Solid state quantum optics 1: Quantum optics with super conducting wires

Anders S. Sørensen
Quantop, Danish Quantum Optics Center

Niels Bohr Institute, University of Copenhagen

What is quantum optics?

Name: quantum effects of light

What is quantum optics?

Name: quantum effects of light

Experiment with trapped ions, ultra cold atoms, etc only use classical light

What is quantum optics?

Name: quantum effects of light

Experiment with trapped ions, ultra cold atoms, etc only use classical light

Not quantum optics?

What is quantum optics?

Name: quantum effects of light

Experiment with trapped ions, ultra cold atoms, etc only use classical light

Not quantum optics?

In practice: quantum effects of atoms and light

What is quantum optics?

Name: quantum effects of light

Experiment with trapped ions, ultra cold atoms, etc only use classical light

Not quantum optics?

In practice: quantum effects of atoms and light
(name is actually bad)

Quantization of light

Take complete set of normalized modes (e.g. plane waves) fulfilling

$$
\nabla \times \nabla \times \vec{u}_{n}=\frac{\omega_{n}^{2}}{c^{2}} \vec{u}_{n} \quad \int d^{3} r \vec{u}_{n}^{\dagger} \vec{u}_{m}=\delta_{n, m}
$$

Quantization of light

Take complete set of normalized modes (e.g. plane waves) fulfilling

$$
\nabla \times \nabla \times \vec{u}_{n}=\frac{\omega_{n}^{2}}{c^{2}} \vec{u}_{n} \quad \int d^{3} r \vec{u}_{n}^{\dagger} \vec{u}_{m}=\delta_{n, m}
$$

Expand fields:

$$
\begin{aligned}
\vec{E} & =\sum_{n} \frac{\sqrt{\omega_{n}}}{2 \sqrt{\epsilon_{0}}}\left[\left(q_{n}+i p_{n}\right) \vec{u}_{n}(\vec{r})+\text { H.C. }\right] \\
\vec{B} & =\sum_{n} \frac{1}{2 \sqrt{\epsilon_{0} \omega_{n}}}\left[\left(-i q_{n}+p_{n}\right) \nabla \times \vec{u}_{n}(\vec{r})+H . C .\right]
\end{aligned}
$$

Quantization of light

Take complete set of normalized modes (e.g. plane waves) fulfilling

$$
\nabla \times \nabla \times \vec{u}_{n}=\frac{\omega_{n}^{2}}{c^{2}} \vec{u}_{n} \quad \int d^{3} r \vec{u}_{n}^{\dagger} \vec{u}_{m}=\delta_{n, m}
$$

Expand fields:

$$
\begin{aligned}
& \qquad \begin{aligned}
& \vec{E}=\sum_{n} \frac{\sqrt{\omega_{n}}}{2 \sqrt{\epsilon_{0}}}\left[\left(q_{n}+i p_{n}\right) \vec{u}_{n}(\vec{r})+\text { H.C. }\right] \\
& \vec{B}=\sum_{n} \frac{1}{2 \sqrt{\epsilon_{0} \omega_{n}}}\left[\left(-i q_{n}+p_{n}\right) \nabla \times \vec{u}_{n}(\vec{r})+H . C .\right] \\
& \text { Maxwell's equations fulfilled if } \quad \dot{q}_{n}=\frac{\partial H}{\partial p_{n}} \quad \dot{p}_{n}=-\frac{\partial H}{\partial q_{n}}
\end{aligned}
\end{aligned}
$$

with H being the classical energy $H=\int d^{3} r\left(\frac{\epsilon_{0}}{2} \vec{E}^{2}+\frac{\vec{B}^{2}}{2 \mu_{0}}\right)$

Quantization of light

Take complete set of normalized modes (e.g. plane waves) fulfilling

$$
\nabla \times \nabla \times \vec{u}_{n}=\frac{\omega_{n}^{2}}{c^{2}} \vec{u}_{n} \quad \int d^{3} r \vec{u}_{n}^{\dagger} \vec{u}_{m}=\delta_{n, m}
$$

Expand fields:

$$
\begin{aligned}
& \vec{E}=\sum_{n} \frac{\sqrt{\omega_{n}}}{2 \sqrt{\epsilon_{0}}}\left[\left(q_{n}+i p_{n}\right) \vec{u}_{n}(\vec{r})+\text { H.C. }\right] \\
& \vec{B}=\sum_{n} \frac{1}{2 \sqrt{\epsilon_{0} \omega_{n}}}\left[\left(-i q_{n}+p_{n}\right) \nabla \times \vec{u}_{n}(\vec{r})+\text { H.C. }\right] \\
& \text { Maxwell's equations fulfilled if } \quad \dot{q}_{n}=\frac{\partial H}{\partial p_{n}} \quad \dot{p}_{n}=-\frac{\partial H}{\partial q_{n}}
\end{aligned}
$$

with H being the classical energy $H=\int d^{3} r\left(\frac{\epsilon_{0}}{2} \vec{E}^{2}+\frac{\vec{B}^{2}}{2 \mu_{0}}\right)$
q_{n} and p_{n} are canonically conjugated variables=> $\left[\hat{q}_{n}, \hat{p}_{m}\right]=i \hbar \delta_{n, m}$

Quantization of light

Introduce creation and annihilation operators

$$
\hat{\vec{E}}=\sum_{n} \sqrt{\frac{\hbar \omega_{n}}{2 \epsilon_{0}}}\left[\hat{a}_{n} \vec{u}_{n}(\vec{r})+\text { H.C. }\right]
$$

Quantization of light

Introduce creation and annihilation operators

$$
\hat{\vec{E}}=\sum_{n} \sqrt{\frac{\hbar \omega_{n}}{2 \epsilon_{0}}}\left[\hat{a}_{n} \vec{u}_{n}(\vec{r})+\text { H.C. }\right]
$$

Also works with spatially varying $\epsilon(r)$

Quantization of light

Introduce creation and annihilation operators

$$
\hat{\vec{E}}=\sum_{n} \sqrt{\frac{\hbar \omega_{n}}{2 \epsilon_{0}}}\left[\hat{a}_{n} \vec{u}_{n}(\vec{r})+\text { H.C. }\right]
$$

Also works with spatially varying $\epsilon(r)$
Use the D field and change mode functions:
$\nabla \times \nabla \times\left(\frac{\epsilon_{0} \vec{u}_{n}}{\epsilon(\vec{r})}\right)=\frac{\omega_{n}^{2}}{c^{2}} \vec{u}_{n} \quad \int d^{3} r \frac{\epsilon_{0}}{\epsilon(\vec{r})} \vec{u}_{n}^{\dagger} \vec{u}_{m}=\delta_{n, m}$

Quantization of light

Introduce creation and annihilation operators

$$
\hat{\vec{E}}=\sum_{n} \sqrt{\frac{\hbar \omega_{n}}{2 \epsilon_{0}}}\left[\hat{a}_{n} \vec{u}_{n}(\vec{r})+H . C .\right]
$$

Also works with spatially varying $\epsilon(r)$
Use the D field and change mode functions:
$\nabla \times \nabla \times\left(\frac{\epsilon_{0} \vec{u}_{n}}{\epsilon(\vec{r})}\right)=\frac{\omega_{n}^{2}}{c^{2}} \vec{u}_{n} \quad \int d^{3} r \frac{\epsilon_{0}}{\epsilon(\vec{r})} \vec{u}_{n}^{\dagger} \vec{u}_{m}=\delta_{n, m}$

Can be done for any geometry with dielectrics, metals, etc.

