Fidelity induced transparency and the quantum illusionist game

Matteo G A Paris

Dipartimento di Fisica dell'Università degli Studi di Milano, Italy

- Interference at a beam splitter
 - Transparency and bath engineering
- The birth of (Gaussian) entanglement
 - A necessary and sufficient condition in terms of fidelity
- \precsim The quantum illusionist game
 - An experiment revealing hidden correlations

The birth of correlations in bilinear interactions

Stefano Olivares and Matteo G A Paris

Dipartimento di Fisica dell'Università degli Studi di Milano, Italy

Any pair of bosonic modes:

- prepared in independent Gaussian states
- interact through an exchange Hamiltonian

 $au = \cos^2 \phi$ transmissivity of the BS

Beam splitter

Single photon

 $U(\phi)|0\rangle|1\rangle = \frac{1}{\sqrt{2}} \left(|1\rangle|0\rangle + |0\rangle|1\rangle\right)$

Beam splitter

Single photon

 $U(\phi)|0\rangle|1\rangle = \frac{1}{\sqrt{2}} \left(|1\rangle|0\rangle + |0\rangle|1\rangle\right)$

Beam splitter

 $U(\phi)|0\rangle|1\rangle = \frac{1}{\sqrt{2}} \left(|1\rangle|0\rangle + |0\rangle|1\rangle\right)$

Beam splitter

Two single photons

$$U(\phi)|1\rangle|1\rangle = \frac{1}{\sqrt{2}} \Big(|2\rangle|0\rangle + |0\rangle|2\rangle\Big)$$

Beam splitter

Two single photons

$$U(\phi)|1\rangle|1\rangle = \frac{1}{\sqrt{2}} \left(|2\rangle|0\rangle + |0\rangle|2\rangle\right)$$

Beam splitter

Two single photons

$$U(\phi)|1\rangle|1\rangle = \frac{1}{\sqrt{2}} \left(|2\rangle|0\rangle + |0\rangle|2\rangle\right)$$

$$A_{k_1k_2}^{n_1n_2} = \sqrt{\frac{(k_1 + k_2)!(n_1 + n_2 - k_1 - k_2)!}{n_1!n_2!}} (-)^{k_2} \begin{pmatrix} n_1 \\ k_1 \end{pmatrix} \begin{pmatrix} n_2 \\ k_2 \end{pmatrix} \sin \phi^{n_1 - k_1 + k_2} \cos \phi^{n_2 - k_2 + k_1}$$

Any simple picture in some specific cases?

Gaussian states

$$\varrho = \varrho(\alpha, \xi, N) = D(\alpha) S(\xi) \nu_{th}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)$$

$$\nu_{th}(N) = \frac{N^{a^{\dagger}a}}{(1+N)^{a^{\dagger}a}} \qquad N = 0 \to \nu_{th}(N) = |0\rangle\langle 0|$$

$$S(\xi) = \exp\{\frac{1}{2} \left(\xi a^{\dagger 2} - \bar{\xi} a^2\right)\}$$

$$D(\alpha) = \exp\{\alpha a^{\dagger} - \bar{\alpha}a\}$$

$$\begin{aligned} & \mathcal{G}\text{aussian states} \\ & \varrho = \varrho(\alpha, \xi, N) = D(\alpha) \, S(\xi) \, \nu_{th}(N) \, S^{\dagger}(\xi) \, D^{\dagger}(\alpha) \\ & \text{Quadrature operators:} \quad q = \frac{1}{\sqrt{2}} \left(a + a^{\dagger} \right) \quad p = \frac{1}{i\sqrt{2}} \left(a^{\dagger} - a \right) \end{aligned}$$

Gaussian states have Gaussian Wigner functions:

W(q, p)

$\begin{aligned} & \mathcal{G}\text{aussian states} \\ & \varrho = \varrho(\alpha, \xi, N) = D(\alpha) \, S(\xi) \, \nu_{th}(N) \, S^{\dagger}(\xi) \, D^{\dagger}(\alpha) \\ & \text{Quadrature operators:} \ \ q = \frac{1}{\sqrt{2}} \left(a + a^{\dagger} \right) \quad p = \frac{1}{i\sqrt{2}} \left(a^{\dagger} - a \right) \end{aligned}$

vacuum $|0\rangle\langle 0|$ thermal $\nu_{th}(N)$ squeezing $S(\xi)\nu_{th}(N)S^{\dagger}(\xi)$ displacement

 $D(\alpha) S(\xi) \nu_{th}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)$

