Cavity QED: atom & photon in love

Gerhard Rempe Max-Planck Institute of Quantum Optics Garching, Germany

a growing research field

* topic ISI Web of Knowledge (August 2012)

cavity QED*

Citations in Each Year

BEC*

Citations in Each Year

~16 years of exponential growth

~16 years of linear growth

cavity QED as a tool box

fundamental atom-photon processes

quantum many-body physics

quantum optomechanics

quantum information processing outline

today: fundamentals = it's all different

- 1) classical linear optics:
 - introduction & real time experiments
- 2) quantum nonlinear optics:
 - photon statistics & field fluctuations

tonight: applications = it's pretty useful

- 1) quantum information:
 - single photons & quantum networks

Wieman (Physics Nobel Prize 2001): teach students how wooden back of violin is what produces sound they hear.

15 minutes later: ask student whether sound from violin is produced ...

so please ask questions!

classical picture

the role of the mode density

Purcell, Phys. Rev. 69, 681 (1946)

B10. Spontaneous Emission Probabilities at Radio Frequencies. E. M. PURCELL, *Harvard University.*—For nuclear magnetic moment transitions at radio frequencies the probability of spontaneous emission, computed from

 $A_{\nu} = (8\pi\nu^2/c^3)h\nu(8\pi^3\mu^2/3h^2)$ sec.⁻¹,

is so small that this process is not effective in bringing a spin system into thermal equilibrium with its surroundings. At 300°K, for $\nu = 10^7$ sec.⁻¹, $\mu = 1$ nuclear magneton, the corresponding relaxation time would be 5×10^{21} seconds! However, for a system coupled to a resonant electrical circuit, the factor $8\pi\nu^2/c^3$ no longer gives correctly the number of radiation oscillators per unit volume, in unit frequency range, there being now one oscillator in the frequency range ν/Q associated with the circuit. The spontaneous emission probability is thereby increased, and the relaxation time reduced, by a factor $f = 3Q\lambda^3/4\pi^2 V$, where V is the volume of the resonator. If a is a dimension characteristic of the circuit so that $V \sim a^3$, and if δ is the skin-depth at frequency ν , $f \sim \lambda^3/a^2 \delta$. For a non-resonant circuit $f \sim \lambda^3/a^3$, and for $a < \delta$ it can be shown that $f \sim \lambda^3/a\delta^2$. If small metallic particles, of diameter 10⁻³ cm are mixed with a nuclear-magnetic medium at room temperature, spontaneous emission should establish thermal equilibrium in a time of the order of minutes, for $\nu = 10^7$ sec.⁻¹.

the spontaneous emission rate is proportional to the mode density of the radiation field:

in free space:

 $\rho(\omega) = (2/\pi) \omega^2/c^3$

in a cavity with quality factor Q and volume V:

 $\rho(\omega) = 1/\Delta \omega V = Q/\omega V$

Purcell enhancement factor:

f = $(3/4\pi^2) Q (\lambda^3/V)$

what's wrong with this mode density?

light interference

$$E_{c} = \alpha E_{p} + r_{1}e^{ik(d+2\Delta x)}\alpha E_{p} + r_{1}r_{2}e^{2ikd}E_{c}$$

$$\Rightarrow E_{c} = \alpha E_{p}\frac{1+r_{1}e^{ikd}e^{2ik\Delta x}}{1-r_{1}r_{2}e^{2ikd}}$$

$$\Rightarrow P_{c} = \alpha^{2}P_{p}\frac{1+r_{1}^{2}}{(1-r_{1}r_{2})^{2}} \approx 2\alpha^{2}P_{p}(F/\pi)^{2}$$

$$\stackrel{+}{\underset{\text{position averaging}}{\overset{+}{\underset{resonance}}} \xrightarrow{resonance} respectively}$$

