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Mechanical effects of light

Dipole or gradient force Scattering force
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Cavity optomechanics

cavity drive cavity mode mechanical 
oscillator

radiation pressure force

Marquardt & Girvin, Physics 2, 40 (2009)
Kippenberg & Vahala, Science 321, 1172 (2008)



Experiments & Motivation
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Kippenberg & Vahala, Science 321, 1172 (2008)

1. Mechanical sensing

Rugar et al., Nature 430, 329 (2004) Rabl et al., Nature Physics 6, 602 (2010)

2. Quantum network

3. Quantum-classical transition

Penrose & Bouwmeester et al., PRL 91,130401 (2003)

sitivity by increasing optical power in interfer-
ometers. On the other hand, a red-detuned pump
wave can create a radiation component ofmechan-
ical damping that leads to cooling of the mechan-
ical mode; i.e., a reduction of the mechanical
mode’s Brownian motion (9, 26).

One description of this process is given in
Fig. 2B, wherein a feedback loop that is inherent
to the cavity optomechanical system is described.
The elements of this loop include the mechanical
and optical oscillators coupled through two dis-
tinct paths. Along the upper path, a force acting
on the mechanical oscillator (for instance, the
thermal Langevin force or a signal force) causes a
mechanical displacement, which (for a detuned
laser) changes the cavity field due to the opto-
mechanical coupling (the interferometric mea-
surement process). However, the amplitude
fluctuations, which contain information on the
mirror position, are also coupled back to the
mechanical oscillator via radiation pressure
(lower path), resulting in a back-action. A blue-
detuned pump wave sets up positive feedback
(the instability), whereas red detuning introduces
negative feedback. Resonant optical probing
(where the excitation frequency equals the cavity
resonance frequency, w = w0) interrupts the
feedback loop because changes in position only
change the phase, not the amplitude, of the field.
As described below, this feedback circuit also
clarifies the relation between “feedback cooling”
and cooling by dynamic back-action.

Experimental Systems
Systems that exhibit radiation-pressure dynamic
back-action must address a range of design con-
siderations, including physical size as well as
dissipation. Dynamic back-action relies on opti-
cal retardation; i.e., is most prominent for photon
lifetimes comparable to or exceeding the me-
chanical oscillation period. Very low optical dis-
sipation also means that photons are recycled
many times, thereby enhancing the weak photon
pressure on the mirror. On the other hand, the
mechanical dissipation rate governs the rate of
heating of the mechanical mirror mode by the
environment, limiting the effectiveness of opto-
mechanical cooling. It also sets the required am-
plification level necessary to induce regenerative
oscillations. These considerations illustrate the
importance of high optical Finesse and mechan-
ical Q in system design.

It is only in the past 3 years that a series of
innovative geometries (shown in Fig. 3) has
reached a regimewhere the observation of radiation-
pressure dynamic back-action could be observed.
These advances have relied on the availability and
improvements in high-Finesse mirror coatings (as
used in gravity wave detectors) and also on micro-
and nanofabrication techniques [which are the
underlying enabling technology for nano- andmicro-
electromechanical systems (27)]. A commonly
used hybrid system consists of a conventional-
input mirror made with a high-reflectivity coating
and an end mirror whose dimensions are meso-

scopic and which is harmonically suspended. This
end mirror has been realized in multiple ways,
such as from an etched, high-reflectivity mirror
substrate (14, 15), a miniaturized and harmonical-
ly suspended gram-scale mirror (28), or an atomic
force cantilever on which a high-reflectivity and
micron-sized mirror coating has been transferred
(29).A natural optomechanical coupling can occur
in optical microcavities, such as microtoroidal
cavities (13) or microspheres, which contain co-
existing high-Q, optical whispering gallery modes,
and radio-frequency mechanical modes. This cou-
pling can also be optimized for high optical and
mechanical Q (30). In the case of hybrid systems,

yet another approach has separated optical and
mechanical degrees of freedom by using a min-
iature high-Finesse optical cavity and a separate
nanometric membrane (31). Whereas the afore-
mentioned embodiments have been in the optical
domain, devices in the micro- and radiowave do-
main have also been fabricated (22, 32), such as a
nanomechanical resonator coupled to a super-
conducting microwave resonator (33).

Many more structures exist that should
also realize an optomechanical interaction in
an efficient manner. In particular, nanopho-
tonic devices such as photonic crystal mem-
brane cavities or silicon ring resonators might
be ideal candidates owing to their small mode
volume, high-Finesse, and finite rigidity. Owing
to their small length scale, these devices ex-
hibit fundamental flexural frequencies well
into the gigahertz regime, but their mechanical
quality factors have so far not been studied,
nor has optomechanical coupling been ob-
served. As described in the next section, such
high frequencies are interesting in the context

of regenerative oscillation and ground
state cooling.

Cooling and Amplification Using
Dynamical Back-Action
The cooling of atoms or ions using radi-
ation pressure has received substantial
attention and has been a successful tool
in atomic and molecular physics. Dy-
namical back-action allows laser cooling
of mechanical oscillators in a similar man-
ner. The resemblance between atomic
laser cooling and the cooling of amechan-
ical oscillator coupled to an optical (or
electronic) resonator is a rigorous one
(34). In both cases, the motion (of the
ion, atom, or mirror) induces a change in
the resonance frequency, thereby cou-
pling the motion to the optical (or cavity)
resonance (Fig. 2C). Indeed, early work
has exploited this coupling to sense the
atomic trajectories of single atoms in
Fabry-Perot cavities (35, 36) and, more
recently, in the context of collective atomic
motion (37, 38). This coupling is not only
restricted to atoms or cavities but also has
been predicted for a variety of other
systems. For example, the cooling of a
mechanical oscillator can be achieved
using coupling to a quantum dot (39), a
trapped ion (40), a Cooper pair box (41),
an LC circuit (5, 32), or a microwave strip-
line cavity (33). Although the feedback
loop of Fig. 2B explains how damping
and instability can be introduced into the
cavity optomechanical system, the ori-
gins of cooling and mechanical amplifi-
cation are better understood with the use
of a motional sideband approach, as de-
scribed in Fig. 4 (13).

Cooling has been first demonstrated for
micromechanical oscillators coupled to

optical cavities (14–16) and, using an electrome-
chanical analog, for a Cooper pair box coupled
to a nanomechanical beam (41). Because the me-
chanical modes in experiments are high Q (and
are thus very well isolated from the reservoir), they
are easily resolved in the spectra of detected probe
light reflected from the optical cavity (Fig. 1B).
Furthermore, their effective temperature can be
inferred from the thermal energy kBT (where kB is
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Fig. 3. Experimental cavity optomechanical systems.
(Top to Bottom) Gravitational wave detectors [photo
credit LIGO Laboratory], harmonically suspended gram-
scale mirrors (28), coated atomic force microscopy canti-
levers (29), coated micromirrors (14, 15), SiN3 membranes
dispersively coupled to an optical cavity (31), optical
microcavities (13, 16), and superconducting microwave
resonators coupled to a nanomechanical beam (33). The
masses range from kilograms to picograms, whereas fre-
quencies range from tens of megahertz down to the hertz
level. CPW, coplanar waveguide.
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ultracold atoms in
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We have realized a hybrid optomechanical system by coupling ultracold atoms to a micromechan-

ical membrane. The atoms are trapped in an optical lattice, which is formed by retro-reflection of a

laser beam from the membrane surface. In this setup, the lattice laser light mediates an optomechan-

ical coupling between membrane vibrations and atomic center-of-mass motion. We observe both the

effect of the membrane vibrations onto the atoms as well as the backaction of the atomic motion

onto the membrane. By coupling the membrane to laser-cooled atoms, we engineer the dissipation

rate of the membrane. Our observations agree quantitatively with a simple model.

