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a b s t r a c t

The transport of sugars in the phloem vascular system of plants is believed to be driven by osmotic

pressure differences according to the Münch hypothesis. Thus, the translocation process is viewed as a

passive reaction to the active sugar loading in the leaves and sugar unloading in roots and other places

of growth or storage. The modelling of the loading and unloading mechanism is thus a key ingredient in

the mathematical description of such flows, but the influence of particular choices of loading functions

on the translocation characteristics is not well understood. Most of the work has relied on numerical

solutions, which makes it difficult to draw general conclusions. Here, we present analytic solutions to

the Münch–Horwitz flow equations when the loading and unloading rates are assumed to be linear

functions of the concentration, thus allowing them to depend on the local osmotic pressure. We are

able to solve the equations analytically for very small and very large Münch numbers (e.g., very small

and very large viscosity) for the flow velocity and sugar concentration as a function of the geometric

and material parameters of the system. We further show, somewhat surprisingly, that the constant

loading case can be solved along the same lines and we speculate on possible universal properties of

different loading and unloading functions applied in the literature.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Sugar transport in the phloem vascular system of plants is
believed to be driven by an osmotically generated pressure differ-
ence, as first proposed by Münch in the 1920s (Münch, 1930).
According to Münch, sugar produced in the leaves generates an
osmotic pressure which drives a flow of water and sugar from
source to sink, in accordance with the basic needs of the plants.

The quantitative understanding of this flow mechanism has
improved greatly in the last decade through both experimental and
theoretical works (Knoblauch and Peters, 2010). Theoretical models of
osmotically driven phloem flow are typically based on a number of
simplifying assumptions regarding the physiology of the plant:
(i) Any gradients in the apoplastic water potential are neglected, (ii)
The osmotic pressure is a linear function of the concentration, (iii) The
viscosity of the sugar-solution does not depend on the sugar
concentration, (iv) The velocity field, the concentration and the
pressure are essentially one-dimensional and can be modelled as a
function of a single parameter, (v) The presence of sieve plates does
not affect the flow aside from a change in the effective viscosity, (vi)
ll rights reserved.
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and Evolutionary Biology,
The phloem can be modelled as a collection of individual phloem
tubes, with no interaction between parallel tubes and with each of
these tubes spanning the entire length of the plant.

An important component in theoretical models of phloem flow
is the choice of sugar loading and unloading functions, i.e. the
quantitative description of the process of adding sugar to and
removing sugar from the phloem vascular system in source and
sink tissues. The biochemical processes that control these are not
yet fully understood (Turgeon, 1989) but several different models
have been used, see e.g. (Christy and Ferrier, 1973; Goeschl and
Magnuson, 1986; Minchin et al., 1993; Thompson and Holbrook,
2003a–c, 2004; Thompson, 2005, 2006; Lacointe and Minchin,
2008; Jensen et al., 2011). In most cases the sugar loading rate is
assumed to be a function of the local sugar concentration (see e.g.
Lacointe and Minchin, 2008), but implicit formulations where the
loading function is not specified directly but assumed to lead to
certain concentration patterns have also been applied successfully
(Jensen et al., 2011). Although some attempts have been made to
quantify the effect of the particular choice of loading function on
the flow (Goeschl and Magnuson, 1986), it is generally not well
understood since most studies have been numerical and thus
cover only a small part of the parameter space. Many striking
similarities have, however, been observed in the literature among
flow solutions with different loading functions (Tyree et al., 1974;
Goeschl and Magnuson, 1986; Thompson and Holbrook, 2003b).

www.elsevier.com/locate/yjtbi
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In this paper, we derive analytic solutions to steady state
Münch phloem flow problems where the loading function is a
linear function of the concentration. We use the target concentra-
tion formulation (Lacointe and Minchin, 2008), chosen for its
availability of a physical interpretation and optional ability to
model the transition from source to sink. The solutions fully
characterise the axial flow velocity u and sugar concentration c as
a function of the axial position x and the geometric and material
parameters of the problem. We also discuss the applicability of
our solution to more general (Lacointe and Minchin, 2008)
concentration dependent loading and unloading functions.

We further show that in some cases, it is possible to transform
the concentration dependent loading functions into a constant
loading function. This may explain the similarities among flow
solutions with different loading functions observed in the
literature.
Fig. 1. Sketch of characteristic behaviour of the velocity u and concentration c

derived from numerical solutions of Münch models with a loading, translocation

and unloading zone, similar to solutions found in Tyree et al. (1974), Goeschl and

Magnuson (1986), Thompson and Holbrook (2003b), Pickard and Abraham-

Shrauner (2009). (a) Velocity u (thick gray line) plotted as a function of axial

position x. The characteristic translocation velocity in the translocation zone u is

indicated by the dashed line. (b) Concentration c (thick gray line) plotted as a

function of axial position x. The concentration at end of the unloading zone s3 is

indicated by the dashed line. See further details in Section 2.1.
2. Mathematical models of loading and unloading in Münch
flow

Following Thompson and Holbrook (2003c), we think of the
plant as consisting of a single cylindrical phloem tube split into
three zones: A loading zone (source, zone 1, 0oxox1) of length
l1, a translocation zone (zone 2, x1oxox2) of length l2 ¼ 1, and an
unloading zone (sink, zone 3, x2oxox3) of length l3, see Fig. 1.
The steady-state non-dimensional equations of motion for the
one-dimensional velocity ui (index i refers to zone number) and
sugar concentration ci of phloem sap in each of these zones are
the Münch–Horwitz equations (Horwitz, 1958; Thompson and
Holbrook, 2003c)

@2
x ui ¼ @xciþM €uui, ð1Þ

@xðciuiÞ ¼ Ui: ð2Þ

The main points in the derivation of Eqs. (1) and (2) are given in
Appendix A whereas Table E2 of Appendix E provides a list of
parameters. In Eq. (2), the loading function Ui specifies the rate at
which sugar is added to or removed from the phloem in the
source and sink regions. It is discussed further in Section 2.2, but
note that in the translocation zone (x1oxox2) there is no loading
and consequently U2 ¼ 0.

In Eq. (1), the Münch number M €u is the ratio of axial to
membrane flow resistance. For a phloem sieve tube of radius r in a
plant of length L, it is given by M €u ¼ 16LpZL2=r3, where Lp is the
permeability of the membrane and Z is the viscosity of the
phloem sap. Typical values of M €u are in the range of 1–103

(Jensen et al., 2011). As we will demonstrate in later sections, Eqs.
(1)–(2) have analytical solutions in the limits of M €u51 and
M €ub1. The limit M €u51 is interesting for several reasons. First
of all, M €u51 corresponds to the limit where osmosis dominates
over friction and thus it reflects a situation of purely osmotically
driven flow. Second, all model system experiments in the litera-
ture to date (Münch, 1930; Eschrich et al., 1972; Jensen et al.,
2009a, 2009b) have M €u51 mainly because of difficulties in
producing liquid channels with dimensions small enough to
mimic the biological systems. In addition, as we shall see below,
often the numerical solutions corresponding to M €u � 1 are very
similar to the analytical solutions in the limit M €u51. At the other
end, the limit M €ub1 is interesting as solutions in this limit
obviously may be applied to natural systems with small dia-
meters and long stems.

