is clearly
ible in Fig. 4~a! for n'200 andi'600.

For sufficiently largeb, the isolated solitons present in th
original model (b50) are suppressed: solitons with a lif
time longer than a few iterations are rare here. On the o
hand, there are regular ‘‘edge’’ states visible, where an ac
state propagates ballistically while emitting new activity; o
example is visible in Fig. 4~e! for n'400 andi'800. These
structures do not seem to influence the order of the transit
but they may very well lead to rather large crossover sca

In conclusion, the value ofb has a large influence on th
presence of solitons, and also influences the steepness o
transition. In fact, discontinuities are found at points in («,b)
space where solitons dominate the dynamics. This imp
that the~colliding! solitons have a strong influence on th
global dynamics and are able to change the nature of
transition from a continuous to what appears as a first-o
one. We will make this point more precise below in our stu
of a stochastic model.

FIG. 3. Activity in the model, Eqs.~2! and~3!, for 128 systems
of sizeL52048 andr 53. ~a! Activity as a function ofd« ~distance
to the critical point! at time 23105 for b520.1 ~squares!, b50
~open circles!, and b50.2 ~closed circles!. The transition appears
much sharper for negative values ofb. ~b! Steepening for the tran
sition at b520.1 for increasing times: 53103 (1), 53104 (*),
and 53105 (3). To stress the magnified scale ofd«, also the data
shown in panel~a! for b50 is plotted~open circles!.
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C. Finite size scaling in second-order regime

Stochastic systems belonging to the DP universality cl
are characterized by a set of critical exponents describ
e.g., the order parameterm(«,L,t) and the behavior of the
‘‘absorption time’’ t(r ,«,L), i.e., the averaged time it take
the system, starting from a random initial state, to reach
absorbing state. From finite-size scaling arguments@18#, one
finds that the order parameterm at the critical point«c
should behave as

m~L,t !;L2b/n'g~ t/Lz!. ~4!

For a finite lattice, the absorption timet then increases as

t;Lz. ~5!

Finally, for short times (t!Lz), g(t/Lz);(t/Lz)2b/n i, so
that for short timesm should decay as

m~L,t !;tu for t!Lz. ~6!

Here the usual dynamical exponentz5n i /n' has been intro-
duced, defined as the ratio between the correlation len

FIG. 4. Spacetime plots of our coupled map lattice Eqs.~2! and
~3! for r 53 above~left column! and below~right column! critical-
ity. Inactive sites are white, chaotic sites are black.~a! b520.1,
«50.353; ~b! b520.1, «50.343; ~c! b50, «50.361; ~d! b50,
«50.351; ~e! b50.2, «50.374; and~f! b50.2, «50.364.
7-4
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INFLUENCE OF SOLITONS ON THE TRANSITION TO . . . PHYSICAL REVIEW E67, 046207 ~2003!
exponent in the time directionn i and the correlation length
exponent in spacen' . The scaling relationu52b/n i con-
nects the critical exponents.

To estimate the critical exponents for our CML, we pe
formed direct numerical simulations and calculated the
sorption timet and the order parameterm, defined as the
average activity. We used ensembles of initial conditions
which all initial u values are assigned a random value in
chaotic phase, 0<ui(0)<1. Thev values of the initial state
are set to zero to ensure that they do not influence thu
values from the onset of iteration and that the analogy w
the original model and our variant atb50 is satisfied.

The behavior of the absorption time at criticality is us
to determine the critical point and thez exponent@16,18#. An
ensemble of 128 systems is iterated forward in time until
absorbing configuration is reached. The average numbe
time steps needed before reaching such a configura
yields the absorption timet. Examples oft as function ofL
are shown in Figs. 5~a!–5~c!; the best fit to a straight slop
determines the critical exponentz.

In Figs. 5~b!–5~d! we plot examples ofm8ªmL2u as
function of t8ªt/Lz for a range ofLs. When proper scaling
occurs, as is the case in Fig. 5~b!, the curves for differentL
fall on top of each other, and the initial power-law decay
m8 determines the exponentu. Here an ensemble of 100
systems was used. The order parameter was calculated a
sum of active sites divided by the total amount of sites. T
systems are iterated forward untilt'Lz, where the algebraic
behavior clearly ends.

Estimates of critical exponents have been done for

FIG. 5. Examples of good rescaling plots forb50.2 @~a! and
~b!# and poor rescaling forb520.1 @~c! and ~d!#. ~a! Absorption
time t vs system size L, forr 53, b50.2 and«50.3727, 0.373 22,
0.373 23~critical value!, 0.373 25, 0.3733, and 0.3735.~b! Rescaled
average activitym8ªmL2u vs rescaled timet8ªt/Lz for r 53, b
50.2 and«50.373 23 forL532, 64, 128, 256, and 512, showing
good data collapse.~c! Absorption timet vs system size L, forr
53, b520.1 and«50.352 00, 0.352 03, 0.352 05, 0.352 06, a
0.352 07. Even small changes in« lead to substantial changes in th
absorption time, and it is difficult to estimate the critical value of«.
~d! Rescaled average activitym8 vs rescaled timet8 for r 53,
b520.1 and «50.352 03 forL564, 128, 256, 512, and 1024
showing poor data collapse. Neither the initial decay nor the t
overlap; shown here is a compromise. Note that the initial deca
very slow, leading to a small estimate for the value ofu.
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52.2 andr 53.0. Forr 53.0, the critical exponents for th
original model (b50) show significant deviations from th
corresponding DP values and the computational costs
tolerable. In Figs. 5~a! and 5~b!, we show examples of the
rescaling plots forr 53, b50.2, where a nice data collaps
occurs and the transition appears to be of second order,
for r 53, b520.1 @Figs. 5~c! and 5~d!#, where the data col-
lapse is poor and the transition appears to be no longer
tinuous.

