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We use direct numerical simulations to study a steady bathtub vortex in a cylindrical
tank with a central drain-hole, a flat stress-free surface and velocity prescribed at the
inlet. We find that the qualitative structure of the meridional flow does not depend
on the radial Reynolds number, whereas we observe a weak overall rotation at a
low radial Reynolds number and a concentrated vortex above the drain-hole at a
high radial Reynolds number. We introduce a simple analytically integrable model
that shows the same qualitative dependence on the radial Reynolds number as the
simulations and compares favourably with the results for the radial velocity and
the azimuthal velocity at the surface. Finally, we describe the height dependence of
the radius of the vortex core and the maximum of the azimuthal velocity at a high
radial Reynolds number, and we show that the data on the radius of the vortex core
and the maximum of the azimuthal velocity as functions of height collapse on single
curves by appropriate scaling.

1. Introduction
Concentrated vortex flows range from small laboratory whirlpools to large

atmospheric tornadoes (Lugt 1995). Bathtub vortex flows constitute an important
class of concentrated vortex flows which are characterized by intense axial down-flow
and stress-free surface. Such flows typically form at intake pipes and tank outlets, and
they have been studied with focus on different intriguing aspects. Shapiro (1962) and
Trefethen et al. (1965) investigated the influence of the Coriolis force on the sense of
rotation, Andersen et al. (2003) found a needle-like tip structure in a steady bathtub
vortex with strong rotation, Tyvand & Haugen (2005) considered the time evolution
of a bathtub vortex formed because of an impulsive sink, and Stepanyants & Yeoh
(2008b) modelled the rate of discharge at which the surface depression reaches the
outlet.

In this study, we use direct numerical simulations to explore the flow structure of
a steady bathtub vortex in an incompressible Newtonian fluid. We assume that the
flow has rotational symmetry and we simulate the source-sink flow in a cylindrical
tank with a central drain-hole and a flat stress-free surface. At the inlet, we prescribe
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the radial and azimuthal velocities and thereby control both the radial Reynolds
number and the azimuthal Reynolds number. The simulations demonstrate a weak
overall rotation at a low radial Reynolds number and a concentrated vortex above
the drain-hole at a high radial Reynolds number. The simulations also show that
the flow structure has little dependence on the azimuthal Reynolds number. The
transition from a weak overall rotation to a concentrated vortex takes place at
parameter values at which the assumption of a flat stress-free surface is applicable
in typical laboratory situations. It is well known that the radius of the core of a
viscous bathtub vortex results from the balance between the outward transport of
vorticity due to viscous diffusion and the inward advective transport of vorticity
and the axial vortex stretching (Batchelor 1967; Guyon et al. 2001; Alekseenko,
Kuibin & Okulov 2007). An instructive example is provided by the Burgers vortex,
which was first considered by Burgers (1940) and has later been used as a bathtub
vortex model by Rott (1958), Miles (1998) and Stepanyants & Yeoh (2008a). The
meridional flow in the Burgers vortex describes the flow near a stagnation point well,
but it does not allow for modelling of two features which are potentially important in
bathtub vortex flows. First, the axial velocity in the Burgers vortex does not depend
on the distance to the vortex axis, and second the axial vortex stretching does not
vary along the vortex axis (Rossi et al. 2004). The first point, which is important
for modelling the overall vortex structure, is addressed in the approximate model
by Einstein & Li (1951), in which an inner Burgers vortex and an outer rotational
flow without down-flow are matched. The Einstein and Li model was discussed by
Lewellen (1962) and shown to be an applicable approximation of the Navier–Stokes
equations when the ratio of sink flow to circulation is small. In the following we
introduce an integrable model with a smooth axial velocity profile that belongs to the
same general class of vortex models. We show that the approximate model describes
the surface flow well and captures the dependence on the radial Reynolds number.
In relation to the second point, we describe the height dependence of the radius of
the vortex core and the maximum of the azimuthal velocity at high radial Reynolds
number. Finally, we discuss a possible experimental realization of the flow and
evaluate our results in relation to vortex formation through spontaneous symmetry
breaking.

