Cavity QED with quantum dots in microcavities

Martin van Exter, Morten Bakker,

Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB)

Universiteit Leiden

Cavity QED (= Quantum Electro Dynamics)

Now: Quantum dots (artificial atoms) & micropillar cavities

Semiconductor quantum dots in cavities

a) Photonic crystal cavityb) Microdisk cavity

c)-e) Micropillar cavities

Semiconductor quantum dots in cavities

c)-e) Micropillar cavities

Outline

- Motivation
- Introduction of system: Qdots & microcavities
- Various experiments:
 - 1. Resonant spectroscopy
 - 2. Hysteresis effects & charge memory
 - 3. Coherence measurements

Motivation

Quantum dots (artificial atoms) and micropillar cavities

Motivation

Quantum dots (artificial atoms) and micropillar cavities

InAs Quantum dots

Artificial atoms

Voltage control

Voltage control of charge and energy (through Stark effect)

Micropillar cavities

Small volume ($\sim 2\mu m^3$) and high $Q \sim 30k$, (Maximum Purcell factor ≈ 20)

Viewing the aperture

tapered oxidation aperture

Sample

1.5 mm

Setup

1. Resonant spectroscopy

1.Resonant spectroscopy

1. Resonant spectroscopy

QD-cavity coupling

QD-cavity coupling

Morten Bakker - Quantum Optics group - University of Leiden

Conclusion 1: QD-cavity coupling

Polarization resolved scans

Transitions are linearly polarized

Polarization resolved scans

Negative QD:

Transitions really circular polarized!

2. Modified lineshapes & hysteris at higher intensities

2. Modified lineshapes & hysteris at higher intensities

Hysteresis effects

Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization

C. Latta¹*, A. Högele¹*[†], Y. Zhao^{2†}, A. N. Vamivakas², P. Maletinsky¹, M. Kroner¹, J. Dreiser¹, I. Carusotto³, A. Badolato⁴, D. Schuh⁵, W. Wegscheider^{5†}, M. Atature² and A. Imamoglu^{1‡}

Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit

Kristiaan De Greve¹*, Peter L. McMahon¹, David Press¹, Thaddeus D. Ladd^{1,2†}, Dirk Bisping³, Christian Schneider³, Martin Kamp³, Lukas Worschech³, Sven Höfling^{1,3}, Alfred Forchel³ and Yoshihisa Yamamoto^{1,2}

Review: [Urbaszek et al. Rev. Mod. Phys. 2013]

Hysteresis effects

Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization

C. Latta¹*, A. Högele¹*[†], Y. Zhao^{2†}, A. N. Vamivakas², P. Maletinsky¹, M. Kroner¹, J. Dreiser¹, I. Carusotto³, A. Badolato⁴, D. Schuh⁵, W. Wegscheider^{5†}, M. Atature² and A. Imamoglu^{1‡}

But:

- Only on red side
- Independent of *B*-field, polarization,...
- Only blue shift!

Ultrafast coherent control and suppressed nuclear k of a single quantum dot hole qubit

reve¹*, Peter L. McMahon¹, David Press¹, Thaddeus D. Ladd^{1,2†}, Dirk Bisping³, eider³, Martin Kamp³, Lukas Worschech³, Sven Höfling^{1,3}, Alfred Forchel³ Yamamoto^{1,2}

Review: [Urbaszek et al. Rev. Mod. Phys. 2013]

Charges trapped behind oxide aperture

Resonant laser excites charges, trapped by aperture Electric field over QDs decreases

Hysteresis: red side

Input: QD blueshift when larger field in cavity

Hysteresis: red side

Input: QD blueshift when larger field in cavity

Morten Bakker - Quantum Optics group - University of Leiden

Model:

Hysteresis: blue side

Input: QD blueshift when larger field in cavity

Hysteresis: red side

Input: QD blueshift when larger field in cavity

Model:

QD dragging: on which time scale?

32

Measuring charge build up and decay

Probing charge build-up and decay

Charge buildup:

Charge decay:

Probing charge build-up and decay

Conclusion 2: Hysteresis & charge memory

- Hysteresis effects observed at higher power (> 10 pW)
- Slow dynamics: time scale ~ ms
- Intriguing power dependence: ~ P^{β} with $\beta \approx 0.35$
- Most likely cause: carriers trapped at oxide aperture

3. Coherence measurements

3. Coherence around neutral Qdot resonance < 1

3. Coherence around charged Qdot resonance < 0.05

3. Phase variations around resonance

Morten Bakker - Quantum Optics group - University of Leiden

Conclusion

0.74

Voltage (V)

0.68 -20

-10

Reflectivity 9.0 8.0

0.4

-20

-10

0

∆ Frequency (GHz)

10

10

- Quantum dot in microcavity = versatile quantum system
- Resonant spectroscopy 1.

Hysteresis effects & charge memory 2.

Decoherence directly observed 3.

0

∆Freq (GHz)

20

Reflectivity