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Quiet swimming at low Reynolds number
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The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant
aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as
one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of
the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays
as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic
organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type
kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and
the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far
field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general
framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions
in the planktonic world.
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Swimming is essential for feeding and reproduction of
many aquatic organisms, as the encounter rates with prey
and mates scale with swimming speed [1]. But there is a
trade-off since the associated fluid disturbance may risk the
survival of the swimmer by signaling its presence to rheotactic
predators. Both the magnitude and the spatial decay of the
fluid disturbance depend on the distribution of the propulsive
forces and the drag forces on the organism [2–5]. The stresslet
is the simplest possible model of the far field flow due to a
single, freely swimming and neutrally buoyant low Reynolds
number swimmer [6,7]. It describes the flow due to two
oppositely directed point forces of equal magnitude that act at
different points and represent the thrust due to the swimming
appendages and the drag on the body of the organism,
respectively. The stresslet gives rise to a fluid disturbance
that decays as one over distance squared. Experimentally the
stresslet has been found to capture the far field flow created
by, e.g., the bacterium Escherichia coli [8].

For some low Reynolds number swimmers, the fluid forces
due to the propulsion apparatus and the drag on the body of
the organism cannot appropriately be described by two point
forces only [6,7]. In a swimmer model with two point forces,
the far field flow will be dominated by a force dipole. However,
with three or more point forces, the force dipole term can
be made to vanish and the far field flow will then be a force
quadrupole that decays as one over distance cubed. Swimming
spermatozoa provide such an example if only the middle
portion of the flagellum produces thrust, whereas the two
ends of the flagellum produce drag [3]. For such arrangements
the force quadrupole can be the dominant term. Similarly the
squirmer model can give rise to qualitatively different fluid
disturbances depending on whether it represents a puller, a
pusher, or a neutral swimmer for which the far field flow is
a potential dipole [5,9–11]. The differences in the fluid inter-
actions between pullers, pushers, and neutral swimmers have,
e.g., been studied for dense suspensions of such squirmers [5].

In the present paper we focus on exploring the fluid
disturbances due to low Reynolds number swimmers with

breast stroke type kinematics. Breast stroke swimming is
common among small aquatic organisms, and it has evolved
independently in diverse taxonomic groups. Many unicellular
organisms swim with breast stroke type kinematics [12–14],
and the biflagellated green alga Chlamydomonas reinhardtii
[Fig. 1(a)] has in particular been the subject of measurements
and theoretical analysis [15–17]. The jumping ciliate Meso-
dinium rubrum [Fig. 1(b)] is also a breast stroke type swimmer
since it propels itself with an equatorial ciliary belt [4]. The
crustacean nauplii, e.g., Acartia tonsa [Fig. 1(c)], which is
one of the most widespread and successful larval forms in
nature [18], swim with a breast stroke [19,20], and the adults
of the crustacean order Cladocera, e.g., Podon intermedius
[Fig. 1(d)], are breast stroke swimmers. It has been suggested
that the prevalence of breast stroke swimming in nature could
be due to its reduced fluid disturbance. For breast stroke
swimmers such as M. rubrum, A. tonsa, and P. intermedius
the fluid disturbances have been measured using particle
image velocimetry to decay as one over distance cubed [20].
This quiet swimming mode is advantageous for organisms
that swim to locomote whereas organisms that swim to feed
give rise to fluid disturbances with slower spatial decay [20].
Inspired by these observations and further motivated by the
relevance of breast stroke swimming to many plankton, we
investigate this propulsion method using a point force model
in which two appendages, one on each side of the left-right
symmetric organism, each generate half of the propulsive
force. The model allows us to explore the possibility of
modifying the fluid disturbance by repositioning the point
forces that represent the propulsion apparatus.