Quantization of light

Introduce creation and annihilation operators

$$
\hat{\vec{E}}=\sum_{n} \sqrt{\frac{\hbar \omega_{n}}{2 \epsilon_{0}}}\left[\hat{a}_{n} \vec{u}_{n}(\vec{r})+\text { H.C. }\right]
$$

Also works with spatially varying $\epsilon(r)$
Use the D field and change mode functions:
$\nabla \times \nabla \times\left(\frac{\epsilon_{0} \vec{u}_{n}}{\epsilon(\vec{r})}\right)=\frac{\omega_{n}^{2}}{c^{2}} \vec{u}_{n} \quad \int d^{3} r \frac{\epsilon_{0}}{\epsilon(\vec{r})} \vec{u}_{n}^{\dagger} \vec{u}_{m}=\delta_{n, m}$

Can be done for any geometry with dielectrics, metals*, etc.
*Metals: real mess unless ideal (just boundary condition)

Jaynes Cummings Model

Two level atom in a cavity

Jaynes Cummings Model

Two level atom in a cavity

Jaynes Cummings Model

Two level atom in a cavity

$|e\rangle$

Only a single mode resonant $\quad \hat{\vec{E}}=\sqrt{\frac{\hbar \omega_{0}}{2 \epsilon_{0}}}[\hat{a} \vec{u}(\vec{r})+$ H.C. $]$

Jaynes Cummings Model

Two level atom in a cavity

$|e\rangle$

Only a single mode resonant $\quad \hat{\vec{E}}=\sqrt{\frac{\hbar \omega_{0}}{2 \epsilon_{0}}}[\hat{a} \vec{u}(\vec{r})+$ H.C. $]$
Dipole and rotating wave approximation $H=g\left(\hat{a}^{\dagger} \sigma_{-}+\sigma_{+} \hat{a}\right)$

Jaynes Cummings Model

Two level atom in a cavity

Only a single mode resonant $\quad \hat{\vec{E}}=\sqrt{\frac{\hbar \omega_{0}}{2 \epsilon_{0}}}[\hat{a} \vec{u}(\vec{r})+$ H.C. $]$
Dipole and rotating wave approximation $H=g\left(\hat{a}^{\dagger} \sigma_{-}+\sigma_{+} \hat{a}\right)$

Coupling constant $\quad g=\sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}} \vec{u}^{\dagger} \vec{d}_{0} \propto \frac{1}{\sqrt{V}}$

Jaynes Cummings Model

Two level atom in a cavity

Jaynes Cummings Model

Two level atom in a cavity

Jaynes Cummings Model

Two level atom in a cavity

Jaynes Cummings Model

Two level atom in a cavity

Problem: losses

Jaynes Cummings Model

Two level atom in a cavity

Problem: losses

Jaynes Cummings Model

Two level atom in a cavity

Problem: losses

Jaynes Cummings Model

Two level atom in a cavity

Problem: losses
Seeing this requires $\kappa, \gamma \ll g$

Jaynes Cummings Model

Two level atom in a cavity

Problem: losses
Seeing this requires $\kappa, \gamma \ll g$
Small cavities / low loss

Experiments

Optical:

Microwave and Rydberg atoms

Experiments

Optical:

Rempe et al: $g \sim(2 \pi) 16 \mathrm{MHz} \quad \kappa \sim(2 \pi) 1.5 \mathrm{MHz} \quad \gamma \sim(2 \pi) 3 \mathrm{MHz}$

Microwave and Rydberg atoms

Experiments

Optical:

Rempe et al: $g \sim(2 \pi) 16 \mathrm{MHz} \quad \kappa \sim(2 \pi) 1.5 \mathrm{MHz} \quad \gamma \sim(2 \pi) 3 \mathrm{MHz}$
Not far in strong coupling regime. Also trapping complicated
Microwave and Rydberg atoms

Experiments

Optical:

Rempe et al: $g \sim(2 \pi) 16 \mathrm{MHz} \quad \kappa \sim(2 \pi) 1.5 \mathrm{MHz} \quad \gamma \sim(2 \pi) 3 \mathrm{MHz}$
Not far in strong coupling regime. Also trapping complicated
Microwave and Rydberg atoms

Haroche et al: $g \sim(2 \pi) 25 \mathrm{kHz} \quad \kappa \sim(2 \pi) 1.5 \mathrm{~Hz} \quad \gamma \sim(2 \pi) 1 \mathrm{~Hz}$

Experiments

Optical:

Rempe et al: $g \sim(2 \pi) 16 \mathrm{MHz} \quad \kappa \sim(2 \pi) 1.5 \mathrm{MHz} \quad \gamma \sim(2 \pi) 3 \mathrm{MHz}$
Not far in strong coupling regime. Also trapping complicated
Microwave and Rydberg atoms

Haroche et al: $g \sim(2 \pi) 25 \mathrm{kHz} \quad \kappa \sim(2 \pi) 1.5 \mathrm{~Hz} \quad \gamma \sim(2 \pi) 1 \mathrm{~Hz}$
Problem transit time: $\quad t \sim a$ few times $1 / g$

A solid state realization*

Schoelkopf, Yale and Wallraff, ETH
$g \sim(2 \pi) 200 \mathrm{MHz} \quad \kappa \sim(2 \pi) 2.4 \mathrm{MHz} \quad \gamma \sim(2 \pi) 300 \mathrm{kHz}$
Trapping is easy and the atom stay there
*Also quantum dot work: Imamoglu, Yamamoto, Lodahl etc...

Limitations on coupling

Coupling depend on mode volume $g=\sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}} \vec{u}^{\dagger} \vec{d}_{0} \propto \frac{1}{\sqrt{V}}$
Small volume => strong coupling

Waist: $W \geq \lambda$ Length: $L \geq \lambda / 2$ Volume $V \geq \lambda^{3}$

Limitations on coupling

Coupling depend on mode volume $g=\sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}} \vec{u}^{\dagger} \vec{d}_{0} \propto \frac{1}{\sqrt{V}}$
Small volume => strong coupling

Waist: $W \geq \lambda$ Length: $L \geq \lambda / 2$ Volume $V \geq \lambda^{3}$
Counter example:
$\nu=50 \mathrm{~Hz}=>\lambda=6000 \mathrm{~km}=\sim$ radius of Earth

Limitations on coupling

Coupling depend on mode volume $g=\sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}} \vec{u}^{\dagger} \vec{d}_{0} \propto \frac{1}{\sqrt{V}}$ Small volume => strong coupling

Waist: $W \geq \lambda$ Length: $L \geq \lambda / 2$ Volume $V \geq \lambda^{3}$
Counter example:
Conductors change things
$\nu=50 \mathrm{~Hz}=>\lambda=6000 \mathrm{~km}=\sim$ radius of Earth

Wires

Describing the wire:

1) Field
2) Charges

Wires

Describing the wire:

1) Field
2) Charges => The approach I will take (will be useful for me later)

Describing the wire

Equations of motion: $\frac{d \lambda}{d t}=-\frac{d I}{d x} \quad l \frac{d I}{d t}=-c \frac{d \lambda}{d x}$
Wave equation:

$$
\frac{d^{2} I}{d t^{2}}=v^{2} \frac{d^{2} I}{d x^{2}} \quad v=\frac{1}{\sqrt{l c}}
$$

Standing waves

Discrete modes: $\quad \omega=n \frac{\pi v}{L}$

Tune into resonance with transition in atoms => interact

Atom = Cooper pair box

One Cooper pair can jump on and off
$|0\rangle$: no pair on box
$|1\rangle$: one pair on box

$$
H=\frac{1}{2}\left(E_{\mathrm{el}} \sigma_{x}+E_{J} \sigma_{z}\right)
$$

Atom = Cooper pair box

One Cooper pair can jump on and off
$|0\rangle$: no pair on box
$|1\rangle$: one pair on box

$$
H=\frac{1}{2}\left(E_{\mathrm{el}} \sigma_{x}+E_{J} \sigma_{z}\right)
$$

Electrostatic energy

$$
\sigma_{x}=|0\rangle\langle 0|-|1\rangle\langle 1|
$$

Can be controlled by gate voltage => Tune to zero

Atom = Cooper pair box

One Cooper pair can jump on and off
$|0\rangle$: no pair on box
$|1\rangle$: one pair on box

$$
H=\frac{1}{2}\left(E_{\text {el }} \sigma_{x}+E_{J} \sigma_{z}\right)
$$

$$
\sigma_{x}=|0\rangle\langle 0|-|1\rangle\langle 1| \quad \sigma_{z}=|1\rangle\langle 0|+|0\rangle\langle 1|
$$

