Fidelity induced transparency and the quantum illusionist game

Matteo G A Paris

Dipartimento di Fisica dell'Università degli Studi di Milano, Italy

- Interference at a beam splitter
(2) Transparency and bath engineering

二 The birth of (Gaussian) entanglement
© A necessary and sufficient condition in terms of fidelity
二 The quantum illusionist game
(2) An experiment revealing hidden correlations

The birth of correlations in bilinear interactions

Stefano Olivares and Matteo G A Paris

Dipartimento di Fisica dell'Università degli Studi di Milano, Italy

Any pair of bosonic modes:

- prepared in independent Gaussian states
- interact through an exchange Hamiltonian

BS and interference

Beam splitter

BS and interference

Beam splitter
Mode mixing $\quad\left\{\begin{array}{l}a \rightarrow a \cos \phi+b \sin \phi \\ b \rightarrow-a \sin \phi+b \cos \phi\end{array}\right.$

$$
U(\phi)=\exp \left\{\phi\left(a^{\dagger} b-a b^{\dagger}\right)\right\}
$$

$\tau=\cos ^{2} \phi \quad$ transmissivity of the BS

BS and interference

Beam splitter

Single photon

$$
- \text { Whan }
$$

balanced $\mathrm{BS}: \mathrm{T}=\mathrm{I} / 2$

$$
U(\phi)|0\rangle|1\rangle=\frac{1}{\sqrt{2}}(|1\rangle|0\rangle+|0\rangle|1\rangle)
$$

BS and interference

balanced $\mathrm{BS}: \mathrm{T}=\mathrm{I} / 2$

$$
U(\phi)|0\rangle|1\rangle=\frac{1}{\sqrt{2}}(|1\rangle|0\rangle+|0\rangle|1\rangle)
$$

BS and interference

Beam splitter

Single photon

balanced $\mathrm{BS}: \mathrm{T}=\mathrm{I} / 2$

$$
U(\phi)|0\rangle|1\rangle=\frac{1}{\sqrt{2}}(|1\rangle|0\rangle+|0\rangle|1\rangle)
$$

BS and interference

Beam splitter

Two single photons

$$
U(\phi)|1\rangle|1\rangle=\frac{1}{\sqrt{2}}(|2\rangle|0\rangle+|0\rangle|2\rangle)
$$

BS and interference

Beam splitter

Two single photons

balanced BS: $\mathrm{T}=\mathrm{I} / 2$
$U(\phi)|1\rangle|1\rangle=\frac{1}{\sqrt{2}}(|2\rangle|0\rangle+|0\rangle|2\rangle)$

BS and interference

Beam splitter

Two single photons

balanced $\mathrm{BS}: \mathrm{T}=\mathrm{I} / 2$
$U(\phi)|1\rangle|1\rangle=\frac{1}{\sqrt{2}}(|2\rangle|0\rangle+|0\rangle|2\rangle)$

Multiphoton states

$$
\varrho=\sum_{n, m=0}^{\infty} \varrho_{n m}|n\rangle\langle m| \quad \varrho_{n m}=\langle n| \varrho|m\rangle
$$

$$
\varrho_{2}
$$

$$
U(\phi)\left|n_{1}\right\rangle \otimes\left|n_{2}\right\rangle=\sum_{k_{1}=0}^{n_{1}} \sum_{k_{2}=0}^{n_{2}} A_{k_{1} k_{2}}^{n_{1} n_{2}}\left|k_{1}+k_{2}\right\rangle \otimes\left|n_{1}+n_{2}-k_{1}-k_{2}\right\rangle
$$

$$
A_{k_{1} k_{2}}^{n_{1} n_{2}}=\sqrt{\frac{\left(k_{1}+k_{2}\right)!\left(n_{1}+n_{2}-k_{1}-k_{2}\right)!}{n_{1}!n_{2}!}}(-)^{k_{2}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \sin \phi^{n_{1}-k_{1}+k_{2}} \cos \phi^{n_{2}-k_{2}+k_{1}}
$$

Any simple picture in some specific cases?

