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Parametric devices for quantum information science

•

 

In conventional optical communication systems, quantum effects are 
responsible for noise inherent in the signal, noise added during

 

transmission 
(by amplifiers) and noise in the detectors.

•

 

There are many schemes for quantum communication and computation

 

that 
rely on the quantum properties of light.

•

 

Examples include quantum key distribution, entanglement generation or 
transfer and linear optical quantum computation.

•

 

Common requirements include photon generators (singlet or pair) and 
(distortionless) photon frequency-convertors.

[H. Kimble, Nature 453, 1023 (2008).]
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Parametric devices are enabled by four-wave mixing

•

 

In four-wave mixing (FWM), weak sidebands (s and i) are driven by strong

 pumps (p and q).

•

 

Modulation instability (MI): 2p

 

 s

 

+ i

 

(j

 

is a photon with frequency j

 

).

•

 

Phase conjugation (PC): p

 

+ q

 

 s

 

+ i

 

.

•

 

Bragg scattering (BS), or frequency conversion (FC): s

 

+ q

 

 p

 

+ i

 

.

•

 

Classical: MI (inverse MI) and PC amplify signals, but add excess noise, 
whereas BS frequency converts signals without adding noise.

•

 

Quantum: MI (inverse MI) and PC generate photons, whereas BS frequency 
converts photons.

[C. McKinstrie, J. Sel. Top. Quantum Electron. 8, 538 and 956 (2002).]
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Hong-Ou-Mandel interferometry

•

 

For a two-mode BS, U() = exp[i(a1
+a2

 

+ a1

 

a2
+)], where 

 

= tan-1(r/t).

•

 

If the input is |1,1, the output is (t2

 

– r2)|1,1

 

+ i√2tr(|2,0

 

+ |0,2).

•

 

For a balanced BS (t2

 

= r2), the output is (|2,0

 

+ |0,2)/√2.

•

 

In experiments photons are wave-packets, not continuous waves (CWs).

•

 

If the wave-packets are identical and pure, and there is no distinguishing 
information, the wave-packets interfere like discrete modes.

[C. Hong, PRL 59, 2044 (1987); I. Walmsley, Science 307, 1733 (2005).]
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Photon pair generation by MI or PC

•

 

In the Schrodinger picture ar

 

, as

 

are constant and dz

 

|

 

= iH|.

•

 

The two-mode Hamiltonian H = (ar
+ar

 

+ as
+as

 

) + ar
+as

+

 

+ *ar

 

as

 

(CW pumps).

•

 

The output state |(z)

 

= exp(iHz)|0,0.

•

 

Recall that a+|n

 

= (n+1)1/2|n+1

 

and a|n

 

= n1/2|n-1.

•

 

In the low-gain regime (  0), |(z)

 

≈

 

(1 + iHz)|0,0

 

= |0,0

 

+ iz|1,1.      
MI and PC produce pairs of signal and idler photons.

•

 

In the high-gain regime (

 

≠

 

0), use the operator-ordering theorem

exp(iHz) = exp(c1

 

ar
+as

+

 

)exp[c2

 

(ar
+ar

 

+ as

 

as
+)]exp(c3

 

ar

 

as

 

).

•

 

The two-mode squeezed state |(z)

 

= (*)-1n

 

(/*)n|n,n/n!

•

 

The output state is determined by the Heisenberg transfer functions 

 

and !

•

 

In the high-gain regime, there are many different multiple-photon states. 
One cannot generate specific states preferentially (||2

 

≥

 

0).

[R. Loudon, QTL (2000); C. McKinstrie, OC 282, 2155 (2009).]



•

6QNLO, August 2012

Photon-pair generation by MI (or PC)

•

 

MI driven by a CW pump produces the frequency-entangled state

|

 

= c0

 

|0,0

 

+ c1

 

|1

 

,-1

 



 

+ c2

 

|2

 

,-2

 



 

+ . . .

•

 

Non-frequency-resolving measurement: |0,0

 

is pure, but useless. |1

 

,-1

 



 

with 
probability |c1

 

|2, or |2

 

,-2

 



 

with probability |c2

 

|2, . . , is not pure (mixed).

•

 

Frequency-resolving measurement (filter): |f

 

,-f

 



 

is pure, but the pair-production 
rate is low.

