Introduction to Quantum Metrology

Konrad Banaszek Wydział Fizyki, Uniwersytet Warszawski

Summer School on Quantum and Nonlinear Optics Sørup Herregaard 12.06.2015

OF WARSAW

Quantum picture

Photocount number difference:

$$n_{-} = n_a - n_b$$

Shot noise

To identify a phase shift $N\delta\phi\gtrsim\sqrt{N}$

hence phase resolution

Fisher information

$$\mathsf{F}(\phi) = \sum_{r} p(r|\phi) \left(\frac{\partial}{\partial \phi} \ln p(r|\phi)\right)^{2}$$

Cramér-Rao bound: for unbiased estimators

Proof of the Cramér-Rao bound

Start from the Cauchy-Schwarz inequality:

$$\left(\sum_{r} A_{r}^{2}\right) \left(\sum_{r} B_{r}^{2}\right) \ge \left(\sum_{r} A_{r} B_{r}\right)^{2}$$

Take:

$$A_r = \sqrt{p(r|\phi)} [\Phi(r) - \phi]$$
$$B_r = \frac{1}{\sqrt{p(r|\phi)}} \frac{\partial}{\partial \phi} p(r|\phi)$$

and use on the right hand side the *unbiasedness* condition:

 $\sum p(r|\phi)\Phi(r) = \phi$

For statistically independent variables $p(r_a, r_b | \phi) = p(r_a | \phi) p(r_b | \phi)$

Fisher information is additive:

$$\mathsf{F}(\phi) = \mathsf{F}_a(\phi) + \mathsf{F}_b(\phi)$$

One photon sent into the Mach-Zehnder interferometer $\mathsf{F}_1(\phi) = 1$

Hence for N independently used photons $F_N(\phi) = N$ and precision is bounded by *shot noise limit*:

$$\Delta ilde{\phi} \geq rac{1}{\sqrt{N}}$$

Interferometer with photon pairs

Two-photon interference

&

Probability amplitudes:

Only if photons are indistinguishable!

1

Two-photon interferometry

Fringe spacing

Two photons sent one-by one: F = 2

Two-photon interference: F = 4

Second harmonic generation

P.A. Franken et al., Phys. Rev. Lett. 7, 118 (1961)

34 35 36 37 38 39 40 **45 50 55 60 65 70 75 80**

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 A is very large due to halation.

Three-wave mixing

Sum frequency generation:

Parametric down-conversion:

UNIVERSITY OF WARSAW

Two-photon interference

C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)

Experiment

J. G. Rarity et al., Phys. Rev. Lett. 65, 1348 (1990)

Photon wavelength 826.8 nm

General picture

 $|\partial_{\phi}\psi
angle\delta\phi$

Local (inifinitesimal) phase estimation:

 $|\psi(\phi)
angle$

 $|\psi(\phi + \delta\phi)\rangle \approx |\psi(\phi)\rangle + |\partial_{\phi}\psi\rangle\delta\phi$

Quantum Fisher information

Probability of outcome r: $p(r|\phi) = \langle \psi_{\phi} | \hat{M}_r | \psi_{\phi} \rangle$

For any measurement

$$\mathsf{F}(\phi) \leq \mathsf{F}_Q(\phi)$$

where quantum Fisher information

$${\sf F}_Q(\phi)=4ig(\langle\partial_\phi\psi|\partial_\phi\psi
angle-|\langle\psi(\phi)|\partial_\phi\psi
angle|^2ig)$$
 depends only on $|\psi(\phi)
angle$

Uncertainty relation

Phase measurement: $|\psi(\phi)
angle={
m e}^{{
m i}\widehat{n}_s\phi}|\psi
angle$

Explicit expression $F_Q(\phi) = 4(\Delta n_s)^2$ yields:

$$\Delta ilde{\phi} \Delta n_s \geq rac{1}{2}$$

- Δn_s photon number uncertainty in the sensing arm
 - $\Delta \widetilde{\phi}\,$ precision of phase estimation

Task: maximize Δn_s for a fixed total number of N photons.

Optimal precision

Total N photons:

N independently used photons (shot noise limit):

Maximum possible Δn_s defines the Heisenberg limit:

J. J. Bollinger et al., Phys. Rev. A 54, R4649 (1996).

N00N state

Optimal N photon state:

$$|\Psi_N\rangle = \frac{1}{\sqrt{2}}(|N0\rangle - |0N\rangle)$$
$$\longrightarrow \frac{1}{\sqrt{2}}(e^{iN\phi}|N0\rangle - |0N\rangle)$$

Review: V. Giovannetti, S. Lloyd, and L. Maccone, Science **306**, 1330 (2004)

Attainable precision

U. Dorner, R. Demkowicz-Dobrzański *et al.*, Phys. Rev. Lett. **102**, 040403 (2009)

R. Demkowicz-Dobrzański, U. Dorner *et al.*, Phys. Rev. A **80**, 013825 (2009)

Two-photon states

$$\psi\rangle = \alpha |20\rangle + \beta |11\rangle + \gamma |02\rangle$$

No photon lost: $\eta\alpha|20\rangle+\sqrt{\eta}\beta|11\rangle+\gamma|02\rangle$

