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Outline of this talk

Classical capacity of Gaussian bosonic channels
Gaussian minimum (output) entropy conjecture
 
Link with entanglement of a 2-mode squeezer
Gaussian minimum (output) entanglement conjecture

 Approach building on majorization theory
Gaussian majorization conjecture
Incomplete proof of the conjecture (Fock state inputs)

Conclusions   —   importance in physics !
… new path to the ultimate proof ?



  

We wish to calculate the ultimate information capacity 
of optical communication channels

Context

Since communication channels    
are “physical devices” ...

and since physics itself is             
“quantum mechanical” ...

Optical links are often modeled by Gaussian bosonic channels
…. we need to use the tools of “continuous-variable QIP”

...  we need to use the tools of        
     “quantum information theory”



  

  M []

K  K TN

M K , N

real
real & symmetric

N≥0 det N≥det K−12M

one-mode case

Gaussian (quantum) Bosonic Channels

rK r r


= coherent vector

= covariance matrix

Corresponds to linear CP maps

s.t.                Gaussian   if      Gaussian

fully characterized by two matrices 

completely positive

M
K
N M 

M [] 

uncertainty principle



  

K=diag G , G
N=diag G−1 ,G−1

K=diag  T ,  T 
N=diag 1−T ,1−T 

Phase-insensitive Gaussian Channels

M                  

K=diag   ,  

n

N=diag n ,n



τ
n
 = transmission
 = noise variance

210−1

1

2

Purely lossy channel

Ideal (quantum-limited) amplifier

G≥1

T≤1

   Classical
additive noise

 M 

Forbidden region



  

Classical Capacity of Quantum Channels

Ma M a

 Holevo bound

Holevo, Schumacher,
Westmoreland, 1998

{pa ,a} ∑a
pa a = 

 Single-shot capacity

 {pa ,a}, M =S  M  −∑a
pa S M a 

such that

C1M =max{pa ,a}
 {pa ,a }, M 

encoding

 Capacity C M =lim
n∞

1
n
C 1M ×n

M ×n

... in general, not additive !
(Hastings, 2009)  M 

a=1,...d

... cfr. Raul Garcia's talk



  

with   , M ≡S M −min{p a ,a} ∑a
pa S M a

∑a
paa=

≥ S M 0

Upper bound on         relying on pure state        minimizing the output entropy0

≤ S M  −S M 0

Role of Minimum Output Entropy

Ma M a
{pa ,a} ∑a

pa a = such thatencoding

C (1)(M )=maxρ χ̃ (ρ , M )

min S M   ≡S M 0 

... maximization in 2 steps

a=1,...d

C (1)



  

for fixed energy,
 achieved by a thermal state

≤ maxρ S (M (ρ))−minσ S (M (σ))

continuous encoding                       such that

energy constraint

Yuen  and Ozawa, 1993Capacity of Gaussian Quantum Channels

Gaussian minimum output entropy conjecture: Φ0=∣0 〉 〈0∣

 M (ρα)

{p(α) ,ρα} ∫d α p(α)ρα= ρ

with            minimum
output entropy

state ???S M therm 

C1M =max
  ,M 

Holevo and Werner, 1998

Φ0=S (M (Φ0))

M                  = transmission
 = noise variance


n

2



  

Conjectured Single-shot Capacity

C1M =g [ n]−g [n ]

coherent states modulated with a Gaussian bivariate distribution
 do achieve the capacity    (it is the optimal encoding)

g [ x ]=x1log x1−x log xwhere

M                  M a

{p  , } ∫ d  p = such that
2

continuous encoding

 = transmission
 = noise variance

τ
n

ρα=∣α 〉 〈α∣ p(α)= 1
π ν

exp (−∣α∣2ν )use Gaussian encoding

C1M  ≤ S M therm −S  M ∣0 〉 〈 0∣  

...  provided the Gaussian minimum entropy conjecture holds !

with = mean thermal photon numberν



  

min S M   =S M ∣0 〉 〈 0∣ 
Gaussian Minimum Entropy Conjecture

The same conjecture is made for the joint channel 

C M ≡lim
n∞

1
n
C 1M ×n=C1M 

M ×n

All papers on Gaussian Bosonic channels 
      rely on this widely admitted conjecture !!!