The boundary conditions imposed on the flow equations are
vanishing velocities at the end points

u1ð0Þ ¼ 0, ð3Þ
u3ðx3Þ ¼ 0, ð4Þ

as well as continuity of u and @xu at each of the interior points,
x¼ x1 and x¼ x2.

u1ðx1Þ ¼ u2ðx1Þ, ð5Þ

@xu1ðx1Þ ¼ @xu2ðx1Þ, ð6Þ

u2ðx2Þ ¼ u3ðx2Þ, ð7Þ

@xu2ðx2Þ ¼ @xu3ðx2Þ: ð8Þ

Note that continuity of @xu implies continuity of both the
concentration c and hydrostatic pressure p since @xupðc�pÞ, see
Eq. (A.4).

2.1. Flow characteristics

The Münch-Horwitz Eqs. (1)–(2) have been studied exten-
sively using numerical solution techniques (Christy and Ferrier,
1973; Goeschl and Magnuson, 1986; Magnuson et al., 1986;
Minchin et al., 1993; Thompson and Holbrook, 2003a–c, 2004;
Thompson, 2005, 2006; Lacointe and Minchin, 2008), but analy-
tical solutions for systems with both loading, translocation and
unloading zones have only been found in a few cases (Pickard and
Abraham-Shrauner, 2009; Jensen et al., 2011). Analytical solu-
tions for a single zone may more readily be found, as, e.g., in
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Phillips and Dungan (1993) where the translocation zone is
investigated.

Although no broad overview of the solutions is currently
available, the velocity u and concentration c computed from
solutions of Eqs. (1)–(8) tend to follow a general pattern, largely
independent of the choice of loading function U, as seen by
inspection of the numerical solutions in e.g. Tyree et al. (1974),
Goeschl and Magnuson (1986), Thompson and Holbrook (2003b),
Pickard and Abraham-Shrauner (2009). The flow velocity u thus
follows the pattern sketched in Fig. 1(a). In the loading zone, it
rapidly increases due to the osmotic influx across the semiperme-
able tube wall. As we move along the translocation zone, the
velocity continues to increase as more and more water enter the
translocation stream, although at a much slower pace than in
the loading zone. In the unloading zone, water gradually exits the
tube in response to unloading of sugar before the velocity reaches
zero at the end of the unloading zone.

We denote the average velocity in the translocation zone u

u ¼
1

x2�x1

Z x2

x1

u2ðxÞ dx: ð9Þ

The concentration c follows the pattern shown in Fig. 1(b). In
the loading zone, it is nearly constant at a level, say, c¼ s1. The
characteristic concentration s1 in the source region is often
chosen to be unity due to the non-dimensionalisation of the
equations of motion (Jensen et al., 2011). In the translocation zone
the concentration is lowered as we move along the x-axis. This
happens because the sugar solution is continually diluted by the
influx of water across the membrane due to osmosis. In the
unloading zone the concentration decays from an initial level,
determined by the flow in the translocation zone, to a level c¼ s3

typically much smaller than s1 as sugar is removed from the tube.
The functional form of the decay depends on the choice of loading
function, but in many cases it is approximately exponential or
linear (Tyree et al., 1974; Smith et al., 1980; Thompson and
Holbrook, 2003b).

2.2. Loading functions

In most cases the sugar loading rate Ui is assumed to be a
function of the local concentration (see e.g. Lacointe and Minchin,
2008), but implicit formulations where the loading function is not
specified directly but assumed to lead to certain concentration
patterns have also been applied successfully (Jensen et al., 2011).
These two different approaches are discussed in detail in the
following two subsections.

2.2.1. Implicit loading

In implicit loading schemes, the loading function is not
specified directly, but assumed to lead to a prescribed concentra-
tion pattern in the loading and unloading zones. As experimental
determination of loading and unloading rate constants is difficult
(Maynard and Lucas, 1982), this method has the advantage that it
only requires knowledge of the characteristic concentrations in
the source and sink tissues. With this information and simple
assumptions regarding the concentration profiles, comparison
between theory and experiment is facilitated.

The implicit loading used by Jensen et al. (2011) assumes a
constant concentration c¼ s1 in the loading zone, and a linear
decay to c¼0 in the unloading zone

c¼

s1 for 0oxox1,

�
c2ðx2Þ

x2�x3
ðx�x3Þ for x2oxox3:

8<
: ð10Þ

Here c2ðx2Þ is a concentration determined by the flow solution in
the translocation zone. This implicit loading model reproduces
qualitative and quantitative features found in explicit loading
models and is analytically solvable in the limits of very large and
very small values of the Münch number M €u (Jensen et al., 2011). A
serious shortcoming of the loading scheme given in Eq. (10) is,
however, that it treats the loading and unloading zone in an
asymmetric way. It will thus never be able to describe, say, the
transition from sink to source in a consistent way using Eq. (10).
To overcome this obstacle, one could assume a constant concen-
tration in both zones

c¼
s1 for 0oxox1,

s3 for x2oxox3:

(
ð11Þ

As shown in Appendix B, however, this choice of concentration
profile is incompatible with Eqs. (1)–(8), since the resulting
velocity u(x) has to be monotonic, thus making the trivial solution
u¼0 the only possibility.

2.2.2. Explicit loading

In the literature, explicit formulations of the loading or
unloading function UiðxÞ is often a linear function in the local
concentration ci(x)

UiðxÞ ¼ aiþbiciðxÞ, ð12Þ

where ai and bi are constants whose size and sign determine the
rate and direction of the loading. See e.g. Lacointe and Minchin
(2008), Eq. (9), and references therein for a detailed discussion of
the loading modes contained in Eq. (12). Due to the complexity of
the coupled equation system it has thus far only been solved
numerically, see e.g. Thompson and Holbrook (2003b), Lacointe
and Minchin (2008). Higher order and non-linear loading kinetics
have also been used in numerical studies, see e.g. Goeschl and
Magnuson (1986). We observe that the numerical results with
such Michaelis–Menten like loading dynamics also lead to velo-
city and concentration profiles that look qualitatively like our
sketch in Fig. 1. The added complexity of a non-linear loading
and/or unloading thus does not appear to give qualitatively new
behaviour. In the work presented here, we have limited ourselves
to linear loading and unloading functions, for which it is possible
to find analytic solutions.

Since the loading function U given in Eq. (12) is in non-
dimensional form, the biologically relevant choice of parameters
ai and bi are not entirely obvious if, say, we want to preserve the
properties of the solution that c1ð0ÞCs1 and c3ðx3ÞCs35s1. We
thus choose to write the loading function Ui in a slightly modified
form of Eq. (12)

Ui ¼ aiðsi�ciÞ, ð13Þ

where si is known as a target concentration and ai is a measure of
the loading rate (Lacointe and Minchin, 2008). In a source region,
where sugar is added to the tube, we may interpret the target
concentration si as the concentration in the source tissue. In a
sink region, si51, and Eq. (13) simply states that sugar is
consumed at a rate proportional to its availability, in agreement
with Horwitz’s original formulation of unloading (Horwitz, 1958).

We note that there is a one-to-one correspondence between
Eqs. (12) and (13) with ai ¼�bi and aisi ¼ ai, except for the
constant loading case with ai ¼ aisia0 and bi ¼�ai ¼ 0. This
special case is treated in Appendix C.