light interference

$$E_{c} = \alpha E_{p} + r_{1}e^{ik(d+2\Delta x)}\alpha E_{p} + r_{1}r_{2}e^{2ikd}E_{c}$$

$$\Rightarrow E_{c} = \alpha E_{p}\frac{1+r_{1}e^{ikd}e^{2ik\Delta x}}{1-r_{1}r_{2}e^{2ikd}}$$

$$\Rightarrow P_{t} = T_{2} \times P_{c} \approx 2\alpha^{2}P_{p} \times \frac{F/\pi}{reflections}$$

cavity enhanced Rayleigh scattering

cavity enhances light scattering

rotated geometry, same rate
benefit: small laser intensity

cavity enhanced Rayleigh scattering

Motsch et al., NJP 12, 063022 (2010)

38× more light into mode defined by the cavity

quantum description

cavity QED = QED for pedestrians

no renormalization & no divergencesonly one mode of the radiation field

perturbative regime: (Purcell 1946, ...)

dissipation » coupling

non-perturbative regime: (Jaynes & Cummings 1963, ...) dissipation « coupling

coupling constant:
$$g = \frac{\vec{d} \cdot \vec{E}}{\hbar}$$

dipole moment:
$$\vec{d} = e \langle \psi_e | \vec{r} | \psi_g \rangle$$

 $\approx 10^0 - 10^1 ea_0$ resonance line
 $\approx 10^3 - 10^4 ea_0$ Rydberg atom
 $\approx 10^4 - 10^5 ea_0$ mesoscopic system

field per photon:
$$\left| \vec{E} \right| = \sqrt{\frac{\hbar\omega}{2\varepsilon_0 V_{eff}}}$$

how large is the electric field of a photon ?

10 μ m mirror separation: E \approx 100 V/cm

it can be measured ! it has dramatic effects !

Jaynes-Cummings molecule

Jaynes and Cummings, Proc. IEEE 51, 89 (1963)

microwave cavity QED ($\omega = \omega_A = \omega_C$): without dissipation: $\gamma = \kappa = 0$ without driving: $\eta = 0$

Hamiltonian:
$$\hat{H}_{JC} = \hbar \omega_A \hat{\sigma}_+ \hat{\sigma}_- + \hbar \omega_C \hat{a}^+ \hat{a} + \hbar g \left(\hat{a}^+ \hat{\sigma}_- + \hat{\sigma}_+ \hat{a} \right)$$

eigenenergies:
$$E_{n,\pm} = \hbar \omega n \pm \hbar g \sqrt{n}$$
 $n = 0, 1, 2, ...$

eigenstates:
$$|n,\pm\rangle = \frac{|g,n\rangle \pm |e,n-1\rangle}{\sqrt{2}}$$
 dressed states

driven atom-cavity system

Alsing et al., Phys. Rev. A 45, 5135 (1992)

optical cavity QED ($\omega = \omega_L = \omega_A = \omega_C$): without dissipation: $\gamma = \kappa = 0$ with driving: $\eta \neq 0$

Hamiltonian:
$$\hat{H} = \hat{H}_{JC} + \hbar \eta \left(\hat{a}^{+} + \hat{a} \right)$$

quasienergies:
$$E_{n,\pm} = \hbar \omega n \pm \hbar g \sqrt{n} \sqrt[\frac{4}{3}] \left(1 - \left(\frac{2\eta}{g} \right)^2 \right)^2$$