Can be controlled by gate voltage => Tune to zero

Atom = Cooper pair box

One Cooper pair can jump on and off
$|0\rangle$: no pair on box
$|1\rangle$: one pair on box

$$
H=\frac{1}{2}\left(E_{\mathrm{el}} \sigma_{x}+E_{J} \sigma_{z}\right)
$$

$$
\sigma_{x}=|0\rangle\langle 0|-|1\rangle\langle 1| \quad \sigma_{z}=|1\rangle\langle 0|+|0\rangle\langle 1|
$$

Can be controlled by gate voltage => Tune to zero
Dressed states:

Atom = Cooper pair box

One Cooper pair can jump on and off
$|0\rangle$: no pair on box
$|1\rangle$: one pair on box

$$
H=\frac{1}{2}\left(E_{\mathrm{e}} \sigma_{x}+E_{J} \sigma_{z}\right)
$$

$$
\sigma_{x}=|0\rangle\langle 0|-|1\rangle\langle 1| \quad \sigma_{z}=|1\rangle\langle 0|+|0\rangle\langle 1|
$$

Can be controlled by gate voltage => Tune to zero

Dressed states:

Two level system with dipole allowed transition

Describing the interaction

Rigorous description:

1. Write down Hamiltonian (the energy) - Harmonic oscillator
2. Expand on eigenmodes (standing waves)
3. Identify canonical variables $\left(x_{n} \sim V_{n}, p_{n} \sim I_{n}\right)$
4. Quantize by imposing $\left[x_{n}, p_{m}\right]=i \delta_{m n}$
5. Raising and lowering operators $a_{n} \sim x_{n}+i p_{m}$
6. Electric field: $\hat{\vec{E}}(\vec{r})=\sum_{n} \vec{f}_{n}(\vec{r})\left(\hat{a}_{n}+\hat{a}_{n}^{\dagger}\right)$
7. Interaction $\quad H=-\hat{\vec{d}} \cdot \hat{\vec{E}}=-\left(\sigma_{+}+\sigma_{-}\right) \vec{D} \cdot \hat{\vec{E}}$
8. Rotating wave approximation $H=g\left(\sigma_{+} \hat{a}+\sigma_{-} \hat{a}^{\dagger}\right)$

The coupling

Charging energy $\frac{Q^{2}}{C} \sim \hbar \omega \quad C \sim \epsilon_{0} L$

The coupling

Charging energy $\frac{Q^{2}}{C} \sim \hbar \omega \quad C \sim \epsilon_{0} L$
Field: $E_{0} \sim \frac{Q}{\epsilon_{0} L h} \sim \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$

The coupling

Charging energy $\frac{Q^{2}}{C} \sim \hbar \omega \quad C \sim \epsilon_{0} L$
Field: $E_{0} \sim \frac{Q}{\epsilon_{0} L h} \sim \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$
Same conclusion from field $H \sim \int d^{3} r\left(\epsilon_{0} E^{2}+B^{2} / \mu_{0}\right) \sim \hbar \omega$

The coupling

Charging energy $\frac{Q^{2}}{C} \sim \hbar \omega \quad C \sim \epsilon_{0} L$
Field: $\quad E_{0} \sim \frac{Q}{\epsilon_{0} L h} \sim \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$
Same conclusion from field $H \sim \int d^{3} r\left(\epsilon_{0} E^{2}+B^{2} / \mu_{0}\right) \sim \hbar \omega$
$g \sim E_{0} d_{0} \sim d \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$

The coupling

Charging energy $\frac{Q^{2}}{C} \sim \hbar \omega \quad C \sim \epsilon_{0} L$
Field: $\quad E_{0} \sim \frac{Q}{\epsilon_{0} L h} \sim \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$
Same conclusion from field $H \sim \int d^{3} r\left(\epsilon_{0} E^{2}+B^{2} / \mu_{0}\right) \sim \hbar \omega$ $g \sim E_{0} d_{0} \sim d \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$

Strong confinement => strong coupling

The coupling

Charging energy $\frac{Q^{2}}{C} \sim \hbar \omega \quad C \sim \epsilon_{0} L$
Field: $\quad E_{0} \sim \frac{Q}{\epsilon_{0} L h} \sim \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$
Same conclusion from field $H \sim \int d^{3} r\left(\epsilon_{0} E^{2}+B^{2} / \mu_{0}\right) \sim \hbar \omega$ $g \sim E_{0} d_{0} \sim d \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$

Strong confinement => strong coupling $h \sim 5 \mu \mathrm{~m}$

The coupling

Charging energy $\frac{Q^{2}}{C} \sim \hbar \omega \quad C \sim \epsilon_{0} L$
Field: $\quad E_{0} \sim \frac{Q}{\epsilon_{0} L h} \sim \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$
Same conclusion from field $H \sim \int d^{3} r\left(\epsilon_{0} E^{2}+B^{2} / \mu_{0}\right) \sim \hbar \omega$ $g \sim E_{0} d_{0} \sim d \sqrt{\frac{\hbar \omega}{\epsilon_{0} L}} \frac{1}{h}$

Strong confinement => strong coupling $h \sim 5 \mu \mathrm{~m} \ll \lambda \sim 10 \mathrm{~cm}$

Resonant interaction

Coupling is strong enough make coherent coupling

Resonant interaction

Coupling is strong enough make coherent coupling

Resonant interaction

Coupling is strong enough make coherent coupling

Resonant interaction

Coupling is strong enough make coherent coupling

Resonant interaction

Coupling is strong enough make coherent coupling

Resonant interaction

Coupling is strong enough make coherent coupling

Jaynes Cummings Spectroscopy

ω_{d}
L. S. Bishop, R. J. Schoelkopf et al, Nat. Phys. 5, 105 (2009)

Jaynes Cummings Spectroscopy

ω_{d}
L. S. Bishop, R. J. Schoelkopf et al, Nat. Phys. 5, 105 (2009)

Jaynes Cummings Spectroscopy

ω_{d}
L. S. Bishop, R. J. Schoelkopf et al, Nat. Phys. 5, 105 (2009)

Jaynes Cummings Spectroscopy

ω_{d}
L. S. Bishop, R. J. Schoelkopf et al, Nat. Phys. 5, 105 (2009)

Conclusion (1)

Conductors enables strong confinement of electric fields

Enables a strong coherent interaction

The best realization of the model system of quantum optics - the Jaynes Cummings model

Application: Quantum Information

Applications to quantum information

1. Build quantum computer
2. Hybrid devices

Applications to quantum information

1. Build quantum computer

Very promising approach
2. Hybrid devices

Applications to quantum information

1. Build quantum computer

Very promising approach
Currently super conductors is the only real competitor to trapped ions
2. Hybrid devices

How to build a quantum computer

1.Qubits

Low decoherence => weak interactions
2.Control
3.Read Out
4.Gates

Some interaction between qubits => strong interactions
5.Coupling to light

Useful for quantum communication

How to build a quantum computer

1.Qubits

Low decoherence => weak interactions
2.Control
3.Read Out
4.Gates

Some interaction between qubits => strong interactions
5.Coupling to light

Useful for quantum communication

Hybrid quantum computers

Atomic like
Atoms, ions,

Solid state

Quantum dots,
super conductors,...

- Short coherence time (ns- $\mu \mathrm{s}$)
- Coupling to light harder
- Different
- Microfabrication
- It is solid

Hybrid quantum computers

Atomic like
Atoms, ions,

Solid state
Quantum dots,

Can we get the best of both worlds?

