Breakdown of the classical description of a local system

Anders S. Sørensen

Eran Kot, Niels Grønbech-Jensen*, Bo M. Nielsen, Jonas S. Neergaard-Nielsen, Eugene S. Polzik

The Niels Bohr Institute, University of Copenhagen

* Department of Applied Science, University of California, Davis

Breakdown of the classical description of a local system

A well known story - with a twist

Anders S. Sørensen

Eran Kot, Niels Grønbech-Jensen*, Bo M. Nielsen, Jonas S. Neergaard-Nielsen, Eugene S. Polzik

The Niels Bohr Institute, University of Copenhagen

* Department of Applied Science, University of California, Davis

Non-classical effects

John Doe et al, Journal of Something,Vol.Whatever, p. something (200x)

In this article we demonstrate a genuine non-classical effect....

Non-classical effects

John Doe et al, Journal of Something,Vol.Whatever, p. something (200x)

In this article we demonstrate a genuine non-classical effect....

When is an effect truly non-classical?

Why important?

Quantum/classical transition

Quantum

Classical

Mass/Energy

Why important?

Quantum/classical transition

Classical

Mass/Energy

Why important?

Quantum/classical transition

Quantum

Is there a separation?
Classical

Mass/Energy

Why important?

Quantum/classical transition
Quantum

Atoms

Mass/Energy

Why important?

Quantum/classical transition
Quantum

Atoms

Is there a separation?
Classical

Planets

Mass/Energy

Why important?

Quantum/classical transition
Quantum

Atoms

Is there a separation?
Classical

Planets

Mass/Energy

Why important?

Quantum/classical transition
Quantum

Atoms

Is there a separation?
Classical

Planets

Mass/Energy

Why important?

Quantum/classical transition

Quantum

Atoms
Superconducting circuits

Is there a separation?

Mass/Energy

Why important?

Quantum/classical transition

Quantum

Atoms
Superconducting circuits

Is there a separation?
Classical

Planets

Mass/Energy

We need criteria to test that something is non-classical

What is not

- Discrete spectra
- Spontaneous emission
- Squeezing
- Continuous variable quantum teleportation

What is not

- Discrete spectra
- Spontaneous emission
- Squeezing
- Continuous variable quantum teleportation

What is

Negative Wigner functions

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Types of non-classicality

I.Agrees with quantum mechanics

2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Agrees with quantum theory

True for planetary motion

$$
\left\langle\frac{\partial p}{\partial t}\right\rangle=-\langle\nabla V\rangle
$$

Agrees with quantum theory

Discrete spectra

Absorption

ω

Agrees with quantum theory

Discrete spectra

Absorption

Absorption of classical harmonic oscillator

$$
\operatorname{Abs} \propto \frac{\omega^{2} \gamma}{\left(\omega_{0}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}
$$

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Types of non-classicality

I.Agrees with quantum mechanics
2. The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

The quantum description is different

Ex: Spontaneous emission

Dipole moment vanish

$$
\langle\hat{\vec{d}}\rangle=0
$$

No electric field $\quad \vec{E}(\vec{r})=G(\vec{r})\langle\hat{\vec{d}}\rangle=0$
=> No radiation

The quantum description is different

Ex: Spontaneous emission

Dipole moment vanish

$$
\langle\hat{\vec{d}}\rangle=0
$$

No electric field $\quad \vec{E}(\vec{r})=G(\vec{r})\langle\hat{\vec{d}}\rangle=0$

=> No radiation

Quantize: $\quad \hat{\vec{E}}(\vec{r})=G(\vec{r}) d \sigma_{-}$

$$
\hat{\vec{E}}^{\dagger} \hat{\vec{E}}(\vec{r})=G(\vec{r})^{2} d^{2} \sigma_{+} \sigma_{-} \sim|e\rangle\langle e|
$$

The quantum description is different

Harmonic oscillator with random phase

Dipole moment vanish $\quad\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0$
Square of dipole does not $\quad\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{i}^{\mathrm{i} \omega \tau} \neq 0$ Radiation as before $\quad\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}$

The quantum description is different

Harmonic oscillator with random phase

Dipole moment vanish $\quad\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0$
Square of dipole does not $\quad\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{e}^{\mathrm{i} \omega \tau} \neq 0$ Radiation as before $\quad\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}$