Laser light can excert a force on material objects
through radiation pressure and through the optical dipole
force [1]. In the very active field of optomechanics [2],
such light forces are exploited for cooling and control
of the vibrations of mechanical oscillators, with possi-
ble applications in precision force sensing and studies of
quantum physics at macroscopic scales. This has many
similarities with the field of ultracold atoms [3], where
radiation pressure forces are routinely used for laser cool-
ing [1] and optical dipole forces are used for trapping and
quantum manipulation of atomic motion, most notably
in optical lattices [4, 5].
In a number of recent theoretical papers it has been

proposed that light forces could also be used to couple
the motion of atoms in a trap to the vibrations of a single
mode of a mechanical oscillator [6–16]. In the resulting
hybrid optomechanical system the atoms could be used
to read out the motion of the oscillator, to engineer its
dissipation, and ultimately to perform quantum informa-
tion tasks such as coherently exchanging the quantum
state of the two systems. In recent experiments using
magnetic [17] or surface-force coupling [18], atoms were
used to detect vibrations of micromechanical oscillators.
However, the backaction of the atoms onto the oscillator
vibrations, which is required for cooling and manipulat-
ing the oscillator with the atoms, could not be observed.
Here we report the experimental implementation of a

hybrid optomechanical system in which an optical lat-
tice mediates a long-distance coupling between ultra-
cold atoms and a micromechanical membrane oscillator
[14]. If the trap frequency of the atoms in the lattice is
matched to the eigenfrequency of the membrane, the cou-
pling leads to resonant energy transfer between the two
systems. We observe both the effect of the membrane
vibrations onto the atoms as well as the backaction of
the atomic motion onto the membrane. We demonstrate
that the dissipation rate of the membrane can be engi-
neered by coupling it to laser-cooled atoms, as predicted
by recent theoretical work [14].
The coupling scheme we investigate is illustrated in

FIG. 1: Optomechanical coupling of atoms and membrane.

A laser beam of power P is partially reflected at a SiN mem-

brane of reflectivity r and forms a 1D optical lattice for an ul-

tracold atomic ensemble. Motion of the membrane displaces

the lattice and thus couples to atomic motion. Conversely,

atomic motion is imprinted as a power modulation ∆P onto

the laser, thus modulating the radiation pressure force on the

membrane. t is the transmittivity of the optics between atoms

and membrane. Arrows illustrate the direction of forces and

displacements at a specific point in time. In the main text, all

forces and displacements are positive if pointing to the right.

Fig. 1, see also [14]. A laser beam of power P , whose fre-
quency ω is red detuned with respect to an atomic transi-
tion, impinges from the right onto a SiN membrane oscil-
lator and is partially retroreflected. The reflected beam
is overlapped with the incoming beam such that a 1D
optical lattice potential for ultracold atoms is generated
[4]. A displacement of the membrane xm displaces the
lattice potential, resulting in a force F = mω2

atxm onto
each atom, where m is the atomic mass and ωat the trap
frequency in a harmonic approximation to the lattice po-
tential well. The membrane motion thus couples through
Fcom = NF to the center of mass (c.o.m.) motion of
an ensemble of N atoms trapped in the lattice. Con-
versely, an atom displaced by xat from the bottom of its
potential well experiences a restoring optical dipole force
Fd = −mω2

atxat in the lattice. On a microscopic level,
Fd is due to absorption and stimulated emission, leading
to a redistribution of photons between the two running
wave components forming the lattice [19]. Each redis-
tribution event results in a momentum transfer of ±2h̄k
to the atom, where k = ω/c. The photon redistribution
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Cavity optomechanics

We start with

Marquardt & Girvin, Physics 2, 40 (2009)
Kippenberg & Vahala, Science 321, 1172 (2008)

where the position of the mechanical oscillator

withx̂ = xZPF(b̂+ b̂†)

L

is parametrically coupled to the cavity mode

ωC(x) =
L

L+ x
ωR ≈

�
1− x

L

�
ωR

xZPF =

�
�

2mωM
∼ 10−15m

+ optical drive/decay
+ thermal fluctuations

We obtain the “standard model of optomechanics”

“three-wave mixing”

Ĥ = ωR

�
1− x̂

L

�
â
†
â+ ωM b̂

†
b̂

� = 1

Ĥ = �ωC(x̂)â
†
â+ �ωM b̂

†
b̂

F̂ = −∂Ĥint

∂x̂
=

ωR

L
â
†
â

radiation-pressure force

N.B. We neglect the dynamical Casimir effect.



Cavity optomechanics

Marquardt & Girvin, Physics 2, 40 (2009)
Kippenberg & Vahala, Science 321, 1172 (2008)

∆/ωm

ωm/κ ωm/γ

g/κ g/ωm

Ω/κwith the dimensionless parameters

good/bad-cavity limit mechanical quality factor

cavity shift per phonon 
in units of line width

oscillator displacement per 
photon in units of its ZPF

drive strength & detuning

Ĥ = � (ωR + g0x̂) â
†
â + �ωM b̂

†
b̂ + Ĥdrive + Ĥenv

x̂ = xzpf

�
b̂ + b̂†

�
xzpf =

�
�

2mωM

g = g0xzpf

Position operator Zero point motion Coupling rate
Three-wave mixing
Radiation pressure force

Far from equilibrium

The Hamiltonian



x0

ωLωR

κ

ωLωR

ϕ

π

x(t) = x0 cos(ωLt− ϕ)

Damped & driven optical resonator

Damped & driven harmonic oscillator

ωR

F (t) = F0 cosωLtκ

T = 0

Coherent state â|α� = αe−iωLt|α�
→number fluctuations (shot noise)!

Damped & driven optical resonator

ωL
ωR

κ

Coherent drive E(t) = E0 cosωLt

|α|2 argα



Displacement readout of the mechanical oscillator

Classical equipartition theorem:

•Direct time-resolved detection
•Analyze fluctuation spectrum of x

Possibilities:
extract 

temperature!

we can find the temperature from the area

ωLωR

ϕ

ϕ ∼ x

argα

Classical equipartition theorem:

•Direct time-resolved detection
•Analyze fluctuation spectrum of x

Possibilities:
extract 

temperature!

A single experimental run might look like...

figure by F. Marquardt

General relation between noise spectrum and linear 
response susceptibility

susceptibility

for the damped oscillator:

(classical limit)... and calculating the noise power spectrum

figure by F. Marquardt

Ĥ = � (ωR + g0x̂) â
†
â+ �ωM b̂

†
b̂



Sideband cooling



Sideband cooling: the cavity-enhanced scattering picture 

Marquardt et al., PRL 99, 093902 (2007)
Wilson-Rae et al., PRL 99, 093901 (2007)see also: Laser cooling of atoms & ions

Red-sideband cooling at

ωL = ωR − ωM

ωout = ωin + ωM

Ground-state cooling is 
possible in the sideband-
resolved regime ωM � κ
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figure by J. Harris

Ĥ = � (ωR + g0x̂) â
†
â

κ

ωM

ωM = kHz−GHz

cantilevers, membranes,
wires, carbon nanotubes
need additional cooling

kBT � �ωM

1GHz ∼ 50mK



Sideband cooling: the classical picture

�
dxFopt < 0

Marquardt, Clerk & Girvin, J. Mod. Opt. 55, 3329 (2008)

Damping is due to the finite time 
lag between mirror position and 
radiation-pressure force: ωM � κ

�F̂ � ∝ �â†â�

∆ = ωL − ωR ∝ x



Sideband cooling: the classical picture

Marquardt, Clerk & Girvin, J. Mod. Opt. 55, 3329 (2008)

− ω2mx[ω] = −mω2
Mx[ω] + imωΓMx[ω] + F �(x̄)x[ω]/(1− iωτ) (3)

Comparing the last two terms (the intrinsic damping with the imaginary part
of the optomechanical term), we find that the optomechanical damping rate is
given by

Γopt =
F �(x̄)
mωM

ωMτ

1 + (ωMτ)2
, (4)

for the simple ansatz of Eq. (1). According to this analysis, one would expect
the maximum effect to occur when ωMτ = 1, i.e. when the time-delay matches
the period of the cantilever motion. As we will see further below, this conclusion
is not upheld by the full quantum-mechanical analysis for the case of radiation
pressure.