Stark-shifted energy levels

Stark-shifted energy levels

Alsing et al., Phys. Rev. A 45, 5135 (1992)

weakly driven dissipative atom-cavity system

optical cavity QED ($\omega_L = \omega_A = \omega_C$): polarization decay $\gamma \neq 0$, field decay $\kappa \neq 0$, driving $\eta \neq 0$

$$\begin{array}{ll} \text{master equation:} \quad \dot{\rho} = -\frac{i}{\hbar} \Big[\hat{H}_{JC} + \hat{H}_{P}, \rho \Big] - \kappa \Big(\hat{a}^{+} \hat{a} \rho + \rho \hat{a}^{+} \hat{a} - 2\hat{a} \rho \hat{a}^{+} \Big) \\ &- \gamma \Big(\hat{\sigma}_{+} \hat{\sigma}_{-} \rho + \rho \hat{\sigma}_{+} \hat{\sigma}_{-} - 2\hat{\sigma}_{-} \rho \hat{\sigma}_{+} \Big) \end{array}$$

state vector:
$$|\psi\rangle = |g,0\rangle + c_g |g,1\rangle + c_e |e,0\rangle$$
 $c_{g,e} \ll 1$

equations of motion:

steady-state solution:

$$\dot{c}_g = -\kappa c_g + g c_e + \eta$$

$$c_g = \frac{\eta / \kappa}{1 + 2C_1} \equiv \alpha$$

cooperativity
$$C_1 = \frac{g^2}{2\gamma\kappa}$$

$$\dot{c}_e = -\gamma c_e - g c_g$$
 $c_e = -\frac{g}{\gamma} c_g \equiv \beta$

no absorption, only interference

the famous cooperativity parameter

single-atom watching

Münstermann et al., Opt. Commun. **159**, 63 (1999) see also Chapman, Esslinger, Kimble, Mabuchi, Meschede, Orozco, Stamper Kurn, ...

single-atom watching

Pinkse et al., Nature 404, 365 (2000)

Trapping an atom with single photons

P. W. H. Pinkse, T. Fischer, P. Maunz & G. Rempe

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

The Atom-Cavity Microscope: Single Atoms Bound in Orbit by Single Photons

C. J. Hood,¹ T. W. Lynn,¹ A. C. Doherty,² A. S. Parkins,² H. J. Kimble¹*

reconstructed trajectory, not direct imaging

spatial imaging

Puppe et al., Physica Scripta **T112** (2004) 7

probe-laser frequency jumps to and fro between modes every 1 μ s

spatial imaging

based on the result of an observation, is it possible to ...

- 1) ... maneuver an individual atom, thus validating its "measured" trajectory?
- 2) ... cool a randomly moving particle?
- 3) ... reach the standard quantum limit (Heisenberg's uncertainty relation)?
- 4) ... explore tailored servo loops?

experimental scheme

Kubanek et al., Nature **462**, 898 (2009) Koch et al., PRL **105**, 173003 (2010)

experimental protocol

Kubanek et al., Appl. Phys. B 102, 433 (2011)

experimental setup

probe light

strategic decisions are made upon detection of single photons

experimental results

Kubanek et al., Nature 462, 898 (2009)

solid lines = simulations

experimental results: improved system

Koch et al., PRL 105, 173003 (2010)

typical trace, can be 10× longer

feedback cooling

ask student whether intensity of the light field, after passing by the atom, is reduced by ...

- a. ... mostly absorption,
- b. ... mostly interference,
- c. ... both equally,
- d. ... none of above?

weakly driven dissipative atom-cavity system

optical cavity QED ($\omega_L = \omega_A = \omega_C$): polarization decay $\gamma \neq 0$, field decay $\kappa \neq 0$, driving $\eta \neq 0$

$$\begin{array}{ll} \textbf{master equation:} \quad \dot{\rho} = -\frac{i}{\hbar} \Big[\hat{H}_{JC} + \hat{H}_{P}, \rho \Big] - \kappa \Big(\hat{a}^{+} \hat{a} \rho + \rho \hat{a}^{+} \hat{a} - 2\hat{a} \rho \hat{a}^{+} \Big) \\ &- \gamma \Big(\hat{\sigma}_{+} \hat{\sigma}_{-} \rho + \rho \hat{\sigma}_{+} \hat{\sigma}_{-} - 2\hat{\sigma}_{-} \rho \hat{\sigma}_{+} \Big) \end{array}$$