2. Direct numerical simulations
2.1. Geometry and control parameters

We consider a steady source-sink flow with rotational symmetry in a cylindrical tank
with a central drain-hole as sketched in figure 1(a). Fluid enters the tank horizontally
with specified velocity at the outer cylindrical boundary and leaves the tank through
the circular drain-pipe at the centre of the bottom. We denote the radius of the tank
R, the height of the tank H , the radius of the drain-pipe Rd and the height of the
drain-pipe Hd . We use cylindrical polar coordinates (r, φ, z) with z = 0 coinciding
with the bottom of the tank and denote the velocity components (vr, vφ, vz). The
source-sink flow is characterized by the volume flow rate Q and it is convenient
to define the radial flow rate per unit height q = Q/H . The corresponding radial
Reynolds number based on the tank radius and the average radial velocity at the
inlet is Rer = −R V r/ν = q/(2 π ν), where ν is the kinematic viscosity. The azimuthal
Reynolds number based on the tank radius and the average azimuthal velocity at the
inlet is Reφ =R V φ/ν.
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Figure 1. (a) Sketch of the three-dimensional cylindrical tank with the inlet at the outer
rim and the drain-hole at the centre of the bottom. (b) The two-dimensional computational
domain. For clarity we only show every third horizontal line and every second vertical line in
the mesh used for the simulations with H/R = 0.50 at a low radial Reynolds number.

2.2. Method

The simulations were performed using the code JADIM, which is currently developed
and used for a variety of problems at Institut de Mécanique des Fluides de Toulouse
(Magnaudet, Rivero & Fabre 1995; Auguste, Fabre & Magnaudet 2010). Here the
code solves the equation of continuity
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where ρ is the density and p is the pressure. The code uses a finite-volume method
on a Cartesian mesh in the meridional plane as shown in figure 1(b). The mesh
is non-uniform and refined in the vicinity of the inlet of the drain-pipe where the
gradients are largest. We apply a no-slip boundary condition at the bottom of the
tank and at the surface of the central drain-pipe. The free surface is approximated as
flat and a stress-free boundary condition is applied on it. This approximation is valid
whenever the Froude number is small (De Felice 2007). We define the Froude number
Fr = V 2/(g H ), where V is the magnitude of the characteristic velocity at the surface
and g is the acceleration due to gravity (Landau & Lifshitz 1987). Defined in this way,
the Froude number is for a fluid particle at the surface an estimate of the ratio of its
kinetic energy and its gravitational potential energy relative to the bottom, and the
Froude number is therefore a measure of the magnitude of the surface deformation
relative to the height of the tank. The approximation is, in other words, valid when
the magnitude of the velocity at the surface is small in comparison with the outflow
velocity for a gravitationally driven sink. In problems with large Froude number and
strong free-surface deformation, the location of the free surface is not known a priori
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Figure 2. Radial, azimuthal and axial velocities for constant azimuthal Reynolds number
Reφ = 0.67 and two different radial Reynolds numbers. (a–c) Without a central vortex at
Rer =0.67 and (d–f ) with a central vortex at Rer = 4.

and it must be obtained as part of the solution as in the simulations by Ito, Sakai &
Yamaguchi (2003).

At the inlet, the axial velocity is zero and the radial velocity and the azimuthal
velocity are prescribed with the half Poiseuille profiles:

Vr = 3
2
V r (z/H )(2 − z/H ), Vφ = 3

2
V φ(z/H )(2 − z/H ). (2.5)

This choice was made because it matches the boundary conditions at the bottom
and at the surface and therefore avoids the development of thin boundary layers
at these locations. At the bottom of the drain-pipe, we use an outlet boundary
condition similar to that described by Magnaudet et al. (1995). Namely, we nullify
the second-order normal derivatives of the velocity components as well as the second-
order normal-tangential cross-derivatives of the pressure. It was verified that with
this choice, the axial velocity profile at the outlet is very close to the Poiseuille law,
and that the results are independent of the drain-pipe height, provided that the latter
is not too small.