Gaussian states

$$
\begin{aligned}
\varrho & =\varrho(\alpha, \xi, N)=D(\alpha) S(\xi) \nu_{t h}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha) \\
\nu_{t h}(N) & =\frac{N^{a^{\dagger} a}}{(1+N)^{a^{\dagger} a}} \quad N=0 \rightarrow \nu_{t h}(N)=|0\rangle\langle 0| \\
S(\xi) & =\exp \left\{\frac{1}{2}\left(\xi a^{\dagger^{\dagger 2}}-\bar{\xi} a^{2}\right)\right\} \\
D(\alpha) & =\exp \left\{\alpha a^{\dagger}-\bar{\alpha} a\right\}
\end{aligned}
$$

Gaussian states

$$
\varrho=\varrho(\alpha, \xi, N)=D(\alpha) S(\xi) \nu_{t h}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)
$$

Quadrature operators: $\quad q=\frac{1}{\sqrt{2}}\left(a+a^{\dagger}\right) \quad p=\frac{1}{i \sqrt{2}}\left(a^{\dagger}-a\right)$

Gaussian states have Gaussian Wigner functions:

$W(q, p)$

Wigner function (vacuum state)

Gaussian states

$$
\varrho=\varrho(\alpha, \xi, N)=D(\alpha) S(\xi) \nu_{t h}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)
$$

Quadrature operators: $\quad q=\frac{1}{\sqrt{2}}\left(a+a^{\dagger}\right) \quad p=\frac{1}{i \sqrt{2}}\left(a^{\dagger}-a\right)$
vacuum $\quad|0\rangle\langle 0|$
thermal $\nu_{t h}(N)$
squeezing $S(\xi) \nu_{t h}(N) S^{\dagger}(\xi)$
displacement
$D(\alpha) S(\xi) \nu_{t h}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)$

Gaussian states

$$
\varrho=\varrho(\alpha, \xi, N)=D(\alpha) S(\xi) \nu_{t h}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)
$$

Quadrature operators: $\quad R^{T}=\left(R_{1}, R_{2}\right)=(q, p)$
Mean values vector: $\quad\left\langle R^{T}\right\rangle=\sqrt{2}(\operatorname{Re} \alpha, \operatorname{Im} \alpha)$
Covariance matrix (CM): $[\boldsymbol{\sigma}]_{h k}=\frac{1}{2}\left\langle R_{h} R_{k}+R_{k} R_{h}\right\rangle-\left\langle R_{h}\right\rangle\left\langle r_{k}\right\rangle$

$$
\begin{aligned}
& {[\boldsymbol{\sigma}]_{k k}=(2 \mu)^{-1}\left[\cosh (2 r)-(-1)^{k} \cos (\psi) \sinh (2 r)\right]} \\
& {[\boldsymbol{\sigma}]_{12}=[\boldsymbol{\sigma}]_{21}=-(2 \mu)^{-1} \sin (\psi) \sinh (2 r)} \\
& \xi=r e^{i \psi} \quad \mu=\operatorname{Tr}\left[\varrho^{2}\right]=(1+2 N)^{-1} \quad \text { purity }
\end{aligned}
$$

Gaussian states

$$
\varrho=\varrho(\alpha, \xi, N)=D(\alpha) S(\xi) \nu_{t h}(N) S^{\dagger}(\xi) D^{\dagger}(\alpha)
$$

Quadrature operators: $\quad R^{T}=\left(R_{1}, R_{2}\right)=(q, p)$
Mean values vector: $\quad\left\langle R^{T}\right\rangle=\sqrt{2(\operatorname{m} \alpha)}$
Covariance matrix (CM): $[\boldsymbol{\sigma}]_{h k}=\frac{1}{2}\left\langle R_{h} R_{k}+R_{k} R_{h}\right\rangle-\left\langle R_{h}\right\rangle\left\langle r_{k}\right\rangle$

$$
\begin{aligned}
& {[\boldsymbol{\sigma}]_{k k}=(2 \mu)^{-1}\left[\cosh (2 r)-(-1)^{k} \cos (\psi) \sinh (2 r)\right]} \\
& {[\boldsymbol{\sigma}]_{12}=[\boldsymbol{\sigma}]_{21}=-(2 \mu)^{-1} \sin (\psi) \sinh (2 r)}
\end{aligned}
$$

$$
\xi=r e^{i \psi} \quad \mu=\operatorname{Tr}\left[\varrho^{2}\right]=(1+2 N)^{-1} \quad \text { purity }
$$

