Quantum Optics: when do we need it? Part 1: for optical field

Martin van Exter

Huygens – Kamerlingh Onnes Laboratory

Leiden University, Netherlands

Example 1: Young's double slit with single photons

Experiment can be described without quantum optics

Example 2: How to distinguish laser from lamp light?

spatial & spectral (color) filtering

- "One-photon" optical properties (average intensity):
 - <u>Temporal coherence</u> & optical spectrum
 - <u>Spatial coherence</u> & intensity profile

Claim: "One-photon" properties don't allow you to distinguish laser/lamp

• Correlation experiments between two detected photons are needed to distinguish different quantum states of light

'Statistical Optics' by J.W. Goodman

Single-mode vs. multi-mode quantum optics

Annihilation operator:
$$\hat{a}$$
 or \hat{a}_i
 $\begin{bmatrix} \hat{a}_i, \hat{a}_j \\ \end{bmatrix} \equiv \hat{a}_i \hat{a}_j \\ -\hat{a}_j \\ \hat{a}_i = \delta_{i,j}$
Annihilation operator: $\hat{a}(t)$ or $\hat{a}(\omega)$
 $\begin{pmatrix} \hat{a}(\omega_1), \hat{a}(\omega_2)^{\dagger} \end{pmatrix} = \delta(\omega_1 - \omega_2)$

- Single-mode = discrete mode in cavity (Chapter 5)
- Multi-mode = continuum of modes in free space (Ch. 6)

Textbooks often discuss discrete Q states of light

Intracavity field (discrete)

can be more quantum than output field

Output field (continuous) is affected by reflections of vacuum field/fluctuations

Theory for "single-mode" quantum optics

• Single discrete mode:

$$\left[\hat{a}, \hat{a}^{\dagger}\right] = \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = 1$$

1. Number states:

$$|\psi\rangle = |n_0\rangle \implies P_n = \delta_{n,n_0}$$

2. Coherent states:

$$|\psi\rangle = |\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \implies P_n = e^{-|\alpha|^2} \frac{|\alpha|^{2n}}{n!}$$
 (Poisson distribution)

3. Thermal light: $\rho = \overline{|\psi\rangle}\langle\psi| = \sum_{n=0}^{\infty} P_n |n\rangle\langle n|$ with $P_n \propto \exp\left(-n\frac{h\nu}{kT}\right)$ (Exponential distribution)

6 of 31

Three standard (single-mode) quantum states

"Multi-mode optics"

- Still single discrete transverse optical mode (fixed spatial structure)
- <u>Continuous</u> in frequency/time:

$$\left[\hat{a}(\omega),\hat{a}^{\dagger}(\omega')\right] = \delta(\omega - \omega')$$

• Temporal coherence:

$$g^{(1)}(\tau) = \frac{\left\langle E^{-}(t)E^{+}(t+\tau)\right\rangle}{\left\langle I(t)\right\rangle} \propto \left\langle \hat{a}^{\dagger}(t)\hat{a}(t+\tau)\right\rangle = \int I(\omega)\exp(-i\omega\tau)d\omega$$

• Intensity correlations:

$$g^{(2)}(\tau) = \frac{\left\langle I(t)I(t+\tau)\right\rangle}{\left\langle I(t)\right\rangle^2} \propto \left\langle \hat{a}^{\dagger}(t)\hat{a}^{\dagger}(t+\tau)\hat{a}(t)\hat{a}(t+\tau)\right\rangle$$

• Only for thermal light (Gaussian statistics):

$$g^{(2)}(\tau) = 1 + \left|g^{(1)}(\tau)\right|^2$$

8 of 31

When do you need quantum optics?