2.3. Results

Figure 2 shows velocity components in two cases with H/R =0.50, Rd/R =0.10,
Hd/R = 0.50 and Reφ =0.67. In figure 2(a–c), we have Rer = 0.67 and in figure 2(d–
f ) we have Rer =4. The azimuthal flow structure is qualitatively different in the two
situations whereas the meridional flow structure is qualitatively similar despite that
the volume flow rates differ by a factor of six. We find a weak overall azimuthal flow
at Rer =0.67 and a central vortex above the drain-hole at Rer = 4. We observe that
the value of the azimuthal Reynolds number has little influence on the flow structure,
and we find the same scenario in the range Reφ = 0.67 to Reφ = 6.67. In the special
case in which the azimuthal Reynolds number is zero, there is no vortex flow and
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Rd/R = 0.05 Rd/R = 0.10 Rd/R = 0.15

H/R Rer Red Rer Red Rer Red

0.25 4.3 2.9 5.3 2.9 6.1 2.9
0.50 2.0 2.7 2.5 2.7 2.9 2.8
0.75 1.5 3.1 1.9 3.1 2.3 3.2

Table 1. The radial Reynolds number, Rer , above which a central vortex is evident decreases
with H/R and increases with Rd/R. The corresponding height based radial Reynolds number
Red has only a weak dependence on H/R and is essentially independent of Rd/R.

0 0.030 0.061 0.091

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

0

00 0.032 0.065 0.097

0.037 0.074 0.110.0310 0.062 0.092
Vφ

Vφ

0 0.032 0.064 0.097

0 0.033 0.066 0.099

Vφ

Vφ Vφ Vφ

Vφ

0.037 0.074 0.11

0 0.042 0.084 0.130 0.034 0.067 0.10

Vφ

Vφ

Rer = 4.93, Reφ = 0.67 Rer = 5.33, Reφ = 0.67 Rer = 5.73, Reφ = 0.67

Rer = 2.33, Reφ = 0.67 Rer = 2.53, Reφ = 0.67 Rer = 2.73, Reφ = 0.67

Rer = 1.73, Reφ = 0.67 Rer = 1.93, Reφ = 0.67 Rer = 2.13, Reφ = 0.67

Figure 3. Azimuthal velocity for Reφ = 0.67 and different radial Reynolds numbers for three
tanks with different ratio between height and radius. (a–c) With H/R = 0.25, (d–f ) with
H/R =0.50 and (g–i ) with H/R = 0.75. The fluid has a weak overall rotation in (a, d, g) and
a central vortex above the drain-hole is evident in (c, f, i ). The intermediate cases (b, e, h)
illustrate the transition between the two regimes.

the azimuthal velocity is identically zero everywhere in the tank. For simulations and
stability analysis of this state we refer to De Felice (2007).

Figure 3 shows the azimuthal velocity in three different tank geometries. In all
three cases we find a weak overall azimuthal flow at a low radial Reynolds number
and a central vortex above the drain-hole at a high radial Reynolds number. Table 1
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Figure 4. Azimuthal and axial velocities on the axis of symmetry for constant azimuthal
Reynolds number Reφ = 0.67 and three different radial Reynolds numbers. (a, d ) With
Rer =4.67, (b, e) with Rer = 20 and (c, f ) with Rer = 80. The simulations were made with
H/R = 0.50, Rd/R = 0.10 and Hd/R = 0.50.

summarizes the parameters for the three cases with Rd/R = 0.10 shown in figure 3,
three cases with Rd/R = 0.05 and three cases with Rd/R = 0.15. The value of Rer

above which a central vortex is evident decreases strongly with H/R and increases
weakly with Rd/R. We presume that the critical parameter is the strength of the
meridional flow immediately above the drain-hole, since the central vortex is most
intense in this region. The dependence of the transition on H/R is therefore not
surprising, since the average outflow velocity increases with H/R. In agreement with
this observation, we find that the value of the height-based radial Reynolds number
Red =(H/R) (Rd/R)−1/3 Rer = −(Rd/R)−1/3 H V r/ν above which a central vortex is
evident is essentially constant as shown in table 1. However, we do not know how to
account theoretically for the weak −1/3 power law dependence of the transition on
Rd/R that is indicated by the simulations.

