Cavity Optomechanics

Florian Marquardt

University of Erlangen-Nuremberg, and Max-Planck-Institute for the Science of Light

Radiation forces

baryon-photon fluid: sound speed $\,c/\sqrt{3}$

Radiation pressure

Radiation pressure

Nichols and Hull, 1901 Lebedev, 1901

A PRELIMINARY COMMUNICATION ON THE PRESSURE OF HEAT AND LIGHT RADIATION.

BY E. F. NICHOLS AND G. F. HULL.

MAXWELL,¹ dealing mathematically with the stresses in an electro-magnetic field, reached the conclusion that "in a medium in which waves are propagated there is a pressure normal to the waves and numerically equal to the energy in unit volume."

Nichols and Hull, Physical Review **13**, 307 (1901)

The New York Times

After Silences and Setbacks, the LightSail Spacecraft Is Revived, Deploying Its Solar Sail

By KENNETH CHANG JUNE 7, 2015

The technology, <u>using sunlight to traverse the solar system</u> in the same way mariners once crossed oceans in sailing ships, is not a new idea, but it has not been widely used. While particles of light impart only a smidgen of momentum, the force is continuous and provides propulsion without fuel.

Radiation forces

Trapping and cooling

- Optical tweezers
- Optical lattices

...but usually no back-action from motion onto light!

Optomechanical Hamiltonian

Optomechanical Hamiltonian

Optomechanical Hamiltonian

A bit of history

First cavity optomechanics experiments

Static bistability in an optical cavity experiment Dorsel, McCullen, Meystre, Vignes, Walther PRL 1983

Basic physics: dynamics

A zoo of devices

Optomechanical Hamiltonian

$\hat{H} = \hbar \omega_{\rm cav}(\hat{x})\hat{a}^{\dagger}\hat{a} + \hbar \omega_M \hat{b}^{\dagger}\hat{b} + \dots$

...any dielectric moving inside a cavity generates an optomechanical interaction!

The zoo of optomechanical (and analogous) systems

The zoo of optomechanical (and analogous) systems

Optomechanics: general outlook

Fundamental tests of quantum mechanics in a new regime: entanglement with 'macroscopic' objects, unconventional decoherence?

[e.g.: gravitationally induced?]

Mechanics as a 'bus' for connecting hybrid components: superconducting qubits, spins, photons, cold atoms,

Precision measurements

small displacements, masses, forces, and accelerations

Optomechanical circuits & arrays Exploit nonlinearities for classical and quantum information processing, storage, and amplification; study collective dynamics in arrays

Towards the quantum regime of mechanical motion

PHYSICS TODAY

The quantum mechanic's toolbox

Putting Mechanics into Quantum Mechanics

Nanoelectromechanical structures are starting to approach the ultimate quantum mechanical limits for detecting and exciting motion at the nanoscale. Nonclassical states of a mechanical resonator are also on the horizon.

Keith C. Schwab and Michael L. Roukes

verything moves! In a world dominated by electronic devices and instruments it is easy to forget that all measurements involve motion, whether it be the motion of electrons through a transistor, Cooper pairs or quasiparticles through a superconducting quantum interference device (SQUID), photons through an optical interferometer—or the simple displacement of a mechanical element

achieved to read out those devices, now bring us to the realm of quantum mechanical systems.

The quantum realm

What conditions are required to observe the quantum properties of a mechanical structure, and what can we learn when we encounter them? Such questions have received