The values of the critical exponents are given in Tabl
and correspond simply to the best possible values, irres
tive of the quality of the data collapse. Forr 52.2, DP values
are found forubu>0.01. Forr 53, the critical transition on
branchB appear to be DP-like, while on branchA a cross-
over to DP values is found whenb is large enough
(ubu.0.15). This regime coincides with values ofb where
the solitons are suppressed in the space-time plots, a
continuous transition takes place. The soliton dominated
namics atb520.1 is reflected in the extremely low value o
the exponentu, characterizing the decay of the order para
eter. Here the data collapse is rather poor as shown in F
5~c! and 5~d!.

D. Spreading of turbulence in second-order regime

So far the critical properties of the CMLs starting fro
‘‘homogeneous’’ states have been studied, i.e., with ini
conditions where each site in the lattice is assigned a ran
number in the chaotic~turbulent! phase. A different approach
is to consider the spreading of a single turbulent seed in
otherwise laminar configuration~see Fig. 6!. This makes it
possible to study the dynamical critical exponents, or spre
ing exponents, and see how these compare to the dire
percolation counterparts.

For spreading of activity in stochastic systems with a
sorbing states, the following quantities are characterized

ls
is

TABLE I. The critical exponentsz andu5b/n i for our CML.
The values for DP are taken from Ref.@19#.

r b «c z u

2.2 20.02 0.01338 1.57~1! 0.16~1!

20.01 0.01465 1.57~1! 0.16~1!

0.0 0.01605~2! 1.53~1! 0.17~1!

0.01 0.017628~5! 1.57~1! 0.16~1!

0.02 0.01921~2! 1.57~2! 0.17~2!

3.0 20.25 0.16312~3! 1.58~1! 0.160~5!

20.2 0.16495~2! 1.58~2! 0.168~3!

20.15 0.16205~1! 1.58~1! 0.17~1!

20.125 0.16368~2! 1.57~1! 0.20~1!

20.1 0.35203~1! 1.52~3! 0.02~2!

0.0 0.35984~3! 1.42~2! 0.18~1!

0.1 0.3393~1! 1.48~2! 0.155~1!

0.125 0.34745~5! 1.53~2! 0.15~1!

0.15 0.35680~5! 1.57~1! 0.159~3!

0.175 0.36545~1! 1.58~1! 0.16~1!

0.2 0.37323~1! 1.58~1! 0.16~1!

DP 1.58074 0.15947
7-5
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MIKKELSEN, van HECKE, AND BOHR PHYSICAL REVIEW E67, 046207 ~2003!
critical exponents@20#: the total number of chaotic site
N(t), the survival probabilityP(t), the mean-squared devia
tion R2(t) of the turbulent activity from the ‘‘seed,’’ and th
density n(t) of chaotic sites within the spreading patch
turbulence. It is assumed that they behave according to

N~ t !;ths, P~ t !;t2d, R2~ t !;tzs, n~ t !;t2us.
~7!

For probabilistic systems, it has been conjectured and v
fied numerically@21,22# that the dynamical exponents satis
the generalized hyperscaling relationhs1d1us5dzs/2,
whered is the spatial dimension. For systems with a sin
absorbing state, including DP, one finds thatd5us5b/n i
andzs52/z, reducing the hyperscaling relation to 4d12hs
5dzs .

Systems with infinite numbers of absorbing states h
been studied carefully recently and it has been found num
cally that they differ from the classical ones with a sing
absorbing state by having what appears to be nonunive
spreading exponents@22#, which depend on intowhich ab-
sorbing state the spreading is taking place. Only expon
characterizing quantities averaged over surviving runs al
are found to be universal. It has thus been conjectured
zs , the sumhs1d, andus are universal, whereashs andd
individually are not. Only for the so-called ‘‘natural-initial
state’’ are the DP values found for the exponents charac
izing quantities averaged over all runs. Such a particu
state is constructed by letting the system evolve at critica
from homogeneous initial conditions, where all sites initia
are in the active phase, until an absorbing configuration
reached. This scenario is rather unusual for critical phen
ena and is still somewhat controversial, see, e.g., Ref.@23#
for a different interpretation.

After a few spreading experiments in our CML, we i
deed observed that the propagation of activity from the ini
seed through the laminar region depended strongly on
configuration of the laminar state surrounding the se
Moreover, the dynamical exponents varied with this config

FIG. 6. Spreading of a single turbulent seed through
‘‘natural-initial-state’’ below criticality, at criticality, and above
criticality, for b50.2 ~a!–~c!, the Chate´-Manneville model forb
50 ~d!–~f!, andb520.1 ~g!–~i!. In all casesr 53.0.
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ration, thus being nonuniversal. So the nonunique absorb
state of our CML~any configuration with allu values above
unity andv values not too large will be absorbing! leads to
behavior as can be expected for DP with an infinite numb
of absorbing states.