state vector:
$$|\psi\rangle = |g,0\rangle + c_g |g,1\rangle + c_e |e,0\rangle$$
 $c_{g,e} \ll 1$

equations of motion: steady-state solution:

$$\dot{c}_g = -\kappa c_g + g c_e + \eta$$

$$c_g = \frac{\eta / \kappa}{1 + 2C_1} \equiv \alpha$$

 $\boldsymbol{\sigma}$

cooperativity
$$C_1 = \frac{g^2}{2\gamma\kappa}$$

$$\dot{c}_e = -\gamma c_e - g c_g$$
 $c_e = -\frac{\delta}{\gamma} c_g \equiv \beta$

eigenvalues of the coupled system:

$$\lambda_{\pm} = -\frac{\gamma + \kappa}{2} \pm \sqrt{\left(\frac{\gamma - \kappa}{2}\right)^2 - g^2}$$

cavity transmission ($\Delta = \omega_L - \omega_{A,C}$):

$$T(\Delta) = T_0 \left| \frac{\kappa (\gamma - i\Delta)}{(\lambda_+ + i\Delta)(\lambda_- + i\Delta)} \right|^2$$

eigenvalue structure

real (negative) eigenvalues:

$$\lambda_{+} = -\gamma \left(1 + 2C_{1} \right) = -\left(\gamma + \frac{g^{2}}{\kappa} \right)$$

cavity-enhanced atomic decay

$$\lambda_{-} = -\kappa \left(1 - 2C_{1} \frac{\gamma}{\kappa} \right) = -\left(\kappa - \frac{g^{2}}{\kappa} \right)$$

atom-reduced cavity decay

fast-cavity limit $\kappa \gg g^2/\kappa \gg \gamma$

complex eigenvalues:

$$\lambda_{\pm} = -\frac{\gamma + \kappa}{2} \pm ig$$

- normal-mode (vacuum-Rabi) splitting
- linewidth averaging

strong-coupling limit $g \gg (\gamma, \kappa)$

linear absorption & dispersion

normal-mode splitting

stepwise excitation: Carmichael et al., PRL **77**, 631 (1996)

two-photon excitation!

no simple scaling with atom number

two-photon excitation: resonance frequencies

how to avoid the classical response ?

quantum response:

$$I_{out} = c_1 I_{in} + q_2 I_{in}^2 + q_3 I_{in}^3 + \dots$$

nonlinear due to anharmonicity

classical response:

$$I_{out} = c_1 I_{in} + c_2 I_{in}^2 + c_3 I_{in}^3 + \dots$$

nonlinear due to atomic saturation

quantum nonlinearity

quantum nonlinearity

photon correlations

State vector: $|\psi\rangle = |g,0\rangle + c_g |g,1\rangle + c_e |e,0\rangle + \varepsilon_g |g,2\rangle + \varepsilon_e |e,1\rangle + \dots \qquad \varepsilon_{g,e} \ll c_{g,e} \ll 1$

equations of motion:

$$\dot{c}_{g} = -\kappa c_{g} + gc_{e} + \eta \qquad \dot{\varepsilon}_{g} = -2\kappa\varepsilon_{g} + g\sqrt{2}\varepsilon_{e} + \eta\sqrt{2}c_{g}$$
$$\dot{c}_{e} = -\gamma c_{e} - gc_{g} \qquad \dot{\varepsilon}_{e} = -(\kappa + \gamma)\varepsilon_{e} - g\sqrt{2}\varepsilon_{g} + \eta c_{e}$$

steady-state solution (strong coupling):

$$|\psi\rangle = |g,0\rangle + \alpha |g,1\rangle - \alpha \frac{g}{\gamma}|e,0\rangle - \frac{\alpha^2}{\sqrt{2}}\frac{g^2}{\gamma^2}|g,2\rangle - \alpha^2 \frac{g}{\gamma}(1+\frac{\kappa}{\gamma})|e,1\rangle + \dots$$

