Hybrid single photon multidimensional systems as a resource for fundamental quantum mechanics and quantum communication

Vincenzo D'Ambrosio, Eleonora Nagali and Fabio Sciarrino

orbitech

Summer School on Quantum and Non-Linear Optics. Sandbjerg Estate, 25 August 2012

Qubit and Qudit

Quantum bit (qubit) - fundamental unit of (quantum) information

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Orthogonal quantum states

Going to higher dimensions - Qudits

D-dimensional advantages

Quantum Communication

✓ Higher information density coding
✓ Larger resilience to errors
✓ Higher security in cryptography

Quantum Computation

✓ Speed up computing tasks
 ✓ More complex quantum computational architecture
 ✓ New quantum algorithms

Quantum Simulations

✓ Richer simulations of quantum mechanical systems

Fundamental Tests

✓New tools for quantum foundation investigation✓Stronger violations of Bell's like inequalities

Implementation

• Qubit

Usually implemented exploiting polarization of photons

Orbital angular momentum

Any wave with an azimuthal phase dependence $u(r, \phi, z) \propto e^{il\phi}$ carries $l\hbar$ of orbital angular momentum per photon

L. Allen et al Phys.Rev. A, 45(11):8185-8189, (1992).

Q-Plate

Inhomogeneous and birefringent

liquid crystals director's orientation

$$n(r,\phi) = q\phi + \alpha$$

L. Marrucci et al Phys.Rev. Lett, 96:163905, (2006).

Q-Plate (2)

q=1

OAM eigenstates generation

 $QP|R\rangle|0\rangle \rightarrow |L\rangle|-2\rangle$ $QP|L\rangle|0\rangle \rightarrow |R\rangle|+2\rangle$

High fidelity, entanglement, good transmittance

Hybrid ququart space

Hybrid-ququart space Polarization and OAM $\{|H, +2\rangle, |H, -2\rangle, |V + 2\rangle, |V - 2\rangle\}$

1

TIONS

PRL 108, 090501 (2012)	PHYSICAL REVIEW LETT	TERS	week ending 2 MARCH 2012	10 2
Experiment	tal Observation of Impossible-to-Bea on a Hybrid Photonic Syste	t Quantum Advantage m		90 3
Eleonora Na ¹ Dipartin ² Departan ³ Depa	ngali, ¹ Vincenzo D'Ambrosio, ¹ Fabio Sciarrino nento di Fisica della "Sapienza" Università di Rom nento de Física Aplicada II, Universidad de Sevilla artment of Physics, Stockholm University, S-10691 (Received 16 October 2011; published 27 Febr	p, ^{1,*} and Adán Cabello ^{2,3,†} ma, Roma 00185, Italy [‡] a, E-41012 Sevilla, Spain Stockholm, Sweden ruary 2012)		
v ₁₂ =((1,0,0,0)		orthog	onal states 6
$v_{28} = (0,0,0,1)$ $v_{29} = (0,1,1,0)$	$v_{18} = (0, 1, 0, 0)$ $v_{17} = (0, 0, 1, 1)$			RAPID COMMUNICAT
⁷ ₂₃ -(0,1,-1,0)	$V_{16}^{-(0,0,1,-1)}$		PHYSICAL REVIEW A	84, 030302(R) (2011)
$v_{39} = (1,0,0,1)$	$v_{67} = (1, -1, 0, 0)$ Hy	brid ququart-encoded qu	antum cryptograph	y protected by Kochen-Specker contextuality
$v_{37} = (1,1,1,-1)$ $v_{34} = (-1,1,1,1,1)$ $v_{47} = (1,1,-1,1)$	$v_{69} = (1,1,-1,-1)$ $v_{56} = (1,1,1,1)$ $v_{59} = (1,-1,1,-1)$	Adán Cabello, ^{1,2,*} ¹ Departamento d ² Departmen ³ Dipartimento d ⁴ Istituto Nazionale di Ot	Vincenzo D'Ambrosio, ³ I de Física Aplicada II, Unive at of Physics, Stockholm Uni di Fisica della "Sapienza" U tica, Consiglio Nazionale de Received 22 July 2011; publ	Eleonora Nagali, ³ and Fabio Sciarrino ^{3,4,†} rsidad de Sevilla, E-41012 Sevilla, Spain versity, S-10691 Stockholm, Sweden Iniversità di Roma, I-00185 Roma, Italy elle Ricerche (INO-CNR), I-50125 Florence, Italy ished 12 September 2011)
$v_{48} = (1,0,1,0)$ $v_{45} = (1,0,1,0)$	$v_{58} = (1,0,-1,0)$ 0,1,0,-1)			

Shared reference frame in Q.C.

Once Alice and Bob share an optical link they need to find θ in order to succesfully communicate

D'Ambrosio, V. et al. Nat. Commun. 3:961 doi: 10.1038/ncomms1951 (2012)

Rotational invariant single photon states

Hybrid ququart subspace

$$R[\theta] = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

Orbital angular momentum

$$\begin{split} |LG_{l.p},\phi\rangle \propto e^{il\phi} \\ |LG_{l.p},\phi-\theta\rangle &= e^{il\theta}|LG_{l.p},\phi\rangle \\ \text{with I=1} \quad |+1\rangle &= |l\rangle \quad |-1\rangle = |r\rangle \end{split}$$

 $R[\theta]|l\rangle = e^{-i\theta}|l\rangle$ $R[\theta]|r\rangle = e^{i\theta}|r\rangle$

Polarization

$$R[\theta]|L\rangle = e^{-i\theta}|L\rangle$$

$$R[\theta]|R\rangle = e^{i\theta}|R\rangle$$

Implementation

$$R[\theta]|0\rangle_L = |0\rangle_L$$

$$R[\theta]|1\rangle_L = |1\rangle_L$$

A Q-Plate with q=0.5 acts as a universal encoder/decoder

$$QP|R\rangle = |L\rangle|r\rangle = |0\rangle_L$$
$$QP|L\rangle = |R\rangle|l\rangle = |1\rangle_L$$

Encoding: $QP(\alpha | R \rangle + \beta | L \rangle) = \alpha | 0 \rangle_L + \beta | 1 \rangle_L$ Decoding: $QP(\alpha | 0 \rangle_L + \beta | 1 \rangle_L) = \alpha | R \rangle + \beta | L \rangle$

The experiment

We need a detection stage which is able to rotate

The experiment

We need a detection stage which is able to rotate

Alignement-free quantum key distribution

Bob encodes information

Alice decodes information for different rotation angles

Non-locality test

Non-locality test

Non-locality test

Robustness of rotational-invariant qubits

Bob's qubit

$$|\psi\rangle = \alpha |R\rangle |l\rangle + \beta |L\rangle |r\rangle$$

What arrives to Alice after spatial mode perturbation

$$\sum_{m} C_{+1,m} \alpha |R\rangle |m\rangle + C_{-1,m} \beta |L\rangle |m\rangle$$

After a Q-Plate

$$\sum_{m} C_{+1,m} \alpha |L\rangle |m-1\rangle + C_{-1,m} \beta |R\rangle |m+1\rangle$$

After a projection on mode $|0\rangle$ by single mode fiber

$$(C_{+1,+1}\alpha|L\rangle + C_{-1,-1}\beta|R\rangle)|0\rangle$$

If $C_{+1,+1} = C_{-1,-1}$

Communication fidelity is preserved.

The system intrinsically discards all states outside the logical subspace.

Robustness of rotational-invariant qubits