Equation (1) and the subsequent analysis holds exactly for the bolometric
force. In that case, τ is the finite time of thermal conductance and F(x) =
FmaxI(x)/Imax is the displacement-dependent bolometric force, where I(x) =
Imax/(1+(2∆(x)/κ)2) is the intensity profile and ∆(x) = xωR/L is the position-
dependent detuning between incoming laser radiation and optical resonance at
x = 0. For the radiation-pressure force, we can use the present analysis only in
the regime of κ� ωM , and only if we allow for a position dependent relaxation
rate 1/τ (see [32]).

In both cases, however, the shape of Γopt as a function of cantilever position
x̄ is determined by the slope of the intensity profile, i.e. in particular by the
sign of F �. To the left of the resonance, where F � > 0, we indeed obtain extra
damping: Γopt > 0. As long as there are no extra fluctuations introduced
by the light-induced force (i.e. if we may disregard shot noise), the effective
temperature of the mechanical degree of freedom is therefore reduced according
to the ratio of intrinsic and optomechanical damping rates:

Teff = T
ΓM

ΓM + Γopt
. (5)

This can be obtained, for example, by solving the Langevin equation that in-
cludes the thermal fluctuations of the mechanical heat bath (whose strength
is set by ΓM according to the fluctuation-dissipation theorem). Then the ef-
fective temperature may be defined according to the equipartition theorem:
mω̃2

M

�
(x− x̄)2

�
= kBTeff , where ω̃M contains the frequency renormalization

due to the real part of the optomechanical term in Eq. (3).

3 Quantum noise approach

In the quantum regime, we have to take into account the shot noise that tends to
heat the cantilever and enforces a finite quantum limit for the cantilever phonon
number. The quantum picture can also be understood as Raman scattering:

4

mechanics
ΓM

The coupling to the cold optical 
bath leads to increased damping 
without additional fluctuations.

Γopt

T = 0T

→neglects number fluctuations (shot noise)!

→ 0
Γopt → ∞



Sideband cooling: the quantum noise approach

Incoming photons, red-detuned with respect to the optical resonance, absorb a

phonon from the cantilever, thereby cooling it. However, there is also a finite

probability for phonon emission, and thus heating. The purpose of a quantum

theory is to discuss the balance of these effects.

The idea behind the quantum noise approach to quantum-dissipative systems

is to describe the environment fully by the correlator of the fluctuating force

that couples to the quantum system of interest. If the coupling is weak enough,

knowledge of the correlator is sufficient to fully describe the influence of the

environment. In our case, this means looking at the spectrum of the radiation

pressure force fluctuations, which are produced by the shot noise of photons

inside the driven optical cavity mode, i.e. a nonequilibrium environment. In

other applications, we might be dealing with the electrical field fluctuations

produced, e.g., by a driven electronic circuit (superconducting single electron

transistor, quantum point contact, LC circuit) capacitively coupled to some

nanobeam. The general formulas remain the same for all of these cases, and

only the noise spectrum changes.

The Fourier transform of the force correlator defines the spectral noise den-

sity:

SFF (ω) = dt e
iωt

�
F̂ (t)F̂ (0)

�
. (6)

The noise spectrum SFF is real-valued and non-negative. However, in contrast

to the classical case, it is asymmetric in frequency, since F̂ (t) and F̂ (0) do not

commute. This asymmetry has an important physical meaning: Contributions

at positive frequencies indicate the possibility of the environment to absorb

energy, while those at negative frequencies imply its ability to release energy

(to the cantilever). All the optomechanical effects can be described in terms of

SFF , as long as the coupling is weak.

The optomechanical damping rate is given by the difference of noise spectra

at positive and negative frequencies,

Γopt =
x

2
ZPF

�2
[SFF (ωM )− SFF (−ωM )] . (7)

This formula is obtained by applying Fermi’s Golden Rule to derive the transi-

tion rates arising from the coupling of the cantilever to the light field, i.e. from

the term Ĥint = −F̂ x̂ in the Hamiltonian. These are

Γopt
↓ =

x
2
ZPF

�2
SFF (ωM ) , Γopt

↑ =
x

2
ZPF

�2
SFF (−ωM ). (8)

These rates enter the complete master equation for the density matrix ρ̂ of the

cantilever in the presence of the equilibrium heat bath (that would lead to a

thermal population n̄th) and the radiation field:

˙̂ρ =

�
(Γopt

↓ + ΓM (n̄th + 1))D[â] + (Γopt
↑ + ΓM n̄th)D[â

†
]

�
ρ̂ (9)
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At weak coupling all you need to know is the force spectrum
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Figure 2: (a) Cantilever phonon number as a function of circulating radiation

power inside the cavity and as a function of detuning between laser and optical

resonance. The mean phonon number in steady state is plotted on a logarithmic

scale. Contour lines indicate n̄ = 1 and n̄ = 0.1. For this plot, the following

parameters have been used: ωM/κ = 0.3, n̄th = 10
3, Q = ωM/ΓM = 10

6
, and

(ωR/ωM )(xZPF/L) ≈ 0.012. (b) The minimum phonon number as a function of

the ratio between the mechanical frequency ωM and the optical cavity’s ring-

down rate κ, according to Eq. (15). Ground-state cooling is possible in the

regime ωM � κ, i.e. the “good cavity” or “resolved sideband” limit.

Here the equation has been written in the interaction picture (disregarding the

oscillations at ω̃M ), and

D[Â]ρ̂ =
1

2
(2Âρ̂Â† − Â†Âρ̂− ρ̂Â†Â) (10)

is the standard Lindblad operator for downward (Â = â) or upward (Â = â†)
transitions in the oscillator. Restricting ourselves to the populations ρnn, we

obtain the equation for the phonon number n̄ = �n̂� =
�

n
nρnn:

˙̄n = ΓM n̄th + Γopt
↑ − (ΓM + Γopt)n̄, (11)

which yields the steady-state phonon number in the presence of optomechanical

cooling:

n̄M =
ΓM n̄th + Γoptn̄O

M

ΓM + Γopt
. (12)

This is the weighted average of the thermal and the optomechanical phonon

numbers. It represents the correct generalization of the classical formula for the

effective temperature, Eq. (5). Here

n̄O

M =
Γopt
↑

Γopt
=

1

Γopt
↓ /Γopt

↑ − 1
=

�
SFF (ωM )

SFF (−ωM )
− 1

�−1

(13)
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Figure 2: (a) Cantilever phonon number as a function of circulating radiation

power inside the cavity and as a function of detuning between laser and optical

resonance. The mean phonon number in steady state is plotted on a logarithmic

scale. Contour lines indicate n̄ = 1 and n̄ = 0.1. For this plot, the following

parameters have been used: ωM/κ = 0.3, n̄th = 10
3, Q = ωM/ΓM = 10

6
, and

(ωR/ωM )(xZPF/L) ≈ 0.012. (b) The minimum phonon number as a function of

the ratio between the mechanical frequency ωM and the optical cavity’s ring-

down rate κ, according to Eq. (15). Ground-state cooling is possible in the

regime ωM � κ, i.e. the “good cavity” or “resolved sideband” limit.
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Γopt = Γopt
↓ − Γopt

↑

And calculate the steady-state phonon number

optical damping

minimal phonon number

Incoming photons, red-detuned with respect to the optical resonance, absorb a

phonon from the cantilever, thereby cooling it. However, there is also a finite

probability for phonon emission, and thus heating. The purpose of a quantum

theory is to discuss the balance of these effects.

The idea behind the quantum noise approach to quantum-dissipative systems

is to describe the environment fully by the correlator of the fluctuating force

that couples to the quantum system of interest. If the coupling is weak enough,

knowledge of the correlator is sufficient to fully describe the influence of the

environment. In our case, this means looking at the spectrum of the radiation

pressure force fluctuations, which are produced by the shot noise of photons

inside the driven optical cavity mode, i.e. a nonequilibrium environment. In

other applications, we might be dealing with the electrical field fluctuations

produced, e.g., by a driven electronic circuit (superconducting single electron

transistor, quantum point contact, LC circuit) capacitively coupled to some

nanobeam. The general formulas remain the same for all of these cases, and

only the noise spectrum changes.

