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Quantum Optics: when do we need it?

Part 1: for optical field
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Example 1: Young’s double slit with single photons

weak light source

double slit

lens images far-field on I-CCD

Intensified CCD records single photons

Experiment can be described without quantum optics
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Example 2: How to distinguish laser from lamp light? 

Laser or Lamp? 

spatial & spectral (color) filtering

det

• Correlation experiments between two detected photons are 
needed to distinguish different quantum states of light

‘Statistical Optics’ by J.W. Goodman

Claim: “One-photon” properties don’t allow you to distinguish laser/lamp

• “One-photon” optical properties (average intensity):

– Temporal coherence & optical spectrum

– Spatial coherence & intensity profile
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Single-mode vs. multi-mode quantum optics

• Single-mode = discrete mode in cavity (Chapter 5)

• Multi-mode = continuum of modes in free space (Ch. 6)
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Textbooks often discuss discrete Q states of light

Intracavity field (discrete) Output field (continuous)

can be more quantum

than output field

is affected by reflections

of vacuum field/fluctuations
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Theory for “single-mode” quantum optics
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∑3. Thermal light:

• Single discrete mode: 

1. Number states: 
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2. Coherent states: 
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Three standard (single-mode) quantum states

2. Coherent light:   
Poisson distribution

3. Thermal light: 
Exponential distribution

1. Number state: Pn=δn,n0
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“Multi-mode optics”
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• Temporal coherence:

• Still single discrete transverse optical mode (fixed spatial structure)
• Continuous in frequency/time:

• Intensity correlations:

• Only for thermal light (Gaussian statistics):
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When do you need quantum optics?

• Single-mode quantum optics

is rarely relevant in free-space optics experiments

• Multi-mode quantum optics needs field quantization for:

1. Direct observation of intensity noise (sensitive to loss)

2. Photon-photon correlations (Hanbury Brown & Twiss)

2b.  Interference of two single photons (Hong, Ou & Mandel)
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1. Semi-classical theory of photon detection

• Semi-classical = treat field classically & only quantize detector

Fig. 5.1 of ‘Quantum Optics’ by M. Fox
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Classical description of intensity fluctuations

Thermal light exhibits fluctuations of both optical phase and intensity 

M. Fox, Quantum Optics, Fig. 6.3
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Shot noise in the detection of light

M. Fox, Quantum Optics, Figs. 5.10 & 5.12

���� ∝ √���Intensity noise
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Shot noise can only dominate when Vdet > 50 mV

 !"!#$��#	&'��! = 4)*+,. ∆.

(≈ 0.9 nV/√Hz in 50Ω at roomtemperature)
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Sub-Poissonian light

Franck-Hertz experiment:  sub-shot noise intensity fluctuations

Fig. 5.14 of ‘Quantum Optics’ by M. Fox
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Sub-Poissonian light

Electric current doesn’t suffer from shot-noise

Experiment 1 Experiment 2

M. Fox, Quantum Optics, Fig. 5.15 W.H. Richardson et al., PRL 66,2867 (1992)
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Optical loss kills the sub-Poissonian character
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Optical loss kills the sub-noise character

Optical loss introduces quantum noise, as it acts like beamsplitter
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Quantum noise = Vacuum fluctuations

• Strength of the vacuum fluctuations depends on measurement:

• Vacuum fluctuations (in single transverse mode) : 

– 1 photon/second / per unit spectral bandwidth = 0.12 µW /nm @ 800 nm 
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Quantum noise can be measured

R.H. Koch et al., PRB 26, 74 (1982)
Introduction in book C.W. Gardiner, ‘Quantum Noise’  

Experiment: current noise in 
Josephson tunnel junction, 
mixed down to detection 
frequencies
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2. Intensity fluctuations & photon correlations

D1

D2
&

Intensity I1(t)

Intensity I2(t)

Second-order (intensity-intensity) correlation function
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Hanbury Brown & Twiss experiment

Hanbury Brown

?

Twiss



Intensity fluctuations distinguish laser from chaotic light

F.T. Arecchi et al., PRL17, 260 (1966)

• Solid dots       = laser above threshold
• other symbols = chaotic light

photon bunching in chaotic input light

uncorrelated photons in laser light

( ) ( ) ( ) ( )
( )

2

2

I t I t
g

I t

τ
τ

+
≡



Classical description of intensity fluctuations

Thermal light exhibits fluctuations of both optical phase and intensity 

M. Fox, Fig. 6.3



Anti-bunching in fluorescence single CdSe quantum dot

G. Messin et al., Opt. Lett. 26, 1891 (2001)

D1

D2 &

Anti-bunching at input: never two photons together!

Anti-bunching observed for light from single-photon sources



Time-series of photon detection events

photon bunching: 

uncorrelated photons: 

photon anti-bunching: 
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Intensity correlations for three quantum states of light

photon bunching (thermal/chaotic light)

uncorrelated photons (coherent/laser light)

photon anti-bunching (single-photon source)



3. Interference between two identical single photons

?
Four possible scenarios

Classical prediction: coincidences in 50% of cases

Quantum prediction: no coincidences for identical photons



Photon bunching in Hong-Ou Mandel experiment

Hong, Ou, Mandel, 

PRL59, 2044 (1987) 

Photon pairs
ω

ω
2ω

No fringes!
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Interference between two ‘independent’ photons

Rarity, Tapster & Loudon (1997)

visibility 62%

width 0.2 mm

Identical photons:
- Same spatial profile (project on single-mode fiber)

- Same time/frequency profile (use pulsed light)
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Our results with HOM interference
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Our results with HOM interference

2 nm IF



31 of 31

Conclusions: When do you need quantum optics?

• Single-mode quantum optics

is rarely relevant in free-space optics experiments

• Multi-mode quantum optics needs field quantization for:

1. Direct observation of intensity noise (difficult; sensitive to loss)

2. Photon-photon correlations (Hanbury Brown & Twiss)

2b.  Interference of two single photons (Hong, Ou & Mandel)