Interference of Gaussian states

Interference of Gaussian states

Interference of Gaussian states

$$
\varrho_{2}=S\left(r_{2} e^{i \psi}\right) \nu_{\mathrm{th}}\left(N_{2}\right) S^{\dagger}\left(r_{2} e^{i \psi}\right)
$$

Interference of Gaussian states

"Unconditional Quantum Teleportation", A. Furusawa et al., Science 282, 706 (1998)

In the first teleportation experiment involving continuous variables, the entangled resource was generated by the interference of two squeezed, and thus Gaussian, states with orthogonal squeezing phases:

$$
\begin{gathered}
\varrho_{1}=S(r)|0\rangle\langle 0| S^{\dagger}(r) \\
\varrho_{2}=S(-r)|0\rangle\langle 0| S^{\dagger}(-r)
\end{gathered}
$$

$$
\left.\left|\Psi_{t w b}\right\rangle\right\rangle=\sqrt{1-\operatorname{Th}^{2} r} \sum_{n} \operatorname{Th}^{n} r|n\rangle \otimes|n\rangle
$$

twin-beam state: maximally entangled state

Interference of Gaussian states

Inputs: two uncorrelated
Gaussian states
$\varrho_{1} \otimes \varrho_{2}$

$$
\varrho_{2}=S\left(r_{2} e^{i \psi}\right) \nu_{\mathrm{th}}\left(N_{2}\right) S^{\dagger}\left(r_{2} e^{i \psi}\right)
$$

Interference of Gaussian states

$$
\begin{gathered}
\left(\begin{array}{cc}
\boldsymbol{\sigma}_{1} & 0 \\
\mathbf{0} & \boldsymbol{\sigma}_{2}
\end{array}\right) \\
\text { 酎 } \\
\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{12} & \boldsymbol{\Sigma}_{2}
\end{array}\right) \\
\boldsymbol{\Sigma}_{1}=\tau \boldsymbol{\sigma}_{1}+(1-\tau) \boldsymbol{\sigma}_{2}, \\
\boldsymbol{\Sigma}_{2}=\tau \boldsymbol{\sigma}_{2}+(1-\tau) \boldsymbol{\sigma}_{1}, \\
\boldsymbol{\Sigma}_{12}=\tau(1-\tau)\left(\boldsymbol{\sigma}_{2}-\boldsymbol{\sigma}_{1}\right)
\end{gathered}
$$

Interference of Gaussian states

$$
\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{12} & \boldsymbol{\Sigma}_{2}
\end{array}\right) \quad \begin{aligned}
& \boldsymbol{\Sigma}_{1}=\tau \boldsymbol{\sigma}_{1}+(1-\tau) \boldsymbol{\sigma}_{2}, \\
& \boldsymbol{\Sigma}_{2}=\tau \boldsymbol{\sigma}_{2}+\left(1-(1) \boldsymbol{\sigma}^{2}\right. \\
& \boldsymbol{\Sigma}_{12}=\tau\left(1 \rightarrow() \boldsymbol{\sigma}_{2}-\boldsymbol{\sigma}_{1}\right)
\end{aligned}
$$

If the two input modes are excited in the same Gaussian state, i.e., they have the same CM, $\sigma_{1}=\sigma_{2}=\sigma$, then:
$\left(\begin{array}{cc}\boldsymbol{\Sigma}_{1} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{12} & \boldsymbol{\Sigma}_{2}\end{array}\right) \longleftrightarrow\left(\begin{array}{cc}\boldsymbol{\sigma} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\sigma}\end{array}\right) \longleftrightarrow \varrho_{12}=\varrho \otimes \varrho$
the output is factorized and equal to the input (transparency).
S. Olivares et al Phys. Rev.A 80, 032329 (2009)
S.C. Springer et al Phys. Rev.A 79, 062303 (2009)