We determined the natural-initial-state by iterating sy
tems of up to 4096 sites from homogeneous initial conditio
until an absorbing configuration is reached. The aver
value of all sites is then used as the value of the lami
background. Forr 53.0, we have calculated these as 1.2
for b50.2, 1.212 forb50, 1.170 forb520.1, and 1.0395
for b520.2.

In Fig. 7, we display the average spreading forr 53 and
b520.1, 0, and 0.2. Clearly, forb520.1 and for the
Chaté-Manneville model atr 53, b50 it is basically impos-
sible to estimate the spreading exponents at the natu
initial-state, since the spreading is dominated by the solit
@see Figs. 7~b! and 7~e!#. This behavior is distinctly different
from what is observed in the various systems belonging
the DP universality class. We have, therefore, only estima
the spreading exponents forb50.2 at branchA, and b5
20.2 at branchB; in both cases the solitons are not dom
nant.

Note that the strength of the spreading solitons can
altered by changing the value of the laminar background.

e

FIG. 7. The average spreading of active seeds in the natu
initial-state close to criticality. The densities are obtained by av
aging over 104 realizations, and for clarity, we have included thr
snapshots of this average activity in the bottom rows. Parame
arer 53 ~for all runs!; andb520.1 @~a! and~d!#; b50.0 @~b! and
~e!#, and b50.2 @~c! and ~f!#. The respective values of natura
initial-state are 1.170, 1.212, and 1.235.

FIG. 8. Average spreading activities near criticality forr 53, b
50.2 ~a! and r 53, b50 ~b!. In comparison to the spreading int
the natural-initial state as shown in Fig. 6, the value ofu in the
laminar background has been lowered from 1.235 to 1.225 in~a!,
thus strongly enhancing solitons, and has been increased from 1
to 1.22 in~b!, thus strongly suppressing soliton activity.
7-6
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increasing the background to a value above the natu
initial-state one, the solitons can be suppressed, while
can be enhanced by a decrease of the laminar value; see
8.

Our estimates of the dynamical exponents have been d
for simulations with a maximum time of 2000 iterations. A
active seed is placed in the center of the lattice, surroun
by a laminar background. The seed consists of two ac
sites, each of which is assigned a random number in
chaotic regime, such that the location is fixed but the val
of the active sites differ for each trial in the ensemble. T
ensemble sizeNs used for statistical averaging and the nu
ber of sites in the latticeL have been adjusted to the numb
of surviving runs the different setups produced, and how
the turbulence propagated out from the seed. A minimum
200 surviving runs have been used in the averaging. In
9, we show a typical example of the curves that have b

TABLE II. Estimated spreading exponents forr 53.0 for back-
ground valuesxi . The deviation from the hyperscaling relation fo
d51 is defined asD[zs/22(hs1d1us). Note that forb50.2, the
natural background state hasxi'1.235; for this value, the expo
nents d and hs are close to their DP values. Similarly forb
520.2, the natural background state hasxi'1.1395; againd and
hs are close to their DP values.

b xi zs d hs us D

0.2 1.229 1.98~2! 0.00~0!

1.23 1.68~2! 0.10~1! 0.43~2! 0.32~1! 20.01(2)
1.235 1.60~1! 0.16~1! 0.34~1! 0.29~1! 0.01~1!

1.24 1.61~2! 0.23~2! 0.25~1! 0.31~1! 0.01~2!

1.245 1.65~1! 0.30~1! 0.23~1! 0.29~2! 0.00~1!

1.25 1.65~3! 0.34~2! 0.14~1! 0.300~3! 0.05~2!

1.255 1.69~2! 0.35~2! 0.14~2! 0.29~1! 0.07~2!

1.26 1.72~3! 0.43~1! 0.04~1! 0.29~1! 0.10~2!

20.2 1.13 1.99~1! 0.00~0! 0.793~2! 0.205~1! 0.00~1!

1.135 1.59~2! 0.09~1! 0.42~1! 0.29~1! 20.01~1!

1.139 1.58~2! 0.170~3! 0.32~1! 0.30~1! 0.00~1!

1.1395 1.58~1! 0.16~1! 0.31~1! 0.28~1! 0.04~1!

1.145 1.56~1! 0.249~2! 0.20~1! 0.24~2! 0.08~2!

1.15 1.61~1! 0.347~3! 0.11~1! 0.27~1! 0.08~1!

1.155 1.68~3! 0.45~1! 0.01~1! 0.22~1! 0.16~1!

DP 1.26523 0.15947 0.31368 0.15947

FIG. 9. Average survival probabilities for spreading clusters
our CML with r 53 and b50.2 for various values of the back
ground~indicated in the figure!. The natural background state ha
u51.235.
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used to extract the exponents in Table II. The figure sho
the survival probability for various choices of backgrou
and thus gives the exponentd. Whether these curves displa
true power-law behavior~even away from the natural back
ground state! is hard to judge, but we believe that it is at lea
a reasonable interpretation@24#.