- vuuniliy tu ilyilt
- Identical
- Scaling hard
- Trapping hard
- ソuufiliy tu ilyili ial v̌i
- Different
- Microfabrication
- It is solid

"The standard solution"

"The standard solution"

"The standard solution"

>20 Theory articles

"The standard solution"

>20 Theory articles
3 Experimental

Atomic levels

Striplines: $\omega \sim$ GHz

Atomic levels

Striplines: $\omega \sim$ GHz

Atomic levels

Striplines: $\omega \sim$ GHz

Atomic levels

Striplines: $\omega \sim$ GHz

$$
\begin{aligned}
& E_{n} \propto \frac{1}{n^{2}} \\
& \Delta E_{n} \propto \frac{1}{n^{3}} \\
& n \sim 50-100(\text { Rydberg level }) \\
& \quad=>\omega \sim \mathrm{GHz}
\end{aligned}
$$

Can be excited by laser field

Rydberg atoms

High $n \sim$ big dipole

$$
-e
$$

$r=n^{2} \quad a_{0} \Rightarrow d$ large

Large $r \Rightarrow$ small acceleration
\Rightarrow weak radiation / long life times

Atom close to conductor: dipole interact with field from wire

Resonant interaction

Transition between Rydberg levels:
Wavelength $\sim \mathrm{cm}$ or mm
Wire of similar length \Rightarrow resonance

Resonant interaction

Transition between Rydberg levels:
Wavelength $\sim \mathrm{cm}$ or mm
Wire of similar length \Rightarrow resonance

Resonant interaction

Transition between Rydberg levels:
Wavelength $\sim \mathrm{cm}$ or mm
Wire of similar length \Rightarrow resonance

Resonant interaction

Transition between Rydberg levels:
Wavelength $\sim \mathrm{cm}$ or mm
Wire of similar length \Rightarrow resonance

Resonant interaction

Transition between Rydberg levels:
Wavelength $\sim \mathrm{cm}$ or mm
Wire of similar length \Rightarrow resonance

Describing the interaction

Field energy: $\quad H \sim \int d^{3} r\left(E^{2}+B^{2}\right) \sim \hbar \omega \quad \Rightarrow \quad E_{0} \sim \sqrt{\hbar \omega / V}$
Coupling: $\quad H=g\left(\sigma_{+} \hat{a}+\sigma_{-} \hat{a}^{\dagger}\right)$
$g=\vec{E}_{0} \cdot \vec{D}=D \sqrt{\hbar \omega / V}$
A. S. Sørensen, van der Wal, Childress, and Lukin, Phys. Rev. Lett. 92, 06360I (2004).

Describing the interaction

Field energy: $\quad H \sim \int d^{3} r\left(E^{2}+B^{2}\right) \sim \hbar \omega \quad \Rightarrow \quad E_{0} \sim \sqrt{\hbar \omega / V}$
Coupling: $\quad H=g\left(\sigma_{+} \hat{a}+\sigma_{-} \hat{a}^{\dagger}\right)$
$g=\vec{E}_{0} \cdot \vec{D}=D \sqrt{\hbar \omega / V}$
$n=50 \Rightarrow L \sim 3 \mathrm{~mm}, \omega=2 \pi 50 \mathrm{GHz}, h=10 \mu \mathrm{~m}=>g=2 \pi 3 \mathrm{MHz}$
A. S. Sørensen, van der Wal, Childress, and Lukin, Phys. Rev. Lett. 92, 06360I (2004).

Combining atoms and solid

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits
2) Single atoms

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits
2) Single atoms

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits
2) Single atoms

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits
2) Single atoms

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits
2) Single atoms

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits
2) Single atoms

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits $\quad \checkmark$ Works
2) Single atoms

Combining atoms and solid

Strip lines can have strong coupling to

1) Solid state qubits
\checkmark Works
2) Single atoms
In theory

Conclusion (2)

Hybrid systems may combine the best of two worlds Atoms: long coherence times, identical, connect to light Solid state: scalability, micro fabrication, no trapping

Stripline cavities is a promising solution
Can be coupled to solid state qubits (works!)
Can be coupled to atoms (theory)

This is all very easy and we will have a working quantum computer soon

"Nothing has been swept under the carpet"

"Nothing has been swept under the carpet"

Former Danish prime minister Poul Schlüter in parliament April 25th 1989

For discussion

What has been swept under the carpet?
Which things could potentially go wrong if one tries to build this device?

Potential problems

- Still need to trap and cool atoms, surface forces on atoms are big near surface
- Light and superconductors bad combination. One optical photon $\sim 1 \mathrm{eV}=$ many broken Cooper pairs
- No windows in setup at 100 mK
- Atoms have low decoherence when in vacuum. Decohere due to interaction with solid when close to surface

Solutions

A continuous transition

Quantum optics

Atoms

Ions

Solid state

Super
Conductors

Electrically defined quantum dots

A continuous transition

Quantum optics

Atoms

Ions

Solid state

Super
Conductors

Electrically defined
quantum dots

A continuous transition

Quantum optics

Atoms
Solid state
Super
Conductors

Electrically defined
 quantum dots

A continuous transition

Quantum optics

Atoms

Self assembled quantum dots

Super
Conductors
Solid state
quantum dots

A continuous transition

Quantum optics

Atoms
NV-centers

Self assembled quantum dots

Super
Conductors
Solid state
quantum dots

A continuous transition

Quantum optics

Atoms

Solid state
Super
Conductors

Electrically defined

quantum dots

Polar Molecules

Heteronuclear molecule = small electric dipole Rotation frequency $\sim \mathrm{GHz}$

No need for laser to excite to high lying level

Problem: dipole moment much smaller
$g \sim(2 \pi) 10-100 \mathrm{kHz}$
Cavity decay: similar or bigger.

Rabl, DeMille, Doyle, Lukin, Schoelkopf, and Zoller, Phys. Rev. Lett. 97, 033003 (2006)
André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Collective enhancement

What happens if there are N molecules?

$$
H=g a \sigma_{+}+\mathrm{H} . \mathrm{C} .
$$

Collective enhancement

What happens if there are N molecules?

$$
H=g a \sigma_{+}+\text {Н.С. }
$$

Collective enhancement

What happens if there are N molecules?

$$
H=g a \sum_{l} \sigma_{+, l}+\mathrm{H.C.}
$$

Collective enhancement

What happens if there are N molecules?

$$
H=g a \sum_{l} \sigma_{+, l}+\mathrm{H} . \mathrm{C} .
$$

$|1\rangle_{\text {Cavity }}|00 \ldots . . .0\rangle_{\mathrm{mol}} \rightarrow \frac{1}{\sqrt{N}}|0\rangle_{\text {Cavity }} \sum_{l}\left|00 \ldots 1_{l} \ldots 0\right\rangle_{\mathrm{mol}}$
Coupling enhanced by factor of \sqrt{N}

Collective enhancement

$|1\rangle_{\text {Cav }}|00 \ldots . \ldots\rangle_{\mathrm{mol}} \rightarrow \frac{1}{\sqrt{N}}|0\rangle_{\text {Cav }} \sum_{l}\left|00 \ldots 1_{l} \ldots 0\right\rangle_{\mathrm{mol}}$
'Absorption' not surprising: N spins absorb N times better

Rabl, DeMille, Doyle, Lukin, Schoelkopf, and Zoller, Phys. Rev. Lett. 97, 033003 (2006)

Collective enhancement

$|1\rangle_{\mathrm{Cav}}|00 \ldots .0\rangle_{\mathrm{mol}} \leftrightarrow \frac{1}{\sqrt{N}}|0\rangle_{\mathrm{Cav}} \sum_{l}\left|00 \ldots 1_{l \ldots 0}\right\rangle_{\mathrm{mol}}$
'Absorption’ not surprising:
N spins absorb N times better
Reverse process also enhanced!