Bohr (19|3): we need to do something to prevent atoms from radiating

The quantum description is different

Harmonic oscillator with random phase
Dipole moment vanish $\quad\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0$
Square of dipole does not $\quad\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{e}^{\mathrm{i} \omega \tau} \neq 0$ Radiation as before $\quad\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}$

Bohr (19|3): we need to do something to prevent atoms from radiating

Quantum effects
Ground state do not radiate even though $\quad\langle\hat{\vec{d}}(t+\tau) \hat{\vec{d}}(t)\rangle \neq 0$

The quantum description is different

Harmonic oscillator with random phase
Dipole moment vanish $\quad\langle d\rangle \sim d_{0}\left\langle\mathrm{e}^{\mathrm{i} \phi}\right\rangle=0$
Square of dipole does not $\quad\left\langle d^{*}(t+\tau) d(t)\right\rangle \sim d_{0}^{2} \mathrm{e}^{\mathrm{i} \omega \tau} \neq 0$ Radiation as before $\quad\left\langle\vec{E}^{\dagger} \vec{E}\right\rangle=G(\vec{r})^{2} d_{0}^{2}$

Bohr (19|3): we need to do something to prevent atoms from radiating

Quantum effects
Ground state do not radiate even though $\quad\langle\hat{\vec{d}}(t+\tau) \hat{\vec{d}}(t)\rangle \neq 0$ Rabi oscillation: phase lost during excitation

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description

5. Bell inequalities

Bell inequalities

Ideal test

Bell inequalities

Ideal test

Complications:

Requires two systems

Known Bell inequalities for continuous variables require complicated states

Bell inequalities

Ideal test

Complications:

Requires two systems

Known Bell inequalities for continuous variables require complicated states

Also theory hard

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Stronger criteria

Violates any classical description

Goal: convince somebody trained in classical physics that his/ her view is wrong

Violates any classical description

Goal: convince somebody trained in classical physics that his/ her view is wrong

J. C. Maxwell (I83I-I879)

Violates any classical description

Goal: convince somebody trained in classical physics that his/ her view is wrong

Show there cannot be any classical description

> J. C. Maxwell (I83I-I879)

Violates any classical description

Goal: convince somebody trained in classical physics that his/ her view is wrong

Show there cannot be any classical description

Rule of the game:

> J. C. Maxwell (I83I-I879)

Violates any classical description

Goal: convince somebody trained in classical physics that his/ her view is wrong

Show there cannot be any classical description

Rule of the game:
Classical physics allowed
(=>weaker than Bell)

J. C. Maxwell (I83I-I879)

Violates any classical description

Goal: convince somebody trained in classical physics that his/ her view is wrong

Show there cannot be any classical description

Rule of the game:
Classical physics allowed
(=>weaker than Bell)

No quantum words allowed

J. C. Maxwell (I83I-I879)

Violates any classical description

Goal: convince somebody trained in classical physics that his/ her view is wrong

Show there cannot be any classical description

Rule of the game:
Classical physics allowed
(=>weaker than Bell)

No quantum words allowed Normal ordered products
Commutators etc.

J. C. Maxwell (I83I-I879)

Squeezing

Squeezing: non-classical if fluctuations reduced below vacuum fluctuations

Squeezing

Squeezing: non-classical if fluctuations reduced below vacuum fluctuations

Squeezing

Squeezing: non-classical if fluctuations reduced below vacuum fluctuations

Squeezing

Squeezing: non-classical if fluctuations reduced below vacuum fluctuations

Squeezing

Squeezing: non-classical if fluctuations reduced below vacuum fluctuations

Squeezing

Squeezing: non-classical if fluctuations reduced below vacuum fluctuations

Squeezing

Classical theory?

Squeezing

Classical theory?

Wigner function $W(x, p) \geq 0$ => Probability distribution

Squeezing

Classical theory?

Wigner function $W(x, p) \geq 0$ => Probability distribution
Gaussian operations + homodyne => Wigner function perfect classical description

Squeezing

Classical theory?