probability for simultaneous transmission of two photons: $\left| \left\langle g, 0 \right| \hat{a}^{2} \left| \psi \right\rangle \right|^{2} \xrightarrow{g \gg (\gamma, \kappa)} \left| \frac{\alpha^{2}}{2n_{s}} \right|^{2} \gg \left| \alpha^{2} \right|^{2}$ $n_{s} = \frac{\gamma^{2}}{2g^{2}} \quad \text{saturation photon number}$

physical interpretation

Carmichael et al., Opt. Comm. 82, 73 (1991)

amplitude for two-photon transmission as a product:

 $\langle g, 0 | \hat{a}^2 | \psi \rangle = \langle g, 0 | \hat{a} | \psi \rangle \langle g, 0 | \hat{a} | \overline{\psi} \rangle$

with the collapsed state:

$$\left| \overline{\psi} \right\rangle = \frac{\hat{a} \left| \psi \right\rangle}{\left\langle g, 0 \right| \hat{a} \left| \psi \right\rangle}$$

amplitude for photon emission from steady state $|\psi\rangle$: $\langle g, 0 | \hat{a} | \psi \rangle = \alpha = \alpha_0 - 2C_1 \alpha$

amplitude for photon emission from collapsed state $|\overline{\psi}\rangle$:

$$\langle g, 0 | \hat{a} | \overline{\psi} \rangle = \alpha + \Delta \alpha \xrightarrow{g \gg (\gamma, \kappa)} \alpha - \frac{\alpha}{2n_s} \implies \Delta \alpha \gg -\alpha$$

physical interpretation

cavity QED: two dimensionless numbers

single-atom cooperativity $C_1 = \frac{g^2}{2\gamma\kappa}$ large C_1 : one atom has a big effect

saturation photon number $n_s = \frac{\gamma^2}{2g^2}$ small n_s : one photon has a big effect

~20 000 atoms, ~127 hours measurement time

ask student whether photons transmitted through resonant cavity containing a single resonant atom arrive ...

- a. ... regularly = anti-bunched: one atom can emit only one photon,
- b. ... randomly:

laser beam is a random stream of photons,

- c. ... chaotic = bunched: coherent laser interferes with incoherent spontaneous emission,
- d. ... none of the above?

from incoherent decay to coherent scattering

quadrature squeezing: $X_{\Theta} = \frac{1}{2} \left(e^{-i\Theta} a + e^{+i\Theta} a^{\dagger} \right)$ $\Delta X_{\Theta} = X_{\Theta} - \left\langle X_{\Theta} \right\rangle$

from free space ...

Walls & Zoller, Phys. Rev. Lett. 47, 709 (1981)

single-atom in free-space:

$$\sigma = |g\rangle \langle e|$$
$$\left\langle \left(\sigma - \langle \sigma \rangle\right)^2 \right\rangle = - \left\langle \sigma \right\rangle^2$$

but:

- small squeezing predicted low driving, photon number « 1
- detection solid angle « 4π
 mode matching is difficult

The squeezing generated by one atom is at least an order of magnitude more difficult to observe than anti-bunching L Mandel, PRL 1982

... to confined space

Ourjoumtsev et al., Nature 474, 623 (2011)

single-atom cavity QED:

$$\left\langle \left(a - \left\langle a \right\rangle\right)^2 \right\rangle = -K \left\langle \sigma \right\rangle^2$$

atomic coherence (1^{st} rung):

$$\langle \sigma \rangle = \frac{\varepsilon g}{\tilde{\omega}_{1+} \tilde{\omega}_{1-}}$$

enhancement (2nd rung):

$$K = \frac{2g^2}{\tilde{\omega}_{2+}\tilde{\omega}_{2-}} \gg 1$$

quadrature squeezing

quadrature electric field: $X_{\Theta} = \frac{1}{2} \left(e^{-i\Theta} a + e^{i\Theta} a^{\dagger} \right)$

