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Anatomy of a BathtubVortex
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We present experiments and theory for the ‘‘bathtub vortex,’’ which forms when a fluid drains out of
a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined
to a narrow and rapidly rotating ‘‘drainpipe’’ from the free surface down to the drain hole. Surrounding
this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the
container. This flow structure leads us to a theoretical model similar to one obtained earlier by
Lundgren [J. Fluid Mech. 155, 381 (1985)], but here including surface tension and Ekman upwelling,
comparing favorably with our measurements. At the tip of the needlelike surface depression, we
observe a bubble-forming instability at high rotation rates.
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FIG. 1. The bathtub vortex in a cylindrical container with a
drain hole at the center of the bottom (not shown). The fluid in
the central region is rotating rapidly, and the depth of the
free surface dip depends on the rotation rate of the container.
Picture (a) was taken at 6 rpm, (b) at 12 rpm, and (c) at 18 rpm.
The drain hole radius was 0.1 cm and the unperturbed fluid
depth 10.9 cm. The rates of the out-flow were (a) 3:62 cm3 s�1,
(b) 3:54 cm3 s�1, and (c) 3:16 cm3 s�1. The photographs were
taken through the square reservoir tank surrounding the cy-
lindrical tank, and in each photograph the area is
4:0 cm �horizontally� � 7:2 cm �vertically� and the lower edge
of the frame is 4.2 cm above the drain hole. The structure above
the surface is due to reflections. The water is recirculated
through a rotationally symmetric inlet at the bottom of the
fix the size of the drain hole (and thus approximately the outer cylindrical boundary.
The generation of strongly localized vorticity is a fas-
cinating and complicating ingredient of a broad variety of
fluid flows ranging from vortex shedding at solid surfaces
(such as paddles, sand ripples, or insect wings) over flows
through turbines to large-scale tornadoes [1]. In general,
these flows are poorly understood, since the interplay
between fast axial motion and intense, localized vorticity
leads to difficult mathematical problems outside the com-
fortable realm of classical subjects such as potential flow
or standard boundary layer theory.

One of the most well-known examples of such flows is
the so-called ‘‘bathtub vortex,’’ which forms when water
drains out of a container. The strong, localized deforma-
tion of the free surface makes the vortex beautifully
visible, and has made the bathtub vortex the prototype
‘‘vortex.’’ This popularity is in stark contrast to the
attention which the phenomenon receives in the literature.
The few classic papers about it either neglect the axial
flow [2] or consider the problem without a free surface [3].
Similarly, textbooks very seldom mention the bathtub
vortex, and if they do [4,5] the flow is modeled within
potential theory (with the inclusion of an ad hoc viscous
core [4]) without incorporating the axial motion. In the
vortex core the axial velocity can be high, an essential
ingredient of the strong ‘‘swirl’’ [6] which makes the flow
so fascinating. Our aim in this Letter is to provide basic
understanding of the stationary bathtub vortex: the flow
structure, the shape of the free surface, and the interde-
pendence of important characteristics such as the size of
the central surface depression, the rate of the out-flow,
and the rotation rate in the vortex core.

We study a stationary bathtub vortex in a rotating
container with a small drain hole at the bottom. The
container is filled to a constant level with water, and the
out-flow is driven by gravity. The free surface shape
depends strongly on the rate of the out-flow and less on
the rotation rate of the container. In the experiment, we
0031-9007=03=91(10)=104502(4)$20.00 
flow rate) and vary the rotation rate (angular velocity) �.
Pictures of the observed free surface profiles are shown in
Fig. 1. The surface depression increases with �, and at
18 rpm the surface dip has a narrow, needlelike shape and
is rotating very rapidly (around 104 rpm). At higher val-
ues of the rotation rate, the tip is no longer stable: Air
bubbles detach from it and are dragged down by the
surrounding flow as shown in Fig. 2. When � is increased
further, the frequency of bubble shedding increases until
the air-filled core extends all the way down through the
drain hole.
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FIG. 2. The tip of the surface depression is unstable when the
rotation rate of the container is high. An air bubble has just
detached from the tip and is dragged down the drain by the
surrounding flow.