For later use, we note that Eqs. (2), (12), (13), (3) and (4) imply
that the concentration at the end points (x¼0, x¼ x3) is given by

c1ð0Þ ¼
a1

@xu1ð0Þ�b1
¼

a1s1

@xu1ð0Þþa1
, ð14Þ

c3ðx3Þ ¼
a3

@xu3ðx3Þ�b3
¼

a3s3

@xu3ðx3Þþa3
, ð15Þ
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where we assume that the parameters have been chosen such
that c1ð0ÞZ0 and c3ðx3ÞZ0. From Eqs. (14)–(15), we observe that
c1ð0Þ-s1 when a1-1 and that c3ðx3Þ-s3 when a3-1, if in the
same limits @xu1ð0Þ=a1-0 and @xu3ðx3Þ=a3-0.
3. Analytic solutions of the equations of motion

The following analysis of the equations of motion aims to
analytically determine solutions to Eqs. (1)–(8) with loading
function (13) in terms of the flow velocity u and sugar concentra-
tion c as a function of the axial position x and their variation with
the parameters of the problem M €u, x1, x2, x3, a1, a2, a3, s1, s2 and
s3. A solution for arbitrary values of the Münch number M €u is not
currently available, but the equation system can be solved in the
limits of very small and very large values of M €u, as shown in
Sections 3.1 and 3.2.

3.1. Solution for M €u51

In this limit, we neglect the term including M €u and the
equations of motion for the flow velocity u and concentration c

simplify to

@2
x ui ¼ @xci, ð16Þ

@xðciuiÞ ¼ aiðsi�ciÞ: ð17Þ

The boundary conditions are as stated in Eqs. (3)–(8).
As discussed below, there is mathematical equivalence

between loading and unloading zone, and we therefore solve in
these zones simultaneously.

3.1.1. Loading and unloading zones, i¼1,3

We first note the symmetry of the equations. If we are looking
for solutions in the unloading zone x2oxox3 we can use the
variable x¼ x3�x. Using also ziðxÞ ¼ ciðxÞ and ZiðxÞ ¼ �uiðxÞ we see
that the Eqs. (16)–(17) are unchanged, i.e.

@2
xui ¼ @xzi, ð18Þ

@xðZiziÞ ¼ aðsi�ziÞ: ð19Þ

Thus, to look for a solution before the endpoint x3 of the
unloading zone, we should look for a solution to the right of
x¼ 0 with negative velocity. This means that both solutions will
represent flow into the central point. The conceptual difference
between a loading zone and an unloading zone is illustrated in
Fig. 2.

In order to simplify the notation, we will in the rest of this
subsection use x for both the original coordinate in the loading
zone, and the transformed coordinate x in the unloading zone;
also we use the symbol c(x) for both c1ðxÞ and z3ðxÞ and u(x) for
u1ðxÞ and Z3ðxÞ.
Fig. 2. The conceptual difference between source and sink flow into and out of the

origin O. The flow velocity u (thick gray line) is plotted as a function of axial

position x for a loading zone (a), and an unloading zone (b) after the coordinate

transformation. The dashed arrows indicate the direction of the flow.
Proceeding to solve the flow problem, we begin by integrating
Eq. (16)

@xu¼ cðxÞ�K1: ð20Þ

With the result in Eq. (20), Eq. (17) can be written as

@xðcuÞ ¼ aðs�K1Þ�a@xu: ð21Þ

Integrating gives

uc¼ aðs�K1Þx�a uþK2, ð22Þ

where K2 ¼ 0 since we require that uð0Þ ¼ 0. Solving Eq. (22) for c

and inserting into Eq. (20) gives

@xu¼
aiðs�K1Þx�ðaþK1Þu

u
, ð23Þ

where we have now entirely eliminated c. K1 is given by

K1 ¼
as

@xuð0Þþa�@xuð0Þ ð24Þ

¼
as�@xuð0Þ2�a@xuð0Þ

@xuð0Þþa
: ð25Þ

Eq. (23) is homogeneous of first order in u and x. Thus, introdu-
cing v¼ u=x we get

@xðvxÞ ¼
aðs�K1Þ�ðaþK1Þv

v
, ð26Þ

or

x@xv¼ @zv¼
aðs�K1Þ�ðaþK1Þv�v2

v
, ð27Þ

where z¼ log x. Inverting Eq. (27) gives

@vz¼�
v

LðvÞ , ð28Þ

where LðvÞ ¼ v2þðaþK1Þv�aðs�K1Þ ¼ ðv�vþ Þðv�v�Þ and the
two roots are given as

v7 ¼�
1
2ðK1þa7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�K1Þ

2
þ4as

q
Þ ð29Þ

which with Eq. (25) become

vþ ¼�
að@xuð0ÞþaþsÞ

@xuð0Þþa ¼�ðcð0ÞþaÞ, ð30Þ

v� ¼ @xuð0Þ: ð31Þ

We can now consider the case where the two roots vþ and v� are
distinct. Integrating Eq. (28) from va to vb (where v� and vþ are
not in the interval ½va,vb�) gives

zðvbÞ�zðvaÞ ¼ log
xb

xa

¼�
1

vþ�v�

Z vb

va

vþ
v�vþ

�
v�

v�v�

� �
dv

¼ log
vb�vþ
va�vþ

����
����
�n vb�v�

va�v�

����
����
o� �

, ð32Þ

where

n¼ vþ
vþ�v�

¼
að@xuð0ÞþaþsÞ
ð@xuð0ÞþaÞ2þas

,

o¼ v�
vþ�v�

¼�
@xuð0Þð@xuð0ÞþaÞ
ð@xuð0ÞþaÞ2þas

¼ n�1: ð33Þ

Exponentiating Eq. (32) we get

xb9vb�vþ 9
n9vb�v�9

�o
¼ xa9va�vþ 9

n9va�v�9
�o
� K3: ð34Þ

Reinserting vðxÞ ¼ uðxÞ=x, Eq. (34) may be reformulated as

x
uðxÞ

x
�vþ

����
����
n uðxÞ

x
�v�

����
����
�o
¼ x

uðxÞ

x
�vþ

����
����
n uðxÞ

x
�v�

����
����
1�n
¼ K3, ð35Þ



K.H. Jensen et al. / Journal of Theoretical Biology 304 (2012) 286–296290
and gives an implicit solution for u(x) in terms of the integration
constant K1, K2 ¼ 0 and K3. Eq. (20) subsequently allows for a
determination of the concentration c(x).

A special case is a solution of Eq. (35) of the form

u¼ A1x, ð36Þ

which ensures uð0Þ ¼ 0. From Eq. (31) we find that A1 ¼ v� and
consequently that K3 ¼ 0. In order for such a solution to exist, we
realise that we must require oo0, or no1; cf. Eq. (33). We
further observe that the concentration c is constant and given by

c¼
as

aþA1
, ð37Þ

in agreement with Eqs. (14) and (15).
In the loading zone, we find that the linear solution Eq. (36) is

the appropriate one, whereas in the unloading zone the more
general case, Eq. (35) applies and no linear solution exists. As we
now emphasise differences between loading and unloading zones,
we reintroduce the subscripts i for zone number i on u,c,a and s,
and add the subscript i to integration constants and other
quantities that now read A1,i, K1,i,K2,i,K3,i,v7 ,i and ni, oi.

