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Investigations of curiosities of everyday life physics can sometimes start in
as innocuous a place as your kitchen sink � in there you have probably noticed
the so-called hydraulic jump: a sudden jump in �uid height is formed in the
outward spreading water layer at the bottom of the sink when you turn on the
tap. This jump usually appears on a more or less circular locus around the
impact point of the water jet.

Figure 1: Hydraulic jump with eight corners, shown from an oblique angle (left)
and from below (center and right). The �roller� �ow structure is visualized with
red dye in the triangle (right ).

What you probably haven't yet seen in your sink is that the jump can turn
into a �polygon�: In 1997, researchers in Copenhagen discovered that the jump
may undergo structural changes where the circular jump symmetry is broken,
corners develop, and the jump shape becomes polygonal. To transform into
such a polygonal state, the system �rst has to change from a �Type I� jump to
a �Type II� jump. In the Type I state all surface velocities point outward. A
transition to the �Type II� state occurs when the liquid layer outside the jump
is su�ciently deep; in this state, there is an annular region outside the jump,
where the surface �ow points inward: a so-called �roller�, i.e. an eddy structure
similar to a breaking wave, has appeared. The original explanation for the
polygonal shapes was based on a competition between the outward viscous forces
and the inward gravity on this roller, but the origin of the instability breaking
the circular symmetry remained unclear. A signi�cant step towards �nding an
explanation for the instability was made by John Bush and coworkers in 2006,
who pointed out that surface tension plays a major role and that the mechanism
causing polygons is similar to the so-called Rayleigh-Plateau instability. This
instability is responsible for the breaking-up of long water jets into droplets �
and in the case of the jump, it leads to the breaking-up of the roller. Martens,
Watanabe and Bohr present a comprehensive model, which combines these two
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aspects. Their starting point is again the torus-shaped roller on which forces act
(including the Laplace pressure due to surface tension) and inside which there
can be slow �uid transport. This model leads to shapes that look surprisingly
close to those observed in experiments, and to an instability criterion that relates
a shape parameter to a �Bond number� (the ratio of the typical length scales
in the problem to the capillary length). Instability will set in on a length scale
which is roughly proportional to the roller width � analogously to the Rayleigh-
Plateau instability and in agreement with experiments.

It is surprising that a �simple� �ow like this is actually so di�cult to analyze.
It is known that the Navier-Stokes equations are hard to solve, but since the
hydraulic jump �ows are laminar, one would expect that at least a numerical
solution should be available. However, when a strongly deformed free surface
is involved, the numerical solution becomes very hard, and to date no 3D-
simulations have been made of the polygonal hydraulic jump. From a theoretical
point of view, these �ows contain several of the classic �uid problems. The jump
itself is mainly driven by �ow separation (where part of the �ow goes backward),
and in the Type II state the separation occurs at the �uid surface. It is well
known that Prandtl's boundary layer equations � which are the natural starting
point for the analysis � break down at such points, and this has made progress
very di�cult. For the Type I state it was shown by Watanabe and coworkers in
2003 that one actually can continue Prandtl's equations through the jump by
taking averages (in analogy with the so-called Karman-Pohlhausen approach),
but this has not been done for the Type II state, from which the polygons
develop.

The full �ow is very complicated, as seen in the triangle in the right-most
�gure, where red dye has been used to track the �ow. Looking carefully one
realizes that the roller breaks up at the corners, creating jet-like �ows emanating
from each of them. Here the basic assumption made by Martens et al. � that
one can treat the roller as a deformed but continuous torus � obviously breaks
down and new theoretical approaches have to be invented. A more detailed
study of these processes will very likely lead to new unexpected phenomena
and emphasize � again � that even laminar �ows can be quite a challenge for
theorists!
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