

Coherent photon emission from quantum dots

Outline

- Motivation: high quality single photons for the interfacing of distributed spins.
- State of the art
- Main experimental results:
 - Highly coherent single photons
 - Tailored photon wavepackets
 - Indistinguishability of photon emission
 - Raman transitions in X- emission spectrum
- Conclusions and outlook

Why resonance fluorescence?

- Need high coherence single photons
- Non-resonant excitation:
 - Induces dephasing
 - Coherence with laser is lost
 - Spectral wandering
- RF allows transition selectivity
- Two regimes of RF:
 - High power: Mollow triplet
 - Low power: Coherent scattering

Why resonance fluorescence?

- Need high coherence single photons
- Non-resonant excitation:
 - Induces dephasing
 - Coherence with laser is lost
 - Spectral wandering
- RF allows transition selectivity
- Two regimes of RF:
 - High power: Mollow triplet
 - Low power: Coherent scattering

Level structures in QDs

- |Y> X0 |X> |vac>
- Easy to isolate 2 level system
- Environment fluctuations don't affect ground state

- Can use spin ground states as a qubit
- Electron susceptible to nuclear spin fluctuations

Highly coherent photons

C.Matthiesen, et al, Arxiv/1208.1689 (2012)

Highly coherent photons

C.Matthiesen, et al, Arxiv/1208.1689 (2012)

Tailoring wavepackets

C.Matthiesen, et al, Arxiv/1208.1689 (2012)

Tailoring wavepackets

C.Matthiesen, et al, Arxiv/1208.1689 (2012)

Tailoring wavepackets

X- spectrum

- Sidebands appear
 - \rightarrow not a simple 2 level system
- Splitting independent of:
 - Excitation power
 - Laser detuning

X- spectrum

Data are consistent with coherent Raman transitions due to in-plane nuclear magnetic field

B-field dependence

Applying an external B-field redefines the quantisation axis \rightarrow Selection rules apply

Conclusion and outlook

- We have shown that:
 - High quality single photon generation is feasible in a solidstate source
 - X- spectra shows interesting features attributed to hyperfine interactions
- Outlook:
 - Coherent control of electron spin after narrowing of the nuclear spin distribution
 - Spin photon entanglement

Quantum Dot Team

Jack Hansom, Clemens Matthiesen, Claire Le Gall, Martin Geller, Carsten HH Schulte, Mete Atatüre