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We create air bubbles at the tip of a ‘‘bathtub vortex’’ which reaches to a finite depth. The bathtub

vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical

container. The tip of the needlelike surface dip is unstable at high rotation rates and releases bubbles which

are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the

unstable tip decreases in time as a power law with an exponent close to 1=3. This exponent was found by

Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)] to govern gas flow driven pinch-off, and indeed we

find that the volume oscillations of the tip creates a considerable air flow through the neck. We argue that

the Bernoulli pressure reduction caused by this air flow can become sufficient to overcome the centrifugal

forces and cause the final pinch-off.

DOI: 10.1103/PhysRevLett.102.204501 PACS numbers: 47.55.db, 47.32.Ef, 47.55.df

Studies of drop and bubble formation in fluids have a
long history [1]. In the last two decades considerable in-
terest has been devoted to studies of the dynamics close to
pinch-off in the formation of drops [2] and more recently in
the formation of bubbles [3–8]. In recent work Andersen
et al. [9,10] reported an interesting bubble forming insta-
bility in which the needlelike tip of a so-called ‘‘bathtub
vortex’’ becomes unstable and leads to periodic formation
of small air bubbles. The system is characterized by high
central rotation rate and fast air flow from the tip during the
bubble formation. It allows for well controlled measure-
ments of these fundamental effects on pinch-off dynamics.
In addition, the system has potential as a bubble generator
in which both bubble size and formation frequency may,
through the rotation rate, be more easily controlled than in
traditional bubble generators like the flow-focusing device
[11,12].

In our experiment a cylindrical container with radius
95 mm is filled with water to a constant level of 240 mm.
The container has a small circular hole with radius Rdrain of
typically 1.2 mm in the center of the bottom. Water drains
under its own weight out of the container at a rate which is
approximately 10% smaller than the prediction using
Torricelli’s theorem (9� 10�6 m3=s for the 1.2 mm drain)
[10]. We use a recirculation system to maintain a constant
water level without disturbing the free surface [9,10]. The
container is rotated about its vertical symmetry axis with
constant rotation rate �. After an initial transient an in-
tense vortex with high rotation rate, i.e., typically thousand
times larger than�, is formed above the drain hole and the
free surface is deformed [Fig. 1]. By increasing � the air-
filled core penetrates deeper and narrows as it evolves from
a stable state (a) to an unstable bubbling state (b) and (c). A
further increase of � eventually makes the air-filled core
reach all the way to the drain hole, which limits the range in
which the bubbling phenomenon can be observed. In the

bubbling state near the transition the air-filled neck is
stable for considerable time, until a pinch-off is initiated
and a bubble is released and carried downward by the
draining flow. Due to this downward flow the geometry is
similar to the one encountered in the production of bubbles
in a co-flow situation [11–13]. In our experiment this effect
is not due to external geometry, but comes from the rapid
central rotation which creates a funnel-like down flow near
the tip, and also, through the centrifugal force which
opposes the final pinch-off. As we increase � the tip
approaches the drain hole and, similar to the co-flow
situation, the increased downward flow will create a
more unstable situation where capillary waves are excited
[10]. The time evolution of the free surface during a typical

FIG. 1. By increasing the rotation rate while keeping Rdrain ¼
1:2 mm, the air-filled tip of the bathtub vortex goes from a stable
state at 13.5 rpm (a) to an unstable bubbling state at 24 rpm (b)
and 30.5 rpm (c). In the bubbling state the frequency of bubble
formation increases and the bubble size decreases with increas-
ing rotation rate as shown in (b) and (c) for typical cases.
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bubble pinch-off event is shown in detail in Fig. 2. It is the
influence of rotation and air flow on the pinch-off dynamics
that will be the focus of this Letter.

Figure 3 shows the minimal neck radius, R, as function
of the time to pinch-off, �. It is clear from the log-log plot
that the minimal neck radius exhibits power-law behavior
R / �� close to the pinch-off for approximately two dec-
ades with an exponent � � 1=3 as indicated by the line.
Similar behavior is observed over a large range of � from
13.5 to 42 rpm and Rdrain ranging from 1.0 to 1.2 mm.
Analysis of our data gives a distribution of estimated
exponents with mean 0.34 and standard deviation 0.07
(inset of Fig. 3). We believe the spread of exponents is
simply noise, and note that the mean value � ¼ 0:34 is
determined to within an uncertainty of only 0.01.