Rabl, DeMille, Doyle, Lukin, Schoelkopf, and Zoller, Phys. Rev. Lett. 97, 033003 (2006)

Collective enhancement

$|1\rangle_{\mathrm{Cav}}|00 \ldots 0\rangle_{\mathrm{mol}} \leftrightarrow \frac{1}{\sqrt{N}}|0\rangle_{\mathrm{Cav}} \sum_{l}\left|00 \ldots 1_{l \ldots 0}\right\rangle_{\mathrm{mol}}$
'Absorption' not surprising: N spins absorb N times better Reverse process also enhanced!

Coupling to collective excitation in ensemble possible Rabl, DeMille, Doyle, Lukin, Schoelkopf, and Zoller, Phys. Rev. Lett. 97, 033003 (2006)

Coupling two molecules

André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Coupling two molecules

Cavity

Molecule I
Molecule 2

André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Coupling two molecules

Molecule I

Cavity

Molecule 2

André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Coupling two molecules

Cavity

Molecule I

Molecule 2

André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Coupling two molecules

Cavity

Molecule I

Molecule 2

André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Coupling two molecules

Cavity

Molecule I

Molecule 2

Coupling: $\quad g_{\text {eff }}=\frac{g^{2}}{\delta}$
Decoherence: $\quad \gamma_{\mathrm{eff}}=\frac{g^{2}}{\delta^{2}} \kappa$

André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Coupling two molecules

Cavity

Molecule I

Molecule 2

Coupling: $\quad g_{\text {eff }}=\frac{g^{2}}{\delta}$
Decoherence: $\quad \gamma_{\mathrm{eff}}=\frac{g^{2}}{\delta^{2}} \kappa$

Can connect two molecules through cavity

André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

Coupling two molecules

Cavity

Molecule I

Molecule 2

Coupling: $\quad g_{\text {eff }}=\frac{g^{2}}{\delta}$
Decoherence: $\quad \gamma_{\mathrm{eff}}=\frac{g^{2}}{\delta^{2}} \kappa$
Can connect two molecules through cavity
Cooling and trapping still challenging
André, DeMille, Doyle, Lukin, Maxwell, Rabl, Schoelkopf and Zoller, Nature Physics 2, 636 (2006)

A continuous transition

Quantum optics

Atoms
NV-centers

Self assembled quantum dots

Super
Conductors
Solid state
quantum dots

A continuous transition

Quantum optics

Solid state
Super
Conductors

Ions Molecules
Self assembled quantum dots

Electrically defined

quantum dots

NV centers in diamond

Jelezko, Wrachtrup et al., Stuttgart

NV centers in diamond

Jelezko, Wrachtrup et al., Stuttgart

NV centers in diamond

Jelezko, Wrachtrup et al., Stuttgart

NV centers in diamond

Jelezko, Wrachtrup et al., Stuttgart

Properties of NV centers

It is solid - no need for trapping
Ground state coherence is good
Electron spin ~ ms
Nuclear spin ~ s (even at room temperature)
Optical transitions are decent strong inhomogeneous broadening phonon emission
selection rules not perfect
Coupling them is hard

Coupling to strip lines

Field energy: $\quad H \sim \int d^{3} r\left(E^{2}+B^{2}\right) \sim \hbar \omega$
Coupling: $g=B \mu_{B}=\mu_{B} \sqrt{\mu_{0} \hbar \omega / V} \sim 2 \pi 10-100 \mathrm{~Hz}$

Wesenberg, Ardavan, Briggs, Morton, Schoelkopf, Schuster, and Mølmer, PRL I 03, 070502 (2009) Imamoglu, PRL I 02, 083602 (2009)
Verdú, Zoubi, Koller, Majer, Ritsch, and J. Schmiedmayer, PRL I 03, 043603 (2009)

Coupling to strip lines

Field energy: $\quad H \sim \int d^{3} r\left(E^{2}+B^{2}\right) \sim \hbar \omega$
Coupling: $g=B \mu_{B}=\mu_{B} \sqrt{\mu_{0} \hbar \omega / V} \cdot \sqrt{N}$

Wesenberg, Ardavan, Briggs, Morton, Schoelkopf, Schuster, and Mølmer, PRL I 03, 070502 (2009) Imamoglu, PRL I 02, 083602 (2009)
Verdú, Zoubi, Koller, Majer, Ritsch, and J. Schmiedmayer, PRL I 03, 043603 (2009)

Coupling to strip lines

Field energy: $\quad H \sim \int d^{3} r\left(E^{2}+B^{2}\right) \sim \hbar \omega$
Coupling: $\quad g=B \mu_{B}=\mu_{B} \sqrt{\mu_{0} \hbar \omega / V} \cdot \sqrt{N}$

$$
=\mu_{B} \sqrt{\mu_{0} \hbar \omega n}
$$

Wesenberg, Ardavan, Briggs, Morton, Schoelkopf, Schuster, and Mølmer, PRL I 03, 070502 (2009) Imamoglu, PRL I 02, 083602 (2009)
Verdú, Zoubi, Koller, Majer, Ritsch, and J. Schmiedmayer, PRL I 03, 043603 (2009)

It works

Kubo, Ong, Bertet,Vion, Jacques, Zheng, Dréau, Roch, Auffeves, Jelezko, Wrachtrup, Barthe, Bergonzo, Esteve, Phys Rev Lett. I 05, I 40502 (20I0)

See also Sears, et al, Phys. Rev. Lett. I05, 14050I (2010) and R.Amsüss et al., Phys. Rev. Lett. I 07, 060502 (20I I)

Conclusion (3)

Hybrid systems may combine the best of two worlds
Stripline cavities is a promising solution
Polar molecules:
Can be coupled to ensemble
Can coupled individual
Need trapping and cooling
Magnetic Coupling to ensembles of spins work
Magnetic coupling to individual spin too weak
This is all very easy and we will have a working quantum computer soon

Conclusion (3)

Hybrid systems may combine the best of two worlds
Stripline cavities is a promising solution
Polar molecules:
Can be coupled to ensemble
Can coupled individual
Need trapping and cooling
Magnetic Coupling to ensembles of spins work
Magnetic coupling to individual spin too weak

We are making progress and maybe we will get somewhere

A different solution

Flux qubits

Mooij et al. Delft

Flux qubits

Current generate magnetic field

$$
\hat{B}=B(\vec{r})(|\circlearrowleft\rangle\langle\circlearrowleft|-|\circlearrowright\rangle\langle\circlearrowright|)
$$

Mooij et al. Delft

Flux qubits

Current generate magnetic field

$$
\hat{B}=B(\vec{r})(|\circlearrowleft\rangle\langle\circlearrowleft|-|\circlearrowright\rangle\langle\circlearrowright|)
$$

Mooij et al. Delft

Combining the two

Combining the two

Flux and NV resonant => resonant transfer between flux qubit and NV

Combining the two

Flux and NV resonant => resonant transfer between flux qubit and $N V$

$$
H=g_{e} \mu_{B} \vec{S} \cdot \hat{B}
$$

Combining the two

Flux and NV resonant => resonant transfer between flux qubit and NV

$$
H=g_{e} \mu_{B} \vec{S} \cdot \hat{B}
$$

Rotating wave approximation

$$
\begin{array}{cc}
H=g\left(\sigma_{-} \tau_{+}+\tau_{-} \sigma_{+}\right) & g \sim(2 \pi) 15 \mathrm{kHz} \\
& \text { (For existing flux qubit) }
\end{array}
$$

Coupling two NVs

Problem: Flux qubit decohere, $T_{2}, T_{1} \sim \mu s$

Coupling two NVs

Problem: Flux qubit decohere, $T_{2}, T_{1} \sim \mu s$

Coupling two NVs

Problem: Flux qubit decohere, $T_{2}, T_{1} \sim \mu s$
Can we couple two NVs through the Flux qubit?