The Fourier transform of the force correlator defines the spectral noise den-

sity:

SFF (ω) = dt e
iωt

�
F̂ (t)F̂ (0)

�
. (6)

The noise spectrum SFF is real-valued and non-negative. However, in contrast

to the classical case, it is asymmetric in frequency, since F̂ (t) and F̂ (0) do not

commute. This asymmetry has an important physical meaning: Contributions

at positive frequencies indicate the possibility of the environment to absorb

energy, while those at negative frequencies imply its ability to release energy

(to the cantilever). All the optomechanical effects can be described in terms of

SFF , as long as the coupling is weak.

The optomechanical damping rate is given by the difference of noise spectra

at positive and negative frequencies,

Γopt =
x

2
ZPF

�2
[SFF (ωM )− SFF (−ωM )] . (7)

This formula is obtained by applying Fermi’s Golden Rule to derive the transi-

tion rates arising from the coupling of the cantilever to the light field, i.e. from

the term Ĥint = −F̂ x̂ in the Hamiltonian. These are

Γopt
↓ =

x
2
ZPF

�2
SFF (ωM ) , Γopt

↑ =
x

2
ZPF

�2
SFF (−ωM ). (8)

These rates enter the complete master equation for the density matrix ρ̂ of the

cantilever in the presence of the equilibrium heat bath (that would lead to a

thermal population n̄th) and the radiation field:

˙̂ρ =

�
(Γopt

↓ + ΓM (n̄th + 1))D[â] + (Γopt
↑ + ΓM n̄th)D[â

†
]

�
ρ̂ (9)
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Figure 2: (a) Cantilever phonon number as a function of circulating radiation

power inside the cavity and as a function of detuning between laser and optical

resonance. The mean phonon number in steady state is plotted on a logarithmic

scale. Contour lines indicate n̄ = 1 and n̄ = 0.1. For this plot, the following

parameters have been used: ωM/κ = 0.3, n̄th = 10
3, Q = ωM/ΓM = 10

6
, and

(ωR/ωM )(xZPF/L) ≈ 0.012. (b) The minimum phonon number as a function of

the ratio between the mechanical frequency ωM and the optical cavity’s ring-

down rate κ, according to Eq. (15). Ground-state cooling is possible in the

regime ωM � κ, i.e. the “good cavity” or “resolved sideband” limit.
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nρnn:

˙̄n = ΓM n̄th + Γopt
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is the minimal phonon number reachable by optomechanical cooling. This quan-

tum limit is reached when Γopt � ΓM . Then, the cooling effect due to extra

damping is balanced by the shot noise in the cavity, which leads to heating.

The radiation pressure force is proportional to the photon number: F̂ =

(�ωR/L)â†â. A brief calculation for the photon number correlator inside a

driven cavity [32] yields its spectrum in the form of a Lorentzian that is shifted

by the detuning ∆ = ωL − ωR between laser and optical resonance frequency

ωR:

SFF (ω) =

�
�ωR

L

�2

n̄p
κ

(ω + ∆)2 + (κ/2)2
, (14)

where n̄p is the photon number circulating inside the cavity. A plot of the

resulting steady-state phonon number is shown in Fig. 2a.

Inserting this spectrum into Eqs. (7) and (13) yields the optomechanical

cooling rate and the minimum phonon number as a function of detuning ∆.

The minimum of n̄O

M
is reached at a detuning ∆ = −

�
ω2

M
+ (κ/2)2, and it is

(see Fig. 2b):

min n̄O

M =
1

2




�

1 +

�
κ

2ωM

�2

− 1



 . (15)

For slow cantilevers, ωM � κ, we have min n̄O

M
= κ/(4ωM )� 1. Ground-state

cooling becomes possible for high-frequency cantilevers (and/or high-finesse cav-

ities), when κ� ωM . Then, we find

min n̄O

M ≈
�

κ

4ωM

�2

. (16)

As explained in Ref. [33], these two regimes can be brought directly into cor-

respondence with the known regimes for laser-cooling of harmonically bound

atoms, namely the Doppler limit for ωM � κ and the resolved sideband regime

for ωM � κ.

4 Strong coupling effects

Up to now, we have assumed that the coupling between light and mechanical

degree of freedom is sufficiently weak to allow for a solution in terms of a mas-

ter equation, employing the rates obtained from the quantum noise approach.

However, as the coupling becomes stronger (e.g. by increasing the laser input

power), Γopt may reach the cavity decay rate κ. Then, the spectrum of force

fluctuations is itself modified by the presence of the cantilever. It becomes nec-

essary to solve for the coupled dynamics of the light field and the mechanical

motion. This has been done in Ref. [32], by writing down the Heisenberg equa-

tions of motion for the cantilever and the optical mode, and solving them after

linearization. Here we will only discuss the result.

7

radiation 
pressure
force

optical cavity

cantilever

laser

(a) (b) (c)

Figure 1: (a) The standard optomechanical setup treated in the text: A driven

optical cavity with a movable mirror. (b) Moving the mirror in a cycle can result

in work extracted by the light-field, due to the finite cavity ring-down rate. (c)

Radiation pressure force noise spectrum.

have been observed in radiation-pressure driven microtoroidal optical resonators

[14, 15] and other setups [16, 17]. For a recent review see [18]. The study of these

systems has been made even more fruitful by the realization that the same (or

essentially similar) physics may be observed in systems ranging from driven LC

circuits coupled to cantilevers [19] over superconducting single electron transis-

tors and microwave cavities coupled to nanobeams [20, 21, 22, 23, 24, 25, 26] to

clouds of cold atoms in an optical lattice, whose oscillations couple to the light

field [27, 28]. Cooling to the ground-state may open the door to various quan-

tum effects in these systems, including “cat” states [29], entanglement [30, 31]

and Fock state detection [12].

All the intrinsic optomechanical cooling experiments are based on the fact

that the radiation field introduces extra damping for the cantilever. In such a

classical picture, the effective temperature of the single mechanical mode of in-

terest is related to the bath temperature T by Teff/T = ΓM/(Γopt +ΓM ), where

ΓM and Γopt are the intrinsic mechanical damping rate and the optomechanical

cooling rate, respectively. Thus there is no limit to cooling in this regime, pro-

vided the laser power (and thus the cooling rate Γopt) can be increased without

any deleterious effects such as unwanted heating by absorption, and provided

the cooling rate remains sufficiently smaller than the mechanical frequency and

the cavity ring-down rate. However, at sufficiently low temperatures, the un-

avoidable photon shot noise inside the cavity counteracts cooling. To study

the resulting quantum limits to cooling, a fully quantum-mechanical theory is

called for, which we provided in Ref. [32], based on the general quantum noise

approach. Independently, a derivation emphasizing the analogy to ion sideband

cooling was developed in Ref. [33]. In the present paper, we will review and

illustrate our theory. We start by outlining the basic classical picture, then

present the quantum noise approach that provides a transparent and straight-

forward way to derive cooling rates and quantum limits for the phonon number.

Finally, we illustrate the strong coupling regime that was first predicted in our

Ref. [32].

2

Calculate the force (i.e. shot-noise) spectrum

Incoming photons, red-detuned with respect to the optical resonance, absorb a

phonon from the cantilever, thereby cooling it. However, there is also a finite

probability for phonon emission, and thus heating. The purpose of a quantum

theory is to discuss the balance of these effects.

The idea behind the quantum noise approach to quantum-dissipative systems

is to describe the environment fully by the correlator of the fluctuating force

that couples to the quantum system of interest. If the coupling is weak enough,

knowledge of the correlator is sufficient to fully describe the influence of the

environment. In our case, this means looking at the spectrum of the radiation

pressure force fluctuations, which are produced by the shot noise of photons

inside the driven optical cavity mode, i.e. a nonequilibrium environment. In

other applications, we might be dealing with the electrical field fluctuations

produced, e.g., by a driven electronic circuit (superconducting single electron

transistor, quantum point contact, LC circuit) capacitively coupled to some

nanobeam. The general formulas remain the same for all of these cases, and

only the noise spectrum changes.