Our results in Table II agree rather well with previous
obtained results for probabilistic systems with an infin
number of absorbing states. In particular, the exponents
eraged over surviving runs alone definitely seem to be u
versal as long as the background does not deviate too m
from the natural-initial-state one. While the values for t
sum d1hs are very close to the DP value of 0.473 15(7),
our results forzs and us deviate from their respective DP
values. A very interesting observation is that the hypersca
relation is satisfied (D.0) for the majority of different back-
ground values. Only for the highest values are signific
deviations encountered.

III. STOCHASTIC MODEL

The propagating structures, which are observed in
CML that we studied in the preceding section, appear to p
an important role for the transitional behavior. It is, howev
numerically very demanding to obtain good statistics
large CMLs and long times. As pointed out already in t
introduction, this is the reason why one tries to map su
deterministic models to simple stochastic models. Not o
may there be more hope to understand such models ana
cally, they also are much easier to handle from a compu
tional point of view.

In this section, we will introduce and study a very simp
extension of the Domany-Kinzel cellular automaton that
self is a simple model showing DP behavior. While for t
Domany-Kinzel automaton, every site can only be active
inactive, we will allow sites to either contain a left or righ
traveling soliton. As in the CML, these solitons should
generated from active sites only, and we wish to be able
tune their typical lifetime. The only process in which the
solitons aid the spreading of activity is by collisions: f
simplicity, we assume that with probability 1, a pair of co
liding solitons yields a single active site.

Below we will first discuss the definition of our model i
Sec. III A. We will then discuss the mean-field equations
our model in Sec. III B, and these will show a transition fro
second- to first-order behavior. We will study the statistic
properties of our model in Sec. III C. We will illustrate th
role of solitons in direct simulations of this model; the
simulations will point to the relevance of large ‘‘holes’’ tha
cannot be ‘‘healed’’ by the solitons. We will discuss the s
tistical properties of our model near the transition from ina
tive to active states in the soliton-dominated parameter
gime. We will find that the transition is no longer in the D
universality class, since no asymptotic scaling regime can
reached. While the transition shows some characteristics
first-order transition~dependence on initial state, for ex
ample!, the asymptotic situation is not entirely clear: rath
we find a regime of long lived transient states between ac
and inactive regimes.
7-7
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MIKKELSEN, van HECKE, AND BOHR PHYSICAL REVIEW E67, 046207 ~2003!
A. Definition of model

The (111)-dimensional Domany-Kinzel cellular autom
ton is defined on a diagonal square lattice, where each
can either be active or inactive. The model evolves by p
allel updates according to the transition probabilitiesp andq,
corresponding to the probabilities that an empty plus an
tive site or two active sites, respectively, produce a sin
active site. The choiceq5p(22p) corresponds to a realiza
tion of directed bond percolation@1#.

In our extension the active sites behave like usual direc
bond percolation except from the fact that with probabilityc
they can emit a left- or right-moving soliton. These solito
have a tunable lifetime and travel ballistically. We assu
that the solitons cannot, by themselves, create chaos, ex
when two solitons collide.

The updating rules illustrated in Fig. 10, where the si
can be either inactive~empty!, active ~black!, or contain a
left- or a right-moving soliton, are as follows.

~i! The inactive state: two inactive sites always yield
inactive site. This property ensures that there is a uni
absorbing state.

~ii ! Soliton propagation: a right-moving soliton either di
with probability d, or propagates with probability (12d),
when the ‘‘O’’ state to its right- is inactive or another righ
moving soliton. The rule for left-moving solitons follows b
left-right symmetry.

~iii ! Soliton collision: when two oppositely propagatin
solitons collide, they generate an active site with probabi
one. This is the only process where solitons lead to sprea
active sites. In principle, we could generate active sites w
a probability less than one, but it may be expected that
does not change the behavior of the model in a qualita
sense.

~iv! Single active sites: a single active site, where X c
either be a soliton or inactive site, leads with probabilityp to
a new active site. Note that the spreading of activity is th
not enhanced by individual solitons enhanced by individ
solitons.

FIG. 10. Schematic definition of our stochastic model. The b
tom two circles denote possible incoming states and the circle a
denotes the possible stochastic outcome. Our model is defined
diamond lattice and so one only needs to define the probabilities
certain offspring~active, inactive, right or left traveling soliton! as a
function of its two predecessors. Empty circles depict inact
states, black circles are active, ‘‘R’’ and ‘‘ L ’’ denote right- and
left-moving solitons, ‘‘S’’ denotes a soliton of arbitrary direction
and ‘‘X’’ finally represents any state (L,R, inactive or active!. The
notationm(a,b) denotes the minimal value ofa andb, andP de-
notes the conditional probability that this outcoming state occ
See text for a more elaborate explanation.
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~v! Transformation: a single active site can give rise to
soliton ~S! with probability min(12p,c); c denotes the cre-
ation rate of solitons. Such a new soliton can be either l
or right-moving with equal probability.

~vi! Pair of active sites: two active sites create a n
particle with probabilityq; we restrict ourselves to bond
directed percolation and takeq5p(22p).

~vii ! Soliton creation from pair of active states: similar
case~v!, a pair of active sites can give rise to solitons wi
probability min(12q,c).

B. Mean-field equations

To interpret the physical properties of our cellular a
tomaton, a crude insight can be obtained by applying me
field theory. In this approximation, it is reasonable to igno
the differences between left and right traveling solitons, a
so our mean-field equations are for two concentrations, th
of chaotic sitesc and solitonss.