The three-Stokeslet model is our main example (Fig. 2). The
point forces 1 and 2, each of magnitude F , represent the forces
due to the swimming appendages or flagella and the point force
3, of magnitude 2 F , represents the force due to the body of the
organism. All three point forces are acting at points in the xz

plane in the negative or in the positive z direction, respectively,
and the organism is swimming in the positive z direction.
The three-Stokeslet model has been used to successfully
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FIG. 1. (Color online) Planktonic breast stroke swimmers across
taxonomic groups and sizes: (a) Chlamydomonas reinhardtii, a
flagellate (image courtesy of Knut Drescher); (b) Mesodinium
rubrum, a ciliate; (c) a nauplius (juvenile) of Acartia tonsa, a copepod;
and (d) Podon intermedius, a cladoceran. The Reynolds numbers of
the swimmers are approximately 10−3, 0.1, 10, and 10, respectively.

model the time-averaged flow field around freely swimming
C. reinhardtii [15], and we believe that it is an appropriate
model for both the near and the far field around other small
breast stroke swimmers as well. Due to out of plane appendage
motion some breast stroke swimmers rotate around their
length axis while swimming. We only consider in-plane and
left-right symmetric placement of propulsive forces, because
the rotational frequency typically is an order of magnitude
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FIG. 2. (Color online) Three-Stokeslet model of a breast stroke
swimming aquatic organism. The red vectors represent the point
forces.

smaller than the appendage beat frequency and synchronous
beating is the dominant mechanism in swimming [19,21].

The basic building block in point force models like the
three-Stokeslet model is the low Reynolds number flow due to
a point force F = (Fx,Fy,Fz) which is acting at a source point
x′ = (x ′,y ′,z′). The resulting flow velocity v = (vx,vy,vz) at
the field point x = (x,y,z) is in index notation

vi(x) = 1

8πμ

[
Fi

|x − x′| + Fj (xj − x ′
j )(xi − x ′

i)

|x − x′|3
]

, (1)

where μ is the dynamic viscosity of the fluid [22]. To describe
the flow in the far field where the distance from the origin to
the field point r = (xi xi)1/2 is much larger than the distance
from the origin to the source point r ′ = (x ′

i x
′
i)

1/2, we make
use of the binomial series and obtain the multipole expansion

vi(x) = 1

8πμ
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δij

r
+ xixj

r3

)
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(
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r3
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2
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− 3
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r5
+ 15xixjxkxl

r7

)
Fjx

′
kx

′
l + · · ·

]
, (2)

where the three terms represent the force monopole, the force
dipole, and the force quadrupole, respectively. The strength
of the force monopole is described by the force vector Fj ,
the force dipole by the tensor pjk = Fjx

′
k , and the force

quadrupole by the tensor tjkl = (1/2)Fjx
′
kx

′
l . To determine

the total monopole, dipole, and quadrupole terms in the far
field flow due to a superposition of N point forces, we add the
individual contributions

Fj =
N∑

n=1

Fn,j , pjk =
N∑

n=1

pn,jk, tjkl =
N∑

n=1

tn,jkl . (3)

The strengths depend only on the applied forces and their
distribution in space. For a given set of point forces, the dipole

and higher order terms can be modified by rearranging the
points of action of the forces. The force multipole solutions
are usually used to approximate the far field solution for
the flow due to an arbitrarily shaped body with a given
surface stress distribution [23], analogous to the approach in
electrostatics [24], or as a computational tool [22,25,26].

We now return to the three-Stokeslet model (Fig. 2). We
note that the essential parameter in describing the geometry
of the point force configuration is the aspect ratio α = b/a.
The exact velocity field in the model is the sum of the three
point force contributions. In the following when plotting the
velocity field we use the length scale a and the velocity scale
u = F/(8πμa). Figure 3 shows the velocity fields in the xz

plane for α = 1, α = 0.1, and α = 0, respectively. The flows

042712-2



QUIET SWIMMING AT LOW REYNOLDS NUMBER PHYSICAL REVIEW E 91, 042712 (2015)

4 2 0 2 4

4

2

0

2

4

x a

z a

4 2 0 2 4

4

2

0

2

4

x a

z a

4 2 0 2 4

4

2

0

2

4

x a

z a

FIG. 3. (Color online) Velocity fields in the three-Stokeslet model: (left) α = 1, (middle) α = 0.1, and (right) α = 0. The thick red arrows
represent the point forces and the green dots the stagnation points on the z axis. The flow fields are shown as thin black vectors and blue
streamline segments.

in the three cases are qualitatively different. When α = 1 two
large lateral whirls are present and the flow has a stagnation
point on the positive z axis at z/a = 1. The stagnation point on
the positive z axis is located approximately at z/a ≈ 1/(2α)
when 0 < α � 1. The stagnation point is therefore at z/a ≈ 5
when α = 0.1. When α = 0 the flow on the entire z axis is in
the positive z direction and the whirl centers are on the x axis
at x/a = ±(

√
5 − 1)/2 ≈ ±0.6180.