Recall the difference between loading zone and unloading
zone, as illustrated in Fig. 2. In the loading zone, u1Z0 and
@xu1ð0Þ40 whereas in the unloading zone, u3r0 and @xu3ð0Þo0.
Following the results in Eqs. (30)–(31), this implies that in the
loading zone, v�,140, whereas in the unloading zone, v�,3o0. In
both cases, vþ ,io0.

As stated above, the existence of a linear solution requires
nio1. Using the definition of ni in Eq. (33), and the expression for
the two roots v7 ,i, Eq. (29), the condition in ni may be rewritten
into bounds on K1,i,

�aioK1,iosi: ð38Þ

Eq. (20) defines K1,i, and Eqs. (14)–(15) specify expressions for ci

in the loading and unloading zone, to be inserted in the equation
for K1,i.

In the loading zone, since @xu1ð0Þ40, we see from Eq. (14) that
c1ð0Þos1. Thus, the upper bound on K1;1 in Eq. (38) is always
fulfilled. On the contrary, in the unloading zone, since @xu3ð0Þo0,
Eq. (15) implies that c3ð0Þ4s3. Now, Eq. (20) implies

K1;3 ¼ c3ð0Þ�@xu3ð0Þ ¼ c3ð0Þþ9@xu3ð0Þ94c3ð0Þ4s3: ð39Þ

Therefore, the condition that K1;3os3, required for a linear
solution to exist, is never fulfilled in the unloading zone.
Table 1
Evaluation of the constants A1 ,A2 ,A3 ,A4 ,K1;3 and K2,i from the boundary conditions.

Boundary condition Equation Ref.

u1ð0Þ ¼ 0 K2;1 ¼ 0 (3), (22)

u3ðx3Þ ¼ 0 K2;3 ¼ 0 (4), (22)

u1ðx1Þ ¼ u2ðx1Þ
A4 ¼ x1 1�

A1;1

A3

� �
(5), (36), (45)

@xu1ðx1Þ ¼ @xu2ðx1Þ A3 ¼ A1;1�
a1

a1þA1;1
s1

(6), (36), (42), (37)

u2ðx2Þ ¼ u3ðx2Þ
�

A1;1x1a1s1

A3ða1þA1;1Þ
¼
a3ðs3�K1;3Þl3
a3þK1;3

(7), (42), (23), (36), (37)

@xu2ðx2Þ ¼ @xu3ðx2Þ A3 ¼�K1;3 (8), (42), (20)
3.1.2. Translocation zone, i¼2

In the translocation zone, there is no loading (a2 ¼ 0) and the
equations of motion are

@2
x u2 ¼ @xc2, ð40Þ

@xðc2u2Þ ¼ 0: ð41Þ

Eq. (41) implies sugar flux conservation such that
c2ðxÞu2ðxÞ ¼ c2ðx1Þu2ðx1Þ ¼ c1ðx1Þu1ðx1Þ for xA ½x1,x2�. We can thus
integrate Eq. (40)

@xu2 ¼
u1ðx1Þc1ðx1Þ

u2
þA3: ð42Þ

If @xu2a0 we can invert this equation

@u2
x¼

u2

u1ðx1Þc1ðx1ÞþA3u2
ð43Þ

such that

xðu2Þ ¼
u2

A3
�

u1ðx1Þc1ðx1Þ

A2
3

logðA3u2þu1ðx1Þc1ðx1ÞÞþAn

4: ð44Þ
Alternatively, we may write

xðu2Þ ¼
u2

A3
�

u1ðx1Þc1ðx1Þ

A2
3

log
1þ

A3u2

u1ðx1Þc1ðx1Þ

1þ
A3

c1ðx1Þ

0
BB@

1
CCAþA4, ð45Þ

a more convenient formulation when evaluating the expression
x1 ¼ xðu2ðx1ÞÞ. If @xu2-0, we find from Eq. (42) that u2 approaches
the value

u2 ¼�
c1ðx1Þu1ðx1Þ

A3
: ð46Þ

For the concentration c2, we have from the flux conservation
relation that

c2 ¼
u1ðx1Þc1ðx1Þ

u2
: ð47Þ

3.1.3. Matching of the solution

The solutions for M €u51 in the three zones are of the form

u1 ¼ A1;1x ð48Þ

xðu2Þ ¼
u2

A3
�

u1ðx1Þc1ðx1Þ

A2
3

log
1þ

A3u2

u1ðx1Þc1ðx1Þ

1þ
A3

c1ðx1Þ

0
BB@

1
CCAþA4, ð49Þ

K3;3 ¼ x
u3

x
�vþ

� 	n u3

x
�v�

� 	�o
ð50Þ

To evaluate the constants A1,i,A3,A4,K1,i, and K2,i, we use the
boundary conditions in Eqs. (3)–(8). Note that the constant A1,i only
lives in the loading zone (i¼1) while K1,i is only relevant in the
unloading zone (i¼3). K2,i, on the other hand, must be found in both
the loading (i¼1) and unloading (i¼3) zones. Continuity of u(x) at the
boundary between translocation and unloading zone, at x¼ x2, links
the value of K3;3 ¼ x2ððu3ðx2Þ=x2Þ�vþ Þ

n
ððu3ðx2Þ=x2Þ�v�Þ

o to the
other constants. Applying the boundary conditions and using that
@xu2ðx2ÞC0 we find six equations in six unknowns, given in Table 1,
which allow for a solution of the problem as discussed further in
Section 5.

3.2. Solution for M €ub1

The equations of motion are

@2
x ui ¼ @xciþM €uui, ð51Þ

@xðciuiÞ ¼ aiðsi�ciÞ: ð52Þ

The boundary conditions are as stated earlier in Eqs. (3)–(8). For
large Münch numbers, we observe that the velocity becomes very
small, and as we will argue later, decreases with M €u at least as
1=M €u. Also, in this limit, the numerical solutions display
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boundary layers between the different zones, unlike for small
Münch numbers. We therefore consider the loading and the
unloading zones separately in our discussion below.

3.2.1. Loading zone, i¼1

In order to find an approximate analytical solution in the
loading zone, we note that the concentration is almost equal to
the constant value s1. We thus express c1 as

c1ðxÞ ¼ s1�EðxÞ, ð53Þ

which means that Eq. (52) can be written as

a1ðs1�c1Þ ¼ a1E¼ @xðc1u1Þ ¼ @xðu1ðs1�EÞÞCs1@xu1, ð54Þ

where we have assumed that u1@xc15c1@xu1 and E5s1. Thus, Eq.
(51) becomes

1þ
s1

a1

� �
@2

x u1 ¼M €uu1, ð55Þ

with the solution

u1ðxÞ ¼ B1 sinhðb1xÞþB2 coshðb1xÞ, ð56Þ

where B2 ¼ 0 since u1ð0Þ ¼ 0, and b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M €u=ð1þs1=a1Þ

p
, whereby

the approximate solution is

u1ðxÞ ¼ B1 sinhðb1xÞ: ð57Þ

Using this approximate solution for the velocity in the loading
zone, we may now combine Eqs. (51) and (55) to find the
concentration via

@xc1ðxÞ ¼�
s1

a1þs1
B1 sinhðb1xÞ, ð58Þ

which, with the boundary condition Eq. (14), is integrated to yield
the solution

c1ðxÞ ¼
M €uB1

b1

s1

a1þs1
ð1�coshðb1xÞÞþ

a1s1

a1þB1b1

: ð59Þ

Thus, we see that the front-factor on u1@xc1 is proportional to
B2

1M €u whereas c1@xu1 contains a term proportional to B1b1 in
addition to a factor proportional to B2

1M €u. With B1p1=M €u and
b1p

ffiffiffiffiffiffiffiffi
M €u
p

, we can now confirm that our initial assumption of
neglecting u1@xc1 in comparison to c1@xu1 is acceptable for M €ub1.