Gaussian states

$$\varrho = \varrho(\alpha, \xi, N) = D(\alpha) S(\xi) \nu_{th}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)$$

Quadrature operators: $R^T = (R_1, R_2) = (q, p)$

Mean values vector: $\langle R^T \rangle = \sqrt{2} (\operatorname{Re} \alpha, \operatorname{Im} \alpha)$

Covariance matrix (CM): $[\boldsymbol{\sigma}]_{hk} = \frac{1}{2} \langle R_h R_k + R_k R_h \rangle - \langle R_h \rangle \langle r_k \rangle$

$$[\boldsymbol{\sigma}]_{kk} = (2\mu)^{-1} \left[\cosh(2r) - (-1)^k \cos(\psi) \sinh(2r) \right]$$
$$[\boldsymbol{\sigma}]_{12} = [\boldsymbol{\sigma}]_{21} = -(2\mu)^{-1} \sin(\psi) \sinh(2r)$$

$$\xi = r e^{i\psi} \quad \mu = \operatorname{Tr}[\varrho^2] = (1+2N)^{-1} \quad \text{purity}$$

$$Gaussian states$$

$$\varrho = \varrho(\alpha, \xi, N) = D(\alpha) S(\xi) \nu_{th}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)$$
Quadrature operators: $R^{T} = (R_{1}, R_{2}) = (q, p)$
Mean values vector: $\langle R^{T} \rangle = \sqrt{2} (P + Q + Q)$
Covariance matrix (CM): $[\sigma]_{hk} = \frac{1}{2} \langle R_{h}R_{k} + R_{k}R_{h} \rangle - \langle R_{h} \rangle \langle r_{k} \rangle$

$$[\boldsymbol{\sigma}]_{kk} = (2\mu)^{-1} \left[\cosh(2r) - (-1)^k \cos(\psi) \sinh(2r) \right]$$
$$[\boldsymbol{\sigma}]_{12} = [\boldsymbol{\sigma}]_{21} = -(2\mu)^{-1} \sin(\psi) \sinh(2r)$$

$$\xi = r e^{i\psi} \quad \mu = \operatorname{Tr}[\varrho^2] = (1+2N)^{-1} \quad \text{purity}$$

$$\varrho_2 = S(r_2 e^{i\psi})\nu_{\rm th}(N_2)S^{\dagger}(r_2 e^{i\psi})$$

"Unconditional Quantum Teleportation", A. Furusawa et al., Science **282**, 706 (1998)

In the first teleportation experiment involving continuous variables, the entangled resource was generated by the interference of two squeezed, and thus Gaussian, states with orthogonal squeezing phases:

 $\varrho_1 = S(r)|0\rangle\langle 0|S^{\dagger}(r)$ $\varrho_2 = S(-r)|0\rangle\langle 0|S^{\dagger}(-r)$

$$|\Psi_{twb}\rangle\rangle = \sqrt{1 - \mathrm{Th}^2 r} \sum_{n} \mathrm{Th}^n r |n\rangle \otimes |n\rangle$$

twin-beam state: maximally entangled state

 $\varrho_2 = S(r_2 e^{i\psi})\nu_{\rm th}(N_2)S^{\dagger}(r_2 e^{i\psi})$

 $\varrho_2 = S(r_2 e^{i\psi})\nu_{\rm th}(N_2)S^{\dagger}(r_2 e^{i\psi})$

If the two input modes are <u>excited in the same Gaussian state</u>, i.e., they have the same CM, $\sigma_1 = \sigma_2 = \sigma$, then:

$$\begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12} & \Sigma_2 \end{pmatrix} \longleftrightarrow \begin{pmatrix} \sigma & \mathbf{0} \\ \mathbf{0} & \sigma \end{pmatrix} \bigstar \varrho_{12} = \varrho \otimes \varrho$$

the output is factorized and equal to the input (transparency).

S. Olivares et al Phys. Rev. A **80**, 032329 (2009) S.C. Springer et al Phys. Rev. A **79**, 062303 (2009)

(multimode transparency)

$$U_{\mathrm{BS},N}(\phi)\varrho_{\boldsymbol{A}}\otimes\varrho_{\boldsymbol{B}}\,U_{\mathrm{BS},N}^{\dagger}(\phi)=\varrho_{\boldsymbol{A}}\otimes\varrho_{\boldsymbol{B}},$$

if and only if ϱ_A and ϱ_B are excited in the same state.