The predicted flow fields for low α values correspond
qualitatively with the flow fields measured recently using
particle image velocimetry for A. tonsa nauplii [27] and P.
intermedius [20]. Also, the stagnation point on the positive
z axis and the two large lateral whirls in the velocity field
in the α = 1 force configuration are found in the average
velocity field observed around the breast stroke swimming
C. reinhardtii [15]. Similarly, the flows due to our model
swimmer with variable α agree qualitatively with the unsteady
two-dimensional velocity field measured for C. reinhardtii in
a thin liquid film [16]. This comparison suggests that unsteady
flows around other breast stroke swimmers at low Reynolds
number can be captured in quasisteady approximation by the
three-Stokeslet model.

The forces in the three-Stokeslet model are pointing in
the positive and in the negative z direction, respectively, and
because of the left-right symmetry, pzz is the only possible
nonzero component of the tensor describing the strength of the
force dipole. By adding the three contributions we obtain pzz =
−4Fb, which depends linearly on b and vanishes when b = 0.
Similarly we find the only nonzero component of the tensor
describing the force quadrupole tzxx = −Fa2. The multipole
expansion of the three-Stokeslet velocity field becomes

vx ≈ F

8πμ

[
4bx

r3

(
1 − 3
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z

r
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. (6)

For the magnitude of the velocity v on the x axis we find
asymptotically

v

u
=

{ 4α
|x/a|2 , if α �= 0,

2
|x/a|3 , if α = 0,

(7)

and similarly on the z axis

v

u
=

{ 8α
|z/a|2 , if α �= 0,

4
|z/a|3 , if α = 0.

(8)

We find that the expressions provide good approximations of
the flow for r/a > 3 when α = 1 and α = 0 (Fig. 4). The
force dipole dominates for r/a � 1/α when α �= 0, and the
magnitude of the flow velocity therefore decays as one over
distance squared for r/a > 3 when α = 1. In contrast the force
dipole is eliminated when α = 0 and the magnitude of the flow
velocity is well described by the force quadrupole and decays
as one over distance cubed. Asymptotically we find on both
the x axis and the z axis that vα=1/vα=0 = 2(r/a), and as an
example we therefore have vα=1/vα=0 ≈ 10 when r/a = 5.
This shows that the fluid disturbance is reduced significantly
by positioning the propulsion apparatus appropriately. When
α = 0.1 the far field flow for r/a > 10 is dominated by the
force dipole, but comparison with the far field expressions (7)
and (8) shows that the magnitude of the flow velocity in the
intermediate range 3 < r/a < 10 is dominated by the force
quadrupole and the fluid disturbance is small and comparable
to the situation when α = 0.

Our study has demonstrated that by appropriately arranging
its propulsion apparatus a breast stroke swimmer produces
only a small fluid disturbance with a fast spatial decay as
observed experimentally for breast stroke swimming plankton
such as M. rubrum, A. tonsa nauplii, and P. intermedius [20].
Breast stroke swimming may thus be advantageous in the
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FIG. 4. (Color online) Magnitude of the velocity in the three-Stokeslet model (blue) on the positive x axis (top) and the positive z axis
(bottom) with α = 1 (left), α = 0.1 (middle), and α = 0 (right). Also shown are the far field approximations (7) and (8) for α = 1
(red, r−2 decay) and α = 0 (green, r−3 decay).

small-scale blind world of the plankton, where predator and
prey perception is often mediated by fluid signals. We note,
however, that our low Reynolds number model does not
apply strictly to A. tonsa nauplii and P. intermedius since
the Reynolds numbers of the swimmers are approximately
10 (Fig. 1). In the three-Stokeslet model with α �= 0, the force
dipole term always dominates the far field region r/a � 1/α,
but the transition range, in which the force quadrupole term
is dominant, extends farther and farther out as α is decreased
to zero. In breast stroke swimming the propulsive forces are
delivered during the entire beat of the swimming appendages,
corresponding to different points of action of the forces. How-
ever, we presume that the highest propulsive forces are created
in the middle of the power stroke when α is small and that our
conclusions for breast stroke swimming are therefore robust.