3.2.2. Translocation zone, i¼2

In the translocation zone, the equations of motion are

@2
x u2 ¼ @xc2þM €uu2, ð60Þ

@ðc2u2Þ ¼ 0: ð61Þ

With a slight modification to our notation, we use the solution for
the velocity u2 found in Jensen et al. (2011),

u2ðxÞ ¼
u1ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2M €uðu1ðx1Þ=c1ðx1ÞÞðx�x1Þ
p , ð62Þ

which only fulfills the boundary condition Eq. (5), and not Eq. (6).
To find c2ðxÞ, we note from Eq. (52) that the product c2ðxÞu2ðxÞ is
constant throughout the translocation zone, implying

c2ðxÞ ¼
c1ðx1Þu1ðx1Þ

u2ðxÞ
: ð63Þ

We note from Eq. (62) that in order for u2ðxÞ to stay real and finite
even when M €u is large, u1ðx1Þ=c1ðx1Þ must decrease with increas-
ing M €u at least as 1=M €u. Since c1ðx1Þ is of order s1, this implies
that u1ðx1Þ decreases with M €u at least as 1=M €u.

3.2.3. Unloading zone, i¼3

From the numerical solutions shown in Fig. 3, we observe that
between the loading zone and the translocation zone, within a
narrow interval, the concentration changes abruptly, in a
seemingly exponential fashion—as to readjust its value. However,
as we have simplified the equations of motion in the translocation
zone to have vanishing transport across the membrane, i.e.,
a2 ¼ 0, the equations do not point to a specific physical length
scale over which this readjustment should take place.

On the contrary, between the translocation zone and the
unloading zone, where a3a0, a length scale for a boundary layer,
or readjustment length scale, appears in the equations. We find
that the numerical solution to the velocity changes only slightly
and goes through a maximum a short distance into the unloading
zone. Using this insight, we can find an approximate solution to
the equations for c and u in the unloading zone. As the velocity is
almost constant in the boundary layer, we first neglect the term
with @xu3 in Eq. (52), to obtain

u2ðx2Þ@xc3 ¼ aðs3�c3Þ: ð64Þ

A natural length-scale l¼ u2ðx2Þ=a3 appears in the equation for c,
and the solution is found as

c3ðxÞ ¼ s3þðc2ðx2Þ�s3Þexpð�ðx�x2Þ=lÞ ð65Þ

when we require that c is continuous at the end of the transloca-
tion zone, c2ðx2Þ ¼ c3ðx2Þ.

Inserting this solution, Eq. (65), for c3 in the remaining
equation for the velocity, Eq. (51), results in the complete
solution,

u3ðxÞ ¼ B3 expð�ðx�x2Þ=lÞþB4 sinhð
ffiffiffiffiffiffiffiffi
M €u
p

ðx�x2ÞÞ

þB5 coshð
ffiffiffiffiffiffiffiffi
M €u
p

ðx�x2ÞÞ, ð66Þ

where the constant B3 is fixed by the differential equation and the
result for c3, Eq. (65), whereas B4 and B5 are fixed by requiring
continuity in both u and @xu at the position x2; Eqs. (7)–(8). Upon
insertion of the result for u2 and c2 in the translocation zone, Eqs.
(62) and (63), in these requirements for continuity, one finds

B3 ¼�
ðc2ðx2Þ�s3Þ=l

1=l2
�M €u

, ð67Þ

B4 ¼
M €uu3

2ðx2Þ

c1ðx1Þu1ðx1Þ
þB3=l

� �
=
ffiffiffiffiffiffiffiffi
M €u
p

, ð68Þ

B5 ¼ u2ðx2Þ�B3: ð69Þ

3.2.4. Matching of the solution

In the solutions presented in Sections 3.2.1, 3.2.2, and 3.2.3, we
have ensured that the boundary condition given in Eqs. (3) and
(5)–(8) is fulfilled. To fulfill the final boundary condition in Eq. (4)
we must determine B1 which enters c1ðx1Þ and u1ðx1Þ in Eq. (68)
such that u3 given in Eq. (66) vanishes at x¼ x3.

It is not possible to give an analytic expression for B1 and the
system of equations that match solutions and boundary condi-
tions just discussed must therefore be solved numerically. In
practice, we wrote the equations in Mathematica 8 (Wolfram
Research), treating the unknown parameter B1 as a variable, and
found the roots of u3ðx3Þ as a function of B1. Note that u3ðx3Þ

usually has several roots as a function of B1, but only one of these
corresponds to real-valued, positive flow solutions.
4. Comparison between analytical and numerical solution

To compare the analytical solutions found in the limiting cases of
M €u51 and M €ub1 to solutions of the full problem, the equations of
motion (1)–(8) and loading function (13) were solved numerically in
MATLAB 7.8 (MathWorks, Inc.) using an upwind solver (Press, 2001).
After a thorough convergence analysis, numerical solutions similar to



Fig. 3. Numerical (thick gray lines) and analytical solutions of Eqs. (1)–(8) and (13) for values of the Münch number M €u ¼ 0;1,10;100 increasing along the direction of the

solid black arrow (-). Analytical solutions are given for M €u ¼ 0 (thin dashed line) and M €u ¼ 100 (thin solid line). (a), (c), (e) and (g): Flow velocity u plotted as a function of

axial position x. (b), (d), (e) and (h): Concentration c plotted as a function of axial position x. The boundary layer thickness l, cf. Eq. (65), for M €u ¼ 100 is indicated by double

arrows (2) in (a) and (b). It is not given in (c)–(h) since it is much smaller than x3�x2 in these cases. The dotted horizontal lines in (g) indicate the mean translocation

velocities predicted by Eqs. (75) and (83). The geometric and loading parameters used are: (a, b): xi ¼ (0.2, 1.2, 1.4), ai ¼(0.1, 0., 0.1), si ¼(1., 0., 0.1). (c, d): xi ¼(0.2, 1.2, 1.4),

ai ¼(10., 0., 10.), si ¼ (1., 0., 0.1). (e, f): xi ¼ (0.5, 1.5, 1.6), ai ¼ (3., 0., 7.), si ¼ (0.98, 0., 0.23), (g, h): xi ¼ (0.2, 1.2, 1.4), ai ¼ (100., 0., 100.), si ¼ (1., 0., 0.).
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those shown in Fig. 3 were obtained. Details of the upwind procedure
are described in Appendix D.