•

 

It is better to generate pure states directly. Try a pulsed pump!

•

 

Pure-state photons are produced for certain fiber and pump parameters.

[Sharping, OL 26, 367 (2001); Fiorentino, PTL 14, 983 (2002); Torounidis, PTL 19, 650 (2007).]
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Qualitative description of photon-pair generation (1)

•

 

If pumps p and q are pulsed, each signal component interacts with many 
idler components, subject to the condition r

 

+ s

 

= p

 

+ q

 

.

•

 

In the low-gain regime, |

 

= ∫ ∫ f(r

 

,s

 

)|r

 

,s

 

dr

 

ds

 

, where f(r

 

,s

 

) is 
the two-photon amplitude and |r

 

,s

 



 

= a+(r

 

)a+(s

 

)|0,0

 

is a pair-state.

•

 

The two-photon amplitude depends on the pump spectra, the mismatch 
(r

 

) + (s

 

) -

 

(p

 

) -

 

(q

 

) and the fiber length (choose judiciously).

•

 

J(r

 

,s

 

) = ar
+(r

 

)ar

 

(r

 

)as
+(s

 

)as

 

(s

 

)

 

= |f(r

 

,s

 

)|2

 

is the joint probability.

•

 

If f(r

 

,s

 

) = fr

 

(r

 

) fs

 

(s

 

), then |

 

= ∫fr

 

(r

 

)|r

 

dr

 

∫fs

 

(s

 

)|s

 

ds

 

= |r

 

|s

 

, 
which is a pure state! The photon wave-packets might (not) be identical.

[R. Loudon, QTL (2000); W. Grice, PRA 56, 1627 (1997) & 64, 063815 (2001); K. Garay, OE 15, 14870 (2007).]
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Qualitative description of photon-pair generation (2)

•

 

If f(r

 

,s

 

) = fr

 

(r

 

) fs

 

(s

 

), then |

 

= ∫fr

 

(r

 

)|r

 

dr

 

∫fs

 

(s

 

)|s

 

ds

 

= |r

 

|s

 

, 
which is a pure state! The photon wave-packets might (not) be identical.

•

 

Schmidt decomposition: f(r

 

,s

 

) = j

 

jr

 

(r

 

) j

 

js

 

(s

 

).

•

 

Let ajr
+

 

= ∫

 

jr

 

(r

 

)a+(r

 

)dr

 

. Then [ajr

 

,akr
+] = jk

 

. (ajs

 

has similar properties.)

•

 

|

 

= ∫ ∫ f(r

 

,s

 

)a+(r

 

)a+(s

 

)dr

 

ds

 

|0,0

 

= j

 

j

 

ajr
+ajs

+|0,0

 

= j

 

j

 

|1r

 

,1s

 



 

j

 

.

•

 

Photons with frequency e-modes jr

 

(r

 

) and js

 

(s

 

) are generated with 
probability j

2.

•

 

Relate j

 

to physical parameters and design experiment so that only 1

 



 

0.

[C. Law, PRL 84, 5304 (2000), W. Grice, PRA 64, 063815 (2001); K. Garay, OE 15, 14870 (2007).]
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[J. Rarity, FiO

 

2008, paper FMH4 ; M. Halder, OE 17, 4670 (2009).]
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2008, paper FMH4 ; M. Halder, OE 17, 4670 (2009).]

Experimental setup with two sources
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•Collection efficiency >20% and visibility > 80%.

[J. Rarity, FiO

 

2008, paper FMH4; M. Halder, OE 17, 4670 (2009).]

The Hong-Ou-Mandel dip was observed

Delay



•

12QNLO, August 2012

Entangled photons were used for Q-physics experiments

•

 

Differential-phase quantum key distribution experiment using a series of quantum 
entangled photon pairs

•

 

Nonclassical

 

interference and entanglement generation using a photonic crystal fiber 
pair photon source.

•

 

Deterministic quantum beam splitter based on time-reversed Hong-Ou-Mandel 
interference.

•

 

Experimental test of nonlocal realism using a fiber-based source of polarization-

 
entangled photon pairs (figure).

•

 

Demonstration of a quantum controlled-NOT gate in the telecommunication band.