Schwab and Roukes, Physics Today 2005

nano-electro-mechanical systems
 Superconducting qubit coupled to nanoresonator: Cleland & Martinis 2010

optomechanical systems

Laser-cooling towards the ground state

Classical dynamics

Equations of motion

Linearized optomechanics

$$\alpha(t) = \bar{\alpha} + \delta\alpha(t)$$

$$x(t) = \bar{x} + \delta x(t)$$

$$\Rightarrow \dots \Rightarrow$$
(solve for arbitrary $F_{\text{ext}}(\omega)$)
$$\delta x(\omega) = \frac{1}{m(\omega_M^2 - \omega^2) - im\omega\Gamma + \Sigma(\omega)} F_{\text{ext}}(\omega)$$

$$\delta\omega_M^2 = \frac{1}{m} \text{Re}\Sigma(\omega_M)$$

 $\gamma_{m\pi}^{\rm eff}(\omega)$

$$\Gamma_{\rm opt} = -\frac{1}{m\omega_M} {\rm Im}\Sigma(\omega_M)$$

1

Optomechanical frequency shift ("optical spring")) Effective optomechanical damping rate

Linearized dynamics

Quantum picture

Optomechanical Hamiltonian

Optomechanical Interaction: Nonlinear

$\hat{a}^{\dagger}\hat{a}(\hat{b}^{\dagger}+\hat{b})$

Converting photons into phonons

Converting photons into phonons

"Linearized" Optomechanical Hamiltonian

"laser-enhanced optomechanical coupling": $g=g_0\alpha$

$g_0 \sim \mathrm{Hz} - \mathrm{MHz}$

bare optomechanical coupling (geometry, etc.: fixed!) laser-driven cavity amplitude tuneable! **phase**!

 $\boldsymbol{\alpha}$

Mechanics & Optics

After linearization: two linearly coupled harmonic oscillators!

Different regimes

"The slopes of Optomechanics"

PAGANELLA 2125 mL RIFUGIO LA RODA

IFUG

Linear Optomechanics

PASSO S.ANTONIO

Displacement detection Optical Spring Cooling & Amplification Two-tone drive: "Optomechanically induced transparency" State transfer, pulsed operation Wavelength conversion Radiation Pressure Shot Noise Squeezing of Light Organization Squeezing of Mechanics Entanglement Precision measurements

Optomechanical Circuits

Bandstructure in arrays
Synchronization/patterns in arrays
Transport & pulses in arrays

Nonlinear Optomechanics

Self-induced mechanical oscillations
 Synchronization of oscillations
 Chaos

LAGO

Nonlinear Quantum Optomechanics

 Phonon number detection
 Phonon shot noise
 Photon blockade
 Optomechanical "which-way" experiment
 Nonclassical mechanical q. states
 Nonlinear OMIT
 Noncl. via Conditional Detection
 Single-photon sources
 Coupling to other two-level systems

Optomechanical wavelength conversion

optics to optics:

microwave/RF to optics:

Cleland 2013

Schliesser, Polzik 2014

Lehnert, Regal 2014

Detecting the phonon number

"Membrane in the middle" setup

Experiment (Harris group, Yale)

Mechanical frequency: $\omega_M = 2\pi \cdot 134 \text{ kHz}$ Mechanical quality factor: $Q = 10^6 \div 10^7$

Optomechanical cooling from **300K** to **7mK**

1200 Thompson, Zwickl, Jayich, Marquardt, Girvin, Harris, Nature 72, 452 (2008)

Towards Fock state detection of a macroscopic object

Towards Fock state detection of a macroscopic object

Towards Fock state detection of a macroscopic object

- Ideal single-sided cavity: Can observe **only** phase of reflected light, i.e. x²: good
- Two-sided cavity: Can **also** observe transmitted vs. reflected intensity: **linear** in x!

Miao, H., S. Danilishin, T. Corbitt, and Y. Chen, 2009, PRL 103, 100402

Sensing mechanical motion at the ultimate precision limit

Optical displacement detection

Thermal fluctuations of a harmonic oscillator

Classical equipartition theorem:

$$\frac{m\omega_M^2}{2} \langle x^2 \rangle = \frac{k_B T}{2} \Rightarrow \langle x^2 \rangle = \frac{k_B T}{m\omega_M^2}$$
extract temperature!