For a wide range of parameter values, we find very good
agreement between the numerical and analytical solutions
derived in the previous sections as shown in Fig. 3. In real plants,
the size of the leaves is typically � 20% of that of the stem, and
our choice of parameters in Figs. 3(a)–(d) and (g)–(h) reflects this.
Other parameters are chosen with a large variation both to
approach low and high values of the Münch number, and to
validate and demonstrate the robustness of the solutions.

The solution for M €u51 accurately reproduces the numerical
solutions for all parameter choices tested while, as expected, the
solution for large M €u is most accurate when the boundary layer
thickness l� ða3M €uÞ�1 at x¼ x2 is very small compared to the
unloading zone length x3�x2. We note that the analytical solution for
M €u51 is almost identical to the numerical solution for M €u ¼ 1 and
it even works well for M €u ¼ 10, particularly for the concentration c(x).
5. Mean translocation velocity

As outlined in Section 2.1 and Fig. 1, the situation where the
concentrations in the loading zone c1 and unloading zone c3 are
close to the target values s1 and s35s1, respectively, is of
particular interest. This is illustrated in the examples in
Figs. 3(g)–(h). From Eqs. (14) and (15), we see that this happens
when a1,a3-1. Further assuming that the loading and unloading
zones have equal lengths l1 ¼ l3, we can compute the average
translocation velocity u in a very simple manner from the
analytical solutions given in the previous sections.

5.1. Mean translocation velocity u for M €u51

In the translocation zone, the velocity is often approximately
constant (see Fig. 3) and we may take the average value u to be
approximately equal to the velocity at the end of the translocation
zone uCu2ðx2Þ.

To compute u2ðx2Þ, we use the results given in Table 1 with
s35s1 � 1, a1b1, a3b1, and l1 ¼ l3 which yields

A1;1 ¼
3�

ffiffiffi
5
p

2
s1, ð70Þ

A3 ¼

ffiffiffi
5
p
�1

2
s1, ð71Þ

A4 ¼
1þ

ffiffiffi
5
p

2
l1, ð72Þ

K1;3 ¼�

ffiffiffi
5
p
�1

2
s1, ð73Þ

K2;1 ¼ K2;3 ¼ 0: ð74Þ

From Eq. (46), we then find that

uCu2ðx2Þ ¼
s1A1;1l1

A3
¼

ffiffiffi
5
p
�1

2
l1s1C0:62l1s1: ð75Þ

As shown in Fig. 3(g), this expression gives a very good estimate
of the velocity u2ðx2Þ. Using the implicit loading scheme given in
Eq. (10) with s1 ¼ 1, Jensen et al. (2011) found a result similar to
that given in Eq. (75)

u ¼

ffiffiffi
3
p
�1

2
l1 ¼ 0:37l1, ð76Þ

where the numerical difference in the prefactor between Eqs. (75)
and (76) is most likely due to the difference in the loading
mechanisms.
5.1.1. Mean translocation velocity u for M €ub1
In general, the mean translocation velocity u for large values of

M €u is given by

u ¼
1

x3�x2

Z x3

x2

u2ðxÞ dx¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2M €uu1ðx1Þ=c1ðx1Þ

p
M €u

: ð77Þ

To determine u1ðx1Þ, we note that when evaluated at x¼ x3, the
expression for u3 in Eq. (66) is approximately

0C ðB4þB5Þexpð
ffiffiffiffiffiffiffiffi
M €u
p

ðx3�x2ÞÞ, ð78Þ

such that

B4þB5 ¼ 0: ð79Þ

Assuming that c1ðx1ÞCs1, we can expand Eq. (79) to first order in
u1ðx1Þ

ffiffiffiffiffiffiffiffi
M €u
p

ðs3�s1Þþ
ða3þ2M €u3=2a3þs1�s3Þu1ðx1Þ

a3
C0, ð80Þ

such that

u1ðx1ÞC

ffiffiffiffiffiffiffiffi
M €u
p

ðs1�s3Þa3

a3þ2M €u3=2a3þs1�s3

ð81Þ

Applying the conditions s35s1 � 1, a1b1, and a3b1 we have
that

u1ðx1ÞC
s1

2M €u
: ð82Þ

From Eq. (77) we then find

uC
1

M €u
, ð83Þ

the same as found by Jensen et al. (2011). As shown in Fig. 3(g), this
expression gives a reasonable estimate of the mean velocity u.

Combining Eqs. (75) and (83) yields an interpolation formula
for u

u ¼
1

m

l1s1
þM €u

, ð84Þ

where m¼ 2=ð
ffiffiffi
5
p
�1Þ. In dimensional units, the velocity is

U ¼ 2
LpRTCoutL

r

1
m

l1s1
þM €u

, ð85Þ

where we recall that l1 is the ratio of length of the loading zone,
i.e., a typical leaf, to the length of the stem, and s1 is the ratio of
the target concentration of sugar in the loading zone to the
concentration of sugar in the apoplast, i.e., of order 1. The
interpolation formula in Eq. (85) is similar to results obtained
using a simple resistor model (Jensen, 2011; Jensen et al., 2012).
6. Universal properties of the loading function

It is an interesting observation that most of the characteristic
properties of the flow solutions discussed in Section 2.1 and
illustrated in Fig. 1 are found in virtually all theoretical studies of
Münch–Horwitz flow, across a broad range of loading functions U,
including that investigated here. This similarity has been noticed
previously by several authors, e.g. Tyree et al. (1974) and more
recently by Thompson and Holbrook (2003b), who noticed that
their results were ‘‘qualitatively similar to the steady-state results of

other workers’’ when referring to Christy and Ferrier (1973), Tyree
et al. (1974), Goeschl et al. (1976).

Indeed we have observed that for a given loading function of
the form U¼ aþbc, an equivalent transformed concentration field
~c and loading function ~U ¼ ~a exists such that a solution of the
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problem

@2
x u¼ @x ~cþM €uu, ð86Þ

@xð~cuÞ ¼ ~U ¼ ~a, ð87Þ

also, at least approximately, solves the original problem for c with
U¼ aþbc. Here, ~a and ~c are functions of a, b, and the boundary
conditions of the flow problem.

We have not been able to prove this statement for arbitrary
values of the Münch number M €u, but we can give the following
approximate argument. A characteristic feature of these flows is
that the concentration c is approximately constant in the better
part of the loading and unloading zones, see Fig. 1(b). This allows
us to write the concentration c(x) as

cðxÞCcð0Þ ¼
a

@xuð0Þ�b
, ð88Þ

where we have applied Eq. (14). We may thus approximate the
(second) equation of motion as

@xðcuÞCaþbcð0Þ ¼ aþ
ab

@xuð0Þ�b
: ð89Þ

In this case, we find that a solution of the problem with

~U ¼ ~a ¼ aþ
ab

@xuð0Þ�b
¼

a

1�
b

@xuð0Þ

ð90Þ

also solves the general problem U¼ aþbc.