Wigner function $W(x, p) \geq 0$ => Probability distribution
Gaussian operations + homodyne => Wigner function perfect classical description

Pick x, p according to $W(x, p)$ and evolve

Squeezing

Classical theory?
Wigner function $W(x, p) \geq 0$ => Probability distribution
Gaussian operations + homodyne => Wigner function perfect classical description

Pick x, p according to $W(x, p)$ and evolve
Non-classicality: picking x, p wrong according to quantum mechanics

Squeezing

Classical theory?

Wigner function $W(x, p) \geq 0$ => Probability distribution
Gaussian operations + homodyne => Wigner function perfect classical description

Pick x, p according to $W(x, p)$ and evolve

Non-classicality: picking x, p wrong according to quantum mechanics
Same arguments to apply continuous variable quantum teleportation,......

Squeezing

Classical theory?
Wigner function $W(x, p) \geq 0=>$ Probability distribution

Gaussian operations + homodyne => Wigner function perfect classical description

Pick x, p according to $W(x, p)$ and evolve

Non-classicality: picking x, p wrong according to quantum mechanics
Same arguments to apply continuous variable quantum teleportation,......

Not bad science. Different objective.

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics
4.Violates any classical description
5. Bell inequalities

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics

Squeezing+homodyne
4.Violates any classical description
5. Bell inequalities

Types of non-classicality

I.Agrees with quantum mechanics
2.The quantum description is different
3. Non-classical according to quantum mechanics

Squeezing+homodyne
4.Violates any classical description
5. Bell inequalities

Genuine
non-classical

Stronger criteria

Classical description

What is the most general description of a system?

Classical description

Classical description

Classical description

Classical description

What is the most general description of a system?

Well it has a certain position and momentum

That is wrong in quantum mechanics

Well it can have a distribution of course
No, even that is wrong

Classical description

What is the most general description of a system?

Well it has a certain position and momentum

That is wrong in quantum mechanics

Well it can have a distribution of course
No, even that is wrong

Well prove it

Wigner functions

Grey background => quantum input (don't tell Maxwell)
Single photon state => negative Wigner function => not a probability distribution

Have been done*:
State reconstruction
Maximum likelihood

Inverse Radon

* Large fraction of audience et al

Wigner functions

Grey background => quantum input (don't tell Maxwell)
Single photon state => negative Wigner function => not a probability distribution

Have been done*:
State reconstruction Maximum likelihood

Inverse Radon

* Large fraction of audience et al

Wigner functions

Grey background => quantum input (don't tell Maxwell)
Single photon state => negative Wigner function => not a probability distribution

Have been done*:
State reconstruction Maximum vikelihood

Inverse Radon

* Large fraction of audience et al

Wigner functions

Grey background => quantum input (don't tell Maxwell)
Single photon state => negative Wigner function => not a probability distribution

Have been done*:
State reconstruction Maximum vikelihood

Quantum

Inverse Radon
Complicated, numerically unstable

* Large fraction of audience et al

Wigner functions

Grey background => quantum input (don't tell Maxwell)
Single photon state => negative Wigner function => not a probability distribution

Have been done*:

Statereconstruction Maximum likelihood

Inverse Radon

Quantum

Can we do something simple?

* Large fraction of audience et al

Test ${ }^{*}$

$$
\left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0
$$

[^0]
Test*

$$
\left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0
$$

agree, so let us measure x and p and see that it fits

[^1]
Test*

$$
\left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0
$$

agree, so let us measure x and p and see that it fits

*Bednorz and Belzig, Phys. Rev.A 83, 52II3 (201I)
See also: E. Shchukin, T. Richter, and W.Vogel, J of Optics B: Q. and Semi. Optics 6, S597 (2004). J. K. Korbicz, J. I. Cirac, J.Wehr, and M. Lewenstein, Phys. Rev. Lett. 94, I5360I (2005).

Test*

$$
\left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0
$$

agree, so let us measure x and p and see that it fits

Ok, let's see
*Bednorz and Belzig, Phys. Rev.A 83, 52 II3 (201I)
See also: E. Shchukin, T. Richter, and W.Vogel, J of Optics B: Q. and Semi. Optics 6, S597 (2004). J. K. Korbicz, J. I. Cirac, J.Wehr, and M. Lewenstein, Phys. Rev. Lett. 94, I5360 (2005).