(a) Equation for chaotic sites.Chaotic sites can emit soli
tons and can be generated by collisions of two solitons; a
from these two rules they behave like DP. Thus, without
solitons, the rate equation~without noise! would beċ5b1c
2b3c2 @13#. To incorporate the creation of an active sit
when two solitons collide according to rule~iii !, the term
b2s2 needs to be added to this equation. There is no sou
term linear ins in the rate equation forc, reflecting that we
assume that individual solitons do not give rise to activi
Note that, for simplicity, we have not distinguished betwe
right- and left-moving solitons

(b) Equation for solitons.There are four processes th
influence the solitons. Solitons may decay spontaneously
cording to rule~ii !, and this yields a term2a3s in the rate
equation fors. Solitons also die upon collision leading to
term}2s2. Depending on the lifetime of the solitons, eith
of these two terms may dominate and so we keep both
them; we will see below that this will indeed be a cruc
ingredient. Solitons are created from active sites accordin
rule ~v! and~vii !. While this in principle yields source term
in the rate equation ofs proportional to bothc and c2, we
only keep the linear term, since the prefactor for both th
terms will be of the same order. Inclusion of the quadra
term does not affect the qualitative dynamics.

The rate equation for the solitons and chaotic sites
then be written as

ṡ5a1c2a2s22a3s, ~8!

ċ5b1c1b2s22b3c2, ~9!

where the lifetime of the solitons is set by 1/a3 and the
spreading rate of the chaotic patches byb1.

These two equations can be simplified by the introduct
of a rescaled of timet and densitiesS andC to be

Ṡ5C2S22aS, ~10!

Ċ5r 0C1S22uC2, ~11!
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where

a5
a2a3

a1b2
, r 05

a2b1

a1b2
, u5

b2b3

a2
2

~12!

t5
a2

a1b2
t, s5

a1b2

a2
2

S, c5
a1b2

2

a2
3

C. ~13!

We will now analyze the possible transitions in the mea
field equations~12! and ~13!.

(c) Fixed points.The fixed points (S* ,C* ) of the rescaled
equations~10! and~11! satisfyC* 5S* 21aS* , whereS* is
given by solutions to the fixed point equation

S f~S!50, ~14!

f ~S!5uS312uaS21~ua2212r !S2ar0 . ~15!

Apart from the trivial fixed point (S* ,C* )5(0,0), there may
be either 1 or 3 other fixed points that can be found fr
solving Eq.~15!. It can be shown that Eq.~15! always has
one solution for large negativeS. This fixed point can be
ignored since only points where bothS* andC* are positive
are relevant for our mean-field equations~remember thatS
and C are both concentrations!. The two nontrivial fixed
points (S1* ,C1* ) and (S2* ,C2* ) are born in a saddle-node b
furcation, when the discriminant of Eq.~15! becomes nega
tive. Introducing the parameterzªa2u and performing the
tedious standard algebra, yields that this occurs when

z22~225r 02r 0
2/4!1~11r 0!350, ~16!

and so the locus of the saddle-node bifurcation only depe
on r 0 andz. It can also be shown that atr 050, always one of
the nontrivial fixed points crosses through the fixed point

FIG. 11. Dynamical system analysis of the mean field equati
~10! and ~11!. The full and dashed curves show the location inr ,z
space of the saddle-node and transcritical bifurcations, respecti
The five insets~a!–~e! show schematically the flow in the variou
regimes of the mean field equations. For more details see text
04620
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the origin in a transcritical bifurcation. The various types
flows that occur as function ofz and r 0 are illustrated in
Fig. 11.

As shown in Fig. 11, there are essentially four quali
tively different types of flow and two bifurcations occurring
We will here discuss these flowtypes and their relevance
the dynamics as follows.

~a! Only the trivial fixed point is present, and is stabl
Hence all initial conditions flow to the absorbing state.

~b! For small soliton lifetimez.1, the two nontrivial
fixed points (S1* ,C1* ) and (S2* ,C2* ) that are born in a saddle
node bifurcation do not lie in the first quadrant and a
therefore, not relevant for the mean-field equations. Hen
this situation means that there is a single relevant fixed p
at the origin and so the system is in the absorbing state.

~c! When, forz.1, r 0 crosses through zero from below
(S1* ,C1* ) crosses through the origin in a transcritical bifu
cation. All initial conditions in the first-quadrant flow now t
(S1* ,C1* ); the mean-field equations indicate that there is
finite activity, whose value grows approximately linearly
r 0. The transition atr 050 corresponds to the standard D
transition forz.1.

~d! For long soliton lifetimes (z,1), the two nontrivial
fixed points (S1* ,C1* ) ~square! and (S2* ,C2* ) ~triangle! are
also created in a saddle-node bifurcation; but in contras
case~b! both lie in the first quadrant and are, therefore,rel-
evantfor the dynamics. Depending on initial conditions, th
final state can either be absorbing or active; the incom
manifold of the saddle point acts as a separatrix. The tra
tion that occurs here as the saddle-node bifurcation is cro
leads to a finite jump in the value ofc in the active state,
which is indicative of a first-order transition.

~e! When, forz,1, r 0 crosses through zero from below
(S2* ,C2* ) crosses through the origin in a transcritical bifu
cation. All initial conditions in the first quadrant flow now t
(S2* ,C2* ).