Figure 4 shows the azimuthal velocity profiles at different heights and the height
dependence of the axial down-flow velocity on the axis of symmetry. The radius of
the vortex core decreases slowly with radial Reynolds number and increases with
height. The maximum of the azimuthal velocity normalized by the azimuthal velocity
at the inlet is in the three cases between five and six times larger close above the
drain-hole in comparison with the flow at the surface. We notice that the azimuthal
velocity normalized by the azimuthal velocity at the inlet in the upper half of the
tank has a weak height dependence in comparison with the height dependence in the
lower half of the tank. The central down-flow velocity increases linearly downwards
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in the upper half of the tank from zero at the surface. Nearer to the drain-hole the
height dependence of the central down-flow velocity is not linear and it increases
strongly as the drain-hole is approached. The central down-flow velocities normalized
by the average radial velocity at the inlet in figure 4(d–f ) are essentially identical in
the upper half of the tank. In the drain-pipe the central down-flow velocity increases
downwards in figure 4(d ) and (e), whereas it has a local maximum in figure 4(f ).

3. Theoretical modelling
We will now investigate a simple theoretical model and compare it with the

simulation results for the surface flow. Supported by the simulation results for the flow
structure in the upper half of the tank, we shall for simplicity assume that the radial
velocity and the azimuthal velocity are both independent of height and that the axial
velocity depends linearly on height and vanishes at the surface. The steady solutions
of the Navier–Stokes equations with such flow structure were studied systematically
by Donaldson & Sullivan (1960) and include the Burgers vortex (Burgers 1940) and
the Sullivan two-cell vortex (Sullivan 1959). These solutions are not only exact but
also restrictive, and it is hopeless to expect them to match completely with the flow
investigated here. Instead, we investigate a class of approximate model solutions
where the radial velocity and the axial velocity satisfy the continuity equation (2.1)
and where the azimuthal velocity is an exact solution of the azimuthal Navier–Stokes
equation (2.3).

3.1. Einstein and Li model

The model suggested by Einstein & Li (1951) belongs to the present category and
assumes an axial plug-flow restricted to a central down-flow region with radius a. For
the axial velocity and the radial velocity we therefore have

vz =

⎧⎨
⎩

q (z − H )

π a2
, r < a,

0, r > a,

vr =

⎧⎪⎨
⎪⎩

− q r

2 π a2
, r < a,

− q

2 π r
, r > a.

(3.1)

The azimuthal Navier–Stokes equation (2.3) is solved separately in the two regions,
and the matching is done by the requirement that vφ and the shear stress σφr are
continuous at r = a. In general, with Rer �= 2 we find the solution

vφ = A

{
(Rer − 2)[1 − e−(Rer/2) (r/a)2 ] r−1, r < a,

(Rer − 2 − 2 e−Rer/2)r−1 + Rer eRer/2 aRer −2 r1−Rer , r > a,
(3.2)

and for the special case with Rer = 2 we obtain

vφ = B

{
e [1 − e−(r/a)2 ] r−1, r < a,

[e − 1 + 2 ln(r/a)] r−1, r > a,
(3.3)

where the constants A and B are determined by the outer boundary condition vφ = Vφ

at r = R. The vortex flow in the down-flow region is the Burgers vortex (Burgers 1940)
and the two-dimensional flow in the outer region is the exact solution obtained by
Hamel (1917) and analysed by Preston (1950) and Thwaites (1950).