Picking the right function

Single photon state

$$
W(x, p)=\frac{1}{\pi}\left(1-2 r^{2}\right) \mathrm{e}^{-r^{2}}
$$

$$
r^{2}=x^{2}+p^{2}
$$

Rotational symmetry

$$
M(x, p)=1+\sum_{n=1}^{N / 2} C_{2 n} r^{2 n}
$$

Pick M so that strong weight on center: $\left\langle M^{2}\right\rangle<0$

Measurable Test

$$
\begin{aligned}
& \left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0 \\
& M(x, p)=1+\sum_{n=1}^{N / 2} C_{2 n} r^{2 n}
\end{aligned}
$$

Measurable Test

$$
\begin{aligned}
& \left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0 \\
& M(x, p)=1+\sum_{n=1}^{N / 2} C_{2 n} r^{2 n}
\end{aligned}
$$

Need to know $\left\langle r^{2 l}\right\rangle$

Measurable Test

$$
\begin{aligned}
& \left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0 \\
& M(x, p)=1+\sum_{n=1}^{N / 2} C_{2 n} r^{2 n}
\end{aligned}
$$

Need to know $\left\langle r^{2 l}\right\rangle$
Easy case $l=\mathrm{I} \quad\left\langle r^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle p^{2}\right\rangle$

Measurable Test

$$
\begin{aligned}
& \left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0 \\
& M(x, p)=1+\sum_{n=1}^{N / 2} C_{2 n} r^{2 n}
\end{aligned}
$$

Need to know $\left\langle r^{2 l}\right\rangle$
Easy case $l=1 \quad\left\langle r^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle p^{2}\right\rangle \quad=>$ measure x and p

Measurable Test

$$
\begin{aligned}
& \left\langle M^{2}(x, p)\right\rangle=\int d x d p W(x, p) M^{2}(x, p) \geq 0 \\
& M(x, p)=1+\sum_{n=1}^{N / 2} C_{2 n} r^{2 n}
\end{aligned}
$$

Need to know $\left\langle r^{2 l}\right\rangle$
Easy case $l=1 \quad\left\langle r^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle p^{2}\right\rangle \quad=>$ measure x and p

Measuring higher orders

$$
l=\mathbf{2} \quad\left\langle r^{4}\right\rangle=\left\langle\left(x^{2}+p^{2}\right)^{2}\right\rangle=\left\langle x^{4}\right\rangle+\left\langle p^{4}\right\rangle+2\left\langle x^{2} p^{2}\right\rangle
$$

Measuring higher orders

$$
l=\mathbf{2} \quad\left\langle r^{4}\right\rangle=\left\langle\left(x^{2}+p^{2}\right)^{2}\right\rangle=\left\langle x^{4}\right\rangle+\left\langle p^{4}\right\rangle+2\left\langle x^{2} p^{2}\right\rangle
$$

Measuring higher orders

$$
l=\mathbf{2} \quad\left\langle r^{4}\right\rangle=\left\langle\left(x^{2}+p^{2}\right)^{2}\right\rangle=\left\langle x^{4}\right\rangle+\left\langle p^{4}\right\rangle+2\left\langle x^{2} p^{2}\right\rangle
$$

Measure "diagonal" quadratures

Measuring higher orders

$$
l=\mathbf{2} \quad\left\langle r^{4}\right\rangle=\left\langle\left(x^{2}+p^{2}\right)^{2}\right\rangle=\left\langle x^{4}\right\rangle+\left\langle p^{4}\right\rangle+2\left\langle x^{2} p^{2}\right\rangle
$$

Measure "diagonal" quadratures

$$
\left\langle\left(\frac{x+p}{\sqrt{2}}\right)^{4}\right\rangle+\left\langle\left(\frac{x-p}{\sqrt{2}}\right)^{4}\right\rangle=\frac{1}{2}\left(\left\langle x^{4}\right\rangle+\left\langle p^{4}\right\rangle\right)+3\left\langle x^{2} p^{2}\right\rangle
$$