The Fourier transform of the force correlator defines the spectral noise den-

sity:

SFF (ω) = dt e
iωt

�
F̂ (t)F̂ (0)

�
. (6)

The noise spectrum SFF is real-valued and non-negative. However, in contrast

to the classical case, it is asymmetric in frequency, since F̂ (t) and F̂ (0) do not

commute. This asymmetry has an important physical meaning: Contributions

at positive frequencies indicate the possibility of the environment to absorb

energy, while those at negative frequencies imply its ability to release energy

(to the cantilever). All the optomechanical effects can be described in terms of

SFF , as long as the coupling is weak.

The optomechanical damping rate is given by the difference of noise spectra

at positive and negative frequencies,

Γopt =
x

2
ZPF

�2
[SFF (ωM )− SFF (−ωM )] . (7)

This formula is obtained by applying Fermi’s Golden Rule to derive the transi-

tion rates arising from the coupling of the cantilever to the light field, i.e. from

the term Ĥint = −F̂ x̂ in the Hamiltonian. These are

Γopt
↓ =

x
2
ZPF

�2
SFF (ωM ) , Γopt

↑ =
x

2
ZPF

�2
SFF (−ωM ). (8)

These rates enter the complete master equation for the density matrix ρ̂ of the

cantilever in the presence of the equilibrium heat bath (that would lead to a

thermal population n̄th) and the radiation field:

˙̂ρ =

�
(Γopt

↓ + ΓM (n̄th + 1))D[â] + (Γopt
↑ + ΓM n̄th)D[â

†
]

�
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Linear optomechanics

The Hamiltonian

Ĥ = −∆d̂
†
d̂+ ωM ĉ

†
ĉ+ gā(ĉ+ ĉ

†)(d̂+ d̂
†) + gd̂

†
d̂(ĉ+ ĉ

†)

Nonlinear Optomechanics: Two-phonon cooling, mechanical squeezing, and optical output spectra

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin

Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA

(Dated: February 19, 2010)

Motivated by recent optomechanics experiments using the membrane-in-the-middle geometry and ultracold

atoms in optical resonators we explore the physics of optomechanical systems where the mechanical oscillator

is coupled quadratically rather than linearly to one mode of the optical cavity field. Two-phonon cooling can

occur if the cavity width is larger than the mechanical frequency (good-cavity limit) and larger than the heating

rate due to the thermal bath. Using Fermi’s Golden rule we write down an effective master equation for the

mechanical oscillator which can be solved exactly. In the classical limit the added nonlinear damping changes

the steady-state phonon number distribution from a Planck to a Gaussian distribution. In the quantum limit we

find a non-zero minimal phonon number even for infinitely strong coupling. Finally, we show how to achieve

mechanical squeezing by driving the cavity on both sidebands and calculate cavity output and squeezing spectra.

PACS numbers:

Introduction. Whereas initial work on optomechanical sys-

tems was motivated by building sensitive measurement de-

vices to detect gravitational waves, the field has now become

an active area of research in its own right investigating macro-

scopic quantum coherence in solid-state devices. As of today

there are many different systems in which one mode of the

optical cavity field couples linearly to one mode of the me-

chanical oscillator. Consequentially, many properties of this

standard setup have been discussed, including red-sideband

cooling in the resolved-sideband limit, normal-mode splitting,

optical Kerr-like squeezing, backaction evasion by driving on

both sidebands, mechanical squeezing either using squeezed

input light or by driving on the sidebands, entanglement be-

tween light and one or multiple membranes.

Recently, experiments with the membrane-in-the-middle

geometry [1], ultracold atomic gases in optical resonators [2]

as well as nano-electromechanical structures [3] have realized

a nonlinear optomechanical coupling where the mechanical

mode is coupled quadratically rather than linearly to the cavity

mode. It enables Fock state detection [1, 4–6], but otherwise

its properties remain largely unknown [7].

In this paper we take the first step to change this situa-

tion and explore the physics of nonlinear optomechanics. Fo-

cussing on the good-cavity limit and the case where the de-

tuning between drive and cavity matches twice the mechani-

cal frequency, we first solve the full quantum master equation

numerically. We find that two-phonon cooling occurs as long

as the cavity width is larger than the heating rate due to the

thermal bath, while the reverse effect, i.e. heating of the op-

tical field, becomes important in the opposite limit. Using

Fermi’s Golden rule we then write down an effective master

equation for the mechanical oscillator which can be solved ex-

actly. In the classical limit two-phonon cooling can be under-

stood as added nonlinear damping which changes the steady-

state phonon number distribution from a Planck to a Gaussian

distribution. In the quantum limit we find a non-zero minimal

phonon number even for infinitely strong coupling since two-

phonon cooling processes preserve the photon-number parity.

Finally, we point out that if the cavity is driven on both side-

bands the system maps onto a degenerate parametric oscillator

which opens up the possibility of mechanical squeezing.

Hamiltonian. We start from the following Hamiltonian

Ĥ =
�
ωR + gx̂

2
�
â
†
â+ ωM b̂

†
b̂+ Ĥdrive + Ĥdecay (1)

where ωR is the cavity resonance frequency, g = ω��
cav(x)/2

is the curvature of the cavity dispersion relation ωcav(x),

x̂ = xZPF(b̂ + b̂
†
) is the position of the mechanical oscil-

lator with zero-point fluctuations xZPF = (2mωM )
−1/2

, fre-

quency ωM and mass m. â and b̂ are annihilation operators

obeying bosonic commutation relations. It appropriately de-

scribes systems with membrane-in-the-middle geometry [1],

ultracold atoms in optical resonators [2] as well as nano-

electromechanical structures [3].

Expressing the optical field as â = e
−iωLt

(ā+d̂), we obtain

the following quantum master equation

�̇ = −i

�
Ĥ0, �

�
+ κD[d̂]�+ γ(1 + n̄th)D[b̂]�+ γn̄thD[b̂

†
]�

(2)

with the system Hamiltonian

Ĥ0 = −∆d̂
†
d̂+ ωM b̂

†
b̂+ gāx

2
ZPF(b̂+ b̂

†
)
2
(d̂

†
+ d̂) (3)

where we have introduced the detuning ∆ = ωL − ωR, the

cavity damping rate κ, the mechanical damping rate γ as well

as the thermal phonon number n̄th. D[ô]� = ô�ô† − (ô
†
ô�+

�ô†ô)/2 denotes the standard dissipator in Lindblad form.

Experiments with the membrane-in-the-middle geometry

are in the regime of weak coupling and large thermal phonon

number: κ = 10
5
Hz, ωM = 10

6
Hz, ΓM = 1Hz, g =

10
6
Hz/nm

2
, xZPF = 10

−15
m, ā = 10

5
, so that ḡ =

gāx
2
ZPF = 0.1Hz, while n̄th = 10

4
at T = 300mK and

n̄th = 10
7

at T = 300K [1]. Experiments with ultracold

atoms in optical resonators, in contrast, show strong optome-

chanical coupling while the effect of the thermal phonon bath

is negligible: κ = 10
6
Hz, ωM = 10

5
Hz, gx

2
ZPF = 10

3
Hz [2].

Current nano-electromechanical structures have only a small

quadratic optomechanical coupling so that nonlinear effects

are expected to be small corrections and will not be discussed

in this paper: κ = 10
6
Hz, ωM = 10

7
Hz, ΓM = 10Hz,

g = 10
3
Hz/nm

2
, xZPF = 10

−14
m, ā = 10

4
and n̄th = 10

2

at T = 150mK [3].

detuning |ā|2# of photons

d̂ ĉ

optical cavity mechanical mode

−∆ ωM

gā

mechanical bath

T nthor

κ

optical bath

T = 0
γ

For drive and decay we write                               and b̂ = b̄+ ĉâ = e−iωLt
�
ā+ d̂

�

→ bistability

Bilinear couplingEffective coupling rate
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Static part of radiation-pressure force

Experiment: Dorsel et al., PRL 51, 1550 (1983)
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Linear optomechanics

Ĥ = −∆d̂
†
d̂+ ωM ĉ

†
ĉ+ gā(ĉ+ ĉ
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†
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Nonlinear Optomechanics: Two-phonon cooling, mechanical squeezing, and optical output spectra

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin

Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA

(Dated: February 19, 2010)

Motivated by recent optomechanics experiments using the membrane-in-the-middle geometry and ultracold

atoms in optical resonators we explore the physics of optomechanical systems where the mechanical oscillator

is coupled quadratically rather than linearly to one mode of the optical cavity field. Two-phonon cooling can

occur if the cavity width is larger than the mechanical frequency (good-cavity limit) and larger than the heating

rate due to the thermal bath. Using Fermi’s Golden rule we write down an effective master equation for the

mechanical oscillator which can be solved exactly. In the classical limit the added nonlinear damping changes

the steady-state phonon number distribution from a Planck to a Gaussian distribution. In the quantum limit we

find a non-zero minimal phonon number even for infinitely strong coupling. Finally, we show how to achieve

mechanical squeezing by driving the cavity on both sidebands and calculate cavity output and squeezing spectra.