• Single-mode quantum optics

is rarely relevant in free-space optics experiments

- **Multi-mode quantum optics** needs field quantization for:
- 1. Direct observation of <u>intensity noise</u> (sensitive to loss)

2. <u>Photon-photon correlations (Hanbury Brown & Twiss)</u>

2b. Interference of two single photons (Hong, Ou & Mandel)

1. Semi-classical theory of photon detection

• Semi-classical = treat field classically & only quantize detector

$$P(t;t+dt) = \eta \cdot \frac{P(t)}{h\nu} \cdot dt$$

10 of 31

Classical description of intensity fluctuations

Thermal light exhibits fluctuations of both optical phase and intensity

M. Fox, Quantum Optics, Fig. 6.3

Shot noise in the detection of light

M. Fox, Quantum Optics, Figs. 5.10 & 5.12

12 of 31

Shot noise can only dominate when $V_{det} > 50 \text{ mV}$

 $V_{shot \ noise} > V_{electric \ noise} \Rightarrow V_{det} = R_L i > 2kT/q$ 50 mV @ 300K 13 of 31

Sub-Poissonian light

Franck-Hertz experiment: sub-shot noise intensity fluctuations

Fig. 5.14 of 'Quantum Optics' by M. Fox

Sub-Poissonian light

Electric current doesn't suffer from shot-noise

Experiment 1

V.+

LED

本 d1

Experiment 2

15 of 31

M. Fox, Quantum Optics, Fig. 5.15

Optical loss kills the sub-Poissonian character

Optical loss kills the sub-noise character

Optical loss introduces quantum noise, as it acts like beamsplitter

Quantum noise = Vacuum fluctuations

• Strength of the vacuum fluctuations depends on measurement:

$$\left\langle 0 \left| \hat{a}^{\dagger} \hat{a} \right| 0 \right\rangle = 0 \qquad \left\langle 0 \left| \frac{1}{2} \left(\hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right) \right| 0 \right\rangle = \frac{1}{2} \qquad \left\langle 0 \left| \hat{a} \hat{a}^{\dagger} \right| 0 \right\rangle = 1 \right.$$

- Vacuum fluctuations (in single transverse mode) :
 - 1 photon/second / per unit spectral bandwidth = 0.12 μW /nm @ 800 nm

Quantum noise can be measured

R.H. Koch et al., PRB 26, 74 (1982) Introduction in book C.W. Gardiner, 'Quantum Noise'

2. Intensity fluctuations & photon correlations

Intensity fluctuations distinguish laser from chaotic light

- Solid dots = laser above threshold
- other symbols = chaotic light

F.T. Arecchi et al., PRL17, 260 (1966)

$$g^{(2)}(\tau) \equiv \frac{\left\langle I(t+\tau)I(t)\right\rangle}{\left\langle I(t)\right\rangle^{2}}$$

Classical description of intensity fluctuations

Thermal light exhibits fluctuations of both optical phase and intensity

M. Fox, Fig. 6.3

Anti-bunching in fluorescence single CdSe quantum dot

Anti-bunching observed for light from single-photon sources

Anti-bunching at input: never two photons together!

G. Messin et al., Opt. Lett. 26, 1891 (2001)

Time-series of photon detection events

Intensity correlations for three quantum states of light

3. Interference between two identical single photons

Quantum prediction: no coincidences for identical photons

Photon bunching in Hong-Ou Mandel experiment

Interference between two 'independent' photons

Identical photons:

- Same spatial profile (project on single-mode fiber)
- Same time/frequency profile (use pulsed light)

Rarity, Tapster & Loudon (1997)

Our results with HOM interference

Our results with HOM interference

30 of 31

Conclusions: When do you need quantum optics?

• <u>Single-mode quantum optics</u>

is rarely relevant in free-space optics experiments

- **Multi-mode quantum optics** needs field quantization for:
- 1. Direct observation of <u>intensity noise</u> (difficult; sensitive to loss) i(t) $\langle i \rangle$
- 2. <u>Photon-photon correlations (Hanbury Brown & Twiss)</u>

2b. Interference of two single photons (Hong, Ou & Mandel)

31 of 31