Interference of Gaussian states

 (multimode transparency)$$
U_{\mathrm{BS}, N}(\phi) \varrho_{\boldsymbol{A}} \otimes \varrho_{\boldsymbol{B}} U_{\mathrm{BS}, N}^{\dagger}(\phi)=\varrho_{\boldsymbol{A}} \otimes \varrho_{\boldsymbol{B}}
$$

if and only if ϱ_{A} and ϱ_{B} are excited in the same state.

Interference of Gaussian states

 (bath engineering to control decoherence)$$
\begin{aligned}
& \varrho_{0} \\
& \left.\begin{array}{l}
\dot{\varrho} \\
L[O] \varrho \\
= \\
\varrho_{t}(\Gamma, N) \\
= \\
2
\end{array}\right)(1+N) L[a] \varrho+\frac{1}{2} \Gamma L\left[a^{\dagger}\right] \varrho \\
& H_{S B}=O_{j} g_{j}\left(a b_{j}^{\dagger}+a^{\dagger} b_{j}\right)=a B^{\dagger}+a^{\dagger} B
\end{aligned}
$$

The effective temperature of the bath sets the maximum purity of a signal that may be transmitted without decoherence

Interference of Gaussian states

$$
\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{12} & \boldsymbol{\Sigma}_{2}
\end{array}\right) \quad \begin{aligned}
& \boldsymbol{\Sigma}_{1}=\tau \boldsymbol{\sigma}_{1}+(1-\tau) \boldsymbol{\sigma}_{2}, \\
& \boldsymbol{\Sigma}_{2}=\tau \boldsymbol{\sigma}_{2}+(1-\tau) \boldsymbol{\sigma}_{1} \\
& \boldsymbol{\Sigma}_{12}=\tau\left(1 \rightarrow \left(\left(\boldsymbol{\sigma}_{2}-\boldsymbol{\sigma}_{1}\right)\right.\right.
\end{aligned}
$$

After the evolution (interference) the two modes are (classically or quantum) correlated.
(Gaussian) Discord is always different from zero.
-What about the relation between the "similarity" of the inputs and the birth of entanglement?
-What is the actual role of squeezing?

Gaussian entanglement

We recall that a bipartite state is entangled if and only if the partially transposed density matrix is no longer semi-positive defined:

$$
\varrho_{12}=\sum_{k} p_{k} \varrho_{1 k} \otimes \varrho_{2 k} \longleftrightarrow \varrho_{12}^{\tau}<0
$$

In the case of bipartite Gaussian states this criterion can be rewritten in term of the CM. The state is entangled if and only if the minimum symplectic eigenvalue of CM associated with the partially transposed density matrix is less than $1 / 2$; in our case:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{12} & \boldsymbol{\Sigma}_{2}
\end{array}\right) \\
& I_{1}=\operatorname{det}\left[\boldsymbol{\Sigma}_{1}\right] I_{2}=\operatorname{det}\left[\boldsymbol{\Sigma}_{2}\right] \\
& I_{3}=\operatorname{det}\left[\boldsymbol{\Sigma}_{12}\right] I_{4}=\operatorname{det}[\boldsymbol{\Sigma}] \\
& \Delta=I_{1}+I_{2}-2 I_{3}
\end{aligned}
$$

R. Simon, Phys. Rev. Lett. 84, 2726 (2000)

The birth of entanglement

In general, we can state the following (we assume $\mathrm{T}=\mathrm{I} / 2$):