R. Bloomer, M. Pysher and O. Pfister (NJP 2011)

(bath engineering to control decoherence)

$$H_{SB} = \sum_{j} g_j (ab_j^{\dagger} + a^{\dagger}b_j) = aB^{\dagger} + a^{\dagger}B$$

The effective temperature of the bath sets the maximum purity of a signal that may be transmitted without decoherence

After the evolution (interference) the two modes are (classically or quantum) correlated.

(Gaussian) Discord is always different from zero.

-What about the relation between the "similarity" of the inputs and the birth of entanglement?

-What is the actual role of squeezing?

Gaussian entanglement

We recall that a *bipartite state* is entangled if and only if the *partially transposed* density matrix is no longer semi-positive defined:

$$\varrho_{12} = \sum_{k} p_k \varrho_{1k} \otimes \varrho_{2k} \longleftrightarrow \varrho_{12}^{\tau} < 0$$

In the case of *bipartite Gaussian states* this criterion can be rewritten in term of the CM. The state is entangled if and only if the *minimum symplectic eigenvalue* of CM associated with the partially transposed density matrix is less than 1/2; in our case:

$$\begin{pmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12} & \Sigma_2 \end{pmatrix}$$

$$I_1 = \det[\Sigma_1] I_2 = \det[\Sigma_2]$$

$$I_3 = \det[\Sigma_{12}] I_4 = \det[\Sigma]$$

$$\Delta = I_1 + I_2 - 2I_3$$

$$\tilde{\lambda} = \frac{1}{\sqrt{2}} \sqrt{\Delta - \sqrt{\Delta^2 - 4I_4}} < \frac{1}{2}$$
R. Simon, Phys. Rev. Lett. **84**, 2726 (2000)

In general, we can state the following (we assume $\tau = 1/2$):

Theorem 1 The bipartite state $\varrho_{12} = U_{BS}\varrho_1 \otimes \varrho_2 U_{BS}^{\dagger}$, resulting from the evolution of two single-mode Gaussian states with zero first moments, $\varrho_1(r_1, N_1)$ and $\varrho_2(r_2e^{i\psi}, N_2)$, through a balanced BS, is entangled if and only if the fidelity $F(\varrho_1, \varrho_2)$ between the inputs falls below a threshold value $F_e(\mu_1, \mu_2)$, which depends only on their purities $\mu_k = Tr[\varrho_k^2] = (1 + 2N_k)^{-1}$, k = 1, 2.

$$F_{\rm e}(\mu_1,\mu_2) = \frac{2\mu_1\mu_2}{\sqrt{2(1+\mu_1^2\mu_2^2)} - \sqrt{(1-\mu_1^2)(1-\mu_2^2)}}$$

$$F(\varrho_1, \varrho_2) = \left(\operatorname{Tr} \left[\sqrt{\sqrt{\varrho_1} \, \varrho_2 \sqrt{\varrho_1}} \right] \right)^2$$

S. Olivares and M. G.A. Paris, PRL 2011

(balanced beam splitter)

(balanced beam splitter)

Take two input thermal (classical) states:

$$F(\varrho_1, \varrho_2) = \frac{2\mu_1\mu_2}{(1+\mu_1\mu_2) - \sqrt{(1-\mu_1^2)(1-\mu_2^2)}} > F_{\rm e}(\varrho_1, \varrho_2)$$

Take two input thermal (classical) states:

$$F(\varrho_1, \varrho_2) = \frac{2\mu_1\mu_2}{(1+\mu_1\mu_2) - \sqrt{(1-\mu_1^2)(1-\mu_2^2)}} > F_e(\varrho_1, \varrho_2)$$

Take two input thermal (classical) states:

$$F(\varrho_1, \varrho_2) = \frac{2\mu_1\mu_2}{(1+\mu_1\mu_2) - \sqrt{(1-\mu_1^2)(1-\mu_2^2)}} > F_e(\varrho_1, \varrho_2)$$

The birth of entanglement (non zero displacement) $X_{12} = \langle R_1 - R_2 \rangle$

Corollary 1 If $\overline{X}_k^T = Tr[(q_k, p_k) \varrho_k] \neq 0$, where where $q_k = (a_k + a_k^{\dagger})/\sqrt{2}$ and $p = (a_k^{\dagger} - a_k)/(i\sqrt{2})$ are the quadrature operators of mode k = 1, 2, then the bipartite state $\varrho_{12} = U_{\text{BS}} \varrho_1 \otimes \varrho_2 U_{\text{BS}}^{\dagger}$ is entangled if and only if:

 $F(\varrho_1, \varrho_2) < \Gamma(\overline{\boldsymbol{X}}_1, \overline{\boldsymbol{X}}_2) F_{\rm e}(\mu_1, \mu_2), \qquad (3)$

where $F_{e}(\mu_{1}, \mu_{2})$ is still given in Eq. (2) and:

$$\Gamma(\overline{\boldsymbol{X}}_1, \overline{\boldsymbol{X}}_2) = \exp\left[-\frac{1}{2}\,\overline{\boldsymbol{X}}_{12}^T(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2)^{-1}\overline{\boldsymbol{X}}_{12}\right], \quad (4)$$

where $\overline{\boldsymbol{X}}_{12} = (\overline{\boldsymbol{X}}_1 - \overline{\boldsymbol{X}}_2).$

(reduction of fidelity due to displacement is not relevant)

The birth of entanglement (unbalanced beam splitter)

In general, if the transmissivity of the BS is τ :

$$F_{\rm e} = \frac{4\mu_1\mu_2\sqrt{\tau(1-\tau)}}{\sqrt{g_- + 4\tau(1-\tau)g_+} - \sqrt{4\tau(1-\tau)g_-}}$$

where $g_{\pm} \equiv g_{\pm}(\mu_1,\mu_2) = \prod_{k=1,2} (1 \pm \mu_k^2)$.

The birth of entanglement (input/output fidelities)

BS as a quantum channel: thresholds on the input-output fidelities The birth of correlations between the output modes corresponds to a distortion of the single-mode states and thus to a reduction of the input-output fidelity: the less is the fidelity, the more are the correlations.

Summary of the first part

Interference at a beam splitter (multimode) Transparency and bath engineering

The birth of (Gaussian) entanglement

- Necessary and sufficient condition in terms of fidelity
- Role of squeezing
- Input output fidelities (loss of information)

Hidden correlations and the optical illusionist game

S. Olivares, M. G A Paris

Dipartimento di Fisica dell'Università degli Studi di Milano, Italy

A. Meda, G. Brida, M. Genovese, I. P. Degiovanni INRIM Torino, Italy

Fidelity induced transparency

The optical illusionist game

The optical illusionist game

The optical illusionist game

$$\mathbf{\Sigma}_{123} = egin{pmatrix} oldsymbol{\sigma} & oldsymbol{0} & oldsymbol{\sigma} & oldsymbol{\delta}_{23} \ oldsymbol{0} & oldsymbol{\delta}_{23}^T & oldsymbol{\sigma}_3 \end{pmatrix}$$

$$\mathbf{\Sigma}_{123}^{(\mathrm{out})} = egin{pmatrix} oldsymbol{\sigma} & oldsymbol{0} & oldsymbol{\sigma} & \sqrt{1- au}\,oldsymbol{\delta}_{23} \ \sqrt{ au}\,oldsymbol{\delta}_{23} & \sqrt{ au}\,oldsymbol{\delta}_{23} & oldsymbol{\sigma}_{3} \end{pmatrix}$$

No correlation arises between the interacting modes 1 & 2

The illusionist exploits "hidden" correlations to detect the BS

- The same results hold also in the presence of multimode Gaussian states.
- Tensor product nature of the multimode state.
- Pairwise interaction.
- Each mode interferes with one mode in the other beam.

Two (speckled) spatial multimode and single temporal mode pseudo-thermal beams generated by scattering two I ns laser pulses @532 nm - 12.4 Hz rep rate, on two independent rotating ground glasses

Detecting the BS is quite difficult for the public (only modes 1&2 available)

$$c_{h,k} = \frac{\langle I_k I_h \rangle_{\rm fr} - \langle I_h \rangle_{\rm fr} \langle I_k \rangle_{\rm fr}}{\Delta_{\rm fr}(I_h) \Delta_{\rm fr}(I_k)}$$

Detecting the BS is quite easy for the illusionist (accessing also mode 3)

Conclusions

- Gaussian states in a beam splitter
 - A necessary and sufficient condition for entanglement in terms of fidelity
 A condition for transparency
- 二 The quantum illusionist game
 - An experiment revealing hidden correlations
- S. Olivares, M. G.A. Paris, Phys. Rev. A **80**, 032329 (2009)
- S. Olivares, M. G. A. Paris, Phys. Rev. Lett. **107**, 170505 (2011)
- G. Brida, I. P. Degiovanni, M. Genovese, A. Meda, S. Olivares, M. G.A. Paris, arXiv 1204.5499