[T. Honjo, OL 32, 1165 (2007); J. Fulconis, PRL 99, 120501 (2007); J. Chen; PRA 76, 031804
(2007); M. Eisaman, PRA 77, 032339 (2008); J. Chen, PRL 100, 133603 (2008).]
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Frequency conversion by Bragg scattering

•

 

Asymmetric four-wave mixing (FWM), also called Bragg scattering (BS), can 
frequency convert an optical pulse without adding excess noise.

•

 

Two strong pumps (p and q) couple weak signal (s) and idler (r) sidebands.

•

 

In BS,

 

s

 

+ q

 

 p

 

+ i

 

, where j

 

is a photon with frequency j

 

. Input signal 
photons are converted to output idler photons.

•

 

If p

 

, q

 

and s

 

are specified, energy conservation determines r

 

.

•

 

Momentum conservation (efficient conversion) is possible if the frequencies 
are symmetric with respect to the zero-dispersion frequency of the fiber.

[K. Inoue, PTL 6, 1451 (1994); C. McKinstrie, OE 13, 9131 (2005); A. Gnauck, OE 14, 8989 (2006).]
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BS can translate arbitrary quantum states!

•

 

Frequency conversion by BS is modeled by beam-splitter IO relations:

a1

 

(z) = (z)a1

 

(0) + (z)a2

 

(0),   a2

 

(z) = -*(z)a1

 

(0) + *(z)a2

 

(0).

•

 

For complete conversion, |(z)| = 1, so m[a2

 

(z)]

 

= m[a1

 

(0)]

 

!

•

 

Frequency conversion does not add excess noise (NF is 0 dB).

•

 

Arbitrary (entangled) quantum states can be frequency shifted without 
distortion! Key function for quantum communication.

•

 

Entanglement generation or HOM interference between photons with

 
different frequencies!

[C. McKinstrie, Opt. Express 13, 9131 (2005); M. Raymer, Opt. Commun. 283, 747 (2010).]
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•

 

Two-color entanglement generation•

 

Two-color entanglement generation

Quantum FC
 

is mathematically equivalent to beam splitting

FWM in fiber

50% efficiencyBS

1(in)

1 or 0

0 or 1

[M. Raymer, Opt. Commun. 238, 747 (2010).]
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•Two-color HOM interference

‘identical
photons’
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Single-photon frequency conversion

•

 

In FC by FWM (BS), s

 

+ q

 

 p

 

+ i

 

. The signal is FC without excess noise (NF = 0 dB).

•

 

(a) Gnauck

 

demonstrated FC of a classical signal, with 99% conversion efficiency. 
The output idler had a 3-dB higher SNR than the idler produced by PA (MI or PC).

•

 

(b) McGuinness

 

demonstrated single-photon FC, with 28% conversion efficiency. 

•

 

Quantumness

 

is measured by second-order correlation coefficient G(2). Classical 
signals have G(2)

 



 

1, whereas perfect photon pairs have G(2)

 

= 0.

•

 

Correlation counting showed that G683

 

= 0.21, G659

 

= 0.19.          More to come!

[A. Gnauck, Opt. Express 14, 8989 (2006); H. McGuinness, Phys. Rev. Lett. 105, 093604 (2010).]
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Photonic qubits
 

for quantum information

•

 

Describe the states using Stokes/Poincare/Bloch spheres.

•

 

Basis states are polarization or OAM states.

•

 

One could also use different pulse shapes as the basis states (Silberhorn).

•

 

How does pulsed-pump FWM work and how does it affect the pulse shapes?

RC

V

H
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AD
HG10
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The details (1)

•FC by BS is governed by the coupled-mode equations (CMEs)

where (z,t) = K

 

Ap

 

(t

 

-

 

p

 

z)Aq
*(t -

 

q

 

z).

•If p

 

and s

 

are symmetric with respect to 0

 

, p

 

= s

 

and q

 

= r

 

.

•The solutions of the CMEs

 

can be written in the input-output (IO) forms

•Each Green function has the Schmidt decomposition G(t,t’) = n

 

vn

 

(t)n

 

un

 

*(t’), 
where un

 

(t’) and vn

 

(t) are input and output S-modes, and n

 

is a S-coefficient.