Theorem 1 The bipartite state $\varrho_{12}=U_{\mathrm{BS}} \varrho_{1} \otimes \varrho_{2} U_{\mathrm{BS}}^{\dagger}$, resulting from the evolution of two single-mode Gaussian states with zero first moments, $\varrho_{1}\left(r_{1}, N_{1}\right)$ and $\varrho_{2}\left(r_{2} e^{i \psi}, N_{2}\right)$, through a balanced $B S$, is entangled if and only if the fidelity $F\left(\varrho_{1}, \varrho_{2}\right)$ between the inputs falls below a threshold value $F_{\mathrm{e}}\left(\mu_{1}, \mu_{2}\right)$, which depends only on their purities $\mu_{k}=\operatorname{Tr}\left[\varrho_{k}^{2}\right]=\left(1+2 N_{k}\right)^{-1}, k=1,2$.

$$
F_{\mathrm{e}}\left(\mu_{1}, \mu_{2}\right)=\frac{2 \mu_{1} \mu_{2}}{\sqrt{2\left(1+\mu_{1}^{2} \mu_{2}^{2}\right)}-\sqrt{\left(1-\mu_{1}^{2}\right)\left(1-\mu_{2}^{2}\right)}}
$$

$$
F\left(\varrho_{1}, \varrho_{2}\right)=\left(\operatorname{Tr}\left[\sqrt{\sqrt{\varrho_{1}} \varrho_{2} \sqrt{\varrho_{1}}}\right]\right)^{2}
$$

The birth of entanglement

(balanced beam splitter)

$$
\begin{gathered}
N_{1}=0.2 \\
r_{1}=0.5
\end{gathered}
$$

The birth of entanglement

(balanced beam splitter)

The birth of entanglement

(balanced beam splitter)

$\xrightarrow{\text { (balanced beam splitter) }}$| | |
| ---: | :--- |
| $\tilde{\lambda}$ | $=\frac{1}{2} \frac{\left[\gamma-\sqrt{\gamma^{2}-\left(2 \mu_{1} \mu_{2}\right)^{2}}\right]^{\frac{1}{2}}}{\sqrt{2} \mu_{1} \mu_{2}}$ |
| γ | $=2 \mu_{1} \mu_{2} \cosh \left[2\left(r_{1}+r_{2}\right)\right]$ |

$$
\begin{gathered}
N_{1}=0.2 \\
r_{1}=0.5 \\
N_{2}=0.3 \\
r_{2}=0.7
\end{gathered}
$$

The birth of entanglement

(balanced beam splitter)

$\xrightarrow{\text { (balanced beam splitter) }}$| $\tilde{\lambda}$ | $=\frac{1}{2} \frac{\left[\gamma-\sqrt{\gamma^{2}-\left(2 \mu_{1} \mu_{2}\right)^{2}}\right]^{\frac{1}{2}}}{\sqrt{2} \mu_{1} \mu_{2}}$ |
| ---: | :--- |
| γ | $=2 \mu_{1} \mu_{2} \cosh \left[2\left(r_{1}+r_{2}\right)\right]$ |

$$
\begin{gathered}
\mathrm{N}_{1}=0.2 \\
r_{1}=0.5 \\
\mathrm{~N}_{2}=0.3 \\
r_{2}=0.7
\end{gathered}
$$

The birth of entanglement

\[

\]

$$
\begin{gathered}
N_{1}=0.2 \\
r_{1}=0.5 \\
N_{2}=0.3 \\
r_{2}=0.7
\end{gathered}
$$

The birth of entanglement

(balanced beam splitter)

$\tilde{\lambda}=\frac{1}{2} \frac{\left[\gamma-\sqrt{\gamma^{2}-\left(2 \mu_{1} \mu_{2}\right)^{2}}\right]^{\frac{1}{2}}}{\sqrt{2} \mu_{1} \mu_{2}}$
$\gamma=2 \mu_{1} \mu_{2} \cosh \left[2\left(r_{1}+r_{2}\right)\right]$
$F_{\mathrm{e}}\left(\mu_{1}, \mu_{2}\right)=\frac{2 \mu_{1} \mu_{2}}{\sqrt{2\left(1+\mu_{1}^{2} \mu_{2}^{2}\right)}-\sqrt{\left(1-\mu_{1}^{2}\right)\left(1-\mu_{2}^{2}\right)}}$

$$
\begin{gathered}
N_{1}=0.2 \\
r_{1}=0.5 \\
N_{2}=0.3 \\
r_{2}=0.7
\end{gathered}
$$