To study the phase transition, we shall primarily varyr 0
while keepinga and u fixed. There are following three ge
neric choices forz relevant here.

~i! z→`: In this case the solitons have probability 1
die once they are generated, and so the system is effect
soliton free. This is the case of pure DP, and the transit
takes place atr 050. There is no hysteresis.

~ii ! z.1: This is the regime of short soliton lifetimes
Here the solitons do not contribute to any change in
qualitative behavior. An attractive fixed pointS5S1*
'ar/(z21) emerges for small, positiver 0. This corre-
sponds toC5C1* 'a2r 0 /(z21), such that this fixed poin
converges towards the DP valueC1* →r 0 /u for large a. As
r 0→0, this fixed point converges towards the origin and
changes stability atr 050 ~see Fig. 11!, implying that the
transition is continuous. Thus, the transition for small solit
lifetimes (z.1) still takes place atr 050 and resembles DP

~iii ! z,1: This is the soliton dominated regime, where
completely different scenario occurs. Forr 0.0, the behav-
ior is determined by the stable node atS2* 'a(z21/221).
When r 0 becomes negative, this fixed point remains sta
and away from the origin. Simultaneously the origin b

s

ly.
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comes attractive and a saddle appears close to the orig
S5S1* 'ar0 /(z21). Initial conditions close to the origin
will evolve into that point, while initial conditions above th
stable manifold for the saddle located at (S1* ,C1* ) will con-
verge toward the node (S2* ,C2* ). This will go on until the
saddle (S1* ,C1* ) and the node (S2* ,C2* ) merge in a saddle
node bifurcation atr 05r c(z). Below this critical point, the
origin is globally attractive and every trajectory in the pha
space converges towards this. Going back and forth al
scenarios~a!, ~d!, and ~e! there is hysteresis and so forz
,1, we clearly observe a first-order transition.

For infinite soliton lifetimes (a50, z50), the critical
point is shifted down tor 0521. Settinga50 into Eq.~15!
yields the fixed pointS* 5A(11r 0)/u that shows that the
transition is continuous, but withb51/2 instead of the DP
mean-field value,bDP51.

Finally, at the tricritical pointz51, Eq.~15! is reduced to
a2f (S)5S312aS22a2r 0S2a3r 0. At r 050, the only non-
negative root isS50, but for small positiver 0 a new root
appears atS* 'aAr 0/2. The transition thus remains atr 0
50 and is continuous, but again withb51/2 instead of the
DP valuebDP51.

C. Phenomenology and statistical properties
of the stochastic model

Let us now discuss the properties of the full stochas
model based on direct numerical simulations. For small
finite values of the soliton lifetime (d@0) or for sufficiently
small production of solitons (c!1), the transition from in-
active to active states that occurs whenp is increased is of
second order and indeed appears to be in the DP univers
class. There is, however, also a regime in which the mo
appears to display a first-order transition. In the remainde
the discussion on the stochastic model, we will focus on
regime, which shows some interesting new features.

(a) Phenomenology.The phenomenology of this regim
will be illustrated following Figs. 12 and 13, where differe
aspects of the dynamics of our model are shown. The par
eters chosen are somewhere in the transitory regime, w
in the mean-field description corresponds to the regime w
two stable fixed points@Fig. 11~b!#.

In Fig. 12~a!, we show the evolution of our model, star
ing from a fully active state. Figure 12~b! is a closeup of the

FIG. 12. ~a! Large scale dynamics of our stochastic model
d50.01, c50.1, andp50.614. The gray scale corresponds to t
number of solitons and active sites coarse grained in a cell o
space and 20 time units.~b! Enlargement of the dynamics shown
the top left corner of~a!.
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top left corner of Fig. 12~a! which shows the dynamics o
active sites and solitons in detail. At first glance, the clust
of activity look extremely similar to the ordinary Domany
Kinzel Cellular Automaton, but after closer inspection it b
comes clear that colliding solitons generate new active c
ters @one example can be seen in Fig. 12~b! for n'50,
i'4825]. We have shown the coarse grained activity a
solitons separately in Figs. 13~a! and 13~b!. Clearly, the soli-
ton density is more uniformly spread, and one can think
the coarse grained dynamics as active clusters surrounde
clouds of solitons.

(b) Decay of activity.To gain insight in the statistica
properties of our model, we have studied the decay of
number of active sites as a function of time, for a range
system sizesL and parameter valuesp. Unless noted other-
wise, we keep the soliton parametersd andc at values 0.01,
and 0.1 respectively. In Fig. 14, we show the results of th
calculations forp ranging from 0.612 to 0.621.

For early times (t,103), one could misinterpret that dat
as being indicative of a second-order transition with non-
exponents. Whenp is small enough (,0.61), the activity
decays faster than a power law, while whenp is large

r

0

FIG. 13. Concentration of active sites~a! and solitons~b! for the
state shown in Fig. 12.