To understand the observed power law, we start from the
Rayleigh-Plesset equation for the collapse of a cylindrical
cavity [14,15]. This approach is known to yield the correct
power laws for the dynamics of the neck radius over a
range of different regimes [3]. When inertia and surface
tension balance, a power-law exponent � ¼ 2=3 is found,
for a balance of viscosity and surface tension, � ¼ 1 is
found, and a purely inertial collapse, gives � ¼ 1=2. The
last exponent of 1=2 for the inertial collapse of the bubble
is the asymptotic value derived by Eggers et al. [7] and a
good approximation of the collapse dynamics proposed by
Gordillo et al. [4] and Bergmann et al. [6]. In the following
we show how to adapt the Rayleigh-Plesset model to
describe the pinch-off of the rotating air-filled neck at the
tip of the bathtub vortex.

We use cylindrical polar coordinates r, �, z and denote
the velocity components vr, v�, vz. We assume that the
flow has rotational symmetry and is independent of height.
In addition we assume that the axial flow can be neglected
in the last stages of the collapse, and we therefore set
vz ¼ 0. From the continuity equation it then follows that
vr ¼ R _R=r, where we let R denote the surface of the
cylindrical neck. We can now integrate the radial Navier-
Stokes equation with respect to r from R to R1 and obtain
the Rayleigh-Plesset type equation
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dt

ln
R

R1
þ 1

2
_R2

�
1� R2

R21

�
� 2�l

_Rþ �

�lR

¼ �
Z R1

R

v2
�

r
drþ p1 � p

�l

; (1)

where �l and �l denote the density and the dynamic
viscosity of the liquid, respectively, � denotes the surface
tension, p1 denotes the pressure in the liquid at the dis-
tance R1, and p denotes the pressure in the air-filled neck.
Equation (1) reduces to the well-known cylindrical
Rayleigh-Plesset equation in the absence of rotation
[3,15]. We also note that this equation captures the loga-
rithmic corrections to the power laws when R1 is identified
as a local length scale such that R=R1 is the local aspect
ratio of the cavity [1,7]. To complete the model we must
determine p and supplement Eq. (1) with the azimuthal

Navier-Stokes equation. To do so, we will first describe our
measurements of the stabilizing azimuthal velocity term.
It is impossible to measure the velocity field in our

rapidly rotating free surface flow using tracer particles,
because the rotation drives heavier particles outwards and
forces lighter particles to the center even with a very small
mismatch between the particle and the liquid densities.
Thereby the lighter particles aggregate at the surface, com-
pletely immobilize it, and prevent the collapse. To circum-
vent this difficulty we generate bubbles with a typical size
of 40 �m through electrolysis [16]. The rotation slowly
drives these bubbles towards the center, where they co-
alesce with the surface in contrast to the particles which
immobilize it. With this method we were able to measure
the flow in the bulk as well as at the surface [Fig. 4].
The dash-dot line in Fig. 4(a) shows that the vortex

below and on the surface of the tip has a core with solid
body rotation (induced by the stagnation point below the
tip) of a high central rotation rate of 2� 104 rpm, i.e., a
rotation rate which is thousand times the rotation rate of
19 rpm for the container. The radius of the vortex core is
comparable to Rdrain, and outside this region v� tends to the
line vortex of the bulk (dashed line). Figure 4(b) shows that
the down-flow is localized to a central region with radius
equal to 3 times Rdrain, and that a stagnant region with
weaker down-flow exists below the tip.

FIG. 2. Bubble pinch-off at the tip of the bathtub vortex for
Rdrain ¼ 1:2 mm and � ¼ 13:5 rpm. The time to pinch-off in
milliseconds is shown above each frame. Note that the axial
downflow around the tip does not give rise to any apparent up-
down asymmetry in the pinch-off region, and that we observe a
symmetric pinch-off as expected for bubble formation.