The birth of entanglement

Take two input thermal (classical) states:

$$
F\left(\varrho_{1}, \varrho_{2}\right)=\frac{2 \mu_{1} \mu_{2}}{\left(1+\mu_{1} \mu_{2}\right)-\sqrt{\left(1-\mu_{1}^{2}\right)\left(1-\mu_{2}^{2}\right)}}>F_{\mathrm{e}}\left(\varrho_{1}, \varrho_{2}\right)
$$

$N_{1}=0.5$
$N_{2}=0.2$

The birth of entanglement

Take two input thermal (classical) states:

$$
F\left(\varrho_{1}, \varrho_{2}\right)=\frac{2 \mu_{1} \mu_{2}}{\left(1+\mu_{1} \mu_{2}\right)-\sqrt{\left(1-\mu_{1}^{2}\right)\left(1-\mu_{2}^{2}\right)}}>F_{\mathrm{e}}\left(\varrho_{1}, \varrho_{2}\right)
$$

$$
N_{1}=0.5
$$

$$
\mathrm{N}_{2}=0.2
$$

The birth of entanglement

Take two input thermal (classical) states:

$$
F\left(\varrho_{1}, \varrho_{2}\right)=\frac{2 \mu_{1} \mu_{2}}{\left(1+\mu_{1} \mu_{2}\right)-\sqrt{\left(1-\mu_{1}^{2}\right)\left(1-\mu_{2}^{2}\right)}}>F_{\mathrm{e}}\left(\varrho_{1}, \varrho_{2}\right)
$$

$$
N_{1}=0.5
$$

$$
\mathrm{N}_{2}=0.2
$$

The birth of entanglement (non zero displacement) $\quad \boldsymbol{X}_{12}=\left\langle\boldsymbol{R}_{1}-\boldsymbol{R}_{2}\right\rangle$

Corollary 1 If $\overline{\boldsymbol{X}}_{k}^{T}=\operatorname{Tr}\left[\left(q_{k}, p_{k}\right) \varrho_{k}\right] \neq 0$, where where $q_{k}=\left(a_{k}+a_{k}^{\dagger}\right) / \sqrt{2}$ and $p=\left(a_{k}^{\dagger}-a_{k}\right) /(i \sqrt{2})$ are the quadrature operators of mode $k=1,2$, then the bipartite state $\varrho_{12}=U_{\mathrm{BS}} \varrho_{1} \otimes \varrho_{2} U_{\mathrm{BS}}^{\dagger}$ is entangled if and only if:

$$
\begin{equation*}
F\left(\varrho_{1}, \varrho_{2}\right)<\Gamma\left(\overline{\boldsymbol{X}}_{1}, \overline{\boldsymbol{X}}_{2}\right) F_{\mathrm{e}}\left(\mu_{1}, \mu_{2}\right) \tag{3}
\end{equation*}
$$

where $F_{\mathrm{e}}\left(\mu_{1}, \mu_{2}\right)$ is still given in Eq. (2) and:

$$
\begin{equation*}
\Gamma\left(\overline{\boldsymbol{X}}_{1}, \overline{\boldsymbol{X}}_{2}\right)=\exp \left[-\frac{1}{2} \overline{\boldsymbol{X}}_{12}^{T}\left(\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}\right)^{-1} \overline{\boldsymbol{X}}_{12}\right], \tag{4}
\end{equation*}
$$

where $\overline{\boldsymbol{X}}_{12}=\left(\overline{\boldsymbol{X}}_{1}-\overline{\boldsymbol{X}}_{2}\right)$.
(reduction of fidelity due to displacement is not relevant)

The birth of entanglement (unbalanced beam splitter)

In general, if the transmissivity of the BS is T :

$$
F_{\mathrm{e}}=\frac{4 \mu_{1} \mu_{2} \sqrt{\tau(1-\tau)}}{\sqrt{g_{-}+4 \tau(1-\tau) g_{+}}-\sqrt{4 \tau(1-\tau) g_{-}}}
$$

where $\quad g_{ \pm} \equiv g_{ \pm}\left(\mu_{1}, \mu_{2}\right)=\prod_{k=1,2}\left(1 \pm \mu_{k}^{2}\right)$.