FIG. 14. Decay of average activitym for c50.1, d50.01, and
p50.610, 0.611, . . . ,0.621 ~increasingp leads to an increase o
activity; the curves withp50.610 and 0.620 are thicker!. Averages
are taken over~a! 2000 systems of L5200, ~b! 200 systems of L
52000, and~c! 20 systems of L520 000.
7-10
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INFLUENCE OF SOLITONS ON THE TRANSITION TO . . . PHYSICAL REVIEW E67, 046207 ~2003!
enough, the active state does not decay, and we are abov
transition and the activity reaches a plateau value. For
there is a critical value ofp where the activity decays as
power law. As shown in Fig. 15, our model displays a tra
sient decay towards the plateau value which can look lik
power law. For a transient period that in this case goes u
t'103, it is possible to find values ofp such that the decay
of m appears to be a power law with a non-DP exponent.
speculate that this transient behavior may be the origin
some of the nonuniversal power laws observed in coup
map lattices@5,7,18,25#, where it is very hard to reach~ef-
fective! large times.

For this ‘‘scaling’’ to be truly asymptotic, one should b
able to extend the scaling regime to arbitrary large tim
however the activity curves for system sizes 200, 2000,
20 000 all bend downwards at nearly the same time; he
there is no hope that increasing the systemsize extends
time interval over which apparent scaling can be found.
times longer than 103–104, the activity either decays rapidly
or first hits a plateau. Clearly, the transition in our mode
not an ordinary second-order transition. If we focus on
activity as a function ofp for a fixed large timet.104, we
find a very abrupt transition from an inactive to an acti
state, with a value of the activity given by the ‘‘plateau’’ th
can be seen in Fig. 14. This behavior is indicative of a fir
order transition, consistent with the mean-field theory
large soliton lifetimes.

(c) Nucleation of holes.Is this transition now an ordinary
first-order transition, and if so, what would be the critic
value ofp? From the magnetization curves, such as show
Fig. 14, it is not so easy to answer this question; in particu
we observe that the plateau is not the truly asymptotic s
for these parameters, since decay eventually sets in. We
now first study the reason for this decay. Let us return to F
13, where the activity appears to arrive at the plateau~the
overall activity appears to approach a constant!. However,
aroundn'4000 andi'3000 a large ‘‘hole’’ opens up. Onc
the size of this hole becomes larger than twice the lifetime
the solitons, it becomes unlikely that colliding solitons w
create new activity there and ‘‘heal ’’ the hole. In fact, f
this particular example, the hole did spread out and the
tem decayed to the inactive state. A closer inspection of

FIG. 15. Average activitym for c50.1, d50.01 in an ensemble
of 20 systems ofL520 000, showing the appearance of qua
power-law decay. The three curves correspond top50.612, 0.616,
and p50.62, respectively, and are shifted by 30% for clarity. T
three straight lines corresponds to power laws with expone
20.19,20.21, and20.23. In particular, the scaling in the syste
for p50.612 looks rather convincing with an exponent of20.23.
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dynamical states that occur when the activity drops be
the plateau value, shows that this is the general scenario
nucleation and subsequent spreading of a large inactive d
let is what dominates the asymptotic decay of the act
states here.

We illustrate this property by following the dynamics of
large inactive droplet forp50.618, where the system has
well-defined plateau in the activity~see Fig. 14!. A hole of
size 2500 grows as can be seen in Fig. 16~a!, while a hole of
size 500 is healed for these same parameter values@Fig.
16~b!#. The difference between the spreading of a small
tive cluster and the behavior of an homogeneously ac
state indicates that the initial concentration of active si
plays a role. This is illustrated in Fig. 17, where we follo
the evolution of the activity for a range of initial concentr
tions of activity for p50.621. For initial activities in the
range from 1 to 0.1, the same plateau value is reached,
for initial activities of 0.05 and smaller, there is an initi
increase of the activity after which the activity rapidly d
cays; the plateau is never reached.

Finally, in Fig. 18, we show the evolution of the activit
m divided by the number of surviving clusters for the sam
parameter values. For small systems, these plots are
different from the ones averaged over all systems~Fig. 14!;
in the present case there is a typical activity in each sys
which rapidly disappears. We interpret this as further e
dence that the nucleation of large holes dominates the e
tual decay. For larger systems, this effect disappears bec

-

ts

FIG. 16. Dynamics forc50.1,d50.01, andp50.618, showing
that a large hole of size 2500 isnot healed~a!, while a hole of size
500 is healed~b!.

FIG. 17. Evolution of the average activitym in 20 systems of
size 20 000 forc50.1, d50.01, andp50.621, i.e., well in plateau
regime. Here we vary the initial concentration of active states
randomly distributing active sites through our lattice fori 51.
These activities are, respectively, 1.0, 0.85, 0.7, 0.55, 0.4, 0
0.15, 0.1, 0.05, and 0.025. For the latter two cases, the plateau i
reached, even though initially the activity is increasing. That
long-time behavior (i .200) depends on the initial concentration
reminiscent of a first-order transition.
7-11
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the time it takes for a hole to engulf the whole system
large.

(d) Nature of the transition.Purely from the activity
curves such as shown in Fig. 14, it is very difficult to det
mine the transition valuepc . For very large holes, or equiva
lently a large droplet in an infinite inactive background, o
can however determine the propagation velocity of the ‘‘d
main wall’’ that separates the active from the inactive sta
In the examples shown above, such an active droplet wo
shrink, and the ‘‘plateau’’ is not the asymptotic state. O
could imagine that the real transition occurs when act
droplets start to spread. Even the nucleation of a large h
will then not destroy the active state.