3.2. Integrable model with smooth axial velocity profile

To construct a more satisfactory description without velocity discontinuities, we
introduce a model with concentrated central down-flow and the continuous velocity
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profiles:

vz =
q a2(1 + (a/R)2)(z − H )

π(a2 + r2)2
, vr = −q(1 + (a/R)2)r

2 π(a2 + r2)
. (3.4)

The meridional flow thus defined is a smooth version of the flow considered by
Einstein & Li (1951). In the general case with Rer �= 2/(1 + (a/R)2), we insert the
radial velocity and integrate the azimuthal Navier–Stokes equation (2.3) to obtain the
azimuthal velocity under the remarkably simple form:

vφ =
C

r

[
1 −

(
1 +

r2

a2

)1−(Rer/2)(1+(a/R)2)
]

, (3.5)

and for the special case with Rer = 2/(1 + (a/R)2) we find

vφ =
D

r
ln

(
1 +

r2

a2

)
, (3.6)

where the constants C and D are determined by the outer boundary condition vφ =Vφ

at r =R. The model is only approximate since the solution does not satisfy the radial
Navier–Stokes equation (2.2) and the axial Navier–Stokes equation (2.4) in the entire
domain. However, the solution satisfies the governing equations evaluated at the
surface, and we presume that it is applicable when the ratio of the sink flow to the
circulation is small as discussed by Lewellen (1962).

3.3. Characteristics of the analytical models

For both approximate models the asymptotic behaviour of the azimuthal velocity at
infinity depends qualitatively on the value of the radial Reynolds number. For the
smooth model with Rer > 2/(1+ (a/R)2) it follows that vφ ∝ r−1, which is recognized
as the usual inviscid vortex solution. For the smooth model with Rer < 2/(1+(a/R)2)

we see that vφ ∝ r1−Rer (1+(a/R)2) and that the azimuthal velocity thus decreases less
rapidly and that it may even increase if Rer < 1/(1+(a/R)2). The radius of the vortex
core results from the balance between the outward transport of vorticity due to
viscous diffusion and the inward advective transport of vorticity and the axial vortex
stretching as discussed in the introduction. In the Einstein and Li model, the radius of
the vortex core rmax , defined as the location of the maximum of the azimuthal velocity,
can be obtained analytically. For Rer > 2.5129, the maximum is located within the
plug-flow region and it is given by rmax/a = 1.5852 Re−1/2

r . For 1 < Rer < 2.5129, the
maximum is located outside the plug-flow region and for Rer �= 2 it is

rmax

a
=

[
Rer (Rer − 1)

2 + (Rer − 2) eRer/2

]1/(Rer −2)

. (3.7)

For Rer < 1 the azimuthal velocity is an increasing function so that no maximum is
reached inside the domain. For the model with the smooth axial velocity profile, the
value of rmax is not available in analytical form, but it can be obtained numerically.
Figure 5(a) shows rmax/a as a function of Rer for both models. At a high radial
Reynolds number, the models display the same power law rmax/a ∝ Re−1/2

r . The
corresponding value of the maximum of the azimuthal velocity vmax/Vφ is plotted
as a function of Rer in figure 5(b). Note that both models display the asymptotic
behaviour vmax/Vφ = 0.4513 (R/a) Re1/2

r at a high radial Reynolds number.
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Figure 5. The radius of the vortex core (a) and the maximum of the azimuthal velocity (b)
as functions of the radial Reynolds number in the two models with a/R = 0.10.
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Figure 6. Radial and azimuthal velocities at the surface for different radial Reynolds numbers.
(a, c) Simulations with H/R = 0.50, Rd/R = 0.10, Hd/R =0.50 and Reφ = 0.67. (b, d ) Results
of the model with smooth axial velocity profile.

3.4. Simulations versus analytical models

Figure 6 shows the radial and azimuthal velocities at the surface for different radial
Reynolds numbers. The structure of the radial velocity in figure 6(a) is little influenced
by the sixfold difference in the volume flow rate and for simplicity we therefore
model the radial velocity normalized by the radial velocity at the inlet using the
same function in all six cases. The curve in figure 6(b) was obtained by fitting
the smooth radial velocity profile (3.4) to the data in this way. The best fit gave
a =4 Rd for the radius of the average down-flow region. The corresponding azimuthal
velocity (3.5) is shown in figure 6(d ) and it compares favourably with the simulations
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Figure 7. (a, b) The radius of the vortex core and (c, d ) the maximum azimuthal velocity for
different heights and radial Reynolds numbers. The simulations were made with H/R = 0.50,
Rd/R = 0.10, Hd/R =0.50 and Reφ = 0.67.

in figure 6(c) and has the same qualitative dependence on the radial Reynolds
number. The model with the smooth axial velocity profile therefore offers a good
description of the surface flow using only the radius of the down-flow region as a free
parameter.