FIG. 3 (color online). Measured radius of the air-filled neck as
a function of the time to pinch-off (circles) and power law with
exponent � ¼ 1=3 (solid line). Rdrain is 1.0 mm and� is 42 rpm.
Inset: Frequency histogram for the measured exponents with
� ¼ 1=3 indicated.
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The azimuthal Navier-Stokes equation is
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where �l denotes the kinematic viscosity of the liquid and
we have neglected any axial flow. This might seem strange
in view of the strong downflow close to the free surface
[Fig. 4(b)], but, as can be seen in the movie [17], following
a bubble at the collapsing neck, the flow in the pinch-
region is shielded from the downflow. The stationary line
vortex v� ¼ �=ð2	rÞ, with circulation �, is an exact solu-
tion expressing angular momentum conservation. One
might expect the velocity on the collapsing surface to be
of this form, but actually the azimuthal velocity first de-
creases and then increases when the neck collapses as
shown in Fig. 4(c). This is probably due to viscous dissi-
pation induced by the presence of a viscous core outside
the narrow, collapsing neck region. To model this in a sim-
plistic way, we approximate the viscous term in Eq. (2) as a
finite difference from the center, i.e., as��ev�r

�2 with an
effective �e of the order of �l. For a line vortex this would
strongly overestimate the dissipation, but in Fig. 4(a) we
see that the flow is initially far from a line vortex in the
neck region. Using also vr ¼ R _R=r, the resulting equation
(written most easily in terms of rv� and r2) can be solved
in the region r > RðtÞ by the method of characteristics
as rv�ðr; tÞ ¼ r0v�ðr0; 0Þ expf��e

R
t
0 dt

0½Rðt0Þ2 þ x2��1g,
where x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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determines the distance to
the free surface. With a power-law collapse
RðtÞ ¼ R0½ðtc � tÞ=tc�� and� � 1=2we obtain the azimu-
thal velocity on the free surface as
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where �0 ¼ 2	R0v�ðR0; 0Þ. Comparing this result with
our flow measurements during the collapse [Fig. 4(c)],
with � ¼ 1=3 we find a good agreement when �e � 2�l.
Note that the viscous damping initially causes v� to de-

crease slightly, thereby diminishing the centrifugal pres-
sure and facilitating the collapse. This does not continue
indefinitely since v� increases rapidly later and near pinch-
off tends towards a line vortex as one would have expected

from inviscid theory. Thus the rotational term
RR1
R v2

�=rdr
in Eq. (1) asymptotically scales (at most) as R�2 close to
pinch-off. As we will argue later, this implies that the
contribution of the rotational term is subdominant.
The cause of the collapse is found in the volume oscil-

lations of the tip below the neck. During pinch-off this
volume linearly decreases [Fig. 5] and thus gives rise to a
constant flux of air through the neck. This creates flow
velocities of up to around 1 m s�1 with a Bernoulli pres-
sure reduction, p1 � p ¼ �gðv2

g=2þ d
=dtÞ, where �g is

the gas density and 
 is the velocity potential for the gas
flow. From the experiment we can estimate this pressure
reduction. The first term of the pressure reduction is simply
approximated using the average gas-flow velocity
vg � Q=ð	R2Þ ¼ �ðdV=dtÞ=ð	R2Þ, where V is the vol-

ume of the tip below the minimal radius. Note that a
positive flux Q means an upward flow through the neck.
With constant flux Q [Fig. 5], the second term of the
pressure reduction depends solely on the dynamics of the
neck. The neck can be characterized by R and the radius of
curvature Rc, which from the literature [5–7] and geo-
metrical arguments is expected to approximately scale
with R. This is confirmed in the experiment, in which the
ratio � ¼ Rc=R is found to be constant (� � 7� 2). This
means that the shape of the free surface is preserved to
smaller and smaller length scales as the pinch-off is ap-

proached, with characteristic neck-length
ffiffiffiffi
�

p
R. For the

time-dependent Bernoulli term we therefore find,

d
=dt � d½ ffiffiffiffi
�

p
Q=ð	RÞ�=dt ¼ � ffiffiffiffi

�
p

Q _R=ð	R2Þ. We are
now ready to determine the behavior of RðtÞ close to
pinch-off. Inserting the expressions for vg and d
=dt