We have performed simulations of the shrinking a
spreading of active patches of size 5000 in an inactive ba
ground~see Fig. 19!, from which we conclude that the activ
state starts to spread into the inactive state forp.p*
'0.630 12(4). Note that Fig. 14 indicates that for suc
value, we are already deep into the plateau regime.

In addition, we did some simulations to determine t
critical value ofp where the domain wall velocity change
sign as a function ofd, the inverse soliton lifetime. Thes
simulations indicate that ford↘0, i.e., for infinite soliton
times, there is a well-defined domain wall velocity th
changes sign forp'0.6298(2); furthermore,p* (d) appears
to be a smooth function@see Fig. 19~b!#.

We conclude from this that the best way to find the tra
sition point is to study the spread of a domain wall betwe
an active and inactive state. To determine thenature of the
transition, one needs to inspect activity graphs like Fig.
When, for large systems, there is no plateau, the transitio
of second order, while for cases such as presented in Fig
the transition is most likely of first order. The lifetime of th
solitons introduces a much larger crossover time for
nucleation of sufficiently large holes. This leads to a range
p values where an isolated droplet does not spread
equivalently, a large enough hole does not heal, but ne
theless a very long lived transient first-order-like plate
state is reached.

FIG. 18. Average activity divided by the number of active sy
tems, for the same parameter values as shown in Fig. 14.
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IV. DISCUSSION

The overall picture that emerges from our study is that
transition to spatiotemporal intermittency is strongly infl
enced by coherent ballistically traveling ‘‘solitons,’’ which
even though they have a finite lifetime, change the nature
the transition and can introduce first-order-like behavi
That such a scenario is relevant, is supported by recent
dence for a discontinuous transition to spatiotemporal ch
in the damped Kuramoto-Sivashinsky equation@26#, which
is well known to support localized ballistically moving exc
tations, or ‘‘pulses’’@27#.

We build our conclusions upon an extension, using tw
dimensional local maps, of the Chate´-Manneville coupled
map lattice. We thereby gain an additional parameter, wh
turns out to tune the importance and lifetime of the solito
For this coupled map lattice, we find, depending on para
eters, evidence for both continuous phase transitions in
universality class of directed percolation with infinitely man
absorbing states and for first-order behavior.

To understand this behavior, we have developed a
chastic model generalizing the Domany-Kinzel cellular a
tomaton. In this model, the active sites can emit solitons
by colliding, the solitons can create new active sites. Sim
lations of this model, together with the appropriate mea
field theory, support the existence of both continuous a
discontinuous transitions. With the stochastic model, one
look at the behavior on much larger length and time sca
One, thereby, discovers that there is a whole range of par
eters, where the active states close and above the app
discontinuous transition are actually metastable, and

-
FIG. 19. ~a! Time evolution of the average size of an activ

droplet ~averaged over 500 realizations! of initial size 5000, forp
50.631, 0.6305, 0.063, 0.6295, and 0.629. The slope of th
curves varies linearly withp in this regime, yielding that the drople
starts to spread forp50.630 12(4). ~b! Critical value of p, p* ,
where front velocity changes direction as a function of the soli
lifetime 1/d, for c50.1. The error bars are smaller than the symb
size. Ford↘0, p* ↘0.6928(2), while for d51, p* approaches
0.6415~5!. This latter value is slightly different from the soliton-fre
value; even thoughd51, solitons life for one time step and henc
slightly alter the critical value.
7-12
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finally, decay when a sufficiently large droplet nucleat
There is, however, a larger value for the critical parame
where such inactive droplets shrink, and this value co
constitute the ‘‘true’’ transition value.

The metastable regime appears very clearly over a
prisingly long range of intermediate time scales, and wo
thus be relevant in the interpretation of experiments. We
ther show that this feature can lead to long powerl
transients displaying nonuniversal ‘‘critical exponents
,
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nt

,
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and we believe that such transients are the origin of
observed nonuniversality in the transition to spatiotempo
intermittency.
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@19# M.A. Muñoz, R. Dickman, A. Vespignani, and S. Zappe
Phys. Rev. E59, R6175~1999!.

@20# P. Grassberger and A. de la Torre, Ann. Phys.~N.Y.! 122, 373
~1979!.

@21# J.F.F. Mendes, R. Dickman, M. Henckel, and M.C. Marques
Phys. A27, 3019~1994!.

@22# M.A. Munoz, G. Grinstein, and Y. Tu, Phys. Rev. E56, 5101
~1997!; M.A. Munoz, G. Grinstein, and R. Dickman, J. Sta
Phys.91, 541 ~1998!.

@23# P. Grassberger, H. Chate´, and G. Rousseau, Phys. Rev. E55,
2488 ~1997!.

@24# We have not found any strong indication for the variation
the criticalpc with background state@22#.

@25# J.R de Bruyn and Lihong Pan, Phys. Rev. E47, 4575~1993!.
@26# K.R. Elder, J.D. Gunton, and N. Goldenfeld, Phys. Rev. E56,

1631 ~1997!; M. Paniconi and K.R. Elder,ibid. 56, 2713
~1997!.

@27# N.J. Balmforth, Annu. Rev. Fluid Mech.27, 335 ~1995!.
7-13