FIG. 3 (color). (a) An overlay of two flow visualizations made
by adding fluorescent dye at the surface (red) and at the bottom
inlet (green), respectively. The red dye is flowing in a thin
surface layer to the central vortex core where it is diverted
downwards to the drain hole. The free surface dip is seen above
the central red region (the red pattern above the surface is due
to reflections). The green dye spirals inward in the thin Ekman
layer at the bottom, then upwards around the central drainpipe,
and finally down the drain. Only a thin vertical cross section
through the axis of symmetry is illuminated and thereby the
spiraling upward motion gives rise to the layered structure of
the green dye. (b) Sketch of the flow structure (not to scale).
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The flow structure is surprisingly complex. Figure 3(a)
shows an overlay of two flow visualizations made by
adding fluorescent dye at the surface (red) and at the
bottom inlet (green), respectively. The control parameters
correspond to Fig. 1(b). The central down-flow region
(red) below the free surface dip is strongly localized,
and the downward velocities are of the order of 1 m s�1.
This region appears similar to a weakly conical drainpipe
with a radius comparable to that of the drain hole. If
this corresponds to the ‘‘esophagus’’ of the vortex, the
‘‘mouth’’ would appear to be the surface region above the
drain, but in the stationary flow only a small fraction of
the flow rate through the drain hole actually comes from
this region. Nearly all of the flow rate is provided by the
thin Ekman layer at the bottom of the container. In this
boundary layer, the fluid spirals inward. Close to the drain
hole, a large part of it is diverted upward and the rest goes
directly down the drain. We note that a similar up-flow
was observed by Lewellen [3] close to the drain hole in a
rotating flow without a free surface. Figure 3(b) summa-
rizes the flow structure of the bathtub vortex: The flow
1 cm away from the axis is upward (with velocities of the
order of 1 cm s�1), and most of the fluid passing out
through the drain hole has thus taken a contorted path
in through the bottom Ekman layer, up through the next-
to-central upwelling region, and finally down through the
rapidly rotating ‘‘porous’’ central drainpipe.

In the bulk of the container the flow is essentially two
dimensional and well described as a central line vortex
superimposed on the rigid rotation of the container.
This means that the radial velocity u and the vertical
velocity w both vanish, whereas the azimuthal velocity
104502-2
v � vB�r� � � r� �=r, where � is the line vortex
strength. Large deviations from this are observed only
near the boundaries and in the central region. Because of
the mismatch between the rigidly rotating bottom and the
�=r term in vB, an Ekman boundary layer is formed, with
the thickness � �

����������
	=�

p
� 1 mm, where 	 is the kine-

matic viscosity. By standard linear theory [7], one finds,
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in the reference frame rotating with rotation rate �,
that ~uu�r; z� � ���=r� exp��z=�� sin�z=�� and ~vv�r; z� �
��=r� �1� exp��z=�� cos�z=��	. If we assume that the
main flow rate F through the drain hole is carried by
the Ekman layer, we get F � �

R
1
0 2r~uu dz � ��, and

we can thus express the strength of the line vortex in
terms of the flow rate and the rotation rate as � �
F

����������
�=	

p
=. This result has been confirmed experimen-

tally for a source-sink flow without a free surface [8], and
our particle tracking measurements at 6, 12, and 18 rpm
agree with the prediction to within 10% [9]. The up-flow
is similar to Ekman pumping, which in the linear ap-
proximation [7] is proportional to the vertical component
of the vorticity, and it vanishes in the bulk since the bulk
flow �=r is irrotational. At the smallest radii ~vv is linear in
r, corresponding to the approximately rigid rotation of
the core. A corresponding up-flow appears due to Ekman
pumping, but in this region the nonlinear terms become
important and invalidate the linear Ekman theory. In a
nonlinear theory [10,11] of the Ekman layer, it is pre-
dicted that the boundary layer thickness decreases toward
the center and that the up-flow in a vortex core in rigid
rotation is reduced due to the nonlinear corrections.

The vertical down-flow in the central core is surpris-
ingly localized. We have thus modeled the flow below the
surface dip as a ‘‘drainpipe,’’ i.e., as if it was limited by a
boundary r0�z� on which w vanishes while u, v, and p are
matched to the z-independent exterior bulk flow. In the
vortex core u � w and v � w, and in this region the
derivatives with respect to z in the viscous terms can be
neglected in a boundary layer approximation of the
Navier-Stokes equations. Within the drainpipe, we as-
sumed a parabolic down-flow profile, and we expanded
the velocity components and the pressure in powers of r.
We did not make any assumptions about the functional
dependence on z, and to lowest order in r the problem
reduced to a closed set of differential equations for three
functions of z. The details are reported elsewhere [9], but
the main property used in the following is that the high
azimuthal velocity in the vortex core together with the
matching to a z-independent exterior flow is sufficient to
force the flow in the vortex core to have a simple func-
tional dependence where w is approximately linear in z
inside the drainpipe, while r0 and the central rotation
rate, �C, are approximately independent of z.