Coupling two NVs

Flux
NV I
NV 2

Coupling two NVs

Flux
NV I

NV 2

Coupling two NVs

Flux
NV I
NV 2

Coupling two NVs

Flux
NV I

Coupling two NVs

Flux
NV I

Coupling: $\quad g_{\text {eff }}=\frac{g^{2}}{\delta}$

Coupling two NVs

Flux
NV I

Coupling: $\quad g_{\mathrm{eff}}=\frac{g^{2}}{\delta}$
Decoherence: $\gamma_{\text {eff }}=\frac{g^{2}}{\delta^{2} T_{2, \mathrm{FQ}}}$

Coupling two NVs

Flux
NV I

NV 2

Coupling: $\quad g_{\text {eff }}=\frac{g^{2}}{\delta}$
Decoherence: $\quad \gamma_{\mathrm{eff}}=\frac{g^{2}}{\delta^{2} T_{2, \mathrm{FQ}}}$
$\sqrt{\text { SWAP }}: \quad F \sim 99 \%$

Collective enhancement

What happens if there are N centers?

Collective enhancement

What happens if there are N centers?

Collective enhancement

What happens if there are N centers?

$$
H=g \tau_{-} \sum_{l} j_{+, l}+\text { H.C. }
$$

$|1\rangle_{\mathrm{FQ}}|00 \ldots 0\rangle_{\mathrm{NV}} \rightarrow \frac{1}{\sqrt{N}}|0\rangle_{\mathrm{FQ}} \sum_{l}\left|00 \ldots 1_{l} \ldots 0\right\rangle_{\mathrm{NV}}$

Collective enhancement

What happens if there are N centers?

$$
H=g \tau_{-} \sum_{l} j_{+, l}+\text { H.C. }
$$

$|1\rangle_{\mathrm{FQ}}|00 \ldots 0\rangle_{\mathrm{NV}} \rightarrow \frac{1}{\sqrt{N}}|0\rangle_{\mathrm{FQ}} \sum_{l}\left|00 \ldots 1_{l} \ldots 0\right\rangle_{\mathrm{NV}}$
Coupling enhanced by factor of \sqrt{N}

Collective enhancement

$I_{c}=0.5 \mu \mathrm{~A}$

Collective enhancement

Flux qubit decoherence (Theory")
*Makhlin, Schön, Shnirman, Rev. Mod. Phys. 73, 400 (200I)

Collective enhancement

$$
I_{c}=0.5 \mu \mathrm{~A}
$$

Flux qubit decoherence (Theory")

Coupling may exceed decoherence at realistic densities
*Makhlin, Schön, Shnirman, Rev. Mod. Phys. 73, 400 (200I)

Decoherence

${ }^{13} \mathrm{C}$: up to $200 \mathrm{MHz}=>$ Bad. Use isotopically pure ${ }^{12} \mathrm{C}$

Four different orientations of centers=>
Separate spectrally by magnetic field
${ }^{14} \mathrm{~N}: 2 \mathrm{MHz}$. Polarize or use only resonant

Dipole interactions with paramagnetic impurities
Less than flux-qubit if $n \lesssim 10^{18} \mathrm{~cm}^{3}$

This also works!

Quantum state transferred from flux qubit to NV centers and back

Pictures from: X. Zhu et al., Nature 478, 221 (2011)

Possible architectures

I. Bits stored in individual NVs. Each NV connected to light.
Two NVs connected through Flux qubits
2. Bits in super conducting circuit Ensemble of NVs used for long term storage NV ensemble used to connect to light
(long coherence time may allow recooling of flux)

Possible architectures

I. Bits stored in individual NVs. Each NV connected to light.
Two NVs connected through Flux qubits
2. Bits in super conducting circuit Ensemble of NVs used for long term storage NV ensemble used to connect to light
(long coherence time may allow recooling of flux)

Comparison to strip lines

Striplines can have higher couplings to ensembles than existing flux qubits

But

- Single atom operation are within reach
- May change by careful design of flux qubits
- Smaller area => more compact, more homogeneous fields
- Fewer atoms => spin echo less demanding

Outlook

Hybrid systems may combine the best of two worlds

NV centers can have strong coupling to flux qubits

Possible applications:
Couple individual NV center, e.g, for quantum repeaters Transfer flux qubit to ensemble of NV

Transfer to nuclear spin => very long coherence time (s) Possible interface between superconductors and light?
D. Marcos, M.Wubs, J. M.Taylor, R.Aguado, M. D. Lukin, and A. S. Sørensen, Phys. Rev. Lett. I05, 210501 (20I0).

Collaborators

Harvard:

Caspar van der Wal (now Groningen) Lillian Childress (now Yale)
Mikhail D. Lukin
Copenhagen:
Martijn Wubs (now DTU)
Madrid:
D. Marcos
R.Aguado

NIST, JQI

Jacob Taylor

Solid state quantum optics 2 :

 Extending to optical frequencies: Surface plasmons and single photon transistors

Anders S. Sørensen
Quantop, Danish Quantum Optics Center
Niels Bohr Institute, University of Copenhagen

Summary

The best realization of the model system of quantum optics - the Jaynes Cummings model

Conductors enables strong confinement of electric fields

Enables a strong coherent interaction

Extend to optical frequencies

Main motivation: quantum communication done with optical photons

Extend to optical frequencies

Main motivation: quantum communication done with optical photons

Quantum cryptography works!

Extend to optical frequencies

Main motivation: quantum communication done with optical photons

Quantum cryptography works!
For short distances (< 100 km)

Extend to optical frequencies

Main motivation: quantum communication done with optical photons

Quantum cryptography works!
For short distances (< 100 km)

Longer distances: requires that we store and process the information locally

Extend to optical frequencies

Main motivation: quantum communication done with optical photons

Quantum cryptography works!
For short distances (< 100 km)

Longer distances: requires that we store and process the information locally

We need light matter-matter quantum interface at optical frequencies

Connecting atoms and light

Connecting atoms and light

Ideally:
Sandoghdar

Rempe

Connecting atoms and light

Ideally:
Sandoghdar

Connecting atoms and light

Ideally:
Sandoghdar

Rempe

Connecting atoms and light

Ideally:
Sandoghdar

Hard

Rempe

Connecting atoms and light

Ideally:
Sandoghdar

Rempe

Easier

$$
\begin{gathered}
\text { \& } \\
\text { \& }
\end{gathered}
$$

Connecting atoms and light

Ideally:
Sandoghdar

Rempe

Easier

Connecting atoms and light

Ideally:
Sandoghdar

Rempe

Easier

$$
\begin{gathered}
\text { \& } \\
\text { \& } \\
\text { \& }
\end{gathered}
$$

Connecting atoms and light

Ideally:
Sandoghdar

Rempe

Easier

$$
\begin{aligned}
& \text { \& \& \& \& } \\
& \text { \& } \\
& \text { \& }
\end{aligned}
$$

But coupling to single atom makes it easier to process the information

Surface plasmons

Metallic wire: current carried by charges
Alternating current of frequency V :

R big: Signal runs on surface, $v \approx c, \Delta x \approx \lambda=c / v$
Perpendicular extension of field $\sim \Delta x \sim \lambda$

Describing the wire

Equations of motion: $\frac{d \lambda}{d t}=-\frac{d I}{d x} \quad l \frac{d I}{d t}=-c \frac{d \lambda}{d x}$
Wave equation:

$$
\frac{d^{2} I}{d t^{2}}=v^{2} \frac{d^{2} I}{d x^{2}} \quad v=\frac{1}{\sqrt{l c}}
$$

Small wire

Current carried by electrons, electrons have mass:
Energy per unit length: $u=\frac{1}{2} l I^{2} \quad+n \pi R^{2} \frac{1}{2} m v^{2}$

$$
\left.=\frac{1}{2} l_{\mathrm{eff}} I^{2} \quad \text { (using } I=n \pi R^{2} q v\right)
$$

Effective inductance: $l_{\text {eff }}=l+\frac{m}{n \pi R^{2} q^{2}} \propto \frac{1}{R^{2}} \quad($ small $R)$
Small $R=>$ strong confinement: $\Delta x \propto v \propto \frac{1}{\sqrt{l_{\text {eff }}}} \propto R$

Coupling atoms to wires

Atoms: any two level systems; real atom, quantum dot, color center, ...