•Because FC is a unitary process, the G-functions are related:

( , ) ( , ') ( , ') (0, ')
'

( , ) ( , ') ( , ') (0, ')
r rr rs r

s sr ss s
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( ) ( , ) , ( ) *( , )z r t r s z s t s rA i z t A A i z t A           
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 2 2| | | | 1n n  



•

19QNLO, August 2012

The details (2)

•Decompose the input and output fields:

•The S-mode operators obey beam-splitter IO relations:

•The G-functions can be determined analytically:

where

•In the low-conversion regime, the S-modes are the pump shape-functions.

•In the high-conversion regime the S-decomposition was done numerically.

(0, ') (0) ( '), ( , ) ( ) ( )n n n nn n
A t a u t l t a l v t   

* *( ) (0) (0), ( ) (0) (0)rn n rn n sn sn n rn n sna l a a a l a a        

'
2 2

'

( , ') | ( ) | , ( , ') | ( ) |
s

r

t lt

q p
t l t

t t A s ds t t A s ds




 




   

* 1/2
0( , ') ( ) {2 [ ( , ') ( , ')] } ( ')rs b q r b pG t t i A t l J t t t t A t     

( ' ) ( ' )r sH t b l t H t t b l    
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What does it all mean?

•

 

The S-modes are the natural input and output modes of the FC process: 
Optimize experimental design (tailor pumps to signals or vice versa).

•

 

The input and output modes are related to the pump shape-functions: 
Arbitrary pulse reshaping is possible!

•

 

Different S-modes can carry different bits of information. This is called 
pulse-shape multiplexing or optical code-division multiplexing.

•

 

If j

 

= 1 for some j and k

 

= 0, FC extracts or inserts signals in mode j: 
pulse-shape multiplexing.

•

 

If uj

 

(t) ≠

 

vj

 

(t), one can exchange information between different pulse-

 shape channels.

•

 

Related work on multiplexing by three-wave mixing has been done by the 
Silberhorn

 

group [A. Eckstein, Opt. Express 19, 13771 (2011)].
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For long fibers, the Green function is separble

•

 

For short fibers, the G-function is not separable, but for fibers longer than 
the pump-sideband collision length, it is always separable (

 

TWM).

•

 

The input and output S-modes are just the shapes of the co-propagating 
pumps (

 

TWM).

•

 

Results shown for low conversion efficiency (

 

= 0.1 and CE = 0.01).

[L. Mejling, OE 20, 8367 (2012), C. McKinstrie, PRA 85, 053829 (2012).]
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High conversion efficiencies are possible

•

 

The CEs

 

|n

 

|2

 

increase as the interaction strength 

 

increases.

•

 

There is no mode competition for |1

 

|2

 

< 0.70.

•

 

For |1

 

|2

 

= 0.50 (

 

= 0.835), and 2 Gauss pumps, the input-

 

and output S-

 modes are mildly distorted versions of the (common) pump shape.

[H. McGuinness, OE 19, 17876 (2011); C. McKinstrie, PRA 85, 053829 (2012).]
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Arbitrary pulse reshaping is possible

•

 

For |1

 

|2

 

= 0.90 (

 

= 1.54), the S-modes are distorted versions of the pump 
shapes.

•

 

In the example, the pump shapes were zeroth-

 

and first-order Hermite-Gauss 
functions.

•

 

The input S-mode is related to one pump shape, and the output S-mode is 
related to the other.

•

 

By varying the pump shapes, one can reshape the input pulse arbitrarily.

[L. Mejling, OE 20, 8367 (2012), C. McKinstrie, PRA 85, 053829 (2012).]
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Summary 3

•

 

MI and PC in fibers can generate photons and BS can frequency-convert 
photons for quantum information experiments.

•

 

Pure photon-pair states were generated in birefringent

 

micro-structured 
fibers (Rarity, Walmsley).

•

 

Fiber-based photon-pair sources were used in quantum logic gates and a 
fundamental test of quantum mechanics (Migdall, Takesue). 

•

 

Single-photon frequency conversion was demonstrated (Raymer). Two-

 frequency entanglement and HOM experiments are underway.

•

 

To model photon generation and frequency conversion, the main tools are 
Green functions and Schmidt decompositions. BS can shape the input and 
output modes arbitrarily.

•

 

This is an exciting time to be doing quantum parametric-device research!

[J. Fan, OPN 18 (3), 26 (2007), A. U’Ren, OPN 22 (11), 36 (2011), K. Srinivasan, OPN 22 (12),
39 (2011).]
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