That u and v are approximately independent of z
whereas w is linear in z was used by Lundgren [12] to
derive a set of differential equations for the free surface
h�r�. With scales W for the vertical velocity in the vortex
core and H for the surface height, Lundgren showed that
the velocity field has this functional form if the Rossby
number Ro � W=�H�� � 1 and if W2 � 2gH, where g
is the gravitational acceleration. These assumptions are
valid only for low flow rates and mild depressions of the
free surface. In our experiment Ro � 10, but we have a
small local Rossby number RoC � W=�H�C� � 10�2,
defined in terms of the central rotation rate, and this is
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the relevant number if we restrict our attention to the
central drainpipe. Since the out-flow is driven by gravity,
our vertical velocities are of the order of the free fall
velocity W �

����������
2gH

p
� 1 m s�1, and we would thus ex-

pect significant corrections to Lundgren’s equations
which assume hydrostatic pressure. However, as we shall
see below, Lundgren’s equations lead to surprisingly ac-
curate predictions. The reason is probably that the char-
acteristic vertical velocities near the free surface are
considerably smaller than the free fall velocity at the
drain hole, due to the velocity increase down the drain-
pipe and the stagnation point at the tip of the surface
depression.

In the following, we apply Lundgren’s model [see
Ref. [12] equations (4.1), (4.15), and (4.18)] and extend
it to include surface tension. Knowledge of the vertical
velocity immediately above the Ekman layer w�z � 0�
makes it possible to compute the product hu, since the
kinematic boundary condition at the free surface and the
incompressibility of the fluid lead to the equation

1

r

d�rhu�
dr

� w�z � 0�: (1)

Inside the down-flow region, we assume a downward plug
flow, and in the up-flow region our measurements show an
exponential profile:

w�z � 0� �

(
� Q

R2 if r � R
Qe��r�R�=d

2d�R�d� if r > R;
(2)

where the flow rate Q for the Ekman upwelling and the
length scales R and d are determined experimentally. The
flow rate Q is about 50% of the total flow rate, F, since
some of the fluid carried by the Ekman layer flows
directly down the drain hole. The radius of the down-
flow region above the drain hole decreases close to the
outlet due to the direct outflow from the Ekman layer
through the drain hole. The effective value of R is there-
fore slightly larger than the radius of the drain hole. The
radial and the axial Navier-Stokes equations lead with the
assumptions RoC � 1 and W2 � 2gH to

v2

r
� g

dh
dr

�
�
�
d�
dr

; (3)

where � is the surface tension of the air-water interface, �
is the density of water, and � � h0=fr�1� �h0�2	1=2g �
h00=�1� �h0�2	3=2 is the curvature of the free surface.
Compared to Lundgren’s original equations, we here in-
troduce the surface tension correction to the pressure
since it is important in a quantitative comparison with
our measurements. Finally, the azimuthal Navier-Stokes
equation reduces to the equation

u
�
dv
dr

�
v
r

�
� 	

�
d2v

dr2
�

1

r
dv
dr

�
v

r2

�
: (4)

The problem is thus reduced to solving Eqs. (3) and (4) for
h and v using Eq. (1) and the bottom vertical velocity
profile in Eq. (2) to eliminate u.
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FIG. 4 (color). Numerical solution of Lundgren’s equations
with surface tension (blue) and without surface tension (green)
compared with experimental results (red) at 12 rpm. (a) The
free surface and (b) the azimuthal velocity in the corotating
reference frame. We used g � 981 cm s�2, � � 1:0 g cm�3,
	 � 0:0089 cm2 s�1, � � 65 g s�2, and d � 0:35 cm. To ob-
tain the best possible agreement with the measurements, we set
R � 0:16 cm and Q � 1:79 cm3 s�1 in the solution with sur-
face tension, and R � 0:17 cm and Q � 1:76 cm3 s�1 in the
solution without surface tension. We measured � in the experi-
ment, and the values of R, d, and Q are based on the best fit to
our measured vertical velocities 1 cm above the bottom.
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Figure 4 shows a comparison of the measured surface
profile and azimuthal velocities at 12 rpm [see Figs. 1(b)
and 3(a)] and the corresponding numerical solution of
Lundgren’s equations with and without surface tension.
The numerical solution with surface tension agrees well
with the measurements, whereas the model without sur-
face tension overestimates the depth of the central surface
depression by 70%. Difficulties in obtaining reliable ex-
perimental data for the velocity field and numerical in-
stabilities encountered with Eqs. (3) and (4) at high
rotation rates have kept us from making a similar com-
parison at 18 rpm.

The bubble-forming instability (Fig. 2) is induced by
surface tension. The capillary instability of a fluid col-
104502-4
umn [13] does not change qualitatively when it is rotating
[14]. We therefore speculate that the critical value of �
where the instability sets in occurs when the downward
drag becomes large enough to overcome the upward buoy-
ancy force and drag the bubbles formed by the capillary
instability along with the flow. Using values for the drag
on a spherical bubble at high Reynolds number [15], we
estimate the critical value of the vertical velocity as
WC � ga2=�9	�, where a is the radius of the bubble.
With a bubble radius of a � 0:5 mm, we find WC �
25 cm s�1, which is in the measured range of w. We do
not, however, have measurements of w immediately be-
low the surface tip for � around 22 rpm when the tip
becomes unstable, and a precise test of the criterion for
the tip instability remains to be carried out.
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