PACS numbers:

Introduction. Whereas initial work on optomechanical sys-

tems was motivated by building sensitive measurement de-

vices to detect gravitational waves, the field has now become

an active area of research in its own right investigating macro-

scopic quantum coherence in solid-state devices. As of today

there are many different systems in which one mode of the

optical cavity field couples linearly to one mode of the me-

chanical oscillator. Consequentially, many properties of this

standard setup have been discussed, including red-sideband

cooling in the resolved-sideband limit, normal-mode splitting,

optical Kerr-like squeezing, backaction evasion by driving on

both sidebands, mechanical squeezing either using squeezed

input light or by driving on the sidebands, entanglement be-

tween light and one or multiple membranes.

Recently, experiments with the membrane-in-the-middle

geometry [1], ultracold atomic gases in optical resonators [2]

as well as nano-electromechanical structures [3] have realized

a nonlinear optomechanical coupling where the mechanical

mode is coupled quadratically rather than linearly to the cavity

mode. It enables Fock state detection [1, 4–6], but otherwise

its properties remain largely unknown [7].

In this paper we take the first step to change this situa-

tion and explore the physics of nonlinear optomechanics. Fo-

cussing on the good-cavity limit and the case where the de-

tuning between drive and cavity matches twice the mechani-

cal frequency, we first solve the full quantum master equation

numerically. We find that two-phonon cooling occurs as long

as the cavity width is larger than the heating rate due to the

thermal bath, while the reverse effect, i.e. heating of the op-

tical field, becomes important in the opposite limit. Using

Fermi’s Golden rule we then write down an effective master

equation for the mechanical oscillator which can be solved ex-

actly. In the classical limit two-phonon cooling can be under-

stood as added nonlinear damping which changes the steady-

state phonon number distribution from a Planck to a Gaussian

distribution. In the quantum limit we find a non-zero minimal

phonon number even for infinitely strong coupling since two-

phonon cooling processes preserve the photon-number parity.

Finally, we point out that if the cavity is driven on both side-

bands the system maps onto a degenerate parametric oscillator

which opens up the possibility of mechanical squeezing.

Hamiltonian. We start from the following Hamiltonian

Ĥ =
�
ωR + gx̂

2
�
â
†
â+ ωM b̂

†
b̂+ Ĥdrive + Ĥdecay (1)

where ωR is the cavity resonance frequency, g = ω��
cav(x)/2

is the curvature of the cavity dispersion relation ωcav(x),

x̂ = xZPF(b̂ + b̂
†
) is the position of the mechanical oscil-

lator with zero-point fluctuations xZPF = (2mωM )
−1/2

, fre-

quency ωM and mass m. â and b̂ are annihilation operators

obeying bosonic commutation relations. It appropriately de-

scribes systems with membrane-in-the-middle geometry [1],

ultracold atoms in optical resonators [2] as well as nano-

electromechanical structures [3].

Expressing the optical field as â = e
−iωLt

(ā+d̂), we obtain

the following quantum master equation

�̇ = −i

�
Ĥ0, �

�
+ κD[d̂]�+ γ(1 + n̄th)D[b̂]�+ γn̄thD[b̂

†
]�

(2)

with the system Hamiltonian

Ĥ0 = −∆d̂
†
d̂+ ωM b̂

†
b̂+ gāx

2
ZPF(b̂+ b̂

†
)
2
(d̂

†
+ d̂) (3)

where we have introduced the detuning ∆ = ωL − ωR, the

cavity damping rate κ, the mechanical damping rate γ as well

as the thermal phonon number n̄th. D[ô]� = ô�ô† − (ô
†
ô�+

�ô†ô)/2 denotes the standard dissipator in Lindblad form.

Experiments with the membrane-in-the-middle geometry

are in the regime of weak coupling and large thermal phonon

number: κ = 10
5
Hz, ωM = 10

6
Hz, ΓM = 1Hz, g =

10
6
Hz/nm

2
, xZPF = 10

−15
m, ā = 10

5
, so that ḡ =

gāx
2
ZPF = 0.1Hz, while n̄th = 10

4
at T = 300mK and

n̄th = 10
7

at T = 300K [1]. Experiments with ultracold

atoms in optical resonators, in contrast, show strong optome-

chanical coupling while the effect of the thermal phonon bath

is negligible: κ = 10
6
Hz, ωM = 10

5
Hz, gx

2
ZPF = 10

3
Hz [2].

Current nano-electromechanical structures have only a small

quadratic optomechanical coupling so that nonlinear effects

are expected to be small corrections and will not be discussed

in this paper: κ = 10
6
Hz, ωM = 10

7
Hz, ΓM = 10Hz,

g = 10
3
Hz/nm

2
, xZPF = 10

−14
m, ā = 10

4
and n̄th = 10

2

at T = 150mK [3].

detuning |ā|2# of photons
Bilinear couplingEffective coupling rate

The Hamiltonian

˙̂d = i∆d̂− κ

2
d̂−

√
κd̂in − igā(ĉ+ ĉ†)

˙̂c = −iωM ĉ− γ

2
ĉ−√

γĉin − igā(d̂+ d̂†)

The equations of motion

ĉ(ω) = . . . ĉin + . . . ĉ†in + . . . d̂in + . . . d̂†in
d̂(ω) = . . . ĉin + . . . ĉ†in + . . . d̂in + . . . d̂†in

Exact solution
�ĉ†in(ω)ĉin(ω

�)� = nthδ(ω + ω�)

�ĉin(ω)ĉ†in(ω
�)� = (nth + 1)δ(ω + ω�)

�ĉ†in(ω)ĉ
†
in(ω

�)� = �ĉin(ω)ĉin(ω�)� = 0

We can calculate all observables!
Walls and Milburn, Quantum Optics (OUP)



Normal-mode splitting in the strong-coupling limit

In the strong-coupling limit cavity and mechanics hybridize.
Gröblacher el al., Nature 460, 724 (2009)

Teufel et al., Nature 471, 204 (2011)
Theory: Dobrindt et al., PRL 101, 263602 (2008)

Scc(ω) =

�
dt eiωt�ĉ†(t)ĉ(0)� Sout(ω) =

�
dt eiωt�d̂†out(t)d̂out(0)�

d̂out = d̂+
√
κd̂inwith
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Optomechanically-induced transparency (OMIT)

Weis et al., Science 330, 1520 (2010) 
Teufel et al., Nature 471, 204 (2011)

Theory:  Agarwal and Huang, PRA 81, 041803 (2010)

pressure force oscillating at the frequency dif-
ference W. If this driving force oscillates close
to the mechanical resonance frequency Wm, the
mechanical mode starts to oscillate coherently,
dx(t) = 2Re[X e−iWt]. This in turn gives rise to
Stokes- and anti-Stokes scattering of light from
the strong intracavity control field. If the system
resides deep enough in the resolved-sideband
(RSB) regime with k << Wm, Stokes scattering
(to the optical frequency wl − W) is strongly
suppressed because it is highly off-resonant with
the optical cavity. We can therefore assume that
only an anti-Stokes field builds up inside the
cavity, da(t) ≈ A− e−iWt. However, this field of
frequency wp = wl + W is degenerate with the
near-resonant probe field sent to the cavity. De-
structive interference of these two driving waves
can suppress the build-up of an intracavity probe
field. These processes are captured by the Langevin
equations of motion for the complex amplitudes
A− and X, which require in the steady state (SOM
Eqs. S26 and S27)