6.1. Proof of the universality statement for M €u51

In the limit of very small Münch numbers, we can prove the
mathematical equivalence between the two types of loading
functions directly. We begin by dropping terms of order M €u in
Eqs. (1)–(2), to find

@2
x u¼ @xc, ð91Þ

@xðcuÞ ¼ aþbc: ð92Þ

Integrating the first equation yields

@xu¼ cþk1, ð93Þ

where k1 can be found from the boundary conditions at the end
point x¼0,

k1 ¼ @xuð0Þ�cð0Þ ¼ @xuð0Þ�
a

@xuð0Þ�b
¼
@xuð0Þ2�@xuð0Þb�a

@xuð0Þ�b
: ð94Þ

such that

@xðcuÞ ¼ aþb@xu�bk1: ð95Þ

We now realise that with ~c ¼ c�b and ~a ¼ a�bk1, the equations of
motion can be written as

@2
x u¼ @x ~c , ð96Þ

@xð~cuÞ ¼ ~a, ð97Þ

of the form given in Eqs. (86)–(87). Thus, for M €u51, there is no
difference between the concentration dependent and concentra-
tion independent loading functions.
7. Discussion

The modelling and confirmation of the Münch hypothesis for sap
translocation in the phloem vascular system relies on specific sugar
loading and unloading characteristics. We have shown that it is
possible to obtain analytical solutions for the case of ‘‘target concen-
tration’’ loading, where the concentration is guided towards an
external concentration set by the plant. We have presented analytical
solutions for both very small and very large Münch numbers and,
combined with numerical solutions, this gives us a rather complete
understanding of the flow and its dependence on the external
parameters such as concentrations, permeabilities and geometry.
Motivated by similarity of flow structures and a direct equivalence
for M €u ¼ 0, we further speculate that the basic properties of these
flows are robust over a broad range of loading functions considered in
the literature. We suggest therefore that future studies to understand,
say, phloem flow in branched systems, may be based on the simplest
possible mathematical choice of loading and unloading function.

Another interesting and biologically important result obtained
is the mean flow velocity with an interpolation formula suggested
in Eq. (84). It is reassuring that the results we obtain are readily
comparable to results from a simple resistor-based hydraulic
model (Jensen et al., 2012).

In conclusion, we believe that our analytic solutions for prototypic
Münch–Horwitz equations will be useful to dispell some of the
controversy surrounding the Münch hypothesis by providing accurate
and easily accessible solutions for the fluid flows.
Appendix A. Dimensional and dimensionless equations for
osmotically driven flow

The basic equations, Eqs. (1)–(2), result from considering the
flow in a circular pipe with a semi-permeable membrane cylind-
rical wall. We consider the dynamics along the axis of the
cylinder, denoted X (carrying the physical dimension of a length).
The membrane allows for both water and sugar to pass, with
volume flux Jw and sugar molecule flux Js given as

Jw ¼ LpðRTðCout�CðXÞÞ�ðPout�PðXÞÞ, ðA:1Þ

Js ¼ u, ðA:2Þ

where Lp is the hydraulic conductivity of the membrane (the
permeability) and u is an as yet unspecified loading/unloading
function. In the expressions for the flow rates, Cout is the
(constant) sugar concentration outside the pipe and C(X) is
that inside; similarly Pout is the constant outside pressure and
P(X) the varying inside pressure. With the specific choice of a
target-concentration loading/unloading function, Js may be
expressed as

Jtarget
s ¼�LsRTðCtarget�CðXÞÞ, ðA:3Þ

where Ls is the permeability for sugar.
Let U(X) denote the axial velocity of the water in the pipe.

Then, conservation of volume in a small cross section of the pipe
relates the velocity to concentration and pressure differences:

@XU ¼
2Lp

r
ðRTðCout�CðXÞÞ�ðPout�PðXÞÞ: ðA:4Þ

Here, r is the radius of the pipe.
In addition, conservation of the number of sugar molecules

within a small section of the pipe implies

@XðCUÞ ¼�
2

r
u, ðA:5Þ

which for the special case of a target-concentration loading/
unloading function reads

@XðCUÞtarget
¼�

2Ls

r
RTðCtarget�CðXÞÞ: ðA:6Þ

In order to eliminate the pressure from the set of equations, we
assume a low Reynolds number Poiseulle flow, i.e.,

U ¼�
r2

8Z
dXP, ðA:7Þ
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which can be combined with Eq. (A.4) differentiated once with
respect to axial position, to find

@2
XU ¼

2LpRT

r
@XCþ

16LpZ
r3

U: ðA:8Þ

Eqs. (A.5) and (A.8) comprise our set of equations of motion.
We renormalise these equations by introducing the rescaling

X ¼ Lx, CðXÞ ¼ CoutcðxÞ, UðXÞ ¼
2LpRTCoutL

r
uðxÞ, ðA:9Þ

where L is the length of the translocation zone in the loading-
translocation-unloading system, Cout is the outside concentration
of sugar in the loading zone, and r is the radius of the part of the
plant corresponding to the translocation zone. If we insert these
rescalings in our dimensional equations of motion, Eqs. (A.6) and
(A.8), we obtain Eqs. (1)–(2) with the special loading/unloading
function

Ui ¼ aiðsi�cðxÞÞ, a¼ Ls

CoutLp
ðA:10Þ

and the Münch number, M €u ¼ 16LpZL2=r3 naturally appears. In
Eq. (A.10), si is the dimensionless ratio between the target
concentration of zone i and the outside concentration Cout at the
site of the loading zone.
Appendix B. The constant concentration implicit loading
scheme

A very simple loading scheme is to assume that the concen-
trations in loading and unloading zones are both constant and
that the flow direction is given by their relative strength. In this
case we need not specify an explicit loading function and the
governing equations are simply

@2
x u1 ¼M €uu1ðxÞ, 0oxox1, ðB:1Þ

@2
x u2 ¼ @xc2þM €uu2ðxÞ ¼�

u1ðx1Þc1ðx1Þ

u2
2ðxÞ

@xu2þM €uu2ðxÞ, x1oxox2,

ðB:2Þ

@2
x u3 ¼M €uu3ðxÞ, x2oxox3, ðB:3Þ

where, as in Section 3.2.2, we use that cðxÞuðxÞ ¼ constant.
A meaningful solution u(x) of these equations with flow from

the loading to the unloading zones must be nonnegative every-
where and approach zero in both ends. It must therefore have at
least one maximum along the way. We now show that this is
impossible. For this purpose, assume to the contrary that the
translocation zone contains a maximum for u, say at xm. Integrat-
ing Eq. (B.2) from a point x¼ xa to a point x¼ xb gives

u0ðxbÞ�u0ðxaÞ ¼ cðxbÞ�cðxaÞþM €u

Z xb

xa

uðxÞ dx ðB:4Þ

and, using uðxaÞcðxaÞ ¼ uðxbÞcðxbÞ, this can be written

u0ðxbÞ�u0ðxaÞ ¼ cðxaÞ
uðxaÞ

uðxbÞ
�1

� �
þM €u

Z xb

xa

uðxÞ dx: ðB:5Þ

Having a maximum in u at x¼ xm it is always possible to choose a
position xaoxm and another position xb4xm so that uðxaÞ ¼ uðxbÞ,
and with u0ðxaÞ40 and u0ðxbÞo0 Eq. (B.5) reduces to

u0ðxbÞ�u0ðxaÞ ¼M €u

Z xb

xa

uðxÞ dx, ðB:6Þ

which is a contradiction, since the left hand side must be
negative, and the right hand side must be nonnegative. This
means that there can be no maximum in the velocity in the
translocation zone, and hence the velocity and its derivative must
be positive throughout this zone.