It is instructive to compare (3.4) with the flow represented by a point-sink of
strength Q at the drain-hole centre at z = 0 plus a point-sink of strength Q on the
axis of symmetry at z = 2H to ensure that the axial velocity vanishes at the surface
(Rott 1958). The point-sink model represents the meridional flow near the drain-hole,
but outside the central drain-hole region the flow is more appropriately modelled by a
line-sink on the axis of symmetry. At the surface we have vr = −Q r/(2π(H 2 + r2)3/2)
in the point-sink model, which is analogous to (3.4), but with the power 3/2 in the
denominator instead of the power 1. The point-sink model suggests that H is the
relevant scale for the radius of the down-flow region at the surface in reasonable
agreement with the simulations.

The radius of the vortex core and the maximum of the azimuthal velocity as
obtained in the simulations are shown in figure 7 for different heights and radial
Reynolds numbers. The radius of the vortex core increases with height as shown in
figure 7(a), whereas the maximum of the azimuthal velocity decreases with height as
shown in figure 7(c). The vortex is more concentrated and intense at a high radial
Reynolds number. We observe that the products Re1/2

r rmax and Re−1/2
r vmax collapse

on single curves as shown in figure 7(b) and (d ), consistent with the asymptotic
behaviour predicted by the models and shown in figure 5. We do not know the
curves in figure 7(b) and (d ) analytically, but we note that the products rmax vmax are
approximately height independent and of magnitude R V φ .
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4. Discussion and outlook
The transition from a weak overall azimuthal flow to a central vortex above the

drain-hole is smooth and occurs at radial Reynolds numbers in the range from one to
ten. The underlying physical mechanism for the transition is the increase of the inward
advective transport of vorticity and the axial vortex stretching. These intensification
processes balance the outward viscous diffusion of vorticity. The simple model with
the smooth axial velocity profile turned out to describe the surface flow well and to
capture the transition. At a high radial Reynolds number, the radius of the vortex
core at each given height decreases as one over the square root of the radial Reynolds
number and the maximum of the azimuthal velocity at each given height increases
as the square root of the radial Reynolds number. This partially describes the vortex
intensification. The height dependence of the vortex reflects both the tank geometry
and the choice of inlet velocity profiles which give rise to a down-flow region that is
more concentrated as the drain-hole is approached. It remains a challenge to model
the height dependence of the radius of the vortex core and the maximum of the
azimuthal velocity, and it would be interesting if e.g. the boundary layer model of
vortex filaments suggested by Rossi et al. (2004) could be adapted to model the
bathtub vortex.

An experimental realization of a bathtub vortex with control of both the radial
and the azimuthal velocities at the inlet was made by Shingubara et al. (1988) using
a tank with a system of adjustable guide vanes. The fluid layer in the experiment
was shallow in comparison with our simulations and different vortex flows were
observed experimentally. It would be interesting to explore the bathtub vortex in an
experiment using a set-up with the geometry discussed here and a system of adjustable
guide vanes. A related and equally interesting problem is vortex formation through
spontaneous symmetry breaking in the case where the inlet is designed in order not
to introduce any angular momentum. Such experiments are challenging to construct,
because even a small misalignment at the inlet can introduce asymmetries that lead
to the formation of a central vortex. Our results on the existence conditions of a
central vortex provide information to guide the design of such experiments, and we
are currently working on this problem.

We thank Benny Lautrup for helpful discussions. We are also thankful to Jørn
Christensen and Annäıg Pedrono for valuable computer support.
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