ð−iD′ þ k=2ÞA− ¼ −iGaX þ ffiffiffiffiffiffiffi
hck

p
dsin ð3Þ

2meffWmð−iD′ þ Gm=2ÞX ¼ −iℏGaA− ð4Þ

where dsin is the amplitude of the probe field
drive, and we abbreviate D′ ≡ W − Wm. We have
assumed a high-quality factor of the mechanical
oscillator (Gm << Wm) and the control beam de-
tuning D ¼ −Wm. The solution for the intracavity
probe field amplitude reads

A− ¼
ffiffiffiffiffiffiffi
hck

p

ð−iD′ þ k=2Þ þ W2
c=4

− iD′ þ Gm=2

dsin ð5Þ

This solution has a form well known from the
response of an EIT medium to a probe field (1).
The coherence between the two ground states of
an atomic L system, and the coherence between
the levels probed by the probe laser undergo the
same evolution as do the mechanical oscillation
amplitude and the intracavity probe field in the
case of optomechanically induced transparency
(OMIT). The role of the control laser’s Rabi
frequency in an atomic system is taken by the op-
tomechanical coupling rate Wc ¼ 2aGxzpf , where
xzpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2meffWm

p
designates the spread of

the ground-state wave function of the mechanical
oscillator. For Wc > Gm, k the system enters the
strong coupling regime (22, 23) investigated re-

cently in themechanical domain (14), in which the
optical and mechanical systems are hybridized to
dressed states that differ by ℏWc in their energy.

OMIT is realized using toroidal whispering-
gallery-mode microresonators (Fig. 2A) (10, 17).
The cavity is operated in the undercoupled
regime (hc < 1/2), which together with modal
coupling between counterpropagating modes
(SOM Sec. 7) leads to a nonzero probe (ampli-
tude) transmission tr = tp(D′ = 0, Wc = 0) at
resonance (Fig. 2B), even in the absence of
the control beam. In the case of the present device,
|tr|

2 ≈ 0.5. [Note, however, that |tr|
2 < 0.01 can be

achieved with silica toroids (24).] To separate the
effects of this residual transmission from OMIT,
we introduce the normalized transmission of the
probe t′p ¼ ðtp − trÞ=ð1 − trÞ.

The mechanical motion was detected using
a balanced homodyne detection scheme (fig.
S1) measuring the phase quadrature of the field
emerging from the cavity (25). This allows ex-
tracting the parameters of the device used in these
experiments, which are given by (meff, G/2p,
Gm/2 p, Wm/2 p, k/2 p) ≈ (20 ng, −12 GHz/nm,
41 kHz, 51.8 MHz, 15 MHz), placing it well into
the resolved sideband regime (25). To probe the
cavity transmission spectrum in the presence of
a control beam, the Ti:sapphire control laser is
frequency modulated at frequency W using a
broadband phase modulator, creating two side-
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Fig. 1. Optomechanically induced transparency. (A) A generic optomechanical system consists of an
optical cavity with a movable boundary, illustrated here as a Fabry-Perot–type resonator in which one
mirror acts like a mass-on-a-spring movable along x. The cavity has an intrinsic photon loss rate k0 and is
coupled to an external propagating mode at the rate kex. Through the external mode, the resonator is
populated with a control field (only intracavity field is shown). The response of this driven optomechanical
system is probed by a weak probe field sent toward the cavity, the transmission of which (i.e., the returned
field “Probe out”) is analyzed here. (B) The frequency of the control field is detuned by D from the cavity
resonance frequency, where a detuning close to the lower mechanical sideband,D ≈ −Wm, is chosen. The
probe laser’s frequency is offset by the tunable radio frequencyW from the control laser. The dynamics of
interest occur when the probe laser is tuned over the optical resonance of the cavity, which has a linewidth
of k = k0 + kex. (C) Level scheme of the optomechanical system. The control field is tuned close to red-
sideband transitions, in which a mechanical excitation quantum is annihilated (mechanical occupation
nm→ nm − 1) when a photon is added to the cavity (optical occupation np→ np + 1), therefore coupling the
corresponding energy eigenstates. The probe field probes transitions in which the mechanical oscillator
occupation is unchanged. (D) Transmission of the probe laser power through the optomechanical system
in the case of a critically coupled cavity k0 = kex as a function of normalized probe laser frequency offset,
when the control field is off (blue lines) and on (green lines). Dashed and full lines correspond to the
models based on the full (Eq. 1) and approximative (Eq. 5) calculations, respectively.
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Fig. 2. Optomechanical system. (Top) A toroidal
microcavity is used to demonstrate OMIT: The res-
onator is coupled to the control and probe fields
using a tapered fiber. The optical mode couples
through radiation pressure force to the mechanical
radial breathing mode of the structure. In this ring
geometry, the cavity transmission, defined by the
ratio of the returned probe-field amplitude divided
by the incoming probe field is simply given by the
transmission through the tapered fiber. (Bottom)Under
the chosen waveguide-toroid coupling conditions, there
is a nonzero probe power transmission |tr|2 at res-
onance. The control field induces an additional trans-
parency window with a contrast up to 1 − |tr|2.
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with

A− ∝ 1
κ
2 − i(Ω+∆) + g2ā2

γ
2 −i(Ω−ωM )

Ω = ωP − ωL

the number of drive photons in the cavity. If the drive is detuned so that
its upper mechanical sideband is near the cavity resonance,
d~ vdzVmð Þ{vc = Vm (Fig. 2c), the modified mechanical res-
onance frequency V’m and damping rate C ’m closely follow the ima-
ginary and real parts of the cavity response. In the resolved sideband
regime these quantities are well approximated by7,8,24:

V’m<Vmz
4g2d

k2z4d2
ð1Þ

C ’m<Cmz
4g2k

k2z4d2
ð2Þ

Figure 2d shows the measured effects of this dynamical back-action
on the drum as a function of d. The incident microwave power Pin is
held constant at 10 pW. As this power is applied very far from the
cavity resonance, it results in a greatly reduced number of photons
in the cavity, given by nd5 (2Pinkex/Bvd)/(k

21 4D2), where
D5vd2vc. Even for this moderate-power microwave drive with
nd# 800, the effects on the mechanical oscillator are quite striking;
the intrinsic mechanical damping is dominated by the damping from
the microwave photons. Knowing nd and estimating xzp from geo-
metry, we can fit these data to equations (1) and (2) (shown in black
in Fig. 2d) to extract G/2p5 566 7MHznm21.
Just as themicrowave photons strongly affect themechanical mode,

the symmetry of the parametric interaction suggests that the
mechanics should influence the cavity mode. To investigate this, we
apply both a microwave drive tone vd and a second probe tone vp.
Here, the drive tone will induce an interaction between the mechanics
and the cavity, while the probe tone will monitor the response of the
cavity. This technique provides a way to measure the spectroscopy of
the ‘dressed’ cavity states in the presence of the electromechanical
interaction. Figure 3a shows a series of cavity probe spectra taken with
successively higher microwave power applied with D52Vm. Once
the drive power is large enough that g<

ffiffiffiffiffiffiffiffiffiffi
Cmk

p
, the mechanical side-

band of the driving field appears in the cavity response function. As nd,
and hence g, increase, so does the normalizedprobe transmission at the
cavity resonance, jT(vc)j. The width of this peak also increases and is
given by the modified mechanical damping rate in equation (2). This
electromechanical effect can be understood as the result of a radiation
pressure force at the beat frequency between the drive and probe
photons, which drives the motion of the drum near its resonance
frequency. The driven motion results in a mechanical sideband on
the drive field that can interfere with the probe field and hence modi-
fies the probe spectrum. This interference is the mechanical analogue
of electromagnetically induced transparency25, which is well known in
atomic physics and has enabled such innovations as slow light and
photon storage. Recently, these effects have been addressed in the
context of optomechanics, both theoretically10,11 and experimentally11.
The analogous effect is demonstrated here for the first time in an
electromechanical system. For our electrical circuit, the transmission
spectrum is10,11:

