Continuous Local Probing of a Bose-Einstein Condensate

Andrew Wade, Jacob Sherson, Klaus Mølmer

$$
\text { Aug 25th - QNLO } 2012 \text { - Sandbjerg Estate }
$$

AARHUS
UNIVERSITET
INSTITUT FOR FYSIK OG ASTRONOMI

Lundbeck Foundation Theoretical Center 5 (2) for \& Quantum System Research

The System/Overview

I/ Measurement 2/ BEC
3/ Interaction 4/ Observations

The System/Overview

The System/Overview

Strong coherent state

I/ Measurement 2/ BEC
3/ Interaction
4/ Observations

The System/Overview

Strong coherent state

The System/Overview

Strong coherent state

The System/Overview

Strong coherent state

1/ Generalized Measurement

$$
\rho_{A} \otimes \rho_{B}
$$

$$
U_{A B} \rho_{A} \otimes \rho_{B} U_{A B}^{\dagger}
$$

$$
\rho_{A}^{\prime \prime}=\frac{M_{\mu} \rho_{A} M_{\mu}^{\dagger}}{\operatorname{Tr}_{A}\left[\rho_{A} M_{\mu}^{\dagger} M_{\mu}\right]}
$$

1/ Treatment of Light

2/ Bose-Einstein Condensation

Maxwell-Boltzmann

2/ BEC - Hamiltonian

Second quantization

$$
\begin{array}{c|c}
\hat{H}=\int d \mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})+\frac{g}{2} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r})\right] \hat{\psi}(\mathbf{r}) \\
{\left[\hat{a}, \hat{a}^{\dagger}\right]=1} & {\left[\hat{\psi}(\mathbf{r}), \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} \\
|n\rangle=\frac{1}{\sqrt{n!}}\left(\hat{a}^{\dagger}\right)^{n}|0\rangle & \left|\phi_{n}\right\rangle=\frac{1}{\sqrt{n!}}\left[\int d \mathbf{r} \phi(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r})\right]^{n} \\
\hdashline\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle=n & \left\langle\hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r})\right\rangle=n(\mathbf{r}) \\
\hdashline \hat{a} \approx \alpha & \hat{\psi}(\mathbf{r}) \approx \psi(\mathbf{r})
\end{array}
$$

2/ BEC - GPE

Gross-Pitaevskii Equation

$$
i \hbar \frac{d \psi(\mathbf{r}, t)}{d t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})+\frac{g}{2}|\psi(\mathbf{r}, t)|^{2}\right] \psi(\mathbf{r}, t)
$$

Fiber optics:
Self-Phase Modulation Four-Wave Mixing
Second Harmonic Generation

2/ BEC - Beyond GPE

Bogoliubov Approximation

$$
\begin{gathered}
\hat{\psi}(\mathbf{r}) \approx \psi(\mathbf{r})+\delta \hat{\psi}(\mathbf{r}) \\
\hat{a}_{j} \approx \alpha+\delta \hat{a}_{j}
\end{gathered}
$$

Hamiltonian to second order in $\delta \hat{\psi}(\mathbf{r})$

First order vanishes for GPE solution

$$
\delta \hat{\psi}(\mathbf{r})=\sum_{j \neq 0}\left[u_{j}(\mathbf{r}) \hat{\alpha}_{j}-v_{j}^{*}(\mathbf{r}) \hat{\alpha}_{j}^{\dagger}\right] \quad\left[\hat{\alpha}_{j}, \hat{\alpha}_{j}^{\dagger}\right]=1
$$

Bogoliubov Transformation diagonalizes Hamiltonian

2/ BEC - Beyond GPE

Well what did that mean?

$$
\hat{K}=E_{0}+\sum_{j \neq 0} E_{j} \hat{\alpha}_{j}^{\dagger} \hat{\alpha}_{j}
$$

We have reformulated the problem in terms of noninteracting quasi-particles.

Quasi-particles represent collective excitations, unless

$$
g=0 \quad \text { or } \quad E_{j} \gg 0
$$

Quasi-particles = Real particles

2/ BEC - Beyond GPE

Uniform gas $(V(\mathbf{r})=0)$: low energy excitations are phonons

$$
E(p)=c p \quad c=\sqrt{\frac{g n}{m}}
$$

Harmonic trap:

$$
\begin{gathered}
V(\mathbf{r})=\frac{m}{2}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right) \\
n(\mathbf{r}, t) \approx \psi(\mathbf{r})^{2}+\psi(\mathbf{r})\left\langle\delta \hat{\psi}(\mathbf{r})+\delta \hat{\psi}^{\dagger}(\mathbf{r})\right\rangle \\
= \\
=\psi(\mathbf{r})^{2}+2 \psi(\mathbf{r}) \sum_{j \neq 0} f_{j}^{-}(\mathbf{r})\left\langle\hat{x}_{j}\right\rangle \\
\hat{x}_{j}=\frac{1}{\sqrt{2}}\left(\hat{\alpha}_{j}+\hat{\alpha}_{j}^{\dagger}\right)
\end{gathered}
$$

2/ BEC - Beyond GPE

Uniform gas $(V(\mathbf{r})=0)$: low energy excitations are phonons

$$
E(p)=c p \quad c=\sqrt{\frac{g n}{m}}
$$

Harmonic trap:

$$
\begin{gathered}
V(\mathbf{r})=\frac{m}{2}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right) \\
n(\mathbf{r}, t) \approx \psi(\mathbf{r})^{2}+\psi(\mathbf{r})\left\langle\delta \hat{\psi}(\mathbf{r})+\delta \hat{\psi}^{\dagger}(\mathbf{r})\right\rangle \\
=\psi(\mathbf{r})^{2}+2 \psi(\mathbf{r}) \sum_{j \neq 0} f_{j}^{-}(\mathbf{r})\left\langle\hat{x}_{j}\right\rangle \\
\hat{x}_{j}=\frac{1}{\sqrt{2}}\left(\hat{\alpha}_{j}+\hat{\alpha}_{j}^{\dagger}\right)
\end{gathered}
$$

3/ The Interaction

large detuning

$$
\hat{H}_{I} \propto \sum_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j} \int_{D_{j}} \hat{\psi}^{\dagger}(z) \hat{\psi}(z) d z
$$

$\hat{x}_{p h, j}$
$\hat{p}_{p h, j}$
$\hat{a}_{j}^{\dagger} \hat{a}_{j} \approx|\alpha|^{2}+\beta \hat{x}_{p h, j} \quad \hat{\psi}^{\dagger}(z) \hat{\psi}(z) \approx \psi(\mathbf{r})^{2}+2 \psi(\mathbf{r}) \sum_{j \neq 0} f_{j}^{-}(\mathbf{r}) \hat{x}_{j}$

$$
\hat{H}_{I} \propto \sum_{j} \hat{x}_{p h, j}\left(\hbar G_{j, 0}+\sum_{k \neq 0} \hbar G_{j, k} \hat{x}_{k}\right)
$$

4/ Toy Example

$$
\hat{H}_{I} \propto \sum_{j} \hat{x}_{p h, j}\left(\hbar G_{j, 0}+\sum_{k \neq 0} \hbar G_{j, k} \hat{x}_{k}\right)
$$

The End

$$
\hat{H}_{I}^{T} \propto \sum_{j} \hat{x}_{p h, j}\left(\hbar G_{j, 0}+\sum_{k \neq 0} \hbar G_{j, k} \hat{x}_{k}\right)
$$