Direct time-resolved detection

Analyze fluctuation spectrum of x

Fluctuation spectrum

Fluctuation spectrum

$$\tilde{x}(\omega) = \frac{1}{\sqrt{\tau}} \int_{0}^{\tau} dt e^{i\omega t} x(t)$$

$$S_{xx}(\omega) \equiv \langle |\tilde{x}(\omega)|^{2} \rangle =$$

$$\frac{1}{\tau} \int_{0}^{\tau} dt_{1} \int_{0}^{\tau} dt_{2} e^{i\omega(t_{2}-t_{1})} \langle x(t_{2})x(t_{1}) \rangle$$

$$\approx \int_{-\infty}^{+\infty} dt e^{i\omega t} \langle x(t)x(0) \rangle$$
"Wiener-Khinchin theorem"
$$\langle |\tilde{x}(\omega)|^{2} \rangle \equiv S_{xx}(\omega)$$

area yields $\int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} S_{xx}(\omega) = \langle x^2 \rangle$

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

 $\left< \delta x \right> (\omega) = \chi_{xx}(\omega) F(\omega)$ susceptibility

$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \operatorname{Im}\chi_{xx}(\omega)$$
 (classical limit)

 ω_M

for the damped oscillator:

$$m\ddot{x} + m\omega_{M}^{2}x + m\Gamma\dot{x} = F$$

$$x(\omega) = \frac{1}{m(\omega_{M}^{2} - \omega^{2}) - im\Gamma\omega}F(\omega)$$

$$\chi_{xx}(\omega)$$

Displacement spectrum

T=300 K

Gigan et al., Nature 2006

Measurement noise

$$x_{\text{meas}}(t) = x(t) + x_{\text{noise}}(t)$$

Two contributions to $x_{noise}(t)$

- I. measurement imprecision laser beam (shot noise limit!)
- 2. measurement back-action:
- fluctuating force on system

noisy radiation pressure force

"Standard Quantum Limit"

Best case allowed by quantum mechanics:

 $S_{xx}^{(\text{meas})}(\omega) \ge 2 \cdot S_{xx}^{T=0}(\omega) \quad \text{``Standard quantum limit}_{(SQL) of displacement}$

...as if adding the zero-point fluctuations a second time: "adding half a photon"

Notes on the SQL

- "weak measurement": integrating the signal over time to suppress the noise
- trying to detect slowly varying "quadratures of motion": $\hat{x}(t) = \hat{X}_1 \cos(\omega_M t) + \hat{X}_2 \sin(\omega_M t)$ $\left[\hat{X}_1, \hat{X}_2\right] = 2x_{\text{ZPF}}^2$ Heisenberg is the reason for SQL! no limit for instantaneous measurement of x(t)!
- SQL means: detect $\hat{X}_{1,2}$ down to x_{ZPF} on a time scale $1/\Gamma$ Impressive: $x_{\text{ZPF}} \sim 10^{-15} m$!

Enforcing the SQL (Heisenberg) in a weak optical measurement

reflection phase shift: $\theta = 2kx$ (here: free space)

N photons arrive in time t

fluctuations: $\delta N = \sqrt{\text{Var}N} = \sqrt{\bar{N}}$

Poisson distribution for a coherent laser beam

I. Uncertainty in phase estimation:

$$\begin{split} \delta N \cdot \delta \theta &\geq \frac{1}{2} \quad \Rightarrow \quad \delta \theta \geq \frac{1}{2\sqrt{\bar{N}}} \quad \Rightarrow \quad \delta x = \frac{\delta \theta}{2k} \sim \frac{1}{2\sqrt{\bar{N}}2k} \\ \textbf{2. Fluctuating force: momentum transfer } \Delta p &= 2\hbar k \cdot N \\ \delta p &= \sqrt{\operatorname{Var}\Delta p} = 2\hbar k \sqrt{\bar{N}} \\ \text{Uncertainty product: } \delta x \delta p \geq \frac{\hbar}{2} \quad \text{Heisenberg} \end{split}$$