The birth of entanglement (input/output fidelities)

$B S$ as a quantum channel: thresholds on the input-output fidelities

The birth of correlations between the output modes corresponds to a distortion of the single-mode states and thus to a reduction of the input-output fidelity: the less is the fidelity, the more are the correlations.

Summary of the first part

- Interference at a beam splitter
© (multimode) Transparency and bath engineering
二 The birth of (Gaussian) entanglement
Necessary and sufficient condition in terms of fidelity
© Role of squeezing
(2) Input output fidelities (loss of information)

Hidden correlations and the optical illusionist game

S. Olivares, M. G A Paris

Dipartimento di Fisica dell'Università degli Studi di Milano, Italy
A. Meda, G. Brida, M. Genovese, I. P. Degiovanni INRIM Torino, Italy

Fidelity induced transparency

The optical illusionist game

The optical illusionist game

(c)

The optical illusionist game

$$
\boldsymbol{\Sigma}_{123}=\left(\begin{array}{ccc}
\boldsymbol{\sigma} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\sigma} & \boldsymbol{\delta}_{23} \\
\mathbf{0} & \boldsymbol{\delta}_{23}^{T} & \boldsymbol{\sigma}_{3}
\end{array}\right)
$$

$$
\boldsymbol{\Sigma}_{123}^{\text {(out) }}=\left(\begin{array}{ccc}
\boldsymbol{\sigma} & \mathbf{0} & \sqrt{1-\tau} \boldsymbol{\delta}_{23} \\
\mathbf{0} & \boldsymbol{\sigma} & \sqrt{\tau} \boldsymbol{\delta}_{23} \\
\sqrt{1-\tau} \boldsymbol{\delta}_{23} & \sqrt{\tau} \boldsymbol{\delta}_{23} & \boldsymbol{\sigma}_{3}
\end{array}\right)
$$

No correlation arises between the interacting modes I \& 2
The illusionist exploits "hidden" correlations to detect the BS

Setup and results

- The same results hold also in the presence of multimode Gaussian states.
- Tensor product nature of the multimode state.
- Pairwise interaction.
- Each mode interferes with one mode in the other beam.

Setup and results

Two (speckled) spatial multimode and single temporal mode pseudo-thermal beams generated by scattering two I ns laser pulses @532 nm - 12.4 Hz rep rate, on two independent rotating ground glasses

Setup and results

Detecting the BS is quite difficult for the public (only modes I \& 2 available)

$$
c_{h, k}=\frac{\left\langle I_{k} I_{h}\right\rangle_{\mathrm{fr}}-\left\langle I_{h}\right\rangle_{\mathrm{fr}}\left\langle I_{k}\right\rangle_{\mathrm{fr}}}{\Delta_{\mathrm{fr}}\left(I_{h}\right) \Delta_{\mathrm{fr}}\left(I_{k}\right)}
$$

Setup and results

Detecting the $B S$ is quite easy for the illusionist (accessing also mode 3)

Conclusions

- Gaussian states in a beam splitter

(2) A necessary and sufficient condition for entanglement in terms of fidelity
. A condition for transparency
二 The quantum illusionist game

An experiment revealing hidden correlations

- S. Olivares, M. G.A. Paris, Phys. Rev.A 80, 032329 (2009)
- S. Olivares, M. G.A. Paris, Phys. Rev. Lett. I07, I70505 (20II)
- G. Brida, I. P. Degiovanni, M. Genovese, A. Meda, S. Olivares, M. G.A. Paris, arXiv I204.5499