Single exception:  pure lossy channel

V. Giovannetti et al., PRL, 2004

0=∣0 〉
∣0 〉 E

M 0=∣0 〉
C1M =g [ ]

(environment E in vacuum state)

... cfr. Raul Garcia's talk

τ<1



  

Generic Decomposition of Phase-insensitive Channels

A

Input Output

G>1

 M  

∣0 〉E

∣0 〉E

Pure loss  (L) Ideal amplifier  (A)

=T G1
=T G=1
=T G1

T<1

lossy fiber with thermal noise

classical Gaussian additive noise

 (non-ideal) noisy amplifier

L
signal

idler



  

Reduction of the Conjecture

M M  

min S M  =S M ∣0 〉 〈 0∣Conjecture I

Conjecture II min  S  A  =S  A∣0 〉 〈 0∣

L
M (σ)=A(σ̃)

A

=L 



  

Reduction to Ideal Amplifier

A

∣0 〉 ∣0 〉

it is (necessary and) sufficient to prove the reduced conjecture II

saturated if

T<1

∣0 〉E

∣0 〉E G>1

L

S M    = S  A    ≥S A ∣0 〉 〈 0∣ 

assume conjecture II holds

σ̃ M (σ)=A(σ̃)
σ

conjecture I



  

Link with Output Entanglement of a Two-Mode Squeezer

∣0 〉

∣ 〉

∣ 〉

∣0 〉

S  A ∣ 〉 〈∣  =E U r ∣ 〉∣0 〉 

We are now dealing with
the output entanglement
of a two-mode squeezer

U r 

entanglement
entropy of a 
pure state

G=cosh2 r

E=exp( r2 (ab−a+ b+ ))U r 

A



  

∣0 〉E

minE ∣ 〉 AB=E ∣V 〉 ABConjecture II (bis)

∣ 〉 AB=U  r∣ 〉 A∣0 〉 E

∣V 〉 AB=U  r∣0 〉 A∣0 〉 E

∣ 〉 A
U r 

signal

idler
compare with vacuum input :

Gaussian Minimum Entanglement Conjecture

actual output state :

... this is now a conjecture about the entanglement 
         generated by a 2-mode squeezer !

2-mode vacuum squeezed state
       (EPR state)



  

Proof for Gaussian vs non-Gaussian states

∣0 〉E

E ∣Gauss 〉 AB ≥ E ∣V 〉 AB

∣ 〉 AB=U  r∣ 〉 A∣0 〉 E

∣V 〉 AB=U  r∣0 〉 A∣0 〉 E

∣ 〉 A
U r 

2-mode vacuum squeezed state:

∣ 〉 A=∑k
ck∣k 〉

Fock states 

easy to prove for Gaussian states

expansion of non-Gaussian states in Fock basis

... only an incomplete proof for Fock states !

actual output state:signal

idler



  

Fock State Inputs

signal

∣0 〉
idler

∣k 〉
∣Ψk 〉=∑

n=0

∞

√Pn(k ) ∣n+k 〉∣n 〉

E k =H [Pnk ]

Pnk =
1

cosh2 k1 r  nk
n  tanh2n r

Using Pascal identity  nk1
n = nk

n  nk
n−1

Pnk1=1−2Pnk 
2Pn−1k1 =tanh r

E k11−2E k 2E k1Concavity of entropy

E k1E k  ∀ k≥0

U r 

vacuum state beats
    all other Fock states

Shannon entropy 

with

Fock state
      input



  

E ∣ k 〉 

r

k=0

k=1

k=2
k=3k=4Fock State Inputs

E(k+1)⩾E (k) ∀k≥0 ∀r

This is the tip of the iceberg
of majorization theory...

∣k 〉
U (r)

∣0 〉



  

Majorization Theory

pn qn

pn , qnwith probability distributions 

“     majorizes      ”

∑n=0

m
pn
 ≥ ∑n=0

m
qn
 ∀ m≥0 ( p is “more peaked” than q )

qn=∑m
Dn , m pm Dn , m is doubly-stochastic matrix

can be converted to      by applying a random permutation qnpn

∑n
h pn ≤ ∑n

h qn ∀ hx  concave function

e.g. entropy: h(x)=−x log (x)

entropy can only increase

= (partial) order relation for probability distributions

Dn ,m

qn
pn

if and only if

or

or

Dn ,m

H (pn)≤H (qn)

≻pn qn



  

Quantum application : Interconversion of pure bipartite states

pn qn pn , qn

with        majorizing 

majorizes

∣ψ 〉=∑n √ pn ∣en 〉 ∣f n 〉 ∣ϕ 〉=∑n √qn ∣en ' 〉 ∣f n ' 〉∣ 〉 ∣ 〉majorizes

can be converted to       by applying a deterministic LOCC∣ 〉∣ 〉

E ∣ 〉 ≤E ∣ 〉  entanglement can only decrease

pn qn

Dn ,m

LOCC

probability distributions 

M. Nielsen, G. Vidal, 2000

Trick: ρA=trB (∣ψ 〉 〈ψ∣)=∑n
pn ∣en 〉 〈en∣

orthonormal 

=∑n
qn ∣ζn 〉 〈ζn∣

not orthonormal 

… possible if        majorizes pn qn

eigenbasis representation



  