Fermi's golden rule: $\gamma_{\text {plasmon }} \sim g^{2} \rho \propto \frac{1}{R^{3}}$
$g \sim \sqrt{\frac{1}{V}} \sim \frac{1}{R} \quad \rho \propto \frac{1}{v_{\text {group }}} \propto \frac{1}{R}$
Make wire thin => mainly decay to plasmon modes
D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, Phys. Rev. Lett 97, 053002 (2006).

Coupling atoms to wires

Atoms: any two level systems; real atom, quantum dot, color center, ...

Fermi's golden rule: $\gamma_{\text {plasmon }} \sim g^{2} \rho \propto \frac{1}{R^{3}}$
$g \sim \sqrt{\frac{1}{V}} \sim \frac{1}{R} \quad \rho \propto \frac{1}{v_{\text {group }}} \propto \frac{1}{R}$
Make wire thin => mainly decay to plasmon modes
D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, Phys. Rev. Lett 97, 053002 (2006).

The full theory

Description of metal: negative (and imaginary) ϵ
E.g. free electron model

$$
\epsilon_{0}(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega \gamma_{p}}
$$

The full theory

Description of metal: negative (and imaginary) ϵ
E.g. free electron model

$$
\epsilon_{0}(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega \gamma_{p}}
$$

Ought to quantize field around wire

The full theory

 *Description of metal: negative (and imaginary) ϵ
E.g. free electron model

$$
\epsilon_{0}(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega \gamma_{p}}
$$

Ought to quantize field around wire
Complications: absorption, dispersion, ϵ negative

The full theory

 3Description of metal: negative (and imaginary) ϵ
E.g. free electron model

$$
\epsilon_{0}(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega \gamma_{p}}
$$

Ought to quantize field around wire
Complications: absorption, dispersion, ϵ negative
Ex. $H \sim \int d^{3} r \epsilon E^{2} \quad$ don't work

Quantum vs. classical theory

Ex: Spontaneous emission

Dipole moment vanish
$\langle\hat{\vec{d}}\rangle=0$
No electric field

$$
\vec{E}(\vec{r})=G(\vec{r})\langle\hat{\vec{d}}\rangle=0
$$

=> No radiation

Quantum vs. classical theory

Ex: Spontaneous emission

Dipole moment vanish
No electric field

$$
\vec{E}(\vec{r})=G(\vec{r})\langle\hat{\vec{d}}\rangle=0
$$

=> No radiation

Quantize: $\quad \hat{\vec{E}}(\vec{r})=G(\vec{r}) d \sigma_{-}$

$$
\hat{\vec{E}}^{\dagger} \hat{\vec{E}}(\vec{r})=G(\vec{r})^{2} d^{2} \sigma_{+} \sigma_{-} \sim|e\rangle\langle e|
$$

Classical spontaneous emission

Harmonic oscillator with random phase

Dipole moment vanish

$$
\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0
$$

Square of dipole does not

$$
\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{e}^{\mathrm{i} \omega \tau} \neq 0
$$

Radiation as before $\quad\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}$

Classical spontaneous emission

Harmonic oscillator with random phase
Dipole moment vanish

$$
\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0
$$

Square of dipole does not

$$
\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{e}^{\mathrm{i} \omega \tau} \neq 0
$$

Radiation as before $\quad\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}$

Bohr (1913): we need to do something to prevent atoms from radiating

Classical spontaneous emission

Harmonic oscillator with random phase
Dipole moment vanish

$$
\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0
$$

Square of dipole does not

$$
\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{e}^{\mathrm{i} \omega \tau} \neq 0
$$

Radiation as before

$$
\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}
$$

Bohr (19|3): we need to do something to prevent atoms from radiating
Quantum effects
Ground state do not radiate even though

$$
\langle\hat{\vec{d}}(t+\tau) \hat{\vec{d}}(t)\rangle \neq 0
$$

Classical spontaneous emission

Harmonic oscillator with random phase
Dipole moment vanish

$$
\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0
$$

Square of dipole does not

$$
\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{e}^{\mathrm{i} \omega \tau} \neq 0
$$

Radiation as before

$$
\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}
$$

Bohr (I9|3): we need to do something to prevent atoms from radiating
Quantum effects
Ground state do not radiate even though

$$
\langle\hat{\vec{d}}(t+\tau) \hat{\vec{d}}(t)\rangle \neq 0
$$

Rabi oscillation: phase lost during excitation

Classical spontaneous emission

Replace two level system by Harmonic oscillator

$$
H=\sum_{k} g_{k} \sigma_{-} a_{k}^{\dagger}+H . C .
$$

Classical spontaneous emission

Replace two level system by Harmonic oscillator

$$
H=\sum_{k} g_{k} \sigma_{-} a_{k}^{\dagger}+H . C .
$$

Classical spontaneous emission

Replace two level system by Harmonic oscillator

$$
H=\sum_{k} g_{k} \sigma_{-} a_{k}^{\dagger}+H . C . \rightarrow \sum_{k} g_{k} b a_{k}^{\dagger}+H . C . \quad\left\{\begin{array}{l}
-\infty
\end{array}|e\rangle\right.
$$

Classical spontaneous emission

Replace two level system by Harmonic oscillator

$$
H=\sum_{k} g_{k} \sigma_{-} a_{k}^{\dagger}+H . C . \rightarrow \sum_{k} g_{k} b a_{k}^{\dagger}+H . C . \quad\left\{\begin{array}{l}
- \\
\end{array} e\right\rangle
$$

Coupled harmonic oscillators => classical and quantum the same

Classical spontaneous emission

Replace two level system by Harmonic oscillator

$$
H=\sum_{k} g_{k} \sigma_{-} a_{k}^{\dagger}+H . C . \rightarrow \sum_{k} g_{k} b a_{k}^{\dagger}+H . C . \quad\left\{\begin{array}{l}
- \\
\end{array} e\right\rangle
$$

Coupled harmonic oscillators => classical and quantum the same
Heisenberg equations of motion $=$ Hamilton equations with hats

Classical spontaneous emission

Replace two level system by Harmonic oscillator

$$
H=\sum_{k} g_{k} \sigma_{-} a_{k}^{\dagger}+H . C . \rightarrow \sum_{k} g_{k} b a_{k}^{\dagger}+H . C .
$$

Coupled harmonic oscillators => classical and quantum the same
Heisenberg equations of motion $=$ Hamilton equations with hats

$$
\begin{aligned}
\frac{\partial q}{\partial t} & =p \\
\frac{\partial p}{\partial t} & =-\omega^{2} q
\end{aligned}
$$

Classical spontaneous emission

Replace two level system by Harmonic oscillator

$$
H=\sum_{k} g_{k} \sigma_{-} a_{k}^{\dagger}+H . C . \rightarrow \sum_{k} g_{k} b a_{k}^{\dagger}+H . C .
$$

Coupled harmonic oscillators => classical and quantum the same
Heisenberg equations of motion $=$ Hamilton equations with hats

$$
\begin{aligned}
\frac{\partial q}{\partial t} & =p & \frac{\partial \hat{q}}{\partial t} & =\hat{p} \\
\frac{\partial p}{\partial t} & =-\omega^{2} q & \frac{\partial \hat{p}}{\partial t} & =-\omega^{2} \hat{q}
\end{aligned}
$$