into Eq. (1), we find terms scaling as R�4 and _RR�2,
respectively, which means that the rotational (R�2), vis-
cous ( _RR�1), and surface tension (R�1) terms can all be
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FIG. 4 (color online). Measured azimuthal (a),(c) and axial (b) flow velocities. The measurements in (a) and (b) were made 1 mm
above and below the minimal neck radius for Rdrain ¼ 1:2 mm and � ¼ 13:5 rpm (diamonds) and � ¼ 19 rpm (circles, crosses),
respectively. The shaded areas indicate the initial radius of the neck before pinch-off. The data within the shaded areas are therefore
obtained below the tip, except the red crosses in (a) which are obtained by tracking bubbles on the surface. In (a) we observe solid body
rotation around the tip (dash-dot line), while away from the center v� tends to the line vortex observed in the bulk (dashed line). Note
that in (b) positive vz corresponds to downward flow. (c) shows v� of a bubble on the surface of the neck during the collapse (� ¼
30:5 rpm) [17] and agrees with Eq. (3), with �e � 1:8� 10�6 m2 s�1 (red line).
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neglected, giving
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dt
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where C1 ¼ Q2�g=ð2	2�lÞ and C2 ¼
ffiffiffiffi
�

p
Q�g=ð	�lÞ. To

obtain the power-law, including the prefactor, we neglect
the R2=R21 term and approximate the slowly varying loga-
rithmic term by a constant lnðR=R1Þ � �C. Equation (4)
reduces with these assumptions to�CR €R�ðC�1=2Þ _R2¼
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lution
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where the approximate equality is valid when �g=�l is

small. The solution indeed has the exponent � ¼ 1=3 in
agreement with the experiment. The scaling in Eq. (5) is
similar to the result by Gordillo et al. [4] for the gas-flow
driven collapse of an asymmetric bubble.

The precise value of R1 (and therefore C) is unknown
and the low exponent (1=3) for Qmeans that the variations
become small. However, comparing to our experiments
with a typical gas flow rate Q ¼ 8� 10�9 m3 s�1 and
taking for simplicity C ¼ 1 we find that the prefactor is
of the right order of magnitude but slightly too small. The
prediction agrees well if we use an effective Q that is
2 times (at low �) to 6 times (at high �) larger than the
measured Q. This ties in with the intriguing observation
that the pinch-off always occurs while the volume of the tip
shrinks (Q> 0). In this case the velocity difference be-
tween the liquid outside and the gas inside the neck is
largest and therefore the effective radius where the upward
flow takes place is smallest. This is similar to increasingQ.

Also, it is expected, e.g., from the co-flow literature [11–
13], that this leads to a more unstable interface.
It is interesting to note that the 1=3 power law is actually

dictated by dimensional analysis if Q, �g, and �l are the

only dimensional control parameters in the problem, i.e., if
one would from the outset exclude length scales as R1 and
R0 as well as viscous, surface tension and rotational ef-
fects. However, the weak 1=6 power-law dependence on
the density ratio (first noticed by Gordillo et al. [4]) is
surprising and does not follow from dimensional analysis.
The low value of this exponent makes it difficult to test this
dependence experimentally [18].
In conclusion, we find experimentally that the neck

radius close to bubble pinch-off in the bathtub vortex
decreases as a power law with an exponent of approxi-
mately 1=3. We explain this as a result of the pressure
reduction generated by the air flow in the neck, which
drives the dynamics and thereby makes the intense rota-
tional flow irrelevant in the final stages of the collapse. We
speculate that this is a general and robust feature which is
to be expected for bubble pinch-off problems in rotating
flows independent of the rotational velocity profile.
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FIG. 5 (color online). Measured minimal neck radius (tri-
angles) and tip volume (filled circles) as functions of time to
pinch-off for Rdrain ¼ 1:2 mm and � ¼ 13:5 rpm. The com-
pressibility of the air in the tip is negligible, since once the
neck reaches the resolution of our recordings (1 �m) the air is
found to be compressed less than 1%. The average flow velocity
through the collapsing neck (inset) is therefore computed di-
rectly from the volume change.
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