Explicit conversion LOCC

∣ψ 〉=∑n √ pn ∣en 〉 ∣f n 〉

∣ 〉 ∣ 〉majorizes

LOCC

∣ψ 〉=∑n √qn ∣ζ n 〉 ∣f n ' ' 〉 above trick (provided       majorizes      ) pn qn

∣ϕ 〉=∑n √qn ∣en ' 〉 ∣f n ' 〉
LOCC U

POVM: Am=∑n
ωnm∣ζ n 〉 〈 en '∣ ∑m

Am
+ Am= Iω=ei 2π/dwith                         and 

(Am× I )∣ϕ 〉=∑n √qn ω
nm ∣ζn 〉 ∣f n ' 〉 ≡∣ϕm〉

Conditional U: Bm=∑n
ω−nm∣ f n ' ' 〉 〈 f n '∣

(I×Bm) ∣ϕm〉 =∑n √qn ∣ζ n 〉 ∣f n ' ' 〉 ≡∣ψ 〉

depends on outcome m

conditional on m



  

Gaussian Majorization Conjecture

... stronger than minimum entropy/entanglement conjecture

... but perhaps easier to prove (?)

∣0 〉E

∣V 〉 AB ∣ 〉 AB ∀ ∣ 〉 AConjecture III 

∣ 〉 AB=U  r∣ 〉 A∣0 〉 E

∣V 〉 AB=U  r∣0 〉 A∣0 〉 E

∣ 〉 A
U r 

signal

idler

majorizes

For a given 2-mode squeezer (Bogoliubov transformation), 
the 2-mode vacuum squeezed state majorizes all other output states !!!

E ∣V 〉 AB ≤ E ∣ 〉 AB∣V 〉AB ∣Φ 〉ABLOCC
implying

actual output state:

2-mode vacuum squeezed state:



  

Majorization relations in a 2-mode squeezer

r

k=0

k=1

k=2k=3k=4

P⃗ (k+1)=D P⃗ (k) ∀k ∀r

Dn , m=1−
2 2nH n−m

λ=tanh r
H ≡ Heaviside step function

E ∣ k 〉 

LOCC

LOCC

( as a function of k given r )



  

(ANO×1) ∣Ψk+1 〉 = √λ2 ∑
n=0

∞

√ pn(k+1) ∣n+k+1 〉∣n+1 〉 → √λ 2 ∣Ψk+1 〉

∣Ψk 〉 = ∑
n=0

∞

√ pn (k) ∣n+k 〉∣n 〉Explicit LOCC

∣Ψk+1 〉 = ∑
n=0

∞

√ pn(k+1) ∣n+k+1 〉∣n 〉

AYES = ∑
m=0

∞ √ (1−λ2)pm(k)
pm(k+1)

∣m+k 〉 〈m+k+1∣

ANO = ∑
m=0

∞ √ λ2 pm−1(k+1)
pm(k+1)

∣m+k 〉 〈m+k+1∣

Alice applies
  a POVM

If  “NO” she communicates it to Bob who applies
and then they start a new round again

U = ∑
m=0

∞

∣m 〉 〈m1∣

(AYES×1) ∣Ψk+1 〉 = √(1−λ2) ∑
n=0

∞

√ pn(k) ∣n+k 〉∣n 〉 = √(1−λ 2) ∣Ψk 〉 YES

NO



  

r

k=0

k=1

k=2k=3k=4

P⃗ r '
(k )=R(k ) P⃗ r

(k) ∀r '≥r ∀k

E ∣ k 〉 

LOCC

Majorization relations in a 2-mode squeezer

LOCC

( as a function of r given k )



  

Arbitrary superposition of Fock states

r

0.4∣0 〉0.6 ∣1 〉

k=0

k=1
E ∣ 〉AB 

numerical evidence

∣0 〉 ∀rmajorized by



  

r

0.4∣0 〉0.6 ∣1 〉

 0.4∣1 〉0.6 ∣2 〉

k=0

k=1
E ∣ 〉AB 

more complicated
than it looks !

∣1 〉not majorized by

Arbitrary superposition of Fock states

majorized by∣0 〉



  

FUNDAMENTAL STATEMENT : 

   “ Nothing is less random 
          than vacuum”

Very plausible but not (yet) proven...
How can we (dis)prove this statement ?

This is not just an abstract mathematical problem !

∣0 〉

( even if you don't care at all about quantum bosonic channels ! )

Bogoliubov transformation            is everywhere,

e.g., quantum optics, supraconductivity, Hawking radiation, Unruh effect, ...

        this Gaussian conjecture may have deeper physical implications !

âi ' =∑ j
(uij â j+vij â j

+ )



  

 New approach to solve the “Minimum Output Entropy Conjecture”
     for Gaussian Bosonic channels

Reduction to ideal amplifier channel
Output entanglement of a two-mode squeezer
Link with majorization theory (proof for Fock states only)
Missing piece: absence of rotational “symmetry breaking”

Numerical analysis for random input states 
     strongly suggests that (majorization) Gaussian conjecture holds...

Take-home message “ Nothing is less random than vacuum ?”

Ref.: R. Garcia-Patron, C. Navarrete-Benlloch, S. Lloyd, 
    J. H. Shapiro & N. J. Cerf, PRL 108, 110505 (2012).
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