variance:

$$\left\langle \Delta X_{\Theta}^{2} \right\rangle = \left\langle \left(X_{\Theta} - \left\langle X_{\Theta} \right\rangle \right)^{2} \right\rangle = \underbrace{\frac{1}{2} \Re \left(e^{-2i\Theta} \left\langle \Delta a^{2} \right\rangle \right)}_{\text{coherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} + \underbrace{\frac{1}{2} \left\langle \Delta a^{\dagger} \Delta a \right\rangle}_{\text{incoherent part}} +$$

normal ordering (removes $\frac{1}{4}$) and weak excitation (removes incoherent part): $\langle : \Delta X_{\Theta}^2 : \rangle = \frac{1}{2} \Re \left(e^{-2i\Theta} \left\langle \Delta a^2 \right\rangle \right)$
master equation:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} \left[H_{JC} + H_{P}, \rho \right] + \kappa L_{a}\rho + \gamma L_{\sigma}\rho$$
$$L_{a}\rho = 2a\rho a^{\dagger} - \rho a^{\dagger}a - a^{\dagger}a\rho$$
$$L_{\sigma}\rho = 2\sigma\rho\sigma^{\dagger} - \rho\sigma^{\dagger}\sigma - \sigma^{\dagger}\sigma\rho$$

Jaynes-Cummings Hamiltonian: $H_{JC}/\hbar = -\Delta_c a^{\dagger} a - \Delta_a \sigma^{\dagger} \sigma + g \left(a^{\dagger} \sigma + a \sigma^{\dagger} \right)$

drive Hamiltonian:

$$H_{P}/\hbar = \varepsilon \left(a^{\dagger} + a \right)$$

equations of motion:

$$\frac{d}{dt}\langle a\rangle = i\left(\tilde{\omega}_{c}\langle a\rangle - g\langle \sigma \rangle - \varepsilon\right) \qquad \tilde{\omega}_{c} = \Delta_{c} + i\kappa \qquad \Delta_{c} = \omega - \omega_{c}$$

$$\frac{d}{dt}\langle \sigma\rangle = i\left(\tilde{\omega}_{a}\langle \sigma \rangle + g\langle a\sigma_{z} \rangle\right) \qquad \tilde{\omega}_{a} = \Delta_{a} + i\gamma \qquad \Delta_{a} = \omega - \omega_{a}$$

$$\frac{d}{dt}\langle a^{2} \rangle = 2i\left(\tilde{\omega}_{c}\langle a^{2} \rangle - g\langle a\sigma \rangle - \varepsilon\langle a \rangle\right)$$

$$\frac{d}{dt}\langle a\sigma \rangle = i\left(\left(\tilde{\omega}_{a} + \tilde{\omega}_{c}\right)\langle a\sigma \rangle + g\langle a^{2}\sigma_{z} \rangle - \varepsilon\langle \sigma \rangle\right)$$

steady-state solutions:

$$\langle a \rangle = \varepsilon \frac{\tilde{\omega}_{a}}{\tilde{\omega}_{a}\tilde{\omega}_{c} - g^{2}} \qquad \langle a^{2} \rangle = \varepsilon^{2} \frac{\tilde{\omega}_{a}\left(\tilde{\omega}_{a} + \tilde{\omega}_{c}\right) + g^{2}}{\left(\tilde{\omega}_{c}\left(\tilde{\omega}_{a} + \tilde{\omega}_{c}\right) - g^{2}\right)\left(\tilde{\omega}_{a}\tilde{\omega}_{c} - g^{2}\right)}$$