General test

Measure $2 l$ quadratures: $\left\langle\left(x^{2}+p^{2}\right)^{l}\right\rangle=\binom{2 l}{l}^{-1} \frac{2^{2 l}}{2 l} \sum_{m=1}^{2 l}\left\langle Q_{\pi m / 2 l}^{2 l}\right\rangle$

General test

Measure $2 l$ quadratures: $\left\langle\left(x^{2}+p^{2}\right)^{l}\right\rangle=\binom{2 l}{l}^{-1} \frac{2^{2 l}}{2 l} \sum_{m=1}^{2 l}\left\langle Q_{\pi m / 2 l}^{2 l}\right\rangle$

General test

For any C s

$$
\left\langle M^{2}\right\rangle=\ldots C_{2 k} \ldots C_{2 n} \ldots \sum_{m=1}^{2 l}\left\langle Q_{\pi m / 2 l}^{2 l}\right\rangle \geq 0
$$

General test

Measure $2 l$ quadratures: $\left\langle\left(x^{2}+p^{2}\right)^{l}\right\rangle=\binom{2 l}{l}^{-1} \frac{2^{2 l}}{2 l} \sum_{m=1}^{2 l}\left\langle Q_{\pi m / 2 l}^{2 l}\right\rangle$

General test

For any C s

$$
\left\langle M^{2}\right\rangle=\ldots C_{2 k} \ldots C_{2 n} \ldots \sum_{m=1}^{2 l}\left\langle Q_{\pi m / 2 l}^{2 l}\right\rangle \geq 0
$$

I agree, so let us try it out

Quantum expectation

Optimize C s => negative for $N \geq 4$ (requires 8 quadratures)

Experiment

"Standard" photon subtraction experiments

Experiment

"Standard" photon subtraction experiments

Experiment

"Standard" photon subtraction experiments

Homodyne detection with varying phase

> => Also works classically

Experiment

"Standard" photon subtraction experiments

Homodyne detection with varying phase
=> Also works classically

Phase not locked => All quadratures the same

Experiment

"Standard" photon subtraction experiments

Homodyne detection with varying phase
=> Also works classically

Phase not locked => All quadratures the same
Cannot introduce violation

Results

Violation by nearly 20 standard deviations.

Conclusion

Non-classical: no classical description (don't assume quantum mechanics)

Simple strict non-classicality test
Can be violated on a single system using homodyne detection

Light field: one cannot assign a probability distribution to the position and moment - not even nature can know x and p simultaneously

Conclusion

Non-classical: no classical description (don't assume quantum mechanics)

Simple strict non-classicality test
Can be violated on a single system using homodyne detection
Light field: one cannot assign a probability distribution to the position and moment - not even nature can know x and p simultaneously

> I didn't see that coming. I guess I will have to study this quantum thing.

Outlook

Similar test should be applied to other macroscopic systems
Superconducting systems

Nanomechanical systems => this test works directly

Extension to Bell inequalities?

Acknowledgements

Thanks to:

Niels Bohr Institute
Eran Kot
Johannes Borregaard
Bo M. Nielsen*
Jonas S. Neergaard-Nielsen*
Eugene Polzik

University of California, Davis,
Niels Grønbech-Jensen

Acknowledgements

Thanks to:

Niels Bohr Institute
Eran Kot
Johannes Borregaard
Bo M. Nielsen*
Jonas S. Neergaard-Nielsen* Eugene Polzik

University of California, Davis,
Niels Grønbech-Jensen

Apologies to Maxwell

[^0]: *Bednorz and Belzig, Phys. Rev.A 83, 52 II3 (201I)
 See also: E. Shchukin, T. Richter, and W.Vogel, J of Optics B: Q. and Semi. Optics 6, S597 (2004). J. K. Korbicz, J. I. Cirac, J.Wehr, and M. Lewenstein, Phys. Rev. Lett. 94, I5360 (2005).

[^1]: *Bednorz and Belzig, Phys. Rev.A 83, 52II3 (201I)
 See also: E. Shchukin, T. Richter, and W.Vogel, J of Optics B: Q. and Semi. Optics 6, S597 (2004). J. K. Korbicz, J. I. Cirac, J.Wehr, and M. Lewenstein, Phys. Rev. Lett. 94, I5360I (2005).