Any small density mismatch of the organism will lead to a
Stokeslet term that will dominate far away from the organism
farther than some distance �. For an organism with a stresslet
term one finds �/a ∼ F/Fg, where Fg is the buoyancy
corrected gravitational force on the swimmer [15], and for
a quiet swimmer we estimate �/a ∼ (F/Fg)1/2. With a given
density mismatch the Stokeslet term will be most significant
for large organisms since the buoyancy corrected gravitational
force is proportional to the volume of the organism, whereas
the propulsive forces are roughly proportional to the length
of the organism squared [28]. For a low Reynolds number
swimmer to be quiet we must therefore have that both the
density mismatch and the size of the organism are so small
that the Stokeslet term only dominates far from the organism
where the fluid disturbances are so small that they are irrelevant
for any interaction with other organisms.

Reducing the flow disturbance generated by a swimming
organism not only hides it from rheotactic predators, it also
improves the chances of the organism capturing small prey.
An organism moving towards a prey has to ensure that the

prey is not warned and pushed away by the flow created
by the organism. Millimeter sized planktonic organisms like
copepods can do this by reducing the extent of the viscous
boundary layer around them by moving quickly and achieving
a Reynolds number sufficiently above unity [29]. Our analysis
shows that it is also possible for low Reynolds number
swimmers to reduce their induced flow disturbance, thereby
allowing them to approach small prey quietly.

FIG. 5. (Color online) Micro-organisms with multiple flagella. In
all cases the swimming direction is upwards, and the red vectors
represent approximately the forces. The flagella function with either
a flagellar beat, f, or a ciliary beat, c. Protists with (a) two pairs
of flagella that beat out of phase, e.g., Carteria, (b) a leading and a
trailing flagellum, e.g., Nephroselmis, and (c) all four flagella pushing
steadily, e.g., Cymbomonas [13]. (d) A haptophyte with two flagella
and a haptonema, h, in the front, e.g., Chrysochromulina [12].
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Point force models should be used with care since they do
not always capture the flow close to the swimmer [8], but for
some swimmers they provide a powerful tool that can also
capture the near field fluid disturbance surprisingly well [15].
In addition to the breast stroke swimmers there are many
examples of aquatic organisms with multiple flagella for which
the point force framework could form the basis for theoretical
analysis. Figure 5 shows sketches of selected unicellular
organisms reproduced after Refs. [12,13]. Organisms with
flagella acting on the sides [Figs. 5(a) and 5(c)] may eliminate
the force dipole term by locating the propulsive forces in the
same transversal plane as the net drag force, and organisms
with a leading and a trailing flagellum [Fig. 5(b)] may eliminate
the force dipole term by suitably adjusting the two propulsive
forces. We therefore speculate that all three arrangements of
the propulsion apparatus might allow the organisms to swim
quietly. Also the haptonema in the haptophyte [Fig. 5(d)],

which is used to capture prey, might be so located that its tip
reaches the region beyond the forward stagnation point, thus
aiding it in encountering the prey entrained in the downwards
flow. It would be interesting in future studies to experimentally
explore the flows around such organisms.

Predator-prey interactions govern the structure and function
of (pelagic) food webs. The idealized model framework
can therefore be used for hypothesis generation and exper-
imental exploration of concrete predator-prey interactions
mediated by fluid signals among planktonic organisms with
different arrangements of the propulsion apparatus and, thus,
to more fully understand the functioning of pelagic food
webs.

We thank Lasse Tor Nielsen for drawing our attention to
Refs. [12,13]. The Centre for Ocean Life is a VKR center of
excellence supported by the Villum Foundation.
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