One photon lost:

 $\sqrt{2\eta(1-\eta)}\alpha|10
angle+\sqrt{1-\eta}\beta|01
angle$

Two photons lost:

 $(1-\eta)lpha|00
angle$

UNIVERSITY Of WARSAW

*

Experimental scheme

UNIVERSITY Of Warsaw

Interference pattern

UNIVERSITY Of Warsaw

Phase estimate distribution

Phase estimate uncertainty

M. Kacprowicz et al., Nature Photon. **4**, 357 (2010)

K. Banaszek, R. Demkowicz-Dobrzański, I.A. Walmsley, Nature Photon. 3, 673 (2009)

Classical simulation

Estimation precision

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, Nature Comm. 3, 1063 (2012)

Asymptotic bounds

Table 1 | Precision bounds of the most relevant models in quantum-enhanced metrology.

Channel considered	Classical simulation	Channel extension
Depolarisation	$\sqrt{(1-\eta)(1+3\eta)/4\eta^2}$	$\sqrt{(1-\eta)(1+2\eta)/2\eta^2}$
Dephasing	$\sqrt{1-\eta^2/\eta}$	$\sqrt{1-\eta^2/\eta}$
Spontaneous emission	NA	$(1/2)\sqrt{1-\eta/\eta}$
Lossy interferometer	NA	$\sqrt{1-\eta/\eta}$
NA. not available.		

The bounds are derived using the two methods discussed in the paper. All the bounds are of the form $\Delta \varphi_{N} \geq (\text{const}/\sqrt{N})$, where constant factors are given in the table. Classical simulation method does not provide bounds for spontaneous emission and lossy interferometer, as these channels are φ -extremal. For the dephasing model, it surprisingly yields an equally tight bound as the more powerful channel extension method.

Undefined photon number

When no external phase reference is used:

$$\widehat{\varrho} = \bigoplus_{N=0}^{\infty} p_n \widehat{\varrho}_N$$

Convexity of Fisher information:

$$\mathsf{F}(\hat{\varrho}) \leq \sum_{N=0}^{\infty} p_n \mathsf{F}(\hat{\varrho}_N)$$

Using the bound for a fixed photon number:

$$\leq \sum_{N=0}^{\infty} p_n \cdot \operatorname{const} \cdot N = \operatorname{const} \cdot \langle N \rangle$$

Two-arm losses

*Assuming no external phase reference is available

Shot noise revisited

Quadrature uncertainties

Gravitational wave detection

J.Abadie et al. (The LIGO Scientific Collaboration), Nature Phys. 7, 962 (2011)

OF WARSAW

Theoretical model

When most power comes from the laser beam

 $\Delta \tilde{\phi} \approx \sqrt{\frac{1 - \eta + 2\eta (\Delta p)^2}{n \langle N \rangle}}$

Noise analysis

Overall interferometer transmission $\etapprox 62\%$

R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel, Phys. Rev. A **88**, 041802(R) (2013)

OF WARSAW

Optimality of squeezed states

R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel, Phys. Rev. A **88**, 041802(R) (2013)

Operating point

probability $p_b(\phi) = p_a(\phi)$

 \square

Uncertainty of phase estimated from (n_a, n_b)

Residual distinguishability

Imaging experiment

Joint output position distribution

Imaging experiment

Joint output position distribution

Phase shift estimation

Fisher information

$$F(\phi) = F_c(\phi) + \frac{1}{p_d(\phi)} \left(\frac{\partial p_d}{\partial \phi}\right)^2$$

Contribution from spatial distribution:

$$F_{c}(\phi) = \int \mathrm{d}\xi \frac{1}{p_{c}(\xi|\phi)} \left(\frac{\partial}{\partial\phi} p_{c}(\xi|\phi)\right)^{2}$$

Local estimator:

$$\Phi[f] = \phi_0 + \frac{1}{F_c(\phi_0)} \int d\xi \frac{f(\xi)}{p_c(\xi|\phi_0)} \frac{\partial p_c(\xi|\phi)}{\partial \phi} \bigg|_{\phi=\phi_0}$$

UNIVERSITY OF WARSAW

Acknowledgements

Radosław Chrapkiewicz Rafał Demkowicz-Dobrzański Michał Jachura Marcin Jarzyna Jan Kołodyński Wojciech Wasilewski *Uniwersytet Warszawski*

Marcin Kacprowicz Uniwersytet Mikołaja Kopernika w Toruniu Uwe Dorner Brian Smith Jeff Lundeen Ian A. Walmsley University of Oxford

Mădălin Guță University of Nottingham

> Roman Schnabel Universität Hamburg

Fundacja na rzecz Nauki Polskiej

FNP

UNIA EUROPEJSKA

EUROPEJSKI FUNDUSZ

ROZWOJU REGIONALNEGO