T~1{
kex 1{jxð Þ

kz2j vp{vc
" #

z4x vd{vcð Þ
ð3Þ

where

x~
4g2Vm

kz2j vp{2vdzvc
" #$ %

V2
m{ vp{vd

" #2
zj vp{vd

" #
Cm

h i

At high enough power,C ’m becomes comparable to or greater than
k, at which point equations (1) and (2) are no longer valid. This is
precisely the point at which the driven system enters the strong-coup-
ling regime, in which the coupling exceeds the intrinsic dissipation in
either of the original modes (g§k ? Cm). The eigenmodes of the
driven, coupled systemare nowhybrids of the original radio-frequency
mechanical resonance and the microwave electrical resonance. The

system exhibits the well-known normal-mode splitting of two strongly
coupledharmonic oscillators. This effect is observed through the cavity
response instead of themechanical response as is done in other experi-
ments14. For our device, progression into the strong-coupling regime is
shown in Fig. 3a, b with a crossover occurring at nd< 105. In this
regime, the damping rate of each of the two normalmodes approaches
(k1Cm)/2, and the coupling results in a splitting of 2g. In Fig. 3c, g is
extracted by fitting each spectrum at a given drive power to equation
(3). The splitting shows

ffiffiffiffiffi
nd

p
dependence, with a single-photon coup-

ling rate of g0/p5 460Hz.At the highest drive power,nd5 53 106, the
splitting is g/p5 1MHz, exceeding both k and Cm. The cooperativity
C~4g2=Cmk represents a good figure of merit for an opto- or electro-
mechanical system, regardless of its detailed construction. For our
system,we find amaximumcooperativity of C<200,000, beyond those
previously achieved11,14,15,20,21.
Bymeasuring the in-phase andquadrature components of the trans-

mitted probe signal, we determine the real and imaginary parts of the
cavity spectrum in the presence of the electromechanical interactions.
We find excellent agreement between theory and experiment for both
magnitude and phase over the entire range of accessible detunings and
powers. Figure 4a shows the magnitude and phase of the probe trans-
mission for three arbitrary values of d when g/p5 150 kHz. The black
lines are fits to the magnitude and argument of equation (3). The
narrow resonance resulting from the mechanical interaction could
be used as a tunable delay for microwave signals11, with a maximum
groupdelay of,5ms.Two-dimensional plots of jTj are shown inFig. 4
as a function of both vd and vp. At low drive amplitude (Fig. 4b), the
narrow mechanical sideband appears as a sharp dip or peak in trans-
mission whenevervp~vdzV’m. As the drive amplitude is increased
(Fig. 4c), the dispersive coupling between the normal modes becomes
apparent. Although the mechanical sideband is narrow when it is far
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Figure 3 | Demonstration of the strong-coupling regime. a, Normalized
microwave cavity transmission in the presence of a microwave drive applied
with D52Vm, with successive plots for increasing drive amplitude nd. At
moderate drive amplitude (nd< 10), the interference between the drive and
probe photons results in a narrow peak in the cavity spectrum, whose width is
given by the mechanical linewidth C ’m. This represents the onset of
electromechanically induced transparency11. When C ’m becomes comparable
to k, the cavity resonance splits into normal modes. The eigenmodes of the
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electromechanical resonances. b, The transmission as a function of probe
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measured coupling rate g (red) follows the expected dependence on the number
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∆ = −ωM

�d̂in(t)� ∝ e−i(ωP−ωL)tcoherent pump

�d̂(t)� = A−e−i(ωP−ωL)t +A+e+i(ωP−ωL)tcoherent signal

from resonance, it inherits the cavity’s larger damping rate as it
approaches vc. At the largest coupling, the normal-mode splitting is
appreciable for a broad range of drive and probe frequencies (Fig. 4d).
This experiment demonstrates that by engineering a microwave

resonant circuit with a free-standing micromechanical membrane or
drum, a large coupling is possible without degradation of either the
mechanical or electromagnetic quality factors. Our measurements
have shown clear quantitative agreement with theoretical predictions
for dynamical back-action and normal-mode splitting, with the latter
being exceptionally large, namely 10% of Vm. Simple refinements—
such as reducing d, using thinner membranes or exploring higher-
order modes—could further enhance the coupling strength and relax
cooling requirements. This new system shows the performance neces-
sary to not only observe quantum effects but also (with additional
circuitry) enable the realization of a number of important goals. For
continuous measurements, these include detection of zero-point
motion1, evading quantum back-action22 or Heisenberg-limited detec-
tion of displacement or force1, preparation of non-classical photon
states through motional effects3, and possibly a direct quantum non-
demolition x2 energy measurement15. Discrete measurements would
enable the preparation of complex multi-phonon states26, long-lived

quantummemory, a quantum bus architecture for quantum informa-
tion processing analogous to that achieved with ion traps, and a way to
investigate decoherence for large, spatially separated superposition
states27.
Last, we consider ground-state cooling, which is the next step for-

ward. Assuming thermal equilibrium at a base cryostat temperature of
20mK, we expect the cavity to be in its ground state and the thermal
occupancy of the mechanical mode to be nm< 40 quanta. Strong
coupling implies that resolved sideband cooling can be used to reduce
the occupancy of the mechanical mode by a factor of k/Cm< 5,000
(refs 7–9), placing both (coupled) resonators in their ground state.
Once this is achieved, the thermal lifetime of a single phonon would
be 1/Cth< 130ms, which is orders of magnitude longer than typical
superconducting qubit lifetimes. Verifying this achievement would
require either a better cryogenic amplifier21,28 (for continuous mea-
surements) or a superconducting qubit4 (for discrete measurements).
Continuous measurement with microwave parametric amplifiers,
which achieve nearly quantum-limited sensitivity, reduce by a factor
of 1,000 the integration time necessary to resolve mechanical occu-
pancy below the single phonon level21. Alternatively, if a qubit were
strongly coupled to the microwave cavity4,26, a single photon could be
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Figure 4 | Spectroscopy in the strong-coupled regime. a, The normalized
magnitude and phase of the cavity transmission in the presence of a strong
microwave drive. The data shown in red, green and blue are for three different
detunings d with fits to equation (3) (black). b, For relatively low drive power
(nd< 10), the mechanical sideband appears as a sharp dip or peak in the probe

in the transmission at a frequency vdzV’m. c, When the drive amplitude is
increased (nd< 104), the two resonances show an avoided crossing between the
eigenmodes of the coupled system. d, For the largest amplitude drive
(nd< 53 106), the driven transmission spectra are split by much more than k
or Cm for a broad range of detunings.
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Dispersive vs. dissipative coupling

Elste et al., PRL 102, 207209 (2009) 

Ĥint ∝ â
†
âx̂

Dispersive coupling

ωR(x̂) = ωR +
∂ωR

∂x
x̂

Ĥint ∝ Ĥdampx̂

Ĥdamp ∝
√
κ
�

q

(â†âq + â
†
qâ)

with

Dissipative coupling

κ(x̂) = κ+
∂κ

∂x
x̂
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Cooling with dissipative coupling

Elste et al., PRL 102, 207209 (2009) 

F̂ = F̂1 + F̂2

F̂2 ∝ d̂+ d̂†F̂1 ∝ d̂in + d̂†in

Two noise sources!

They are random, but not independent! d̂(ω) ∝ χR(ω)d̂in

Ĥint ∝ Ĥdampx̂

Ĥdamp ∝
√
κ
�

q

(â†âq + â
†
qâ)

with

Zero temperature bath!

Γ↑
opt ∝ SFF (−ωM )

This enables ground 
state cooling outside the 
resolved-sideband limit!SFF (ω) ∝

���1−
�κ
2
+ i∆

�
χR(ω)

���
2

→Fano line shapeχR(ω) = [κ/2− i(ω +∆)]−1with



Conclusions

Ĥ = ωR

�
1− x̂

L

�
â
†
â+ ωM b̂

†
b̂

• Applications: sensors, transducers, decoherence

• Damping is due to the finite time lag between 
mirror and radiation-pressure force:

• With red-sideband cooling                          the 
ground state was reached in experiments:

• At strong coupling optics and mechanics hybridize.

ωM � κ

ωL = ωR − ωM

n̄ � 1

radiation-pressure force

http://www.physinfo.fr/houches/pdf/Marquardt.pdf