Jaynes Cummings Spectroscopy

ω_{d}
L. S. Bishop, R. J. Schoelkopf et al, Nat. Phys. 5, 105 (2009)

Classical spontaneous emission

(Classical) Interaction Hamiltonian

$$
H=d^{-} E^{+}+E^{-} d^{+}
$$

Equations of motion

$$
\begin{gathered}
\frac{\partial d^{+}}{\partial t} \sim E^{+}(\vec{r}=0) \\
\frac{\partial E^{+}(\vec{r})}{\partial t} \sim d^{+} \delta(\vec{r})
\end{gathered}
$$

Classical spontaneous emission

(Classical) Interaction Hamiltonian

$$
H=d^{-} E^{+}+E^{-} d^{+}
$$

Equations of motion

$$
\begin{aligned}
& \frac{\partial d^{+}}{\partial t} \sim E^{+}(\vec{r}=0) \\
& \frac{\partial E^{+}(\vec{r})}{\partial t} \sim d^{+} \delta(\vec{r}) \quad \Rightarrow \quad E^{+}(\vec{r})=E_{0}^{+}(\vec{r})+G(\vec{r}, 0) d^{+}
\end{aligned}
$$

Classical spontaneous emission

(Classical) Interaction Hamiltonian

$$
H=d^{-} E^{+}+E^{-} d^{+}
$$

Equations of motion

$$
\begin{aligned}
& \frac{\partial d^{+}}{\partial t} \sim E^{+}(\vec{r}=0) \\
& \frac{\partial E^{+}(\vec{r})}{\partial t} \sim d^{+} \delta(\vec{r}) \quad \Rightarrow \quad E^{+}(\vec{r})=E_{0}^{+}(\vec{r})+G(\vec{r}, 0) d^{+}
\end{aligned}
$$

Outcome:

$$
\begin{aligned}
& \frac{\partial d^{+}}{\partial t}=(-\gamma+i \delta \omega) d^{+} \\
& \gamma=\frac{2 \omega_{0}^{2} d_{0}^{2}}{\hbar \epsilon_{0} c^{2}} \operatorname{Im}\left[G\left(\vec{r}=0, \vec{r}=0, \omega_{A}\right)\right]
\end{aligned}
$$

The simpler calculation

Nothing quantum about spontaneous emission

The simpler calculation

 sesNothing quantum about spontaneous emission
The correct quantum theory is the one that gives the same as the classical theory

The simpler calculation

 sNothing quantum about spontaneous emission
The correct quantum theory is the one that gives the same as the classical theory

Use classical theory to calculate the Green's function

The simpler calculation

 *Nothing quantum about spontaneous emission
The correct quantum theory is the one that gives the same as the classical theory

Use classical theory to calculate the Green's function
Extract plasmon fraction

The simpler calculation

Nothing quantum about spontaneous emission
The correct quantum theory is the one that gives the same as the classical theory

Use classical theory to calculate the Green's function
Extract plasmon fraction
... lots of math later, you recover simple physics
Narrow wire: $\quad P_{\text {plasmon }} \sim 99.9 \%$

It works!

A.V.Akimov et al. (Harvard), Nature 450, 402 (2007). See also Y. Fedutik et al., Phys. Rev. Lett. 99, I36802 (2007) Ulrik Lund Andersen et al.

Single photon source

Silver wire

Single photon source

Silver wire

Single photon source

Silver wire

Optical fiber

Single photon source

Silver wire

Optical fiber

Single photon source

Silver wire

Optical fiber

$\mathrm{P}_{\text {out }} \sim 90 \%$
(limited by Ohmic loss)

Single photon source

Silver wire

Optical fiber

$\mathrm{P}_{\text {out }} \sim 90 \%$
(limited by Ohmic loss)
Also useful for quantum repeater or scaling quantum computer

Experiments with Q. dots (P. Lodahl)

Decay has three contributions:
I. Radiation
2. Surface loss
3. Plasmons

Map out each contribution by measuring $\gamma(z)$

Results

M. L.Andersen, S. Stobbe,A. S. Sørensen and P. Lodahl, Nat. Phys. 7, 2 I5 (20II).

Results

Explanation: quantum dots are not dots

M. L.Andersen, S. Stobbe, A. S. Sørensen and P. Lodahl, Nat. Phys. 7, 215 (20II).

Results

Explanation: quantum dots are not dots Interference of dipole and higher order moment M. L.Andersen, S. Stobbe, A. S. Sørensen and P. Lodahl, Nat. Phys. 7, 2 I5 (20II).

Results

Explanation: quantum dots are not dots Interference of dipole and higher order moment M. L.Andersen, S. Stobbe, A. S. Sørensen and P. Lodahl, Nat. Phys. 7, 215 (20II).

Conclusion (1)

- Strong confinement of fields near conductors permits strong coupling to atoms.
- Experiments have shown that the coupling works also optically
- Can be used to create single photon sources or connect quantum computers to light
- Remaining challenge: out coupling from plasmon to light

Non-linear optics

The Problem

Electronic transistor:

$I_{\text {CE }}$ controlled by a small signal on B

Can we do the same with light?

Problem: nonlinear process => requires interaction between photons

Non-linear optics

Atoms:
$-\quad|e\rangle$

Non-linear optics

Atoms:

Non-linear optics

Feynman diagram: M
Atoms:

Non-linear optics

Atoms:

$=|g\rangle$

Non-linear optics

Feynman diagram:

Atoms:

$0000 \mathrm{\sim}$

$$
-\quad|g\rangle
$$

Non-linear optics

Atoms:

$0000 \mathrm{\sim}$

$$
-\quad|g\rangle
$$

Strong non-linear interaction requires strong interaction between single photon and single atoms => surface plasmons

Λ-type atoms

Assume that atoms have structure:

Plasmon field

Not essential for non-linear effect, but:

- equations are easy to solve
- can achieve almost ideal operation

Scattering

Scattering

Atoms in $|a\rangle$: photons transmitted

Scattering

Atoms in $\mid g$): photons reflected

Scattering

Atoms in $\mid g)$: photons reflected

Reflection probability
(Silver, $\lambda=1 \mu \mathrm{~m}$)

Storing single photons

1. Look at emission

Storing single photons

1. Look at emission
2. Time reverse

Storing single photons

1. Look at emission
2. Time reverse

Storing single photons

1. Look at emission
2. Time reverse $\quad P_{\text {in }}=P_{\text {out }} \approx 90 \%$

Time reversal

Equation of motion ~ beam splitter relation

B

Time reversal

Equation of motion ~ beam splitter relation

Time reversal

Equation of motion \sim beam splitter relation

Time reversal

Equation of motion ~ beam splitter relation

Transistor

1. Store "gate photon" using classical field ($P \approx 90 \%$)
2. "Signal photons" transmitted if gate photon present
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007),

Transistor

1. Store "gate photon" using classical field ($P \approx 90 \%$)
2. "Signal photons" transmitted if gate photon present
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007),

Transistor

1. Store "gate photon" using classical field ($P \approx 90 \%$)
2. "Signal photons" transmitted if gate photon present
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007),

Transistor

1. Store "gate photon" using classical field ($P \approx 90 \%$)
2. "Signal photons" transmitted if gate photon present
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007),

Transistor

1. Store "gate photon" using classical field ($P \approx 90 \%$)
2. "Signal photons" transmitted if gate photon present
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007),

Transistor

1. Store "gate photon" using classical field ($P \approx 90 \%$)
2. "Signal photons" transmitted if gate photon present
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007),

Conclusion (2)

- Strong coupling enables single photon non-linear optics
- Can be used to create single photon transistor
- Only important parameter is the probability to collect a single photon from an atom
- Can be done for any system with good collection efficiency Ex. atoms in cavities, atoms surrounded by big lenses, atoms in specially designed nanostructures