$$\langle \sigma \rangle = \varepsilon \frac{g}{\tilde{\omega}_{a}\tilde{\omega}_{c} - g^{2}} \qquad \langle a\sigma \rangle = \varepsilon^{2} \frac{g\left(\tilde{\omega}_{a} + \tilde{\omega}_{c}\right) - g^{2}\right)\left(\tilde{\omega}_{a}\tilde{\omega}_{c} - g^{2}\right)}{\left(\tilde{\omega}_{c}\left(\tilde{\omega}_{a} + \tilde{\omega}_{c}\right) - g^{2}\right)\left(\tilde{\omega}_{a}\tilde{\omega}_{c} - g^{2}\right)}$$

fluctuations:

$$\left\langle \Delta a^2 \right\rangle = \frac{-\varepsilon^2 g^4}{\left(\tilde{\omega}_c \left(\tilde{\omega}_a + \tilde{\omega}_c \right) - g^2 \right) \left(\tilde{\omega}_a \tilde{\omega}_c - g^2 \right)^2}$$

$$\left< \Delta a \Delta \sigma \right> = \frac{\tilde{\omega}_c}{g} \left< \Delta a^2 \right>$$

quadrature squeezing

Ourjoumtsev et al., Nature **474**, 623 (2011)

detunings:

$$\tilde{\omega}_{n\pm} = (n-1)\tilde{\omega}_{c} + \frac{1}{2}(\tilde{\omega}_{a} + \tilde{\omega}_{c}) \pm \frac{1}{2}\sqrt{4ng^{2} + (\tilde{\omega}_{a} - \tilde{\omega}_{c})^{2}}$$

rewrite:

$$\langle \sigma \rangle = \frac{\varepsilon g}{\tilde{\omega}_{1+}\tilde{\omega}_{1-}}$$
 and $\langle \Delta a^2 \rangle = K \left(-\langle \sigma \rangle^2 \right)$ with $K = \frac{2g^2}{\tilde{\omega}_{2+}\tilde{\omega}_{2-}}$

squeezing:
$$\left\langle :\Delta X_{\Theta}^{2}:\right\rangle = -\frac{1}{2}\Re\left(e^{-2i\Theta}K\left\langle\sigma\right\rangle^{2}\right)$$

quadrature autocorrelations

Ourjoumtsev et al., Nature 474, 623 (2011)

quadrature autocorrelation: $\langle : \Delta X_{\Theta}(\tau) \Delta X_{\Theta}(0) : \rangle = -\frac{1}{2} \Re \left(e^{-2i\Theta} K \left\langle \sigma \right\rangle^2 f(\tau) \right)$

regression to steady state:

$$f(\tau) = \frac{\exp(i\tilde{\omega}_{1-}\tau)}{1 - \tilde{\omega}_{1-}/\tilde{\omega}_{1+}} + \frac{\exp(i\tilde{\omega}_{1+}\tau)}{1 - \tilde{\omega}_{1+}/\tilde{\omega}_{1-}}$$

autocorrelation of homodyne signal

Ourjoumtsev et al., Nature 474, 623 (2011)

Fourier transform of autocorrelation

Ourjoumtsev et al., Nature 474, 623 (2011)

autocorrelation of homodyne signal

Ourjoumtsev et al., Nature 474, 623 (2011)

Fourier transform of autocorrelation

Ourjoumtsev et al., Nature 474, 623 (2011)

quantum nonlinear optics

- single atom emits light with reduced amplitude fluctuations (not intensity)
- small absolute squeezing: ~10⁻² dB, limited by losses & two-sided cavity
- large relative squeezing: pump with 2 photons/60 ns cavity-decay time
- parametric down-conversion at 10 pW pump would give squeezing of 10⁻⁹ dB
- non-linearity is 10⁷ times larger than Kerr non-linearity of optical fibers
- non-linearity 10⁴ times larger than for four-wave mixing in atomic ensembles

a general perspective

Cavity QED: atom & photon in distant love

Gerhard Rempe Max-Planck Institute of Quantum Optics Garching, Germany

quantum information technology: quo vadis?