In the source zone, the velocity u satisfies Eq. (B.1) and, with
uð0Þ ¼ 0, it has the solution

uðxÞ ¼ A sinh½
ffiffiffiffiffiffiffiffi
M €u
p

x� ðB:7Þ

with A40 which obviously is monotonically increasing and can
have no maximum. The sink zone is governed by the identical
equation (B.3). The boundary conditions at the entry of this zone
(x¼ x2) are given from the analysis above: both the velocity and
its derivative are positive. The general solution is

uðxÞ ¼ B4 exp½
ffiffiffiffiffiffiffiffi
M €u
p

ðx�x2Þ�þB5 exp½�
ffiffiffiffiffiffiffiffi
M €u
p

ðx�x2Þ�: ðB:8Þ

Applying the initial conditions gives two inequalities in the
integration coefficients B4 and B5,

B4þB540, B4�B540, ðB:9Þ

which readily implies that B440 and B449B59. With these
coefficients both the velocity and its derivative are positive for
all x4x2, and hence, no maximum can exist in the sink.

We thus conclude that a maximum cannot exist. We have not
explicitly considered the possibility of having a maximum exactly
on the border between the translocation and unloading zone;
however, it can be shown easily that the existence of such a
maximum of u would prevent the velocity from becoming zero at
x3. Indeed, the solution which is zero at x¼ x3 must be of the form
uðxÞ ¼ A sinh½

ffiffiffiffiffiffiffiffi
M €u
p

ðx�x3Þ� which is monotonic.
Appendix C. Constant loading

Our equations are

@2
x u¼ @xcþM €uu, ðC:1Þ

@xðucÞ ¼ a: ðC:2Þ

Observe that in the constant loading model, conservation of the
amount of sugar transported imposes restriction on the parameters.
In other words, the amount of sugar loaded must equal the amount of
sugar unloaded which implies that a1x1 ¼�a3ðx3�x2Þ. Solving Eq.
(C.2) with uð0Þ ¼ 0 gives

uc¼ ax ðC:3Þ

and inserting this into the first equation gives the single equation

@2
x uþ

ax

u2
@xu¼M €uuþ

a

u
: ðC:4Þ

For large M €u, we expect that u¼ V=M €u where V is of order
unity. Inserting this gives

1

M €u
@2

x uþ
M €uax

V2
@xV ¼ Vþ

M €ua

V
: ðC:5Þ

If we now assume that a becomes very small in this limit, i.e.
a¼ A=M €u, where A is of order unity, we get

x@xV ¼
V3

A
þV , ðC:6Þ

where we have neglected the term @2
x u of order 1=M €u. Note that it

is the term of highest order. Introducing t¼ ln x Eq. (C.6) can be
written as

dt

dV
¼

V3

A
þV

 !�1

ðC:7Þ

with the solution

t¼ A

Z V dz

z2ðzþAÞ
¼

Z V

dz
1

z2
þ

1

AðzþAÞ
�

1

Az

� �
ðC:8Þ



Table E2
The parameters used in the paper are listed in alphabetical order in Table E2. All

parameters are non-dimensional unless otherwise stated.

Parameter Symbol/expression

Integration constants:

in loading zone A1 ,B1 ,B2 ,K2;1 ,k1 ,D

in translocation zone A3 ,A4

in unloading zone B3 ,B4 ,B5 ,K1;3 ,K2;3 ,K3;3 ,k1

Loading rate a

in zone i ai

Loading parameter b

in zone i bi

Concentration c

in zone i ci

Concentration in dimensional units C (mol/m3)

in the apoplast Cout (mol/m3)

target value Ctarget (mol/m3)

Zone number i¼1,2,3

Volume flux of water Jw (m3/(m2 s))

Molecule flux of sugar Js (mol/(m2 s))

Plant length, physical length of translocation zone L (m)

Membrane permeability Lp (m/(Pa s))

Membrane permeability for sugar Ls (mol/(m2 Pa s))

Length of zone i li
loading zone l1 ¼ x1

translocation zone l2 ¼ x2�x1 ¼ 1

translocation zone l3 ¼ x3�x2

Münch number M €u

Geometric parameter
m¼

2ffiffiffi
5
p
�1

Pressure p

Pressure in dimensional units P (Pa)

outside the phloem tube Pout (Pa)

Sieve tube radius r (m)

Flow velocity u

in zone i ui

Flow velocity in dimensional units U (m/s)

Average flow velocity u

Scaled flow velocity v¼ u=x

Flow velocity (in Appendix C) V ¼ uM €u

Axial coordinate x

Zone start/end points xi

Axial coordinate z¼ log x

Loading rate a
in zone i ai

Concentration gradient b
Partial differentiation with respect to x @x

Relative concentration E¼ s�c

Boundary layer thickness l
Viscosity Z (Pa s)

Loading function U
in zone i Ui

Loading function in dimensional units u (mol/(m2 s))

Target concentration s
in zone i si
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¼�
1

V
þ

1

A
ln

VþA

V

� �
þconst ðC:9Þ

or

x¼De�1=V VþA

V

� �1=A

: ðC:10Þ
Appendix D. Numerical solution methods

When solving the equations of motion (Eqs. (1)–(2)) by
reducing the equation system to three first order differential
equations and solving these using standard techniques, one often
encounter difficulties near x¼0 where the velocity is very small.
To avoid these problems, we used the upwind method (Press,
2001). Dividing each zone of length ‘ into a set of discrete points
xn, n¼1,y,N we write for @xu, @2

x u, and @xc that

@xuðxiÞC
uðxiÞ�uðxi�1Þ

Dx
, ðD:1Þ

@2
x uðxiÞC

uðxiÞ�2uðxi�1Þþuðxi�2Þ

Dx2
, ðD:2Þ

@xcðxiÞC
cðxiÞ�cðxi�1Þ

Dx
, ðD:3Þ

where Dx¼ ‘=N, and N was chosen such that Dx were of the order
10�5. The name upwind comes from the fact that differentials of,
say, the velocity u, is approximated by uðxiÞ�uðxi�1Þ and not
uðxiþ1Þ�uðxiÞ or uðxiþ1Þ�uðxi�1Þ.

From Eqs. (D.1)–(D.3), the solution of the equations of motion
were approximated numerically in each of the zones by

uðxiÞC
1

1�Dx2 M €u
½2uðxi�1Þ�uðxi�2ÞþDxðcðxi�1Þ�cðxi�2ÞÞ�, ðD:4Þ

cðxiÞC
1

2uðxiÞ�uðxi�1ÞþDxa ½uðxiÞcðxi�1ÞþDxas�: ðD:5Þ

Starting at x¼0, the solver ran with the flow, i.e. from zone
1-2-3, ensuring that all internal boundary conditions were
fulfilled. Finally, the boundary condition at x¼ x3 was fulfilled by
varying @xu at x¼0 until uðx3Þ was less than a tolerance t, chosen
to be of the order 10�10.
Appendix E. List of parameters

The parameters in alphabetic order after the symbol are listed
in Table E2. All parameters are non-dimensional unless otherwise
stated.
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