Unless one is an archaeologist, it is unlikely that one has found the Holy Grail. Editorial, Nature Physics 3, 581 (2007)

... but quantum physics allows for powerful apps:

quantum simulator: simulates Hamiltonian systems not accessible to classical computers

quantum computer: computes complex problems by exploiting the rules of quantum physics

quantum network: distributes information in a secure and controlled way over infinite distances

coupled quantum systems

a fundamental (almost textbook) system: two atoms exchanging energy & information

however:

- atoms are not individually addressable
- communication over short distance only

-40

-20

VOLUME 84, NUMBER 18 PHYSICAL REVIEW LETTERS

Observation of Cavity-Mediated Long-Range Light Forces between Strongly Coupled Atoms

laser detuning [MHz]

20

40

Ritsch Esslinger Stamper-Kurn: cavity opto-mechanics

coupled quantum systems

however:
requires interferometric stability
not practical for infinite distances

coupled quantum systems

- "infinite" distances
- controlled connectivity
- scalable to many atoms

- in theory: one closed system → simple Hamiltonian $\hbar\Lambda(a^{\dagger}b+b^{\dagger}a)$
- In practice: two open systems → extremely challenging task

distributed quantum systems

- 1) quantum communication & quantum computing
- 2) arbitrary topology = quantum internet: distributed quantum-many body system

3) single atoms = true quantum bits:

individually addressable & controllable quantum processors (localized information, no crosstalk)

the quest for symmetric photons

spontaneous emission: ■ exponential decay → asymmetric photon

cavity QED:

- inside: controllable atom-photon interaction
- outside: single spatial and temporal mode

vacuum-stimulated Raman adiabatic passage

photon-stimulated Raman adiabatic passage

Mücke et al., Nature **465**, 755 (2010) Specht et al., Nature **473**, 190 (2011)

how to get single atoms?

cavity

atoms

Nußmann et al., PRL 95, 173602 (2005); see also the work of Chapman and Meschede

how to cool single atoms?

year

a single atom trapped "forever"

two identical systems

quantum memory

Poincaré "sphere": examples

quantum memory

Ritter et al., Nature 484, 195 (2012)

write/read fidelity = 92.2(4)%

quantum memory: what is long ?

- in optical fibers, 780 nm photons travel 1 km
 in 5 µs before being lost (3 dB)
- for larger distances/longer times, one needs quantum repeaters
- quantum repeaters require quantum memories

with 80 µs memory time (and everything else perfect), one could already build 1 repeater station over 8 km

quantum-state transfer

quantum-state transfer: process matrix

Ritter et al., Nature 484, 195 (2012)

atom-atom entanglement

atom-atom entanglement: density matrix

Ritter et al., Nature 484, 195 (2012)

$$|\psi_{A\otimes B}^{-}\rangle = \frac{1}{\sqrt{2}} \left(|1, -1\rangle \otimes |2, 1\rangle - |1, 1\rangle \otimes |2, -1\rangle\right)$$

atom-atom entanglement: nonlocality

Ritter et al., Nature 484, 195 (2012)

largest material quantum system*

* with a new twist: locally = open system globally = closed system

single-emitter experiments		fidelity	w/r efficiency
memory	cavity QED	0.92 (0.95)	0.3 ² (0.7 ²)
entanglement	cavity QED	0.85	0.02
	free space	0.63	0.00000004
state transfer	cavity QED	0.84	0.002
teleportation			
	free space	0.90	0.0000002

21 m
thanks to a wonderful team

H Specht M Mücke S Chervenkov L van Buuren M Koch C Sommer M Balbach A Reiserer R Glöckner C Sames S Ritter S Riedl M Lettner S Baur M Uphoff S Dürr C Nölleke E Figueroa **B** Englert M Zeppenfeld Wilk C Hahn CVo A Neuzner X Wu J Bochmann

ATOM OPTICS, BEC, CAVITY QED, DIPOLAR MOLECULES EXPERIMENTAL QUANTUM INFORMATION SCIENCE